xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision 92d1e663afe5048334744edf8d98e5b9a54a794a)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  *   Copyright (c) 2022 Dell Inc, or its subsidiaries. All rights reserved.
6  */
7 
8 #include "spdk/stdinc.h"
9 
10 #include "bdev_nvme.h"
11 
12 #include "spdk/accel.h"
13 #include "spdk/config.h"
14 #include "spdk/endian.h"
15 #include "spdk/bdev.h"
16 #include "spdk/json.h"
17 #include "spdk/keyring.h"
18 #include "spdk/likely.h"
19 #include "spdk/nvme.h"
20 #include "spdk/nvme_ocssd.h"
21 #include "spdk/nvme_zns.h"
22 #include "spdk/opal.h"
23 #include "spdk/thread.h"
24 #include "spdk/trace.h"
25 #include "spdk/string.h"
26 #include "spdk/util.h"
27 #include "spdk/uuid.h"
28 
29 #include "spdk/bdev_module.h"
30 #include "spdk/log.h"
31 
32 #include "spdk_internal/usdt.h"
33 #include "spdk_internal/trace_defs.h"
34 
35 #define CTRLR_STRING(nvme_ctrlr) \
36 	(spdk_nvme_trtype_is_fabrics(nvme_ctrlr->active_path_id->trid.trtype) ? \
37 	nvme_ctrlr->active_path_id->trid.subnqn : nvme_ctrlr->active_path_id->trid.traddr)
38 
39 #define CTRLR_ID(nvme_ctrlr)	(spdk_nvme_ctrlr_get_id(nvme_ctrlr->ctrlr))
40 
41 #define NVME_CTRLR_ERRLOG(ctrlr, format, ...) \
42 	SPDK_ERRLOG("[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__);
43 
44 #define NVME_CTRLR_WARNLOG(ctrlr, format, ...) \
45 	SPDK_WARNLOG("[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__);
46 
47 #define NVME_CTRLR_NOTICELOG(ctrlr, format, ...) \
48 	SPDK_NOTICELOG("[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__);
49 
50 #define NVME_CTRLR_INFOLOG(ctrlr, format, ...) \
51 	SPDK_INFOLOG(bdev_nvme, "[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__);
52 
53 #ifdef DEBUG
54 #define NVME_CTRLR_DEBUGLOG(ctrlr, format, ...) \
55 	SPDK_DEBUGLOG(bdev_nvme, "[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__);
56 #else
57 #define NVME_CTRLR_DEBUGLOG(ctrlr, ...) do { } while (0)
58 #endif
59 
60 #define BDEV_STRING(nbdev) (nbdev->disk.name)
61 
62 #define NVME_BDEV_ERRLOG(nbdev, format, ...) \
63 	SPDK_ERRLOG("[%s] " format, BDEV_STRING(nbdev), ##__VA_ARGS__);
64 
65 #define NVME_BDEV_WARNLOG(nbdev, format, ...) \
66 	SPDK_WARNLOG("[%s] " format, BDEV_STRING(nbdev), ##__VA_ARGS__);
67 
68 #define NVME_BDEV_NOTICELOG(nbdev, format, ...) \
69 	SPDK_NOTICELOG("[%s] " format, BDEV_STRING(nbdev), ##__VA_ARGS__);
70 
71 #define NVME_BDEV_INFOLOG(nbdev, format, ...) \
72 	SPDK_INFOLOG(bdev_nvme, "[%s] " format, BDEV_STRING(nbdev), ##__VA_ARGS__);
73 
74 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
75 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
76 
77 #define NSID_STR_LEN 10
78 
79 #define SPDK_CONTROLLER_NAME_MAX 512
80 
81 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
82 
83 struct nvme_bdev_io {
84 	/** array of iovecs to transfer. */
85 	struct iovec *iovs;
86 
87 	/** Number of iovecs in iovs array. */
88 	int iovcnt;
89 
90 	/** Current iovec position. */
91 	int iovpos;
92 
93 	/** Offset in current iovec. */
94 	uint32_t iov_offset;
95 
96 	/** Offset in current iovec. */
97 	uint32_t fused_iov_offset;
98 
99 	/** array of iovecs to transfer. */
100 	struct iovec *fused_iovs;
101 
102 	/** Number of iovecs in iovs array. */
103 	int fused_iovcnt;
104 
105 	/** Current iovec position. */
106 	int fused_iovpos;
107 
108 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
109 	 *  being reset in a reset I/O.
110 	 */
111 	struct nvme_io_path *io_path;
112 
113 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
114 	struct spdk_nvme_cpl cpl;
115 
116 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
117 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
118 
119 	/** Keeps track if first of fused commands was submitted */
120 	bool first_fused_submitted;
121 
122 	/** Keeps track if first of fused commands was completed */
123 	bool first_fused_completed;
124 
125 	/* How many times the current I/O was retried. */
126 	int32_t retry_count;
127 
128 	/** Expiration value in ticks to retry the current I/O. */
129 	uint64_t retry_ticks;
130 
131 	/** Temporary pointer to zone report buffer */
132 	struct spdk_nvme_zns_zone_report *zone_report_buf;
133 
134 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
135 	uint64_t handled_zones;
136 
137 	/* Current tsc at submit time. */
138 	uint64_t submit_tsc;
139 
140 	/* Used to put nvme_bdev_io into the list */
141 	TAILQ_ENTRY(nvme_bdev_io) retry_link;
142 };
143 
144 struct nvme_probe_skip_entry {
145 	struct spdk_nvme_transport_id		trid;
146 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
147 };
148 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
149 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
150 			g_skipped_nvme_ctrlrs);
151 
152 #define BDEV_NVME_DEFAULT_DIGESTS (SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA256) | \
153 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA384) | \
154 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA512))
155 
156 #define BDEV_NVME_DEFAULT_DHGROUPS (SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_NULL) | \
157 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_2048) | \
158 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_3072) | \
159 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_4096) | \
160 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_6144) | \
161 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_8192))
162 
163 static struct spdk_bdev_nvme_opts g_opts = {
164 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
165 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
166 	.timeout_us = 0,
167 	.timeout_admin_us = 0,
168 	.transport_retry_count = 4,
169 	.arbitration_burst = 0,
170 	.low_priority_weight = 0,
171 	.medium_priority_weight = 0,
172 	.high_priority_weight = 0,
173 	.io_queue_requests = 0,
174 	.nvme_adminq_poll_period_us = 10000ULL,
175 	.nvme_ioq_poll_period_us = 0,
176 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
177 	.bdev_retry_count = 3,
178 	.ctrlr_loss_timeout_sec = 0,
179 	.reconnect_delay_sec = 0,
180 	.fast_io_fail_timeout_sec = 0,
181 	.transport_ack_timeout = 0,
182 	.disable_auto_failback = false,
183 	.generate_uuids = false,
184 	.transport_tos = 0,
185 	.nvme_error_stat = false,
186 	.io_path_stat = false,
187 	.allow_accel_sequence = false,
188 	.dhchap_digests = BDEV_NVME_DEFAULT_DIGESTS,
189 	.dhchap_dhgroups = BDEV_NVME_DEFAULT_DHGROUPS,
190 };
191 
192 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
193 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
194 
195 static int g_hot_insert_nvme_controller_index = 0;
196 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
197 static bool g_nvme_hotplug_enabled = false;
198 struct spdk_thread *g_bdev_nvme_init_thread;
199 static struct spdk_poller *g_hotplug_poller;
200 static struct spdk_poller *g_hotplug_probe_poller;
201 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
202 
203 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
204 		struct nvme_async_probe_ctx *ctx);
205 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
206 		struct nvme_async_probe_ctx *ctx);
207 static int bdev_nvme_library_init(void);
208 static void bdev_nvme_library_fini(void);
209 static void _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch,
210 				      struct spdk_bdev_io *bdev_io);
211 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
212 				     struct spdk_bdev_io *bdev_io);
213 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
214 			   void *md, uint64_t lba_count, uint64_t lba,
215 			   uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
216 			   struct spdk_accel_sequence *seq);
217 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
218 				 void *md, uint64_t lba_count, uint64_t lba);
219 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
220 			    void *md, uint64_t lba_count, uint64_t lba,
221 			    uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
222 			    struct spdk_accel_sequence *seq,
223 			    union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13);
224 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
225 				  void *md, uint64_t lba_count,
226 				  uint64_t zslba, uint32_t flags);
227 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
228 			      void *md, uint64_t lba_count, uint64_t lba,
229 			      uint32_t flags);
230 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
231 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
232 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
233 		uint32_t flags);
234 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
235 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
236 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
237 				     enum spdk_bdev_zone_action action);
238 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
239 				     struct nvme_bdev_io *bio,
240 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
241 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
242 				 void *buf, size_t nbytes);
243 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
244 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
245 static int bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
246 				     struct iovec *iov, int iovcnt, size_t nbytes,
247 				     void *md_buf, size_t md_len);
248 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
249 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
250 static void bdev_nvme_reset_io(struct nvme_bdev *nbdev, struct nvme_bdev_io *bio);
251 static int bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
252 static int bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
253 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
254 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
255 
256 static struct nvme_ns *nvme_ns_alloc(void);
257 static void nvme_ns_free(struct nvme_ns *ns);
258 
259 static int
260 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
261 {
262 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
263 }
264 
265 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
266 
267 struct spdk_nvme_qpair *
268 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
269 {
270 	struct nvme_ctrlr_channel *ctrlr_ch;
271 
272 	assert(ctrlr_io_ch != NULL);
273 
274 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
275 
276 	return ctrlr_ch->qpair->qpair;
277 }
278 
279 static int
280 bdev_nvme_get_ctx_size(void)
281 {
282 	return sizeof(struct nvme_bdev_io);
283 }
284 
285 static struct spdk_bdev_module nvme_if = {
286 	.name = "nvme",
287 	.async_fini = true,
288 	.module_init = bdev_nvme_library_init,
289 	.module_fini = bdev_nvme_library_fini,
290 	.config_json = bdev_nvme_config_json,
291 	.get_ctx_size = bdev_nvme_get_ctx_size,
292 
293 };
294 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
295 
296 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
297 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
298 bool g_bdev_nvme_module_finish;
299 
300 struct nvme_bdev_ctrlr *
301 nvme_bdev_ctrlr_get_by_name(const char *name)
302 {
303 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
304 
305 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
306 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
307 			break;
308 		}
309 	}
310 
311 	return nbdev_ctrlr;
312 }
313 
314 static struct nvme_ctrlr *
315 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
316 			  const struct spdk_nvme_transport_id *trid, const char *hostnqn)
317 {
318 	const struct spdk_nvme_ctrlr_opts *opts;
319 	struct nvme_ctrlr *nvme_ctrlr;
320 
321 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
322 		opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
323 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0 &&
324 		    strcmp(hostnqn, opts->hostnqn) == 0) {
325 			break;
326 		}
327 	}
328 
329 	return nvme_ctrlr;
330 }
331 
332 struct nvme_ctrlr *
333 nvme_bdev_ctrlr_get_ctrlr_by_id(struct nvme_bdev_ctrlr *nbdev_ctrlr,
334 				uint16_t cntlid)
335 {
336 	struct nvme_ctrlr *nvme_ctrlr;
337 	const struct spdk_nvme_ctrlr_data *cdata;
338 
339 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
340 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
341 		if (cdata->cntlid == cntlid) {
342 			break;
343 		}
344 	}
345 
346 	return nvme_ctrlr;
347 }
348 
349 static struct nvme_bdev *
350 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
351 {
352 	struct nvme_bdev *nbdev;
353 
354 	pthread_mutex_lock(&g_bdev_nvme_mutex);
355 	TAILQ_FOREACH(nbdev, &nbdev_ctrlr->bdevs, tailq) {
356 		if (nbdev->nsid == nsid) {
357 			break;
358 		}
359 	}
360 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
361 
362 	return nbdev;
363 }
364 
365 struct nvme_ns *
366 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
367 {
368 	struct nvme_ns ns;
369 
370 	assert(nsid > 0);
371 
372 	ns.id = nsid;
373 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
374 }
375 
376 struct nvme_ns *
377 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
378 {
379 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
380 }
381 
382 struct nvme_ns *
383 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
384 {
385 	if (ns == NULL) {
386 		return NULL;
387 	}
388 
389 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
390 }
391 
392 static struct nvme_ctrlr *
393 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid, const char *hostnqn)
394 {
395 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
396 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
397 
398 	pthread_mutex_lock(&g_bdev_nvme_mutex);
399 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
400 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid, hostnqn);
401 		if (nvme_ctrlr != NULL) {
402 			break;
403 		}
404 	}
405 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
406 
407 	return nvme_ctrlr;
408 }
409 
410 struct nvme_ctrlr *
411 nvme_ctrlr_get_by_name(const char *name)
412 {
413 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
414 	struct nvme_ctrlr *nvme_ctrlr = NULL;
415 
416 	if (name == NULL) {
417 		return NULL;
418 	}
419 
420 	pthread_mutex_lock(&g_bdev_nvme_mutex);
421 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
422 	if (nbdev_ctrlr != NULL) {
423 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
424 	}
425 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
426 
427 	return nvme_ctrlr;
428 }
429 
430 void
431 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
432 {
433 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
434 
435 	pthread_mutex_lock(&g_bdev_nvme_mutex);
436 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
437 		fn(nbdev_ctrlr, ctx);
438 	}
439 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
440 }
441 
442 struct nvme_ctrlr_channel_iter {
443 	nvme_ctrlr_for_each_channel_msg fn;
444 	nvme_ctrlr_for_each_channel_done cpl;
445 	struct spdk_io_channel_iter *i;
446 	void *ctx;
447 };
448 
449 void
450 nvme_ctrlr_for_each_channel_continue(struct nvme_ctrlr_channel_iter *iter, int status)
451 {
452 	spdk_for_each_channel_continue(iter->i, status);
453 }
454 
455 static void
456 nvme_ctrlr_each_channel_msg(struct spdk_io_channel_iter *i)
457 {
458 	struct nvme_ctrlr_channel_iter *iter = spdk_io_channel_iter_get_ctx(i);
459 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
460 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
461 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
462 
463 	iter->i = i;
464 	iter->fn(iter, nvme_ctrlr, ctrlr_ch, iter->ctx);
465 }
466 
467 static void
468 nvme_ctrlr_each_channel_cpl(struct spdk_io_channel_iter *i, int status)
469 {
470 	struct nvme_ctrlr_channel_iter *iter = spdk_io_channel_iter_get_ctx(i);
471 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
472 
473 	iter->i = i;
474 	iter->cpl(nvme_ctrlr, iter->ctx, status);
475 
476 	free(iter);
477 }
478 
479 void
480 nvme_ctrlr_for_each_channel(struct nvme_ctrlr *nvme_ctrlr,
481 			    nvme_ctrlr_for_each_channel_msg fn, void *ctx,
482 			    nvme_ctrlr_for_each_channel_done cpl)
483 {
484 	struct nvme_ctrlr_channel_iter *iter;
485 
486 	assert(nvme_ctrlr != NULL && fn != NULL);
487 
488 	iter = calloc(1, sizeof(struct nvme_ctrlr_channel_iter));
489 	if (iter == NULL) {
490 		SPDK_ERRLOG("Unable to allocate iterator\n");
491 		assert(false);
492 		return;
493 	}
494 
495 	iter->fn = fn;
496 	iter->cpl = cpl;
497 	iter->ctx = ctx;
498 
499 	spdk_for_each_channel(nvme_ctrlr, nvme_ctrlr_each_channel_msg,
500 			      iter, nvme_ctrlr_each_channel_cpl);
501 }
502 
503 struct nvme_bdev_channel_iter {
504 	nvme_bdev_for_each_channel_msg fn;
505 	nvme_bdev_for_each_channel_done cpl;
506 	struct spdk_io_channel_iter *i;
507 	void *ctx;
508 };
509 
510 void
511 nvme_bdev_for_each_channel_continue(struct nvme_bdev_channel_iter *iter, int status)
512 {
513 	spdk_for_each_channel_continue(iter->i, status);
514 }
515 
516 static void
517 nvme_bdev_each_channel_msg(struct spdk_io_channel_iter *i)
518 {
519 	struct nvme_bdev_channel_iter *iter = spdk_io_channel_iter_get_ctx(i);
520 	struct nvme_bdev *nbdev = spdk_io_channel_iter_get_io_device(i);
521 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
522 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
523 
524 	iter->i = i;
525 	iter->fn(iter, nbdev, nbdev_ch, iter->ctx);
526 }
527 
528 static void
529 nvme_bdev_each_channel_cpl(struct spdk_io_channel_iter *i, int status)
530 {
531 	struct nvme_bdev_channel_iter *iter = spdk_io_channel_iter_get_ctx(i);
532 	struct nvme_bdev *nbdev = spdk_io_channel_iter_get_io_device(i);
533 
534 	iter->i = i;
535 	iter->cpl(nbdev, iter->ctx, status);
536 
537 	free(iter);
538 }
539 
540 void
541 nvme_bdev_for_each_channel(struct nvme_bdev *nbdev,
542 			   nvme_bdev_for_each_channel_msg fn, void *ctx,
543 			   nvme_bdev_for_each_channel_done cpl)
544 {
545 	struct nvme_bdev_channel_iter *iter;
546 
547 	assert(nbdev != NULL && fn != NULL);
548 
549 	iter = calloc(1, sizeof(struct nvme_bdev_channel_iter));
550 	if (iter == NULL) {
551 		SPDK_ERRLOG("Unable to allocate iterator\n");
552 		assert(false);
553 		return;
554 	}
555 
556 	iter->fn = fn;
557 	iter->cpl = cpl;
558 	iter->ctx = ctx;
559 
560 	spdk_for_each_channel(nbdev, nvme_bdev_each_channel_msg, iter,
561 			      nvme_bdev_each_channel_cpl);
562 }
563 
564 void
565 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
566 {
567 	const char *trtype_str;
568 	const char *adrfam_str;
569 
570 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
571 	if (trtype_str) {
572 		spdk_json_write_named_string(w, "trtype", trtype_str);
573 	}
574 
575 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
576 	if (adrfam_str) {
577 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
578 	}
579 
580 	if (trid->traddr[0] != '\0') {
581 		spdk_json_write_named_string(w, "traddr", trid->traddr);
582 	}
583 
584 	if (trid->trsvcid[0] != '\0') {
585 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
586 	}
587 
588 	if (trid->subnqn[0] != '\0') {
589 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
590 	}
591 }
592 
593 static void
594 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
595 		       struct nvme_ctrlr *nvme_ctrlr)
596 {
597 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
598 	pthread_mutex_lock(&g_bdev_nvme_mutex);
599 
600 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
601 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
602 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
603 
604 		return;
605 	}
606 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
607 
608 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
609 
610 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
611 
612 	free(nbdev_ctrlr->name);
613 	free(nbdev_ctrlr);
614 }
615 
616 static void
617 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
618 {
619 	struct nvme_path_id *path_id, *tmp_path;
620 	struct nvme_ns *ns, *tmp_ns;
621 
622 	free(nvme_ctrlr->copied_ana_desc);
623 	spdk_free(nvme_ctrlr->ana_log_page);
624 
625 	if (nvme_ctrlr->opal_dev) {
626 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
627 		nvme_ctrlr->opal_dev = NULL;
628 	}
629 
630 	if (nvme_ctrlr->nbdev_ctrlr) {
631 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
632 	}
633 
634 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
635 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
636 		nvme_ns_free(ns);
637 	}
638 
639 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
640 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
641 		free(path_id);
642 	}
643 
644 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
645 	spdk_keyring_put_key(nvme_ctrlr->psk);
646 	spdk_keyring_put_key(nvme_ctrlr->dhchap_key);
647 	spdk_keyring_put_key(nvme_ctrlr->dhchap_ctrlr_key);
648 	free(nvme_ctrlr);
649 
650 	pthread_mutex_lock(&g_bdev_nvme_mutex);
651 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
652 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
653 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
654 		spdk_bdev_module_fini_done();
655 		return;
656 	}
657 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
658 }
659 
660 static int
661 nvme_detach_poller(void *arg)
662 {
663 	struct nvme_ctrlr *nvme_ctrlr = arg;
664 	int rc;
665 
666 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
667 	if (rc != -EAGAIN) {
668 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
669 		_nvme_ctrlr_delete(nvme_ctrlr);
670 	}
671 
672 	return SPDK_POLLER_BUSY;
673 }
674 
675 static void
676 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
677 {
678 	int rc;
679 
680 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
681 
682 	if (spdk_interrupt_mode_is_enabled()) {
683 		spdk_interrupt_unregister(&nvme_ctrlr->intr);
684 	}
685 
686 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
687 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
688 
689 	/* If we got here, the reset/detach poller cannot be active */
690 	assert(nvme_ctrlr->reset_detach_poller == NULL);
691 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
692 					  nvme_ctrlr, 1000);
693 	if (nvme_ctrlr->reset_detach_poller == NULL) {
694 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to register detach poller\n");
695 		goto error;
696 	}
697 
698 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
699 	if (rc != 0) {
700 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to detach the NVMe controller\n");
701 		goto error;
702 	}
703 
704 	return;
705 error:
706 	/* We don't have a good way to handle errors here, so just do what we can and delete the
707 	 * controller without detaching the underlying NVMe device.
708 	 */
709 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
710 	_nvme_ctrlr_delete(nvme_ctrlr);
711 }
712 
713 static void
714 nvme_ctrlr_unregister_cb(void *io_device)
715 {
716 	struct nvme_ctrlr *nvme_ctrlr = io_device;
717 
718 	nvme_ctrlr_delete(nvme_ctrlr);
719 }
720 
721 static void
722 nvme_ctrlr_unregister(void *ctx)
723 {
724 	struct nvme_ctrlr *nvme_ctrlr = ctx;
725 
726 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
727 }
728 
729 static bool
730 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
731 {
732 	if (!nvme_ctrlr->destruct) {
733 		return false;
734 	}
735 
736 	if (nvme_ctrlr->ref > 0) {
737 		return false;
738 	}
739 
740 	if (nvme_ctrlr->resetting) {
741 		return false;
742 	}
743 
744 	if (nvme_ctrlr->ana_log_page_updating) {
745 		return false;
746 	}
747 
748 	if (nvme_ctrlr->io_path_cache_clearing) {
749 		return false;
750 	}
751 
752 	return true;
753 }
754 
755 static void
756 nvme_ctrlr_put_ref(struct nvme_ctrlr *nvme_ctrlr)
757 {
758 	pthread_mutex_lock(&nvme_ctrlr->mutex);
759 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
760 
761 	assert(nvme_ctrlr->ref > 0);
762 	nvme_ctrlr->ref--;
763 
764 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
765 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
766 		return;
767 	}
768 
769 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
770 
771 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
772 }
773 
774 static void
775 nvme_ctrlr_get_ref(struct nvme_ctrlr *nvme_ctrlr)
776 {
777 	pthread_mutex_lock(&nvme_ctrlr->mutex);
778 	nvme_ctrlr->ref++;
779 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
780 }
781 
782 static void
783 bdev_nvme_clear_current_io_path(struct nvme_bdev_channel *nbdev_ch)
784 {
785 	nbdev_ch->current_io_path = NULL;
786 	nbdev_ch->rr_counter = 0;
787 }
788 
789 static struct nvme_io_path *
790 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
791 {
792 	struct nvme_io_path *io_path;
793 
794 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
795 		if (io_path->nvme_ns == nvme_ns) {
796 			break;
797 		}
798 	}
799 
800 	return io_path;
801 }
802 
803 static struct nvme_io_path *
804 nvme_io_path_alloc(void)
805 {
806 	struct nvme_io_path *io_path;
807 
808 	io_path = calloc(1, sizeof(*io_path));
809 	if (io_path == NULL) {
810 		SPDK_ERRLOG("Failed to alloc io_path.\n");
811 		return NULL;
812 	}
813 
814 	if (g_opts.io_path_stat) {
815 		io_path->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
816 		if (io_path->stat == NULL) {
817 			free(io_path);
818 			SPDK_ERRLOG("Failed to alloc io_path stat.\n");
819 			return NULL;
820 		}
821 		spdk_bdev_reset_io_stat(io_path->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
822 	}
823 
824 	return io_path;
825 }
826 
827 static void
828 nvme_io_path_free(struct nvme_io_path *io_path)
829 {
830 	free(io_path->stat);
831 	free(io_path);
832 }
833 
834 static int
835 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
836 {
837 	struct nvme_io_path *io_path;
838 	struct spdk_io_channel *ch;
839 	struct nvme_ctrlr_channel *ctrlr_ch;
840 	struct nvme_qpair *nvme_qpair;
841 
842 	io_path = nvme_io_path_alloc();
843 	if (io_path == NULL) {
844 		return -ENOMEM;
845 	}
846 
847 	io_path->nvme_ns = nvme_ns;
848 
849 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
850 	if (ch == NULL) {
851 		nvme_io_path_free(io_path);
852 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
853 		return -ENOMEM;
854 	}
855 
856 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
857 
858 	nvme_qpair = ctrlr_ch->qpair;
859 	assert(nvme_qpair != NULL);
860 
861 	io_path->qpair = nvme_qpair;
862 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
863 
864 	io_path->nbdev_ch = nbdev_ch;
865 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
866 
867 	bdev_nvme_clear_current_io_path(nbdev_ch);
868 
869 	return 0;
870 }
871 
872 static void
873 bdev_nvme_clear_retry_io_path(struct nvme_bdev_channel *nbdev_ch,
874 			      struct nvme_io_path *io_path)
875 {
876 	struct nvme_bdev_io *bio;
877 
878 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
879 		if (bio->io_path == io_path) {
880 			bio->io_path = NULL;
881 		}
882 	}
883 }
884 
885 static void
886 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
887 {
888 	struct spdk_io_channel *ch;
889 	struct nvme_qpair *nvme_qpair;
890 	struct nvme_ctrlr_channel *ctrlr_ch;
891 	struct nvme_bdev *nbdev;
892 
893 	nbdev = spdk_io_channel_get_io_device(spdk_io_channel_from_ctx(nbdev_ch));
894 
895 	/* Add the statistics to nvme_ns before this path is destroyed. */
896 	pthread_mutex_lock(&nbdev->mutex);
897 	if (nbdev->ref != 0 && io_path->nvme_ns->stat != NULL && io_path->stat != NULL) {
898 		spdk_bdev_add_io_stat(io_path->nvme_ns->stat, io_path->stat);
899 	}
900 	pthread_mutex_unlock(&nbdev->mutex);
901 
902 	bdev_nvme_clear_current_io_path(nbdev_ch);
903 	bdev_nvme_clear_retry_io_path(nbdev_ch, io_path);
904 
905 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
906 	io_path->nbdev_ch = NULL;
907 
908 	nvme_qpair = io_path->qpair;
909 	assert(nvme_qpair != NULL);
910 
911 	ctrlr_ch = nvme_qpair->ctrlr_ch;
912 	assert(ctrlr_ch != NULL);
913 
914 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
915 	spdk_put_io_channel(ch);
916 
917 	/* After an io_path is removed, I/Os submitted to it may complete and update statistics
918 	 * of the io_path. To avoid heap-use-after-free error from this case, do not free the
919 	 * io_path here but free the io_path when the associated qpair is freed. It is ensured
920 	 * that all I/Os submitted to the io_path are completed when the associated qpair is freed.
