xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision 9b562bdf50151b749f4ccd777783d41e2cd06a4b)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  *   Copyright (c) 2022 Dell Inc, or its subsidiaries. All rights reserved.
6  */
7 
8 #include "spdk/stdinc.h"
9 
10 #include "bdev_nvme.h"
11 
12 #include "spdk/accel.h"
13 #include "spdk/config.h"
14 #include "spdk/endian.h"
15 #include "spdk/bdev.h"
16 #include "spdk/json.h"
17 #include "spdk/keyring.h"
18 #include "spdk/likely.h"
19 #include "spdk/nvme.h"
20 #include "spdk/nvme_ocssd.h"
21 #include "spdk/nvme_zns.h"
22 #include "spdk/opal.h"
23 #include "spdk/thread.h"
24 #include "spdk/trace.h"
25 #include "spdk/string.h"
26 #include "spdk/util.h"
27 #include "spdk/uuid.h"
28 
29 #include "spdk/bdev_module.h"
30 #include "spdk/log.h"
31 
32 #include "spdk_internal/usdt.h"
33 #include "spdk_internal/trace_defs.h"
34 
35 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
36 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
37 
38 #define NSID_STR_LEN 10
39 
40 #define SPDK_CONTROLLER_NAME_MAX 512
41 
42 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
43 
44 struct nvme_bdev_io {
45 	/** array of iovecs to transfer. */
46 	struct iovec *iovs;
47 
48 	/** Number of iovecs in iovs array. */
49 	int iovcnt;
50 
51 	/** Current iovec position. */
52 	int iovpos;
53 
54 	/** Offset in current iovec. */
55 	uint32_t iov_offset;
56 
57 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
58 	 *  being reset in a reset I/O.
59 	 */
60 	struct nvme_io_path *io_path;
61 
62 	/** array of iovecs to transfer. */
63 	struct iovec *fused_iovs;
64 
65 	/** Number of iovecs in iovs array. */
66 	int fused_iovcnt;
67 
68 	/** Current iovec position. */
69 	int fused_iovpos;
70 
71 	/** Offset in current iovec. */
72 	uint32_t fused_iov_offset;
73 
74 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
75 	struct spdk_nvme_cpl cpl;
76 
77 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
78 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
79 
80 	/** Keeps track if first of fused commands was submitted */
81 	bool first_fused_submitted;
82 
83 	/** Keeps track if first of fused commands was completed */
84 	bool first_fused_completed;
85 
86 	/** Temporary pointer to zone report buffer */
87 	struct spdk_nvme_zns_zone_report *zone_report_buf;
88 
89 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
90 	uint64_t handled_zones;
91 
92 	/** Expiration value in ticks to retry the current I/O. */
93 	uint64_t retry_ticks;
94 
95 	/* How many times the current I/O was retried. */
96 	int32_t retry_count;
97 
98 	/* Current tsc at submit time. */
99 	uint64_t submit_tsc;
100 
101 	/* Used to put nvme_bdev_io into the list */
102 	TAILQ_ENTRY(nvme_bdev_io) retry_link;
103 };
104 
105 struct nvme_probe_skip_entry {
106 	struct spdk_nvme_transport_id		trid;
107 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
108 };
109 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
110 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
111 			g_skipped_nvme_ctrlrs);
112 
113 #define BDEV_NVME_DEFAULT_DIGESTS (SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA256) | \
114 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA384) | \
115 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA512))
116 
117 #define BDEV_NVME_DEFAULT_DHGROUPS (SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_NULL) | \
118 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_2048) | \
119 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_3072) | \
120 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_4096) | \
121 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_6144) | \
122 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_8192))
123 
124 static struct spdk_bdev_nvme_opts g_opts = {
125 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
126 	.timeout_us = 0,
127 	.timeout_admin_us = 0,
128 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
129 	.transport_retry_count = 4,
130 	.arbitration_burst = 0,
131 	.low_priority_weight = 0,
132 	.medium_priority_weight = 0,
133 	.high_priority_weight = 0,
134 	.nvme_adminq_poll_period_us = 10000ULL,
135 	.nvme_ioq_poll_period_us = 0,
136 	.io_queue_requests = 0,
137 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
138 	.bdev_retry_count = 3,
139 	.transport_ack_timeout = 0,
140 	.ctrlr_loss_timeout_sec = 0,
141 	.reconnect_delay_sec = 0,
142 	.fast_io_fail_timeout_sec = 0,
143 	.disable_auto_failback = false,
144 	.generate_uuids = false,
145 	.transport_tos = 0,
146 	.nvme_error_stat = false,
147 	.io_path_stat = false,
148 	.allow_accel_sequence = false,
149 	.dhchap_digests = BDEV_NVME_DEFAULT_DIGESTS,
150 	.dhchap_dhgroups = BDEV_NVME_DEFAULT_DHGROUPS,
151 };
152 
153 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
154 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
155 
156 static int g_hot_insert_nvme_controller_index = 0;
157 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
158 static bool g_nvme_hotplug_enabled = false;
159 struct spdk_thread *g_bdev_nvme_init_thread;
160 static struct spdk_poller *g_hotplug_poller;
161 static struct spdk_poller *g_hotplug_probe_poller;
162 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
163 
164 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
165 		struct nvme_async_probe_ctx *ctx);
166 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
167 		struct nvme_async_probe_ctx *ctx);
168 static int bdev_nvme_library_init(void);
169 static void bdev_nvme_library_fini(void);
170 static void _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch,
171 				      struct spdk_bdev_io *bdev_io);
172 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
173 				     struct spdk_bdev_io *bdev_io);
174 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
175 			   void *md, uint64_t lba_count, uint64_t lba,
176 			   uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
177 			   struct spdk_accel_sequence *seq);
178 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
179 				 void *md, uint64_t lba_count, uint64_t lba);
180 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
181 			    void *md, uint64_t lba_count, uint64_t lba,
182 			    uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
183 			    struct spdk_accel_sequence *seq);
184 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
185 				  void *md, uint64_t lba_count,
186 				  uint64_t zslba, uint32_t flags);
187 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
188 			      void *md, uint64_t lba_count, uint64_t lba,
189 			      uint32_t flags);
190 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
191 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
192 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
193 		uint32_t flags);
194 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
195 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
196 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
197 				     enum spdk_bdev_zone_action action);
198 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
199 				     struct nvme_bdev_io *bio,
200 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
201 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
202 				 void *buf, size_t nbytes);
203 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
204 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
205 static int bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
206 				     struct iovec *iov, int iovcnt, size_t nbytes,
207 				     void *md_buf, size_t md_len);
208 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
209 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
210 static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio);
211 static int bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
212 static int bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
213 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
214 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
215 
216 static struct nvme_ns *nvme_ns_alloc(void);
217 static void nvme_ns_free(struct nvme_ns *ns);
218 
219 static int
220 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
221 {
222 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
223 }
224 
225 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
226 
227 struct spdk_nvme_qpair *
228 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
229 {
230 	struct nvme_ctrlr_channel *ctrlr_ch;
231 
232 	assert(ctrlr_io_ch != NULL);
233 
234 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
235 
236 	return ctrlr_ch->qpair->qpair;
237 }
238 
239 static int
240 bdev_nvme_get_ctx_size(void)
241 {
242 	return sizeof(struct nvme_bdev_io);
243 }
244 
245 static struct spdk_bdev_module nvme_if = {
246 	.name = "nvme",
247 	.async_fini = true,
248 	.module_init = bdev_nvme_library_init,
249 	.module_fini = bdev_nvme_library_fini,
250 	.config_json = bdev_nvme_config_json,
251 	.get_ctx_size = bdev_nvme_get_ctx_size,
252 
253 };
254 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
255 
256 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
257 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
258 bool g_bdev_nvme_module_finish;
259 
260 struct nvme_bdev_ctrlr *
261 nvme_bdev_ctrlr_get_by_name(const char *name)
262 {
263 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
264 
265 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
266 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
267 			break;
268 		}
269 	}
270 
271 	return nbdev_ctrlr;
272 }
273 
274 static struct nvme_ctrlr *
275 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
276 			  const struct spdk_nvme_transport_id *trid)
277 {
278 	struct nvme_ctrlr *nvme_ctrlr;
279 
280 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
281 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0) {
282 			break;
283 		}
284 	}
285 
286 	return nvme_ctrlr;
287 }
288 
289 struct nvme_ctrlr *
290 nvme_bdev_ctrlr_get_ctrlr_by_id(struct nvme_bdev_ctrlr *nbdev_ctrlr,
291 				uint16_t cntlid)
292 {
293 	struct nvme_ctrlr *nvme_ctrlr;
294 	const struct spdk_nvme_ctrlr_data *cdata;
295 
296 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
297 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
298 		if (cdata->cntlid == cntlid) {
299 			break;
300 		}
301 	}
302 
303 	return nvme_ctrlr;
304 }
305 
306 static struct nvme_bdev *
307 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
308 {
309 	struct nvme_bdev *bdev;
310 
311 	pthread_mutex_lock(&g_bdev_nvme_mutex);
312 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
313 		if (bdev->nsid == nsid) {
314 			break;
315 		}
316 	}
317 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
318 
319 	return bdev;
320 }
321 
322 struct nvme_ns *
323 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
324 {
325 	struct nvme_ns ns;
326 
327 	assert(nsid > 0);
328 
329 	ns.id = nsid;
330 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
331 }
332 
333 struct nvme_ns *
334 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
335 {
336 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
337 }
338 
339 struct nvme_ns *
340 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
341 {
342 	if (ns == NULL) {
343 		return NULL;
344 	}
345 
346 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
347 }
348 
349 static struct nvme_ctrlr *
350 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid)
351 {
352 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
353 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
354 
355 	pthread_mutex_lock(&g_bdev_nvme_mutex);
356 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
357 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid);
358 		if (nvme_ctrlr != NULL) {
359 			break;
360 		}
361 	}
362 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
363 
364 	return nvme_ctrlr;
365 }
366 
367 struct nvme_ctrlr *
368 nvme_ctrlr_get_by_name(const char *name)
369 {
370 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
371 	struct nvme_ctrlr *nvme_ctrlr = NULL;
372 
373 	if (name == NULL) {
374 		return NULL;
375 	}
376 
377 	pthread_mutex_lock(&g_bdev_nvme_mutex);
378 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
379 	if (nbdev_ctrlr != NULL) {
380 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
381 	}
382 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
383 
384 	return nvme_ctrlr;
385 }
386 
387 void
388 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
389 {
390 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
391 
392 	pthread_mutex_lock(&g_bdev_nvme_mutex);
393 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
394 		fn(nbdev_ctrlr, ctx);
395 	}
396 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
397 }
398 
399 void
400 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
401 {
402 	const char *trtype_str;
403 	const char *adrfam_str;
404 
405 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
406 	if (trtype_str) {
407 		spdk_json_write_named_string(w, "trtype", trtype_str);
408 	}
409 
410 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
411 	if (adrfam_str) {
412 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
413 	}
414 
415 	if (trid->traddr[0] != '\0') {
416 		spdk_json_write_named_string(w, "traddr", trid->traddr);
417 	}
418 
419 	if (trid->trsvcid[0] != '\0') {
420 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
421 	}
422 
423 	if (trid->subnqn[0] != '\0') {
424 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
425 	}
426 }
427 
428 static void
429 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
430 		       struct nvme_ctrlr *nvme_ctrlr)
431 {
432 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
433 	pthread_mutex_lock(&g_bdev_nvme_mutex);
434 
435 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
436 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
437 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
438 
439 		return;
440 	}
441 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
442 
443 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
444 
445 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
446 
447 	free(nbdev_ctrlr->name);
448 	free(nbdev_ctrlr);
449 }
450 
451 static void
452 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
453 {
454 	struct nvme_path_id *path_id, *tmp_path;
455 	struct nvme_ns *ns, *tmp_ns;
456 
457 	free(nvme_ctrlr->copied_ana_desc);
458 	spdk_free(nvme_ctrlr->ana_log_page);
459 
460 	if (nvme_ctrlr->opal_dev) {
461 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
462 		nvme_ctrlr->opal_dev = NULL;
463 	}
464 
465 	if (nvme_ctrlr->nbdev_ctrlr) {
466 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
467 	}
468 
469 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
470 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
471 		nvme_ns_free(ns);
472 	}
473 
474 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
475 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
476 		free(path_id);
477 	}
478 
479 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
480 	spdk_keyring_put_key(nvme_ctrlr->psk);
481 	spdk_keyring_put_key(nvme_ctrlr->dhchap_key);
482 	free(nvme_ctrlr);
483 
484 	pthread_mutex_lock(&g_bdev_nvme_mutex);
485 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
486 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
487 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
488 		spdk_bdev_module_fini_done();
489 		return;
490 	}
491 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
492 }
493 
494 static int
495 nvme_detach_poller(void *arg)
496 {
497 	struct nvme_ctrlr *nvme_ctrlr = arg;
498 	int rc;
499 
500 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
501 	if (rc != -EAGAIN) {
502 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
503 		_nvme_ctrlr_delete(nvme_ctrlr);
504 	}
505 
506 	return SPDK_POLLER_BUSY;
507 }
508 
509 static void
510 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
511 {
512 	int rc;
513 
514 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
515 
516 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
517 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
518 
519 	/* If we got here, the reset/detach poller cannot be active */
520 	assert(nvme_ctrlr->reset_detach_poller == NULL);
521 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
522 					  nvme_ctrlr, 1000);
523 	if (nvme_ctrlr->reset_detach_poller == NULL) {
524 		SPDK_ERRLOG("Failed to register detach poller\n");
525 		goto error;
526 	}
527 
528 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
529 	if (rc != 0) {
530 		SPDK_ERRLOG("Failed to detach the NVMe controller\n");
531 		goto error;
532 	}
533 
534 	return;
535 error:
536 	/* We don't have a good way to handle errors here, so just do what we can and delete the
537 	 * controller without detaching the underlying NVMe device.
538 	 */
539 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
540 	_nvme_ctrlr_delete(nvme_ctrlr);
541 }
542 
543 static void
544 nvme_ctrlr_unregister_cb(void *io_device)
545 {
546 	struct nvme_ctrlr *nvme_ctrlr = io_device;
547 
548 	nvme_ctrlr_delete(nvme_ctrlr);
549 }
550 
551 static void
552 nvme_ctrlr_unregister(void *ctx)
553 {
554 	struct nvme_ctrlr *nvme_ctrlr = ctx;
555 
556 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
557 }
558 
559 static bool
560 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
561 {
562 	if (!nvme_ctrlr->destruct) {
563 		return false;
564 	}
565 
566 	if (nvme_ctrlr->ref > 0) {
567 		return false;
568 	}
569 
570 	if (nvme_ctrlr->resetting) {
571 		return false;
572 	}
573 
574 	if (nvme_ctrlr->ana_log_page_updating) {
575 		return false;
576 	}
577 
578 	if (nvme_ctrlr->io_path_cache_clearing) {
579 		return false;
580 	}
581 
582 	return true;
583 }
584 
585 static void
586 nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
587 {
588 	pthread_mutex_lock(&nvme_ctrlr->mutex);
589 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
590 
591 	assert(nvme_ctrlr->ref > 0);
592 	nvme_ctrlr->ref--;
593 
594 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
595 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
596 		return;
597 	}
598 
599 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
600 
601 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
602 }
603 
604 static void
605 bdev_nvme_clear_current_io_path(struct nvme_bdev_channel *nbdev_ch)
606 {
607 	nbdev_ch->current_io_path = NULL;
608 	nbdev_ch->rr_counter = 0;
609 }
610 
611 static struct nvme_io_path *
612 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
613 {
614 	struct nvme_io_path *io_path;
615 
616 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
617 		if (io_path->nvme_ns == nvme_ns) {
618 			break;
619 		}
620 	}
621 
622 	return io_path;
623 }
624 
625 static struct nvme_io_path *
626 nvme_io_path_alloc(void)
627 {
628 	struct nvme_io_path *io_path;
629 
630 	io_path = calloc(1, sizeof(*io_path));
631 	if (io_path == NULL) {
632 		SPDK_ERRLOG("Failed to alloc io_path.\n");
633 		return NULL;
634 	}
635 
636 	if (g_opts.io_path_stat) {
637 		io_path->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
638 		if (io_path->stat == NULL) {
639 			free(io_path);
640 			SPDK_ERRLOG("Failed to alloc io_path stat.\n");
641 			return NULL;
642 		}
643 		spdk_bdev_reset_io_stat(io_path->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
644 	}
645 
646 	return io_path;
647 }
648 
649 static void
650 nvme_io_path_free(struct nvme_io_path *io_path)
651 {
652 	free(io_path->stat);
653 	free(io_path);
654 }
655 
656 static int
657 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
658 {
659 	struct nvme_io_path *io_path;
660 	struct spdk_io_channel *ch;
661 	struct nvme_ctrlr_channel *ctrlr_ch;
662 	struct nvme_qpair *nvme_qpair;
663 
664 	io_path = nvme_io_path_alloc();
665 	if (io_path == NULL) {
666 		return -ENOMEM;
667 	}
668 
669 	io_path->nvme_ns = nvme_ns;
670 
671 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
672 	if (ch == NULL) {
673 		nvme_io_path_free(io_path);
674 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
675 		return -ENOMEM;
676 	}
677 
678 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
679 
680 	nvme_qpair = ctrlr_ch->qpair;
681 	assert(nvme_qpair != NULL);
682 
683 	io_path->qpair = nvme_qpair;
684 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
685 
686 	io_path->nbdev_ch = nbdev_ch;
687 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
688 
689 	bdev_nvme_clear_current_io_path(nbdev_ch);
690 
691 	return 0;
692 }
693 
694 static void
695 bdev_nvme_clear_retry_io_path(struct nvme_bdev_channel *nbdev_ch,
696 			      struct nvme_io_path *io_path)
697 {
698 	struct nvme_bdev_io *bio;
699 
700 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
701 		if (bio->io_path == io_path) {
702 			bio->io_path = NULL;
703 		}
704 	}
705 }
706 
707 static void
708 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
709 {
710 	struct spdk_io_channel *ch;
711 	struct nvme_qpair *nvme_qpair;
712 	struct nvme_ctrlr_channel *ctrlr_ch;
713 	struct nvme_bdev *nbdev;
714 
715 	nbdev = spdk_io_channel_get_io_device(spdk_io_channel_from_ctx(nbdev_ch));
716 
717 	/* Add the statistics to nvme_ns before this path is destroyed. */
718 	pthread_mutex_lock(&nbdev->mutex);
719 	if (nbdev->ref != 0 && io_path->nvme_ns->stat != NULL && io_path->stat != NULL) {
720 		spdk_bdev_add_io_stat(io_path->nvme_ns->stat, io_path->stat);
721 	}
722 	pthread_mutex_unlock(&nbdev->mutex);
723 
724 	bdev_nvme_clear_current_io_path(nbdev_ch);
725 	bdev_nvme_clear_retry_io_path(nbdev_ch, io_path);
726 
727 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
728 	io_path->nbdev_ch = NULL;
729 
730 	nvme_qpair = io_path->qpair;
731 	assert(nvme_qpair != NULL);
732 
733 	ctrlr_ch = nvme_qpair->ctrlr_ch;
734 	assert(ctrlr_ch != NULL);
735 
736 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
737 	spdk_put_io_channel(ch);
738 
739 	/* After an io_path is removed, I/Os submitted to it may complete and update statistics
740 	 * of the io_path. To avoid heap-use-after-free error from this case, do not free the
741 	 * io_path here but free the io_path when the associated qpair is freed. It is ensured
742 	 * that all I/Os submitted to the io_path are completed when the associated qpair is freed.
743 	 */
744 }
745 
746 static void
747 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
748 {
749 	struct nvme_io_path *io_path, *tmp_io_path;
750 
751 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
752 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
753 	}
754 }
755 
756 static int
757 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
758 {
759 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
760 	struct nvme_bdev *nbdev = io_device;
761 	struct nvme_ns *nvme_ns;
762 	int rc;
763 
764 	STAILQ_INIT(&nbdev_ch->io_path_list);
765 	TAILQ_INIT(&nbdev_ch->retry_io_list);
766 
767 	pthread_mutex_lock(&nbdev->mutex);
768 
769 	nbdev_ch->mp_policy = nbdev->mp_policy;
770 	nbdev_ch->mp_selector = nbdev->mp_selector;
771 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
772 
773 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
774 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
775 		if (rc != 0) {
776 			pthread_mutex_unlock(&nbdev->mutex);
777 
778 			_bdev_nvme_delete_io_paths(nbdev_ch);
779 			return rc;
780 		}
781 	}
782 	pthread_mutex_unlock(&nbdev->mutex);
783 
784 	return 0;
785 }
786 
787 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
788  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
789  */
790 static inline void
791 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
792 			const struct spdk_nvme_cpl *cpl)
793 {
794 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
795 			  (uintptr_t)bdev_io);
796 	if (cpl) {
797 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
798 	} else {
799 		spdk_bdev_io_complete(bdev_io, status);
800 	}
801 }
802 
803 static void bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch);
804 
805 static void
806 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
807 {
808 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
809 
810 	bdev_nvme_abort_retry_ios(nbdev_ch);
811 	_bdev_nvme_delete_io_paths(nbdev_ch);
812 }
813 
814 static inline bool
815 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
816 {
817 	switch (io_type) {
818 	case SPDK_BDEV_IO_TYPE_RESET:
819 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
820 	case SPDK_BDEV_IO_TYPE_ABORT:
821 		return true;
822 	default:
823 		break;
824 	}
825 
826 	return false;
827 }
828 
829 static inline bool
830 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
831 {
832 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
833 		return false;
834 	}
835 
836 	switch (nvme_ns->ana_state) {
837 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
838 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
839 		return true;
840 	default:
841 		break;
842 	}
843 
844 	return false;
845 }
846 
847 static inline bool
848 nvme_qpair_is_connected(struct nvme_qpair *nvme_qpair)
849 {
850 	if (spdk_unlikely(nvme_qpair->qpair == NULL)) {
851 		return false;
852 	}
853 
854 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
855 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
856 		return false;
857 	}
858 
859 	if (spdk_unlikely(nvme_qpair->ctrlr_ch->reset_iter != NULL)) {
860 		return false;
861 	}
862 
863 	return true;
864 }
865 
866 static inline bool
867 nvme_io_path_is_available(struct nvme_io_path *io_path)
868 {
869 	if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
870 		return false;
871 	}
872 
873 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
874 		return false;
875 	}
876 
877 	return true;
878 }
879 
880 static inline bool
881 nvme_ctrlr_is_failed(struct nvme_ctrlr *nvme_ctrlr)
882 {
883 	if (nvme_ctrlr->destruct) {
884 		return true;
885 	}
886 
887 	if (nvme_ctrlr->fast_io_fail_timedout) {
888 		return true;
889 	}
890 
891 	if (nvme_ctrlr->resetting) {
892 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
893 			return false;
894 		} else {
895 			return true;
896 		}
897 	}
898 
899 	if (nvme_ctrlr->reconnect_is_delayed) {
900 		return false;
901 	}
902 
903 	if (nvme_ctrlr->disabled) {
904 		return true;
905 	}
906 
907 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
908 		return true;
909 	} else {
910 		return false;
911 	}
912 }
913 
914 static bool
915 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
916 {
917 	if (nvme_ctrlr->destruct) {
918 		return false;
919 	}
920 
921 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
922 		return false;
923 	}
924 
925 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
926 		return false;
927 	}
928 
929 	if (nvme_ctrlr->disabled) {
930 		return false;
931 	}
932 
933 	return true;
934 }
935 
936 /* Simulate circular linked list. */
937 static inline struct nvme_io_path *
938 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
939 {
940 	struct nvme_io_path *next_path;
941 
942 	if (prev_path != NULL) {
943 		next_path = STAILQ_NEXT(prev_path, stailq);
944 		if (next_path != NULL) {
945 			return next_path;
946 		}
947 	}
948 
949 	return STAILQ_FIRST(&nbdev_ch->io_path_list);
950 }
951 
952 static struct nvme_io_path *
953 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
954 {
955 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
956 
957 	start = nvme_io_path_get_next(nbdev_ch, nbdev_ch->current_io_path);
958 
959 	io_path = start;
960 	do {
961 		if (spdk_likely(nvme_qpair_is_connected(io_path->qpair) &&
962 				!io_path->nvme_ns->ana_state_updating)) {
963 			switch (io_path->nvme_ns->ana_state) {
964 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
965 				nbdev_ch->current_io_path = io_path;
966 				return io_path;
967 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
968 				if (non_optimized == NULL) {
969 					non_optimized = io_path;
970 				}
971 				break;
972 			default:
973 				break;
974 			}
975 		}
976 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
977 	} while (io_path != start);
978 
979 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
980 		/* We come here only if there is no optimized path. Cache even non_optimized
981 		 * path for load balance across multiple non_optimized paths.
982 		 */
983 		nbdev_ch->current_io_path = non_optimized;
984 	}
985 
986 	return non_optimized;
987 }
988 
989 static struct nvme_io_path *
990 _bdev_nvme_find_io_path_min_qd(struct nvme_bdev_channel *nbdev_ch)
991 {
992 	struct nvme_io_path *io_path;
993 	struct nvme_io_path *optimized = NULL, *non_optimized = NULL;
994 	uint32_t opt_min_qd = UINT32_MAX, non_opt_min_qd = UINT32_MAX;
995 	uint32_t num_outstanding_reqs;
996 
997 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
998 		if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
999 			/* The device is currently resetting. */
1000 			continue;
1001 		}
1002 
1003 		if (spdk_unlikely(io_path->nvme_ns->ana_state_updating)) {
1004 			continue;
1005 		}
1006 
1007 		num_outstanding_reqs = spdk_nvme_qpair_get_num_outstanding_reqs(io_path->qpair->qpair);
1008 		switch (io_path->nvme_ns->ana_state) {
1009 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
1010 			if (num_outstanding_reqs < opt_min_qd) {
1011 				opt_min_qd = num_outstanding_reqs;
1012 				optimized = io_path;
1013 			}
1014 			break;
1015 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1016 			if (num_outstanding_reqs < non_opt_min_qd) {
1017 				non_opt_min_qd = num_outstanding_reqs;
1018 				non_optimized = io_path;
1019 			}
1020 			break;
1021 		default:
1022 			break;
1023 		}
1024 	}
1025 
1026 	/* don't cache io path for BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH selector */
1027 	if (optimized != NULL) {
1028 		return optimized;
1029 	}
1030 
1031 	return non_optimized;
1032 }
1033 
1034 static inline struct nvme_io_path *
1035 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1036 {
1037 	if (spdk_likely(nbdev_ch->current_io_path != NULL)) {
1038 		if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE) {
1039 			return nbdev_ch->current_io_path;
1040 		} else if (nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1041 			if (++nbdev_ch->rr_counter < nbdev_ch->rr_min_io) {
1042 				return nbdev_ch->current_io_path;
1043 			}
1044 			nbdev_ch->rr_counter = 0;
1045 		}
1046 	}
1047 
1048 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE ||
1049 	    nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1050 		return _bdev_nvme_find_io_path(nbdev_ch);
1051 	} else {
1052 		return _bdev_nvme_find_io_path_min_qd(nbdev_ch);
1053 	}
1054 }
1055 
1056 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
1057  * or false otherwise.
1058  *
1059  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
1060  * is likely to be non-accessible now but may become accessible.
1061  *
1062  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
1063  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
1064  * when starting to reset it but it is set to failed when the reset failed. Hence, if
1065  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
1066  */
1067 static bool
1068 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
1069 {
1070 	struct nvme_io_path *io_path;
1071 
1072 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1073 		if (io_path->nvme_ns->ana_transition_timedout) {
1074 			continue;
1075 		}
1076 
1077 		if (nvme_qpair_is_connected(io_path->qpair) ||
1078 		    !nvme_ctrlr_is_failed(io_path->qpair->ctrlr)) {
1079 			return true;
1080 		}
1081 	}
1082 
1083 	return false;
1084 }
1085 
1086 static void
1087 bdev_nvme_retry_io(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
1088 {
1089 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1090 	struct spdk_io_channel *ch;
1091 
1092 	if (nbdev_io->io_path != NULL && nvme_io_path_is_available(nbdev_io->io_path)) {
1093 		_bdev_nvme_submit_request(nbdev_ch, bdev_io);
1094 	} else {
1095 		ch = spdk_io_channel_from_ctx(nbdev_ch);
1096 		bdev_nvme_submit_request(ch, bdev_io);
1097 	}
1098 }
1099 
1100 static int
1101 bdev_nvme_retry_ios(void *arg)
1102 {
1103 	struct nvme_bdev_channel *nbdev_ch = arg;
1104 	struct nvme_bdev_io *bio, *tmp_bio;
1105 	uint64_t now, delay_us;
1106 
1107 	now = spdk_get_ticks();
1108 
1109 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1110 		if (bio->retry_ticks > now) {
1111 			break;
1112 		}
1113 
1114 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1115 
1116 		bdev_nvme_retry_io(nbdev_ch, spdk_bdev_io_from_ctx(bio));
1117 	}
1118 
1119 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1120 
1121 	bio = TAILQ_FIRST(&nbdev_ch->retry_io_list);
1122 	if (bio != NULL) {
1123 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
1124 
1125 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1126 					    delay_us);
1127 	}
1128 
1129 	return SPDK_POLLER_BUSY;
1130 }
1131 
1132 static void
1133 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
1134 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
1135 {
1136 	struct nvme_bdev_io *tmp_bio;
1137 
1138 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
1139 
1140 	TAILQ_FOREACH_REVERSE(tmp_bio, &nbdev_ch->retry_io_list, retry_io_head, retry_link) {
1141 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1142 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bio, bio,
1143 					   retry_link);
1144 			return;
1145 		}
1146 	}
1147 
1148 	/* No earlier I/Os were found. This I/O must be the new head. */
1149 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bio, retry_link);
1150 
1151 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1152 
1153 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1154 				    delay_ms * 1000ULL);
1155 }
1156 
1157 static void
1158 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
1159 {
1160 	struct nvme_bdev_io *bio, *tmp_bio;
1161 
1162 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1163 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1164 		__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1165 	}
1166 
1167 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1168 }
1169 
1170 static int
1171 bdev_nvme_abort_retry_io(struct nvme_bdev_channel *nbdev_ch,
1172 			 struct nvme_bdev_io *bio_to_abort)
1173 {
1174 	struct nvme_bdev_io *bio;
1175 
1176 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
1177 		if (bio == bio_to_abort) {
1178 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1179 			__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1180 			return 0;
1181 		}
1182 	}
1183 
1184 	return -ENOENT;
1185 }
1186 
1187 static void
1188 bdev_nvme_update_nvme_error_stat(struct spdk_bdev_io *bdev_io, const struct spdk_nvme_cpl *cpl)
1189 {
1190 	struct nvme_bdev *nbdev;
1191 	uint16_t sct, sc;
1192 
1193 	assert(spdk_nvme_cpl_is_error(cpl));
1194 
1195 	nbdev = bdev_io->bdev->ctxt;
1196 
1197 	if (nbdev->err_stat == NULL) {
1198 		return;
1199 	}
1200 
1201 	sct = cpl->status.sct;
1202 	sc = cpl->status.sc;
1203 
1204 	pthread_mutex_lock(&nbdev->mutex);
1205 
1206 	nbdev->err_stat->status_type[sct]++;
1207 	switch (sct) {
1208 	case SPDK_NVME_SCT_GENERIC:
1209 	case SPDK_NVME_SCT_COMMAND_SPECIFIC:
1210 	case SPDK_NVME_SCT_MEDIA_ERROR:
1211 	case SPDK_NVME_SCT_PATH:
1212 		nbdev->err_stat->status[sct][sc]++;
1213 		break;
1214 	default:
1215 		break;
1216 	}
1217 
1218 	pthread_mutex_unlock(&nbdev->mutex);
1219 }
1220 
1221 static inline void
1222 bdev_nvme_update_io_path_stat(struct nvme_bdev_io *bio)
1223 {
1224 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1225 	uint64_t num_blocks = bdev_io->u.bdev.num_blocks;
1226 	uint32_t blocklen = bdev_io->bdev->blocklen;
1227 	struct spdk_bdev_io_stat *stat;
1228 	uint64_t tsc_diff;
1229 
1230 	if (bio->io_path->stat == NULL) {
1231 		return;
1232 	}
1233 
1234 	tsc_diff = spdk_get_ticks() - bio->submit_tsc;
1235 	stat = bio->io_path->stat;
1236 
1237 	switch (bdev_io->type) {
1238 	case SPDK_BDEV_IO_TYPE_READ:
1239 		stat->bytes_read += num_blocks * blocklen;
1240 		stat->num_read_ops++;
1241 		stat->read_latency_ticks += tsc_diff;
1242 		if (stat->max_read_latency_ticks < tsc_diff) {
1243 			stat->max_read_latency_ticks = tsc_diff;
1244 		}
1245 		if (stat->min_read_latency_ticks > tsc_diff) {
1246 			stat->min_read_latency_ticks = tsc_diff;
1247 		}
1248 		break;
1249 	case SPDK_BDEV_IO_TYPE_WRITE:
1250 		stat->bytes_written += num_blocks * blocklen;
1251 		stat->num_write_ops++;
1252 		stat->write_latency_ticks += tsc_diff;
1253 		if (stat->max_write_latency_ticks < tsc_diff) {
1254 			stat->max_write_latency_ticks = tsc_diff;
1255 		}
1256 		if (stat->min_write_latency_ticks > tsc_diff) {
1257 			stat->min_write_latency_ticks = tsc_diff;
1258 		}
1259 		break;
1260 	case SPDK_BDEV_IO_TYPE_UNMAP:
1261 		stat->bytes_unmapped += num_blocks * blocklen;
1262 		stat->num_unmap_ops++;
1263 		stat->unmap_latency_ticks += tsc_diff;
1264 		if (stat->max_unmap_latency_ticks < tsc_diff) {
1265 			stat->max_unmap_latency_ticks = tsc_diff;
1266 		}
1267 		if (stat->min_unmap_latency_ticks > tsc_diff) {
1268 			stat->min_unmap_latency_ticks = tsc_diff;
1269 		}
1270 		break;
1271 	case SPDK_BDEV_IO_TYPE_ZCOPY:
1272 		/* Track the data in the start phase only */
1273 		if (!bdev_io->u.bdev.zcopy.start) {
1274 			break;
1275 		}
1276 		if (bdev_io->u.bdev.zcopy.populate) {
1277 			stat->bytes_read += num_blocks * blocklen;
1278 			stat->num_read_ops++;
1279 			stat->read_latency_ticks += tsc_diff;
1280 			if (stat->max_read_latency_ticks < tsc_diff) {
1281 				stat->max_read_latency_ticks = tsc_diff;
1282 			}
1283 			if (stat->min_read_latency_ticks > tsc_diff) {
1284 				stat->min_read_latency_ticks = tsc_diff;
1285 			}
1286 		} else {
1287 			stat->bytes_written += num_blocks * blocklen;
1288 			stat->num_write_ops++;
1289 			stat->write_latency_ticks += tsc_diff;
1290 			if (stat->max_write_latency_ticks < tsc_diff) {
1291 				stat->max_write_latency_ticks = tsc_diff;
1292 			}
1293 			if (stat->min_write_latency_ticks > tsc_diff) {
1294 				stat->min_write_latency_ticks = tsc_diff;
1295 			}
1296 		}
1297 		break;
1298 	case SPDK_BDEV_IO_TYPE_COPY:
1299 		stat->bytes_copied += num_blocks * blocklen;
1300 		stat->num_copy_ops++;
1301 		stat->copy_latency_ticks += tsc_diff;
1302 		if (stat->max_copy_latency_ticks < tsc_diff) {
1303 			stat->max_copy_latency_ticks = tsc_diff;
1304 		}
1305 		if (stat->min_copy_latency_ticks > tsc_diff) {
1306 			stat->min_copy_latency_ticks = tsc_diff;
1307 		}
1308 		break;
1309 	default:
1310 		break;
1311 	}
1312 }
1313 
1314 static bool
1315 bdev_nvme_check_retry_io(struct nvme_bdev_io *bio,
1316 			 const struct spdk_nvme_cpl *cpl,
1317 			 struct nvme_bdev_channel *nbdev_ch,
1318 			 uint64_t *_delay_ms)
1319 {
1320 	struct nvme_io_path *io_path = bio->io_path;
1321 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1322 	const struct spdk_nvme_ctrlr_data *cdata;
1323 
1324 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1325 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1326 	    !nvme_io_path_is_available(io_path) ||
1327 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1328 		bdev_nvme_clear_current_io_path(nbdev_ch);
1329 		bio->io_path = NULL;
1330 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1331 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1332 				io_path->nvme_ns->ana_state_updating = true;
1333 			}
1334 		}
1335 		if (!any_io_path_may_become_available(nbdev_ch)) {
1336 			return false;
1337 		}
1338 		*_delay_ms = 0;
1339 	} else {
1340 		bio->retry_count++;
1341 
1342 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1343 
1344 		if (cpl->status.crd != 0) {
1345 			*_delay_ms = cdata->crdt[cpl->status.crd] * 100;
1346 		} else {
1347 			*_delay_ms = 0;
1348 		}
1349 	}
1350 
1351 	return true;
1352 }
1353 
1354 static inline void
1355 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1356 				  const struct spdk_nvme_cpl *cpl)
1357 {
1358 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1359 	struct nvme_bdev_channel *nbdev_ch;
1360 	uint64_t delay_ms;
1361 
1362 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1363 
1364 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1365 		bdev_nvme_update_io_path_stat(bio);
1366 		goto complete;
1367 	}
1368 
1369 	/* Update error counts before deciding if retry is needed.
1370 	 * Hence, error counts may be more than the number of I/O errors.
1371 	 */
1372 	bdev_nvme_update_nvme_error_stat(bdev_io, cpl);
1373 
1374 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1375 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1376 		goto complete;
1377 	}
1378 
1379 	/* At this point we don't know whether the sequence was successfully executed or not, so we
1380 	 * cannot retry the IO */
1381 	if (bdev_io->u.bdev.accel_sequence != NULL) {
1382 		goto complete;
1383 	}
1384 
1385 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1386 
1387 	if (bdev_nvme_check_retry_io(bio, cpl, nbdev_ch, &delay_ms)) {
1388 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1389 		return;
1390 	}
1391 
1392 complete:
1393 	bio->retry_count = 0;
1394 	bio->submit_tsc = 0;
1395 	bdev_io->u.bdev.accel_sequence = NULL;
1396 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1397 }
1398 
1399 static inline void
1400 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1401 {
1402 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1403 	struct nvme_bdev_channel *nbdev_ch;
1404 	enum spdk_bdev_io_status io_status;
1405 
1406 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1407 
1408 	switch (rc) {
1409 	case 0:
1410 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1411 		break;
1412 	case -ENOMEM:
1413 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1414 		break;
1415 	case -ENXIO:
1416 		if (g_opts.bdev_retry_count == -1 || bio->retry_count < g_opts.bdev_retry_count) {
1417 			nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1418 
1419 			bdev_nvme_clear_current_io_path(nbdev_ch);
1420 			bio->io_path = NULL;
1421 
1422 			if (any_io_path_may_become_available(nbdev_ch)) {
1423 				bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1424 				return;
1425 			}
1426 		}
1427 
1428 	/* fallthrough */
1429 	default:
1430 		spdk_accel_sequence_abort(bdev_io->u.bdev.accel_sequence);
1431 		bdev_io->u.bdev.accel_sequence = NULL;
1432 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1433 		break;
1434 	}
1435 
1436 	bio->retry_count = 0;
1437 	bio->submit_tsc = 0;
1438 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1439 }
1440 
1441 static inline void
1442 bdev_nvme_admin_complete(struct nvme_bdev_io *bio, int rc)
1443 {
1444 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1445 	enum spdk_bdev_io_status io_status;
1446 
1447 	switch (rc) {
1448 	case 0:
1449 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1450 		break;
1451 	case -ENOMEM:
1452 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1453 		break;
1454 	case -ENXIO:
1455 	/* fallthrough */
1456 	default:
1457 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1458 		break;
1459 	}
1460 
1461 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1462 }
1463 
1464 static void
1465 bdev_nvme_clear_io_path_caches_done(struct spdk_io_channel_iter *i, int status)
1466 {
1467 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1468 
1469 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1470 
1471 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1472 	nvme_ctrlr->io_path_cache_clearing = false;
1473 
1474 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1475 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1476 		return;
1477 	}
1478 
1479 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1480 
1481 	nvme_ctrlr_unregister(nvme_ctrlr);
1482 }
1483 
1484 static void
1485 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1486 {
1487 	struct nvme_io_path *io_path;
1488 
1489 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1490 		if (io_path->nbdev_ch == NULL) {
1491 			continue;
1492 		}
1493 		bdev_nvme_clear_current_io_path(io_path->nbdev_ch);
1494 	}
1495 }
1496 
1497 static void
1498 bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i)
1499 {
1500 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1501 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1502 
1503 	assert(ctrlr_ch->qpair != NULL);
1504 
1505 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1506 
1507 	spdk_for_each_channel_continue(i, 0);
1508 }
1509 
1510 static void
1511 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1512 {
1513 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1514 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1515 	    nvme_ctrlr->io_path_cache_clearing) {
1516 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1517 		return;
1518 	}
1519 
1520 	nvme_ctrlr->io_path_cache_clearing = true;
1521 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1522 
1523 	spdk_for_each_channel(nvme_ctrlr,
1524 			      bdev_nvme_clear_io_path_cache,
1525 			      NULL,
1526 			      bdev_nvme_clear_io_path_caches_done);
1527 }
1528 
1529 static struct nvme_qpair *
1530 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1531 {
1532 	struct nvme_qpair *nvme_qpair;
1533 
1534 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1535 		if (nvme_qpair->qpair == qpair) {
1536 			break;
1537 		}
1538 	}
1539 
1540 	return nvme_qpair;
1541 }
1542 
1543 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1544 
1545 static void
1546 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1547 {
1548 	struct nvme_poll_group *group = poll_group_ctx;
1549 	struct nvme_qpair *nvme_qpair;
1550 	struct nvme_ctrlr_channel *ctrlr_ch;
1551 	int status;
1552 
1553 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1554 	if (nvme_qpair == NULL) {
1555 		return;
1556 	}
1557 
1558 	if (nvme_qpair->qpair != NULL) {
1559 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1560 		nvme_qpair->qpair = NULL;
1561 	}
1562 
1563 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1564 
1565 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1566 
1567 	if (ctrlr_ch != NULL) {
1568 		if (ctrlr_ch->reset_iter != NULL) {
1569 			/* We are in a full reset sequence. */
1570 			if (ctrlr_ch->connect_poller != NULL) {
1571 				/* qpair was failed to connect. Abort the reset sequence. */
1572 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was failed to connect. abort the reset ctrlr sequence.\n",
1573 					      qpair);
1574 				spdk_poller_unregister(&ctrlr_ch->connect_poller);
1575 				status = -1;
1576 			} else {
1577 				/* qpair was completed to disconnect. Just move to the next ctrlr_channel. */
1578 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1579 					      qpair);
1580 				status = 0;
1581 			}
1582 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, status);
1583 			ctrlr_ch->reset_iter = NULL;
1584 		} else {
1585 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1586 			SPDK_NOTICELOG("qpair %p was disconnected and freed. reset controller.\n", qpair);
1587 			bdev_nvme_failover_ctrlr(nvme_qpair->ctrlr);
1588 		}
1589 	} else {
1590 		/* In this case, ctrlr_channel is already deleted. */
1591 		SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed. delete nvme_qpair.\n", qpair);
1592 		nvme_qpair_delete(nvme_qpair);
1593 	}
1594 }
1595 
1596 static void
1597 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1598 {
1599 	struct nvme_qpair *nvme_qpair;
1600 
1601 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1602 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1603 			continue;
1604 		}
1605 
1606 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1607 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1608 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1609 		}
1610 	}
1611 }
1612 
1613 static int
1614 bdev_nvme_poll(void *arg)
1615 {
1616 	struct nvme_poll_group *group = arg;
1617 	int64_t num_completions;
1618 
1619 	if (group->collect_spin_stat && group->start_ticks == 0) {
1620 		group->start_ticks = spdk_get_ticks();
1621 	}
1622 
1623 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1624 			  bdev_nvme_disconnected_qpair_cb);
1625 	if (group->collect_spin_stat) {
1626 		if (num_completions > 0) {
1627 			if (group->end_ticks != 0) {
1628 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1629 				group->end_ticks = 0;
1630 			}
1631 			group->start_ticks = 0;
1632 		} else {
1633 			group->end_ticks = spdk_get_ticks();
1634 		}
1635 	}
1636 
1637 	if (spdk_unlikely(num_completions < 0)) {
1638 		bdev_nvme_check_io_qpairs(group);
1639 	}
1640 
1641 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1642 }
1643 
1644 static int bdev_nvme_poll_adminq(void *arg);
1645 
1646 static void
1647 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1648 {
1649 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1650 
1651 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1652 					  nvme_ctrlr, new_period_us);
1653 }
1654 
1655 static int
1656 bdev_nvme_poll_adminq(void *arg)
1657 {
1658 	int32_t rc;
1659 	struct nvme_ctrlr *nvme_ctrlr = arg;
1660 	nvme_ctrlr_disconnected_cb disconnected_cb;
1661 
1662 	assert(nvme_ctrlr != NULL);
1663 
1664 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1665 	if (rc < 0) {
1666 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1667 		nvme_ctrlr->disconnected_cb = NULL;
1668 
1669 		if (disconnected_cb != NULL) {
1670 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1671 							    g_opts.nvme_adminq_poll_period_us);
1672 			disconnected_cb(nvme_ctrlr);
1673 		} else {
1674 			bdev_nvme_failover_ctrlr(nvme_ctrlr);
1675 		}
1676 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1677 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1678 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1679 	}
1680 
1681 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1682 }
1683 
1684 static void
1685 nvme_bdev_free(void *io_device)
1686 {
1687 	struct nvme_bdev *nvme_disk = io_device;
1688 
1689 	pthread_mutex_destroy(&nvme_disk->mutex);
1690 	free(nvme_disk->disk.name);
1691 	free(nvme_disk->err_stat);
1692 	free(nvme_disk);
1693 }
1694 
1695 static int
1696 bdev_nvme_destruct(void *ctx)
1697 {
1698 	struct nvme_bdev *nvme_disk = ctx;
1699 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1700 
1701 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1702 
1703 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1704 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1705 
1706 		nvme_ns->bdev = NULL;
1707 
1708 		assert(nvme_ns->id > 0);
1709 
1710 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1711 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1712 
1713 			nvme_ctrlr_release(nvme_ns->ctrlr);
1714 			nvme_ns_free(nvme_ns);
1715 		} else {
1716 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1717 		}
1718 	}
1719 
1720 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1721 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1722 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1723 
1724 	spdk_io_device_unregister(nvme_disk, nvme_bdev_free);
1725 
1726 	return 0;
1727 }
1728 
1729 static int
1730 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1731 {
1732 	struct nvme_ctrlr *nvme_ctrlr;
1733 	struct spdk_nvme_io_qpair_opts opts;
1734 	struct spdk_nvme_qpair *qpair;
1735 	int rc;
1736 
1737 	nvme_ctrlr = nvme_qpair->ctrlr;
1738 
1739 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1740 	opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1741 	opts.create_only = true;
1742 	opts.async_mode = true;
1743 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1744 	g_opts.io_queue_requests = opts.io_queue_requests;
1745 
1746 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1747 	if (qpair == NULL) {
1748 		return -1;
1749 	}
1750 
1751 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1752 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1753 
1754 	assert(nvme_qpair->group != NULL);
1755 
1756 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1757 	if (rc != 0) {
1758 		SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
1759 		goto err;
1760 	}
1761 
1762 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1763 	if (rc != 0) {
1764 		SPDK_ERRLOG("Unable to connect I/O qpair.\n");
1765 		goto err;
1766 	}
1767 
1768 	nvme_qpair->qpair = qpair;
1769 
1770 	if (!g_opts.disable_auto_failback) {
1771 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1772 	}
1773 
1774 	return 0;
1775 
1776 err:
1777 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1778 
1779 	return rc;
1780 }
1781 
1782 static void
1783 bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
1784 {
1785 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1786 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1787 	enum spdk_bdev_io_status status = SPDK_BDEV_IO_STATUS_SUCCESS;
1788 	struct nvme_bdev_io *bio;
1789 
1790 	if (spdk_io_channel_iter_get_ctx(i) != NULL) {
1791 		status = SPDK_BDEV_IO_STATUS_FAILED;
1792 	}
1793 
1794 	while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
1795 		bio = TAILQ_FIRST(&ctrlr_ch->pending_resets);
1796 		TAILQ_REMOVE(&ctrlr_ch->pending_resets, bio, retry_link);
1797 		__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), status, NULL);
1798 	}
1799 
1800 	spdk_for_each_channel_continue(i, 0);
1801 }
1802 
1803 /* This function marks the current trid as failed by storing the current ticks
1804  * and then sets the next trid to the active trid within a controller if exists.
1805  *
1806  * The purpose of the boolean return value is to request the caller to disconnect
1807  * the current trid now to try connecting the next trid.
1808  */
1809 static bool
1810 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove, bool start)
1811 {
1812 	struct nvme_path_id *path_id, *next_path;
1813 	int rc __attribute__((unused));
1814 
1815 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1816 	assert(path_id);
1817 	assert(path_id == nvme_ctrlr->active_path_id);
1818 	next_path = TAILQ_NEXT(path_id, link);
1819 
1820 	/* Update the last failed time. It means the trid is failed if its last
1821 	 * failed time is non-zero.
1822 	 */
1823 	path_id->last_failed_tsc = spdk_get_ticks();
1824 
1825 	if (next_path == NULL) {
1826 		/* There is no alternate trid within a controller. */
1827 		return false;
1828 	}
1829 
1830 	if (!start && nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1831 		/* Connect is not retried in a controller reset sequence. Connecting
1832 		 * the next trid will be done by the next bdev_nvme_failover_ctrlr() call.
1833 		 */
1834 		return false;
1835 	}
1836 
1837 	assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
1838 
1839 	SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr,
1840 		       path_id->trid.trsvcid,	next_path->trid.traddr, next_path->trid.trsvcid);
1841 
1842 	spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
1843 	nvme_ctrlr->active_path_id = next_path;
1844 	rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
1845 	assert(rc == 0);
1846 	TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
1847 	if (!remove) {
1848 		/** Shuffle the old trid to the end of the list and use the new one.
1849 		 * Allows for round robin through multiple connections.
1850 		 */
1851 		TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
1852 	} else {
1853 		free(path_id);
1854 	}
1855 
1856 	if (start || next_path->last_failed_tsc == 0) {
1857 		/* bdev_nvme_failover_ctrlr() is just called or the next trid is not failed
1858 		 * or used yet. Try the next trid now.
1859 		 */
1860 		return true;
1861 	}
1862 
1863 	if (spdk_get_ticks() > next_path->last_failed_tsc + spdk_get_ticks_hz() *
1864 	    nvme_ctrlr->opts.reconnect_delay_sec) {
1865 		/* Enough backoff passed since the next trid failed. Try the next trid now. */
1866 		return true;
1867 	}
1868 
1869 	/* The next trid will be tried after reconnect_delay_sec seconds. */
1870 	return false;
1871 }
1872 
1873 static bool
1874 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
1875 {
1876 	int32_t elapsed;
1877 
1878 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
1879 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
1880 		return false;
1881 	}
1882 
1883 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1884 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
1885 		return true;
1886 	} else {
1887 		return false;
1888 	}
1889 }
1890 
1891 static bool
1892 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
1893 {
1894 	uint32_t elapsed;
1895 
1896 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
1897 		return false;
1898 	}
1899 
1900 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1901 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
1902 		return true;
1903 	} else {
1904 		return false;
1905 	}
1906 }
1907 
1908 static void bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
1909 
1910 static void
1911 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
1912 {
1913 	int rc;
1914 
1915 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
1916 	if (rc != 0) {
1917 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
1918 		 * fail the reset sequence immediately.
1919 		 */
1920 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
1921 		return;
1922 	}
1923 
1924 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
1925 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
1926 	 */
1927 	assert(nvme_ctrlr->disconnected_cb == NULL);
1928 	nvme_ctrlr->disconnected_cb = cb_fn;
1929 
1930 	/* During disconnection, reduce the period to poll adminq more often. */
1931 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
1932 }
1933 
1934 enum bdev_nvme_op_after_reset {
1935 	OP_NONE,
1936 	OP_COMPLETE_PENDING_DESTRUCT,
1937 	OP_DESTRUCT,
1938 	OP_DELAYED_RECONNECT,
1939 	OP_FAILOVER,
1940 };
1941 
1942 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
1943 
1944 static _bdev_nvme_op_after_reset
1945 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
1946 {
1947 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1948 		/* Complete pending destruct after reset completes. */
1949 		return OP_COMPLETE_PENDING_DESTRUCT;
1950 	} else if (nvme_ctrlr->pending_failover) {
1951 		nvme_ctrlr->pending_failover = false;
1952 		nvme_ctrlr->reset_start_tsc = 0;
1953 		return OP_FAILOVER;
1954 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1955 		nvme_ctrlr->reset_start_tsc = 0;
1956 		return OP_NONE;
1957 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1958 		return OP_DESTRUCT;
1959 	} else {
1960 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
1961 			nvme_ctrlr->fast_io_fail_timedout = true;
1962 		}
1963 		return OP_DELAYED_RECONNECT;
1964 	}
1965 }
1966 
1967 static int bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
1968 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
1969 
1970 static int
1971 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
1972 {
1973 	struct nvme_ctrlr *nvme_ctrlr = ctx;
1974 
1975 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
1976 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1977 
1978 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
1979 
1980 	if (!nvme_ctrlr->reconnect_is_delayed) {
1981 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1982 		return SPDK_POLLER_BUSY;
1983 	}
1984 
1985 	nvme_ctrlr->reconnect_is_delayed = false;
1986 
1987 	if (nvme_ctrlr->destruct) {
1988 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1989 		return SPDK_POLLER_BUSY;
1990 	}
1991 
1992 	assert(nvme_ctrlr->resetting == false);
1993 	nvme_ctrlr->resetting = true;
1994 
1995 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1996 
1997 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
1998 
1999 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2000 	return SPDK_POLLER_BUSY;
2001 }
2002 
2003 static void
2004 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
2005 {
2006 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2007 
2008 	assert(nvme_ctrlr->reconnect_is_delayed == false);
2009 	nvme_ctrlr->reconnect_is_delayed = true;
2010 
2011 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
2012 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
2013 					    nvme_ctrlr,
2014 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
2015 }
2016 
2017 static void remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr);
2018 
2019 static void
2020 _bdev_nvme_reset_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2021 {
2022 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2023 	bool success = spdk_io_channel_iter_get_ctx(i) == NULL;
2024 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2025 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2026 	enum bdev_nvme_op_after_reset op_after_reset;
2027 
2028 	assert(nvme_ctrlr->thread == spdk_get_thread());
2029 
2030 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2031 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2032 
2033 	if (!success) {
2034 		SPDK_ERRLOG("Resetting controller failed.\n");
2035 	} else {
2036 		SPDK_NOTICELOG("Resetting controller successful.\n");
2037 	}
2038 
2039 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2040 	nvme_ctrlr->resetting = false;
2041 	nvme_ctrlr->dont_retry = false;
2042 	nvme_ctrlr->in_failover = false;
2043 
2044 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
2045 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2046 
2047 	/* Delay callbacks when the next operation is a failover. */
2048 	if (ctrlr_op_cb_fn && op_after_reset != OP_FAILOVER) {
2049 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, success ? 0 : -1);
2050 	}
2051 
2052 	switch (op_after_reset) {
2053 	case OP_COMPLETE_PENDING_DESTRUCT:
2054 		nvme_ctrlr_unregister(nvme_ctrlr);
2055 		break;
2056 	case OP_DESTRUCT:
2057 		bdev_nvme_delete_ctrlr(nvme_ctrlr, false);
2058 		remove_discovery_entry(nvme_ctrlr);
2059 		break;
2060 	case OP_DELAYED_RECONNECT:
2061 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
2062 		break;
2063 	case OP_FAILOVER:
2064 		nvme_ctrlr->ctrlr_op_cb_fn = ctrlr_op_cb_fn;
2065 		nvme_ctrlr->ctrlr_op_cb_arg = ctrlr_op_cb_arg;
2066 		bdev_nvme_failover_ctrlr(nvme_ctrlr);
2067 		break;
2068 	default:
2069 		break;
2070 	}
2071 }
2072 
2073 static void
2074 bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
2075 {
2076 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2077 	if (!success) {
2078 		/* Connecting the active trid failed. Set the next alternate trid to the
2079 		 * active trid if it exists.
2080 		 */
2081 		if (bdev_nvme_failover_trid(nvme_ctrlr, false, false)) {
2082 			/* The next alternate trid exists and is ready to try. Try it now. */
2083 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
2084 
2085 			nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2086 			return;
2087 		}
2088 
2089 		/* We came here if there is no alternate trid or if the next trid exists but
2090 		 * is not ready to try. We will try the active trid after reconnect_delay_sec
2091 		 * seconds if it is non-zero or at the next reset call otherwise.
2092 		 */
2093 	} else {
2094 		/* Connecting the active trid succeeded. Clear the last failed time because it
2095 		 * means the trid is failed if its last failed time is non-zero.
2096 		 */
2097 		nvme_ctrlr->active_path_id->last_failed_tsc = 0;
2098 	}
2099 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2100 
2101 	/* Make sure we clear any pending resets before returning. */
2102 	spdk_for_each_channel(nvme_ctrlr,
2103 			      bdev_nvme_complete_pending_resets,
2104 			      success ? NULL : (void *)0x1,
2105 			      _bdev_nvme_reset_ctrlr_complete);
2106 }
2107 
2108 static void
2109 bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status)
2110 {
2111 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2112 
2113 	bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2114 }
2115 
2116 static void
2117 bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
2118 {
2119 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
2120 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
2121 	struct nvme_qpair *nvme_qpair;
2122 
2123 	nvme_qpair = ctrlr_ch->qpair;
2124 	assert(nvme_qpair != NULL);
2125 
2126 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2127 
2128 	if (nvme_qpair->qpair != NULL) {
2129 		if (nvme_qpair->ctrlr->dont_retry) {
2130 			spdk_nvme_qpair_set_abort_dnr(nvme_qpair->qpair, true);
2131 		}
2132 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
2133 
2134 		/* The current full reset sequence will move to the next
2135 		 * ctrlr_channel after the qpair is actually disconnected.
2136 		 */
2137 		assert(ctrlr_ch->reset_iter == NULL);
2138 		ctrlr_ch->reset_iter = i;
2139 	} else {
2140 		spdk_for_each_channel_continue(i, 0);
2141 	}
2142 }
2143 
2144 static void
2145 bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
2146 {
2147 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2148 
2149 	if (status == 0) {
2150 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, true);
2151 	} else {
2152 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
2153 		spdk_for_each_channel(nvme_ctrlr,
2154 				      bdev_nvme_reset_destroy_qpair,
2155 				      NULL,
2156 				      bdev_nvme_reset_create_qpairs_failed);
2157 	}
2158 }
2159 
2160 static int
2161 bdev_nvme_reset_check_qpair_connected(void *ctx)
2162 {
2163 	struct nvme_ctrlr_channel *ctrlr_ch = ctx;
2164 
2165 	if (ctrlr_ch->reset_iter == NULL) {
2166 		/* qpair was already failed to connect and the reset sequence is being aborted. */
2167 		assert(ctrlr_ch->connect_poller == NULL);
2168 		assert(ctrlr_ch->qpair->qpair == NULL);
2169 		return SPDK_POLLER_BUSY;
2170 	}
2171 
2172 	assert(ctrlr_ch->qpair->qpair != NULL);
2173 
2174 	if (!spdk_nvme_qpair_is_connected(ctrlr_ch->qpair->qpair)) {
2175 		return SPDK_POLLER_BUSY;
2176 	}
2177 
2178 	spdk_poller_unregister(&ctrlr_ch->connect_poller);
2179 
2180 	/* qpair was completed to connect. Move to the next ctrlr_channel */
2181 	spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2182 	ctrlr_ch->reset_iter = NULL;
2183 
2184 	if (!g_opts.disable_auto_failback) {
2185 		_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
2186 	}
2187 
2188 	return SPDK_POLLER_BUSY;
2189 }
2190 
2191 static void
2192 bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
2193 {
2194 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2195 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
2196 	int rc;
2197 
2198 	rc = bdev_nvme_create_qpair(ctrlr_ch->qpair);
2199 	if (rc == 0) {
2200 		ctrlr_ch->connect_poller = SPDK_POLLER_REGISTER(bdev_nvme_reset_check_qpair_connected,
2201 					   ctrlr_ch, 0);
2202 
2203 		/* The current full reset sequence will move to the next
2204 		 * ctrlr_channel after the qpair is actually connected.