921 	 */
922 }
923 
924 static void
925 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
926 {
927 	struct nvme_io_path *io_path, *tmp_io_path;
928 
929 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
930 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
931 	}
932 }
933 
934 static int
935 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
936 {
937 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
938 	struct nvme_bdev *nbdev = io_device;
939 	struct nvme_ns *nvme_ns;
940 	int rc;
941 
942 	STAILQ_INIT(&nbdev_ch->io_path_list);
943 	TAILQ_INIT(&nbdev_ch->retry_io_list);
944 
945 	pthread_mutex_lock(&nbdev->mutex);
946 
947 	nbdev_ch->mp_policy = nbdev->mp_policy;
948 	nbdev_ch->mp_selector = nbdev->mp_selector;
949 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
950 
951 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
952 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
953 		if (rc != 0) {
954 			pthread_mutex_unlock(&nbdev->mutex);
955 
956 			_bdev_nvme_delete_io_paths(nbdev_ch);
957 			return rc;
958 		}
959 	}
960 	pthread_mutex_unlock(&nbdev->mutex);
961 
962 	return 0;
963 }
964 
965 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
966  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
967  */
968 static inline void
969 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
970 			const struct spdk_nvme_cpl *cpl)
971 {
972 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
973 			  (uintptr_t)bdev_io);
974 	if (cpl) {
975 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
976 	} else {
977 		spdk_bdev_io_complete(bdev_io, status);
978 	}
979 }
980 
981 static void bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch);
982 
983 static void
984 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
985 {
986 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
987 
988 	bdev_nvme_abort_retry_ios(nbdev_ch);
989 	_bdev_nvme_delete_io_paths(nbdev_ch);
990 }
991 
992 static inline bool
993 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
994 {
995 	switch (io_type) {
996 	case SPDK_BDEV_IO_TYPE_RESET:
997 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
998 	case SPDK_BDEV_IO_TYPE_ABORT:
999 		return true;
1000 	default:
1001 		break;
1002 	}
1003 
1004 	return false;
1005 }
1006 
1007 static inline bool
1008 nvme_ns_is_active(struct nvme_ns *nvme_ns)
1009 {
1010 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
1011 		return false;
1012 	}
1013 
1014 	if (spdk_unlikely(nvme_ns->ns == NULL)) {
1015 		return false;
1016 	}
1017 
1018 	return true;
1019 }
1020 
1021 static inline bool
1022 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
1023 {
1024 	if (spdk_unlikely(!nvme_ns_is_active(nvme_ns))) {
1025 		return false;
1026 	}
1027 
1028 	switch (nvme_ns->ana_state) {
1029 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
1030 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1031 		return true;
1032 	default:
1033 		break;
1034 	}
1035 
1036 	return false;
1037 }
1038 
1039 static inline bool
1040 nvme_qpair_is_connected(struct nvme_qpair *nvme_qpair)
1041 {
1042 	if (spdk_unlikely(nvme_qpair->qpair == NULL)) {
1043 		return false;
1044 	}
1045 
1046 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1047 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
1048 		return false;
1049 	}
1050 
1051 	if (spdk_unlikely(nvme_qpair->ctrlr_ch->reset_iter != NULL)) {
1052 		return false;
1053 	}
1054 
1055 	return true;
1056 }
1057 
1058 static inline bool
1059 nvme_io_path_is_available(struct nvme_io_path *io_path)
1060 {
1061 	if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
1062 		return false;
1063 	}
1064 
1065 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
1066 		return false;
1067 	}
1068 
1069 	return true;
1070 }
1071 
1072 static inline bool
1073 nvme_ctrlr_is_failed(struct nvme_ctrlr *nvme_ctrlr)
1074 {
1075 	if (nvme_ctrlr->destruct) {
1076 		return true;
1077 	}
1078 
1079 	if (nvme_ctrlr->fast_io_fail_timedout) {
1080 		return true;
1081 	}
1082 
1083 	if (nvme_ctrlr->resetting) {
1084 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
1085 			return false;
1086 		} else {
1087 			return true;
1088 		}
1089 	}
1090 
1091 	if (nvme_ctrlr->reconnect_is_delayed) {
1092 		return false;
1093 	}
1094 
1095 	if (nvme_ctrlr->disabled) {
1096 		return true;
1097 	}
1098 
1099 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
1100 		return true;
1101 	} else {
1102 		return false;
1103 	}
1104 }
1105 
1106 static bool
1107 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
1108 {
1109 	if (nvme_ctrlr->destruct) {
1110 		return false;
1111 	}
1112 
1113 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
1114 		return false;
1115 	}
1116 
1117 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
1118 		return false;
1119 	}
1120 
1121 	if (nvme_ctrlr->disabled) {
1122 		return false;
1123 	}
1124 
1125 	return true;
1126 }
1127 
1128 /* Simulate circular linked list. */
1129 static inline struct nvme_io_path *
1130 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
1131 {
1132 	struct nvme_io_path *next_path;
1133 
1134 	if (prev_path != NULL) {
1135 		next_path = STAILQ_NEXT(prev_path, stailq);
1136 		if (next_path != NULL) {
1137 			return next_path;
1138 		}
1139 	}
1140 
1141 	return STAILQ_FIRST(&nbdev_ch->io_path_list);
1142 }
1143 
1144 static struct nvme_io_path *
1145 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1146 {
1147 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
1148 
1149 	start = nvme_io_path_get_next(nbdev_ch, nbdev_ch->current_io_path);
1150 
1151 	io_path = start;
1152 	do {
1153 		if (spdk_likely(nvme_io_path_is_available(io_path))) {
1154 			switch (io_path->nvme_ns->ana_state) {
1155 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
1156 				nbdev_ch->current_io_path = io_path;
1157 				return io_path;
1158 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1159 				if (non_optimized == NULL) {
1160 					non_optimized = io_path;
1161 				}
1162 				break;
1163 			default:
1164 				assert(false);
1165 				break;
1166 			}
1167 		}
1168 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
1169 	} while (io_path != start);
1170 
1171 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
1172 		/* We come here only if there is no optimized path. Cache even non_optimized
1173 		 * path for load balance across multiple non_optimized paths.
1174 		 */
1175 		nbdev_ch->current_io_path = non_optimized;
1176 	}
1177 
1178 	return non_optimized;
1179 }
1180 
1181 static struct nvme_io_path *
1182 _bdev_nvme_find_io_path_min_qd(struct nvme_bdev_channel *nbdev_ch)
1183 {
1184 	struct nvme_io_path *io_path;
1185 	struct nvme_io_path *optimized = NULL, *non_optimized = NULL;
1186 	uint32_t opt_min_qd = UINT32_MAX, non_opt_min_qd = UINT32_MAX;
1187 	uint32_t num_outstanding_reqs;
1188 
1189 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1190 		if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
1191 			/* The device is currently resetting. */
1192 			continue;
1193 		}
1194 
1195 		if (spdk_unlikely(!nvme_ns_is_active(io_path->nvme_ns))) {
1196 			continue;
1197 		}
1198 
1199 		num_outstanding_reqs = spdk_nvme_qpair_get_num_outstanding_reqs(io_path->qpair->qpair);
1200 		switch (io_path->nvme_ns->ana_state) {
1201 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
1202 			if (num_outstanding_reqs < opt_min_qd) {
1203 				opt_min_qd = num_outstanding_reqs;
1204 				optimized = io_path;
1205 			}
1206 			break;
1207 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1208 			if (num_outstanding_reqs < non_opt_min_qd) {
1209 				non_opt_min_qd = num_outstanding_reqs;
1210 				non_optimized = io_path;
1211 			}
1212 			break;
1213 		default:
1214 			break;
1215 		}
1216 	}
1217 
1218 	/* don't cache io path for BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH selector */
1219 	if (optimized != NULL) {
1220 		return optimized;
1221 	}
1222 
1223 	return non_optimized;
1224 }
1225 
1226 static inline struct nvme_io_path *
1227 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1228 {
1229 	if (spdk_likely(nbdev_ch->current_io_path != NULL)) {
1230 		if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE) {
1231 			return nbdev_ch->current_io_path;
1232 		} else if (nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1233 			if (++nbdev_ch->rr_counter < nbdev_ch->rr_min_io) {
1234 				return nbdev_ch->current_io_path;
1235 			}
1236 			nbdev_ch->rr_counter = 0;
1237 		}
1238 	}
1239 
1240 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE ||
1241 	    nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1242 		return _bdev_nvme_find_io_path(nbdev_ch);
1243 	} else {
1244 		return _bdev_nvme_find_io_path_min_qd(nbdev_ch);
1245 	}
1246 }
1247 
1248 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
1249  * or false otherwise.
1250  *
1251  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
1252  * is likely to be non-accessible now but may become accessible.
1253  *
1254  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
1255  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
1256  * when starting to reset it but it is set to failed when the reset failed. Hence, if
1257  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
1258  */
1259 static bool
1260 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
1261 {
1262 	struct nvme_io_path *io_path;
1263 
1264 	if (nbdev_ch->resetting) {
1265 		return false;
1266 	}
1267 
1268 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1269 		if (io_path->nvme_ns->ana_transition_timedout) {
1270 			continue;
1271 		}
1272 
1273 		if (nvme_qpair_is_connected(io_path->qpair) ||
1274 		    !nvme_ctrlr_is_failed(io_path->qpair->ctrlr)) {
1275 			return true;
1276 		}
1277 	}
1278 
1279 	return false;
1280 }
1281 
1282 static void
1283 bdev_nvme_retry_io(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
1284 {
1285 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1286 	struct spdk_io_channel *ch;
1287 
1288 	if (nbdev_io->io_path != NULL && nvme_io_path_is_available(nbdev_io->io_path)) {
1289 		_bdev_nvme_submit_request(nbdev_ch, bdev_io);
1290 	} else {
1291 		ch = spdk_io_channel_from_ctx(nbdev_ch);
1292 		bdev_nvme_submit_request(ch, bdev_io);
1293 	}
1294 }
1295 
1296 static int
1297 bdev_nvme_retry_ios(void *arg)
1298 {
1299 	struct nvme_bdev_channel *nbdev_ch = arg;
1300 	struct nvme_bdev_io *bio, *tmp_bio;
1301 	uint64_t now, delay_us;
1302 
1303 	now = spdk_get_ticks();
1304 
1305 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1306 		if (bio->retry_ticks > now) {
1307 			break;
1308 		}
1309 
1310 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1311 
1312 		bdev_nvme_retry_io(nbdev_ch, spdk_bdev_io_from_ctx(bio));
1313 	}
1314 
1315 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1316 
1317 	bio = TAILQ_FIRST(&nbdev_ch->retry_io_list);
1318 	if (bio != NULL) {
1319 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
1320 
1321 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1322 					    delay_us);
1323 	}
1324 
1325 	return SPDK_POLLER_BUSY;
1326 }
1327 
1328 static void
1329 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
1330 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
1331 {
1332 	struct nvme_bdev_io *tmp_bio;
1333 
1334 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
1335 
1336 	TAILQ_FOREACH_REVERSE(tmp_bio, &nbdev_ch->retry_io_list, retry_io_head, retry_link) {
1337 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1338 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bio, bio,
1339 					   retry_link);
1340 			return;
1341 		}
1342 	}
1343 
1344 	/* No earlier I/Os were found. This I/O must be the new head. */
1345 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bio, retry_link);
1346 
1347 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1348 
1349 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1350 				    delay_ms * 1000ULL);
1351 }
1352 
1353 static void
1354 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
1355 {
1356 	struct nvme_bdev_io *bio, *tmp_bio;
1357 
1358 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1359 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1360 		__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1361 	}
1362 
1363 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1364 }
1365 
1366 static int
1367 bdev_nvme_abort_retry_io(struct nvme_bdev_channel *nbdev_ch,
1368 			 struct nvme_bdev_io *bio_to_abort)
1369 {
1370 	struct nvme_bdev_io *bio;
1371 
1372 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
1373 		if (bio == bio_to_abort) {
1374 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1375 			__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1376 			return 0;
1377 		}
1378 	}
1379 
1380 	return -ENOENT;
1381 }
1382 
1383 static void
1384 bdev_nvme_update_nvme_error_stat(struct spdk_bdev_io *bdev_io, const struct spdk_nvme_cpl *cpl)
1385 {
1386 	struct nvme_bdev *nbdev;
1387 	uint16_t sct, sc;
1388 
1389 	assert(spdk_nvme_cpl_is_error(cpl));
1390 
1391 	nbdev = bdev_io->bdev->ctxt;
1392 
1393 	if (nbdev->err_stat == NULL) {
1394 		return;
1395 	}
1396 
1397 	sct = cpl->status.sct;
1398 	sc = cpl->status.sc;
1399 
1400 	pthread_mutex_lock(&nbdev->mutex);
1401 
1402 	nbdev->err_stat->status_type[sct]++;
1403 	switch (sct) {
1404 	case SPDK_NVME_SCT_GENERIC:
1405 	case SPDK_NVME_SCT_COMMAND_SPECIFIC:
1406 	case SPDK_NVME_SCT_MEDIA_ERROR:
1407 	case SPDK_NVME_SCT_PATH:
1408 		nbdev->err_stat->status[sct][sc]++;
1409 		break;
1410 	default:
1411 		break;
1412 	}
1413 
1414 	pthread_mutex_unlock(&nbdev->mutex);
1415 }
1416 
1417 static inline void
1418 bdev_nvme_update_io_path_stat(struct nvme_bdev_io *bio)
1419 {
1420 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1421 	uint64_t num_blocks = bdev_io->u.bdev.num_blocks;
1422 	uint32_t blocklen = bdev_io->bdev->blocklen;
1423 	struct spdk_bdev_io_stat *stat;
1424 	uint64_t tsc_diff;
1425 
1426 	if (bio->io_path->stat == NULL) {
1427 		return;
1428 	}
1429 
1430 	tsc_diff = spdk_get_ticks() - bio->submit_tsc;
1431 	stat = bio->io_path->stat;
1432 
1433 	switch (bdev_io->type) {
1434 	case SPDK_BDEV_IO_TYPE_READ:
1435 		stat->bytes_read += num_blocks * blocklen;
1436 		stat->num_read_ops++;
1437 		stat->read_latency_ticks += tsc_diff;
1438 		if (stat->max_read_latency_ticks < tsc_diff) {
1439 			stat->max_read_latency_ticks = tsc_diff;
1440 		}
1441 		if (stat->min_read_latency_ticks > tsc_diff) {
1442 			stat->min_read_latency_ticks = tsc_diff;
1443 		}
1444 		break;
1445 	case SPDK_BDEV_IO_TYPE_WRITE:
1446 		stat->bytes_written += num_blocks * blocklen;
1447 		stat->num_write_ops++;
1448 		stat->write_latency_ticks += tsc_diff;
1449 		if (stat->max_write_latency_ticks < tsc_diff) {
1450 			stat->max_write_latency_ticks = tsc_diff;
1451 		}
1452 		if (stat->min_write_latency_ticks > tsc_diff) {
1453 			stat->min_write_latency_ticks = tsc_diff;
1454 		}
1455 		break;
1456 	case SPDK_BDEV_IO_TYPE_UNMAP:
1457 		stat->bytes_unmapped += num_blocks * blocklen;
1458 		stat->num_unmap_ops++;
1459 		stat->unmap_latency_ticks += tsc_diff;
1460 		if (stat->max_unmap_latency_ticks < tsc_diff) {
1461 			stat->max_unmap_latency_ticks = tsc_diff;
1462 		}
1463 		if (stat->min_unmap_latency_ticks > tsc_diff) {
1464 			stat->min_unmap_latency_ticks = tsc_diff;
1465 		}
1466 		break;
1467 	case SPDK_BDEV_IO_TYPE_ZCOPY:
1468 		/* Track the data in the start phase only */
1469 		if (!bdev_io->u.bdev.zcopy.start) {
1470 			break;
1471 		}
1472 		if (bdev_io->u.bdev.zcopy.populate) {
1473 			stat->bytes_read += num_blocks * blocklen;
1474 			stat->num_read_ops++;
1475 			stat->read_latency_ticks += tsc_diff;
1476 			if (stat->max_read_latency_ticks < tsc_diff) {
1477 				stat->max_read_latency_ticks = tsc_diff;
1478 			}
1479 			if (stat->min_read_latency_ticks > tsc_diff) {
1480 				stat->min_read_latency_ticks = tsc_diff;
1481 			}
1482 		} else {
1483 			stat->bytes_written += num_blocks * blocklen;
1484 			stat->num_write_ops++;
1485 			stat->write_latency_ticks += tsc_diff;
1486 			if (stat->max_write_latency_ticks < tsc_diff) {
1487 				stat->max_write_latency_ticks = tsc_diff;
1488 			}
1489 			if (stat->min_write_latency_ticks > tsc_diff) {
1490 				stat->min_write_latency_ticks = tsc_diff;
1491 			}
1492 		}
1493 		break;
1494 	case SPDK_BDEV_IO_TYPE_COPY:
1495 		stat->bytes_copied += num_blocks * blocklen;
1496 		stat->num_copy_ops++;
1497 		stat->copy_latency_ticks += tsc_diff;
1498 		if (stat->max_copy_latency_ticks < tsc_diff) {
1499 			stat->max_copy_latency_ticks = tsc_diff;
1500 		}
1501 		if (stat->min_copy_latency_ticks > tsc_diff) {
1502 			stat->min_copy_latency_ticks = tsc_diff;
1503 		}
1504 		break;
1505 	default:
1506 		break;
1507 	}
1508 }
1509 
1510 static bool
1511 bdev_nvme_check_retry_io(struct nvme_bdev_io *bio,
1512 			 const struct spdk_nvme_cpl *cpl,
1513 			 struct nvme_bdev_channel *nbdev_ch,
1514 			 uint64_t *_delay_ms)
1515 {
1516 	struct nvme_io_path *io_path = bio->io_path;
1517 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1518 	const struct spdk_nvme_ctrlr_data *cdata;
1519 
1520 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1521 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1522 	    !nvme_io_path_is_available(io_path) ||
1523 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1524 		bdev_nvme_clear_current_io_path(nbdev_ch);
1525 		bio->io_path = NULL;
1526 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1527 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1528 				io_path->nvme_ns->ana_state_updating = true;
1529 			}
1530 		}
1531 		if (!any_io_path_may_become_available(nbdev_ch)) {
1532 			return false;
1533 		}
1534 		*_delay_ms = 0;
1535 	} else {
1536 		bio->retry_count++;
1537 
1538 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1539 
1540 		if (cpl->status.crd != 0) {
1541 			*_delay_ms = cdata->crdt[cpl->status.crd] * 100;
1542 		} else {
1543 			*_delay_ms = 0;
1544 		}
1545 	}
1546 
1547 	return true;
1548 }
1549 
1550 static inline void
1551 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1552 				  const struct spdk_nvme_cpl *cpl)
1553 {
1554 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1555 	struct nvme_bdev_channel *nbdev_ch;
1556 	uint64_t delay_ms;
1557 
1558 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1559 
1560 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1561 		bdev_nvme_update_io_path_stat(bio);
1562 		goto complete;
1563 	}
1564 
1565 	/* Update error counts before deciding if retry is needed.
1566 	 * Hence, error counts may be more than the number of I/O errors.
1567 	 */
1568 	bdev_nvme_update_nvme_error_stat(bdev_io, cpl);
1569 
1570 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1571 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1572 		goto complete;
1573 	}
1574 
1575 	/* At this point we don't know whether the sequence was successfully executed or not, so we
1576 	 * cannot retry the IO */
1577 	if (bdev_io->u.bdev.accel_sequence != NULL) {
1578 		goto complete;
1579 	}
1580 
1581 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1582 
1583 	if (bdev_nvme_check_retry_io(bio, cpl, nbdev_ch, &delay_ms)) {
1584 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1585 		return;
1586 	}
1587 
1588 complete:
1589 	bio->retry_count = 0;
1590 	bio->submit_tsc = 0;
1591 	bdev_io->u.bdev.accel_sequence = NULL;
1592 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1593 }
1594 
1595 static inline void
1596 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1597 {
1598 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1599 	struct nvme_bdev_channel *nbdev_ch;
1600 	enum spdk_bdev_io_status io_status;
1601 
1602 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1603 
1604 	switch (rc) {
1605 	case 0:
1606 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1607 		break;
1608 	case -ENOMEM:
1609 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1610 		break;
1611 	case -ENXIO:
1612 		if (g_opts.bdev_retry_count == -1 || bio->retry_count < g_opts.bdev_retry_count) {
1613 			nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1614 
1615 			bdev_nvme_clear_current_io_path(nbdev_ch);
1616 			bio->io_path = NULL;
1617 
1618 			if (any_io_path_may_become_available(nbdev_ch)) {
1619 				bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1620 				return;
1621 			}
1622 		}
1623 
1624 	/* fallthrough */
1625 	default:
1626 		spdk_accel_sequence_abort(bdev_io->u.bdev.accel_sequence);
1627 		bdev_io->u.bdev.accel_sequence = NULL;
1628 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1629 		break;
1630 	}
1631 
1632 	bio->retry_count = 0;
1633 	bio->submit_tsc = 0;
1634 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1635 }
1636 
1637 static inline void
1638 bdev_nvme_admin_complete(struct nvme_bdev_io *bio, int rc)
1639 {
1640 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1641 	enum spdk_bdev_io_status io_status;
1642 
1643 	switch (rc) {
1644 	case 0:
1645 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1646 		break;
1647 	case -ENOMEM:
1648 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1649 		break;
1650 	case -ENXIO:
1651 	/* fallthrough */
1652 	default:
1653 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1654 		break;
1655 	}
1656 
1657 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1658 }
1659 
1660 static void
1661 bdev_nvme_clear_io_path_caches_done(struct nvme_ctrlr *nvme_ctrlr,
1662 				    void *ctx, int status)
1663 {
1664 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1665 
1666 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1667 	nvme_ctrlr->io_path_cache_clearing = false;
1668 
1669 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1670 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1671 		return;
1672 	}
1673 
1674 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1675 
1676 	nvme_ctrlr_unregister(nvme_ctrlr);
1677 }
1678 
1679 static void
1680 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1681 {
1682 	struct nvme_io_path *io_path;
1683 
1684 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1685 		if (io_path->nbdev_ch == NULL) {
1686 			continue;
1687 		}
1688 		bdev_nvme_clear_current_io_path(io_path->nbdev_ch);
1689 	}
1690 }
1691 
1692 static void
1693 bdev_nvme_clear_io_path_cache(struct nvme_ctrlr_channel_iter *i,
1694 			      struct nvme_ctrlr *nvme_ctrlr,
1695 			      struct nvme_ctrlr_channel *ctrlr_ch,
1696 			      void *ctx)
1697 {
1698 	assert(ctrlr_ch->qpair != NULL);
1699 
1700 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1701 
1702 	nvme_ctrlr_for_each_channel_continue(i, 0);
1703 }
1704 
1705 static void
1706 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1707 {
1708 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1709 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1710 	    nvme_ctrlr->io_path_cache_clearing) {
1711 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1712 		return;
1713 	}
1714 
1715 	nvme_ctrlr->io_path_cache_clearing = true;
1716 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1717 
1718 	nvme_ctrlr_for_each_channel(nvme_ctrlr,
1719 				    bdev_nvme_clear_io_path_cache,
1720 				    NULL,
1721 				    bdev_nvme_clear_io_path_caches_done);
1722 }
1723 
1724 static struct nvme_qpair *
1725 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1726 {
1727 	struct nvme_qpair *nvme_qpair;
1728 
1729 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1730 		if (nvme_qpair->qpair == qpair) {
1731 			break;
1732 		}
1733 	}
1734 
1735 	return nvme_qpair;
1736 }
1737 
1738 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1739 
1740 static void
1741 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1742 {
1743 	struct nvme_poll_group *group = poll_group_ctx;
1744 	struct nvme_qpair *nvme_qpair;
1745 	struct nvme_ctrlr *nvme_ctrlr;
1746 	struct nvme_ctrlr_channel *ctrlr_ch;
1747 	int status;
1748 
1749 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1750 	if (nvme_qpair == NULL) {
1751 		return;
1752 	}
1753 
1754 	if (nvme_qpair->qpair != NULL) {
1755 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1756 		nvme_qpair->qpair = NULL;
1757 	}
1758 
1759 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1760 
1761 	nvme_ctrlr = nvme_qpair->ctrlr;
1762 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1763 
1764 	if (ctrlr_ch != NULL) {
1765 		if (ctrlr_ch->reset_iter != NULL) {
1766 			/* We are in a full reset sequence. */
1767 			if (ctrlr_ch->connect_poller != NULL) {
1768 				/* qpair was failed to connect. Abort the reset sequence. */
1769 				NVME_CTRLR_INFOLOG(nvme_ctrlr,
1770 						   "qpair %p was failed to connect. abort the reset ctrlr sequence.\n",
1771 						   qpair);
1772 				spdk_poller_unregister(&ctrlr_ch->connect_poller);
1773 				status = -1;
1774 			} else {
1775 				/* qpair was completed to disconnect. Just move to the next ctrlr_channel. */
1776 				NVME_CTRLR_INFOLOG(nvme_ctrlr,
1777 						   "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1778 						   qpair);
1779 				status = 0;
1780 			}
1781 			nvme_ctrlr_for_each_channel_continue(ctrlr_ch->reset_iter, status);
1782 			ctrlr_ch->reset_iter = NULL;
1783 		} else {
1784 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1785 			NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpair %p was disconnected and freed. reset controller.\n",
1786 					   qpair);
1787 			bdev_nvme_failover_ctrlr(nvme_ctrlr);
1788 		}
1789 	} else {
1790 		/* In this case, ctrlr_channel is already deleted. */
1791 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpair %p was disconnected and freed. delete nvme_qpair.\n",
1792 				   qpair);
1793 		nvme_qpair_delete(nvme_qpair);
1794 	}
1795 }
1796 
1797 static void
1798 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1799 {
1800 	struct nvme_qpair *nvme_qpair;
1801 
1802 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1803 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1804 			continue;
1805 		}
1806 
1807 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1808 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1809 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1810 		}
1811 	}
1812 }
1813 
1814 static int
1815 bdev_nvme_poll(void *arg)
1816 {
1817 	struct nvme_poll_group *group = arg;
1818 	int64_t num_completions;
1819 
1820 	if (group->collect_spin_stat && group->start_ticks == 0) {
1821 		group->start_ticks = spdk_get_ticks();
1822 	}
1823 
1824 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1825 			  bdev_nvme_disconnected_qpair_cb);
1826 	if (group->collect_spin_stat) {
1827 		if (num_completions > 0) {
1828 			if (group->end_ticks != 0) {
1829 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1830 				group->end_ticks = 0;
1831 			}
1832 			group->start_ticks = 0;
1833 		} else {
1834 			group->end_ticks = spdk_get_ticks();
1835 		}
1836 	}
1837 
1838 	if (spdk_unlikely(num_completions < 0)) {
1839 		bdev_nvme_check_io_qpairs(group);
1840 	}
1841 
1842 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1843 }
1844 
1845 static int bdev_nvme_poll_adminq(void *arg);
1846 
1847 static void
1848 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1849 {
1850 	if (spdk_interrupt_mode_is_enabled()) {
1851 		return;
1852 	}
1853 
1854 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1855 
1856 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1857 					  nvme_ctrlr, new_period_us);
1858 }
1859 
1860 static int
1861 bdev_nvme_poll_adminq(void *arg)
1862 {
1863 	int32_t rc;
1864 	struct nvme_ctrlr *nvme_ctrlr = arg;
1865 	nvme_ctrlr_disconnected_cb disconnected_cb;
1866 
1867 	assert(nvme_ctrlr != NULL);
1868 
1869 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1870 	if (rc < 0) {
1871 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1872 		nvme_ctrlr->disconnected_cb = NULL;
1873 
1874 		if (disconnected_cb != NULL) {
1875 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1876 							    g_opts.nvme_adminq_poll_period_us);
1877 			disconnected_cb(nvme_ctrlr);
1878 		} else {
1879 			bdev_nvme_failover_ctrlr(nvme_ctrlr);
1880 		}
1881 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1882 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1883 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1884 	}
1885 
1886 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1887 }
1888 
1889 static void
1890 nvme_bdev_free(void *io_device)
1891 {
1892 	struct nvme_bdev *nbdev = io_device;
1893 
1894 	pthread_mutex_destroy(&nbdev->mutex);
1895 	free(nbdev->disk.name);
1896 	free(nbdev->err_stat);
1897 	free(nbdev);
1898 }
1899 
1900 static int
1901 bdev_nvme_destruct(void *ctx)
1902 {
1903 	struct nvme_bdev *nbdev = ctx;
1904 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1905 
1906 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nbdev->nbdev_ctrlr->name, nbdev->nsid);
1907 
1908 	pthread_mutex_lock(&nbdev->mutex);
1909 
1910 	TAILQ_FOREACH_SAFE(nvme_ns, &nbdev->nvme_ns_list, tailq, tmp_nvme_ns) {
1911 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1912 
1913 		nvme_ns->bdev = NULL;
1914 
1915 		assert(nvme_ns->id > 0);
1916 
1917 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1918 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1919 
1920 			nvme_ctrlr_put_ref(nvme_ns->ctrlr);
1921 			nvme_ns_free(nvme_ns);
1922 		} else {
1923 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1924 		}
1925 	}
1926 
1927 	pthread_mutex_unlock(&nbdev->mutex);
1928 
1929 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1930 	TAILQ_REMOVE(&nbdev->nbdev_ctrlr->bdevs, nbdev, tailq);
1931 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1932 
1933 	spdk_io_device_unregister(nbdev, nvme_bdev_free);
1934 
1935 	return 0;
1936 }
1937 
1938 static int
1939 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1940 {
1941 	struct nvme_ctrlr *nvme_ctrlr;
1942 	struct spdk_nvme_io_qpair_opts opts;
1943 	struct spdk_nvme_qpair *qpair;
1944 	int rc;
1945 
1946 	nvme_ctrlr = nvme_qpair->ctrlr;
1947 
1948 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1949 	opts.create_only = true;
1950 	/* In interrupt mode qpairs must be created in sync mode, else it will never be connected.
1951 	 * delay_cmd_submit must be false as in interrupt mode requests cannot be submitted in
1952 	 * completion context.
1953 	 */
1954 	if (!spdk_interrupt_mode_is_enabled()) {
1955 		opts.async_mode = true;
1956 		opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1957 	}
1958 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1959 	g_opts.io_queue_requests = opts.io_queue_requests;
1960 
1961 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1962 	if (qpair == NULL) {
1963 		return -1;
1964 	}
1965 
1966 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1967 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1968 
1969 	assert(nvme_qpair->group != NULL);
1970 
1971 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1972 	if (rc != 0) {
1973 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Unable to begin polling on NVMe Channel.\n");
1974 		goto err;
1975 	}
1976 
1977 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1978 	if (rc != 0) {
1979 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Unable to connect I/O qpair.\n");
1980 		goto err;
1981 	}
1982 
1983 	nvme_qpair->qpair = qpair;
1984 
1985 	if (!g_opts.disable_auto_failback) {
1986 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1987 	}
1988 
1989 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "Connecting qpair %p:%u started.\n",
1990 			   qpair, spdk_nvme_qpair_get_id(qpair));
1991 
1992 	return 0;
1993 
1994 err:
1995 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1996 
1997 	return rc;
1998 }
1999 
2000 static void bdev_nvme_reset_io_continue(void *cb_arg, int rc);
2001 
2002 static void
2003 bdev_nvme_complete_pending_resets(struct nvme_ctrlr *nvme_ctrlr, bool success)
2004 {
2005 	int rc = 0;
2006 	struct nvme_bdev_io *bio;
2007 
2008 	if (!success) {
2009 		rc = -1;
2010 	}
2011 
2012 	while (!TAILQ_EMPTY(&nvme_ctrlr->pending_resets)) {
2013 		bio = TAILQ_FIRST(&nvme_ctrlr->pending_resets);
2014 		TAILQ_REMOVE(&nvme_ctrlr->pending_resets, bio, retry_link);
2015 
2016 		bdev_nvme_reset_io_continue(bio, rc);
2017 	}
2018 }
2019 
2020 /* This function marks the current trid as failed by storing the current ticks
2021  * and then sets the next trid to the active trid within a controller if exists.
2022  *
2023  * The purpose of the boolean return value is to request the caller to disconnect
2024  * the current trid now to try connecting the next trid.
2025  */
2026 static bool
2027 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove, bool start)
2028 {
2029 	struct nvme_path_id *path_id, *next_path;
2030 	int rc __attribute__((unused));
2031 
2032 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
2033 	assert(path_id);
2034 	assert(path_id == nvme_ctrlr->active_path_id);
2035 	next_path = TAILQ_NEXT(path_id, link);
2036 
2037 	/* Update the last failed time. It means the trid is failed if its last
2038 	 * failed time is non-zero.
2039 	 */
2040 	path_id->last_failed_tsc = spdk_get_ticks();
2041 
2042 	if (next_path == NULL) {
2043 		/* There is no alternate trid within a controller. */
2044 		return false;
2045 	}
2046 
2047 	if (!start && nvme_ctrlr->opts.reconnect_delay_sec == 0) {
2048 		/* Connect is not retried in a controller reset sequence. Connecting
2049 		 * the next trid will be done by the next bdev_nvme_failover_ctrlr() call.
2050 		 */
2051 		return false;
2052 	}
2053 
2054 	assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
2055 
2056 	NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Start failover from %s:%s to %s:%s\n",
2057 			     path_id->trid.traddr, path_id->trid.trsvcid,
2058 			     next_path->trid.traddr, next_path->trid.trsvcid);
2059 
2060 	spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
2061 	nvme_ctrlr->active_path_id = next_path;
2062 	rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
2063 	assert(rc == 0);
2064 	TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
2065 	if (!remove) {
2066 		/** Shuffle the old trid to the end of the list and use the new one.
2067 		 * Allows for round robin through multiple connections.
2068 		 */
2069 		TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
2070 	} else {
2071 		free(path_id);
2072 	}
2073 
2074 	if (start || next_path->last_failed_tsc == 0) {
2075 		/* bdev_nvme_failover_ctrlr() is just called or the next trid is not failed
2076 		 * or used yet. Try the next trid now.
2077 		 */
2078 		return true;
2079 	}
2080 
2081 	if (spdk_get_ticks() > next_path->last_failed_tsc + spdk_get_ticks_hz() *
2082 	    nvme_ctrlr->opts.reconnect_delay_sec) {
2083 		/* Enough backoff passed since the next trid failed. Try the next trid now. */
2084 		return true;
2085 	}
2086 
2087 	/* The next trid will be tried after reconnect_delay_sec seconds. */
2088 	return false;
2089 }
2090 
2091 static bool
2092 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
2093 {
2094 	int32_t elapsed;
2095 
2096 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
2097 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
2098 		return false;
2099 	}
2100 
2101 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
2102 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
2103 		return true;
2104 	} else {
2105 		return false;
2106 	}
2107 }
2108 
2109 static bool
2110 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
2111 {
2112 	uint32_t elapsed;
2113 
2114 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
2115 		return false;
2116 	}
2117 
2118 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
2119 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
2120 		return true;
2121 	} else {
2122 		return false;
2123 	}
2124 }
2125 
2126 static void bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
2127 
2128 static void
2129 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
2130 {
2131 	int rc;
2132 
2133 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "Start disconnecting ctrlr.\n");
2134 
2135 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
2136 	if (rc != 0) {
2137 		NVME_CTRLR_WARNLOG(nvme_ctrlr, "disconnecting ctrlr failed.\n");
2138 
2139 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
2140 		 * fail the reset sequence immediately.
2141 		 */
2142 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2143 		return;
2144 	}
2145 
2146 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
2147 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
2148 	 */
2149 	assert(nvme_ctrlr->disconnected_cb == NULL);
2150 	nvme_ctrlr->disconnected_cb = cb_fn;
2151 
2152 	/* During disconnection, reduce the period to poll adminq more often. */
2153 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
2154 }
2155 
2156 enum bdev_nvme_op_after_reset {
2157 	OP_NONE,
2158 	OP_COMPLETE_PENDING_DESTRUCT,
2159 	OP_DESTRUCT,
2160 	OP_DELAYED_RECONNECT,
2161 	OP_FAILOVER,
2162 };
2163 
2164 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
2165 
2166 static _bdev_nvme_op_after_reset
2167 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
2168 {
2169 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
2170 		/* Complete pending destruct after reset completes. */
2171 		return OP_COMPLETE_PENDING_DESTRUCT;
2172 	} else if (nvme_ctrlr->pending_failover) {
2173 		nvme_ctrlr->pending_failover = false;
2174 		nvme_ctrlr->reset_start_tsc = 0;
2175 		return OP_FAILOVER;
2176 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
2177 		nvme_ctrlr->reset_start_tsc = 0;
2178 		return OP_NONE;
2179 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2180 		return OP_DESTRUCT;
2181 	} else {
2182 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
2183 			nvme_ctrlr->fast_io_fail_timedout = true;
2184 		}
2185 		return OP_DELAYED_RECONNECT;
2186 	}
2187 }
2188 
2189 static int bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
2190 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
2191 
2192 static int
2193 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
2194 {
2195 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2196 
2197 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
2198 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2199 
2200 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2201 
2202 	if (!nvme_ctrlr->reconnect_is_delayed) {
2203 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2204 		return SPDK_POLLER_BUSY;
2205 	}
2206 
2207 	nvme_ctrlr->reconnect_is_delayed = false;
2208 
2209 	if (nvme_ctrlr->destruct) {
2210 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2211 		return SPDK_POLLER_BUSY;
2212 	}
2213 
2214 	assert(nvme_ctrlr->resetting == false);
2215 	nvme_ctrlr->resetting = true;
2216 
2217 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2218 
2219 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2220 
2221 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2222 	return SPDK_POLLER_BUSY;
2223 }
2224 
2225 static void
2226 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
2227 {
2228 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2229 
2230 	assert(nvme_ctrlr->reconnect_is_delayed == false);
2231 	nvme_ctrlr->reconnect_is_delayed = true;
2232 
2233 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
2234 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
2235 					    nvme_ctrlr,
2236 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
2237 }
2238 
2239 static void remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr);
2240 
2241 static void
2242 bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
2243 {
2244 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2245 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2246 	enum bdev_nvme_op_after_reset op_after_reset;
2247 
2248 	assert(nvme_ctrlr->thread == spdk_get_thread());
2249 
2250 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2251 	if (!success) {
2252 		/* Connecting the active trid failed. Set the next alternate trid to the
2253 		 * active trid if it exists.
2254 		 */
2255 		if (bdev_nvme_failover_trid(nvme_ctrlr, false, false)) {
2256 			/* The next alternate trid exists and is ready to try. Try it now. */
2257 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
2258 
2259 			NVME_CTRLR_INFOLOG(nvme_ctrlr, "Try the next alternate trid %s:%s now.\n",
2260 					   nvme_ctrlr->active_path_id->trid.traddr,
2261 					   nvme_ctrlr->active_path_id->trid.trsvcid);
2262 
2263 			nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2264 			return;
2265 		}
2266 
2267 		/* We came here if there is no alternate trid or if the next trid exists but
2268 		 * is not ready to try. We will try the active trid after reconnect_delay_sec
2269 		 * seconds if it is non-zero or at the next reset call otherwise.
2270 		 */
2271 	} else {
2272 		/* Connecting the active trid succeeded. Clear the last failed time because it
2273 		 * means the trid is failed if its last failed time is non-zero.
2274 		 */
2275 		nvme_ctrlr->active_path_id->last_failed_tsc = 0;
2276 	}
2277 
2278 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "Clear pending resets.\n");
2279 
2280 	/* Make sure we clear any pending resets before returning. */
2281 	bdev_nvme_complete_pending_resets(nvme_ctrlr, success);
2282 
2283 	if (!success) {
2284 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Resetting controller failed.\n");
2285 	} else {
2286 		NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Resetting controller successful.\n");
2287 	}
2288 
2289 	nvme_ctrlr->resetting = false;
2290 	nvme_ctrlr->dont_retry = false;
2291 	nvme_ctrlr->in_failover = false;
2292 
2293 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2294 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2295 
2296 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
2297 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2298 
2299 	/* Delay callbacks when the next operation is a failover. */
2300 	if (ctrlr_op_cb_fn && op_after_reset != OP_FAILOVER) {
2301 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, success ? 0 : -1);
2302 	}
2303 
2304 	switch (op_after_reset) {
2305 	case OP_COMPLETE_PENDING_DESTRUCT:
2306 		nvme_ctrlr_unregister(nvme_ctrlr);
2307 		break;
2308 	case OP_DESTRUCT:
2309 		bdev_nvme_delete_ctrlr(nvme_ctrlr, false);
2310 		remove_discovery_entry(nvme_ctrlr);
2311 		break;
2312 	case OP_DELAYED_RECONNECT:
2313 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
2314 		break;
2315 	case OP_FAILOVER:
2316 		nvme_ctrlr->ctrlr_op_cb_fn = ctrlr_op_cb_fn;
2317 		nvme_ctrlr->ctrlr_op_cb_arg = ctrlr_op_cb_arg;
2318 		bdev_nvme_failover_ctrlr(nvme_ctrlr);
2319 		break;
2320 	default:
2321 		break;
2322 	}
2323 }
2324 
2325 static void
2326 bdev_nvme_reset_create_qpairs_failed(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2327 {
2328 	bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2329 }
2330 
2331 static void
2332 bdev_nvme_reset_destroy_qpair(struct nvme_ctrlr_channel_iter *i,
2333 			      struct nvme_ctrlr *nvme_ctrlr,
2334 			      struct nvme_ctrlr_channel *ctrlr_ch, void *ctx)
2335 {
2336 	struct nvme_qpair *nvme_qpair;
2337 	struct spdk_nvme_qpair *qpair;
2338 
2339 	nvme_qpair = ctrlr_ch->qpair;
2340 	assert(nvme_qpair != NULL);
2341 
2342 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2343 
2344 	qpair = nvme_qpair->qpair;
2345 	if (qpair != NULL) {
2346 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "Start disconnecting qpair %p:%u.\n",
2347 				   qpair, spdk_nvme_qpair_get_id(qpair));
2348 
2349 		if (nvme_qpair->ctrlr->dont_retry) {
2350 			spdk_nvme_qpair_set_abort_dnr(qpair, true);
2351 		}
2352 		spdk_nvme_ctrlr_disconnect_io_qpair(qpair);
2353 
2354 		/* The current full reset sequence will move to the next
2355 		 * ctrlr_channel after the qpair is actually disconnected.
2356 		 */
2357 		assert(ctrlr_ch->reset_iter == NULL);
2358 		ctrlr_ch->reset_iter = i;
2359 	} else {
2360 		nvme_ctrlr_for_each_channel_continue(i, 0);
2361 	}
2362 }
2363 
2364 static void
2365 bdev_nvme_reset_create_qpairs_done(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2366 {
2367 	if (status == 0) {
2368 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpairs were created after ctrlr reset.\n");
2369 
2370 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, true);
2371 	} else {
2372 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpairs were failed to create after ctrlr reset.\n");
2373 
2374 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
2375 		nvme_ctrlr_for_each_channel(nvme_ctrlr,
2376 					    bdev_nvme_reset_destroy_qpair,
2377 					    NULL,
2378 					    bdev_nvme_reset_create_qpairs_failed);
2379 	}
2380 }
2381 
2382 static int
2383 bdev_nvme_reset_check_qpair_connected(void *ctx)
2384 {
2385 	struct nvme_ctrlr_channel *ctrlr_ch = ctx;
2386 	struct nvme_qpair *nvme_qpair = ctrlr_ch->qpair;
2387 	struct spdk_nvme_qpair *qpair;
2388 
2389 	if (ctrlr_ch->reset_iter == NULL) {
2390 		/* qpair was already failed to connect and the reset sequence is being aborted. */
2391 		assert(ctrlr_ch->connect_poller == NULL);
2392 		assert(nvme_qpair->qpair == NULL);
2393 
2394 		NVME_CTRLR_INFOLOG(nvme_qpair->ctrlr,
2395 				   "qpair was already failed to connect. reset is being aborted.\n");
2396 		return SPDK_POLLER_BUSY;
2397 	}
2398 
2399 	qpair = nvme_qpair->qpair;
2400 	assert(qpair != NULL);
2401 
2402 	if (!spdk_nvme_qpair_is_connected(qpair)) {
2403 		return SPDK_POLLER_BUSY;
2404 	}
2405 
2406 	NVME_CTRLR_INFOLOG(nvme_qpair->ctrlr, "qpair %p:%u was connected.\n",
2407 			   qpair, spdk_nvme_qpair_get_id(qpair));
2408 
2409 	spdk_poller_unregister(&ctrlr_ch->connect_poller);
2410 
2411 	/* qpair was completed to connect. Move to the next ctrlr_channel */
2412 	nvme_ctrlr_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2413 	ctrlr_ch->reset_iter = NULL;
2414 
2415 	if (!g_opts.disable_auto_failback) {
2416 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
2417 	}
2418 
2419 	return SPDK_POLLER_BUSY;
2420 }
2421 
2422 static void
2423 bdev_nvme_reset_create_qpair(struct nvme_ctrlr_channel_iter *i,
2424 			     struct nvme_ctrlr *nvme_ctrlr,
2425 			     struct nvme_ctrlr_channel *ctrlr_ch,
2426 			     void *ctx)
2427 {
2428 	struct nvme_qpair *nvme_qpair = ctrlr_ch->qpair;
2429 	struct spdk_nvme_qpair *qpair;
2430 	int rc = 0;
2431 
2432 	if (nvme_qpair->qpair == NULL) {
2433 		rc = bdev_nvme_create_qpair(nvme_qpair);
2434 	}
2435 	if (rc == 0) {
2436 		ctrlr_ch->connect_poller = SPDK_POLLER_REGISTER(bdev_nvme_reset_check_qpair_connected,
2437 					   ctrlr_ch, 0);
2438 
2439 		qpair = nvme_qpair->qpair;
2440 
2441 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "Start checking qpair %p:%u to be connected.\n",
2442 				   qpair, spdk_nvme_qpair_get_id(qpair));
2443 
2444 		/* The current full reset sequence will move to the next
2445 		 * ctrlr_channel after the qpair is actually connected.
2446 		 */
2447 		assert(ctrlr_ch->reset_iter == NULL);
2448 		ctrlr_ch->reset_iter = i;
2449 	} else {
2450 		nvme_ctrlr_for_each_channel_continue(i, rc);
2451 	}
2452 }
2453 
2454 static void
2455 nvme_ctrlr_check_namespaces(struct nvme_ctrlr *nvme_ctrlr)
2456 {
2457 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
2458 	struct nvme_ns *nvme_ns;
2459 
2460 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
2461 	     nvme_ns != NULL;
2462 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
2463 		if (!spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
2464 			SPDK_DEBUGLOG(bdev_nvme, "NSID %u was removed during reset.\n", nvme_ns->id);
2465 			/* NS can be added again. Just nullify nvme_ns->ns. */
2466 			nvme_ns->ns = NULL;
2467 		}
2468 	}
2469 }
2470 
2471 
2472 static int
2473 bdev_nvme_reconnect_ctrlr_poll(void *arg)
2474 {
2475 	struct nvme_ctrlr *nvme_ctrlr = arg;
2476 	struct spdk_nvme_transport_id *trid;
2477 	int rc = -ETIMEDOUT;
2478 
2479 	if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2480 		/* Mark the ctrlr as failed. The next call to
2481 		 * spdk_nvme_ctrlr_reconnect_poll_async() will then
2482 		 * do the necessary cleanup and return failure.