2205 		 */
2206 		assert(ctrlr_ch->reset_iter == NULL);
2207 		ctrlr_ch->reset_iter = i;
2208 	} else {
2209 		spdk_for_each_channel_continue(i, rc);
2210 	}
2211 }
2212 
2213 static int
2214 bdev_nvme_reconnect_ctrlr_poll(void *arg)
2215 {
2216 	struct nvme_ctrlr *nvme_ctrlr = arg;
2217 	int rc = -ETIMEDOUT;
2218 
2219 	if (!bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2220 		rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
2221 		if (rc == -EAGAIN) {
2222 			return SPDK_POLLER_BUSY;
2223 		}
2224 	}
2225 
2226 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
2227 	if (rc == 0) {
2228 		/* Recreate all of the I/O queue pairs */
2229 		spdk_for_each_channel(nvme_ctrlr,
2230 				      bdev_nvme_reset_create_qpair,
2231 				      NULL,
2232 				      bdev_nvme_reset_create_qpairs_done);
2233 	} else {
2234 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2235 	}
2236 	return SPDK_POLLER_BUSY;
2237 }
2238 
2239 static void
2240 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2241 {
2242 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
2243 
2244 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
2245 	assert(nvme_ctrlr->reset_detach_poller == NULL);
2246 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
2247 					  nvme_ctrlr, 0);
2248 }
2249 
2250 static void
2251 bdev_nvme_reset_destroy_qpair_done(struct spdk_io_channel_iter *i, int status)
2252 {
2253 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2254 
2255 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
2256 	assert(status == 0);
2257 
2258 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2259 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2260 	} else {
2261 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2262 	}
2263 }
2264 
2265 static void
2266 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2267 {
2268 	spdk_for_each_channel(nvme_ctrlr,
2269 			      bdev_nvme_reset_destroy_qpair,
2270 			      NULL,
2271 			      bdev_nvme_reset_destroy_qpair_done);
2272 }
2273 
2274 static void
2275 bdev_nvme_reconnect_ctrlr_now(void *ctx)
2276 {
2277 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2278 
2279 	assert(nvme_ctrlr->resetting == true);
2280 	assert(nvme_ctrlr->thread == spdk_get_thread());
2281 
2282 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2283 
2284 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2285 
2286 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2287 }
2288 
2289 static void
2290 _bdev_nvme_reset_ctrlr(void *ctx)
2291 {
2292 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2293 
2294 	assert(nvme_ctrlr->resetting == true);
2295 	assert(nvme_ctrlr->thread == spdk_get_thread());
2296 
2297 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2298 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
2299 	} else {
2300 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
2301 	}
2302 }
2303 
2304 static int
2305 bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2306 {
2307 	spdk_msg_fn msg_fn;
2308 
2309 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2310 	if (nvme_ctrlr->destruct) {
2311 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2312 		return -ENXIO;
2313 	}
2314 
2315 	if (nvme_ctrlr->resetting) {
2316 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2317 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
2318 		return -EBUSY;
2319 	}
2320 
2321 	if (nvme_ctrlr->disabled) {
2322 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2323 		SPDK_NOTICELOG("Unable to perform reset. Controller is disabled.\n");
2324 		return -EALREADY;
2325 	}
2326 
2327 	nvme_ctrlr->resetting = true;
2328 	nvme_ctrlr->dont_retry = true;
2329 
2330 	if (nvme_ctrlr->reconnect_is_delayed) {
2331 		SPDK_DEBUGLOG(bdev_nvme, "Reconnect is already scheduled.\n");
2332 		msg_fn = bdev_nvme_reconnect_ctrlr_now;
2333 		nvme_ctrlr->reconnect_is_delayed = false;
2334 	} else {
2335 		msg_fn = _bdev_nvme_reset_ctrlr;
2336 		assert(nvme_ctrlr->reset_start_tsc == 0);
2337 	}
2338 
2339 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2340 
2341 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2342 
2343 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2344 	return 0;
2345 }
2346 
2347 static int
2348 bdev_nvme_enable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2349 {
2350 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2351 	if (nvme_ctrlr->destruct) {
2352 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2353 		return -ENXIO;
2354 	}
2355 
2356 	if (nvme_ctrlr->resetting) {
2357 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2358 		return -EBUSY;
2359 	}
2360 
2361 	if (!nvme_ctrlr->disabled) {
2362 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2363 		return -EALREADY;
2364 	}
2365 
2366 	nvme_ctrlr->disabled = false;
2367 	nvme_ctrlr->resetting = true;
2368 
2369 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2370 
2371 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2372 
2373 	spdk_thread_send_msg(nvme_ctrlr->thread, bdev_nvme_reconnect_ctrlr_now, nvme_ctrlr);
2374 	return 0;
2375 }
2376 
2377 static void
2378 _bdev_nvme_disable_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2379 {
2380 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2381 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2382 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2383 	enum bdev_nvme_op_after_reset op_after_disable;
2384 
2385 	assert(nvme_ctrlr->thread == spdk_get_thread());
2386 
2387 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2388 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2389 
2390 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2391 
2392 	nvme_ctrlr->resetting = false;
2393 	nvme_ctrlr->dont_retry = false;
2394 
2395 	op_after_disable = bdev_nvme_check_op_after_reset(nvme_ctrlr, true);
2396 
2397 	nvme_ctrlr->disabled = true;
2398 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2399 
2400 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2401 
2402 	if (ctrlr_op_cb_fn) {
2403 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, 0);
2404 	}
2405 
2406 	switch (op_after_disable) {
2407 	case OP_COMPLETE_PENDING_DESTRUCT:
2408 		nvme_ctrlr_unregister(nvme_ctrlr);
2409 		break;
2410 	default:
2411 		break;
2412 	}
2413 
2414 }
2415 
2416 static void
2417 bdev_nvme_disable_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr)
2418 {
2419 	/* Make sure we clear any pending resets before returning. */
2420 	spdk_for_each_channel(nvme_ctrlr,
2421 			      bdev_nvme_complete_pending_resets,
2422 			      NULL,
2423 			      _bdev_nvme_disable_ctrlr_complete);
2424 }
2425 
2426 static void
2427 bdev_nvme_disable_destroy_qpairs_done(struct spdk_io_channel_iter *i, int status)
2428 {
2429 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2430 
2431 	assert(status == 0);
2432 
2433 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2434 		bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2435 	} else {
2436 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_ctrlr_complete);
2437 	}
2438 }
2439 
2440 static void
2441 bdev_nvme_disable_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2442 {
2443 	spdk_for_each_channel(nvme_ctrlr,
2444 			      bdev_nvme_reset_destroy_qpair,
2445 			      NULL,
2446 			      bdev_nvme_disable_destroy_qpairs_done);
2447 }
2448 
2449 static void
2450 _bdev_nvme_cancel_reconnect_and_disable_ctrlr(void *ctx)
2451 {
2452 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2453 
2454 	assert(nvme_ctrlr->resetting == true);
2455 	assert(nvme_ctrlr->thread == spdk_get_thread());
2456 
2457 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2458 
2459 	bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2460 }
2461 
2462 static void
2463 _bdev_nvme_disconnect_and_disable_ctrlr(void *ctx)
2464 {
2465 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2466 
2467 	assert(nvme_ctrlr->resetting == true);
2468 	assert(nvme_ctrlr->thread == spdk_get_thread());
2469 
2470 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2471 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_destroy_qpairs);
2472 	} else {
2473 		bdev_nvme_disable_destroy_qpairs(nvme_ctrlr);
2474 	}
2475 }
2476 
2477 static int
2478 bdev_nvme_disable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2479 {
2480 	spdk_msg_fn msg_fn;
2481 
2482 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2483 	if (nvme_ctrlr->destruct) {
2484 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2485 		return -ENXIO;
2486 	}
2487 
2488 	if (nvme_ctrlr->resetting) {
2489 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2490 		return -EBUSY;
2491 	}
2492 
2493 	if (nvme_ctrlr->disabled) {
2494 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2495 		return -EALREADY;
2496 	}
2497 
2498 	nvme_ctrlr->resetting = true;
2499 	nvme_ctrlr->dont_retry = true;
2500 
2501 	if (nvme_ctrlr->reconnect_is_delayed) {
2502 		msg_fn = _bdev_nvme_cancel_reconnect_and_disable_ctrlr;
2503 		nvme_ctrlr->reconnect_is_delayed = false;
2504 	} else {
2505 		msg_fn = _bdev_nvme_disconnect_and_disable_ctrlr;
2506 	}
2507 
2508 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2509 
2510 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2511 
2512 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2513 	return 0;
2514 }
2515 
2516 static int
2517 nvme_ctrlr_op(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2518 	      bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2519 {
2520 	int rc;
2521 
2522 	switch (op) {
2523 	case NVME_CTRLR_OP_RESET:
2524 		rc = bdev_nvme_reset_ctrlr(nvme_ctrlr);
2525 		break;
2526 	case NVME_CTRLR_OP_ENABLE:
2527 		rc = bdev_nvme_enable_ctrlr(nvme_ctrlr);
2528 		break;
2529 	case NVME_CTRLR_OP_DISABLE:
2530 		rc = bdev_nvme_disable_ctrlr(nvme_ctrlr);
2531 		break;
2532 	default:
2533 		rc = -EINVAL;
2534 		break;
2535 	}
2536 
2537 	if (rc == 0) {
2538 		assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL);
2539 		assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL);
2540 		nvme_ctrlr->ctrlr_op_cb_fn = cb_fn;
2541 		nvme_ctrlr->ctrlr_op_cb_arg = cb_arg;
2542 	}
2543 	return rc;
2544 }
2545 
2546 struct nvme_ctrlr_op_rpc_ctx {
2547 	struct nvme_ctrlr *nvme_ctrlr;
2548 	struct spdk_thread *orig_thread;
2549 	enum nvme_ctrlr_op op;
2550 	int rc;
2551 	bdev_nvme_ctrlr_op_cb cb_fn;
2552 	void *cb_arg;
2553 };
2554 
2555 static void
2556 _nvme_ctrlr_op_rpc_complete(void *_ctx)
2557 {
2558 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2559 
2560 	assert(ctx != NULL);
2561 	assert(ctx->cb_fn != NULL);
2562 
2563 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2564 
2565 	free(ctx);
2566 }
2567 
2568 static void
2569 nvme_ctrlr_op_rpc_complete(void *cb_arg, int rc)
2570 {
2571 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2572 
2573 	ctx->rc = rc;
2574 
2575 	spdk_thread_send_msg(ctx->orig_thread, _nvme_ctrlr_op_rpc_complete, ctx);
2576 }
2577 
2578 void
2579 nvme_ctrlr_op_rpc(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2580 		  bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2581 {
2582 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2583 	int rc;
2584 
2585 	assert(cb_fn != NULL);
2586 
2587 	ctx = calloc(1, sizeof(*ctx));
2588 	if (ctx == NULL) {
2589 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2590 		cb_fn(cb_arg, -ENOMEM);
2591 		return;
2592 	}
2593 
2594 	ctx->orig_thread = spdk_get_thread();
2595 	ctx->cb_fn = cb_fn;
2596 	ctx->cb_arg = cb_arg;
2597 
2598 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_ctrlr_op_rpc_complete, ctx);
2599 	if (rc == 0) {
2600 		return;
2601 	} else if (rc == -EALREADY) {
2602 		rc = 0;
2603 	}
2604 
2605 	nvme_ctrlr_op_rpc_complete(ctx, rc);
2606 }
2607 
2608 static void nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc);
2609 
2610 static void
2611 _nvme_bdev_ctrlr_op_rpc_continue(void *_ctx)
2612 {
2613 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2614 	struct nvme_ctrlr *prev_nvme_ctrlr, *next_nvme_ctrlr;
2615 	int rc;
2616 
2617 	prev_nvme_ctrlr = ctx->nvme_ctrlr;
2618 	ctx->nvme_ctrlr = NULL;
2619 
2620 	if (ctx->rc != 0) {
2621 		goto complete;
2622 	}
2623 
2624 	next_nvme_ctrlr = TAILQ_NEXT(prev_nvme_ctrlr, tailq);
2625 	if (next_nvme_ctrlr == NULL) {
2626 		goto complete;
2627 	}
2628 
2629 	rc = nvme_ctrlr_op(next_nvme_ctrlr, ctx->op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2630 	if (rc == 0) {
2631 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2632 		return;
2633 	} else if (rc == -EALREADY) {
2634 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2635 		rc = 0;
2636 	}
2637 
2638 	ctx->rc = rc;
2639 
2640 complete:
2641 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2642 	free(ctx);
2643 }
2644 
2645 static void
2646 nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc)
2647 {
2648 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2649 
2650 	ctx->rc = rc;
2651 
2652 	spdk_thread_send_msg(ctx->orig_thread, _nvme_bdev_ctrlr_op_rpc_continue, ctx);
2653 }
2654 
2655 void
2656 nvme_bdev_ctrlr_op_rpc(struct nvme_bdev_ctrlr *nbdev_ctrlr, enum nvme_ctrlr_op op,
2657 		       bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2658 {
2659 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2660 	struct nvme_ctrlr *nvme_ctrlr;
2661 	int rc;
2662 
2663 	assert(cb_fn != NULL);
2664 
2665 	ctx = calloc(1, sizeof(*ctx));
2666 	if (ctx == NULL) {
2667 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2668 		cb_fn(cb_arg, -ENOMEM);
2669 		return;
2670 	}
2671 
2672 	ctx->orig_thread = spdk_get_thread();
2673 	ctx->op = op;
2674 	ctx->cb_fn = cb_fn;
2675 	ctx->cb_arg = cb_arg;
2676 
2677 	nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
2678 	assert(nvme_ctrlr != NULL);
2679 
2680 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2681 	if (rc == 0) {
2682 		ctx->nvme_ctrlr = nvme_ctrlr;
2683 		return;
2684 	} else if (rc == -EALREADY) {
2685 		ctx->nvme_ctrlr = nvme_ctrlr;
2686 		rc = 0;
2687 	}
2688 
2689 	nvme_bdev_ctrlr_op_rpc_continue(ctx, rc);
2690 }
2691 
2692 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
2693 
2694 static void
2695 _bdev_nvme_reset_io_complete(struct spdk_io_channel_iter *i, int status)
2696 {
2697 	struct nvme_bdev_io *bio = spdk_io_channel_iter_get_ctx(i);
2698 	enum spdk_bdev_io_status io_status;
2699 
2700 	if (bio->cpl.cdw0 == 0) {
2701 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2702 	} else {
2703 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
2704 	}
2705 
2706 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
2707 }
2708 
2709 static void
2710 bdev_nvme_abort_bdev_channel(struct spdk_io_channel_iter *i)
2711 {
2712 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2713 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
2714 
2715 	bdev_nvme_abort_retry_ios(nbdev_ch);
2716 
2717 	spdk_for_each_channel_continue(i, 0);
2718 }
2719 
2720 static void
2721 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
2722 {
2723 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2724 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
2725 
2726 	/* Abort all queued I/Os for retry. */
2727 	spdk_for_each_channel(nbdev,
2728 			      bdev_nvme_abort_bdev_channel,
2729 			      bio,
2730 			      _bdev_nvme_reset_io_complete);
2731 }
2732 
2733 static void
2734 _bdev_nvme_reset_io_continue(void *ctx)
2735 {
2736 	struct nvme_bdev_io *bio = ctx;
2737 	struct nvme_io_path *prev_io_path, *next_io_path;
2738 	int rc;
2739 
2740 	prev_io_path = bio->io_path;
2741 	bio->io_path = NULL;
2742 
2743 	if (bio->cpl.cdw0 != 0) {
2744 		goto complete;
2745 	}
2746 
2747 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
2748 	if (next_io_path == NULL) {
2749 		goto complete;
2750 	}
2751 
2752 	rc = _bdev_nvme_reset_io(next_io_path, bio);
2753 	if (rc == 0) {
2754 		return;
2755 	}
2756 
2757 	bio->cpl.cdw0 = 1;
2758 
2759 complete:
2760 	bdev_nvme_reset_io_complete(bio);
2761 }
2762 
2763 static void
2764 bdev_nvme_reset_io_continue(void *cb_arg, int rc)
2765 {
2766 	struct nvme_bdev_io *bio = cb_arg;
2767 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2768 
2769 	bio->cpl.cdw0 = (rc == 0) ? 0 : 1;
2770 
2771 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), _bdev_nvme_reset_io_continue, bio);
2772 }
2773 
2774 static int
2775 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
2776 {
2777 	struct nvme_ctrlr_channel *ctrlr_ch;
2778 	int rc;
2779 
2780 	rc = nvme_ctrlr_op(io_path->qpair->ctrlr, NVME_CTRLR_OP_RESET,
2781 			   bdev_nvme_reset_io_continue, bio);
2782 	if (rc == 0) {
2783 		assert(bio->io_path == NULL);
2784 		bio->io_path = io_path;
2785 	} else if (rc == -EBUSY) {
2786 		ctrlr_ch = io_path->qpair->ctrlr_ch;
2787 		assert(ctrlr_ch != NULL);
2788 		/*
2789 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
2790 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
2791 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
2792 		 */
2793 		TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bio, retry_link);
2794 		rc = 0;
2795 	}
2796 
2797 	return rc;
2798 }
2799 
2800 static void
2801 bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio)
2802 {
2803 	struct nvme_io_path *io_path;
2804 	int rc;
2805 
2806 	bio->cpl.cdw0 = 0;
2807 
2808 	/* Reset all nvme_ctrlrs of a bdev controller sequentially. */
2809 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
2810 	assert(io_path != NULL);
2811 
2812 	rc = _bdev_nvme_reset_io(io_path, bio);
2813 	if (rc != 0) {
2814 		/* If the current nvme_ctrlr is disabled, skip it and move to the next nvme_ctrlr. */
2815 		bdev_nvme_reset_io_continue(bio, rc == -EALREADY);
2816 	}
2817 }
2818 
2819 static int
2820 bdev_nvme_failover_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool remove)
2821 {
2822 	if (nvme_ctrlr->destruct) {
2823 		/* Don't bother resetting if the controller is in the process of being destructed. */
2824 		return -ENXIO;
2825 	}
2826 
2827 	if (nvme_ctrlr->resetting) {
2828 		if (!nvme_ctrlr->in_failover) {
2829 			SPDK_NOTICELOG("Reset is already in progress. Defer failover until reset completes.\n");
2830 
2831 			/* Defer failover until reset completes. */
2832 			nvme_ctrlr->pending_failover = true;
2833 			return -EINPROGRESS;
2834 		} else {
2835 			SPDK_NOTICELOG("Unable to perform failover, already in progress.\n");
2836 			return -EBUSY;
2837 		}
2838 	}
2839 
2840 	bdev_nvme_failover_trid(nvme_ctrlr, remove, true);
2841 
2842 	if (nvme_ctrlr->reconnect_is_delayed) {
2843 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
2844 
2845 		/* We rely on the next reconnect for the failover. */
2846 		return -EALREADY;
2847 	}
2848 
2849 	if (nvme_ctrlr->disabled) {
2850 		SPDK_NOTICELOG("Controller is disabled.\n");
2851 
2852 		/* We rely on the enablement for the failover. */
2853 		return -EALREADY;
2854 	}
2855 
2856 	nvme_ctrlr->resetting = true;
2857 	nvme_ctrlr->in_failover = true;
2858 
2859 	assert(nvme_ctrlr->reset_start_tsc == 0);
2860 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2861 
2862 	return 0;
2863 }
2864 
2865 static int
2866 bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2867 {
2868 	int rc;
2869 
2870 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2871 	rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, false);
2872 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2873 
2874 	if (rc == 0) {
2875 		spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset_ctrlr, nvme_ctrlr);
2876 	} else if (rc == -EALREADY) {
2877 		rc = 0;
2878 	}
2879 
2880 	return rc;
2881 }
2882 
2883 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2884 			   uint64_t num_blocks);
2885 
2886 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2887 				  uint64_t num_blocks);
2888 
2889 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks,
2890 			  uint64_t src_offset_blocks,
2891 			  uint64_t num_blocks);
2892 
2893 static void
2894 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
2895 		     bool success)
2896 {
2897 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2898 	int ret;
2899 
2900 	if (!success) {
2901 		ret = -EINVAL;
2902 		goto exit;
2903 	}
2904 
2905 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
2906 		ret = -ENXIO;
2907 		goto exit;
2908 	}
2909 
2910 	ret = bdev_nvme_readv(bio,
2911 			      bdev_io->u.bdev.iovs,
2912 			      bdev_io->u.bdev.iovcnt,
2913 			      bdev_io->u.bdev.md_buf,
2914 			      bdev_io->u.bdev.num_blocks,
2915 			      bdev_io->u.bdev.offset_blocks,
2916 			      bdev_io->u.bdev.dif_check_flags,
2917 			      bdev_io->u.bdev.memory_domain,
2918 			      bdev_io->u.bdev.memory_domain_ctx,
2919 			      bdev_io->u.bdev.accel_sequence);
2920 
2921 exit:
2922 	if (spdk_unlikely(ret != 0)) {
2923 		bdev_nvme_io_complete(bio, ret);
2924 	}
2925 }
2926 
2927 static inline void
2928 _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
2929 {
2930 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2931 	struct spdk_bdev *bdev = bdev_io->bdev;
2932 	struct nvme_bdev_io *nbdev_io_to_abort;
2933 	int rc = 0;
2934 
2935 	switch (bdev_io->type) {
2936 	case SPDK_BDEV_IO_TYPE_READ:
2937 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
2938 
2939 			rc = bdev_nvme_readv(nbdev_io,
2940 					     bdev_io->u.bdev.iovs,
2941 					     bdev_io->u.bdev.iovcnt,
2942 					     bdev_io->u.bdev.md_buf,
2943 					     bdev_io->u.bdev.num_blocks,
2944 					     bdev_io->u.bdev.offset_blocks,
2945 					     bdev_io->u.bdev.dif_check_flags,
2946 					     bdev_io->u.bdev.memory_domain,
2947 					     bdev_io->u.bdev.memory_domain_ctx,
2948 					     bdev_io->u.bdev.accel_sequence);
2949 		} else {
2950 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
2951 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
2952 			rc = 0;
2953 		}
2954 		break;
2955 	case SPDK_BDEV_IO_TYPE_WRITE:
2956 		rc = bdev_nvme_writev(nbdev_io,
2957 				      bdev_io->u.bdev.iovs,
2958 				      bdev_io->u.bdev.iovcnt,
2959 				      bdev_io->u.bdev.md_buf,
2960 				      bdev_io->u.bdev.num_blocks,
2961 				      bdev_io->u.bdev.offset_blocks,
2962 				      bdev_io->u.bdev.dif_check_flags,
2963 				      bdev_io->u.bdev.memory_domain,
2964 				      bdev_io->u.bdev.memory_domain_ctx,
2965 				      bdev_io->u.bdev.accel_sequence);
2966 		break;
2967 	case SPDK_BDEV_IO_TYPE_COMPARE:
2968 		rc = bdev_nvme_comparev(nbdev_io,
2969 					bdev_io->u.bdev.iovs,
2970 					bdev_io->u.bdev.iovcnt,
2971 					bdev_io->u.bdev.md_buf,
2972 					bdev_io->u.bdev.num_blocks,
2973 					bdev_io->u.bdev.offset_blocks,
2974 					bdev_io->u.bdev.dif_check_flags);
2975 		break;
2976 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
2977 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
2978 						   bdev_io->u.bdev.iovs,
2979 						   bdev_io->u.bdev.iovcnt,
2980 						   bdev_io->u.bdev.fused_iovs,
2981 						   bdev_io->u.bdev.fused_iovcnt,
2982 						   bdev_io->u.bdev.md_buf,
2983 						   bdev_io->u.bdev.num_blocks,
2984 						   bdev_io->u.bdev.offset_blocks,
2985 						   bdev_io->u.bdev.dif_check_flags);
2986 		break;
2987 	case SPDK_BDEV_IO_TYPE_UNMAP:
2988 		rc = bdev_nvme_unmap(nbdev_io,
2989 				     bdev_io->u.bdev.offset_blocks,
2990 				     bdev_io->u.bdev.num_blocks);
2991 		break;
2992 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
2993 		rc =  bdev_nvme_write_zeroes(nbdev_io,
2994 					     bdev_io->u.bdev.offset_blocks,
2995 					     bdev_io->u.bdev.num_blocks);
2996 		break;
2997 	case SPDK_BDEV_IO_TYPE_RESET:
2998 		nbdev_io->io_path = NULL;
2999 		bdev_nvme_reset_io(nbdev_ch, nbdev_io);
3000 		return;
3001 
3002 	case SPDK_BDEV_IO_TYPE_FLUSH:
3003 		bdev_nvme_io_complete(nbdev_io, 0);
3004 		return;
3005 
3006 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3007 		rc = bdev_nvme_zone_appendv(nbdev_io,
3008 					    bdev_io->u.bdev.iovs,
3009 					    bdev_io->u.bdev.iovcnt,
3010 					    bdev_io->u.bdev.md_buf,
3011 					    bdev_io->u.bdev.num_blocks,
3012 					    bdev_io->u.bdev.offset_blocks,
3013 					    bdev_io->u.bdev.dif_check_flags);
3014 		break;
3015 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3016 		rc = bdev_nvme_get_zone_info(nbdev_io,
3017 					     bdev_io->u.zone_mgmt.zone_id,
3018 					     bdev_io->u.zone_mgmt.num_zones,
3019 					     bdev_io->u.zone_mgmt.buf);
3020 		break;
3021 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3022 		rc = bdev_nvme_zone_management(nbdev_io,
3023 					       bdev_io->u.zone_mgmt.zone_id,
3024 					       bdev_io->u.zone_mgmt.zone_action);
3025 		break;
3026 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3027 		nbdev_io->io_path = NULL;
3028 		bdev_nvme_admin_passthru(nbdev_ch,
3029 					 nbdev_io,
3030 					 &bdev_io->u.nvme_passthru.cmd,
3031 					 bdev_io->u.nvme_passthru.buf,
3032 					 bdev_io->u.nvme_passthru.nbytes);
3033 		return;
3034 
3035 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3036 		rc = bdev_nvme_io_passthru(nbdev_io,
3037 					   &bdev_io->u.nvme_passthru.cmd,
3038 					   bdev_io->u.nvme_passthru.buf,
3039 					   bdev_io->u.nvme_passthru.nbytes);
3040 		break;
3041 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3042 		rc = bdev_nvme_io_passthru_md(nbdev_io,
3043 					      &bdev_io->u.nvme_passthru.cmd,
3044 					      bdev_io->u.nvme_passthru.buf,
3045 					      bdev_io->u.nvme_passthru.nbytes,
3046 					      bdev_io->u.nvme_passthru.md_buf,
3047 					      bdev_io->u.nvme_passthru.md_len);
3048 		break;
3049 	case SPDK_BDEV_IO_TYPE_NVME_IOV_MD:
3050 		rc = bdev_nvme_iov_passthru_md(nbdev_io,
3051 					       &bdev_io->u.nvme_passthru.cmd,
3052 					       bdev_io->u.nvme_passthru.iovs,
3053 					       bdev_io->u.nvme_passthru.iovcnt,
3054 					       bdev_io->u.nvme_passthru.nbytes,
3055 					       bdev_io->u.nvme_passthru.md_buf,
3056 					       bdev_io->u.nvme_passthru.md_len);
3057 		break;
3058 	case SPDK_BDEV_IO_TYPE_ABORT:
3059 		nbdev_io->io_path = NULL;
3060 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
3061 		bdev_nvme_abort(nbdev_ch,
3062 				nbdev_io,
3063 				nbdev_io_to_abort);
3064 		return;
3065 
3066 	case SPDK_BDEV_IO_TYPE_COPY:
3067 		rc = bdev_nvme_copy(nbdev_io,
3068 				    bdev_io->u.bdev.offset_blocks,
3069 				    bdev_io->u.bdev.copy.src_offset_blocks,
3070 				    bdev_io->u.bdev.num_blocks);
3071 		break;
3072 	default:
3073 		rc = -EINVAL;
3074 		break;
3075 	}
3076 
3077 	if (spdk_unlikely(rc != 0)) {
3078 		bdev_nvme_io_complete(nbdev_io, rc);
3079 	}
3080 }
3081 
3082 static void
3083 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
3084 {
3085 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3086 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3087 
3088 	if (spdk_likely(nbdev_io->submit_tsc == 0)) {
3089 		nbdev_io->submit_tsc = spdk_bdev_io_get_submit_tsc(bdev_io);
3090 	} else {
3091 		/* There are cases where submit_tsc != 0, i.e. retry I/O.
3092 		 * We need to update submit_tsc here.
3093 		 */
3094 		nbdev_io->submit_tsc = spdk_get_ticks();
3095 	}
3096 
3097 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
3098 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
3099 	if (spdk_unlikely(!nbdev_io->io_path)) {
3100 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
3101 			bdev_nvme_io_complete(nbdev_io, -ENXIO);
3102 			return;
3103 		}
3104 
3105 		/* Admin commands do not use the optimal I/O path.
3106 		 * Simply fall through even if it is not found.
3107 		 */
3108 	}
3109 
3110 	_bdev_nvme_submit_request(nbdev_ch, bdev_io);
3111 }
3112 
3113 static bool
3114 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
3115 {
3116 	struct nvme_bdev *nbdev = ctx;
3117 	struct nvme_ns *nvme_ns;
3118 	struct spdk_nvme_ns *ns;
3119 	struct spdk_nvme_ctrlr *ctrlr;
3120 	const struct spdk_nvme_ctrlr_data *cdata;
3121 
3122 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
3123 	assert(nvme_ns != NULL);
3124 	ns = nvme_ns->ns;
3125 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3126 
3127 	switch (io_type) {
3128 	case SPDK_BDEV_IO_TYPE_READ:
3129 	case SPDK_BDEV_IO_TYPE_WRITE:
3130 	case SPDK_BDEV_IO_TYPE_RESET:
3131 	case SPDK_BDEV_IO_TYPE_FLUSH:
3132 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3133 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3134 	case SPDK_BDEV_IO_TYPE_ABORT:
3135 		return true;
3136 
3137 	case SPDK_BDEV_IO_TYPE_COMPARE:
3138 		return spdk_nvme_ns_supports_compare(ns);
3139 
3140 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3141 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
3142 
3143 	case SPDK_BDEV_IO_TYPE_UNMAP:
3144 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3145 		return cdata->oncs.dsm;
3146 
3147 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3148 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3149 		return cdata->oncs.write_zeroes;
3150 
3151 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3152 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
3153 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
3154 			return true;
3155 		}
3156 		return false;
3157 
3158 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3159 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3160 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
3161 
3162 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3163 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
3164 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
3165 
3166 	case SPDK_BDEV_IO_TYPE_COPY:
3167 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3168 		return cdata->oncs.copy;
3169 
3170 	default:
3171 		return false;
3172 	}
3173 }
3174 
3175 static int
3176 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
3177 {
3178 	struct nvme_qpair *nvme_qpair;
3179 	struct spdk_io_channel *pg_ch;
3180 	int rc;
3181 
3182 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
3183 	if (!nvme_qpair) {
3184 		SPDK_ERRLOG("Failed to alloc nvme_qpair.\n");
3185 		return -1;
3186 	}
3187 
3188 	TAILQ_INIT(&nvme_qpair->io_path_list);
3189 
3190 	nvme_qpair->ctrlr = nvme_ctrlr;
3191 	nvme_qpair->ctrlr_ch = ctrlr_ch;
3192 
3193 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
3194 	if (!pg_ch) {
3195 		free(nvme_qpair);
3196 		return -1;
3197 	}
3198 
3199 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
3200 
3201 #ifdef SPDK_CONFIG_VTUNE
3202 	nvme_qpair->group->collect_spin_stat = true;
3203 #else
3204 	nvme_qpair->group->collect_spin_stat = false;
3205 #endif
3206 
3207 	if (!nvme_ctrlr->disabled) {
3208 		/* If a nvme_ctrlr is disabled, don't try to create qpair for it. Qpair will
3209 		 * be created when it's enabled.