2483 		 */
2484 		spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
2485 	}
2486 
2487 	rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
2488 	if (rc == -EAGAIN) {
2489 		return SPDK_POLLER_BUSY;
2490 	}
2491 
2492 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
2493 	if (rc == 0) {
2494 		trid = &nvme_ctrlr->active_path_id->trid;
2495 
2496 		if (spdk_nvme_trtype_is_fabrics(trid->trtype)) {
2497 			NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr was connected to %s:%s. Create qpairs.\n",
2498 					   trid->traddr, trid->trsvcid);
2499 		} else {
2500 			NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr was connected. Create qpairs.\n");
2501 		}
2502 
2503 		nvme_ctrlr_check_namespaces(nvme_ctrlr);
2504 
2505 		/* Recreate all of the I/O queue pairs */
2506 		nvme_ctrlr_for_each_channel(nvme_ctrlr,
2507 					    bdev_nvme_reset_create_qpair,
2508 					    NULL,
2509 					    bdev_nvme_reset_create_qpairs_done);
2510 	} else {
2511 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr could not be connected.\n");
2512 
2513 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2514 	}
2515 	return SPDK_POLLER_BUSY;
2516 }
2517 
2518 static void
2519 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2520 {
2521 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "Start reconnecting ctrlr.\n");
2522 
2523 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
2524 
2525 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
2526 	assert(nvme_ctrlr->reset_detach_poller == NULL);
2527 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
2528 					  nvme_ctrlr, 0);
2529 }
2530 
2531 static void
2532 bdev_nvme_reset_destroy_qpair_done(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2533 {
2534 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
2535 	assert(status == 0);
2536 
2537 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpairs were deleted.\n");
2538 
2539 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2540 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2541 	} else {
2542 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2543 	}
2544 }
2545 
2546 static void
2547 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2548 {
2549 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "Delete qpairs for reset.\n");
2550 
2551 	nvme_ctrlr_for_each_channel(nvme_ctrlr,
2552 				    bdev_nvme_reset_destroy_qpair,
2553 				    NULL,
2554 				    bdev_nvme_reset_destroy_qpair_done);
2555 }
2556 
2557 static void
2558 bdev_nvme_reconnect_ctrlr_now(void *ctx)
2559 {
2560 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2561 
2562 	assert(nvme_ctrlr->resetting == true);
2563 	assert(nvme_ctrlr->thread == spdk_get_thread());
2564 
2565 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2566 
2567 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2568 
2569 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2570 }
2571 
2572 static void
2573 _bdev_nvme_reset_ctrlr(void *ctx)
2574 {
2575 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2576 
2577 	assert(nvme_ctrlr->resetting == true);
2578 	assert(nvme_ctrlr->thread == spdk_get_thread());
2579 
2580 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2581 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
2582 	} else {
2583 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
2584 	}
2585 }
2586 
2587 static int
2588 bdev_nvme_reset_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, spdk_msg_fn *msg_fn)
2589 {
2590 	if (nvme_ctrlr->destruct) {
2591 		return -ENXIO;
2592 	}
2593 
2594 	if (nvme_ctrlr->resetting) {
2595 		NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Unable to perform reset, already in progress.\n");
2596 		return -EBUSY;
2597 	}
2598 
2599 	if (nvme_ctrlr->disabled) {
2600 		NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Unable to perform reset. Controller is disabled.\n");
2601 		return -EALREADY;
2602 	}
2603 
2604 	nvme_ctrlr->resetting = true;
2605 	nvme_ctrlr->dont_retry = true;
2606 
2607 	if (nvme_ctrlr->reconnect_is_delayed) {
2608 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "Reconnect is already scheduled.\n");
2609 		*msg_fn = bdev_nvme_reconnect_ctrlr_now;
2610 		nvme_ctrlr->reconnect_is_delayed = false;
2611 	} else {
2612 		*msg_fn = _bdev_nvme_reset_ctrlr;
2613 		assert(nvme_ctrlr->reset_start_tsc == 0);
2614 	}
2615 
2616 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2617 
2618 	return 0;
2619 }
2620 
2621 static int
2622 bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2623 {
2624 	spdk_msg_fn msg_fn;
2625 	int rc;
2626 
2627 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2628 	rc = bdev_nvme_reset_ctrlr_unsafe(nvme_ctrlr, &msg_fn);
2629 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2630 
2631 	if (rc == 0) {
2632 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2633 	}
2634 
2635 	return rc;
2636 }
2637 
2638 static int
2639 bdev_nvme_enable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2640 {
2641 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2642 	if (nvme_ctrlr->destruct) {
2643 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2644 		return -ENXIO;
2645 	}
2646 
2647 	if (nvme_ctrlr->resetting) {
2648 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2649 		return -EBUSY;
2650 	}
2651 
2652 	if (!nvme_ctrlr->disabled) {
2653 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2654 		return -EALREADY;
2655 	}
2656 
2657 	nvme_ctrlr->disabled = false;
2658 	nvme_ctrlr->resetting = true;
2659 
2660 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2661 
2662 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2663 
2664 	spdk_thread_send_msg(nvme_ctrlr->thread, bdev_nvme_reconnect_ctrlr_now, nvme_ctrlr);
2665 	return 0;
2666 }
2667 
2668 static void
2669 bdev_nvme_disable_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr)
2670 {
2671 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2672 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2673 	enum bdev_nvme_op_after_reset op_after_disable;
2674 
2675 	assert(nvme_ctrlr->thread == spdk_get_thread());
2676 
2677 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2678 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2679 
2680 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2681 
2682 	nvme_ctrlr->resetting = false;
2683 	nvme_ctrlr->dont_retry = false;
2684 
2685 	op_after_disable = bdev_nvme_check_op_after_reset(nvme_ctrlr, true);
2686 
2687 	nvme_ctrlr->disabled = true;
2688 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2689 
2690 	/* Make sure we clear any pending resets before returning. */
2691 	bdev_nvme_complete_pending_resets(nvme_ctrlr, true);
2692 
2693 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2694 
2695 	if (ctrlr_op_cb_fn) {
2696 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, 0);
2697 	}
2698 
2699 	switch (op_after_disable) {
2700 	case OP_COMPLETE_PENDING_DESTRUCT:
2701 		nvme_ctrlr_unregister(nvme_ctrlr);
2702 		break;
2703 	default:
2704 		break;
2705 	}
2706 }
2707 
2708 static void
2709 bdev_nvme_disable_destroy_qpairs_done(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2710 {
2711 	assert(status == 0);
2712 
2713 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2714 		bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2715 	} else {
2716 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_ctrlr_complete);
2717 	}
2718 }
2719 
2720 static void
2721 bdev_nvme_disable_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2722 {
2723 	nvme_ctrlr_for_each_channel(nvme_ctrlr,
2724 				    bdev_nvme_reset_destroy_qpair,
2725 				    NULL,
2726 				    bdev_nvme_disable_destroy_qpairs_done);
2727 }
2728 
2729 static void
2730 _bdev_nvme_cancel_reconnect_and_disable_ctrlr(void *ctx)
2731 {
2732 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2733 
2734 	assert(nvme_ctrlr->resetting == true);
2735 	assert(nvme_ctrlr->thread == spdk_get_thread());
2736 
2737 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2738 
2739 	bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2740 }
2741 
2742 static void
2743 _bdev_nvme_disconnect_and_disable_ctrlr(void *ctx)
2744 {
2745 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2746 
2747 	assert(nvme_ctrlr->resetting == true);
2748 	assert(nvme_ctrlr->thread == spdk_get_thread());
2749 
2750 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2751 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_destroy_qpairs);
2752 	} else {
2753 		bdev_nvme_disable_destroy_qpairs(nvme_ctrlr);
2754 	}
2755 }
2756 
2757 static int
2758 bdev_nvme_disable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2759 {
2760 	spdk_msg_fn msg_fn;
2761 
2762 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2763 	if (nvme_ctrlr->destruct) {
2764 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2765 		return -ENXIO;
2766 	}
2767 
2768 	if (nvme_ctrlr->resetting) {
2769 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2770 		return -EBUSY;
2771 	}
2772 
2773 	if (nvme_ctrlr->disabled) {
2774 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2775 		return -EALREADY;
2776 	}
2777 
2778 	nvme_ctrlr->resetting = true;
2779 	nvme_ctrlr->dont_retry = true;
2780 
2781 	if (nvme_ctrlr->reconnect_is_delayed) {
2782 		msg_fn = _bdev_nvme_cancel_reconnect_and_disable_ctrlr;
2783 		nvme_ctrlr->reconnect_is_delayed = false;
2784 	} else {
2785 		msg_fn = _bdev_nvme_disconnect_and_disable_ctrlr;
2786 	}
2787 
2788 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2789 
2790 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2791 
2792 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2793 	return 0;
2794 }
2795 
2796 static int
2797 nvme_ctrlr_op(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2798 	      bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2799 {
2800 	int rc;
2801 
2802 	switch (op) {
2803 	case NVME_CTRLR_OP_RESET:
2804 		rc = bdev_nvme_reset_ctrlr(nvme_ctrlr);
2805 		break;
2806 	case NVME_CTRLR_OP_ENABLE:
2807 		rc = bdev_nvme_enable_ctrlr(nvme_ctrlr);
2808 		break;
2809 	case NVME_CTRLR_OP_DISABLE:
2810 		rc = bdev_nvme_disable_ctrlr(nvme_ctrlr);
2811 		break;
2812 	default:
2813 		rc = -EINVAL;
2814 		break;
2815 	}
2816 
2817 	if (rc == 0) {
2818 		assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL);
2819 		assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL);
2820 		nvme_ctrlr->ctrlr_op_cb_fn = cb_fn;
2821 		nvme_ctrlr->ctrlr_op_cb_arg = cb_arg;
2822 	}
2823 	return rc;
2824 }
2825 
2826 struct nvme_ctrlr_op_rpc_ctx {
2827 	struct nvme_ctrlr *nvme_ctrlr;
2828 	struct spdk_thread *orig_thread;
2829 	enum nvme_ctrlr_op op;
2830 	int rc;
2831 	bdev_nvme_ctrlr_op_cb cb_fn;
2832 	void *cb_arg;
2833 };
2834 
2835 static void
2836 _nvme_ctrlr_op_rpc_complete(void *_ctx)
2837 {
2838 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2839 
2840 	assert(ctx != NULL);
2841 	assert(ctx->cb_fn != NULL);
2842 
2843 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2844 
2845 	free(ctx);
2846 }
2847 
2848 static void
2849 nvme_ctrlr_op_rpc_complete(void *cb_arg, int rc)
2850 {
2851 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2852 
2853 	ctx->rc = rc;
2854 
2855 	spdk_thread_send_msg(ctx->orig_thread, _nvme_ctrlr_op_rpc_complete, ctx);
2856 }
2857 
2858 void
2859 nvme_ctrlr_op_rpc(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2860 		  bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2861 {
2862 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2863 	int rc;
2864 
2865 	assert(cb_fn != NULL);
2866 
2867 	ctx = calloc(1, sizeof(*ctx));
2868 	if (ctx == NULL) {
2869 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2870 		cb_fn(cb_arg, -ENOMEM);
2871 		return;
2872 	}
2873 
2874 	ctx->orig_thread = spdk_get_thread();
2875 	ctx->cb_fn = cb_fn;
2876 	ctx->cb_arg = cb_arg;
2877 
2878 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_ctrlr_op_rpc_complete, ctx);
2879 	if (rc == 0) {
2880 		return;
2881 	} else if (rc == -EALREADY) {
2882 		rc = 0;
2883 	}
2884 
2885 	nvme_ctrlr_op_rpc_complete(ctx, rc);
2886 }
2887 
2888 static void nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc);
2889 
2890 static void
2891 _nvme_bdev_ctrlr_op_rpc_continue(void *_ctx)
2892 {
2893 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2894 	struct nvme_ctrlr *prev_nvme_ctrlr, *next_nvme_ctrlr;
2895 	int rc;
2896 
2897 	prev_nvme_ctrlr = ctx->nvme_ctrlr;
2898 	ctx->nvme_ctrlr = NULL;
2899 
2900 	if (ctx->rc != 0) {
2901 		goto complete;
2902 	}
2903 
2904 	next_nvme_ctrlr = TAILQ_NEXT(prev_nvme_ctrlr, tailq);
2905 	if (next_nvme_ctrlr == NULL) {
2906 		goto complete;
2907 	}
2908 
2909 	rc = nvme_ctrlr_op(next_nvme_ctrlr, ctx->op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2910 	if (rc == 0) {
2911 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2912 		return;
2913 	} else if (rc == -EALREADY) {
2914 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2915 		rc = 0;
2916 	}
2917 
2918 	ctx->rc = rc;
2919 
2920 complete:
2921 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2922 	free(ctx);
2923 }
2924 
2925 static void
2926 nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc)
2927 {
2928 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2929 
2930 	ctx->rc = rc;
2931 
2932 	spdk_thread_send_msg(ctx->orig_thread, _nvme_bdev_ctrlr_op_rpc_continue, ctx);
2933 }
2934 
2935 void
2936 nvme_bdev_ctrlr_op_rpc(struct nvme_bdev_ctrlr *nbdev_ctrlr, enum nvme_ctrlr_op op,
2937 		       bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2938 {
2939 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2940 	struct nvme_ctrlr *nvme_ctrlr;
2941 	int rc;
2942 
2943 	assert(cb_fn != NULL);
2944 
2945 	ctx = calloc(1, sizeof(*ctx));
2946 	if (ctx == NULL) {
2947 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2948 		cb_fn(cb_arg, -ENOMEM);
2949 		return;
2950 	}
2951 
2952 	ctx->orig_thread = spdk_get_thread();
2953 	ctx->op = op;
2954 	ctx->cb_fn = cb_fn;
2955 	ctx->cb_arg = cb_arg;
2956 
2957 	nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
2958 	assert(nvme_ctrlr != NULL);
2959 
2960 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2961 	if (rc == 0) {
2962 		ctx->nvme_ctrlr = nvme_ctrlr;
2963 		return;
2964 	} else if (rc == -EALREADY) {
2965 		ctx->nvme_ctrlr = nvme_ctrlr;
2966 		rc = 0;
2967 	}
2968 
2969 	nvme_bdev_ctrlr_op_rpc_continue(ctx, rc);
2970 }
2971 
2972 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
2973 
2974 static void
2975 bdev_nvme_unfreeze_bdev_channel_done(struct nvme_bdev *nbdev, void *ctx, int status)
2976 {
2977 	struct nvme_bdev_io *bio = ctx;
2978 	enum spdk_bdev_io_status io_status;
2979 
2980 	if (bio->cpl.cdw0 == 0) {
2981 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2982 	} else {
2983 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
2984 	}
2985 
2986 	NVME_BDEV_INFOLOG(nbdev, "reset_io %p completed, status:%d\n", bio, io_status);
2987 
2988 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
2989 }
2990 
2991 static void
2992 bdev_nvme_unfreeze_bdev_channel(struct nvme_bdev_channel_iter *i,
2993 				struct nvme_bdev *nbdev,
2994 				struct nvme_bdev_channel *nbdev_ch, void *ctx)
2995 {
2996 	bdev_nvme_abort_retry_ios(nbdev_ch);
2997 	nbdev_ch->resetting = false;
2998 
2999 	nvme_bdev_for_each_channel_continue(i, 0);
3000 }
3001 
3002 static void
3003 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
3004 {
3005 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
3006 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
3007 
3008 	/* Abort all queued I/Os for retry. */
3009 	nvme_bdev_for_each_channel(nbdev,
3010 				   bdev_nvme_unfreeze_bdev_channel,
3011 				   bio,
3012 				   bdev_nvme_unfreeze_bdev_channel_done);
3013 }
3014 
3015 static void
3016 _bdev_nvme_reset_io_continue(void *ctx)
3017 {
3018 	struct nvme_bdev_io *bio = ctx;
3019 	struct nvme_io_path *prev_io_path, *next_io_path;
3020 	int rc;
3021 
3022 	prev_io_path = bio->io_path;
3023 	bio->io_path = NULL;
3024 
3025 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
3026 	if (next_io_path == NULL) {
3027 		goto complete;
3028 	}
3029 
3030 	rc = _bdev_nvme_reset_io(next_io_path, bio);
3031 	if (rc == 0) {
3032 		return;
3033 	}
3034 
3035 complete:
3036 	bdev_nvme_reset_io_complete(bio);
3037 }
3038 
3039 static void
3040 bdev_nvme_reset_io_continue(void *cb_arg, int rc)
3041 {
3042 	struct nvme_bdev_io *bio = cb_arg;
3043 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
3044 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
3045 
3046 	NVME_BDEV_INFOLOG(nbdev, "continue reset_io %p, rc:%d\n", bio, rc);
3047 
3048 	/* Reset status is initialized as "failed". Set to "success" once we have at least one
3049 	 * successfully reset nvme_ctrlr.
3050 	 */
3051 	if (rc == 0) {
3052 		bio->cpl.cdw0 = 0;
3053 	}
3054 
3055 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), _bdev_nvme_reset_io_continue, bio);
3056 }
3057 
3058 static int
3059 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
3060 {
3061 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
3062 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
3063 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
3064 	spdk_msg_fn msg_fn;
3065 	int rc;
3066 
3067 	assert(bio->io_path == NULL);
3068 	bio->io_path = io_path;
3069 
3070 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3071 	rc = bdev_nvme_reset_ctrlr_unsafe(nvme_ctrlr, &msg_fn);
3072 	if (rc == -EBUSY) {
3073 		/*
3074 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
3075 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
3076 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
3077 		 */
3078 		TAILQ_INSERT_TAIL(&nvme_ctrlr->pending_resets, bio, retry_link);
3079 	}
3080 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
3081 
3082 	if (rc == 0) {
3083 		assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL);
3084 		assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL);
3085 		nvme_ctrlr->ctrlr_op_cb_fn = bdev_nvme_reset_io_continue;
3086 		nvme_ctrlr->ctrlr_op_cb_arg = bio;
3087 
3088 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
3089 
3090 		NVME_BDEV_INFOLOG(nbdev, "reset_io %p started resetting ctrlr [%s, %u].\n",
3091 				  bio, CTRLR_STRING(nvme_ctrlr), CTRLR_ID(nvme_ctrlr));
3092 	} else if (rc == -EBUSY) {
3093 		rc = 0;
3094 
3095 		NVME_BDEV_INFOLOG(nbdev, "reset_io %p was queued to ctrlr [%s, %u].\n",
3096 				  bio, CTRLR_STRING(nvme_ctrlr), CTRLR_ID(nvme_ctrlr));
3097 	} else {
3098 		NVME_BDEV_INFOLOG(nbdev, "reset_io %p could not reset ctrlr [%s, %u], rc:%d\n",
3099 				  bio, CTRLR_STRING(nvme_ctrlr), CTRLR_ID(nvme_ctrlr), rc);
3100 	}
3101 
3102 	return rc;
3103 }
3104 
3105 static void
3106 bdev_nvme_freeze_bdev_channel_done(struct nvme_bdev *nbdev, void *ctx, int status)
3107 {
3108 	struct nvme_bdev_io *bio = ctx;
3109 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
3110 	struct nvme_bdev_channel *nbdev_ch;
3111 	struct nvme_io_path *io_path;
3112 	int rc;
3113 
3114 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
3115 
3116 	/* Initialize with failed status. With multipath it is enough to have at least one successful
3117 	 * nvme_ctrlr reset. If there is none, reset status will remain failed.
3118 	 */
3119 	bio->cpl.cdw0 = 1;
3120 
3121 	/* Reset all nvme_ctrlrs of a bdev controller sequentially. */
3122 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
3123 	assert(io_path != NULL);
3124 
3125 	rc = _bdev_nvme_reset_io(io_path, bio);
3126 	if (rc != 0) {
3127 		/* If the current nvme_ctrlr is disabled, skip it and move to the next nvme_ctrlr. */
3128 		rc = (rc == -EALREADY) ? 0 : rc;
3129 
3130 		bdev_nvme_reset_io_continue(bio, rc);
3131 	}
3132 }
3133 
3134 static void
3135 bdev_nvme_freeze_bdev_channel(struct nvme_bdev_channel_iter *i,
3136 			      struct nvme_bdev *nbdev,
3137 			      struct nvme_bdev_channel *nbdev_ch, void *ctx)
3138 {
3139 	nbdev_ch->resetting = true;
3140 
3141 	nvme_bdev_for_each_channel_continue(i, 0);
3142 }
3143 
3144 static void
3145 bdev_nvme_reset_io(struct nvme_bdev *nbdev, struct nvme_bdev_io *bio)
3146 {
3147 	NVME_BDEV_INFOLOG(nbdev, "reset_io %p started.\n", bio);
3148 
3149 	nvme_bdev_for_each_channel(nbdev,
3150 				   bdev_nvme_freeze_bdev_channel,
3151 				   bio,
3152 				   bdev_nvme_freeze_bdev_channel_done);
3153 }
3154 
3155 static int
3156 bdev_nvme_failover_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool remove)
3157 {
3158 	if (nvme_ctrlr->destruct) {
3159 		/* Don't bother resetting if the controller is in the process of being destructed. */
3160 		return -ENXIO;
3161 	}
3162 
3163 	if (nvme_ctrlr->resetting) {
3164 		if (!nvme_ctrlr->in_failover) {
3165 			NVME_CTRLR_NOTICELOG(nvme_ctrlr,
3166 					     "Reset is already in progress. Defer failover until reset completes.\n");
3167 
3168 			/* Defer failover until reset completes. */
3169 			nvme_ctrlr->pending_failover = true;
3170 			return -EINPROGRESS;
3171 		} else {
3172 			NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Unable to perform failover, already in progress.\n");
3173 			return -EBUSY;
3174 		}
3175 	}
3176 
3177 	bdev_nvme_failover_trid(nvme_ctrlr, remove, true);
3178 
3179 	if (nvme_ctrlr->reconnect_is_delayed) {
3180 		NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Reconnect is already scheduled.\n");
3181 
3182 		/* We rely on the next reconnect for the failover. */
3183 		return -EALREADY;
3184 	}
3185 
3186 	if (nvme_ctrlr->disabled) {
3187 		NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Controller is disabled.\n");
3188 
3189 		/* We rely on the enablement for the failover. */
3190 		return -EALREADY;
3191 	}
3192 
3193 	nvme_ctrlr->resetting = true;
3194 	nvme_ctrlr->in_failover = true;
3195 
3196 	assert(nvme_ctrlr->reset_start_tsc == 0);
3197 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
3198 
3199 	return 0;
3200 }
3201 
3202 static int
3203 bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
3204 {
3205 	int rc;
3206 
3207 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3208 	rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, false);
3209 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
3210 
3211 	if (rc == 0) {
3212 		spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset_ctrlr, nvme_ctrlr);
3213 	} else if (rc == -EALREADY) {
3214 		rc = 0;
3215 	}
3216 
3217 	return rc;
3218 }
3219 
3220 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
3221 			   uint64_t num_blocks);
3222 
3223 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
3224 				  uint64_t num_blocks);
3225 
3226 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks,
3227 			  uint64_t src_offset_blocks,
3228 			  uint64_t num_blocks);
3229 
3230 static void
3231 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
3232 		     bool success)
3233 {
3234 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3235 	int ret;
3236 
3237 	if (!success) {
3238 		ret = -EINVAL;
3239 		goto exit;
3240 	}
3241 
3242 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
3243 		ret = -ENXIO;
3244 		goto exit;
3245 	}
3246 
3247 	ret = bdev_nvme_readv(bio,
3248 			      bdev_io->u.bdev.iovs,
3249 			      bdev_io->u.bdev.iovcnt,
3250 			      bdev_io->u.bdev.md_buf,
3251 			      bdev_io->u.bdev.num_blocks,
3252 			      bdev_io->u.bdev.offset_blocks,
3253 			      bdev_io->u.bdev.dif_check_flags,
3254 			      bdev_io->u.bdev.memory_domain,
3255 			      bdev_io->u.bdev.memory_domain_ctx,
3256 			      bdev_io->u.bdev.accel_sequence);
3257 
3258 exit:
3259 	if (spdk_unlikely(ret != 0)) {
3260 		bdev_nvme_io_complete(bio, ret);
3261 	}
3262 }
3263 
3264 static inline void
3265 _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
3266 {
3267 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3268 	struct spdk_bdev *bdev = bdev_io->bdev;
3269 	struct nvme_bdev_io *nbdev_io_to_abort;
3270 	int rc = 0;
3271 
3272 	switch (bdev_io->type) {
3273 	case SPDK_BDEV_IO_TYPE_READ:
3274 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
3275 
3276 			rc = bdev_nvme_readv(nbdev_io,
3277 					     bdev_io->u.bdev.iovs,
3278 					     bdev_io->u.bdev.iovcnt,
3279 					     bdev_io->u.bdev.md_buf,
3280 					     bdev_io->u.bdev.num_blocks,
3281 					     bdev_io->u.bdev.offset_blocks,
3282 					     bdev_io->u.bdev.dif_check_flags,
3283 					     bdev_io->u.bdev.memory_domain,
3284 					     bdev_io->u.bdev.memory_domain_ctx,
3285 					     bdev_io->u.bdev.accel_sequence);
3286 		} else {
3287 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
3288 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
3289 			rc = 0;
3290 		}
3291 		break;
3292 	case SPDK_BDEV_IO_TYPE_WRITE:
3293 		rc = bdev_nvme_writev(nbdev_io,
3294 				      bdev_io->u.bdev.iovs,
3295 				      bdev_io->u.bdev.iovcnt,
3296 				      bdev_io->u.bdev.md_buf,
3297 				      bdev_io->u.bdev.num_blocks,
3298 				      bdev_io->u.bdev.offset_blocks,
3299 				      bdev_io->u.bdev.dif_check_flags,
3300 				      bdev_io->u.bdev.memory_domain,
3301 				      bdev_io->u.bdev.memory_domain_ctx,
3302 				      bdev_io->u.bdev.accel_sequence,
3303 				      bdev_io->u.bdev.nvme_cdw12,
3304 				      bdev_io->u.bdev.nvme_cdw13);
3305 		break;
3306 	case SPDK_BDEV_IO_TYPE_COMPARE:
3307 		rc = bdev_nvme_comparev(nbdev_io,
3308 					bdev_io->u.bdev.iovs,
3309 					bdev_io->u.bdev.iovcnt,
3310 					bdev_io->u.bdev.md_buf,
3311 					bdev_io->u.bdev.num_blocks,
3312 					bdev_io->u.bdev.offset_blocks,
3313 					bdev_io->u.bdev.dif_check_flags);
3314 		break;
3315 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3316 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
3317 						   bdev_io->u.bdev.iovs,
3318 						   bdev_io->u.bdev.iovcnt,
3319 						   bdev_io->u.bdev.fused_iovs,
3320 						   bdev_io->u.bdev.fused_iovcnt,
3321 						   bdev_io->u.bdev.md_buf,
3322 						   bdev_io->u.bdev.num_blocks,
3323 						   bdev_io->u.bdev.offset_blocks,
3324 						   bdev_io->u.bdev.dif_check_flags);
3325 		break;
3326 	case SPDK_BDEV_IO_TYPE_UNMAP:
3327 		rc = bdev_nvme_unmap(nbdev_io,
3328 				     bdev_io->u.bdev.offset_blocks,
3329 				     bdev_io->u.bdev.num_blocks);
3330 		break;
3331 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3332 		rc =  bdev_nvme_write_zeroes(nbdev_io,
3333 					     bdev_io->u.bdev.offset_blocks,
3334 					     bdev_io->u.bdev.num_blocks);
3335 		break;
3336 	case SPDK_BDEV_IO_TYPE_RESET:
3337 		nbdev_io->io_path = NULL;
3338 		bdev_nvme_reset_io(bdev->ctxt, nbdev_io);
3339 		return;
3340 
3341 	case SPDK_BDEV_IO_TYPE_FLUSH:
3342 		bdev_nvme_io_complete(nbdev_io, 0);
3343 		return;
3344 
3345 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3346 		rc = bdev_nvme_zone_appendv(nbdev_io,
3347 					    bdev_io->u.bdev.iovs,
3348 					    bdev_io->u.bdev.iovcnt,
3349 					    bdev_io->u.bdev.md_buf,
3350 					    bdev_io->u.bdev.num_blocks,
3351 					    bdev_io->u.bdev.offset_blocks,
3352 					    bdev_io->u.bdev.dif_check_flags);
3353 		break;
3354 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3355 		rc = bdev_nvme_get_zone_info(nbdev_io,
3356 					     bdev_io->u.zone_mgmt.zone_id,
3357 					     bdev_io->u.zone_mgmt.num_zones,
3358 					     bdev_io->u.zone_mgmt.buf);
3359 		break;
3360 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3361 		rc = bdev_nvme_zone_management(nbdev_io,
3362 					       bdev_io->u.zone_mgmt.zone_id,
3363 					       bdev_io->u.zone_mgmt.zone_action);
3364 		break;
3365 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3366 		nbdev_io->io_path = NULL;
3367 		bdev_nvme_admin_passthru(nbdev_ch,
3368 					 nbdev_io,
3369 					 &bdev_io->u.nvme_passthru.cmd,
3370 					 bdev_io->u.nvme_passthru.buf,
3371 					 bdev_io->u.nvme_passthru.nbytes);
3372 		return;
3373 
3374 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3375 		rc = bdev_nvme_io_passthru(nbdev_io,
3376 					   &bdev_io->u.nvme_passthru.cmd,
3377 					   bdev_io->u.nvme_passthru.buf,
3378 					   bdev_io->u.nvme_passthru.nbytes);
3379 		break;
3380 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3381 		rc = bdev_nvme_io_passthru_md(nbdev_io,
3382 					      &bdev_io->u.nvme_passthru.cmd,
3383 					      bdev_io->u.nvme_passthru.buf,
3384 					      bdev_io->u.nvme_passthru.nbytes,
3385 					      bdev_io->u.nvme_passthru.md_buf,
3386 					      bdev_io->u.nvme_passthru.md_len);
3387 		break;
3388 	case SPDK_BDEV_IO_TYPE_NVME_IOV_MD:
3389 		rc = bdev_nvme_iov_passthru_md(nbdev_io,
3390 					       &bdev_io->u.nvme_passthru.cmd,
3391 					       bdev_io->u.nvme_passthru.iovs,
3392 					       bdev_io->u.nvme_passthru.iovcnt,
3393 					       bdev_io->u.nvme_passthru.nbytes,
3394 					       bdev_io->u.nvme_passthru.md_buf,
3395 					       bdev_io->u.nvme_passthru.md_len);
3396 		break;
3397 	case SPDK_BDEV_IO_TYPE_ABORT:
3398 		nbdev_io->io_path = NULL;
3399 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
3400 		bdev_nvme_abort(nbdev_ch,
3401 				nbdev_io,
3402 				nbdev_io_to_abort);
3403 		return;
3404 
3405 	case SPDK_BDEV_IO_TYPE_COPY:
3406 		rc = bdev_nvme_copy(nbdev_io,
3407 				    bdev_io->u.bdev.offset_blocks,
3408 				    bdev_io->u.bdev.copy.src_offset_blocks,
3409 				    bdev_io->u.bdev.num_blocks);
3410 		break;
3411 	default:
3412 		rc = -EINVAL;
3413 		break;
3414 	}
3415 
3416 	if (spdk_unlikely(rc != 0)) {
3417 		bdev_nvme_io_complete(nbdev_io, rc);
3418 	}
3419 }
3420 
3421 static void
3422 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
3423 {
3424 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3425 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3426 
3427 	if (spdk_likely(nbdev_io->submit_tsc == 0)) {
3428 		nbdev_io->submit_tsc = spdk_bdev_io_get_submit_tsc(bdev_io);
3429 	} else {
3430 		/* There are cases where submit_tsc != 0, i.e. retry I/O.
3431 		 * We need to update submit_tsc here.
3432 		 */
3433 		nbdev_io->submit_tsc = spdk_get_ticks();
3434 	}
3435 
3436 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
3437 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
3438 	if (spdk_unlikely(!nbdev_io->io_path)) {
3439 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
3440 			bdev_nvme_io_complete(nbdev_io, -ENXIO);
3441 			return;
3442 		}
3443 
3444 		/* Admin commands do not use the optimal I/O path.