3210 		 */
3211 		rc = bdev_nvme_create_qpair(nvme_qpair);
3212 		if (rc != 0) {
3213 			/* nvme_ctrlr can't create IO qpair if connection is down.
3214 			 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
3215 			 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
3216 			 * submitted IO will be queued until IO qpair is successfully created.
3217 			 *
3218 			 * Hence, if both are satisfied, ignore the failure.
3219 			 */
3220 			if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
3221 				spdk_put_io_channel(pg_ch);
3222 				free(nvme_qpair);
3223 				return rc;
3224 			}
3225 		}
3226 	}
3227 
3228 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3229 
3230 	ctrlr_ch->qpair = nvme_qpair;
3231 
3232 	pthread_mutex_lock(&nvme_qpair->ctrlr->mutex);
3233 	nvme_qpair->ctrlr->ref++;
3234 	pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex);
3235 
3236 	return 0;
3237 }
3238 
3239 static int
3240 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3241 {
3242 	struct nvme_ctrlr *nvme_ctrlr = io_device;
3243 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3244 
3245 	TAILQ_INIT(&ctrlr_ch->pending_resets);
3246 
3247 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
3248 }
3249 
3250 static void
3251 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
3252 {
3253 	struct nvme_io_path *io_path, *next;
3254 
3255 	assert(nvme_qpair->group != NULL);
3256 
3257 	TAILQ_FOREACH_SAFE(io_path, &nvme_qpair->io_path_list, tailq, next) {
3258 		TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
3259 		nvme_io_path_free(io_path);
3260 	}
3261 
3262 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3263 
3264 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
3265 
3266 	nvme_ctrlr_release(nvme_qpair->ctrlr);
3267 
3268 	free(nvme_qpair);
3269 }
3270 
3271 static void
3272 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3273 {
3274 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3275 	struct nvme_qpair *nvme_qpair;
3276 
3277 	nvme_qpair = ctrlr_ch->qpair;
3278 	assert(nvme_qpair != NULL);
3279 
3280 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
3281 
3282 	if (nvme_qpair->qpair != NULL) {
3283 		if (ctrlr_ch->reset_iter == NULL) {
3284 			spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
3285 		} else {
3286 			/* Skip current ctrlr_channel in a full reset sequence because
3287 			 * it is being deleted now. The qpair is already being disconnected.
3288 			 * We do not have to restart disconnecting it.
3289 			 */
3290 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
3291 		}
3292 
3293 		/* We cannot release a reference to the poll group now.
3294 		 * The qpair may be disconnected asynchronously later.
3295 		 * We need to poll it until it is actually disconnected.
3296 		 * Just detach the qpair from the deleting ctrlr_channel.
3297 		 */
3298 		nvme_qpair->ctrlr_ch = NULL;
3299 	} else {
3300 		assert(ctrlr_ch->reset_iter == NULL);
3301 
3302 		nvme_qpair_delete(nvme_qpair);
3303 	}
3304 }
3305 
3306 static inline struct spdk_io_channel *
3307 bdev_nvme_get_accel_channel(struct nvme_poll_group *group)
3308 {
3309 	if (spdk_unlikely(!group->accel_channel)) {
3310 		group->accel_channel = spdk_accel_get_io_channel();
3311 		if (!group->accel_channel) {
3312 			SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
3313 				    group);
3314 			return NULL;
3315 		}
3316 	}
3317 
3318 	return group->accel_channel;
3319 }
3320 
3321 static void
3322 bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
3323 			      uint32_t iov_cnt, uint32_t seed,
3324 			      spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3325 {
3326 	struct spdk_io_channel *accel_ch;
3327 	struct nvme_poll_group *group = ctx;
3328 	int rc;
3329 
3330 	assert(cb_fn != NULL);
3331 
3332 	accel_ch = bdev_nvme_get_accel_channel(group);
3333 	if (spdk_unlikely(accel_ch == NULL)) {
3334 		cb_fn(cb_arg, -ENOMEM);
3335 		return;
3336 	}
3337 
3338 	rc = spdk_accel_submit_crc32cv(accel_ch, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
3339 	if (rc) {
3340 		/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
3341 		if (rc == -ENOMEM || rc == -EINVAL) {
3342 			cb_fn(cb_arg, rc);
3343 		}
3344 		SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
3345 	}
3346 }
3347 
3348 static void
3349 bdev_nvme_finish_sequence(void *seq, spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3350 {
3351 	spdk_accel_sequence_finish(seq, cb_fn, cb_arg);
3352 }
3353 
3354 static void
3355 bdev_nvme_abort_sequence(void *seq)
3356 {
3357 	spdk_accel_sequence_abort(seq);
3358 }
3359 
3360 static void
3361 bdev_nvme_reverse_sequence(void *seq)
3362 {
3363 	spdk_accel_sequence_reverse(seq);
3364 }
3365 
3366 static int
3367 bdev_nvme_append_crc32c(void *ctx, void **seq, uint32_t *dst, struct iovec *iovs, uint32_t iovcnt,
3368 			struct spdk_memory_domain *domain, void *domain_ctx, uint32_t seed,
3369 			spdk_nvme_accel_step_cb cb_fn, void *cb_arg)
3370 {
3371 	struct spdk_io_channel *ch;
3372 	struct nvme_poll_group *group = ctx;
3373 
3374 	ch = bdev_nvme_get_accel_channel(group);
3375 	if (spdk_unlikely(ch == NULL)) {
3376 		return -ENOMEM;
3377 	}
3378 
3379 	return spdk_accel_append_crc32c((struct spdk_accel_sequence **)seq, ch, dst, iovs, iovcnt,
3380 					domain, domain_ctx, seed, cb_fn, cb_arg);
3381 }
3382 
3383 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
3384 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
3385 	.submit_accel_crc32c	= bdev_nvme_submit_accel_crc32c,
3386 	.append_crc32c		= bdev_nvme_append_crc32c,
3387 	.finish_sequence	= bdev_nvme_finish_sequence,
3388 	.reverse_sequence	= bdev_nvme_reverse_sequence,
3389 	.abort_sequence		= bdev_nvme_abort_sequence,
3390 };
3391 
3392 static int
3393 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
3394 {
3395 	struct nvme_poll_group *group = ctx_buf;
3396 
3397 	TAILQ_INIT(&group->qpair_list);
3398 
3399 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
3400 	if (group->group == NULL) {
3401 		return -1;
3402 	}
3403 
3404 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
3405 
3406 	if (group->poller == NULL) {
3407 		spdk_nvme_poll_group_destroy(group->group);
3408 		return -1;
3409 	}
3410 
3411 	return 0;
3412 }
3413 
3414 static void
3415 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
3416 {
3417 	struct nvme_poll_group *group = ctx_buf;
3418 
3419 	assert(TAILQ_EMPTY(&group->qpair_list));
3420 
3421 	if (group->accel_channel) {
3422 		spdk_put_io_channel(group->accel_channel);
3423 	}
3424 
3425 	spdk_poller_unregister(&group->poller);
3426 	if (spdk_nvme_poll_group_destroy(group->group)) {
3427 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
3428 		assert(false);
3429 	}
3430 }
3431 
3432 static struct spdk_io_channel *
3433 bdev_nvme_get_io_channel(void *ctx)
3434 {
3435 	struct nvme_bdev *nvme_bdev = ctx;
3436 
3437 	return spdk_get_io_channel(nvme_bdev);
3438 }
3439 
3440 static void *
3441 bdev_nvme_get_module_ctx(void *ctx)
3442 {
3443 	struct nvme_bdev *nvme_bdev = ctx;
3444 	struct nvme_ns *nvme_ns;
3445 
3446 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
3447 		return NULL;
3448 	}
3449 
3450 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
3451 	if (!nvme_ns) {
3452 		return NULL;
3453 	}
3454 
3455 	return nvme_ns->ns;
3456 }
3457 
3458 static const char *
3459 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
3460 {
3461 	switch (ana_state) {
3462 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3463 		return "optimized";
3464 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3465 		return "non_optimized";
3466 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3467 		return "inaccessible";
3468 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
3469 		return "persistent_loss";
3470 	case SPDK_NVME_ANA_CHANGE_STATE:
3471 		return "change";
3472 	default:
3473 		return NULL;
3474 	}
3475 }
3476 
3477 static int
3478 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
3479 {
3480 	struct spdk_memory_domain **_domains = NULL;
3481 	struct nvme_bdev *nbdev = ctx;
3482 	struct nvme_ns *nvme_ns;
3483 	int i = 0, _array_size = array_size;
3484 	int rc = 0;
3485 
3486 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3487 		if (domains && array_size >= i) {
3488 			_domains = &domains[i];
3489 		} else {
3490 			_domains = NULL;
3491 		}
3492 		rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size);
3493 		if (rc > 0) {
3494 			i += rc;
3495 			if (_array_size >= rc) {
3496 				_array_size -= rc;
3497 			} else {
3498 				_array_size = 0;
3499 			}
3500 		} else if (rc < 0) {
3501 			return rc;
3502 		}
3503 	}
3504 
3505 	return i;
3506 }
3507 
3508 static const char *
3509 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
3510 {
3511 	if (nvme_ctrlr->destruct) {
3512 		return "deleting";
3513 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
3514 		return "failed";
3515 	} else if (nvme_ctrlr->resetting) {
3516 		return "resetting";
3517 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
3518 		return "reconnect_is_delayed";
3519 	} else if (nvme_ctrlr->disabled) {
3520 		return "disabled";
3521 	} else {
3522 		return "enabled";
3523 	}
3524 }
3525 
3526 void
3527 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
3528 {
3529 	struct spdk_nvme_transport_id *trid;
3530 	const struct spdk_nvme_ctrlr_opts *opts;
3531 	const struct spdk_nvme_ctrlr_data *cdata;
3532 	struct nvme_path_id *path_id;
3533 
3534 	spdk_json_write_object_begin(w);
3535 
3536 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
3537 
3538 #ifdef SPDK_CONFIG_NVME_CUSE
3539 	size_t cuse_name_size = 128;
3540 	char cuse_name[cuse_name_size];
3541 
3542 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
3543 	if (rc == 0) {
3544 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3545 	}
3546 #endif
3547 	trid = &nvme_ctrlr->active_path_id->trid;
3548 	spdk_json_write_named_object_begin(w, "trid");
3549 	nvme_bdev_dump_trid_json(trid, w);
3550 	spdk_json_write_object_end(w);
3551 
3552 	path_id = TAILQ_NEXT(nvme_ctrlr->active_path_id, link);
3553 	if (path_id != NULL) {
3554 		spdk_json_write_named_array_begin(w, "alternate_trids");
3555 		do {
3556 			trid = &path_id->trid;
3557 			spdk_json_write_object_begin(w);
3558 			nvme_bdev_dump_trid_json(trid, w);
3559 			spdk_json_write_object_end(w);
3560 
3561 			path_id = TAILQ_NEXT(path_id, link);
3562 		} while (path_id != NULL);
3563 		spdk_json_write_array_end(w);
3564 	}
3565 
3566 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
3567 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3568 
3569 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
3570 	spdk_json_write_named_object_begin(w, "host");
3571 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
3572 	spdk_json_write_named_string(w, "addr", opts->src_addr);
3573 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
3574 	spdk_json_write_object_end(w);
3575 
3576 	spdk_json_write_object_end(w);
3577 }
3578 
3579 static void
3580 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
3581 			 struct nvme_ns *nvme_ns)
3582 {
3583 	struct spdk_nvme_ns *ns;
3584 	struct spdk_nvme_ctrlr *ctrlr;
3585 	const struct spdk_nvme_ctrlr_data *cdata;
3586 	const struct spdk_nvme_transport_id *trid;
3587 	union spdk_nvme_vs_register vs;
3588 	const struct spdk_nvme_ns_data *nsdata;
3589 	char buf[128];
3590 
3591 	ns = nvme_ns->ns;
3592 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3593 
3594 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3595 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
3596 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
3597 
3598 	spdk_json_write_object_begin(w);
3599 
3600 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
3601 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
3602 	}
3603 
3604 	spdk_json_write_named_object_begin(w, "trid");
3605 
3606 	nvme_bdev_dump_trid_json(trid, w);
3607 
3608 	spdk_json_write_object_end(w);
3609 
3610 #ifdef SPDK_CONFIG_NVME_CUSE
3611 	size_t cuse_name_size = 128;
3612 	char cuse_name[cuse_name_size];
3613 
3614 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
3615 					    cuse_name, &cuse_name_size);
3616 	if (rc == 0) {
3617 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3618 	}
3619 #endif
3620 
3621 	spdk_json_write_named_object_begin(w, "ctrlr_data");
3622 
3623 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3624 
3625 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
3626 
3627 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
3628 	spdk_str_trim(buf);
3629 	spdk_json_write_named_string(w, "model_number", buf);
3630 
3631 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
3632 	spdk_str_trim(buf);
3633 	spdk_json_write_named_string(w, "serial_number", buf);
3634 
3635 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
3636 	spdk_str_trim(buf);
3637 	spdk_json_write_named_string(w, "firmware_revision", buf);
3638 
3639 	if (cdata->subnqn[0] != '\0') {
3640 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
3641 	}
3642 
3643 	spdk_json_write_named_object_begin(w, "oacs");
3644 
3645 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
3646 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
3647 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
3648 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
3649 
3650 	spdk_json_write_object_end(w);
3651 
3652 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
3653 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
3654 
3655 	spdk_json_write_object_end(w);
3656 
3657 	spdk_json_write_named_object_begin(w, "vs");
3658 
3659 	spdk_json_write_name(w, "nvme_version");
3660 	if (vs.bits.ter) {
3661 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
3662 	} else {
3663 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
3664 	}
3665 
3666 	spdk_json_write_object_end(w);
3667 
3668 	nsdata = spdk_nvme_ns_get_data(ns);
3669 
3670 	spdk_json_write_named_object_begin(w, "ns_data");
3671 
3672 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
3673 
3674 	if (cdata->cmic.ana_reporting) {
3675 		spdk_json_write_named_string(w, "ana_state",
3676 					     _nvme_ana_state_str(nvme_ns->ana_state));
3677 	}
3678 
3679 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
3680 
3681 	spdk_json_write_object_end(w);
3682 
3683 	if (cdata->oacs.security) {
3684 		spdk_json_write_named_object_begin(w, "security");
3685 
3686 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
3687 
3688 		spdk_json_write_object_end(w);
3689 	}
3690 
3691 	spdk_json_write_object_end(w);
3692 }
3693 
3694 static const char *
3695 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
3696 {
3697 	switch (nbdev->mp_policy) {
3698 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
3699 		return "active_passive";
3700 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
3701 		return "active_active";
3702 	default:
3703 		assert(false);
3704 		return "invalid";
3705 	}
3706 }
3707 
3708 static int
3709 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
3710 {
3711 	struct nvme_bdev *nvme_bdev = ctx;
3712 	struct nvme_ns *nvme_ns;
3713 
3714 	pthread_mutex_lock(&nvme_bdev->mutex);
3715 	spdk_json_write_named_array_begin(w, "nvme");
3716 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
3717 		nvme_namespace_info_json(w, nvme_ns);
3718 	}
3719 	spdk_json_write_array_end(w);
3720 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
3721 	pthread_mutex_unlock(&nvme_bdev->mutex);
3722 
3723 	return 0;
3724 }
3725 
3726 static void
3727 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
3728 {
3729 	/* No config per bdev needed */
3730 }
3731 
3732 static uint64_t
3733 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
3734 {
3735 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3736 	struct nvme_io_path *io_path;
3737 	struct nvme_poll_group *group;
3738 	uint64_t spin_time = 0;
3739 
3740 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
3741 		group = io_path->qpair->group;
3742 
3743 		if (!group || !group->collect_spin_stat) {
3744 			continue;
3745 		}
3746 
3747 		if (group->end_ticks != 0) {
3748 			group->spin_ticks += (group->end_ticks - group->start_ticks);
3749 			group->end_ticks = 0;
3750 		}
3751 
3752 		spin_time += group->spin_ticks;
3753 		group->start_ticks = 0;
3754 		group->spin_ticks = 0;
3755 	}
3756 
3757 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
3758 }
3759 
3760 static void
3761 bdev_nvme_reset_device_stat(void *ctx)
3762 {
3763 	struct nvme_bdev *nbdev = ctx;
3764 
3765 	if (nbdev->err_stat != NULL) {
3766 		memset(nbdev->err_stat, 0, sizeof(struct nvme_error_stat));
3767 	}
3768 }
3769 
3770 /* JSON string should be lowercases and underscore delimited string. */
3771 static void
3772 bdev_nvme_format_nvme_status(char *dst, const char *src)
3773 {
3774 	char tmp[256];
3775 
3776 	spdk_strcpy_replace(dst, 256, src, " - ", "_");
3777 	spdk_strcpy_replace(tmp, 256, dst, "-", "_");
3778 	spdk_strcpy_replace(dst, 256, tmp, " ", "_");
3779 	spdk_strlwr(dst);
3780 }
3781 
3782 static void
3783 bdev_nvme_dump_device_stat_json(void *ctx, struct spdk_json_write_ctx *w)
3784 {
3785 	struct nvme_bdev *nbdev = ctx;
3786 	struct spdk_nvme_status status = {};
3787 	uint16_t sct, sc;
3788 	char status_json[256];
3789 	const char *status_str;
3790 
3791 	if (nbdev->err_stat == NULL) {
3792 		return;
3793 	}
3794 
3795 	spdk_json_write_named_object_begin(w, "nvme_error");
3796 
3797 	spdk_json_write_named_object_begin(w, "status_type");
3798 	for (sct = 0; sct < 8; sct++) {
3799 		if (nbdev->err_stat->status_type[sct] == 0) {
3800 			continue;
3801 		}
3802 		status.sct = sct;
3803 
3804 		status_str = spdk_nvme_cpl_get_status_type_string(&status);
3805 		assert(status_str != NULL);
3806 		bdev_nvme_format_nvme_status(status_json, status_str);
3807 
3808 		spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status_type[sct]);
3809 	}
3810 	spdk_json_write_object_end(w);
3811 
3812 	spdk_json_write_named_object_begin(w, "status_code");
3813 	for (sct = 0; sct < 4; sct++) {
3814 		status.sct = sct;
3815 		for (sc = 0; sc < 256; sc++) {
3816 			if (nbdev->err_stat->status[sct][sc] == 0) {
3817 				continue;
3818 			}
3819 			status.sc = sc;
3820 
3821 			status_str = spdk_nvme_cpl_get_status_string(&status);
3822 			assert(status_str != NULL);
3823 			bdev_nvme_format_nvme_status(status_json, status_str);
3824 
3825 			spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status[sct][sc]);
3826 		}
3827 	}
3828 	spdk_json_write_object_end(w);
3829 
3830 	spdk_json_write_object_end(w);
3831 }
3832 
3833 static bool
3834 bdev_nvme_accel_sequence_supported(void *ctx, enum spdk_bdev_io_type type)
3835 {
3836 	struct nvme_bdev *nbdev = ctx;
3837 	struct spdk_nvme_ctrlr *ctrlr;
3838 
3839 	if (!g_opts.allow_accel_sequence) {
3840 		return false;
3841 	}
3842 
3843 	switch (type) {
3844 	case SPDK_BDEV_IO_TYPE_WRITE:
3845 	case SPDK_BDEV_IO_TYPE_READ:
3846 		break;
3847 	default:
3848 		return false;
3849 	}
3850 
3851 	ctrlr = bdev_nvme_get_ctrlr(&nbdev->disk);
3852 	assert(ctrlr != NULL);
3853 
3854 	return spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ACCEL_SEQUENCE_SUPPORTED;
3855 }
3856 
3857 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
3858 	.destruct			= bdev_nvme_destruct,
3859 	.submit_request			= bdev_nvme_submit_request,
3860 	.io_type_supported		= bdev_nvme_io_type_supported,
3861 	.get_io_channel			= bdev_nvme_get_io_channel,
3862 	.dump_info_json			= bdev_nvme_dump_info_json,
3863 	.write_config_json		= bdev_nvme_write_config_json,
3864 	.get_spin_time			= bdev_nvme_get_spin_time,
3865 	.get_module_ctx			= bdev_nvme_get_module_ctx,
3866 	.get_memory_domains		= bdev_nvme_get_memory_domains,
3867 	.accel_sequence_supported	= bdev_nvme_accel_sequence_supported,
3868 	.reset_device_stat		= bdev_nvme_reset_device_stat,
3869 	.dump_device_stat_json		= bdev_nvme_dump_device_stat_json,
3870 };
3871 
3872 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
3873 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
3874 
3875 static int
3876 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
3877 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
3878 {
3879 	struct spdk_nvme_ana_group_descriptor *copied_desc;
3880 	uint8_t *orig_desc;
3881 	uint32_t i, desc_size, copy_len;
3882 	int rc = 0;
3883 
3884 	if (nvme_ctrlr->ana_log_page == NULL) {
3885 		return -EINVAL;
3886 	}
3887 
3888 	copied_desc = nvme_ctrlr->copied_ana_desc;
3889 
3890 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
3891 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
3892 
3893 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
3894 		memcpy(copied_desc, orig_desc, copy_len);
3895 
3896 		rc = cb_fn(copied_desc, cb_arg);
3897 		if (rc != 0) {
3898 			break;
3899 		}
3900 
3901 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
3902 			    copied_desc->num_of_nsid * sizeof(uint32_t);
3903 		orig_desc += desc_size;
3904 		copy_len -= desc_size;
3905 	}
3906 
3907 	return rc;
3908 }
3909 
3910 static int
3911 nvme_ns_ana_transition_timedout(void *ctx)
3912 {
3913 	struct nvme_ns *nvme_ns = ctx;
3914 
3915 	spdk_poller_unregister(&nvme_ns->anatt_timer);
3916 	nvme_ns->ana_transition_timedout = true;
3917 
3918 	return SPDK_POLLER_BUSY;
3919 }
3920 
3921 static void
3922 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
3923 		       const struct spdk_nvme_ana_group_descriptor *desc)
3924 {
3925 	const struct spdk_nvme_ctrlr_data *cdata;
3926 
3927 	nvme_ns->ana_group_id = desc->ana_group_id;
3928 	nvme_ns->ana_state = desc->ana_state;
3929 	nvme_ns->ana_state_updating = false;
3930 
3931 	switch (nvme_ns->ana_state) {
3932 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3933 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3934 		nvme_ns->ana_transition_timedout = false;
3935 		spdk_poller_unregister(&nvme_ns->anatt_timer);
3936 		break;
3937 
3938 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3939 	case SPDK_NVME_ANA_CHANGE_STATE:
3940 		if (nvme_ns->anatt_timer != NULL) {
3941 			break;
3942 		}
3943 
3944 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
3945 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
3946 				       nvme_ns,
3947 				       cdata->anatt * SPDK_SEC_TO_USEC);
3948 		break;
3949 	default:
3950 		break;
3951 	}
3952 }
3953 
3954 static int
3955 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
3956 {
3957 	struct nvme_ns *nvme_ns = cb_arg;
3958 	uint32_t i;
3959 
3960 	for (i = 0; i < desc->num_of_nsid; i++) {
3961 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
3962 			continue;
3963 		}
3964 
3965 		_nvme_ns_set_ana_state(nvme_ns, desc);
3966 		return 1;
3967 	}
3968 
3969 	return 0;
3970 }
3971 
3972 static int
3973 nvme_generate_uuid(const char *sn, uint32_t nsid, struct spdk_uuid *uuid)
3974 {
3975 	int rc = 0;
3976 	struct spdk_uuid new_uuid, namespace_uuid;
3977 	char merged_str[SPDK_NVME_CTRLR_SN_LEN + NSID_STR_LEN + 1] = {'\0'};
3978 	/* This namespace UUID was generated using uuid_generate() method. */
3979 	const char *namespace_str = {"edaed2de-24bc-4b07-b559-f47ecbe730fd"};
3980 	int size;
3981 
3982 	assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN);
3983 
3984 	spdk_uuid_set_null(&new_uuid);
3985 	spdk_uuid_set_null(&namespace_uuid);
3986 
3987 	size = snprintf(merged_str, sizeof(merged_str), "%s%"PRIu32, sn, nsid);
3988 	if (size <= 0 || (unsigned long)size >= sizeof(merged_str)) {
3989 		return -EINVAL;
3990 	}
3991 
3992 	spdk_uuid_parse(&namespace_uuid, namespace_str);
3993 
3994 	rc = spdk_uuid_generate_sha1(&new_uuid, &namespace_uuid, merged_str, size);
3995 	if (rc == 0) {
3996 		memcpy(uuid, &new_uuid, sizeof(struct spdk_uuid));
3997 	}
3998 
3999 	return rc;
4000 }
4001 
4002 static int
4003 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
4004 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
4005 		 uint32_t prchk_flags, void *ctx)
4006 {
4007 	const struct spdk_uuid		*uuid;
4008 	const uint8_t *nguid;
4009 	const struct spdk_nvme_ctrlr_data *cdata;
4010 	const struct spdk_nvme_ns_data	*nsdata;
4011 	const struct spdk_nvme_ctrlr_opts *opts;
4012 	enum spdk_nvme_csi		csi;
4013 	uint32_t atomic_bs, phys_bs, bs;
4014 	char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'};
4015 	int rc;
4016 
4017 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4018 	csi = spdk_nvme_ns_get_csi(ns);
4019 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
4020 
4021 	switch (csi) {
4022 	case SPDK_NVME_CSI_NVM:
4023 		disk->product_name = "NVMe disk";
4024 		break;
4025 	case SPDK_NVME_CSI_ZNS:
4026 		disk->product_name = "NVMe ZNS disk";
4027 		disk->zoned = true;
4028 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
4029 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
4030 					     spdk_nvme_ns_get_extended_sector_size(ns);
4031 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
4032 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
4033 		break;
4034 	default:
4035 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
4036 		return -ENOTSUP;
4037 	}
4038 
4039 	nguid = spdk_nvme_ns_get_nguid(ns);
4040 	if (!nguid) {
4041 		uuid = spdk_nvme_ns_get_uuid(ns);
4042 		if (uuid) {
4043 			disk->uuid = *uuid;
4044 		} else if (g_opts.generate_uuids) {
4045 			spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0');
4046 			rc = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns), &disk->uuid);
4047 			if (rc != 0) {
4048 				SPDK_ERRLOG("UUID generation failed (%s)\n", strerror(rc));
4049 				return rc;
4050 			}
4051 		}
4052 	} else {
4053 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
4054 	}
4055 
4056 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
4057 	if (!disk->name) {
4058 		return -ENOMEM;
4059 	}
4060 
4061 	disk->write_cache = 0;
4062 	if (cdata->vwc.present) {
4063 		/* Enable if the Volatile Write Cache exists */
4064 		disk->write_cache = 1;
4065 	}
4066 	if (cdata->oncs.write_zeroes) {
4067 		disk->max_write_zeroes = UINT16_MAX + 1;
4068 	}
4069 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
4070 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
4071 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
4072 	/* NVMe driver will split one request into multiple requests
4073 	 * based on MDTS and stripe boundary, the bdev layer will use
4074 	 * max_segment_size and max_num_segments to split one big IO
4075 	 * into multiple requests, then small request can't run out
4076 	 * of NVMe internal requests data structure.
4077 	 */
4078 	if (opts && opts->io_queue_requests) {
4079 		disk->max_num_segments = opts->io_queue_requests / 2;
4080 	}
4081 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
4082 		/* The nvme driver will try to split I/O that have too many
4083 		 * SGEs, but it doesn't work if that last SGE doesn't end on
4084 		 * an aggregate total that is block aligned. The bdev layer has
4085 		 * a more robust splitting framework, so use that instead for
4086 		 * this case. (See issue #3269.)