3445 		 * Simply fall through even if it is not found.
3446 		 */
3447 	}
3448 
3449 	_bdev_nvme_submit_request(nbdev_ch, bdev_io);
3450 }
3451 
3452 static bool
3453 bdev_nvme_is_supported_csi(enum spdk_nvme_csi csi)
3454 {
3455 	switch (csi) {
3456 	case SPDK_NVME_CSI_NVM:
3457 		return true;
3458 	case SPDK_NVME_CSI_ZNS:
3459 		return true;
3460 	default:
3461 		return false;
3462 	}
3463 }
3464 
3465 static bool
3466 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
3467 {
3468 	struct nvme_bdev *nbdev = ctx;
3469 	struct nvme_ns *nvme_ns;
3470 	struct spdk_nvme_ns *ns;
3471 	struct spdk_nvme_ctrlr *ctrlr;
3472 	const struct spdk_nvme_ctrlr_data *cdata;
3473 
3474 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
3475 	assert(nvme_ns != NULL);
3476 	ns = nvme_ns->ns;
3477 	if (ns == NULL) {
3478 		return false;
3479 	}
3480 
3481 	if (!bdev_nvme_is_supported_csi(spdk_nvme_ns_get_csi(ns))) {
3482 		switch (io_type) {
3483 		case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3484 		case SPDK_BDEV_IO_TYPE_NVME_IO:
3485 			return true;
3486 
3487 		case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3488 			return spdk_nvme_ns_get_md_size(ns) ? true : false;
3489 
3490 		default:
3491 			return false;
3492 		}
3493 	}
3494 
3495 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3496 
3497 	switch (io_type) {
3498 	case SPDK_BDEV_IO_TYPE_READ:
3499 	case SPDK_BDEV_IO_TYPE_WRITE:
3500 	case SPDK_BDEV_IO_TYPE_RESET:
3501 	case SPDK_BDEV_IO_TYPE_FLUSH:
3502 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3503 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3504 	case SPDK_BDEV_IO_TYPE_ABORT:
3505 		return true;
3506 
3507 	case SPDK_BDEV_IO_TYPE_COMPARE:
3508 		return spdk_nvme_ns_supports_compare(ns);
3509 
3510 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3511 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
3512 
3513 	case SPDK_BDEV_IO_TYPE_UNMAP:
3514 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3515 		return cdata->oncs.dsm;
3516 
3517 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3518 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3519 		return cdata->oncs.write_zeroes;
3520 
3521 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3522 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
3523 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
3524 			return true;
3525 		}
3526 		return false;
3527 
3528 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3529 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3530 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
3531 
3532 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3533 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
3534 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
3535 
3536 	case SPDK_BDEV_IO_TYPE_COPY:
3537 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3538 		return cdata->oncs.copy;
3539 
3540 	default:
3541 		return false;
3542 	}
3543 }
3544 
3545 static int
3546 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
3547 {
3548 	struct nvme_qpair *nvme_qpair;
3549 	struct spdk_io_channel *pg_ch;
3550 	int rc;
3551 
3552 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
3553 	if (!nvme_qpair) {
3554 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to alloc nvme_qpair.\n");
3555 		return -1;
3556 	}
3557 
3558 	TAILQ_INIT(&nvme_qpair->io_path_list);
3559 
3560 	nvme_qpair->ctrlr = nvme_ctrlr;
3561 	nvme_qpair->ctrlr_ch = ctrlr_ch;
3562 
3563 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
3564 	if (!pg_ch) {
3565 		free(nvme_qpair);
3566 		return -1;
3567 	}
3568 
3569 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
3570 
3571 #ifdef SPDK_CONFIG_VTUNE
3572 	nvme_qpair->group->collect_spin_stat = true;
3573 #else
3574 	nvme_qpair->group->collect_spin_stat = false;
3575 #endif
3576 
3577 	if (!nvme_ctrlr->disabled) {
3578 		/* If a nvme_ctrlr is disabled, don't try to create qpair for it. Qpair will
3579 		 * be created when it's enabled.
3580 		 */
3581 		rc = bdev_nvme_create_qpair(nvme_qpair);
3582 		if (rc != 0) {
3583 			/* nvme_ctrlr can't create IO qpair if connection is down.
3584 			 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
3585 			 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
3586 			 * submitted IO will be queued until IO qpair is successfully created.
3587 			 *
3588 			 * Hence, if both are satisfied, ignore the failure.
3589 			 */
3590 			if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
3591 				spdk_put_io_channel(pg_ch);
3592 				free(nvme_qpair);
3593 				return rc;
3594 			}
3595 		}
3596 	}
3597 
3598 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3599 
3600 	ctrlr_ch->qpair = nvme_qpair;
3601 
3602 	nvme_ctrlr_get_ref(nvme_ctrlr);
3603 
3604 	return 0;
3605 }
3606 
3607 static int
3608 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3609 {
3610 	struct nvme_ctrlr *nvme_ctrlr = io_device;
3611 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3612 
3613 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
3614 }
3615 
3616 static void
3617 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
3618 {
3619 	struct nvme_io_path *io_path, *next;
3620 
3621 	assert(nvme_qpair->group != NULL);
3622 
3623 	TAILQ_FOREACH_SAFE(io_path, &nvme_qpair->io_path_list, tailq, next) {
3624 		TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
3625 		nvme_io_path_free(io_path);
3626 	}
3627 
3628 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3629 
3630 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
3631 
3632 	nvme_ctrlr_put_ref(nvme_qpair->ctrlr);
3633 
3634 	free(nvme_qpair);
3635 }
3636 
3637 static void
3638 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3639 {
3640 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3641 	struct nvme_qpair *nvme_qpair;
3642 
3643 	nvme_qpair = ctrlr_ch->qpair;
3644 	assert(nvme_qpair != NULL);
3645 
3646 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
3647 
3648 	if (nvme_qpair->qpair != NULL) {
3649 		/* Always try to disconnect the qpair, even if a reset is in progress.
3650 		 * The qpair may have been created after the reset process started.
3651 		 */
3652 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
3653 		if (ctrlr_ch->reset_iter) {
3654 			/* Skip current ctrlr_channel in a full reset sequence because
3655 			 * it is being deleted now.
3656 			 */
3657 			nvme_ctrlr_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
3658 		}
3659 
3660 		/* We cannot release a reference to the poll group now.
3661 		 * The qpair may be disconnected asynchronously later.
3662 		 * We need to poll it until it is actually disconnected.
3663 		 * Just detach the qpair from the deleting ctrlr_channel.
3664 		 */
3665 		nvme_qpair->ctrlr_ch = NULL;
3666 	} else {
3667 		assert(ctrlr_ch->reset_iter == NULL);
3668 
3669 		nvme_qpair_delete(nvme_qpair);
3670 	}
3671 }
3672 
3673 static inline struct spdk_io_channel *
3674 bdev_nvme_get_accel_channel(struct nvme_poll_group *group)
3675 {
3676 	if (spdk_unlikely(!group->accel_channel)) {
3677 		group->accel_channel = spdk_accel_get_io_channel();
3678 		if (!group->accel_channel) {
3679 			SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
3680 				    group);
3681 			return NULL;
3682 		}
3683 	}
3684 
3685 	return group->accel_channel;
3686 }
3687 
3688 static void
3689 bdev_nvme_finish_sequence(void *seq, spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3690 {
3691 	spdk_accel_sequence_finish(seq, cb_fn, cb_arg);
3692 }
3693 
3694 static void
3695 bdev_nvme_abort_sequence(void *seq)
3696 {
3697 	spdk_accel_sequence_abort(seq);
3698 }
3699 
3700 static void
3701 bdev_nvme_reverse_sequence(void *seq)
3702 {
3703 	spdk_accel_sequence_reverse(seq);
3704 }
3705 
3706 static int
3707 bdev_nvme_append_crc32c(void *ctx, void **seq, uint32_t *dst, struct iovec *iovs, uint32_t iovcnt,
3708 			struct spdk_memory_domain *domain, void *domain_ctx, uint32_t seed,
3709 			spdk_nvme_accel_step_cb cb_fn, void *cb_arg)
3710 {
3711 	struct spdk_io_channel *ch;
3712 	struct nvme_poll_group *group = ctx;
3713 
3714 	ch = bdev_nvme_get_accel_channel(group);
3715 	if (spdk_unlikely(ch == NULL)) {
3716 		return -ENOMEM;
3717 	}
3718 
3719 	return spdk_accel_append_crc32c((struct spdk_accel_sequence **)seq, ch, dst, iovs, iovcnt,
3720 					domain, domain_ctx, seed, cb_fn, cb_arg);
3721 }
3722 
3723 static int
3724 bdev_nvme_append_copy(void *ctx, void **seq, struct iovec *dst_iovs, uint32_t dst_iovcnt,
3725 		      struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
3726 		      struct iovec *src_iovs, uint32_t src_iovcnt,
3727 		      struct spdk_memory_domain *src_domain, void *src_domain_ctx,
3728 		      spdk_nvme_accel_step_cb cb_fn, void *cb_arg)
3729 {
3730 	struct spdk_io_channel *ch;
3731 	struct nvme_poll_group *group = ctx;
3732 
3733 	ch = bdev_nvme_get_accel_channel(group);
3734 	if (spdk_unlikely(ch == NULL)) {
3735 		return -ENOMEM;
3736 	}
3737 
3738 	return spdk_accel_append_copy((struct spdk_accel_sequence **)seq, ch,
3739 				      dst_iovs, dst_iovcnt, dst_domain, dst_domain_ctx,
3740 				      src_iovs, src_iovcnt, src_domain, src_domain_ctx,
3741 				      cb_fn, cb_arg);
3742 }
3743 
3744 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
3745 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
3746 	.append_crc32c		= bdev_nvme_append_crc32c,
3747 	.append_copy		= bdev_nvme_append_copy,
3748 	.finish_sequence	= bdev_nvme_finish_sequence,
3749 	.reverse_sequence	= bdev_nvme_reverse_sequence,
3750 	.abort_sequence		= bdev_nvme_abort_sequence,
3751 };
3752 
3753 static void
3754 bdev_nvme_poll_group_interrupt_cb(struct spdk_nvme_poll_group *group, void *ctx)
3755 {
3756 	bdev_nvme_poll(ctx);
3757 }
3758 
3759 static int
3760 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
3761 {
3762 	struct nvme_poll_group *group = ctx_buf;
3763 	struct spdk_fd_group *fgrp;
3764 	uint64_t period;
3765 	int rc;
3766 
3767 	TAILQ_INIT(&group->qpair_list);
3768 
3769 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
3770 	if (group->group == NULL) {
3771 		return -1;
3772 	}
3773 
3774 	period = spdk_interrupt_mode_is_enabled() ? 0 : g_opts.nvme_ioq_poll_period_us;
3775 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, period);
3776 
3777 	if (group->poller == NULL) {
3778 		spdk_nvme_poll_group_destroy(group->group);
3779 		return -1;
3780 	}
3781 
3782 	if (spdk_interrupt_mode_is_enabled()) {
3783 		spdk_poller_register_interrupt(group->poller, NULL, NULL);
3784 
3785 		fgrp = spdk_nvme_poll_group_get_fd_group(group->group);
3786 		if (fgrp == NULL) {
3787 			spdk_nvme_poll_group_destroy(group->group);
3788 			return -1;
3789 		}
3790 
3791 		rc = spdk_nvme_poll_group_set_interrupt_callback(group->group,
3792 				bdev_nvme_poll_group_interrupt_cb, group);
3793 		if (rc != 0) {
3794 			spdk_nvme_poll_group_destroy(group->group);
3795 			return -1;
3796 		}
3797 
3798 		group->intr = spdk_interrupt_register_fd_group(fgrp, "bdev_nvme_interrupt");
3799 		if (!group->intr) {
3800 			spdk_nvme_poll_group_destroy(group->group);
3801 			return -1;
3802 		}
3803 	}
3804 
3805 	return 0;
3806 }
3807 
3808 static void
3809 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
3810 {
3811 	struct nvme_poll_group *group = ctx_buf;
3812 
3813 	assert(TAILQ_EMPTY(&group->qpair_list));
3814 
3815 	if (group->accel_channel) {
3816 		spdk_put_io_channel(group->accel_channel);
3817 	}
3818 
3819 	if (spdk_interrupt_mode_is_enabled()) {
3820 		spdk_interrupt_unregister(&group->intr);
3821 	}
3822 
3823 	spdk_poller_unregister(&group->poller);
3824 	if (spdk_nvme_poll_group_destroy(group->group)) {
3825 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
3826 		assert(false);
3827 	}
3828 }
3829 
3830 static struct spdk_io_channel *
3831 bdev_nvme_get_io_channel(void *ctx)
3832 {
3833 	struct nvme_bdev *nbdev = ctx;
3834 
3835 	return spdk_get_io_channel(nbdev);
3836 }
3837 
3838 static void *
3839 bdev_nvme_get_module_ctx(void *ctx)
3840 {
3841 	struct nvme_bdev *nbdev = ctx;
3842 	struct nvme_ns *nvme_ns;
3843 
3844 	if (!nbdev || nbdev->disk.module != &nvme_if) {
3845 		return NULL;
3846 	}
3847 
3848 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
3849 	if (!nvme_ns) {
3850 		return NULL;
3851 	}
3852 
3853 	return nvme_ns->ns;
3854 }
3855 
3856 static const char *
3857 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
3858 {
3859 	switch (ana_state) {
3860 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3861 		return "optimized";
3862 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3863 		return "non_optimized";
3864 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3865 		return "inaccessible";
3866 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
3867 		return "persistent_loss";
3868 	case SPDK_NVME_ANA_CHANGE_STATE:
3869 		return "change";
3870 	default:
3871 		return NULL;
3872 	}
3873 }
3874 
3875 static int
3876 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
3877 {
3878 	struct spdk_memory_domain **_domains = NULL;
3879 	struct nvme_bdev *nbdev = ctx;
3880 	struct nvme_ns *nvme_ns;
3881 	int i = 0, _array_size = array_size;
3882 	int rc = 0;
3883 
3884 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3885 		if (domains && array_size >= i) {
3886 			_domains = &domains[i];
3887 		} else {
3888 			_domains = NULL;
3889 		}
3890 		rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size);
3891 		if (rc > 0) {
3892 			i += rc;
3893 			if (_array_size >= rc) {
3894 				_array_size -= rc;
3895 			} else {
3896 				_array_size = 0;
3897 			}
3898 		} else if (rc < 0) {
3899 			return rc;
3900 		}
3901 	}
3902 
3903 	return i;
3904 }
3905 
3906 static const char *
3907 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
3908 {
3909 	if (nvme_ctrlr->destruct) {
3910 		return "deleting";
3911 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
3912 		return "failed";
3913 	} else if (nvme_ctrlr->resetting) {
3914 		return "resetting";
3915 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
3916 		return "reconnect_is_delayed";
3917 	} else if (nvme_ctrlr->disabled) {
3918 		return "disabled";
3919 	} else {
3920 		return "enabled";
3921 	}
3922 }
3923 
3924 void
3925 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
3926 {
3927 	struct spdk_nvme_transport_id *trid;
3928 	const struct spdk_nvme_ctrlr_opts *opts;
3929 	const struct spdk_nvme_ctrlr_data *cdata;
3930 	struct nvme_path_id *path_id;
3931 	int32_t numa_id;
3932 
3933 	spdk_json_write_object_begin(w);
3934 
3935 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
3936 
3937 #ifdef SPDK_CONFIG_NVME_CUSE
3938 	size_t cuse_name_size = 128;
3939 	char cuse_name[cuse_name_size];
3940 
3941 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
3942 	if (rc == 0) {
3943 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3944 	}
3945 #endif
3946 	trid = &nvme_ctrlr->active_path_id->trid;
3947 	spdk_json_write_named_object_begin(w, "trid");
3948 	nvme_bdev_dump_trid_json(trid, w);
3949 	spdk_json_write_object_end(w);
3950 
3951 	path_id = TAILQ_NEXT(nvme_ctrlr->active_path_id, link);
3952 	if (path_id != NULL) {
3953 		spdk_json_write_named_array_begin(w, "alternate_trids");
3954 		do {
3955 			trid = &path_id->trid;
3956 			spdk_json_write_object_begin(w);
3957 			nvme_bdev_dump_trid_json(trid, w);
3958 			spdk_json_write_object_end(w);
3959 
3960 			path_id = TAILQ_NEXT(path_id, link);
3961 		} while (path_id != NULL);
3962 		spdk_json_write_array_end(w);
3963 	}
3964 
3965 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
3966 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3967 
3968 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
3969 	spdk_json_write_named_object_begin(w, "host");
3970 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
3971 	spdk_json_write_named_string(w, "addr", opts->src_addr);
3972 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
3973 	spdk_json_write_object_end(w);
3974 
3975 	numa_id = spdk_nvme_ctrlr_get_numa_id(nvme_ctrlr->ctrlr);
3976 	if (numa_id != SPDK_ENV_NUMA_ID_ANY) {
3977 		spdk_json_write_named_uint32(w, "numa_id", numa_id);
3978 	}
3979 	spdk_json_write_object_end(w);
3980 }
3981 
3982 static void
3983 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
3984 			 struct nvme_ns *nvme_ns)
3985 {
3986 	struct spdk_nvme_ns *ns;
3987 	struct spdk_nvme_ctrlr *ctrlr;
3988 	const struct spdk_nvme_ctrlr_data *cdata;
3989 	const struct spdk_nvme_transport_id *trid;
3990 	union spdk_nvme_vs_register vs;
3991 	const struct spdk_nvme_ns_data *nsdata;
3992 	char buf[128];
3993 
3994 	ns = nvme_ns->ns;
3995 	if (ns == NULL) {
3996 		return;
3997 	}
3998 
3999 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
4000 
4001 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4002 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
4003 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
4004 
4005 	spdk_json_write_object_begin(w);
4006 
4007 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
4008 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
4009 	}
4010 
4011 	spdk_json_write_named_object_begin(w, "trid");
4012 
4013 	nvme_bdev_dump_trid_json(trid, w);
4014 
4015 	spdk_json_write_object_end(w);
4016 
4017 #ifdef SPDK_CONFIG_NVME_CUSE
4018 	size_t cuse_name_size = 128;
4019 	char cuse_name[cuse_name_size];
4020 
4021 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
4022 					    cuse_name, &cuse_name_size);
4023 	if (rc == 0) {
4024 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
4025 	}
4026 #endif
4027 
4028 	spdk_json_write_named_object_begin(w, "ctrlr_data");
4029 
4030 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
4031 
4032 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
4033 
4034 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
4035 	spdk_str_trim(buf);
4036 	spdk_json_write_named_string(w, "model_number", buf);
4037 
4038 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
4039 	spdk_str_trim(buf);
4040 	spdk_json_write_named_string(w, "serial_number", buf);
4041 
4042 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
4043 	spdk_str_trim(buf);
4044 	spdk_json_write_named_string(w, "firmware_revision", buf);
4045 
4046 	if (cdata->subnqn[0] != '\0') {
4047 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
4048 	}
4049 
4050 	spdk_json_write_named_object_begin(w, "oacs");
4051 
4052 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
4053 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
4054 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
4055 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
4056 
4057 	spdk_json_write_object_end(w);
4058 
4059 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
4060 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
4061 
4062 	spdk_json_write_object_end(w);
4063 
4064 	spdk_json_write_named_object_begin(w, "vs");
4065 
4066 	spdk_json_write_name(w, "nvme_version");
4067 	if (vs.bits.ter) {
4068 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
4069 	} else {
4070 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
4071 	}
4072 
4073 	spdk_json_write_object_end(w);
4074 
4075 	nsdata = spdk_nvme_ns_get_data(ns);
4076 
4077 	spdk_json_write_named_object_begin(w, "ns_data");
4078 
4079 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
4080 
4081 	if (cdata->cmic.ana_reporting) {
4082 		spdk_json_write_named_string(w, "ana_state",
4083 					     _nvme_ana_state_str(nvme_ns->ana_state));
4084 	}
4085 
4086 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
4087 
4088 	spdk_json_write_object_end(w);
4089 
4090 	if (cdata->oacs.security) {
4091 		spdk_json_write_named_object_begin(w, "security");
4092 
4093 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
4094 
4095 		spdk_json_write_object_end(w);
4096 	}
4097 
4098 	spdk_json_write_object_end(w);
4099 }
4100 
4101 static const char *
4102 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
4103 {
4104 	switch (nbdev->mp_policy) {
4105 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
4106 		return "active_passive";
4107 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
4108 		return "active_active";
4109 	default:
4110 		assert(false);
4111 		return "invalid";
4112 	}
4113 }
4114 
4115 static const char *
4116 nvme_bdev_get_mp_selector_str(struct nvme_bdev *nbdev)
4117 {
4118 	switch (nbdev->mp_selector) {
4119 	case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN:
4120 		return "round_robin";
4121 	case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH:
4122 		return "queue_depth";
4123 	default:
4124 		assert(false);
4125 		return "invalid";
4126 	}
4127 }
4128 
4129 static int
4130 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
4131 {
4132 	struct nvme_bdev *nbdev = ctx;
4133 	struct nvme_ns *nvme_ns;
4134 
4135 	pthread_mutex_lock(&nbdev->mutex);
4136 	spdk_json_write_named_array_begin(w, "nvme");
4137 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
4138 		nvme_namespace_info_json(w, nvme_ns);
4139 	}
4140 	spdk_json_write_array_end(w);
4141 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nbdev));
4142 	if (nbdev->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
4143 		spdk_json_write_named_string(w, "selector", nvme_bdev_get_mp_selector_str(nbdev));
4144 		if (nbdev->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
4145 			spdk_json_write_named_uint32(w, "rr_min_io", nbdev->rr_min_io);
4146 		}
4147 	}
4148 	pthread_mutex_unlock(&nbdev->mutex);
4149 
4150 	return 0;
4151 }
4152 
4153 static void
4154 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
4155 {
4156 	/* No config per bdev needed */
4157 }
4158 
4159 static uint64_t
4160 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
4161 {
4162 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
4163 	struct nvme_io_path *io_path;
4164 	struct nvme_poll_group *group;
4165 	uint64_t spin_time = 0;
4166 
4167 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
4168 		group = io_path->qpair->group;
4169 
4170 		if (!group || !group->collect_spin_stat) {
4171 			continue;
4172 		}
4173 
4174 		if (group->end_ticks != 0) {
4175 			group->spin_ticks += (group->end_ticks - group->start_ticks);
4176 			group->end_ticks = 0;
4177 		}
4178 
4179 		spin_time += group->spin_ticks;
4180 		group->start_ticks = 0;
4181 		group->spin_ticks = 0;
4182 	}
4183 
4184 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
4185 }
4186 
4187 static void
4188 bdev_nvme_reset_device_stat(void *ctx)
4189 {
4190 	struct nvme_bdev *nbdev = ctx;
4191 
4192 	if (nbdev->err_stat != NULL) {
4193 		memset(nbdev->err_stat, 0, sizeof(struct nvme_error_stat));
4194 	}
4195 }
4196 
4197 /* JSON string should be lowercases and underscore delimited string. */
4198 static void
4199 bdev_nvme_format_nvme_status(char *dst, const char *src)
4200 {
4201 	char tmp[256];
4202 
4203 	spdk_strcpy_replace(dst, 256, src, " - ", "_");
4204 	spdk_strcpy_replace(tmp, 256, dst, "-", "_");
4205 	spdk_strcpy_replace(dst, 256, tmp, " ", "_");
4206 	spdk_strlwr(dst);
4207 }
4208 
4209 static void
4210 bdev_nvme_dump_device_stat_json(void *ctx, struct spdk_json_write_ctx *w)
4211 {
4212 	struct nvme_bdev *nbdev = ctx;
4213 	struct spdk_nvme_status status = {};
4214 	uint16_t sct, sc;
4215 	char status_json[256];
4216 	const char *status_str;
4217 
4218 	if (nbdev->err_stat == NULL) {
4219 		return;
4220 	}
4221 
4222 	spdk_json_write_named_object_begin(w, "nvme_error");
4223 
4224 	spdk_json_write_named_object_begin(w, "status_type");
4225 	for (sct = 0; sct < 8; sct++) {
4226 		if (nbdev->err_stat->status_type[sct] == 0) {
4227 			continue;
4228 		}
4229 		status.sct = sct;
4230 
4231 		status_str = spdk_nvme_cpl_get_status_type_string(&status);
4232 		assert(status_str != NULL);
4233 		bdev_nvme_format_nvme_status(status_json, status_str);
4234 
4235 		spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status_type[sct]);
4236 	}
4237 	spdk_json_write_object_end(w);
4238 
4239 	spdk_json_write_named_object_begin(w, "status_code");
4240 	for (sct = 0; sct < 4; sct++) {
4241 		status.sct = sct;
4242 		for (sc = 0; sc < 256; sc++) {
4243 			if (nbdev->err_stat->status[sct][sc] == 0) {
4244 				continue;
4245 			}
4246 			status.sc = sc;
4247 
4248 			status_str = spdk_nvme_cpl_get_status_string(&status);
4249 			assert(status_str != NULL);
4250 			bdev_nvme_format_nvme_status(status_json, status_str);
4251 
4252 			spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status[sct][sc]);
4253 		}
4254 	}
4255 	spdk_json_write_object_end(w);
4256 
4257 	spdk_json_write_object_end(w);
4258 }
4259 
4260 static bool
4261 bdev_nvme_accel_sequence_supported(void *ctx, enum spdk_bdev_io_type type)
4262 {
4263 	struct nvme_bdev *nbdev = ctx;
4264 	struct nvme_ns *nvme_ns;
4265 	struct spdk_nvme_ctrlr *ctrlr;
4266 
4267 	if (!g_opts.allow_accel_sequence) {
4268 		return false;
4269 	}
4270 
4271 	switch (type) {
4272 	case SPDK_BDEV_IO_TYPE_WRITE:
4273 	case SPDK_BDEV_IO_TYPE_READ:
4274 		break;
4275 	default:
4276 		return false;
4277 	}
4278 
4279 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
4280 	assert(nvme_ns != NULL);
4281 
4282 	ctrlr = nvme_ns->ctrlr->ctrlr;
4283 	assert(ctrlr != NULL);
4284 
4285 	return spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ACCEL_SEQUENCE_SUPPORTED;
4286 }
4287 
4288 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
4289 	.destruct			= bdev_nvme_destruct,
4290 	.submit_request			= bdev_nvme_submit_request,
4291 	.io_type_supported		= bdev_nvme_io_type_supported,
4292 	.get_io_channel			= bdev_nvme_get_io_channel,
4293 	.dump_info_json			= bdev_nvme_dump_info_json,
4294 	.write_config_json		= bdev_nvme_write_config_json,
4295 	.get_spin_time			= bdev_nvme_get_spin_time,
4296 	.get_module_ctx			= bdev_nvme_get_module_ctx,
4297 	.get_memory_domains		= bdev_nvme_get_memory_domains,
4298 	.accel_sequence_supported	= bdev_nvme_accel_sequence_supported,
4299 	.reset_device_stat		= bdev_nvme_reset_device_stat,
4300 	.dump_device_stat_json		= bdev_nvme_dump_device_stat_json,
4301 };
4302 
4303 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
4304 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
4305 
4306 static int
4307 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
4308 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
4309 {
4310 	struct spdk_nvme_ana_group_descriptor *copied_desc;
4311 	uint8_t *orig_desc;
4312 	uint32_t i, desc_size, copy_len;
4313 	int rc = 0;
4314 
4315 	if (nvme_ctrlr->ana_log_page == NULL) {
4316 		return -EINVAL;
4317 	}
4318 
4319 	copied_desc = nvme_ctrlr->copied_ana_desc;
4320 
4321 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
4322 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
4323 
4324 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
4325 		memcpy(copied_desc, orig_desc, copy_len);
4326 
4327 		rc = cb_fn(copied_desc, cb_arg);
4328 		if (rc != 0) {
4329 			break;
4330 		}
4331 
4332 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
4333 			    copied_desc->num_of_nsid * sizeof(uint32_t);
4334 		orig_desc += desc_size;
4335 		copy_len -= desc_size;
4336 	}
4337 
4338 	return rc;
4339 }
4340 
4341 static int
4342 nvme_ns_ana_transition_timedout(void *ctx)
4343 {
4344 	struct nvme_ns *nvme_ns = ctx;
4345 
4346 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4347 	nvme_ns->ana_transition_timedout = true;
4348 
4349 	return SPDK_POLLER_BUSY;
4350 }
4351 
4352 static void
4353 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
4354 		       const struct spdk_nvme_ana_group_descriptor *desc)
4355 {
4356 	const struct spdk_nvme_ctrlr_data *cdata;
4357 
4358 	nvme_ns->ana_group_id = desc->ana_group_id;
4359 	nvme_ns->ana_state = desc->ana_state;
4360 	nvme_ns->ana_state_updating = false;
4361 
4362 	switch (nvme_ns->ana_state) {
4363 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
4364 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
4365 		nvme_ns->ana_transition_timedout = false;
4366 		spdk_poller_unregister(&nvme_ns->anatt_timer);
4367 		break;
4368 
4369 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
4370 	case SPDK_NVME_ANA_CHANGE_STATE:
4371 		if (nvme_ns->anatt_timer != NULL) {
4372 			break;
4373 		}
4374 
4375 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
4376 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
4377 				       nvme_ns,
4378 				       cdata->anatt * SPDK_SEC_TO_USEC);
4379 		break;
4380 	default:
4381 		break;
4382 	}
4383 }
4384 
4385 static int
4386 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
4387 {
4388 	struct nvme_ns *nvme_ns = cb_arg;
4389 	uint32_t i;
4390 
4391 	assert(nvme_ns->ns != NULL);
4392 
4393 	for (i = 0; i < desc->num_of_nsid; i++) {
4394 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
4395 			continue;
4396 		}
4397 
4398 		_nvme_ns_set_ana_state(nvme_ns, desc);
4399 		return 1;
4400 	}
4401 
4402 	return 0;
4403 }
4404 
4405 static int
4406 nvme_generate_uuid(const char *sn, uint32_t nsid, struct spdk_uuid *uuid)
4407 {
4408 	int rc = 0;
4409 	struct spdk_uuid new_uuid, namespace_uuid;
4410 	char merged_str[SPDK_NVME_CTRLR_SN_LEN + NSID_STR_LEN + 1] = {'\0'};
4411 	/* This namespace UUID was generated using uuid_generate() method. */
4412 	const char *namespace_str = {"edaed2de-24bc-4b07-b559-f47ecbe730fd"};
4413 	int size;
4414 
4415 	assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN);
4416 
4417 	spdk_uuid_set_null(&new_uuid);
4418 	spdk_uuid_set_null(&namespace_uuid);
4419 
4420 	size = snprintf(merged_str, sizeof(merged_str), "%s%"PRIu32, sn, nsid);
4421 	if (size <= 0 || (unsigned long)size >= sizeof(merged_str)) {
4422 		return -EINVAL;
4423 	}
4424 
4425 	spdk_uuid_parse(&namespace_uuid, namespace_str);
4426 
4427 	rc = spdk_uuid_generate_sha1(&new_uuid, &namespace_uuid, merged_str, size);
4428 	if (rc == 0) {
4429 		memcpy(uuid, &new_uuid, sizeof(struct spdk_uuid));
4430 	}
4431 
4432 	return rc;
4433 }
4434 
4435 static int
4436 nbdev_create(struct spdk_bdev *disk, const char *base_name,
4437 	     struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
4438 	     struct spdk_bdev_nvme_ctrlr_opts *bdev_opts, void *ctx)
4439 {
4440 	const struct spdk_uuid		*uuid;
4441 	const uint8_t *nguid;
4442 	const struct spdk_nvme_ctrlr_data *cdata;
4443 	const struct spdk_nvme_ns_data	*nsdata;
4444 	const struct spdk_nvme_ctrlr_opts *opts;
4445 	enum spdk_nvme_csi		csi;
4446 	uint32_t atomic_bs, phys_bs, bs;
4447 	char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'};
4448 	int rc;
4449 
4450 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4451 	csi = spdk_nvme_ns_get_csi(ns);
4452 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
4453 
4454 	switch (csi) {
4455 	case SPDK_NVME_CSI_NVM:
4456 		disk->product_name = "NVMe disk";
4457 		break;
4458 	case SPDK_NVME_CSI_ZNS:
4459 		disk->product_name = "NVMe ZNS disk";
4460 		disk->zoned = true;
4461 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
4462 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
4463 					     spdk_nvme_ns_get_extended_sector_size(ns);
4464 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
4465 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
4466 		break;
4467 	default:
4468 		if (bdev_opts->allow_unrecognized_csi) {
4469 			disk->product_name = "NVMe Passthrough disk";
4470 			break;
4471 		}
4472 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
4473 		return -ENOTSUP;
4474 	}
4475 
4476 	nguid = spdk_nvme_ns_get_nguid(ns);
4477 	if (!nguid) {
4478 		uuid = spdk_nvme_ns_get_uuid(ns);
4479 		if (uuid) {
4480 			disk->uuid = *uuid;
4481 		} else if (g_opts.generate_uuids) {
4482 			spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0');
4483 			rc = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns), &disk->uuid);
4484 			if (rc < 0) {
4485 				SPDK_ERRLOG("UUID generation failed (%s)\n", spdk_strerror(-rc));
4486 				return rc;
4487 			}
4488 		}
4489 	} else {
4490 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
4491 	}
4492 
4493 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
4494 	if (!disk->name) {
4495 		return -ENOMEM;
4496 	}
4497 
4498 	disk->write_cache = 0;
4499 	if (cdata->vwc.present) {
4500 		/* Enable if the Volatile Write Cache exists */
4501 		disk->write_cache = 1;
4502 	}
4503 	if (cdata->oncs.write_zeroes) {
4504 		disk->max_write_zeroes = UINT16_MAX + 1;
4505 	}
4506 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
4507 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
4508 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
4509 	disk->ctratt.raw = cdata->ctratt.raw;
4510 	disk->nsid = spdk_nvme_ns_get_id(ns);
4511 	/* NVMe driver will split one request into multiple requests
4512 	 * based on MDTS and stripe boundary, the bdev layer will use
4513 	 * max_segment_size and max_num_segments to split one big IO
4514 	 * into multiple requests, then small request can't run out
4515 	 * of NVMe internal requests data structure.