4087 		 */
4088 		uint16_t max_sges = spdk_nvme_ctrlr_get_max_sges(ctrlr);
4089 
4090 		if (disk->max_num_segments == 0) {
4091 			disk->max_num_segments = max_sges;
4092 		} else {
4093 			disk->max_num_segments = spdk_min(disk->max_num_segments, max_sges);
4094 		}
4095 	}
4096 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
4097 
4098 	nsdata = spdk_nvme_ns_get_data(ns);
4099 	bs = spdk_nvme_ns_get_sector_size(ns);
4100 	atomic_bs = bs;
4101 	phys_bs = bs;
4102 	if (nsdata->nabo == 0) {
4103 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
4104 			atomic_bs = bs * (1 + nsdata->nawupf);
4105 		} else {
4106 			atomic_bs = bs * (1 + cdata->awupf);
4107 		}
4108 	}
4109 	if (nsdata->nsfeat.optperf) {
4110 		phys_bs = bs * (1 + nsdata->npwg);
4111 	}
4112 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
4113 
4114 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
4115 	if (disk->md_len != 0) {
4116 		disk->md_interleave = nsdata->flbas.extended;
4117 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
4118 		if (disk->dif_type != SPDK_DIF_DISABLE) {
4119 			disk->dif_is_head_of_md = nsdata->dps.md_start;
4120 			disk->dif_check_flags = prchk_flags;
4121 		}
4122 	}
4123 
4124 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
4125 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
4126 		disk->acwu = 0;
4127 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
4128 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
4129 	} else {
4130 		disk->acwu = cdata->acwu + 1; /* 0-based */
4131 	}
4132 
4133 	if (cdata->oncs.copy) {
4134 		/* For now bdev interface allows only single segment copy */
4135 		disk->max_copy = nsdata->mssrl;
4136 	}
4137 
4138 	disk->ctxt = ctx;
4139 	disk->fn_table = &nvmelib_fn_table;
4140 	disk->module = &nvme_if;
4141 
4142 	return 0;
4143 }
4144 
4145 static struct nvme_bdev *
4146 nvme_bdev_alloc(void)
4147 {
4148 	struct nvme_bdev *bdev;
4149 	int rc;
4150 
4151 	bdev = calloc(1, sizeof(*bdev));
4152 	if (!bdev) {
4153 		SPDK_ERRLOG("bdev calloc() failed\n");
4154 		return NULL;
4155 	}
4156 
4157 	if (g_opts.nvme_error_stat) {
4158 		bdev->err_stat = calloc(1, sizeof(struct nvme_error_stat));
4159 		if (!bdev->err_stat) {
4160 			SPDK_ERRLOG("err_stat calloc() failed\n");
4161 			free(bdev);
4162 			return NULL;
4163 		}
4164 	}
4165 
4166 	rc = pthread_mutex_init(&bdev->mutex, NULL);
4167 	if (rc != 0) {
4168 		free(bdev->err_stat);
4169 		free(bdev);
4170 		return NULL;
4171 	}
4172 
4173 	bdev->ref = 1;
4174 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
4175 	bdev->mp_selector = BDEV_NVME_MP_SELECTOR_ROUND_ROBIN;
4176 	bdev->rr_min_io = UINT32_MAX;
4177 	TAILQ_INIT(&bdev->nvme_ns_list);
4178 
4179 	return bdev;
4180 }
4181 
4182 static int
4183 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4184 {
4185 	struct nvme_bdev *bdev;
4186 	struct nvme_bdev_ctrlr *nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
4187 	int rc;
4188 
4189 	bdev = nvme_bdev_alloc();
4190 	if (bdev == NULL) {
4191 		SPDK_ERRLOG("Failed to allocate NVMe bdev\n");
4192 		return -ENOMEM;
4193 	}
4194 
4195 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
4196 
4197 	rc = nvme_disk_create(&bdev->disk, nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
4198 			      nvme_ns->ns, nvme_ctrlr->opts.prchk_flags, bdev);
4199 	if (rc != 0) {
4200 		SPDK_ERRLOG("Failed to create NVMe disk\n");
4201 		nvme_bdev_free(bdev);
4202 		return rc;
4203 	}
4204 
4205 	spdk_io_device_register(bdev,
4206 				bdev_nvme_create_bdev_channel_cb,
4207 				bdev_nvme_destroy_bdev_channel_cb,
4208 				sizeof(struct nvme_bdev_channel),
4209 				bdev->disk.name);
4210 
4211 	nvme_ns->bdev = bdev;
4212 	bdev->nsid = nvme_ns->id;
4213 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4214 
4215 	bdev->nbdev_ctrlr = nbdev_ctrlr;
4216 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->bdevs, bdev, tailq);
4217 
4218 	rc = spdk_bdev_register(&bdev->disk);
4219 	if (rc != 0) {
4220 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
4221 		spdk_io_device_unregister(bdev, NULL);
4222 		nvme_ns->bdev = NULL;
4223 		TAILQ_REMOVE(&nbdev_ctrlr->bdevs, bdev, tailq);
4224 		nvme_bdev_free(bdev);
4225 		return rc;
4226 	}
4227 
4228 	return 0;
4229 }
4230 
4231 static bool
4232 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
4233 {
4234 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
4235 	const struct spdk_uuid *uuid1, *uuid2;
4236 
4237 	nsdata1 = spdk_nvme_ns_get_data(ns1);
4238 	nsdata2 = spdk_nvme_ns_get_data(ns2);
4239 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
4240 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
4241 
4242 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
4243 	       nsdata1->eui64 == nsdata2->eui64 &&
4244 	       ((uuid1 == NULL && uuid2 == NULL) ||
4245 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
4246 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
4247 }
4248 
4249 static bool
4250 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4251 		 struct spdk_nvme_ctrlr_opts *opts)
4252 {
4253 	struct nvme_probe_skip_entry *entry;
4254 
4255 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
4256 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4257 			return false;
4258 		}
4259 	}
4260 
4261 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
4262 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
4263 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
4264 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
4265 	opts->disable_read_ana_log_page = true;
4266 
4267 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
4268 
4269 	return true;
4270 }
4271 
4272 static void
4273 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
4274 {
4275 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4276 
4277 	if (spdk_nvme_cpl_is_error(cpl)) {
4278 		SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
4279 			     cpl->status.sct);
4280 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4281 	} else if (cpl->cdw0 & 0x1) {
4282 		SPDK_WARNLOG("Specified command could not be aborted.\n");
4283 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4284 	}
4285 }
4286 
4287 static void
4288 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
4289 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
4290 {
4291 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4292 	union spdk_nvme_csts_register csts;
4293 	int rc;
4294 
4295 	assert(nvme_ctrlr->ctrlr == ctrlr);
4296 
4297 	SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
4298 
4299 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
4300 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
4301 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
4302 	 * completion recursively.
4303 	 */
4304 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
4305 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
4306 		if (csts.bits.cfs) {
4307 			SPDK_ERRLOG("Controller Fatal Status, reset required\n");
4308 			bdev_nvme_reset_ctrlr(nvme_ctrlr);
4309 			return;
4310 		}
4311 	}
4312 
4313 	switch (g_opts.action_on_timeout) {
4314 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
4315 		if (qpair) {
4316 			/* Don't send abort to ctrlr when ctrlr is not available. */
4317 			pthread_mutex_lock(&nvme_ctrlr->mutex);
4318 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
4319 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
4320 				SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n");
4321 				return;
4322 			}
4323 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4324 
4325 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
4326 						       nvme_abort_cpl, nvme_ctrlr);
4327 			if (rc == 0) {
4328 				return;
4329 			}
4330 
4331 			SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
4332 		}
4333 
4334 	/* FALLTHROUGH */
4335 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
4336 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4337 		break;
4338 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
4339 		SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
4340 		break;
4341 	default:
4342 		SPDK_ERRLOG("An invalid timeout action value is found.\n");
4343 		break;
4344 	}
4345 }
4346 
4347 static struct nvme_ns *
4348 nvme_ns_alloc(void)
4349 {
4350 	struct nvme_ns *nvme_ns;
4351 
4352 	nvme_ns = calloc(1, sizeof(struct nvme_ns));
4353 	if (nvme_ns == NULL) {
4354 		return NULL;
4355 	}
4356 
4357 	if (g_opts.io_path_stat) {
4358 		nvme_ns->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
4359 		if (nvme_ns->stat == NULL) {
4360 			free(nvme_ns);
4361 			return NULL;
4362 		}
4363 		spdk_bdev_reset_io_stat(nvme_ns->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
4364 	}
4365 
4366 	return nvme_ns;
4367 }
4368 
4369 static void
4370 nvme_ns_free(struct nvme_ns *nvme_ns)
4371 {
4372 	free(nvme_ns->stat);
4373 	free(nvme_ns);
4374 }
4375 
4376 static void
4377 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
4378 {
4379 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4380 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
4381 
4382 	if (rc == 0) {
4383 		nvme_ns->probe_ctx = NULL;
4384 		pthread_mutex_lock(&nvme_ctrlr->mutex);
4385 		nvme_ctrlr->ref++;
4386 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4387 	} else {
4388 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4389 		nvme_ns_free(nvme_ns);
4390 	}
4391 
4392 	if (ctx) {
4393 		ctx->populates_in_progress--;
4394 		if (ctx->populates_in_progress == 0) {
4395 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4396 		}
4397 	}
4398 }
4399 
4400 static void
4401 bdev_nvme_add_io_path(struct spdk_io_channel_iter *i)
4402 {
4403 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4404 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4405 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4406 	int rc;
4407 
4408 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
4409 	if (rc != 0) {
4410 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
4411 	}
4412 
4413 	spdk_for_each_channel_continue(i, rc);
4414 }
4415 
4416 static void
4417 bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i)
4418 {
4419 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4420 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4421 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4422 	struct nvme_io_path *io_path;
4423 
4424 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
4425 	if (io_path != NULL) {
4426 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
4427 	}
4428 
4429 	spdk_for_each_channel_continue(i, 0);
4430 }
4431 
4432 static void
4433 bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status)
4434 {
4435 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4436 
4437 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
4438 }
4439 
4440 static void
4441 bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status)
4442 {
4443 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4444 	struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i);
4445 
4446 	if (status == 0) {
4447 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
4448 	} else {
4449 		/* Delete the added io_paths and fail populating the namespace. */
4450 		spdk_for_each_channel(bdev,
4451 				      bdev_nvme_delete_io_path,
4452 				      nvme_ns,
4453 				      bdev_nvme_add_io_path_failed);
4454 	}
4455 }
4456 
4457 static int
4458 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
4459 {
4460 	struct nvme_ns *tmp_ns;
4461 	const struct spdk_nvme_ns_data *nsdata;
4462 
4463 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
4464 	if (!nsdata->nmic.can_share) {
4465 		SPDK_ERRLOG("Namespace cannot be shared.\n");
4466 		return -EINVAL;
4467 	}
4468 
4469 	pthread_mutex_lock(&bdev->mutex);
4470 
4471 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
4472 	assert(tmp_ns != NULL);
4473 
4474 	if (!bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
4475 		pthread_mutex_unlock(&bdev->mutex);
4476 		SPDK_ERRLOG("Namespaces are not identical.\n");
4477 		return -EINVAL;
4478 	}
4479 
4480 	bdev->ref++;
4481 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4482 	nvme_ns->bdev = bdev;
4483 
4484 	pthread_mutex_unlock(&bdev->mutex);
4485 
4486 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
4487 	spdk_for_each_channel(bdev,
4488 			      bdev_nvme_add_io_path,
4489 			      nvme_ns,
4490 			      bdev_nvme_add_io_path_done);
4491 
4492 	return 0;
4493 }
4494 
4495 static void
4496 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4497 {
4498 	struct spdk_nvme_ns	*ns;
4499 	struct nvme_bdev	*bdev;
4500 	int			rc = 0;
4501 
4502 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
4503 	if (!ns) {
4504 		SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
4505 		rc = -EINVAL;
4506 		goto done;
4507 	}
4508 
4509 	nvme_ns->ns = ns;
4510 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4511 
4512 	if (nvme_ctrlr->ana_log_page != NULL) {
4513 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
4514 	}
4515 
4516 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
4517 	if (bdev == NULL) {
4518 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
4519 	} else {
4520 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
4521 		if (rc == 0) {
4522 			return;
4523 		}
4524 	}
4525 done:
4526 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
4527 }
4528 
4529 static void
4530 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
4531 {
4532 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4533 
4534 	assert(nvme_ctrlr != NULL);
4535 
4536 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4537 
4538 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4539 
4540 	if (nvme_ns->bdev != NULL) {
4541 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4542 		return;
4543 	}
4544 
4545 	nvme_ns_free(nvme_ns);
4546 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4547 
4548 	nvme_ctrlr_release(nvme_ctrlr);
4549 }
4550 
4551 static void
4552 bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status)
4553 {
4554 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4555 
4556 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4557 }
4558 
4559 static void
4560 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4561 {
4562 	struct nvme_bdev *bdev;
4563 
4564 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4565 
4566 	bdev = nvme_ns->bdev;
4567 	if (bdev != NULL) {
4568 		pthread_mutex_lock(&bdev->mutex);
4569 
4570 		assert(bdev->ref > 0);
4571 		bdev->ref--;
4572 		if (bdev->ref == 0) {
4573 			pthread_mutex_unlock(&bdev->mutex);
4574 
4575 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
4576 		} else {
4577 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
4578 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
4579 			 * and clear nvme_ns->bdev here.
4580 			 */
4581 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
4582 			nvme_ns->bdev = NULL;
4583 
4584 			pthread_mutex_unlock(&bdev->mutex);
4585 
4586 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
4587 			 * we call depopulate_namespace_done() to avoid use-after-free.
4588 			 */
4589 			spdk_for_each_channel(bdev,
4590 					      bdev_nvme_delete_io_path,
4591 					      nvme_ns,
4592 					      bdev_nvme_delete_io_path_done);
4593 			return;
4594 		}
4595 	}
4596 
4597 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4598 }
4599 
4600 static void
4601 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
4602 			       struct nvme_async_probe_ctx *ctx)
4603 {
4604 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
4605 	struct nvme_ns	*nvme_ns, *next;
4606 	struct spdk_nvme_ns	*ns;
4607 	struct nvme_bdev	*bdev;
4608 	uint32_t		nsid;
4609 	int			rc;
4610 	uint64_t		num_sectors;
4611 
4612 	if (ctx) {
4613 		/* Initialize this count to 1 to handle the populate functions
4614 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
4615 		 */
4616 		ctx->populates_in_progress = 1;
4617 	}
4618 
4619 	/* First loop over our existing namespaces and see if they have been
4620 	 * removed. */
4621 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4622 	while (nvme_ns != NULL) {
4623 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4624 
4625 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
4626 			/* NS is still there but attributes may have changed */
4627 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
4628 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
4629 			bdev = nvme_ns->bdev;
4630 			assert(bdev != NULL);
4631 			if (bdev->disk.blockcnt != num_sectors) {
4632 				SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
4633 					       nvme_ns->id,
4634 					       bdev->disk.name,
4635 					       bdev->disk.blockcnt,
4636 					       num_sectors);
4637 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
4638 				if (rc != 0) {
4639 					SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
4640 						    bdev->disk.name, rc);
4641 				}
4642 			}
4643 		} else {
4644 			/* Namespace was removed */
4645 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4646 		}
4647 
4648 		nvme_ns = next;
4649 	}
4650 
4651 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
4652 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4653 	while (nsid != 0) {
4654 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4655 
4656 		if (nvme_ns == NULL) {
4657 			/* Found a new one */
4658 			nvme_ns = nvme_ns_alloc();
4659 			if (nvme_ns == NULL) {
4660 				SPDK_ERRLOG("Failed to allocate namespace\n");
4661 				/* This just fails to attach the namespace. It may work on a future attempt. */
4662 				continue;
4663 			}
4664 
4665 			nvme_ns->id = nsid;
4666 			nvme_ns->ctrlr = nvme_ctrlr;
4667 
4668 			nvme_ns->bdev = NULL;
4669 
4670 			if (ctx) {
4671 				ctx->populates_in_progress++;
4672 			}
4673 			nvme_ns->probe_ctx = ctx;
4674 
4675 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4676 
4677 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
4678 		}
4679 
4680 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
4681 	}
4682 
4683 	if (ctx) {
4684 		/* Decrement this count now that the loop is over to account
4685 		 * for the one we started with.  If the count is then 0, we
4686 		 * know any populate_namespace functions completed immediately,
4687 		 * so we'll kick the callback here.
4688 		 */
4689 		ctx->populates_in_progress--;
4690 		if (ctx->populates_in_progress == 0) {
4691 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4692 		}
4693 	}
4694 
4695 }
4696 
4697 static void
4698 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
4699 {
4700 	struct nvme_ns *nvme_ns, *tmp;
4701 
4702 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
4703 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4704 	}
4705 }
4706 
4707 static uint32_t
4708 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
4709 {
4710 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
4711 	const struct spdk_nvme_ctrlr_data *cdata;
4712 	uint32_t nsid, ns_count = 0;
4713 
4714 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4715 
4716 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4717 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
4718 		ns_count++;
4719 	}
4720 
4721 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
4722 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
4723 	       sizeof(uint32_t);
4724 }
4725 
4726 static int
4727 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
4728 			  void *cb_arg)
4729 {
4730 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4731 	struct nvme_ns *nvme_ns;
4732 	uint32_t i, nsid;
4733 
4734 	for (i = 0; i < desc->num_of_nsid; i++) {
4735 		nsid = desc->nsid[i];
4736 		if (nsid == 0) {
4737 			continue;
4738 		}
4739 
4740 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4741 
4742 		assert(nvme_ns != NULL);
4743 		if (nvme_ns == NULL) {
4744 			/* Target told us that an inactive namespace had an ANA change */
4745 			continue;
4746 		}
4747 
4748 		_nvme_ns_set_ana_state(nvme_ns, desc);
4749 	}
4750 
4751 	return 0;
4752 }
4753 
4754 static void
4755 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4756 {
4757 	struct nvme_ns *nvme_ns;
4758 
4759 	spdk_free(nvme_ctrlr->ana_log_page);
4760 	nvme_ctrlr->ana_log_page = NULL;
4761 
4762 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4763 	     nvme_ns != NULL;
4764 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
4765 		nvme_ns->ana_state_updating = false;
4766 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4767 	}
4768 }
4769 
4770 static void
4771 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
4772 {
4773 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4774 
4775 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
4776 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
4777 					     nvme_ctrlr);
4778 	} else {
4779 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
4780 	}
4781 
4782 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4783 
4784 	assert(nvme_ctrlr->ana_log_page_updating == true);
4785 	nvme_ctrlr->ana_log_page_updating = false;
4786 
4787 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
4788 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4789 
4790 		nvme_ctrlr_unregister(nvme_ctrlr);
4791 	} else {
4792 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4793 
4794 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
4795 	}
4796 }
4797 
4798 static int
4799 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4800 {
4801 	uint32_t ana_log_page_size;
4802 	int rc;
4803 
4804 	if (nvme_ctrlr->ana_log_page == NULL) {
4805 		return -EINVAL;
4806 	}
4807 
4808 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
4809 
4810 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
4811 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
4812 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
4813 		return -EINVAL;
4814 	}
4815 
4816 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4817 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
4818 	    nvme_ctrlr->ana_log_page_updating) {
4819 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4820 		return -EBUSY;
4821 	}
4822 
4823 	nvme_ctrlr->ana_log_page_updating = true;
4824 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4825 
4826 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
4827 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
4828 					      SPDK_NVME_GLOBAL_NS_TAG,
4829 					      nvme_ctrlr->ana_log_page,
4830 					      ana_log_page_size, 0,
4831 					      nvme_ctrlr_read_ana_log_page_done,
4832 					      nvme_ctrlr);
4833 	if (rc != 0) {
4834 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
4835 	}
4836 
4837 	return rc;
4838 }
4839 
4840 static void
4841 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
4842 {
4843 }
4844 
4845 struct bdev_nvme_set_preferred_path_ctx {
4846 	struct spdk_bdev_desc *desc;
4847 	struct nvme_ns *nvme_ns;
4848 	bdev_nvme_set_preferred_path_cb cb_fn;
4849 	void *cb_arg;
4850 };
4851 
4852 static void
4853 bdev_nvme_set_preferred_path_done(struct spdk_io_channel_iter *i, int status)
4854 {
4855 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4856 
4857 	assert(ctx != NULL);
4858 	assert(ctx->desc != NULL);
4859 	assert(ctx->cb_fn != NULL);
4860 
4861 	spdk_bdev_close(ctx->desc);
4862 
4863 	ctx->cb_fn(ctx->cb_arg, status);
4864 
4865 	free(ctx);
4866 }
4867 
4868 static void
4869 _bdev_nvme_set_preferred_path(struct spdk_io_channel_iter *i)
4870 {
4871 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4872 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4873 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4874 	struct nvme_io_path *io_path, *prev;
4875 
4876 	prev = NULL;
4877 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
4878 		if (io_path->nvme_ns == ctx->nvme_ns) {
4879 			break;
4880 		}
4881 		prev = io_path;
4882 	}
4883 
4884 	if (io_path != NULL) {
4885 		if (prev != NULL) {
4886 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
4887 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
4888 		}
4889 
4890 		/* We can set io_path to nbdev_ch->current_io_path directly here.
4891 		 * However, it needs to be conditional. To simplify the code,
4892 		 * just clear nbdev_ch->current_io_path and let find_io_path()
4893 		 * fill it.
4894 		 *
4895 		 * Automatic failback may be disabled. Hence even if the io_path is
4896 		 * already at the head, clear nbdev_ch->current_io_path.
4897 		 */
4898 		bdev_nvme_clear_current_io_path(nbdev_ch);
4899 	}
4900 
4901 	spdk_for_each_channel_continue(i, 0);
4902 }
4903 
4904 static struct nvme_ns *
4905 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
4906 {
4907 	struct nvme_ns *nvme_ns, *prev;
4908 	const struct spdk_nvme_ctrlr_data *cdata;
4909 
4910 	prev = NULL;
4911 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
4912 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
4913 
4914 		if (cdata->cntlid == cntlid) {
4915 			break;
4916 		}
4917 		prev = nvme_ns;
4918 	}
4919 
4920 	if (nvme_ns != NULL && prev != NULL) {
4921 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
4922 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
4923 	}
4924 
4925 	return nvme_ns;
4926 }
4927 
4928 /* This function supports only multipath mode. There is only a single I/O path
4929  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
4930  * head of the I/O path list for each NVMe bdev channel.
4931  *
4932  * NVMe bdev channel may be acquired after completing this function. move the
4933  * matched namespace to the head of the namespace list for the NVMe bdev too.
4934  */
4935 void
4936 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
4937 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
4938 {
4939 	struct bdev_nvme_set_preferred_path_ctx *ctx;
4940 	struct spdk_bdev *bdev;
4941 	struct nvme_bdev *nbdev;
4942 	int rc = 0;
4943 
4944 	assert(cb_fn != NULL);
4945 
4946 	ctx = calloc(1, sizeof(*ctx));
4947 	if (ctx == NULL) {
4948 		SPDK_ERRLOG("Failed to alloc context.\n");
4949 		rc = -ENOMEM;
4950 		goto err_alloc;
4951 	}
4952 
4953 	ctx->cb_fn = cb_fn;
4954 	ctx->cb_arg = cb_arg;
4955 
4956 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
4957 	if (rc != 0) {
4958 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
4959 		goto err_open;
4960 	}
4961 
4962 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
4963 
4964 	if (bdev->module != &nvme_if) {
4965 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
4966 		rc = -ENODEV;
4967 		goto err_bdev;
4968 	}
4969 
4970 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
4971 
4972 	pthread_mutex_lock(&nbdev->mutex);
4973 
4974 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
4975 	if (ctx->nvme_ns == NULL) {
4976 		pthread_mutex_unlock(&nbdev->mutex);
4977 
4978 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
4979 		rc = -ENODEV;
4980 		goto err_bdev;
4981 	}
4982 
4983 	pthread_mutex_unlock(&nbdev->mutex);
4984 
4985 	spdk_for_each_channel(nbdev,
4986 			      _bdev_nvme_set_preferred_path,
4987 			      ctx,
4988 			      bdev_nvme_set_preferred_path_done);
4989 	return;
4990 
4991 err_bdev:
4992 	spdk_bdev_close(ctx->desc);
4993 err_open:
4994 	free(ctx);
4995 err_alloc:
4996 	cb_fn(cb_arg, rc);
4997 }
4998 
4999 struct bdev_nvme_set_multipath_policy_ctx {
5000 	struct spdk_bdev_desc *desc;
5001 	bdev_nvme_set_multipath_policy_cb cb_fn;
5002 	void *cb_arg;
5003 };
5004 
5005 static void
5006 bdev_nvme_set_multipath_policy_done(struct spdk_io_channel_iter *i, int status)
5007 {
5008 	struct bdev_nvme_set_multipath_policy_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
5009 
5010 	assert(ctx != NULL);
5011 	assert(ctx->desc != NULL);
5012 	assert(ctx->cb_fn != NULL);
5013 
5014 	spdk_bdev_close(ctx->desc);
5015 
5016 	ctx->cb_fn(ctx->cb_arg, status);
5017 
5018 	free(ctx);
5019 }
5020 
5021 static void
5022 _bdev_nvme_set_multipath_policy(struct spdk_io_channel_iter *i)
5023 {
5024 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
5025 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
5026 	struct nvme_bdev *nbdev = spdk_io_channel_get_io_device(_ch);
5027 
5028 	nbdev_ch->mp_policy = nbdev->mp_policy;
5029 	nbdev_ch->mp_selector = nbdev->mp_selector;
5030 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
5031 	bdev_nvme_clear_current_io_path(nbdev_ch);
5032 
5033 	spdk_for_each_channel_continue(i, 0);
5034 }
5035 
5036 void
5037 bdev_nvme_set_multipath_policy(const char *name, enum bdev_nvme_multipath_policy policy,
5038 			       enum bdev_nvme_multipath_selector selector, uint32_t rr_min_io,
5039 			       bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
5040 {
5041 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
5042 	struct spdk_bdev *bdev;
5043 	struct nvme_bdev *nbdev;
5044 	int rc;
5045 
5046 	assert(cb_fn != NULL);
5047 
5048 	if (policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE && selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
5049 		if (rr_min_io == UINT32_MAX) {
5050 			rr_min_io = 1;
5051 		} else if (rr_min_io == 0) {
5052 			rc = -EINVAL;
5053 			goto exit;
5054 		}
5055 	} else if (rr_min_io != UINT32_MAX) {
5056 		rc = -EINVAL;
5057 		goto exit;
5058 	}
5059 
5060 	ctx = calloc(1, sizeof(*ctx));
5061 	if (ctx == NULL) {
5062 		SPDK_ERRLOG("Failed to alloc context.\n");
5063 		rc = -ENOMEM;
5064 		goto exit;
5065 	}
5066 
5067 	ctx->cb_fn = cb_fn;
5068 	ctx->cb_arg = cb_arg;
5069 
5070 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5071 	if (rc != 0) {
5072 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5073 		rc = -ENODEV;
5074 		goto err_open;
5075 	}
5076 
5077 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5078 	if (bdev->module != &nvme_if) {
5079 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5080 		rc = -ENODEV;
5081 		goto err_module;
5082 	}
5083 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5084 
5085 	pthread_mutex_lock(&nbdev->mutex);
5086 	nbdev->mp_policy = policy;
5087 	nbdev->mp_selector = selector;
5088 	nbdev->rr_min_io = rr_min_io;
5089 	pthread_mutex_unlock(&nbdev->mutex);
5090 
5091 	spdk_for_each_channel(nbdev,
5092 			      _bdev_nvme_set_multipath_policy,
5093 			      ctx,
5094 			      bdev_nvme_set_multipath_policy_done);
5095 	return;
5096 
5097 err_module:
5098 	spdk_bdev_close(ctx->desc);
5099 err_open:
5100 	free(ctx);
5101 exit:
5102 	cb_fn(cb_arg, rc);
5103 }
5104 
5105 static void
5106 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5107 {
5108 	struct nvme_ctrlr *nvme_ctrlr		= arg;
5109 	union spdk_nvme_async_event_completion	event;
5110 
5111 	if (spdk_nvme_cpl_is_error(cpl)) {
5112 		SPDK_WARNLOG("AER request execute failed\n");
5113 		return;
5114 	}
5115 
5116 	event.raw = cpl->cdw0;
5117 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5118 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
5119 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
5120 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5121 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
5122 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
5123 	}
5124 }
5125 
5126 static void
5127 free_nvme_async_probe_ctx(struct nvme_async_probe_ctx *ctx)
5128 {
5129 	spdk_keyring_put_key(ctx->drv_opts.tls_psk);
5130 	spdk_keyring_put_key(ctx->drv_opts.dhchap_key);
5131 	free(ctx);
5132 }
5133 
5134 static void
5135 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, int rc)
5136 {
5137 	if (ctx->cb_fn) {
5138 		ctx->cb_fn(ctx->cb_ctx, ctx->reported_bdevs, rc);
5139 	}
5140 
5141 	ctx->namespaces_populated = true;
5142 	if (ctx->probe_done) {
5143 		/* The probe was already completed, so we need to free the context
5144 		 * here.  This can happen for cases like OCSSD, where we need to
5145 		 * send additional commands to the SSD after attach.
5146 		 */
5147 		free_nvme_async_probe_ctx(ctx);
5148 	}
5149 }
5150 
5151 static void
5152 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
5153 		       struct nvme_async_probe_ctx *ctx)
5154 {
5155 	spdk_io_device_register(nvme_ctrlr,
5156 				bdev_nvme_create_ctrlr_channel_cb,
5157 				bdev_nvme_destroy_ctrlr_channel_cb,
5158 				sizeof(struct nvme_ctrlr_channel),
5159 				nvme_ctrlr->nbdev_ctrlr->name);
5160 
5161 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
5162 }
5163 
5164 static void
5165 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
5166 {
5167 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
5168 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
5169 
5170 	nvme_ctrlr->probe_ctx = NULL;
5171 
5172 	if (spdk_nvme_cpl_is_error(cpl)) {
5173 		nvme_ctrlr_delete(nvme_ctrlr);
5174 
5175 		if (ctx != NULL) {
5176 			ctx->reported_bdevs = 0;
5177 			populate_namespaces_cb(ctx, -1);
5178 		}
5179 		return;
5180 	}
5181 
5182 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5183 }
5184 
5185 static int
5186 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
5187 			     struct nvme_async_probe_ctx *ctx)
5188 {
5189 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5190 	const struct spdk_nvme_ctrlr_data *cdata;
5191 	uint32_t ana_log_page_size;
5192 
5193 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5194 
5195 	/* Set buffer size enough to include maximum number of allowed namespaces. */
5196 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5197 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
5198 			    sizeof(uint32_t);
5199 
5200 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
5201 						SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
5202 	if (nvme_ctrlr->ana_log_page == NULL) {
5203 		SPDK_ERRLOG("could not allocate ANA log page buffer\n");
5204 		return -ENXIO;
5205 	}
5206 
5207 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
5208 	 * Hence copy each descriptor to a temporary area when parsing it.
5209 	 *
5210 	 * Allocate a buffer whose size is as large as ANA log page buffer because
5211 	 * we do not know the size of a descriptor until actually reading it.
5212 	 */
5213 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
5214 	if (nvme_ctrlr->copied_ana_desc == NULL) {
5215 		SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
5216 		return -ENOMEM;
5217 	}
5218 
5219 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
5220 
5221 	nvme_ctrlr->probe_ctx = ctx;
5222 
5223 	/* Then, set the read size only to include the current active namespaces. */
5224 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5225 
5226 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5227 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5228 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5229 		return -EINVAL;
5230 	}
5231 
5232 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
5233 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5234 						SPDK_NVME_GLOBAL_NS_TAG,
5235 						nvme_ctrlr->ana_log_page,
5236 						ana_log_page_size, 0,
5237 						nvme_ctrlr_init_ana_log_page_done,
5238 						nvme_ctrlr);
5239 }
5240 
5241 /* hostnqn and subnqn were already verified before attaching a controller.
5242  * Hence check only the multipath capability and cntlid here.