4516 	 */
4517 	if (opts && opts->io_queue_requests) {
4518 		disk->max_num_segments = opts->io_queue_requests / 2;
4519 	}
4520 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
4521 		/* The nvme driver will try to split I/O that have too many
4522 		 * SGEs, but it doesn't work if that last SGE doesn't end on
4523 		 * an aggregate total that is block aligned. The bdev layer has
4524 		 * a more robust splitting framework, so use that instead for
4525 		 * this case. (See issue #3269.)
4526 		 */
4527 		uint16_t max_sges = spdk_nvme_ctrlr_get_max_sges(ctrlr);
4528 
4529 		if (disk->max_num_segments == 0) {
4530 			disk->max_num_segments = max_sges;
4531 		} else {
4532 			disk->max_num_segments = spdk_min(disk->max_num_segments, max_sges);
4533 		}
4534 	}
4535 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
4536 
4537 	nsdata = spdk_nvme_ns_get_data(ns);
4538 	bs = spdk_nvme_ns_get_sector_size(ns);
4539 	atomic_bs = bs;
4540 	phys_bs = bs;
4541 	if (nsdata->nabo == 0) {
4542 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
4543 			atomic_bs = bs * (1 + nsdata->nawupf);
4544 		} else {
4545 			atomic_bs = bs * (1 + cdata->awupf);
4546 		}
4547 	}
4548 	if (nsdata->nsfeat.optperf) {
4549 		phys_bs = bs * (1 + nsdata->npwg);
4550 	}
4551 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
4552 
4553 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
4554 	if (disk->md_len != 0) {
4555 		disk->md_interleave = nsdata->flbas.extended;
4556 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
4557 		if (disk->dif_type != SPDK_DIF_DISABLE) {
4558 			disk->dif_is_head_of_md = nsdata->dps.md_start;
4559 			disk->dif_check_flags = bdev_opts->prchk_flags;
4560 			disk->dif_pi_format = (enum spdk_dif_pi_format)spdk_nvme_ns_get_pi_format(ns);
4561 		}
4562 	}
4563 
4564 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
4565 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
4566 		disk->acwu = 0;
4567 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
4568 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
4569 	} else {
4570 		disk->acwu = cdata->acwu + 1; /* 0-based */
4571 	}
4572 
4573 	if (cdata->oncs.copy) {
4574 		/* For now bdev interface allows only single segment copy */
4575 		disk->max_copy = nsdata->mssrl;
4576 	}
4577 
4578 	disk->ctxt = ctx;
4579 	disk->fn_table = &nvmelib_fn_table;
4580 	disk->module = &nvme_if;
4581 
4582 	disk->numa.id_valid = 1;
4583 	disk->numa.id = spdk_nvme_ctrlr_get_numa_id(ctrlr);
4584 
4585 	return 0;
4586 }
4587 
4588 static struct nvme_bdev *
4589 nvme_bdev_alloc(void)
4590 {
4591 	struct nvme_bdev *nbdev;
4592 	int rc;
4593 
4594 	nbdev = calloc(1, sizeof(*nbdev));
4595 	if (!nbdev) {
4596 		SPDK_ERRLOG("nbdev calloc() failed\n");
4597 		return NULL;
4598 	}
4599 
4600 	if (g_opts.nvme_error_stat) {
4601 		nbdev->err_stat = calloc(1, sizeof(struct nvme_error_stat));
4602 		if (!nbdev->err_stat) {
4603 			SPDK_ERRLOG("err_stat calloc() failed\n");
4604 			free(nbdev);
4605 			return NULL;
4606 		}
4607 	}
4608 
4609 	rc = pthread_mutex_init(&nbdev->mutex, NULL);
4610 	if (rc != 0) {
4611 		free(nbdev->err_stat);
4612 		free(nbdev);
4613 		return NULL;
4614 	}
4615 
4616 	nbdev->ref = 1;
4617 	nbdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
4618 	nbdev->mp_selector = BDEV_NVME_MP_SELECTOR_ROUND_ROBIN;
4619 	nbdev->rr_min_io = UINT32_MAX;
4620 	TAILQ_INIT(&nbdev->nvme_ns_list);
4621 
4622 	return nbdev;
4623 }
4624 
4625 static int
4626 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4627 {
4628 	struct nvme_bdev *nbdev;
4629 	struct nvme_bdev_ctrlr *nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
4630 	int rc;
4631 
4632 	nbdev = nvme_bdev_alloc();
4633 	if (nbdev == NULL) {
4634 		SPDK_ERRLOG("Failed to allocate NVMe bdev\n");
4635 		return -ENOMEM;
4636 	}
4637 
4638 	nbdev->opal = nvme_ctrlr->opal_dev != NULL;
4639 
4640 	rc = nbdev_create(&nbdev->disk, nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
4641 			  nvme_ns->ns, &nvme_ctrlr->opts, nbdev);
4642 	if (rc != 0) {
4643 		SPDK_ERRLOG("Failed to create NVMe disk\n");
4644 		nvme_bdev_free(nbdev);
4645 		return rc;
4646 	}
4647 
4648 	spdk_io_device_register(nbdev,
4649 				bdev_nvme_create_bdev_channel_cb,
4650 				bdev_nvme_destroy_bdev_channel_cb,
4651 				sizeof(struct nvme_bdev_channel),
4652 				nbdev->disk.name);
4653 
4654 	nvme_ns->bdev = nbdev;
4655 	nbdev->nsid = nvme_ns->id;
4656 	TAILQ_INSERT_TAIL(&nbdev->nvme_ns_list, nvme_ns, tailq);
4657 
4658 	pthread_mutex_lock(&g_bdev_nvme_mutex);
4659 
4660 	nbdev->nbdev_ctrlr = nbdev_ctrlr;
4661 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->bdevs, nbdev, tailq);
4662 
4663 	rc = spdk_bdev_register(&nbdev->disk);
4664 	if (rc != 0) {
4665 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
4666 		spdk_io_device_unregister(nbdev, NULL);
4667 		nvme_ns->bdev = NULL;
4668 
4669 		TAILQ_REMOVE(&nbdev_ctrlr->bdevs, nbdev, tailq);
4670 
4671 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
4672 
4673 		nvme_bdev_free(nbdev);
4674 		return rc;
4675 	}
4676 
4677 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
4678 
4679 	return 0;
4680 }
4681 
4682 static bool
4683 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
4684 {
4685 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
4686 	const struct spdk_uuid *uuid1, *uuid2;
4687 
4688 	nsdata1 = spdk_nvme_ns_get_data(ns1);
4689 	nsdata2 = spdk_nvme_ns_get_data(ns2);
4690 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
4691 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
4692 
4693 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
4694 	       nsdata1->eui64 == nsdata2->eui64 &&
4695 	       ((uuid1 == NULL && uuid2 == NULL) ||
4696 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
4697 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
4698 }
4699 
4700 static bool
4701 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4702 		 struct spdk_nvme_ctrlr_opts *opts)
4703 {
4704 	struct nvme_probe_skip_entry *entry;
4705 
4706 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
4707 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4708 			return false;
4709 		}
4710 	}
4711 
4712 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
4713 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
4714 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
4715 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
4716 	opts->disable_read_ana_log_page = true;
4717 
4718 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
4719 
4720 	return true;
4721 }
4722 
4723 static void
4724 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
4725 {
4726 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4727 
4728 	if (spdk_nvme_cpl_is_error(cpl)) {
4729 		NVME_CTRLR_WARNLOG(nvme_ctrlr, "Abort failed. Resetting controller. sc is %u, sct is %u.\n",
4730 				   cpl->status.sc, cpl->status.sct);
4731 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4732 	} else if (cpl->cdw0 & 0x1) {
4733 		NVME_CTRLR_WARNLOG(nvme_ctrlr, "Specified command could not be aborted.\n");
4734 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4735 	}
4736 }
4737 
4738 static void
4739 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
4740 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
4741 {
4742 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4743 	union spdk_nvme_csts_register csts;
4744 	int rc;
4745 
4746 	assert(nvme_ctrlr->ctrlr == ctrlr);
4747 
4748 	NVME_CTRLR_WARNLOG(nvme_ctrlr, "Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n",
4749 			   ctrlr, qpair, cid);
4750 
4751 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
4752 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
4753 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
4754 	 * completion recursively.
4755 	 */
4756 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
4757 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
4758 		if (csts.bits.cfs) {
4759 			NVME_CTRLR_ERRLOG(nvme_ctrlr, "Controller Fatal Status, reset required\n");
4760 			bdev_nvme_reset_ctrlr(nvme_ctrlr);
4761 			return;
4762 		}
4763 	}
4764 
4765 	switch (g_opts.action_on_timeout) {
4766 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
4767 		if (qpair) {
4768 			/* Don't send abort to ctrlr when ctrlr is not available. */
4769 			pthread_mutex_lock(&nvme_ctrlr->mutex);
4770 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
4771 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
4772 				NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Quit abort. Ctrlr is not available.\n");
4773 				return;
4774 			}
4775 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4776 
4777 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
4778 						       nvme_abort_cpl, nvme_ctrlr);
4779 			if (rc == 0) {
4780 				return;
4781 			}
4782 
4783 			NVME_CTRLR_ERRLOG(nvme_ctrlr, "Unable to send abort. Resetting, rc is %d.\n", rc);
4784 		}
4785 
4786 	/* FALLTHROUGH */
4787 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
4788 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4789 		break;
4790 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
4791 		NVME_CTRLR_DEBUGLOG(nvme_ctrlr, "No action for nvme controller timeout.\n");
4792 		break;
4793 	default:
4794 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "An invalid timeout action value is found.\n");
4795 		break;
4796 	}
4797 }
4798 
4799 static struct nvme_ns *
4800 nvme_ns_alloc(void)
4801 {
4802 	struct nvme_ns *nvme_ns;
4803 
4804 	nvme_ns = calloc(1, sizeof(struct nvme_ns));
4805 	if (nvme_ns == NULL) {
4806 		return NULL;
4807 	}
4808 
4809 	if (g_opts.io_path_stat) {
4810 		nvme_ns->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
4811 		if (nvme_ns->stat == NULL) {
4812 			free(nvme_ns);
4813 			return NULL;
4814 		}
4815 		spdk_bdev_reset_io_stat(nvme_ns->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
4816 	}
4817 
4818 	return nvme_ns;
4819 }
4820 
4821 static void
4822 nvme_ns_free(struct nvme_ns *nvme_ns)
4823 {
4824 	free(nvme_ns->stat);
4825 	free(nvme_ns);
4826 }
4827 
4828 static void
4829 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
4830 {
4831 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4832 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
4833 
4834 	if (rc == 0) {
4835 		nvme_ns->probe_ctx = NULL;
4836 		nvme_ctrlr_get_ref(nvme_ctrlr);
4837 	} else {
4838 		pthread_mutex_lock(&nvme_ctrlr->mutex);
4839 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4840 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4841 
4842 		nvme_ns_free(nvme_ns);
4843 	}
4844 
4845 	if (ctx) {
4846 		ctx->populates_in_progress--;
4847 		if (ctx->populates_in_progress == 0) {
4848 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4849 		}
4850 	}
4851 }
4852 
4853 static void
4854 bdev_nvme_add_io_path(struct nvme_bdev_channel_iter *i,
4855 		      struct nvme_bdev *nbdev,
4856 		      struct nvme_bdev_channel *nbdev_ch, void *ctx)
4857 {
4858 	struct nvme_ns *nvme_ns = ctx;
4859 	int rc;
4860 
4861 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
4862 	if (rc != 0) {
4863 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
4864 	}
4865 
4866 	nvme_bdev_for_each_channel_continue(i, rc);
4867 }
4868 
4869 static void
4870 bdev_nvme_delete_io_path(struct nvme_bdev_channel_iter *i,
4871 			 struct nvme_bdev *nbdev,
4872 			 struct nvme_bdev_channel *nbdev_ch, void *ctx)
4873 {
4874 	struct nvme_ns *nvme_ns = ctx;
4875 	struct nvme_io_path *io_path;
4876 
4877 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
4878 	if (io_path != NULL) {
4879 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
4880 	}
4881 
4882 	nvme_bdev_for_each_channel_continue(i, 0);
4883 }
4884 
4885 static void
4886 bdev_nvme_add_io_path_failed(struct nvme_bdev *nbdev, void *ctx, int status)
4887 {
4888 	struct nvme_ns *nvme_ns = ctx;
4889 
4890 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
4891 }
4892 
4893 static void
4894 bdev_nvme_add_io_path_done(struct nvme_bdev *nbdev, void *ctx, int status)
4895 {
4896 	struct nvme_ns *nvme_ns = ctx;
4897 
4898 	if (status == 0) {
4899 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
4900 	} else {
4901 		/* Delete the added io_paths and fail populating the namespace. */
4902 		nvme_bdev_for_each_channel(nbdev,
4903 					   bdev_nvme_delete_io_path,
4904 					   nvme_ns,
4905 					   bdev_nvme_add_io_path_failed);
4906 	}
4907 }
4908 
4909 static int
4910 nvme_bdev_add_ns(struct nvme_bdev *nbdev, struct nvme_ns *nvme_ns)
4911 {
4912 	struct nvme_ns *tmp_ns;
4913 	const struct spdk_nvme_ns_data *nsdata;
4914 
4915 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
4916 	if (!nsdata->nmic.can_share) {
4917 		SPDK_ERRLOG("Namespace cannot be shared.\n");
4918 		return -EINVAL;
4919 	}
4920 
4921 	pthread_mutex_lock(&nbdev->mutex);
4922 
4923 	tmp_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
4924 	assert(tmp_ns != NULL);
4925 
4926 	if (tmp_ns->ns != NULL && !bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
4927 		pthread_mutex_unlock(&nbdev->mutex);
4928 		SPDK_ERRLOG("Namespaces are not identical.\n");
4929 		return -EINVAL;
4930 	}
4931 
4932 	nbdev->ref++;
4933 	TAILQ_INSERT_TAIL(&nbdev->nvme_ns_list, nvme_ns, tailq);
4934 	nvme_ns->bdev = nbdev;
4935 
4936 	pthread_mutex_unlock(&nbdev->mutex);
4937 
4938 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
4939 	nvme_bdev_for_each_channel(nbdev,
4940 				   bdev_nvme_add_io_path,
4941 				   nvme_ns,
4942 				   bdev_nvme_add_io_path_done);
4943 
4944 	return 0;
4945 }
4946 
4947 static void
4948 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4949 {
4950 	struct spdk_nvme_ns	*ns;
4951 	struct nvme_bdev	*bdev;
4952 	int			rc = 0;
4953 
4954 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
4955 	if (!ns) {
4956 		NVME_CTRLR_DEBUGLOG(nvme_ctrlr, "Invalid NS %d\n", nvme_ns->id);
4957 		rc = -EINVAL;
4958 		goto done;
4959 	}
4960 
4961 	nvme_ns->ns = ns;
4962 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4963 
4964 	if (nvme_ctrlr->ana_log_page != NULL) {
4965 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
4966 	}
4967 
4968 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
4969 	if (bdev == NULL) {
4970 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
4971 	} else {
4972 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
4973 		if (rc == 0) {
4974 			return;
4975 		}
4976 	}
4977 done:
4978 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
4979 }
4980 
4981 static void
4982 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
4983 {
4984 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4985 
4986 	assert(nvme_ctrlr != NULL);
4987 
4988 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4989 
4990 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4991 
4992 	if (nvme_ns->bdev != NULL) {
4993 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4994 		return;
4995 	}
4996 
4997 	nvme_ns_free(nvme_ns);
4998 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4999 
5000 	nvme_ctrlr_put_ref(nvme_ctrlr);
5001 }
5002 
5003 static void
5004 bdev_nvme_delete_io_path_done(struct nvme_bdev *nbdev, void *ctx, int status)
5005 {
5006 	struct nvme_ns *nvme_ns = ctx;
5007 
5008 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
5009 }
5010 
5011 static void
5012 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
5013 {
5014 	struct nvme_bdev *nbdev;
5015 
5016 	if (nvme_ns->depopulating) {
5017 		/* Maybe we received 2 AENs in a row */
5018 		return;
5019 	}
5020 	nvme_ns->depopulating = true;
5021 
5022 	spdk_poller_unregister(&nvme_ns->anatt_timer);
5023 
5024 	nbdev = nvme_ns->bdev;
5025 	if (nbdev != NULL) {
5026 		pthread_mutex_lock(&nbdev->mutex);
5027 
5028 		assert(nbdev->ref > 0);
5029 		nbdev->ref--;
5030 		if (nbdev->ref == 0) {
5031 			pthread_mutex_unlock(&nbdev->mutex);
5032 
5033 			spdk_bdev_unregister(&nbdev->disk, NULL, NULL);
5034 		} else {
5035 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
5036 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
5037 			 * and clear nvme_ns->bdev here.
5038 			 */
5039 			TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
5040 
5041 			pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
5042 			nvme_ns->bdev = NULL;
5043 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
5044 
5045 			pthread_mutex_unlock(&nbdev->mutex);
5046 
5047 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
5048 			 * we call depopulate_namespace_done() to avoid use-after-free.
5049 			 */
5050 			nvme_bdev_for_each_channel(nbdev,
5051 						   bdev_nvme_delete_io_path,
5052 						   nvme_ns,
5053 						   bdev_nvme_delete_io_path_done);
5054 			return;
5055 		}
5056 	}
5057 
5058 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
5059 }
5060 
5061 static void
5062 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
5063 			       struct nvme_async_probe_ctx *ctx)
5064 {
5065 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
5066 	struct nvme_ns	*nvme_ns, *next;
5067 	struct spdk_nvme_ns	*ns;
5068 	struct nvme_bdev	*nbdev;
5069 	uint32_t		nsid;
5070 	int			rc;
5071 	uint64_t		num_sectors;
5072 
5073 	if (ctx) {
5074 		/* Initialize this count to 1 to handle the populate functions
5075 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
5076 		 */
5077 		ctx->populates_in_progress = 1;
5078 	}
5079 
5080 	/* First loop over our existing namespaces and see if they have been
5081 	 * removed. */
5082 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5083 	while (nvme_ns != NULL) {
5084 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5085 
5086 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
5087 			/* NS is still there or added again. Its attributes may have changed. */
5088 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
5089 			if (nvme_ns->ns != ns) {
5090 				assert(nvme_ns->ns == NULL);
5091 				nvme_ns->ns = ns;
5092 				NVME_CTRLR_DEBUGLOG(nvme_ctrlr, "NSID %u was added\n", nvme_ns->id);
5093 			}
5094 
5095 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
5096 			nbdev = nvme_ns->bdev;
5097 			assert(nbdev != NULL);
5098 			if (nbdev->disk.blockcnt != num_sectors) {
5099 				NVME_CTRLR_NOTICELOG(nvme_ctrlr,
5100 						     "NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
5101 						     nvme_ns->id,
5102 						     nbdev->disk.name,
5103 						     nbdev->disk.blockcnt,
5104 						     num_sectors);
5105 				rc = spdk_bdev_notify_blockcnt_change(&nbdev->disk, num_sectors);
5106 				if (rc != 0) {
5107 					NVME_CTRLR_ERRLOG(nvme_ctrlr,
5108 							  "Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
5109 							  nbdev->disk.name, rc);
5110 				}
5111 			}
5112 		} else {
5113 			/* Namespace was removed */
5114 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
5115 		}
5116 
5117 		nvme_ns = next;
5118 	}
5119 
5120 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
5121 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
5122 	while (nsid != 0) {
5123 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
5124 
5125 		if (nvme_ns == NULL) {
5126 			/* Found a new one */
5127 			nvme_ns = nvme_ns_alloc();
5128 			if (nvme_ns == NULL) {
5129 				NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to allocate namespace\n");
5130 				/* This just fails to attach the namespace. It may work on a future attempt. */
5131 				continue;
5132 			}
5133 
5134 			nvme_ns->id = nsid;
5135 			nvme_ns->ctrlr = nvme_ctrlr;
5136 
5137 			nvme_ns->bdev = NULL;
5138 
5139 			if (ctx) {
5140 				ctx->populates_in_progress++;
5141 			}
5142 			nvme_ns->probe_ctx = ctx;
5143 
5144 			pthread_mutex_lock(&nvme_ctrlr->mutex);
5145 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
5146 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
5147 
5148 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
5149 		}
5150 
5151 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
5152 	}
5153 
5154 	if (ctx) {
5155 		/* Decrement this count now that the loop is over to account
5156 		 * for the one we started with.  If the count is then 0, we
5157 		 * know any populate_namespace functions completed immediately,
5158 		 * so we'll kick the callback here.
5159 		 */
5160 		ctx->populates_in_progress--;
5161 		if (ctx->populates_in_progress == 0) {
5162 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
5163 		}
5164 	}
5165 
5166 }
5167 
5168 static void
5169 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
5170 {
5171 	struct nvme_ns *nvme_ns, *tmp;
5172 
5173 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
5174 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
5175 	}
5176 }
5177 
5178 static uint32_t
5179 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
5180 {
5181 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5182 	const struct spdk_nvme_ctrlr_data *cdata;
5183 	uint32_t nsid, ns_count = 0;
5184 
5185 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5186 
5187 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
5188 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
5189 		ns_count++;
5190 	}
5191 
5192 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5193 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
5194 	       sizeof(uint32_t);
5195 }
5196 
5197 static int
5198 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
5199 			  void *cb_arg)
5200 {
5201 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
5202 	struct nvme_ns *nvme_ns;
5203 	uint32_t i, nsid;
5204 
5205 	for (i = 0; i < desc->num_of_nsid; i++) {
5206 		nsid = desc->nsid[i];
5207 		if (nsid == 0) {
5208 			continue;
5209 		}
5210 
5211 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
5212 
5213 		if (nvme_ns == NULL) {
5214 			/* Target told us that an inactive namespace had an ANA change */
5215 			continue;
5216 		}
5217 
5218 		_nvme_ns_set_ana_state(nvme_ns, desc);
5219 	}
5220 
5221 	return 0;
5222 }
5223 
5224 static void
5225 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
5226 {
5227 	struct nvme_ns *nvme_ns;
5228 
5229 	spdk_free(nvme_ctrlr->ana_log_page);
5230 	nvme_ctrlr->ana_log_page = NULL;
5231 
5232 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5233 	     nvme_ns != NULL;
5234 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
5235 		nvme_ns->ana_state_updating = false;
5236 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
5237 	}
5238 }
5239 
5240 static void
5241 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
5242 {
5243 	struct nvme_ctrlr *nvme_ctrlr = ctx;
5244 
5245 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
5246 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
5247 					     nvme_ctrlr);
5248 	} else {
5249 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
5250 	}
5251 
5252 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5253 
5254 	assert(nvme_ctrlr->ana_log_page_updating == true);
5255 	nvme_ctrlr->ana_log_page_updating = false;
5256 
5257 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
5258 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
5259 
5260 		nvme_ctrlr_unregister(nvme_ctrlr);
5261 	} else {
5262 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
5263 
5264 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
5265 	}
5266 }
5267 
5268 static int
5269 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
5270 {
5271 	uint32_t ana_log_page_size;
5272 	int rc;
5273 
5274 	if (nvme_ctrlr->ana_log_page == NULL) {
5275 		return -EINVAL;
5276 	}
5277 
5278 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5279 
5280 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5281 		NVME_CTRLR_ERRLOG(nvme_ctrlr,
5282 				  "ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5283 				  ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5284 		return -EINVAL;
5285 	}
5286 
5287 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5288 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
5289 	    nvme_ctrlr->ana_log_page_updating) {
5290 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
5291 		return -EBUSY;
5292 	}
5293 
5294 	nvme_ctrlr->ana_log_page_updating = true;
5295 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5296 
5297 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
5298 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5299 					      SPDK_NVME_GLOBAL_NS_TAG,
5300 					      nvme_ctrlr->ana_log_page,
5301 					      ana_log_page_size, 0,
5302 					      nvme_ctrlr_read_ana_log_page_done,
5303 					      nvme_ctrlr);
5304 	if (rc != 0) {
5305 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
5306 	}
5307 
5308 	return rc;
5309 }
5310 
5311 static void
5312 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
5313 {
5314 }
5315 
5316 struct bdev_nvme_set_preferred_path_ctx {
5317 	struct spdk_bdev_desc *desc;
5318 	struct nvme_ns *nvme_ns;
5319 	bdev_nvme_set_preferred_path_cb cb_fn;
5320 	void *cb_arg;
5321 };
5322 
5323 static void
5324 bdev_nvme_set_preferred_path_done(struct nvme_bdev *nbdev, void *_ctx, int status)
5325 {
5326 	struct bdev_nvme_set_preferred_path_ctx *ctx = _ctx;
5327 
5328 	assert(ctx != NULL);
5329 	assert(ctx->desc != NULL);
5330 	assert(ctx->cb_fn != NULL);
5331 
5332 	spdk_bdev_close(ctx->desc);
5333 
5334 	ctx->cb_fn(ctx->cb_arg, status);
5335 
5336 	free(ctx);
5337 }
5338 
5339 static void
5340 _bdev_nvme_set_preferred_path(struct nvme_bdev_channel_iter *i,
5341 			      struct nvme_bdev *nbdev,
5342 			      struct nvme_bdev_channel *nbdev_ch, void *_ctx)
5343 {
5344 	struct bdev_nvme_set_preferred_path_ctx *ctx = _ctx;
5345 	struct nvme_io_path *io_path, *prev;
5346 
5347 	prev = NULL;
5348 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
5349 		if (io_path->nvme_ns == ctx->nvme_ns) {
5350 			break;
5351 		}
5352 		prev = io_path;
5353 	}
5354 
5355 	if (io_path != NULL) {
5356 		if (prev != NULL) {
5357 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
5358 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
5359 		}
5360 
5361 		/* We can set io_path to nbdev_ch->current_io_path directly here.
5362 		 * However, it needs to be conditional. To simplify the code,
5363 		 * just clear nbdev_ch->current_io_path and let find_io_path()
5364 		 * fill it.
5365 		 *
5366 		 * Automatic failback may be disabled. Hence even if the io_path is
5367 		 * already at the head, clear nbdev_ch->current_io_path.
5368 		 */
5369 		bdev_nvme_clear_current_io_path(nbdev_ch);
5370 	}
5371 
5372 	nvme_bdev_for_each_channel_continue(i, 0);
5373 }
5374 
5375 static struct nvme_ns *
5376 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
5377 {
5378 	struct nvme_ns *nvme_ns, *prev;
5379 	const struct spdk_nvme_ctrlr_data *cdata;
5380 
5381 	prev = NULL;
5382 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
5383 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
5384 
5385 		if (cdata->cntlid == cntlid) {
5386 			break;
5387 		}
5388 		prev = nvme_ns;
5389 	}
5390 
5391 	if (nvme_ns != NULL && prev != NULL) {
5392 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
5393 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
5394 	}
5395 
5396 	return nvme_ns;
5397 }
5398 
5399 /* This function supports only multipath mode. There is only a single I/O path
5400  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
5401  * head of the I/O path list for each NVMe bdev channel.
5402  *
5403  * NVMe bdev channel may be acquired after completing this function. move the
5404  * matched namespace to the head of the namespace list for the NVMe bdev too.
5405  */
5406 void
5407 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
5408 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
5409 {
5410 	struct bdev_nvme_set_preferred_path_ctx *ctx;
5411 	struct spdk_bdev *bdev;
5412 	struct nvme_bdev *nbdev;
5413 	int rc = 0;
5414 
5415 	assert(cb_fn != NULL);
5416 
5417 	ctx = calloc(1, sizeof(*ctx));
5418 	if (ctx == NULL) {
5419 		SPDK_ERRLOG("Failed to alloc context.\n");
5420 		rc = -ENOMEM;
5421 		goto err_alloc;
5422 	}
5423 
5424 	ctx->cb_fn = cb_fn;
5425 	ctx->cb_arg = cb_arg;
5426 
5427 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5428 	if (rc != 0) {
5429 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5430 		goto err_open;
5431 	}
5432 
5433 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5434 
5435 	if (bdev->module != &nvme_if) {
5436 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5437 		rc = -ENODEV;
5438 		goto err_bdev;
5439 	}
5440 
5441 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5442 
5443 	pthread_mutex_lock(&nbdev->mutex);
5444 
5445 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
5446 	if (ctx->nvme_ns == NULL) {
5447 		pthread_mutex_unlock(&nbdev->mutex);
5448 
5449 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
5450 		rc = -ENODEV;
5451 		goto err_bdev;
5452 	}
5453 
5454 	pthread_mutex_unlock(&nbdev->mutex);
5455 
5456 	nvme_bdev_for_each_channel(nbdev,
5457 				   _bdev_nvme_set_preferred_path,
5458 				   ctx,
5459 				   bdev_nvme_set_preferred_path_done);
5460 	return;
5461 
5462 err_bdev:
5463 	spdk_bdev_close(ctx->desc);
5464 err_open:
5465 	free(ctx);
5466 err_alloc:
5467 	cb_fn(cb_arg, rc);
5468 }
5469 
5470 struct bdev_nvme_set_multipath_policy_ctx {
5471 	struct spdk_bdev_desc *desc;
5472 	spdk_bdev_nvme_set_multipath_policy_cb cb_fn;
5473 	void *cb_arg;
5474 };
5475 
5476 static void
5477 bdev_nvme_set_multipath_policy_done(struct nvme_bdev *nbdev, void *_ctx, int status)
5478 {
5479 	struct bdev_nvme_set_multipath_policy_ctx *ctx = _ctx;
5480 
5481 	assert(ctx != NULL);
5482 	assert(ctx->desc != NULL);
5483 	assert(ctx->cb_fn != NULL);
5484 
5485 	spdk_bdev_close(ctx->desc);
5486 
5487 	ctx->cb_fn(ctx->cb_arg, status);
5488 
5489 	free(ctx);
5490 }
5491 
5492 static void
5493 _bdev_nvme_set_multipath_policy(struct nvme_bdev_channel_iter *i,
5494 				struct nvme_bdev *nbdev,
5495 				struct nvme_bdev_channel *nbdev_ch, void *ctx)
5496 {
5497 	nbdev_ch->mp_policy = nbdev->mp_policy;
5498 	nbdev_ch->mp_selector = nbdev->mp_selector;
5499 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
5500 	bdev_nvme_clear_current_io_path(nbdev_ch);
5501 
5502 	nvme_bdev_for_each_channel_continue(i, 0);
5503 }
5504 
5505 void
5506 spdk_bdev_nvme_set_multipath_policy(const char *name, enum spdk_bdev_nvme_multipath_policy policy,
5507 				    enum spdk_bdev_nvme_multipath_selector selector, uint32_t rr_min_io,
5508 				    spdk_bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
5509 {
5510 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
5511 	struct spdk_bdev *bdev;
5512 	struct nvme_bdev *nbdev;
5513 	int rc;
5514 
5515 	assert(cb_fn != NULL);
5516 
5517 	switch (policy) {
5518 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
5519 		break;
5520 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
5521 		switch (selector) {
5522 		case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN:
5523 			if (rr_min_io == UINT32_MAX) {
5524 				rr_min_io = 1;
5525 			} else if (rr_min_io == 0) {
5526 				rc = -EINVAL;
5527 				goto exit;
5528 			}
5529 			break;
5530 		case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH:
5531 			break;
5532 		default:
5533 			rc = -EINVAL;
5534 			goto exit;
5535 		}
5536 		break;
5537 	default:
5538 		rc = -EINVAL;
5539 		goto exit;
5540 	}
5541 
5542 	ctx = calloc(1, sizeof(*ctx));
5543 	if (ctx == NULL) {
5544 		SPDK_ERRLOG("Failed to alloc context.\n");
5545 		rc = -ENOMEM;
5546 		goto exit;
5547 	}
5548 
5549 	ctx->cb_fn = cb_fn;
5550 	ctx->cb_arg = cb_arg;
5551 
5552 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5553 	if (rc != 0) {
5554 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5555 		rc = -ENODEV;
5556 		goto err_open;
5557 	}
5558 
5559 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5560 	if (bdev->module != &nvme_if) {
5561 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5562 		rc = -ENODEV;
5563 		goto err_module;
5564 	}
5565 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5566 
5567 	pthread_mutex_lock(&nbdev->mutex);
5568 	nbdev->mp_policy = policy;
5569 	nbdev->mp_selector = selector;
5570 	nbdev->rr_min_io = rr_min_io;
5571 	pthread_mutex_unlock(&nbdev->mutex);
5572 
5573 	nvme_bdev_for_each_channel(nbdev,
5574 				   _bdev_nvme_set_multipath_policy,
5575 				   ctx,
5576 				   bdev_nvme_set_multipath_policy_done);
5577 	return;
5578 
5579 err_module:
5580 	spdk_bdev_close(ctx->desc);
5581 err_open:
5582 	free(ctx);
5583 exit:
5584 	cb_fn(cb_arg, rc);
5585 }
5586 
5587 static void
5588 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5589 {
5590 	struct nvme_ctrlr *nvme_ctrlr		= arg;
5591 	union spdk_nvme_async_event_completion	event;
5592 
5593 	if (spdk_nvme_cpl_is_error(cpl)) {
5594 		SPDK_WARNLOG("AER request execute failed\n");
5595 		return;
5596 	}
5597 
5598 	event.raw = cpl->cdw0;
5599 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5600 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
5601 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
5602 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5603 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
5604 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
5605 	}
5606 }
5607 
5608 static void
5609 free_nvme_async_probe_ctx(struct nvme_async_probe_ctx *ctx)
5610 {
5611 	spdk_keyring_put_key(ctx->drv_opts.tls_psk);
5612 	spdk_keyring_put_key(ctx->drv_opts.dhchap_key);
5613 	spdk_keyring_put_key(ctx->drv_opts.dhchap_ctrlr_key);
5614 	free(ctx->base_name);
5615 	free(ctx);
5616 }
5617 
5618 static void
5619 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, int rc)
5620 {
5621 	if (ctx->cb_fn) {
5622 		ctx->cb_fn(ctx->cb_ctx, ctx->reported_bdevs, rc);
5623 	}
5624 
5625 	ctx->namespaces_populated = true;
5626 	if (ctx->probe_done) {
5627 		/* The probe was already completed, so we need to free the context
5628 		 * here.  This can happen for cases like OCSSD, where we need to
5629 		 * send additional commands to the SSD after attach.
5630 		 */
5631 		free_nvme_async_probe_ctx(ctx);
5632 	}
5633 }
5634 
5635 static int
5636 bdev_nvme_remove_poller(void *ctx)
5637 {
5638 	struct spdk_nvme_transport_id trid_pcie;
5639 
5640 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5641 		spdk_poller_unregister(&g_hotplug_poller);
5642 		return SPDK_POLLER_IDLE;
5643 	}
5644 
5645 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5646 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5647 
5648 	if (spdk_nvme_scan_attached(&trid_pcie)) {
5649 		SPDK_ERRLOG_RATELIMIT("spdk_nvme_scan_attached() failed\n");
5650 	}
5651 
5652 	return SPDK_POLLER_BUSY;
5653 }
5654 
5655 static void
5656 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
5657 		       struct nvme_async_probe_ctx *ctx)
5658 {
5659 	struct spdk_nvme_transport_id *trid = &nvme_ctrlr->active_path_id->trid;
5660 
5661 	if (spdk_nvme_trtype_is_fabrics(trid->trtype)) {
5662 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr was created to %s:%s\n",
5663 				   trid->traddr, trid->trsvcid);
5664 	} else {
5665 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr was created\n");
5666 	}
5667 
5668 	spdk_io_device_register(nvme_ctrlr,
5669 				bdev_nvme_create_ctrlr_channel_cb,
5670 				bdev_nvme_destroy_ctrlr_channel_cb,
5671 				sizeof(struct nvme_ctrlr_channel),
5672 				nvme_ctrlr->nbdev_ctrlr->name);
5673 
5674 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
5675 
5676 	if (g_hotplug_poller == NULL) {
5677 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_remove_poller, NULL,
5678 							NVME_HOTPLUG_POLL_PERIOD_DEFAULT);
5679 	}
5680 }
5681 
5682 static void
5683 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
5684 {
5685 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
5686 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
5687 
5688 	nvme_ctrlr->probe_ctx = NULL;
5689 
5690 	if (spdk_nvme_cpl_is_error(cpl)) {
5691 		nvme_ctrlr_delete(nvme_ctrlr);
5692 
5693 		if (ctx != NULL) {
5694 			ctx->reported_bdevs = 0;
5695 			populate_namespaces_cb(ctx, -1);
5696 		}
5697 		return;
5698 	}
5699 
5700 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5701 }
5702 
5703 static int
5704 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
5705 			     struct nvme_async_probe_ctx *ctx)
5706 {
5707 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5708 	const struct spdk_nvme_ctrlr_data *cdata;
5709 	uint32_t ana_log_page_size;
5710 
5711 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5712 
5713 	/* Set buffer size enough to include maximum number of allowed namespaces. */
5714 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5715 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
5716 			    sizeof(uint32_t);
5717 
5718 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
5719 						SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
5720 	if (nvme_ctrlr->ana_log_page == NULL) {
5721 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "could not allocate ANA log page buffer\n");
5722 		return -ENXIO;
5723 	}
5724 
5725 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
5726 	 * Hence copy each descriptor to a temporary area when parsing it.
5727 	 *
5728 	 * Allocate a buffer whose size is as large as ANA log page buffer because
5729 	 * we do not know the size of a descriptor until actually reading it.
5730 	 */
5731 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
5732 	if (nvme_ctrlr->copied_ana_desc == NULL) {
5733 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "could not allocate a buffer to parse ANA descriptor\n");
5734 		return -ENOMEM;
5735 	}
5736 
5737 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
5738 
5739 	nvme_ctrlr->probe_ctx = ctx;
5740 
5741 	/* Then, set the read size only to include the current active namespaces. */
5742 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5743 
5744 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5745 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5746 				  ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5747 		return -EINVAL;
5748 	}
5749 
5750 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
5751 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5752 						SPDK_NVME_GLOBAL_NS_TAG,
5753 						nvme_ctrlr->ana_log_page,
5754 						ana_log_page_size, 0,
5755 						nvme_ctrlr_init_ana_log_page_done,
5756 						nvme_ctrlr);
5757 }
5758 
5759 /* hostnqn and subnqn were already verified before attaching a controller.
5760  * Hence check only the multipath capability and cntlid here.
5761  */
5762 static bool
5763 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
5764 {
5765 	struct nvme_ctrlr *tmp;
5766 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
5767 
5768 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5769 
5770 	if (!cdata->cmic.multi_ctrlr) {
5771 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5772 		return false;
5773 	}
5774 
5775 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
5776 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
5777 
5778 		if (!tmp_cdata->cmic.multi_ctrlr) {
5779 			NVME_CTRLR_ERRLOG(tmp, "Ctrlr%u does not support multipath.\n", cdata->cntlid);
5780 			return false;
5781 		}
5782 		if (cdata->cntlid == tmp_cdata->cntlid) {
5783 			NVME_CTRLR_ERRLOG(tmp, "cntlid %u are duplicated.\n", tmp_cdata->cntlid);
5784 			return false;
5785 		}
5786 	}
5787 
5788 	return true;
5789 }
5790 
5791 
5792 static int
5793 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
5794 {
5795 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5796 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5797 	struct nvme_ctrlr      *nctrlr;
5798 	int rc = 0;
5799 
5800 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5801 
5802 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
5803 	if (nbdev_ctrlr != NULL) {
5804 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
5805 			rc = -EINVAL;
5806 			goto exit;
5807 		}
5808 		TAILQ_FOREACH(nctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
5809 			if (nctrlr->opts.multipath != nvme_ctrlr->opts.multipath) {
5810 				/* All controllers with the same name must be configured the same
5811 				 * way, either for multipath or failover. If the configuration doesn't
5812 				 * match - report error.