5243  */
5244 static bool
5245 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
5246 {
5247 	struct nvme_ctrlr *tmp;
5248 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
5249 
5250 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5251 
5252 	if (!cdata->cmic.multi_ctrlr) {
5253 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5254 		return false;
5255 	}
5256 
5257 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
5258 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
5259 
5260 		if (!tmp_cdata->cmic.multi_ctrlr) {
5261 			SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5262 			return false;
5263 		}
5264 		if (cdata->cntlid == tmp_cdata->cntlid) {
5265 			SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid);
5266 			return false;
5267 		}
5268 	}
5269 
5270 	return true;
5271 }
5272 
5273 static int
5274 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
5275 {
5276 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5277 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5278 	int rc = 0;
5279 
5280 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5281 
5282 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
5283 	if (nbdev_ctrlr != NULL) {
5284 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
5285 			rc = -EINVAL;
5286 			goto exit;
5287 		}
5288 	} else {
5289 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
5290 		if (nbdev_ctrlr == NULL) {
5291 			SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n");
5292 			rc = -ENOMEM;
5293 			goto exit;
5294 		}
5295 		nbdev_ctrlr->name = strdup(name);
5296 		if (nbdev_ctrlr->name == NULL) {
5297 			SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n");
5298 			free(nbdev_ctrlr);
5299 			goto exit;
5300 		}
5301 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
5302 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
5303 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
5304 	}
5305 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
5306 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
5307 exit:
5308 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5309 	return rc;
5310 }
5311 
5312 static int
5313 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
5314 		  const char *name,
5315 		  const struct spdk_nvme_transport_id *trid,
5316 		  struct nvme_async_probe_ctx *ctx)
5317 {
5318 	struct nvme_ctrlr *nvme_ctrlr;
5319 	struct nvme_path_id *path_id;
5320 	const struct spdk_nvme_ctrlr_data *cdata;
5321 	int rc;
5322 
5323 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
5324 	if (nvme_ctrlr == NULL) {
5325 		SPDK_ERRLOG("Failed to allocate device struct\n");
5326 		return -ENOMEM;
5327 	}
5328 
5329 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
5330 	if (rc != 0) {
5331 		free(nvme_ctrlr);
5332 		return rc;
5333 	}
5334 
5335 	TAILQ_INIT(&nvme_ctrlr->trids);
5336 	RB_INIT(&nvme_ctrlr->namespaces);
5337 
5338 	/* Get another reference to the key, so the first one can be released from probe_ctx */
5339 	if (ctx != NULL) {
5340 		if (ctx->drv_opts.tls_psk != NULL) {
5341 			nvme_ctrlr->psk = spdk_keyring_get_key(
5342 						  spdk_key_get_name(ctx->drv_opts.tls_psk));
5343 			if (nvme_ctrlr->psk == NULL) {
5344 				/* Could only happen if the key was removed in the meantime */
5345 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5346 					    spdk_key_get_name(ctx->drv_opts.tls_psk));
5347 				rc = -ENOKEY;
5348 				goto err;
5349 			}
5350 		}
5351 
5352 		if (ctx->drv_opts.dhchap_key != NULL) {
5353 			nvme_ctrlr->dhchap_key = spdk_keyring_get_key(
5354 							 spdk_key_get_name(ctx->drv_opts.dhchap_key));
5355 			if (nvme_ctrlr->dhchap_key == NULL) {
5356 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5357 					    spdk_key_get_name(ctx->drv_opts.tls_psk));
5358 				rc = -ENOKEY;
5359 				goto err;
5360 			}
5361 		}
5362 	}
5363 
5364 	path_id = calloc(1, sizeof(*path_id));
5365 	if (path_id == NULL) {
5366 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
5367 		rc = -ENOMEM;
5368 		goto err;
5369 	}
5370 
5371 	path_id->trid = *trid;
5372 	if (ctx != NULL) {
5373 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
5374 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
5375 	}
5376 	nvme_ctrlr->active_path_id = path_id;
5377 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
5378 
5379 	nvme_ctrlr->thread = spdk_get_thread();
5380 	nvme_ctrlr->ctrlr = ctrlr;
5381 	nvme_ctrlr->ref = 1;
5382 
5383 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
5384 		SPDK_ERRLOG("OCSSDs are not supported");
5385 		rc = -ENOTSUP;
5386 		goto err;
5387 	}
5388 
5389 	if (ctx != NULL) {
5390 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
5391 	} else {
5392 		bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
5393 	}
5394 
5395 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
5396 					  g_opts.nvme_adminq_poll_period_us);
5397 
5398 	if (g_opts.timeout_us > 0) {
5399 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
5400 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
5401 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
5402 					  g_opts.timeout_us : g_opts.timeout_admin_us;
5403 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
5404 				adm_timeout_us, timeout_cb, nvme_ctrlr);
5405 	}
5406 
5407 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
5408 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
5409 
5410 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
5411 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
5412 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
5413 	}
5414 
5415 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
5416 	if (rc != 0) {
5417 		goto err;
5418 	}
5419 
5420 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5421 
5422 	if (cdata->cmic.ana_reporting) {
5423 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
5424 		if (rc == 0) {
5425 			return 0;
5426 		}
5427 	} else {
5428 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5429 		return 0;
5430 	}
5431 
5432 err:
5433 	nvme_ctrlr_delete(nvme_ctrlr);
5434 	return rc;
5435 }
5436 
5437 void
5438 bdev_nvme_get_default_ctrlr_opts(struct nvme_ctrlr_opts *opts)
5439 {
5440 	opts->prchk_flags = 0;
5441 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
5442 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
5443 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
5444 }
5445 
5446 static void
5447 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5448 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
5449 {
5450 	char *name;
5451 
5452 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
5453 	if (!name) {
5454 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
5455 		return;
5456 	}
5457 
5458 	if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) {
5459 		SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
5460 	} else {
5461 		SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name);
5462 	}
5463 
5464 	free(name);
5465 }
5466 
5467 static void
5468 _nvme_ctrlr_destruct(void *ctx)
5469 {
5470 	struct nvme_ctrlr *nvme_ctrlr = ctx;
5471 
5472 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
5473 	nvme_ctrlr_release(nvme_ctrlr);
5474 }
5475 
5476 static int
5477 bdev_nvme_delete_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5478 {
5479 	struct nvme_probe_skip_entry *entry;
5480 
5481 	/* The controller's destruction was already started */
5482 	if (nvme_ctrlr->destruct) {
5483 		return -EALREADY;
5484 	}
5485 
5486 	if (!hotplug &&
5487 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
5488 		entry = calloc(1, sizeof(*entry));
5489 		if (!entry) {
5490 			return -ENOMEM;
5491 		}
5492 		entry->trid = nvme_ctrlr->active_path_id->trid;
5493 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
5494 	}
5495 
5496 	nvme_ctrlr->destruct = true;
5497 	return 0;
5498 }
5499 
5500 static int
5501 bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5502 {
5503 	int rc;
5504 
5505 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5506 	rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, hotplug);
5507 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5508 
5509 	if (rc == 0) {
5510 		_nvme_ctrlr_destruct(nvme_ctrlr);
5511 	} else if (rc == -EALREADY) {
5512 		rc = 0;
5513 	}
5514 
5515 	return rc;
5516 }
5517 
5518 static void
5519 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
5520 {
5521 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
5522 
5523 	bdev_nvme_delete_ctrlr(nvme_ctrlr, true);
5524 }
5525 
5526 static int
5527 bdev_nvme_hotplug_probe(void *arg)
5528 {
5529 	if (g_hotplug_probe_ctx == NULL) {
5530 		spdk_poller_unregister(&g_hotplug_probe_poller);
5531 		return SPDK_POLLER_IDLE;
5532 	}
5533 
5534 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
5535 		g_hotplug_probe_ctx = NULL;
5536 		spdk_poller_unregister(&g_hotplug_probe_poller);
5537 	}
5538 
5539 	return SPDK_POLLER_BUSY;
5540 }
5541 
5542 static int
5543 bdev_nvme_hotplug(void *arg)
5544 {
5545 	struct spdk_nvme_transport_id trid_pcie;
5546 
5547 	if (g_hotplug_probe_ctx) {
5548 		return SPDK_POLLER_BUSY;
5549 	}
5550 
5551 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5552 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5553 
5554 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
5555 			      hotplug_probe_cb, attach_cb, NULL);
5556 
5557 	if (g_hotplug_probe_ctx) {
5558 		assert(g_hotplug_probe_poller == NULL);
5559 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
5560 	}
5561 
5562 	return SPDK_POLLER_BUSY;
5563 }
5564 
5565 void
5566 bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
5567 {
5568 	*opts = g_opts;
5569 }
5570 
5571 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5572 		uint32_t reconnect_delay_sec,
5573 		uint32_t fast_io_fail_timeout_sec);
5574 
5575 static int
5576 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
5577 {
5578 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
5579 		/* Can't set timeout_admin_us without also setting timeout_us */
5580 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
5581 		return -EINVAL;
5582 	}
5583 
5584 	if (opts->bdev_retry_count < -1) {
5585 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
5586 		return -EINVAL;
5587 	}
5588 
5589 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
5590 			opts->reconnect_delay_sec,
5591 			opts->fast_io_fail_timeout_sec)) {
5592 		return -EINVAL;
5593 	}
5594 
5595 	return 0;
5596 }
5597 
5598 int
5599 bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
5600 {
5601 	int ret;
5602 
5603 	ret = bdev_nvme_validate_opts(opts);
5604 	if (ret) {
5605 		SPDK_WARNLOG("Failed to set nvme opts.\n");
5606 		return ret;
5607 	}
5608 
5609 	if (g_bdev_nvme_init_thread != NULL) {
5610 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5611 			return -EPERM;
5612 		}
5613 	}
5614 
5615 	if (opts->rdma_srq_size != 0 ||
5616 	    opts->rdma_max_cq_size != 0 ||
5617 	    opts->rdma_cm_event_timeout_ms != 0) {
5618 		struct spdk_nvme_transport_opts drv_opts;
5619 
5620 		spdk_nvme_transport_get_opts(&drv_opts, sizeof(drv_opts));
5621 		if (opts->rdma_srq_size != 0) {
5622 			drv_opts.rdma_srq_size = opts->rdma_srq_size;
5623 		}
5624 		if (opts->rdma_max_cq_size != 0) {
5625 			drv_opts.rdma_max_cq_size = opts->rdma_max_cq_size;
5626 		}
5627 		if (opts->rdma_cm_event_timeout_ms != 0) {
5628 			drv_opts.rdma_cm_event_timeout_ms = opts->rdma_cm_event_timeout_ms;
5629 		}
5630 
5631 		ret = spdk_nvme_transport_set_opts(&drv_opts, sizeof(drv_opts));
5632 		if (ret) {
5633 			SPDK_ERRLOG("Failed to set NVMe transport opts.\n");
5634 			return ret;
5635 		}
5636 	}
5637 
5638 	g_opts = *opts;
5639 
5640 	return 0;
5641 }
5642 
5643 struct set_nvme_hotplug_ctx {
5644 	uint64_t period_us;
5645 	bool enabled;
5646 	spdk_msg_fn fn;
5647 	void *fn_ctx;
5648 };
5649 
5650 static void
5651 set_nvme_hotplug_period_cb(void *_ctx)
5652 {
5653 	struct set_nvme_hotplug_ctx *ctx = _ctx;
5654 
5655 	spdk_poller_unregister(&g_hotplug_poller);
5656 	if (ctx->enabled) {
5657 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
5658 	}
5659 
5660 	g_nvme_hotplug_poll_period_us = ctx->period_us;
5661 	g_nvme_hotplug_enabled = ctx->enabled;
5662 	if (ctx->fn) {
5663 		ctx->fn(ctx->fn_ctx);
5664 	}
5665 
5666 	free(ctx);
5667 }
5668 
5669 int
5670 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
5671 {
5672 	struct set_nvme_hotplug_ctx *ctx;
5673 
5674 	if (enabled == true && !spdk_process_is_primary()) {
5675 		return -EPERM;
5676 	}
5677 
5678 	ctx = calloc(1, sizeof(*ctx));
5679 	if (ctx == NULL) {
5680 		return -ENOMEM;
5681 	}
5682 
5683 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
5684 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
5685 	ctx->enabled = enabled;
5686 	ctx->fn = cb;
5687 	ctx->fn_ctx = cb_ctx;
5688 
5689 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
5690 	return 0;
5691 }
5692 
5693 static void
5694 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
5695 				    struct nvme_async_probe_ctx *ctx)
5696 {
5697 	struct nvme_ns	*nvme_ns;
5698 	struct nvme_bdev	*nvme_bdev;
5699 	size_t			j;
5700 
5701 	assert(nvme_ctrlr != NULL);
5702 
5703 	if (ctx->names == NULL) {
5704 		ctx->reported_bdevs = 0;
5705 		populate_namespaces_cb(ctx, 0);
5706 		return;
5707 	}
5708 
5709 	/*
5710 	 * Report the new bdevs that were created in this call.
5711 	 * There can be more than one bdev per NVMe controller.
5712 	 */
5713 	j = 0;
5714 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5715 	while (nvme_ns != NULL) {
5716 		nvme_bdev = nvme_ns->bdev;
5717 		if (j < ctx->max_bdevs) {
5718 			ctx->names[j] = nvme_bdev->disk.name;
5719 			j++;
5720 		} else {
5721 			SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
5722 				    ctx->max_bdevs);
5723 			ctx->reported_bdevs = 0;
5724 			populate_namespaces_cb(ctx, -ERANGE);
5725 			return;
5726 		}
5727 
5728 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5729 	}
5730 
5731 	ctx->reported_bdevs = j;
5732 	populate_namespaces_cb(ctx, 0);
5733 }
5734 
5735 static int
5736 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5737 			       struct spdk_nvme_ctrlr *new_ctrlr,
5738 			       struct spdk_nvme_transport_id *trid)
5739 {
5740 	struct nvme_path_id *tmp_trid;
5741 
5742 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
5743 		SPDK_ERRLOG("PCIe failover is not supported.\n");
5744 		return -ENOTSUP;
5745 	}
5746 
5747 	/* Currently we only support failover to the same transport type. */
5748 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
5749 		SPDK_WARNLOG("Failover from trtype: %s to a different trtype: %s is not supported currently\n",
5750 			     spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
5751 			     spdk_nvme_transport_id_trtype_str(trid->trtype));
5752 		return -EINVAL;
5753 	}
5754 
5755 
5756 	/* Currently we only support failover to the same NQN. */
5757 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
5758 		SPDK_WARNLOG("Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
5759 			     nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
5760 		return -EINVAL;
5761 	}
5762 
5763 	/* Skip all the other checks if we've already registered this path. */
5764 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
5765 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
5766 			SPDK_WARNLOG("This path (traddr: %s subnqn: %s) is already registered\n", trid->traddr,
5767 				     trid->subnqn);
5768 			return -EEXIST;
5769 		}
5770 	}
5771 
5772 	return 0;
5773 }
5774 
5775 static int
5776 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
5777 				    struct spdk_nvme_ctrlr *new_ctrlr)
5778 {
5779 	struct nvme_ns *nvme_ns;
5780 	struct spdk_nvme_ns *new_ns;
5781 
5782 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5783 	while (nvme_ns != NULL) {
5784 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
5785 		assert(new_ns != NULL);
5786 
5787 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
5788 			return -EINVAL;
5789 		}
5790 
5791 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5792 	}
5793 
5794 	return 0;
5795 }
5796 
5797 static int
5798 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5799 			      struct spdk_nvme_transport_id *trid)
5800 {
5801 	struct nvme_path_id *active_id, *new_trid, *tmp_trid;
5802 
5803 	new_trid = calloc(1, sizeof(*new_trid));
5804 	if (new_trid == NULL) {
5805 		return -ENOMEM;
5806 	}
5807 	new_trid->trid = *trid;
5808 
5809 	active_id = nvme_ctrlr->active_path_id;
5810 	assert(active_id != NULL);
5811 	assert(active_id == TAILQ_FIRST(&nvme_ctrlr->trids));
5812 
5813 	/* Skip the active trid not to replace it until it is failed. */
5814 	tmp_trid = TAILQ_NEXT(active_id, link);
5815 	if (tmp_trid == NULL) {
5816 		goto add_tail;
5817 	}
5818 
5819 	/* It means the trid is faled if its last failed time is non-zero.
5820 	 * Insert the new alternate trid before any failed trid.
5821 	 */
5822 	TAILQ_FOREACH_FROM(tmp_trid, &nvme_ctrlr->trids, link) {
5823 		if (tmp_trid->last_failed_tsc != 0) {
5824 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
5825 			return 0;
5826 		}
5827 	}
5828 
5829 add_tail:
5830 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
5831 	return 0;
5832 }
5833 
5834 /* This is the case that a secondary path is added to an existing
5835  * nvme_ctrlr for failover. After checking if it can access the same
5836  * namespaces as the primary path, it is disconnected until failover occurs.
5837  */
5838 static int
5839 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5840 			     struct spdk_nvme_ctrlr *new_ctrlr,
5841 			     struct spdk_nvme_transport_id *trid)
5842 {
5843 	int rc;
5844 
5845 	assert(nvme_ctrlr != NULL);
5846 
5847 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5848 
5849 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
5850 	if (rc != 0) {
5851 		goto exit;
5852 	}
5853 
5854 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
5855 	if (rc != 0) {
5856 		goto exit;
5857 	}
5858 
5859 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
5860 
5861 exit:
5862 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5863 
5864 	spdk_nvme_detach(new_ctrlr);
5865 
5866 	return rc;
5867 }
5868 
5869 static void
5870 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5871 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
5872 {
5873 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5874 	struct nvme_async_probe_ctx *ctx;
5875 	int rc;
5876 
5877 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
5878 	ctx->ctrlr_attached = true;
5879 
5880 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
5881 	if (rc != 0) {
5882 		ctx->reported_bdevs = 0;
5883 		populate_namespaces_cb(ctx, rc);
5884 	}
5885 }
5886 
5887 static void
5888 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5889 			struct spdk_nvme_ctrlr *ctrlr,
5890 			const struct spdk_nvme_ctrlr_opts *opts)
5891 {
5892 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5893 	struct nvme_ctrlr *nvme_ctrlr;
5894 	struct nvme_async_probe_ctx *ctx;
5895 	int rc;
5896 
5897 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
5898 	ctx->ctrlr_attached = true;
5899 
5900 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
5901 	if (nvme_ctrlr) {
5902 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
5903 	} else {
5904 		rc = -ENODEV;
5905 	}
5906 
5907 	ctx->reported_bdevs = 0;
5908 	populate_namespaces_cb(ctx, rc);
5909 }
5910 
5911 static int
5912 bdev_nvme_async_poll(void *arg)
5913 {
5914 	struct nvme_async_probe_ctx	*ctx = arg;
5915 	int				rc;
5916 
5917 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
5918 	if (spdk_unlikely(rc != -EAGAIN)) {
5919 		ctx->probe_done = true;
5920 		spdk_poller_unregister(&ctx->poller);
5921 		if (!ctx->ctrlr_attached) {
5922 			/* The probe is done, but no controller was attached.
5923 			 * That means we had a failure, so report -EIO back to
5924 			 * the caller (usually the RPC). populate_namespaces_cb()
5925 			 * will take care of freeing the nvme_async_probe_ctx.
5926 			 */
5927 			ctx->reported_bdevs = 0;
5928 			populate_namespaces_cb(ctx, -EIO);
5929 		} else if (ctx->namespaces_populated) {
5930 			/* The namespaces for the attached controller were all
5931 			 * populated and the response was already sent to the
5932 			 * caller (usually the RPC).  So free the context here.
5933 			 */
5934 			free_nvme_async_probe_ctx(ctx);
5935 		}
5936 	}
5937 
5938 	return SPDK_POLLER_BUSY;
5939 }
5940 
5941 static bool
5942 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5943 		uint32_t reconnect_delay_sec,
5944 		uint32_t fast_io_fail_timeout_sec)
5945 {
5946 	if (ctrlr_loss_timeout_sec < -1) {
5947 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
5948 		return false;
5949 	} else if (ctrlr_loss_timeout_sec == -1) {
5950 		if (reconnect_delay_sec == 0) {
5951 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
5952 			return false;
5953 		} else if (fast_io_fail_timeout_sec != 0 &&
5954 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
5955 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
5956 			return false;
5957 		}
5958 	} else if (ctrlr_loss_timeout_sec != 0) {
5959 		if (reconnect_delay_sec == 0) {
5960 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
5961 			return false;
5962 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
5963 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
5964 			return false;
5965 		} else if (fast_io_fail_timeout_sec != 0) {
5966 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
5967 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
5968 				return false;
5969 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
5970 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
5971 				return false;
5972 			}
5973 		}
5974 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
5975 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
5976 		return false;
5977 	}
5978 
5979 	return true;
5980 }
5981 
5982 static int
5983 bdev_nvme_load_psk(const char *fname, char *buf, size_t bufsz)
5984 {
5985 	FILE *psk_file;
5986 	struct stat statbuf;
5987 	int rc;
5988 #define TCP_PSK_INVALID_PERMISSIONS 0177
5989 
5990 	if (stat(fname, &statbuf) != 0) {
5991 		SPDK_ERRLOG("Could not read permissions for PSK file\n");
5992 		return -EACCES;
5993 	}
5994 
5995 	if ((statbuf.st_mode & TCP_PSK_INVALID_PERMISSIONS) != 0) {
5996 		SPDK_ERRLOG("Incorrect permissions for PSK file\n");
5997 		return -EPERM;
5998 	}
5999 	if ((size_t)statbuf.st_size >= bufsz) {
6000 		SPDK_ERRLOG("Invalid PSK: too long\n");
6001 		return -EINVAL;
6002 	}
6003 	psk_file = fopen(fname, "r");
6004 	if (psk_file == NULL) {
6005 		SPDK_ERRLOG("Could not open PSK file\n");
6006 		return -EINVAL;
6007 	}
6008 
6009 	memset(buf, 0, bufsz);
6010 	rc = fread(buf, 1, statbuf.st_size, psk_file);
6011 	if (rc != statbuf.st_size) {
6012 		SPDK_ERRLOG("Failed to read PSK\n");
6013 		fclose(psk_file);
6014 		return -EINVAL;
6015 	}
6016 
6017 	fclose(psk_file);
6018 	return 0;
6019 }
6020 
6021 int
6022 bdev_nvme_create(struct spdk_nvme_transport_id *trid,
6023 		 const char *base_name,
6024 		 const char **names,
6025 		 uint32_t count,
6026 		 spdk_bdev_create_nvme_fn cb_fn,
6027 		 void *cb_ctx,
6028 		 struct spdk_nvme_ctrlr_opts *drv_opts,
6029 		 struct nvme_ctrlr_opts *bdev_opts,
6030 		 bool multipath)
6031 {
6032 	struct nvme_probe_skip_entry *entry, *tmp;
6033 	struct nvme_async_probe_ctx *ctx;
6034 	spdk_nvme_attach_cb attach_cb;
6035 	int rc, len;
6036 
6037 	/* TODO expand this check to include both the host and target TRIDs.
6038 	 * Only if both are the same should we fail.
6039 	 */
6040 	if (nvme_ctrlr_get(trid) != NULL) {
6041 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr);
6042 		return -EEXIST;
6043 	}
6044 
6045 	len = strnlen(base_name, SPDK_CONTROLLER_NAME_MAX);
6046 
6047 	if (len == 0 || len == SPDK_CONTROLLER_NAME_MAX) {
6048 		SPDK_ERRLOG("controller name must be between 1 and %d characters\n", SPDK_CONTROLLER_NAME_MAX - 1);
6049 		return -EINVAL;
6050 	}
6051 
6052 	if (bdev_opts != NULL &&
6053 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
6054 			    bdev_opts->reconnect_delay_sec,
6055 			    bdev_opts->fast_io_fail_timeout_sec)) {
6056 		return -EINVAL;
6057 	}
6058 
6059 	ctx = calloc(1, sizeof(*ctx));
6060 	if (!ctx) {
6061 		return -ENOMEM;
6062 	}
6063 	ctx->base_name = base_name;
6064 	ctx->names = names;
6065 	ctx->max_bdevs = count;
6066 	ctx->cb_fn = cb_fn;
6067 	ctx->cb_ctx = cb_ctx;
6068 	ctx->trid = *trid;
6069 
6070 	if (bdev_opts) {
6071 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
6072 	} else {
6073 		bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
6074 	}
6075 
6076 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
6077 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
6078 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
6079 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
6080 				free(entry);
6081 				break;
6082 			}
6083 		}
6084 	}
6085 
6086 	if (drv_opts) {
6087 		memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
6088 	} else {
6089 		spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->drv_opts, sizeof(ctx->drv_opts));
6090 	}
6091 
6092 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
6093 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
6094 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
6095 	ctx->drv_opts.disable_read_ana_log_page = true;
6096 	ctx->drv_opts.transport_tos = g_opts.transport_tos;
6097 
6098 	if (ctx->bdev_opts.psk[0] != '\0') {
6099 		/* Try to use the keyring first */
6100 		ctx->drv_opts.tls_psk = spdk_keyring_get_key(ctx->bdev_opts.psk);
6101 		if (ctx->drv_opts.tls_psk == NULL) {
6102 			rc = bdev_nvme_load_psk(ctx->bdev_opts.psk,
6103 						ctx->drv_opts.psk, sizeof(ctx->drv_opts.psk));
6104 			if (rc != 0) {
6105 				SPDK_ERRLOG("Could not load PSK from %s\n", ctx->bdev_opts.psk);
6106 				free_nvme_async_probe_ctx(ctx);
6107 				return rc;
6108 			}
6109 		}
6110 	}
6111 
6112 	if (ctx->bdev_opts.dhchap_key != NULL) {
6113 		ctx->drv_opts.dhchap_key = spdk_keyring_get_key(ctx->bdev_opts.dhchap_key);
6114 		if (ctx->drv_opts.dhchap_key == NULL) {
6115 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP key: %s\n",
6116 				    ctx->bdev_opts.dhchap_key);
6117 			free_nvme_async_probe_ctx(ctx);
6118 			return -ENOKEY;
6119 		}
6120 
6121 		ctx->drv_opts.dhchap_digests = g_opts.dhchap_digests;
6122 		ctx->drv_opts.dhchap_dhgroups = g_opts.dhchap_dhgroups;
6123 	}
6124 
6125 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) {
6126 		attach_cb = connect_attach_cb;
6127 	} else {
6128 		attach_cb = connect_set_failover_cb;
6129 	}
6130 
6131 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
6132 	if (ctx->probe_ctx == NULL) {
6133 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
6134 		free_nvme_async_probe_ctx(ctx);
6135 		return -ENODEV;
6136 	}
6137 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
6138 
6139 	return 0;
6140 }
6141 
6142 struct bdev_nvme_delete_ctx {
6143 	char                        *name;
6144 	struct nvme_path_id         path_id;
6145 	bdev_nvme_delete_done_fn    delete_done;
6146 	void                        *delete_done_ctx;
6147 	uint64_t                    timeout_ticks;
6148 	struct spdk_poller          *poller;
6149 };
6150 
6151 static void
6152 free_bdev_nvme_delete_ctx(struct bdev_nvme_delete_ctx *ctx)
6153 {
6154 	if (ctx != NULL) {
6155 		free(ctx->name);
6156 		free(ctx);
6157 	}
6158 }
6159 
6160 static bool
6161 nvme_path_id_compare(struct nvme_path_id *p, const struct nvme_path_id *path_id)
6162 {
6163 	if (path_id->trid.trtype != 0) {
6164 		if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
6165 			if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
6166 				return false;
6167 			}
6168 		} else {
6169 			if (path_id->trid.trtype != p->trid.trtype) {
6170 				return false;
6171 			}
6172 		}
6173 	}
6174 
6175 	if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
6176 		if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
6177 			return false;
6178 		}
6179 	}
6180 
6181 	if (path_id->trid.adrfam != 0) {
6182 		if (path_id->trid.adrfam != p->trid.adrfam) {
6183 			return false;
6184 		}
6185 	}
6186 
6187 	if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
6188 		if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
6189 			return false;
6190 		}
6191 	}
6192 
6193 	if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
6194 		if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
6195 			return false;
6196 		}
6197 	}
6198 
6199 	if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
6200 		if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
6201 			return false;
6202 		}
6203 	}
6204 
6205 	if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
6206 		if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
6207 			return false;
6208 		}
6209 	}
6210 
6211 	return true;
6212 }
6213 
6214 static bool
6215 nvme_path_id_exists(const char *name, const struct nvme_path_id *path_id)
6216 {
6217 	struct nvme_bdev_ctrlr  *nbdev_ctrlr;
6218 	struct nvme_ctrlr       *ctrlr;
6219 	struct nvme_path_id     *p;
6220 
6221 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6222 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6223 	if (!nbdev_ctrlr) {
6224 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6225 		return false;
6226 	}
6227 
6228 	TAILQ_FOREACH(ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6229 		pthread_mutex_lock(&ctrlr->mutex);
6230 		TAILQ_FOREACH(p, &ctrlr->trids, link) {
6231 			if (nvme_path_id_compare(p, path_id)) {
6232 				pthread_mutex_unlock(&ctrlr->mutex);
6233 				pthread_mutex_unlock(&g_bdev_nvme_mutex);
6234 				return true;
6235 			}
6236 		}
6237 		pthread_mutex_unlock(&ctrlr->mutex);
6238 	}
6239 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6240 
6241 	return false;
6242 }
6243 
6244 static int
6245 bdev_nvme_delete_complete_poll(void *arg)
6246 {
6247 	struct bdev_nvme_delete_ctx     *ctx = arg;
6248 	int                             rc = 0;
6249 
6250 	if (nvme_path_id_exists(ctx->name, &ctx->path_id)) {
6251 		if (ctx->timeout_ticks > spdk_get_ticks()) {
6252 			return SPDK_POLLER_BUSY;
6253 		}
6254 
6255 		SPDK_ERRLOG("NVMe path '%s' still exists after delete\n", ctx->name);
6256 		rc = -ETIMEDOUT;
6257 	}
6258 
6259 	spdk_poller_unregister(&ctx->poller);
6260 
6261 	ctx->delete_done(ctx->delete_done_ctx, rc);
6262 	free_bdev_nvme_delete_ctx(ctx);
6263 
6264 	return SPDK_POLLER_BUSY;
6265 }
6266 
6267 static int
6268 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, const struct nvme_path_id *path_id)
6269 {
6270 	struct nvme_path_id	*p, *t;
6271 	spdk_msg_fn		msg_fn;
6272 	int			rc = -ENXIO;
6273 
6274 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6275 
6276 	TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
6277 		if (p == TAILQ_FIRST(&nvme_ctrlr->trids)) {
6278 			break;
6279 		}
6280 
6281 		if (!nvme_path_id_compare(p, path_id)) {
6282 			continue;
6283 		}
6284 
6285 		/* We are not using the specified path. */
6286 		TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
6287 		free(p);
6288 		rc = 0;
6289 	}
6290 
6291 	if (p == NULL || !nvme_path_id_compare(p, path_id)) {
6292 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
6293 		return rc;
6294 	}
6295 
6296 	/* If we made it here, then this path is a match! Now we need to remove it. */
6297 
6298 	/* This is the active path in use right now. The active path is always the first in the list. */
6299 	assert(p == nvme_ctrlr->active_path_id);
6300 
6301 	if (!TAILQ_NEXT(p, link)) {
6302 		/* The current path is the only path. */
6303 		msg_fn = _nvme_ctrlr_destruct;
6304 		rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, false);
6305 	} else {
6306 		/* There is an alternative path. */
6307 		msg_fn = _bdev_nvme_reset_ctrlr;
6308 		rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, true);
6309 	}
6310 
6311 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6312 
6313 	if (rc == 0) {
6314 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
6315 	} else if (rc == -EALREADY) {
6316 		rc = 0;
6317 	}
6318 
6319 	return rc;
6320 }
6321 
6322 int
6323 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id,
6324 		 bdev_nvme_delete_done_fn delete_done, void *delete_done_ctx)
6325 {
6326 	struct nvme_bdev_ctrlr		*nbdev_ctrlr;
6327 	struct nvme_ctrlr		*nvme_ctrlr, *tmp_nvme_ctrlr;
6328 	struct bdev_nvme_delete_ctx     *ctx = NULL;
6329 	int				rc = -ENXIO, _rc;
6330 
6331 	if (name == NULL || path_id == NULL) {
6332 		rc = -EINVAL;
6333 		goto exit;
6334 	}
6335 
6336 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6337 
6338 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6339 	if (nbdev_ctrlr == NULL) {
6340 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6341 
6342 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
6343 		rc = -ENODEV;
6344 		goto exit;
6345 	}
6346 
6347 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
6348 		_rc = _bdev_nvme_delete(nvme_ctrlr, path_id);
6349 		if (_rc < 0 && _rc != -ENXIO) {
6350 			pthread_mutex_unlock(&g_bdev_nvme_mutex);
6351 			rc = _rc;
6352 			goto exit;
6353 		} else if (_rc == 0) {
6354 			/* We traverse all remaining nvme_ctrlrs even if one nvme_ctrlr
6355 			 * was deleted successfully. To remember the successful deletion,
6356 			 * overwrite rc only if _rc is zero.
6357 			 */
6358 			rc = 0;
6359 		}
6360 	}
6361 
6362 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6363 
6364 	if (rc != 0 || delete_done == NULL) {
6365 		goto exit;
6366 	}
6367 
6368 	ctx = calloc(1, sizeof(*ctx));
6369 	if (ctx == NULL) {
6370 		SPDK_ERRLOG("Failed to allocate context for bdev_nvme_delete\n");
6371 		rc = -ENOMEM;
6372 		goto exit;
6373 	}
6374 
6375 	ctx->name = strdup(name);
6376 	if (ctx->name == NULL) {
6377 		SPDK_ERRLOG("Failed to copy controller name for deletion\n");
6378 		rc = -ENOMEM;
6379 		goto exit;
6380 	}
6381 
6382 	ctx->delete_done = delete_done;
6383 	ctx->delete_done_ctx = delete_done_ctx;
6384 	ctx->path_id = *path_id;
6385 	ctx->timeout_ticks = spdk_get_ticks() + 10 * spdk_get_ticks_hz();
6386 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_delete_complete_poll, ctx, 1000);
6387 	if (ctx->poller == NULL) {
6388 		SPDK_ERRLOG("Failed to register bdev_nvme_delete poller\n");
6389 		rc = -ENOMEM;
6390 		goto exit;
6391 	}
6392 
6393 exit:
6394 	if (rc != 0) {
6395 		free_bdev_nvme_delete_ctx(ctx);
6396 	}
6397 
6398 	return rc;
6399 }
6400 
6401 #define DISCOVERY_INFOLOG(ctx, format, ...) \
6402 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6403 
6404 #define DISCOVERY_ERRLOG(ctx, format, ...) \
6405 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6406 
6407 struct discovery_entry_ctx {
6408 	char						name[128];
6409 	struct spdk_nvme_transport_id			trid;
6410 	struct spdk_nvme_ctrlr_opts			drv_opts;
6411 	struct spdk_nvmf_discovery_log_page_entry	entry;
6412 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
6413 	struct discovery_ctx				*ctx;
6414 };
6415 
6416 struct discovery_ctx {
6417 	char					*name;
6418 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
6419 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
6420 	void					*cb_ctx;
6421 	struct spdk_nvme_probe_ctx		*probe_ctx;
6422 	struct spdk_nvme_detach_ctx		*detach_ctx;
6423 	struct spdk_nvme_ctrlr			*ctrlr;
6424 	struct spdk_nvme_transport_id		trid;
6425 	struct discovery_entry_ctx		*entry_ctx_in_use;
6426 	struct spdk_poller			*poller;
6427 	struct spdk_nvme_ctrlr_opts		drv_opts;
6428 	struct nvme_ctrlr_opts			bdev_opts;
6429 	struct spdk_nvmf_discovery_log_page	*log_page;
6430 	TAILQ_ENTRY(discovery_ctx)		tailq;
6431 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
6432 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
6433 	int					rc;
6434 	bool					wait_for_attach;
6435 	uint64_t				timeout_ticks;
6436 	/* Denotes that the discovery service is being started. We're waiting
6437 	 * for the initial connection to the discovery controller to be
6438 	 * established and attach discovered NVM ctrlrs.
6439 	 */
6440 	bool					initializing;
6441 	/* Denotes if a discovery is currently in progress for this context.
6442 	 * That includes connecting to newly discovered subsystems.  Used to
6443 	 * ensure we do not start a new discovery until an existing one is
6444 	 * complete.
6445 	 */
6446 	bool					in_progress;
6447 
6448 	/* Denotes if another discovery is needed after the one in progress
6449 	 * completes.  Set when we receive an AER completion while a discovery
6450 	 * is already in progress.
6451 	 */
6452 	bool					pending;
6453 
6454 	/* Signal to the discovery context poller that it should stop the
6455 	 * discovery service, including detaching from the current discovery
6456 	 * controller.
6457 	 */
6458 	bool					stop;
6459 
6460 	struct spdk_thread			*calling_thread;
6461 	uint32_t				index;
6462 	uint32_t				attach_in_progress;
6463 	char					*hostnqn;
6464 
6465 	/* Denotes if the discovery service was started by the mdns discovery.
6466 	 */
6467 	bool					from_mdns_discovery_service;
6468 };
6469 
6470 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
6471 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
6472 
6473 static void get_discovery_log_page(struct discovery_ctx *ctx);
6474 
6475 static void
6476 free_discovery_ctx(struct discovery_ctx *ctx)
6477 {
6478 	free(ctx->log_page);
6479 	free(ctx->hostnqn);
6480 	free(ctx->name);
6481 	free(ctx);
6482 }
6483 
6484 static void
6485 discovery_complete(struct discovery_ctx *ctx)
6486 {
6487 	ctx->initializing = false;
6488 	ctx->in_progress = false;
6489 	if (ctx->pending) {
6490 		ctx->pending = false;
6491 		get_discovery_log_page(ctx);
6492 	}
6493 }
6494 
6495 static void
6496 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
6497 			       struct spdk_nvmf_discovery_log_page_entry *entry)
6498 {
6499 	char *space;
6500 
6501 	trid->trtype = entry->trtype;
6502 	trid->adrfam = entry->adrfam;
6503 	memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr));
6504 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid));
6505 	/* Because the source buffer (entry->subnqn) is longer than trid->subnqn, and
6506 	 * before call to this function trid->subnqn is zeroed out, we need
6507 	 * to copy sizeof(trid->subnqn) minus one byte to make sure the last character
6508 	 * remains 0. Then we can shorten the string (replace ' ' with 0) if required
6509 	 */
6510 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn) - 1);
6511 
6512 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
6513 	 * But the log page entries typically pad them with spaces, not zeroes.
6514 	 * So add a NULL terminator to each of these fields at the appropriate
6515 	 * location.
6516 	 */
6517 	space = strchr(trid->traddr, ' ');
6518 	if (space) {
6519 		*space = 0;
6520 	}
6521 	space = strchr(trid->trsvcid, ' ');
6522 	if (space) {
6523 		*space = 0;
6524 	}
6525 	space = strchr(trid->subnqn, ' ');
6526 	if (space) {
6527 		*space = 0;
6528 	}
6529 }
6530 
6531 static void
6532 _stop_discovery(void *_ctx)
6533 {
6534 	struct discovery_ctx *ctx = _ctx;
6535 
6536 	if (ctx->attach_in_progress > 0) {
6537 		spdk_thread_send_msg(spdk_get_thread(), _stop_discovery, ctx);
6538 		return;
6539 	}
6540 
6541 	ctx->stop = true;
6542 
6543 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
6544 		struct discovery_entry_ctx *entry_ctx;
6545 		struct nvme_path_id path = {};
6546 
6547 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
6548 		path.trid = entry_ctx->trid;
6549 		bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6550 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6551 		free(entry_ctx);
6552 	}
6553 
6554 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
6555 		struct discovery_entry_ctx *entry_ctx;
6556 
6557 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6558 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6559 		free(entry_ctx);
6560 	}
6561 
6562 	free(ctx->entry_ctx_in_use);
6563 	ctx->entry_ctx_in_use = NULL;
6564 }
6565 
6566 static void
6567 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
6568 {
6569 	ctx->stop_cb_fn = cb_fn;
6570 	ctx->cb_ctx = cb_ctx;
6571 
6572 	if (ctx->attach_in_progress > 0) {
6573 		DISCOVERY_INFOLOG(ctx, "stopping discovery with attach_in_progress: %"PRIu32"\n",
6574 				  ctx->attach_in_progress);
6575 	}
6576 
6577 	_stop_discovery(ctx);
6578 }
6579 
6580 static void
6581 remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr)
6582 {
6583 	struct discovery_ctx *d_ctx;
6584 	struct nvme_path_id *path_id;
6585 	struct spdk_nvme_transport_id trid = {};
6586 	struct discovery_entry_ctx *entry_ctx, *tmp;
6587 
6588 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
6589 
6590 	TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6591 		TAILQ_FOREACH_SAFE(entry_ctx, &d_ctx->nvm_entry_ctxs, tailq, tmp) {
6592 			build_trid_from_log_page_entry(&trid, &entry_ctx->entry);
6593 			if (spdk_nvme_transport_id_compare(&trid, &path_id->trid) != 0) {
6594 				continue;
6595 			}
6596 
6597 			TAILQ_REMOVE(&d_ctx->nvm_entry_ctxs, entry_ctx, tailq);
6598 			free(entry_ctx);
6599 			DISCOVERY_INFOLOG(d_ctx, "Remove discovery entry: %s:%s:%s\n",
6600 					  trid.subnqn, trid.traddr, trid.trsvcid);
6601 
6602 			/* Fail discovery ctrlr to force reattach attempt */
6603 			spdk_nvme_ctrlr_fail(d_ctx->ctrlr);
6604 		}
6605 	}
6606 }
6607 
6608 static void
6609 discovery_remove_controllers(struct discovery_ctx *ctx)
6610 {
6611 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
6612 	struct discovery_entry_ctx *entry_ctx, *tmp;
6613 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6614 	struct spdk_nvme_transport_id old_trid = {};
6615 	uint64_t numrec, i;
6616 	bool found;
6617 
6618 	numrec = from_le64(&log_page->numrec);
6619 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
6620 		found = false;
6621 		old_entry = &entry_ctx->entry;
6622 		build_trid_from_log_page_entry(&old_trid, old_entry);
6623 		for (i = 0; i < numrec; i++) {
6624 			new_entry = &log_page->entries[i];
6625 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
6626 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
6627 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6628 				found = true;
6629 				break;
6630 			}
6631 		}
6632 		if (!found) {
6633 			struct nvme_path_id path = {};
6634 
6635 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
6636 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6637 
6638 			path.trid = entry_ctx->trid;
6639 			bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6640 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6641 			free(entry_ctx);
6642 		}
6643 	}
6644 	free(log_page);
6645 	ctx->log_page = NULL;
6646 	discovery_complete(ctx);
6647 }
6648 
6649 static void
6650 complete_discovery_start(struct discovery_ctx *ctx, int status)
6651 {
6652 	ctx->timeout_ticks = 0;
6653 	ctx->rc = status;
6654 	if (ctx->start_cb_fn) {
6655 		ctx->start_cb_fn(ctx->cb_ctx, status);
6656 		ctx->start_cb_fn = NULL;
6657 		ctx->cb_ctx = NULL;
6658 	}
6659 }
6660 
6661 static void
6662 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
6663 {
6664 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
6665 	struct discovery_ctx *ctx = entry_ctx->ctx;
6666 
6667 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
6668 	ctx->attach_in_progress--;
6669 	if (ctx->attach_in_progress == 0) {
6670 		complete_discovery_start(ctx, ctx->rc);
6671 		if (ctx->initializing && ctx->rc != 0) {
6672 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
6673 			stop_discovery(ctx, NULL, ctx->cb_ctx);
6674 		} else {
6675 			discovery_remove_controllers(ctx);
6676 		}
6677 	}
6678 }
6679 
6680 static struct discovery_entry_ctx *
6681 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
6682 {
6683 	struct discovery_entry_ctx *new_ctx;
6684 
6685 	new_ctx = calloc(1, sizeof(*new_ctx));
6686 	if (new_ctx == NULL) {
6687 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6688 		return NULL;
6689 	}
6690 
6691 	new_ctx->ctx = ctx;
6692 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
6693 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6694 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6695 	return new_ctx;
6696 }
6697 
6698 static void
6699 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
6700 		      struct spdk_nvmf_discovery_log_page *log_page)
6701 {
6702 	struct discovery_ctx *ctx = cb_arg;
6703 	struct discovery_entry_ctx *entry_ctx, *tmp;
6704 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6705 	uint64_t numrec, i;
6706 	bool found;
6707 
6708 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
6709 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6710 		return;
6711 	}
6712 
6713 	ctx->log_page = log_page;
6714 	assert(ctx->attach_in_progress == 0);
6715 	numrec = from_le64(&log_page->numrec);
6716 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
6717 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6718 		free(entry_ctx);
6719 	}
6720 	for (i = 0; i < numrec; i++) {
6721 		found = false;
6722 		new_entry = &log_page->entries[i];
6723 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY_CURRENT ||
6724 		    new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
6725 			struct discovery_entry_ctx *new_ctx;
6726 			struct spdk_nvme_transport_id trid = {};
6727 
6728 			build_trid_from_log_page_entry(&trid, new_entry);
6729 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
6730 			if (new_ctx == NULL) {
6731 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6732 				break;
6733 			}
6734 
6735 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
6736 			continue;
6737 		}
6738 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
6739 			old_entry = &entry_ctx->entry;
6740 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
6741 				found = true;
6742 				break;
6743 			}
6744 		}
6745 		if (!found) {
6746 			struct discovery_entry_ctx *subnqn_ctx = NULL, *new_ctx;
6747 			struct discovery_ctx *d_ctx;
6748 
6749 			TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6750 				TAILQ_FOREACH(subnqn_ctx, &d_ctx->nvm_entry_ctxs, tailq) {
6751 					if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
6752 						    sizeof(new_entry->subnqn))) {
6753 						break;
6754 					}
6755 				}
6756 				if (subnqn_ctx) {
6757 					break;
6758 				}
6759 			}
6760 
6761 			new_ctx = calloc(1, sizeof(*new_ctx));
6762 			if (new_ctx == NULL) {
6763 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6764 				break;
6765 			}
6766 
6767 			new_ctx->ctx = ctx;
6768 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
6769 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
6770 			if (subnqn_ctx) {
6771 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
6772 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
6773 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6774 						  new_ctx->name);
6775 			} else {
6776 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
6777 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
6778 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6779 						  new_ctx->name);
6780 			}
6781 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6782 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6783 			rc = bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
6784 					      discovery_attach_controller_done, new_ctx,
6785 					      &new_ctx->drv_opts, &ctx->bdev_opts, true);
6786 			if (rc == 0) {
6787 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
6788 				ctx->attach_in_progress++;
6789 			} else {
6790 				DISCOVERY_ERRLOG(ctx, "bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
6791 			}
6792 		}
6793 	}
6794 
6795 	if (ctx->attach_in_progress == 0) {
6796 		discovery_remove_controllers(ctx);
6797 	}
6798 }
6799 
6800 static void
6801 get_discovery_log_page(struct discovery_ctx *ctx)
6802 {
6803 	int rc;
6804 
6805 	assert(ctx->in_progress == false);
6806 	ctx->in_progress = true;
6807 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
6808 	if (rc != 0) {
6809 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6810 	}
6811 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
6812 }
6813 
6814 static void
6815 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
6816 {
6817 	struct discovery_ctx *ctx = arg;
6818 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
6819 
6820 	if (spdk_nvme_cpl_is_error(cpl)) {
6821 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
6822 		return;
6823 	}
6824 
6825 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
6826 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
6827 		return;
6828 	}
6829 
6830 	DISCOVERY_INFOLOG(ctx, "got aer\n");
6831 	if (ctx->in_progress) {
6832 		ctx->pending = true;
6833 		return;
6834 	}
6835 
6836 	get_discovery_log_page(ctx);
6837 }
6838 
6839 static void
6840 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6841 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
6842 {
6843 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6844 	struct discovery_ctx *ctx;
6845 
6846 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
6847 
6848 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
6849 	ctx->probe_ctx = NULL;
6850 	ctx->ctrlr = ctrlr;
6851 
6852 	if (ctx->rc != 0) {
6853 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
6854 				 ctx->rc);
6855 		return;
6856 	}
6857 
6858 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
6859 }
6860 
6861 static int
6862 discovery_poller(void *arg)
6863 {
6864 	struct discovery_ctx *ctx = arg;
6865 	struct spdk_nvme_transport_id *trid;
6866 	int rc;
6867 
6868 	if (ctx->detach_ctx) {
6869 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
6870 		if (rc != -EAGAIN) {
6871 			ctx->detach_ctx = NULL;
6872 			ctx->ctrlr = NULL;
6873 		}
6874 	} else if (ctx->stop) {
6875 		if (ctx->ctrlr != NULL) {
6876 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
6877 			if (rc == 0) {
6878 				return SPDK_POLLER_BUSY;
6879 			}
6880 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
6881 		}
6882 		spdk_poller_unregister(&ctx->poller);
6883 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
6884 		assert(ctx->start_cb_fn == NULL);
6885 		if (ctx->stop_cb_fn != NULL) {
6886 			ctx->stop_cb_fn(ctx->cb_ctx);
6887 		}
6888 		free_discovery_ctx(ctx);
6889 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
6890 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6891 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
6892 			assert(ctx->initializing);
6893 			spdk_poller_unregister(&ctx->poller);
6894 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
6895 			complete_discovery_start(ctx, -ETIMEDOUT);
6896 			stop_discovery(ctx, NULL, NULL);
6897 			free_discovery_ctx(ctx);
6898 			return SPDK_POLLER_BUSY;
6899 		}
6900 
6901 		assert(ctx->entry_ctx_in_use == NULL);
6902 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6903 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6904 		trid = &ctx->entry_ctx_in_use->trid;
6905 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
6906 		if (ctx->probe_ctx) {
6907 			spdk_poller_unregister(&ctx->poller);
6908 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
6909 		} else {
6910 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
6911 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6912 			ctx->entry_ctx_in_use = NULL;
6913 		}
6914 	} else if (ctx->probe_ctx) {
6915 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6916 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
6917 			complete_discovery_start(ctx, -ETIMEDOUT);
6918 			return SPDK_POLLER_BUSY;
6919 		}
6920 
6921 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
6922 		if (rc != -EAGAIN) {
6923 			if (ctx->rc != 0) {
6924 				assert(ctx->initializing);
6925 				stop_discovery(ctx, NULL, ctx->cb_ctx);
6926 			} else {
6927 				assert(rc == 0);
6928 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
6929 				ctx->rc = rc;
6930 				get_discovery_log_page(ctx);
6931 			}
6932 		}
6933 	} else {
6934 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6935 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
6936 			complete_discovery_start(ctx, -ETIMEDOUT);
6937 			/* We need to wait until all NVM ctrlrs are attached before we stop the
6938 			 * discovery service to make sure we don't detach a ctrlr that is still
6939 			 * being attached.
6940 			 */
6941 			if (ctx->attach_in_progress == 0) {
6942 				stop_discovery(ctx, NULL, ctx->cb_ctx);
6943 				return SPDK_POLLER_BUSY;
6944 			}
6945 		}
6946 
6947 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
6948 		if (rc < 0) {
6949 			spdk_poller_unregister(&ctx->poller);
6950 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
6951 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6952 			ctx->entry_ctx_in_use = NULL;
6953 
6954 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
6955 			if (rc != 0) {
6956 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
6957 				ctx->ctrlr = NULL;
6958 			}
6959 		}
6960 	}
6961 
6962 	return SPDK_POLLER_BUSY;
6963 }
6964 
6965 static void
6966 start_discovery_poller(void *arg)
6967 {
6968 	struct discovery_ctx *ctx = arg;
6969 
6970 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
6971 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
6972 }
6973 
6974 int
6975 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
6976 			  const char *base_name,
6977 			  struct spdk_nvme_ctrlr_opts *drv_opts,
6978 			  struct nvme_ctrlr_opts *bdev_opts,
6979 			  uint64_t attach_timeout,
6980 			  bool from_mdns,
6981 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
6982 {
6983 	struct discovery_ctx *ctx;
6984 	struct discovery_entry_ctx *discovery_entry_ctx;
6985 
6986 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
6987 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6988 		if (strcmp(ctx->name, base_name) == 0) {
6989 			return -EEXIST;
6990 		}
6991 
6992 		if (ctx->entry_ctx_in_use != NULL) {
6993 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
6994 				return -EEXIST;
6995 			}
6996 		}
6997 
6998 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
6999 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
7000 				return -EEXIST;
7001 			}
7002 		}
7003 	}
7004 
7005 	ctx = calloc(1, sizeof(*ctx));
7006 	if (ctx == NULL) {
7007 		return -ENOMEM;
7008 	}
7009 
7010 	ctx->name = strdup(base_name);
7011 	if (ctx->name == NULL) {
7012 		free_discovery_ctx(ctx);
7013 		return -ENOMEM;
7014 	}
7015 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
7016 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
7017 	ctx->from_mdns_discovery_service = from_mdns;
7018 	ctx->bdev_opts.from_discovery_service = true;
7019 	ctx->calling_thread = spdk_get_thread();
7020 	ctx->start_cb_fn = cb_fn;
7021 	ctx->cb_ctx = cb_ctx;
7022 	ctx->initializing = true;
7023 	if (ctx->start_cb_fn) {
7024 		/* We can use this when dumping json to denote if this RPC parameter
7025 		 * was specified or not.
7026 		 */
7027 		ctx->wait_for_attach = true;
7028 	}
7029 	if (attach_timeout != 0) {
7030 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
7031 				     spdk_get_ticks_hz() / 1000ull;
7032 	}
7033 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
7034 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
7035 	memcpy(&ctx->trid, trid, sizeof(*trid));
7036 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
7037 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
7038 	if (ctx->hostnqn == NULL) {
7039 		free_discovery_ctx(ctx);
7040 		return -ENOMEM;
7041 	}
7042 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
7043 	if (discovery_entry_ctx == NULL) {
7044 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7045 		free_discovery_ctx(ctx);
7046 		return -ENOMEM;
7047 	}
7048 
7049 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
7050 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
7051 	return 0;
7052 }
7053 
7054 int
7055 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
7056 {
7057 	struct discovery_ctx *ctx;
7058 
7059 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7060 		if (strcmp(name, ctx->name) == 0) {
7061 			if (ctx->stop) {
7062 				return -EALREADY;
7063 			}
7064 			/* If we're still starting the discovery service and ->rc is non-zero, we're
7065 			 * going to stop it as soon as we can
7066 			 */
7067 			if (ctx->initializing && ctx->rc != 0) {
7068 				return -EALREADY;
7069 			}
7070 			stop_discovery(ctx, cb_fn, cb_ctx);
7071 			return 0;
7072 		}
7073 	}
7074 
7075 	return -ENOENT;
7076 }
7077 
7078 static int
7079 bdev_nvme_library_init(void)
7080 {
7081 	g_bdev_nvme_init_thread = spdk_get_thread();
7082 
7083 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
7084 				bdev_nvme_destroy_poll_group_cb,
7085 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
7086 
7087 	return 0;
7088 }
7089 
7090 static void
7091 bdev_nvme_fini_destruct_ctrlrs(void)
7092 {
7093 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
7094 	struct nvme_ctrlr *nvme_ctrlr;
7095 
7096 	pthread_mutex_lock(&g_bdev_nvme_mutex);
7097 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
7098 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
7099 			pthread_mutex_lock(&nvme_ctrlr->mutex);
7100 			if (nvme_ctrlr->destruct) {
7101 				/* This controller's destruction was already started
7102 				 * before the application started shutting down
7103 				 */
7104 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
7105 				continue;
7106 			}
7107 			nvme_ctrlr->destruct = true;
7108 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
7109 
7110 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
7111 					     nvme_ctrlr);
7112 		}
7113 	}
7114 
7115 	g_bdev_nvme_module_finish = true;
7116 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
7117 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
7118 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
7119 		spdk_bdev_module_fini_done();
7120 		return;
7121 	}
7122 
7123 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
7124 }
7125 
7126 static void
7127 check_discovery_fini(void *arg)
7128 {
7129 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7130 		bdev_nvme_fini_destruct_ctrlrs();
7131 	}
7132 }
7133 
7134 static void
7135 bdev_nvme_library_fini(void)
7136 {
7137 	struct nvme_probe_skip_entry *entry, *entry_tmp;
7138 	struct discovery_ctx *ctx;
7139 
7140 	spdk_poller_unregister(&g_hotplug_poller);
7141 	free(g_hotplug_probe_ctx);
7142 	g_hotplug_probe_ctx = NULL;
7143 
7144 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
7145 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
7146 		free(entry);
7147 	}
7148 
7149 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
7150 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7151 		bdev_nvme_fini_destruct_ctrlrs();
7152 	} else {
7153 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7154 			stop_discovery(ctx, check_discovery_fini, NULL);
7155 		}
7156 	}
7157 }
7158 
7159 static void
7160 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
7161 {
7162 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7163 	struct spdk_bdev *bdev = bdev_io->bdev;
7164 	struct spdk_dif_ctx dif_ctx;
7165 	struct spdk_dif_error err_blk = {};
7166 	int rc;
7167 	struct spdk_dif_ctx_init_ext_opts dif_opts;
7168 
7169 	dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format);
7170 	dif_opts.dif_pi_format = SPDK_DIF_PI_FORMAT_16;
7171 	rc = spdk_dif_ctx_init(&dif_ctx,
7172 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
7173 			       bdev->dif_is_head_of_md, bdev->dif_type,
7174 			       bdev_io->u.bdev.dif_check_flags,
7175 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0, &dif_opts);
7176 	if (rc != 0) {
7177 		SPDK_ERRLOG("Initialization of DIF context failed\n");
7178 		return;
7179 	}
7180 
7181 	if (bdev->md_interleave) {
7182 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7183 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7184 	} else {
7185 		struct iovec md_iov = {
7186 			.iov_base	= bdev_io->u.bdev.md_buf,
7187 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
7188 		};
7189 
7190 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7191 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7192 	}
7193 
7194 	if (rc != 0) {
7195 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
7196 			    err_blk.err_type, err_blk.err_offset);
7197 	} else {
7198 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
7199 	}
7200 }
7201 
7202 static void
7203 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7204 {
7205 	struct nvme_bdev_io *bio = ref;
7206 
7207 	if (spdk_nvme_cpl_is_success(cpl)) {
7208 		/* Run PI verification for read data buffer. */
7209 		bdev_nvme_verify_pi_error(bio);
7210 	}
7211 
7212 	/* Return original completion status */
7213 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7214 }
7215 
7216 static void
7217 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7218 {
7219 	struct nvme_bdev_io *bio = ref;
7220 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7221 	int ret;
7222 
7223 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7224 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
7225 			    cpl->status.sct, cpl->status.sc);
7226 
7227 		/* Save completion status to use after verifying PI error. */
7228 		bio->cpl = *cpl;
7229 
7230 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
7231 			/* Read without PI checking to verify PI error. */
7232 			ret = bdev_nvme_no_pi_readv(bio,
7233 						    bdev_io->u.bdev.iovs,
7234 						    bdev_io->u.bdev.iovcnt,
7235 						    bdev_io->u.bdev.md_buf,
7236 						    bdev_io->u.bdev.num_blocks,
7237 						    bdev_io->u.bdev.offset_blocks);
7238 			if (ret == 0) {
7239 				return;
7240 			}
7241 		}
7242 	}
7243 
7244 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7245 }
7246 
7247 static void
7248 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7249 {
7250 	struct nvme_bdev_io *bio = ref;
7251 
7252 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7253 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
7254 			    cpl->status.sct, cpl->status.sc);
7255 		/* Run PI verification for write data buffer if PI error is detected. */
7256 		bdev_nvme_verify_pi_error(bio);
7257 	}
7258 
7259 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7260 }
7261 
7262 static void
7263 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7264 {
7265 	struct nvme_bdev_io *bio = ref;
7266 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7267 
7268 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
7269 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
7270 	 */
7271 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
7272 
7273 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7274 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
7275 			    cpl->status.sct, cpl->status.sc);
7276 		/* Run PI verification for zone append data buffer if PI error is detected. */
7277 		bdev_nvme_verify_pi_error(bio);
7278 	}
7279 
7280 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7281 }
7282 
7283 static void
7284 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7285 {
7286 	struct nvme_bdev_io *bio = ref;
7287 
7288 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7289 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
7290 			    cpl->status.sct, cpl->status.sc);
7291 		/* Run PI verification for compare data buffer if PI error is detected. */
7292 		bdev_nvme_verify_pi_error(bio);
7293 	}
7294 
7295 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7296 }
7297 
7298 static void
7299 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7300 {
7301 	struct nvme_bdev_io *bio = ref;
7302 
7303 	/* Compare operation completion */
7304 	if (!bio->first_fused_completed) {
7305 		/* Save compare result for write callback */
7306 		bio->cpl = *cpl;
7307 		bio->first_fused_completed = true;
7308 		return;
7309 	}
7310 
7311 	/* Write operation completion */
7312 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
7313 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
7314 		 * complete the IO with the compare operation's status.
7315 		 */
7316 		if (!spdk_nvme_cpl_is_error(cpl)) {
7317 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
7318 		}
7319 
7320 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7321 	} else {
7322 		bdev_nvme_io_complete_nvme_status(bio, cpl);
7323 	}
7324 }
7325 
7326 static void
7327 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
7328 {
7329 	struct nvme_bdev_io *bio = ref;
7330 
7331 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7332 }
7333 
7334 static int
7335 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
7336 {
7337 	switch (desc->zt) {
7338 	case SPDK_NVME_ZONE_TYPE_SEQWR:
7339 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
7340 		break;
7341 	default:
7342 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
7343 		return -EIO;
7344 	}
7345 
7346 	switch (desc->zs) {
7347 	case SPDK_NVME_ZONE_STATE_EMPTY:
7348 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
7349 		break;
7350 	case SPDK_NVME_ZONE_STATE_IOPEN:
7351 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
7352 		break;
7353 	case SPDK_NVME_ZONE_STATE_EOPEN:
7354 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
7355 		break;
7356 	case SPDK_NVME_ZONE_STATE_CLOSED:
7357 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
7358 		break;
7359 	case SPDK_NVME_ZONE_STATE_RONLY:
7360 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
7361 		break;
7362 	case SPDK_NVME_ZONE_STATE_FULL:
7363 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
7364 		break;
7365 	case SPDK_NVME_ZONE_STATE_OFFLINE:
7366 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
7367 		break;
7368 	default:
7369 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
7370 		return -EIO;
7371 	}
7372 
7373 	info->zone_id = desc->zslba;
7374 	info->write_pointer = desc->wp;
7375 	info->capacity = desc->zcap;
7376 
7377 	return 0;
7378 }
7379 
7380 static void
7381 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
7382 {
7383 	struct nvme_bdev_io *bio = ref;
7384 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7385 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
7386 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
7387 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
7388 	uint64_t max_zones_per_buf, i;
7389 	uint32_t zone_report_bufsize;
7390 	struct spdk_nvme_ns *ns;
7391 	struct spdk_nvme_qpair *qpair;
7392 	int ret;
7393 
7394 	if (spdk_nvme_cpl_is_error(cpl)) {
7395 		goto out_complete_io_nvme_cpl;
7396 	}
7397 
7398 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
7399 		ret = -ENXIO;
7400 		goto out_complete_io_ret;
7401 	}
7402 
7403 	ns = bio->io_path->nvme_ns->ns;
7404 	qpair = bio->io_path->qpair->qpair;
7405 
7406 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7407 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
7408 			    sizeof(bio->zone_report_buf->descs[0]);
7409 
7410 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
7411 		ret = -EINVAL;
7412 		goto out_complete_io_ret;
7413 	}
7414 
7415 	if (!bio->zone_report_buf->nr_zones) {
7416 		ret = -EINVAL;
7417 		goto out_complete_io_ret;
7418 	}
7419 
7420 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
7421 		ret = fill_zone_from_report(&info[bio->handled_zones],
7422 					    &bio->zone_report_buf->descs[i]);
7423 		if (ret) {
7424 			goto out_complete_io_ret;
7425 		}
7426 		bio->handled_zones++;
7427 	}
7428 
7429 	if (bio->handled_zones < zones_to_copy) {
7430 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7431 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
7432 
7433 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
7434 		ret = spdk_nvme_zns_report_zones(ns, qpair,
7435 						 bio->zone_report_buf, zone_report_bufsize,
7436 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
7437 						 bdev_nvme_get_zone_info_done, bio);
7438 		if (!ret) {
7439 			return;
7440 		} else {
7441 			goto out_complete_io_ret;
7442 		}
7443 	}
7444 
7445 out_complete_io_nvme_cpl:
7446 	free(bio->zone_report_buf);
7447 	bio->zone_report_buf = NULL;
7448 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7449 	return;
7450 
7451 out_complete_io_ret:
7452 	free(bio->zone_report_buf);
7453 	bio->zone_report_buf = NULL;
7454 	bdev_nvme_io_complete(bio, ret);
7455 }
7456 
7457 static void
7458 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
7459 {
7460 	struct nvme_bdev_io *bio = ref;
7461 
7462 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7463 }
7464 
7465 static void
7466 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
7467 {
7468 	struct nvme_bdev_io *bio = ctx;
7469 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7470 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
7471 
7472 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
7473 
7474 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
7475 }
7476 
7477 static void
7478 bdev_nvme_abort_complete(void *ctx)
7479 {
7480 	struct nvme_bdev_io *bio = ctx;
7481 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7482 
7483 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
7484 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
7485 	} else {
7486 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
7487 	}
7488 }
7489 
7490 static void
7491 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
7492 {
7493 	struct nvme_bdev_io *bio = ref;
7494 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7495 
7496 	bio->cpl = *cpl;
7497 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), bdev_nvme_abort_complete, bio);
7498 }
7499 
7500 static void
7501 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
7502 {
7503 	struct nvme_bdev_io *bio = ref;
7504 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7505 
7506 	bio->cpl = *cpl;
7507 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io),
7508 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
7509 }
7510 
7511 static void
7512 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
7513 {
7514 	struct nvme_bdev_io *bio = ref;
7515 	struct iovec *iov;
7516 
7517 	bio->iov_offset = sgl_offset;
7518 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
7519 		iov = &bio->iovs[bio->iovpos];
7520 		if (bio->iov_offset < iov->iov_len) {
7521 			break;
7522 		}
7523 
7524 		bio->iov_offset -= iov->iov_len;
7525 	}
7526 }
7527 
7528 static int
7529 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
7530 {
7531 	struct nvme_bdev_io *bio = ref;
7532 	struct iovec *iov;
7533 
7534 	assert(bio->iovpos < bio->iovcnt);
7535 
7536 	iov = &bio->iovs[bio->iovpos];
7537 
7538 	*address = iov->iov_base;
7539 	*length = iov->iov_len;
7540 
7541 	if (bio->iov_offset) {
7542 		assert(bio->iov_offset <= iov->iov_len);
7543 		*address += bio->iov_offset;
7544 		*length -= bio->iov_offset;
7545 	}
7546 
7547 	bio->iov_offset += *length;
7548 	if (bio->iov_offset == iov->iov_len) {
7549 		bio->iovpos++;
7550 		bio->iov_offset = 0;
7551 	}
7552 
7553 	return 0;
7554 }
7555 
7556 static void
7557 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
7558 {
7559 	struct nvme_bdev_io *bio = ref;
7560 	struct iovec *iov;
7561 
7562 	bio->fused_iov_offset = sgl_offset;
7563 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
7564 		iov = &bio->fused_iovs[bio->fused_iovpos];
7565 		if (bio->fused_iov_offset < iov->iov_len) {
7566 			break;
7567 		}
7568 
7569 		bio->fused_iov_offset -= iov->iov_len;
7570 	}
7571 }
7572 
7573 static int
7574 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
7575 {
7576 	struct nvme_bdev_io *bio = ref;
7577 	struct iovec *iov;
7578 
7579 	assert(bio->fused_iovpos < bio->fused_iovcnt);
7580 
7581 	iov = &bio->fused_iovs[bio->fused_iovpos];
7582 
7583 	*address = iov->iov_base;
7584 	*length = iov->iov_len;
7585 
7586 	if (bio->fused_iov_offset) {
7587 		assert(bio->fused_iov_offset <= iov->iov_len);
7588 		*address += bio->fused_iov_offset;
7589 		*length -= bio->fused_iov_offset;
7590 	}
7591 
7592 	bio->fused_iov_offset += *length;
7593 	if (bio->fused_iov_offset == iov->iov_len) {
7594 		bio->fused_iovpos++;
7595 		bio->fused_iov_offset = 0;
7596 	}
7597 
7598 	return 0;
7599 }
7600 
7601 static int
7602 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7603 		      void *md, uint64_t lba_count, uint64_t lba)
7604 {
7605 	int rc;
7606 
7607 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
7608 		      lba_count, lba);
7609 
7610 	bio->iovs = iov;
7611 	bio->iovcnt = iovcnt;
7612 	bio->iovpos = 0;
7613 	bio->iov_offset = 0;
7614 
7615 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
7616 					    bio->io_path->qpair->qpair,
7617 					    lba, lba_count,
7618 					    bdev_nvme_no_pi_readv_done, bio, 0,
7619 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7620 					    md, 0, 0);
7621 
7622 	if (rc != 0 && rc != -ENOMEM) {
7623 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
7624 	}
7625 	return rc;
7626 }
7627 
7628 static int
7629 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7630 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7631 		struct spdk_memory_domain *domain, void *domain_ctx,
7632 		struct spdk_accel_sequence *seq)
7633 {
7634 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7635 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7636 	int rc;
7637 
7638 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7639 		      lba_count, lba);
7640 
7641 	bio->iovs = iov;
7642 	bio->iovcnt = iovcnt;
7643 	bio->iovpos = 0;
7644 	bio->iov_offset = 0;
7645 
7646 	if (domain != NULL || seq != NULL) {
7647 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7648 		bio->ext_opts.memory_domain = domain;
7649 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7650 		bio->ext_opts.io_flags = flags;
7651 		bio->ext_opts.metadata = md;
7652 		bio->ext_opts.accel_sequence = seq;
7653 
7654 		if (iovcnt == 1) {
7655 			rc = spdk_nvme_ns_cmd_read_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_readv_done,
7656 						       bio, &bio->ext_opts);
7657 		} else {
7658 			rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
7659 							bdev_nvme_readv_done, bio,
7660 							bdev_nvme_queued_reset_sgl,
7661 							bdev_nvme_queued_next_sge,
7662 							&bio->ext_opts);
7663 		}
7664 	} else if (iovcnt == 1) {
7665 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base,
7666 						   md, lba, lba_count, bdev_nvme_readv_done,
7667 						   bio, flags, 0, 0);
7668 	} else {
7669 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
7670 						    bdev_nvme_readv_done, bio, flags,
7671 						    bdev_nvme_queued_reset_sgl,
7672 						    bdev_nvme_queued_next_sge, md, 0, 0);
7673 	}
7674 
7675 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
7676 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
7677 	}
7678 	return rc;
7679 }
7680 
7681 static int
7682 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7683 		 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7684 		 struct spdk_memory_domain *domain, void *domain_ctx,
7685 		 struct spdk_accel_sequence *seq)
7686 {
7687 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7688 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7689 	int rc;
7690 
7691 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7692 		      lba_count, lba);
7693 
7694 	bio->iovs = iov;
7695 	bio->iovcnt = iovcnt;
7696 	bio->iovpos = 0;
7697 	bio->iov_offset = 0;
7698 
7699 	if (domain != NULL || seq != NULL) {
7700 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7701 		bio->ext_opts.memory_domain = domain;
7702 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7703 		bio->ext_opts.io_flags = flags;
7704 		bio->ext_opts.metadata = md;
7705 		bio->ext_opts.accel_sequence = seq;
7706 
7707 		if (iovcnt == 1) {
7708 			rc = spdk_nvme_ns_cmd_write_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_writev_done,
7709 							bio, &bio->ext_opts);
7710 		} else {
7711 			rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
7712 							 bdev_nvme_writev_done, bio,
7713 							 bdev_nvme_queued_reset_sgl,
7714 							 bdev_nvme_queued_next_sge,
7715 							 &bio->ext_opts);
7716 		}
7717 	} else if (iovcnt == 1) {
7718 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base,
7719 						    md, lba, lba_count, bdev_nvme_writev_done,
7720 						    bio, flags, 0, 0);
7721 	} else {
7722 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7723 						     bdev_nvme_writev_done, bio, flags,
7724 						     bdev_nvme_queued_reset_sgl,
7725 						     bdev_nvme_queued_next_sge, md, 0, 0);
7726 	}
7727 
7728 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
7729 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
7730 	}
7731 	return rc;
7732 }
7733 
7734 static int
7735 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7736 		       void *md, uint64_t lba_count, uint64_t zslba,
7737 		       uint32_t flags)
7738 {
7739 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7740 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7741 	int rc;
7742 
7743 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
7744 		      lba_count, zslba);
7745 
7746 	bio->iovs = iov;
7747 	bio->iovcnt = iovcnt;
7748 	bio->iovpos = 0;
7749 	bio->iov_offset = 0;
7750 
7751 	if (iovcnt == 1) {
7752 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
7753 						       lba_count,
7754 						       bdev_nvme_zone_appendv_done, bio,
7755 						       flags,
7756 						       0, 0);
7757 	} else {
7758 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
7759 							bdev_nvme_zone_appendv_done, bio, flags,
7760 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7761 							md, 0, 0);
7762 	}
7763 
7764 	if (rc != 0 && rc != -ENOMEM) {
7765 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
7766 	}
7767 	return rc;
7768 }
7769 
7770 static int
7771 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7772 		   void *md, uint64_t lba_count, uint64_t lba,
7773 		   uint32_t flags)
7774 {
7775 	int rc;
7776 
7777 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7778 		      lba_count, lba);
7779 
7780 	bio->iovs = iov;
7781 	bio->iovcnt = iovcnt;
7782 	bio->iovpos = 0;
7783 	bio->iov_offset = 0;
7784 
7785 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
7786 					       bio->io_path->qpair->qpair,
7787 					       lba, lba_count,
7788 					       bdev_nvme_comparev_done, bio, flags,
7789 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7790 					       md, 0, 0);
7791 
7792 	if (rc != 0 && rc != -ENOMEM) {
7793 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
7794 	}
7795 	return rc;
7796 }
7797 
7798 static int
7799 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
7800 			      struct iovec *write_iov, int write_iovcnt,
7801 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
7802 {
7803 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7804 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7805 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7806 	int rc;
7807 
7808 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7809 		      lba_count, lba);
7810 
7811 	bio->iovs = cmp_iov;
7812 	bio->iovcnt = cmp_iovcnt;
7813 	bio->iovpos = 0;
7814 	bio->iov_offset = 0;
7815 	bio->fused_iovs = write_iov;
7816 	bio->fused_iovcnt = write_iovcnt;
7817 	bio->fused_iovpos = 0;
7818 	bio->fused_iov_offset = 0;
7819 
7820 	if (bdev_io->num_retries == 0) {
7821 		bio->first_fused_submitted = false;
7822 		bio->first_fused_completed = false;
7823 	}
7824 
7825 	if (!bio->first_fused_submitted) {
7826 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7827 		memset(&bio->cpl, 0, sizeof(bio->cpl));
7828 
7829 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
7830 						       bdev_nvme_comparev_and_writev_done, bio, flags,
7831 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
7832 		if (rc == 0) {
7833 			bio->first_fused_submitted = true;
7834 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7835 		} else {
7836 			if (rc != -ENOMEM) {
7837 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
7838 			}
7839 			return rc;
7840 		}
7841 	}
7842 
7843 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
7844 
7845 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7846 					     bdev_nvme_comparev_and_writev_done, bio, flags,
7847 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
7848 	if (rc != 0 && rc != -ENOMEM) {
7849 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
7850 		rc = 0;
7851 	}
7852 
7853 	return rc;
7854 }
7855 
7856 static int
7857 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
7858 {
7859 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
7860 	struct spdk_nvme_dsm_range *range;
7861 	uint64_t offset, remaining;
7862 	uint64_t num_ranges_u64;
7863 	uint16_t num_ranges;
7864 	int rc;
7865 
7866 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
7867 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7868 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
7869 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
7870 		return -EINVAL;
7871 	}
7872 	num_ranges = (uint16_t)num_ranges_u64;
7873 
7874 	offset = offset_blocks;
7875 	remaining = num_blocks;
7876 	range = &dsm_ranges[0];
7877 
7878 	/* Fill max-size ranges until the remaining blocks fit into one range */
7879 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
7880 		range->attributes.raw = 0;
7881 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7882 		range->starting_lba = offset;
7883 
7884 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7885 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7886 		range++;
7887 	}
7888 
7889 	/* Final range describes the remaining blocks */
7890 	range->attributes.raw = 0;
7891 	range->length = remaining;
7892 	range->starting_lba = offset;
7893 
7894 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
7895 			bio->io_path->qpair->qpair,
7896 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
7897 			dsm_ranges, num_ranges,
7898 			bdev_nvme_queued_done, bio);
7899 
7900 	return rc;
7901 }
7902 
7903 static int
7904 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
7905 {
7906 	if (num_blocks > UINT16_MAX + 1) {
7907 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
7908 		return -EINVAL;
7909 	}
7910 
7911 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
7912 					     bio->io_path->qpair->qpair,
7913 					     offset_blocks, num_blocks,
7914 					     bdev_nvme_queued_done, bio,
7915 					     0);
7916 }
7917 
7918 static int
7919 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
7920 			struct spdk_bdev_zone_info *info)
7921 {
7922 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7923 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7924 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7925 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7926 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
7927 
7928 	if (zone_id % zone_size != 0) {
7929 		return -EINVAL;
7930 	}
7931 
7932 	if (num_zones > total_zones || !num_zones) {
7933 		return -EINVAL;
7934 	}
7935 
7936 	assert(!bio->zone_report_buf);
7937 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
7938 	if (!bio->zone_report_buf) {
7939 		return -ENOMEM;
7940 	}
7941 
7942 	bio->handled_zones = 0;
7943 
7944 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
7945 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
7946 					  bdev_nvme_get_zone_info_done, bio);
7947 }
7948 
7949 static int
7950 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
7951 			  enum spdk_bdev_zone_action action)
7952 {
7953 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7954 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7955 
7956 	switch (action) {
7957 	case SPDK_BDEV_ZONE_CLOSE:
7958 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
7959 						bdev_nvme_zone_management_done, bio);
7960 	case SPDK_BDEV_ZONE_FINISH:
7961 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
7962 						 bdev_nvme_zone_management_done, bio);
7963 	case SPDK_BDEV_ZONE_OPEN:
7964 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
7965 					       bdev_nvme_zone_management_done, bio);
7966 	case SPDK_BDEV_ZONE_RESET:
7967 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
7968 						bdev_nvme_zone_management_done, bio);
7969 	case SPDK_BDEV_ZONE_OFFLINE:
7970 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
7971 						  bdev_nvme_zone_management_done, bio);
7972 	default:
7973 		return -EINVAL;
7974 	}
7975 }
7976 
7977 static void
7978 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
7979 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
7980 {
7981 	struct nvme_io_path *io_path;
7982 	struct nvme_ctrlr *nvme_ctrlr;
7983 	uint32_t max_xfer_size;
7984 	int rc = -ENXIO;
7985 
7986 	/* Choose the first ctrlr which is not failed. */
7987 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
7988 		nvme_ctrlr = io_path->qpair->ctrlr;
7989 
7990 		/* We should skip any unavailable nvme_ctrlr rather than checking
7991 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
7992 		 */
7993 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
7994 			continue;
7995 		}
7996 
7997 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
7998 
7999 		if (nbytes > max_xfer_size) {
8000 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8001 			rc = -EINVAL;
8002 			goto err;
8003 		}
8004 
8005 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
8006 						   bdev_nvme_admin_passthru_done, bio);
8007 		if (rc == 0) {
8008 			return;
8009 		}
8010 	}
8011 
8012 err:
8013 	bdev_nvme_admin_complete(bio, rc);
8014 }
8015 
8016 static int
8017 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8018 		      void *buf, size_t nbytes)
8019 {
8020 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8021 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8022 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8023 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8024 
8025 	if (nbytes > max_xfer_size) {
8026 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8027 		return -EINVAL;
8028 	}
8029 
8030 	/*
8031 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8032 	 * so fill it out automatically.
8033 	 */
8034 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8035 
8036 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
8037 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
8038 }
8039 
8040 static int
8041 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8042 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
8043 {
8044 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8045 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8046 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8047 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8048 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8049 
8050 	if (nbytes > max_xfer_size) {
8051 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8052 		return -EINVAL;
8053 	}
8054 
8055 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8056 		SPDK_ERRLOG("invalid meta data buffer size\n");
8057 		return -EINVAL;
8058 	}
8059 
8060 	/*
8061 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8062 	 * so fill it out automatically.
8063 	 */
8064 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8065 
8066 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
8067 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
8068 }
8069 
8070 static int
8071 bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio,
8072 			  struct spdk_nvme_cmd *cmd, struct iovec *iov, int iovcnt,
8073 			  size_t nbytes, void *md_buf, size_t md_len)
8074 {
8075 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8076 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8077 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8078 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8079 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8080 
8081 	bio->iovs = iov;
8082 	bio->iovcnt = iovcnt;
8083 	bio->iovpos = 0;
8084 	bio->iov_offset = 0;
8085 
8086 	if (nbytes > max_xfer_size) {
8087 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8088 		return -EINVAL;
8089 	}
8090 
8091 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8092 		SPDK_ERRLOG("invalid meta data buffer size\n");
8093 		return -EINVAL;
8094 	}
8095 
8096 	/*
8097 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands
8098 	 * require a nsid, so fill it out automatically.
8099 	 */
8100 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8101 
8102 	return spdk_nvme_ctrlr_cmd_iov_raw_with_md(
8103 		       ctrlr, qpair, cmd, (uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio,
8104 		       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge);
8105 }
8106 
8107 static void
8108 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8109 		struct nvme_bdev_io *bio_to_abort)
8110 {
8111 	struct nvme_io_path *io_path;
8112 	int rc = 0;
8113 
8114 	rc = bdev_nvme_abort_retry_io(nbdev_ch, bio_to_abort);
8115 	if (rc == 0) {
8116 		bdev_nvme_admin_complete(bio, 0);
8117 		return;
8118 	}
8119 
8120 	io_path = bio_to_abort->io_path;
8121 	if (io_path != NULL) {
8122 		rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8123 						   io_path->qpair->qpair,
8124 						   bio_to_abort,
8125 						   bdev_nvme_abort_done, bio);
8126 	} else {
8127 		STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8128 			rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8129 							   NULL,
8130 							   bio_to_abort,
8131 							   bdev_nvme_abort_done, bio);
8132 
8133 			if (rc != -ENOENT) {
8134 				break;
8135 			}
8136 		}
8137 	}
8138 
8139 	if (rc != 0) {
8140 		/* If no command was found or there was any error, complete the abort
8141 		 * request with failure.
8142 		 */
8143 		bdev_nvme_admin_complete(bio, rc);
8144 	}
8145 }
8146 
8147 static int
8148 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks,
8149 	       uint64_t num_blocks)
8150 {
8151 	struct spdk_nvme_scc_source_range range = {
8152 		.slba = src_offset_blocks,
8153 		.nlb = num_blocks - 1
8154 	};
8155 
8156 	return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns,
8157 				     bio->io_path->qpair->qpair,
8158 				     &range, 1, dst_offset_blocks,
8159 				     bdev_nvme_queued_done, bio);
8160 }
8161 
8162 static void
8163 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
8164 {
8165 	const char *action;
8166 	uint32_t i;
8167 
8168 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
8169 		action = "reset";
8170 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
8171 		action = "abort";
8172 	} else {
8173 		action = "none";
8174 	}
8175 
8176 	spdk_json_write_object_begin(w);
8177 
8178 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
8179 
8180 	spdk_json_write_named_object_begin(w, "params");
8181 	spdk_json_write_named_string(w, "action_on_timeout", action);
8182 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
8183 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
8184 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
8185 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
8186 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
8187 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
8188 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
8189 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
8190 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
8191 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
8192 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
8193 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
8194 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
8195 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
8196 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
8197 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
8198 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
8199 	spdk_json_write_named_bool(w, "disable_auto_failback", g_opts.disable_auto_failback);
8200 	spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids);
8201 	spdk_json_write_named_uint8(w, "transport_tos", g_opts.transport_tos);
8202 	spdk_json_write_named_bool(w, "nvme_error_stat", g_opts.nvme_error_stat);
8203 	spdk_json_write_named_uint32(w, "rdma_srq_size", g_opts.rdma_srq_size);
8204 	spdk_json_write_named_bool(w, "io_path_stat", g_opts.io_path_stat);
8205 	spdk_json_write_named_bool(w, "allow_accel_sequence", g_opts.allow_accel_sequence);
8206 	spdk_json_write_named_uint32(w, "rdma_max_cq_size", g_opts.rdma_max_cq_size);
8207 	spdk_json_write_named_uint16(w, "rdma_cm_event_timeout_ms", g_opts.rdma_cm_event_timeout_ms);
8208 	spdk_json_write_named_array_begin(w, "dhchap_digests");
8209 	for (i = 0; i < 32; ++i) {
8210 		if (g_opts.dhchap_digests & SPDK_BIT(i)) {
8211 			spdk_json_write_string(w, spdk_nvme_dhchap_get_digest_name(i));
8212 		}
8213 	}
8214 	spdk_json_write_array_end(w);
8215 	spdk_json_write_named_array_begin(w, "dhchap_dhgroups");
8216 	for (i = 0; i < 32; ++i) {
8217 		if (g_opts.dhchap_dhgroups & SPDK_BIT(i)) {
8218 			spdk_json_write_string(w, spdk_nvme_dhchap_get_dhgroup_name(i));
8219 		}
8220 	}
8221 
8222 	spdk_json_write_array_end(w);
8223 	spdk_json_write_object_end(w);
8224 
8225 	spdk_json_write_object_end(w);
8226 }
8227 
8228 static void
8229 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
8230 {
8231 	struct spdk_nvme_transport_id trid;
8232 
8233 	spdk_json_write_object_begin(w);
8234 
8235 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
8236 
8237 	spdk_json_write_named_object_begin(w, "params");
8238 	spdk_json_write_named_string(w, "name", ctx->name);
8239 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
8240 
8241 	trid = ctx->trid;
8242 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
8243 	nvme_bdev_dump_trid_json(&trid, w);
8244 
8245 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
8246 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
8247 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
8248 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8249 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
8250 	spdk_json_write_object_end(w);
8251 
8252 	spdk_json_write_object_end(w);
8253 }
8254 
8255 #ifdef SPDK_CONFIG_NVME_CUSE
8256 static void
8257 nvme_ctrlr_cuse_config_json(struct spdk_json_write_ctx *w,
8258 			    struct nvme_ctrlr *nvme_ctrlr)
8259 {
8260 	size_t cuse_name_size = 128;
8261 	char cuse_name[cuse_name_size];
8262 
8263 	if (spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr,
8264 					  cuse_name, &cuse_name_size) != 0) {
8265 		return;
8266 	}
8267 
8268 	spdk_json_write_object_begin(w);
8269 
8270 	spdk_json_write_named_string(w, "method", "bdev_nvme_cuse_register");
8271 
8272 	spdk_json_write_named_object_begin(w, "params");
8273 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8274 	spdk_json_write_object_end(w);
8275 
8276 	spdk_json_write_object_end(w);
8277 }
8278 #endif
8279 
8280 static void
8281 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
8282 		       struct nvme_ctrlr *nvme_ctrlr)
8283 {
8284 	struct spdk_nvme_transport_id	*trid;
8285 	const struct spdk_nvme_ctrlr_opts *opts;
8286 
8287 	if (nvme_ctrlr->opts.from_discovery_service) {
8288 		/* Do not emit an RPC for this - it will be implicitly
8289 		 * covered by a separate bdev_nvme_start_discovery or
8290 		 * bdev_nvme_start_mdns_discovery RPC.
8291 		 */
8292 		return;
8293 	}
8294 
8295 	trid = &nvme_ctrlr->active_path_id->trid;
8296 
8297 	spdk_json_write_object_begin(w);
8298 
8299 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
8300 
8301 	spdk_json_write_named_object_begin(w, "params");
8302 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8303 	nvme_bdev_dump_trid_json(trid, w);
8304 	spdk_json_write_named_bool(w, "prchk_reftag",
8305 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
8306 	spdk_json_write_named_bool(w, "prchk_guard",
8307 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
8308 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
8309 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
8310 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8311 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
8312 	if (nvme_ctrlr->psk != NULL) {
8313 		spdk_json_write_named_string(w, "psk", spdk_key_get_name(nvme_ctrlr->psk));
8314 	} else if (nvme_ctrlr->opts.psk[0] != '\0') {
8315 		spdk_json_write_named_string(w, "psk", nvme_ctrlr->opts.psk);
8316 	}
8317 
8318 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
8319 	spdk_json_write_named_string(w, "hostnqn", opts->hostnqn);
8320 	spdk_json_write_named_bool(w, "hdgst", opts->header_digest);
8321 	spdk_json_write_named_bool(w, "ddgst", opts->data_digest);
8322 	if (opts->src_addr[0] != '\0') {
8323 		spdk_json_write_named_string(w, "hostaddr", opts->src_addr);
8324 	}
8325 	if (opts->src_svcid[0] != '\0') {
8326 		spdk_json_write_named_string(w, "hostsvcid", opts->src_svcid);
8327 	}
8328 
8329 	spdk_json_write_object_end(w);
8330 
8331 	spdk_json_write_object_end(w);
8332 }
8333 
8334 static void
8335 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
8336 {
8337 	spdk_json_write_object_begin(w);
8338 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
8339 
8340 	spdk_json_write_named_object_begin(w, "params");
8341 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
8342 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
8343 	spdk_json_write_object_end(w);
8344 
8345 	spdk_json_write_object_end(w);
8346 }
8347 
8348 static int
8349 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
8350 {
8351 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
8352 	struct nvme_ctrlr	*nvme_ctrlr;
8353 	struct discovery_ctx	*ctx;
8354 
8355 	bdev_nvme_opts_config_json(w);
8356 
8357 	pthread_mutex_lock(&g_bdev_nvme_mutex);
8358 
8359 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
8360 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
8361 			nvme_ctrlr_config_json(w, nvme_ctrlr);
8362 
8363 #ifdef SPDK_CONFIG_NVME_CUSE
8364 			nvme_ctrlr_cuse_config_json(w, nvme_ctrlr);
8365 #endif
8366 		}
8367 	}
8368 
8369 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8370 		if (!ctx->from_mdns_discovery_service) {
8371 			bdev_nvme_discovery_config_json(w, ctx);
8372 		}
8373 	}
8374 
8375 	bdev_nvme_mdns_discovery_config_json(w);
8376 
8377 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
8378 	 * before enabling hotplug poller.
8379 	 */
8380 	bdev_nvme_hotplug_config_json(w);
8381 
8382 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
8383 	return 0;
8384 }
8385 
8386 struct spdk_nvme_ctrlr *
8387 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
8388 {
8389 	struct nvme_bdev *nbdev;
8390 	struct nvme_ns *nvme_ns;
8391 
8392 	if (!bdev || bdev->module != &nvme_if) {
8393 		return NULL;
8394 	}
8395 
8396 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
8397 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
8398 	assert(nvme_ns != NULL);
8399 
8400 	return nvme_ns->ctrlr->ctrlr;
8401 }
8402 
8403 void
8404 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
8405 {
8406 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
8407 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
8408 	const struct spdk_nvme_ctrlr_data *cdata;
8409 	const struct spdk_nvme_transport_id *trid;
8410 	const char *adrfam_str;
8411 
8412 	spdk_json_write_object_begin(w);
8413 
8414 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
8415 
8416 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
8417 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
8418 
8419 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
8420 	spdk_json_write_named_bool(w, "current", io_path->nbdev_ch != NULL &&
8421 				   io_path == io_path->nbdev_ch->current_io_path);
8422 	spdk_json_write_named_bool(w, "connected", nvme_qpair_is_connected(io_path->qpair));
8423 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
8424 
8425 	spdk_json_write_named_object_begin(w, "transport");
8426 	spdk_json_write_named_string(w, "trtype", trid->trstring);
8427 	spdk_json_write_named_string(w, "traddr", trid->traddr);
8428 	if (trid->trsvcid[0] != '\0') {
8429 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
8430 	}
8431 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
8432 	if (adrfam_str) {
8433 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
8434 	}
8435 	spdk_json_write_object_end(w);
8436 
8437 	spdk_json_write_object_end(w);
8438 }
8439 
8440 void
8441 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
8442 {
8443 	struct discovery_ctx *ctx;
8444 	struct discovery_entry_ctx *entry_ctx;
8445 
8446 	spdk_json_write_array_begin(w);
8447 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8448 		spdk_json_write_object_begin(w);
8449 		spdk_json_write_named_string(w, "name", ctx->name);
8450 
8451 		spdk_json_write_named_object_begin(w, "trid");
8452 		nvme_bdev_dump_trid_json(&ctx->trid, w);
8453 		spdk_json_write_object_end(w);
8454 
8455 		spdk_json_write_named_array_begin(w, "referrals");
8456 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
8457 			spdk_json_write_object_begin(w);
8458 			spdk_json_write_named_object_begin(w, "trid");
8459 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
8460 			spdk_json_write_object_end(w);
8461 			spdk_json_write_object_end(w);
8462 		}
8463 		spdk_json_write_array_end(w);
8464 
8465 		spdk_json_write_object_end(w);
8466 	}
8467 	spdk_json_write_array_end(w);
8468 }
8469 
8470 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
8471 
8472 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
8473 {
8474 	struct spdk_trace_tpoint_opts opts[] = {
8475 		{
8476 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
8477 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 1,
8478 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8479 		},
8480 		{
8481 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
8482 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 0,
8483 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8484 		}
8485 	};
8486 
8487 
8488 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
8489 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
8490 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8491 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8492 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8493 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8494 }
8495