5813 				 */
5814 				rc = -EINVAL;
5815 				goto exit;
5816 			}
5817 		}
5818 	} else {
5819 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
5820 		if (nbdev_ctrlr == NULL) {
5821 			NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to allocate nvme_bdev_ctrlr.\n");
5822 			rc = -ENOMEM;
5823 			goto exit;
5824 		}
5825 		nbdev_ctrlr->name = strdup(name);
5826 		if (nbdev_ctrlr->name == NULL) {
5827 			NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to allocate name of nvme_bdev_ctrlr.\n");
5828 			free(nbdev_ctrlr);
5829 			goto exit;
5830 		}
5831 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
5832 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
5833 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
5834 	}
5835 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
5836 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
5837 exit:
5838 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5839 	return rc;
5840 }
5841 
5842 static int
5843 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
5844 		  const char *name,
5845 		  const struct spdk_nvme_transport_id *trid,
5846 		  struct nvme_async_probe_ctx *ctx)
5847 {
5848 	struct nvme_ctrlr *nvme_ctrlr;
5849 	struct nvme_path_id *path_id;
5850 	const struct spdk_nvme_ctrlr_data *cdata;
5851 	struct spdk_event_handler_opts opts = {
5852 		.opts_size = SPDK_SIZEOF(&opts, fd_type),
5853 	};
5854 	uint64_t period;
5855 	int fd, rc;
5856 
5857 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
5858 	if (nvme_ctrlr == NULL) {
5859 		SPDK_ERRLOG("Failed to allocate device struct\n");
5860 		return -ENOMEM;
5861 	}
5862 
5863 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
5864 	if (rc != 0) {
5865 		free(nvme_ctrlr);
5866 		return rc;
5867 	}
5868 
5869 	TAILQ_INIT(&nvme_ctrlr->trids);
5870 	TAILQ_INIT(&nvme_ctrlr->pending_resets);
5871 	RB_INIT(&nvme_ctrlr->namespaces);
5872 
5873 	/* Get another reference to the key, so the first one can be released from probe_ctx */
5874 	if (ctx != NULL) {
5875 		if (ctx->drv_opts.tls_psk != NULL) {
5876 			nvme_ctrlr->psk = spdk_keyring_get_key(
5877 						  spdk_key_get_name(ctx->drv_opts.tls_psk));
5878 			if (nvme_ctrlr->psk == NULL) {
5879 				/* Could only happen if the key was removed in the meantime */
5880 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5881 					    spdk_key_get_name(ctx->drv_opts.tls_psk));
5882 				rc = -ENOKEY;
5883 				goto err;
5884 			}
5885 		}
5886 
5887 		if (ctx->drv_opts.dhchap_key != NULL) {
5888 			nvme_ctrlr->dhchap_key = spdk_keyring_get_key(
5889 							 spdk_key_get_name(ctx->drv_opts.dhchap_key));
5890 			if (nvme_ctrlr->dhchap_key == NULL) {
5891 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5892 					    spdk_key_get_name(ctx->drv_opts.dhchap_key));
5893 				rc = -ENOKEY;
5894 				goto err;
5895 			}
5896 		}
5897 
5898 		if (ctx->drv_opts.dhchap_ctrlr_key != NULL) {
5899 			nvme_ctrlr->dhchap_ctrlr_key =
5900 				spdk_keyring_get_key(
5901 					spdk_key_get_name(ctx->drv_opts.dhchap_ctrlr_key));
5902 			if (nvme_ctrlr->dhchap_ctrlr_key == NULL) {
5903 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5904 					    spdk_key_get_name(ctx->drv_opts.dhchap_ctrlr_key));
5905 				rc = -ENOKEY;
5906 				goto err;
5907 			}
5908 		}
5909 	}
5910 
5911 	/* Check if we manage to enable interrupts on the controller. */
5912 	if (spdk_interrupt_mode_is_enabled() && ctx != NULL && !ctx->drv_opts.enable_interrupts) {
5913 		SPDK_ERRLOG("Failed to enable interrupts on the controller\n");
5914 		rc = -ENOTSUP;
5915 		goto err;
5916 	}
5917 
5918 	path_id = calloc(1, sizeof(*path_id));
5919 	if (path_id == NULL) {
5920 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
5921 		rc = -ENOMEM;
5922 		goto err;
5923 	}
5924 
5925 	path_id->trid = *trid;
5926 	if (ctx != NULL) {
5927 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
5928 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
5929 	}
5930 	nvme_ctrlr->active_path_id = path_id;
5931 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
5932 
5933 	nvme_ctrlr->thread = spdk_get_thread();
5934 	nvme_ctrlr->ctrlr = ctrlr;
5935 	nvme_ctrlr->ref = 1;
5936 
5937 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
5938 		SPDK_ERRLOG("OCSSDs are not supported");
5939 		rc = -ENOTSUP;
5940 		goto err;
5941 	}
5942 
5943 	if (ctx != NULL) {
5944 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
5945 	} else {
5946 		spdk_bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
5947 	}
5948 
5949 	period = spdk_interrupt_mode_is_enabled() ? 0 : g_opts.nvme_adminq_poll_period_us;
5950 
5951 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
5952 					  period);
5953 
5954 	if (spdk_interrupt_mode_is_enabled()) {
5955 		spdk_poller_register_interrupt(nvme_ctrlr->adminq_timer_poller, NULL, NULL);
5956 
5957 		fd = spdk_nvme_ctrlr_get_admin_qp_fd(nvme_ctrlr->ctrlr, &opts);
5958 		if (fd < 0) {
5959 			rc = fd;
5960 			goto err;
5961 		}
5962 
5963 		nvme_ctrlr->intr = SPDK_INTERRUPT_REGISTER_EXT(fd, bdev_nvme_poll_adminq,
5964 				   nvme_ctrlr, &opts);
5965 		if (!nvme_ctrlr->intr) {
5966 			rc = -EINVAL;
5967 			goto err;
5968 		}
5969 	}
5970 
5971 	if (g_opts.timeout_us > 0) {
5972 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
5973 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
5974 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
5975 					  g_opts.timeout_us : g_opts.timeout_admin_us;
5976 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
5977 				adm_timeout_us, timeout_cb, nvme_ctrlr);
5978 	}
5979 
5980 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
5981 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
5982 
5983 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
5984 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
5985 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
5986 	}
5987 
5988 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
5989 	if (rc != 0) {
5990 		goto err;
5991 	}
5992 
5993 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5994 
5995 	if (cdata->cmic.ana_reporting) {
5996 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
5997 		if (rc == 0) {
5998 			return 0;
5999 		}
6000 	} else {
6001 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
6002 		return 0;
6003 	}
6004 
6005 err:
6006 	nvme_ctrlr_delete(nvme_ctrlr);
6007 	return rc;
6008 }
6009 
6010 void
6011 spdk_bdev_nvme_get_default_ctrlr_opts(struct spdk_bdev_nvme_ctrlr_opts *opts)
6012 {
6013 	opts->prchk_flags = 0;
6014 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
6015 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
6016 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
6017 	opts->multipath = true;
6018 }
6019 
6020 static void
6021 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6022 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
6023 {
6024 	char *name;
6025 
6026 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
6027 	if (!name) {
6028 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
6029 		return;
6030 	}
6031 
6032 	if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) {
6033 		SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
6034 	} else {
6035 		SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name);
6036 	}
6037 
6038 	free(name);
6039 }
6040 
6041 static void
6042 _nvme_ctrlr_destruct(void *ctx)
6043 {
6044 	struct nvme_ctrlr *nvme_ctrlr = ctx;
6045 
6046 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
6047 	nvme_ctrlr_put_ref(nvme_ctrlr);
6048 }
6049 
6050 static int
6051 bdev_nvme_delete_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
6052 {
6053 	struct nvme_probe_skip_entry *entry;
6054 
6055 	/* The controller's destruction was already started */
6056 	if (nvme_ctrlr->destruct) {
6057 		return -EALREADY;
6058 	}
6059 
6060 	if (!hotplug &&
6061 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
6062 		entry = calloc(1, sizeof(*entry));
6063 		if (!entry) {
6064 			return -ENOMEM;
6065 		}
6066 		entry->trid = nvme_ctrlr->active_path_id->trid;
6067 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
6068 	}
6069 
6070 	nvme_ctrlr->destruct = true;
6071 	return 0;
6072 }
6073 
6074 static int
6075 bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
6076 {
6077 	int rc;
6078 
6079 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6080 	rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, hotplug);
6081 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6082 
6083 	if (rc == 0) {
6084 		_nvme_ctrlr_destruct(nvme_ctrlr);
6085 	} else if (rc == -EALREADY) {
6086 		rc = 0;
6087 	}
6088 
6089 	return rc;
6090 }
6091 
6092 static void
6093 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
6094 {
6095 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
6096 
6097 	bdev_nvme_delete_ctrlr(nvme_ctrlr, true);
6098 }
6099 
6100 static int
6101 bdev_nvme_hotplug_probe(void *arg)
6102 {
6103 	if (g_hotplug_probe_ctx == NULL) {
6104 		spdk_poller_unregister(&g_hotplug_probe_poller);
6105 		return SPDK_POLLER_IDLE;
6106 	}
6107 
6108 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
6109 		g_hotplug_probe_ctx = NULL;
6110 		spdk_poller_unregister(&g_hotplug_probe_poller);
6111 	}
6112 
6113 	return SPDK_POLLER_BUSY;
6114 }
6115 
6116 static int
6117 bdev_nvme_hotplug(void *arg)
6118 {
6119 	struct spdk_nvme_transport_id trid_pcie;
6120 
6121 	if (g_hotplug_probe_ctx) {
6122 		return SPDK_POLLER_BUSY;
6123 	}
6124 
6125 	memset(&trid_pcie, 0, sizeof(trid_pcie));
6126 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
6127 
6128 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
6129 			      hotplug_probe_cb, attach_cb, NULL);
6130 
6131 	if (g_hotplug_probe_ctx) {
6132 		assert(g_hotplug_probe_poller == NULL);
6133 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
6134 	}
6135 
6136 	return SPDK_POLLER_BUSY;
6137 }
6138 
6139 void
6140 spdk_bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts, size_t opts_size)
6141 {
6142 	if (!opts) {
6143 		SPDK_ERRLOG("opts should not be NULL\n");
6144 		return;
6145 	}
6146 
6147 	if (!opts_size) {
6148 		SPDK_ERRLOG("opts_size should not be zero value\n");
6149 		return;
6150 	}
6151 
6152 	opts->opts_size = opts_size;
6153 
6154 #define SET_FIELD(field, defval) \
6155 		opts->field = SPDK_GET_FIELD(&g_opts, field, defval, opts_size); \
6156 
6157 	SET_FIELD(action_on_timeout, 0);
6158 	SET_FIELD(keep_alive_timeout_ms, 0);
6159 	SET_FIELD(timeout_us, 0);
6160 	SET_FIELD(timeout_admin_us, 0);
6161 	SET_FIELD(transport_retry_count, 0);
6162 	SET_FIELD(arbitration_burst, 0);
6163 	SET_FIELD(low_priority_weight, 0);
6164 	SET_FIELD(medium_priority_weight, 0);
6165 	SET_FIELD(high_priority_weight, 0);
6166 	SET_FIELD(io_queue_requests, 0);
6167 	SET_FIELD(nvme_adminq_poll_period_us, 0);
6168 	SET_FIELD(nvme_ioq_poll_period_us, 0);
6169 	SET_FIELD(delay_cmd_submit, 0);
6170 	SET_FIELD(bdev_retry_count, 0);
6171 	SET_FIELD(ctrlr_loss_timeout_sec, 0);
6172 	SET_FIELD(reconnect_delay_sec, 0);
6173 	SET_FIELD(fast_io_fail_timeout_sec, 0);
6174 	SET_FIELD(transport_ack_timeout, 0);
6175 	SET_FIELD(disable_auto_failback, false);
6176 	SET_FIELD(generate_uuids, false);
6177 	SET_FIELD(transport_tos, 0);
6178 	SET_FIELD(nvme_error_stat, false);
6179 	SET_FIELD(io_path_stat, false);
6180 	SET_FIELD(allow_accel_sequence, false);
6181 	SET_FIELD(rdma_srq_size, 0);
6182 	SET_FIELD(rdma_max_cq_size, 0);
6183 	SET_FIELD(rdma_cm_event_timeout_ms, 0);
6184 	SET_FIELD(dhchap_digests, 0);
6185 	SET_FIELD(dhchap_dhgroups, 0);
6186 
6187 #undef SET_FIELD
6188 
6189 	/* Do not remove this statement, you should always update this statement when you adding a new field,
6190 	 * and do not forget to add the SET_FIELD statement for your added field. */
6191 	SPDK_STATIC_ASSERT(sizeof(struct spdk_bdev_nvme_opts) == 120, "Incorrect size");
6192 }
6193 
6194 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
6195 		uint32_t reconnect_delay_sec,
6196 		uint32_t fast_io_fail_timeout_sec);
6197 
6198 static int
6199 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
6200 {
6201 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
6202 		/* Can't set timeout_admin_us without also setting timeout_us */
6203 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
6204 		return -EINVAL;
6205 	}
6206 
6207 	if (opts->bdev_retry_count < -1) {
6208 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
6209 		return -EINVAL;
6210 	}
6211 
6212 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
6213 			opts->reconnect_delay_sec,
6214 			opts->fast_io_fail_timeout_sec)) {
6215 		return -EINVAL;
6216 	}
6217 
6218 	return 0;
6219 }
6220 
6221 int
6222 spdk_bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
6223 {
6224 	if (!opts) {
6225 		SPDK_ERRLOG("opts cannot be NULL\n");
6226 		return -1;
6227 	}
6228 
6229 	if (!opts->opts_size) {
6230 		SPDK_ERRLOG("opts_size inside opts cannot be zero value\n");
6231 		return -1;
6232 	}
6233 
6234 	int ret;
6235 
6236 	ret = bdev_nvme_validate_opts(opts);
6237 	if (ret) {
6238 		SPDK_WARNLOG("Failed to set nvme opts.\n");
6239 		return ret;
6240 	}
6241 
6242 	if (g_bdev_nvme_init_thread != NULL) {
6243 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
6244 			return -EPERM;
6245 		}
6246 	}
6247 
6248 	if (opts->rdma_srq_size != 0 ||
6249 	    opts->rdma_max_cq_size != 0 ||
6250 	    opts->rdma_cm_event_timeout_ms != 0) {
6251 		struct spdk_nvme_transport_opts drv_opts;
6252 
6253 		spdk_nvme_transport_get_opts(&drv_opts, sizeof(drv_opts));
6254 		if (opts->rdma_srq_size != 0) {
6255 			drv_opts.rdma_srq_size = opts->rdma_srq_size;
6256 		}
6257 		if (opts->rdma_max_cq_size != 0) {
6258 			drv_opts.rdma_max_cq_size = opts->rdma_max_cq_size;
6259 		}
6260 		if (opts->rdma_cm_event_timeout_ms != 0) {
6261 			drv_opts.rdma_cm_event_timeout_ms = opts->rdma_cm_event_timeout_ms;
6262 		}
6263 
6264 		ret = spdk_nvme_transport_set_opts(&drv_opts, sizeof(drv_opts));
6265 		if (ret) {
6266 			SPDK_ERRLOG("Failed to set NVMe transport opts.\n");
6267 			return ret;
6268 		}
6269 	}
6270 
6271 #define SET_FIELD(field, defval) \
6272 		g_opts.field = SPDK_GET_FIELD(opts, field, defval, opts->opts_size); \
6273 
6274 	SET_FIELD(action_on_timeout, 0);
6275 	SET_FIELD(keep_alive_timeout_ms, 0);
6276 	SET_FIELD(timeout_us, 0);
6277 	SET_FIELD(timeout_admin_us, 0);
6278 	SET_FIELD(transport_retry_count, 0);
6279 	SET_FIELD(arbitration_burst, 0);
6280 	SET_FIELD(low_priority_weight, 0);
6281 	SET_FIELD(medium_priority_weight, 0);
6282 	SET_FIELD(high_priority_weight, 0);
6283 	SET_FIELD(io_queue_requests, 0);
6284 	SET_FIELD(nvme_adminq_poll_period_us, 0);
6285 	SET_FIELD(nvme_ioq_poll_period_us, 0);
6286 	SET_FIELD(delay_cmd_submit, 0);
6287 	SET_FIELD(bdev_retry_count, 0);
6288 	SET_FIELD(ctrlr_loss_timeout_sec, 0);
6289 	SET_FIELD(reconnect_delay_sec, 0);
6290 	SET_FIELD(fast_io_fail_timeout_sec, 0);
6291 	SET_FIELD(transport_ack_timeout, 0);
6292 	SET_FIELD(disable_auto_failback, false);
6293 	SET_FIELD(generate_uuids, false);
6294 	SET_FIELD(transport_tos, 0);
6295 	SET_FIELD(nvme_error_stat, false);
6296 	SET_FIELD(io_path_stat, false);
6297 	SET_FIELD(allow_accel_sequence, false);
6298 	SET_FIELD(rdma_srq_size, 0);
6299 	SET_FIELD(rdma_max_cq_size, 0);
6300 	SET_FIELD(rdma_cm_event_timeout_ms, 0);
6301 	SET_FIELD(dhchap_digests, 0);
6302 	SET_FIELD(dhchap_dhgroups, 0);
6303 
6304 	g_opts.opts_size = opts->opts_size;
6305 
6306 #undef SET_FIELD
6307 
6308 	return 0;
6309 }
6310 
6311 struct set_nvme_hotplug_ctx {
6312 	uint64_t period_us;
6313 	bool enabled;
6314 	spdk_msg_fn fn;
6315 	void *fn_ctx;
6316 };
6317 
6318 static void
6319 set_nvme_hotplug_period_cb(void *_ctx)
6320 {
6321 	struct set_nvme_hotplug_ctx *ctx = _ctx;
6322 
6323 	spdk_poller_unregister(&g_hotplug_poller);
6324 	if (ctx->enabled) {
6325 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
6326 	} else {
6327 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_remove_poller, NULL,
6328 							NVME_HOTPLUG_POLL_PERIOD_DEFAULT);
6329 	}
6330 
6331 	g_nvme_hotplug_poll_period_us = ctx->period_us;
6332 	g_nvme_hotplug_enabled = ctx->enabled;
6333 	if (ctx->fn) {
6334 		ctx->fn(ctx->fn_ctx);
6335 	}
6336 
6337 	free(ctx);
6338 }
6339 
6340 int
6341 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
6342 {
6343 	struct set_nvme_hotplug_ctx *ctx;
6344 
6345 	if (enabled == true && !spdk_process_is_primary()) {
6346 		return -EPERM;
6347 	}
6348 
6349 	ctx = calloc(1, sizeof(*ctx));
6350 	if (ctx == NULL) {
6351 		return -ENOMEM;
6352 	}
6353 
6354 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
6355 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
6356 	ctx->enabled = enabled;
6357 	ctx->fn = cb;
6358 	ctx->fn_ctx = cb_ctx;
6359 
6360 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
6361 	return 0;
6362 }
6363 
6364 static void
6365 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
6366 				    struct nvme_async_probe_ctx *ctx)
6367 {
6368 	struct nvme_ns	*nvme_ns;
6369 	struct nvme_bdev	*nvme_bdev;
6370 	size_t			j;
6371 
6372 	assert(nvme_ctrlr != NULL);
6373 
6374 	if (ctx->names == NULL) {
6375 		ctx->reported_bdevs = 0;
6376 		populate_namespaces_cb(ctx, 0);
6377 		return;
6378 	}
6379 
6380 	/*
6381 	 * Report the new bdevs that were created in this call.
6382 	 * There can be more than one bdev per NVMe controller.
6383 	 */
6384 	j = 0;
6385 
6386 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6387 
6388 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
6389 	while (nvme_ns != NULL) {
6390 		nvme_bdev = nvme_ns->bdev;
6391 		if (j < ctx->max_bdevs) {
6392 			ctx->names[j] = nvme_bdev->disk.name;
6393 			j++;
6394 		} else {
6395 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
6396 
6397 			NVME_CTRLR_ERRLOG(nvme_ctrlr,
6398 					  "Maximum number of namespaces supported per NVMe controller is %du. "
6399 					  "Unable to return all names of created bdevs\n",
6400 					  ctx->max_bdevs);
6401 			ctx->reported_bdevs = 0;
6402 			populate_namespaces_cb(ctx, -ERANGE);
6403 			return;
6404 		}
6405 
6406 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
6407 	}
6408 
6409 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6410 
6411 	ctx->reported_bdevs = j;
6412 	populate_namespaces_cb(ctx, 0);
6413 }
6414 
6415 static int
6416 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
6417 			       struct spdk_nvme_ctrlr *new_ctrlr,
6418 			       struct spdk_nvme_transport_id *trid)
6419 {
6420 	struct nvme_path_id *tmp_trid;
6421 
6422 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
6423 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "PCIe failover is not supported.\n");
6424 		return -ENOTSUP;
6425 	}
6426 
6427 	/* Currently we only support failover to the same transport type. */
6428 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
6429 		NVME_CTRLR_WARNLOG(nvme_ctrlr,
6430 				   "Failover from trtype: %s to a different trtype: %s is not supported currently\n",
6431 				   spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
6432 				   spdk_nvme_transport_id_trtype_str(trid->trtype));
6433 		return -EINVAL;
6434 	}
6435 
6436 
6437 	/* Currently we only support failover to the same NQN. */
6438 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
6439 		NVME_CTRLR_WARNLOG(nvme_ctrlr,
6440 				   "Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
6441 				   nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
6442 		return -EINVAL;
6443 	}
6444 
6445 	/* Skip all the other checks if we've already registered this path. */
6446 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
6447 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
6448 			NVME_CTRLR_WARNLOG(nvme_ctrlr, "This path (traddr: %s subnqn: %s) is already registered\n",
6449 					   trid->traddr, trid->subnqn);
6450 			return -EALREADY;
6451 		}
6452 	}
6453 
6454 	return 0;
6455 }
6456 
6457 static int
6458 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
6459 				    struct spdk_nvme_ctrlr *new_ctrlr)
6460 {
6461 	struct nvme_ns *nvme_ns;
6462 	struct spdk_nvme_ns *new_ns;
6463 
6464 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
6465 	while (nvme_ns != NULL) {
6466 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
6467 		assert(new_ns != NULL);
6468 
6469 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
6470 			return -EINVAL;
6471 		}
6472 
6473 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
6474 	}
6475 
6476 	return 0;
6477 }
6478 
6479 static int
6480 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
6481 			      struct spdk_nvme_transport_id *trid)
6482 {
6483 	struct nvme_path_id *active_id, *new_trid, *tmp_trid;
6484 
6485 	new_trid = calloc(1, sizeof(*new_trid));
6486 	if (new_trid == NULL) {
6487 		return -ENOMEM;
6488 	}
6489 	new_trid->trid = *trid;
6490 
6491 	active_id = nvme_ctrlr->active_path_id;
6492 	assert(active_id != NULL);
6493 	assert(active_id == TAILQ_FIRST(&nvme_ctrlr->trids));
6494 
6495 	/* Skip the active trid not to replace it until it is failed. */
6496 	tmp_trid = TAILQ_NEXT(active_id, link);
6497 	if (tmp_trid == NULL) {
6498 		goto add_tail;
6499 	}
6500 
6501 	/* It means the trid is faled if its last failed time is non-zero.
6502 	 * Insert the new alternate trid before any failed trid.
6503 	 */
6504 	TAILQ_FOREACH_FROM(tmp_trid, &nvme_ctrlr->trids, link) {
6505 		if (tmp_trid->last_failed_tsc != 0) {
6506 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
6507 			return 0;
6508 		}
6509 	}
6510 
6511 add_tail:
6512 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
6513 	return 0;
6514 }
6515 
6516 /* This is the case that a secondary path is added to an existing
6517  * nvme_ctrlr for failover. After checking if it can access the same
6518  * namespaces as the primary path, it is disconnected until failover occurs.
6519  */
6520 static int
6521 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
6522 			     struct spdk_nvme_ctrlr *new_ctrlr,
6523 			     struct spdk_nvme_transport_id *trid)
6524 {
6525 	int rc;
6526 
6527 	assert(nvme_ctrlr != NULL);
6528 
6529 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6530 
6531 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
6532 	if (rc != 0) {
6533 		goto exit;
6534 	}
6535 
6536 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
6537 	if (rc != 0) {
6538 		goto exit;
6539 	}
6540 
6541 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
6542 
6543 exit:
6544 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6545 
6546 	spdk_nvme_detach(new_ctrlr);
6547 
6548 	return rc;
6549 }
6550 
6551 static void
6552 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6553 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
6554 {
6555 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6556 	struct nvme_async_probe_ctx *ctx;
6557 	int rc;
6558 
6559 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
6560 	ctx->ctrlr_attached = true;
6561 
6562 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
6563 	if (rc != 0) {
6564 		ctx->reported_bdevs = 0;
6565 		populate_namespaces_cb(ctx, rc);
6566 	}
6567 }
6568 
6569 
6570 static void
6571 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6572 			struct spdk_nvme_ctrlr *ctrlr,
6573 			const struct spdk_nvme_ctrlr_opts *opts)
6574 {
6575 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6576 	struct nvme_ctrlr *nvme_ctrlr;
6577 	struct nvme_async_probe_ctx *ctx;
6578 	int rc;
6579 
6580 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
6581 	ctx->ctrlr_attached = true;
6582 
6583 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
6584 	if (nvme_ctrlr) {
6585 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
6586 	} else {
6587 		rc = -ENODEV;
6588 	}
6589 
6590 	ctx->reported_bdevs = 0;
6591 	populate_namespaces_cb(ctx, rc);
6592 }
6593 
6594 static int
6595 bdev_nvme_async_poll(void *arg)
6596 {
6597 	struct nvme_async_probe_ctx	*ctx = arg;
6598 	int				rc;
6599 
6600 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
6601 	if (spdk_unlikely(rc != -EAGAIN)) {
6602 		ctx->probe_done = true;
6603 		spdk_poller_unregister(&ctx->poller);
6604 		if (!ctx->ctrlr_attached) {
6605 			/* The probe is done, but no controller was attached.
6606 			 * That means we had a failure, so report -EIO back to
6607 			 * the caller (usually the RPC). populate_namespaces_cb()
6608 			 * will take care of freeing the nvme_async_probe_ctx.
6609 			 */
6610 			ctx->reported_bdevs = 0;
6611 			populate_namespaces_cb(ctx, -EIO);
6612 		} else if (ctx->namespaces_populated) {
6613 			/* The namespaces for the attached controller were all
6614 			 * populated and the response was already sent to the
6615 			 * caller (usually the RPC).  So free the context here.
6616 			 */
6617 			free_nvme_async_probe_ctx(ctx);
6618 		}
6619 	}
6620 
6621 	return SPDK_POLLER_BUSY;
6622 }
6623 
6624 static bool
6625 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
6626 		uint32_t reconnect_delay_sec,
6627 		uint32_t fast_io_fail_timeout_sec)
6628 {
6629 	if (ctrlr_loss_timeout_sec < -1) {
6630 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
6631 		return false;
6632 	} else if (ctrlr_loss_timeout_sec == -1) {
6633 		if (reconnect_delay_sec == 0) {
6634 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6635 			return false;
6636 		} else if (fast_io_fail_timeout_sec != 0 &&
6637 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
6638 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
6639 			return false;
6640 		}
6641 	} else if (ctrlr_loss_timeout_sec != 0) {
6642 		if (reconnect_delay_sec == 0) {
6643 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6644 			return false;
6645 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6646 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
6647 			return false;
6648 		} else if (fast_io_fail_timeout_sec != 0) {
6649 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
6650 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
6651 				return false;
6652 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6653 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
6654 				return false;
6655 			}
6656 		}
6657 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
6658 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
6659 		return false;
6660 	}
6661 
6662 	return true;
6663 }
6664 
6665 int
6666 spdk_bdev_nvme_create(struct spdk_nvme_transport_id *trid,
6667 		      const char *base_name,
6668 		      const char **names,
6669 		      uint32_t count,
6670 		      spdk_bdev_nvme_create_cb cb_fn,
6671 		      void *cb_ctx,
6672 		      struct spdk_nvme_ctrlr_opts *drv_opts,
6673 		      struct spdk_bdev_nvme_ctrlr_opts *bdev_opts)
6674 {
6675 	struct nvme_probe_skip_entry *entry, *tmp;
6676 	struct nvme_async_probe_ctx *ctx;
6677 	spdk_nvme_attach_cb attach_cb;
6678 	struct nvme_ctrlr *nvme_ctrlr;
6679 	int len;
6680 
6681 	/* TODO expand this check to include both the host and target TRIDs.
6682 	 * Only if both are the same should we fail.
6683 	 */
6684 	if (nvme_ctrlr_get(trid, drv_opts->hostnqn) != NULL) {
6685 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s, hostnqn: %s) "
6686 			    "already exists.\n", trid->traddr, drv_opts->hostnqn);
6687 		return -EEXIST;
6688 	}
6689 
6690 	len = strnlen(base_name, SPDK_CONTROLLER_NAME_MAX);
6691 
6692 	if (len == 0 || len == SPDK_CONTROLLER_NAME_MAX) {
6693 		SPDK_ERRLOG("controller name must be between 1 and %d characters\n", SPDK_CONTROLLER_NAME_MAX - 1);
6694 		return -EINVAL;
6695 	}
6696 
6697 	if (bdev_opts != NULL &&
6698 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
6699 			    bdev_opts->reconnect_delay_sec,
6700 			    bdev_opts->fast_io_fail_timeout_sec)) {
6701 		return -EINVAL;
6702 	}
6703 
6704 	ctx = calloc(1, sizeof(*ctx));
6705 	if (!ctx) {
6706 		return -ENOMEM;
6707 	}
6708 	ctx->base_name = strdup(base_name);
6709 	if (!ctx->base_name) {
6710 		free(ctx);
6711 		return -ENOMEM;
6712 	}
6713 	ctx->names = names;
6714 	ctx->max_bdevs = count;
6715 	ctx->cb_fn = cb_fn;
6716 	ctx->cb_ctx = cb_ctx;
6717 	ctx->trid = *trid;
6718 
6719 	if (bdev_opts) {
6720 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
6721 	} else {
6722 		spdk_bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
6723 	}
6724 
6725 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
6726 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
6727 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
6728 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
6729 				free(entry);
6730 				break;
6731 			}
6732 		}
6733 	}
6734 
6735 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
6736 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
6737 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
6738 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
6739 	ctx->drv_opts.disable_read_ana_log_page = true;
6740 	ctx->drv_opts.transport_tos = g_opts.transport_tos;
6741 
6742 	if (spdk_interrupt_mode_is_enabled()) {
6743 		if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
6744 			ctx->drv_opts.enable_interrupts = true;
6745 		} else {
6746 			SPDK_ERRLOG("Interrupt mode is only supported with PCIe transport\n");
6747 			free_nvme_async_probe_ctx(ctx);
6748 			return -ENOTSUP;
6749 		}
6750 	}
6751 
6752 	if (ctx->bdev_opts.psk != NULL) {
6753 		ctx->drv_opts.tls_psk = spdk_keyring_get_key(ctx->bdev_opts.psk);
6754 		if (ctx->drv_opts.tls_psk == NULL) {
6755 			SPDK_ERRLOG("Could not load PSK: %s\n", ctx->bdev_opts.psk);
6756 			free_nvme_async_probe_ctx(ctx);
6757 			return -ENOKEY;
6758 		}
6759 	}
6760 
6761 	if (ctx->bdev_opts.dhchap_key != NULL) {
6762 		ctx->drv_opts.dhchap_key = spdk_keyring_get_key(ctx->bdev_opts.dhchap_key);
6763 		if (ctx->drv_opts.dhchap_key == NULL) {
6764 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP key: %s\n",
6765 				    ctx->bdev_opts.dhchap_key);
6766 			free_nvme_async_probe_ctx(ctx);
6767 			return -ENOKEY;
6768 		}
6769 
6770 		ctx->drv_opts.dhchap_digests = g_opts.dhchap_digests;
6771 		ctx->drv_opts.dhchap_dhgroups = g_opts.dhchap_dhgroups;
6772 	}
6773 	if (ctx->bdev_opts.dhchap_ctrlr_key != NULL) {
6774 		ctx->drv_opts.dhchap_ctrlr_key =
6775 			spdk_keyring_get_key(ctx->bdev_opts.dhchap_ctrlr_key);
6776 		if (ctx->drv_opts.dhchap_ctrlr_key == NULL) {
6777 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP controller key: %s\n",
6778 				    ctx->bdev_opts.dhchap_ctrlr_key);
6779 			free_nvme_async_probe_ctx(ctx);
6780 			return -ENOKEY;
6781 		}
6782 	}
6783 
6784 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || ctx->bdev_opts.multipath) {
6785 		attach_cb = connect_attach_cb;
6786 	} else {
6787 		attach_cb = connect_set_failover_cb;
6788 	}
6789 
6790 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
6791 	if (nvme_ctrlr  && nvme_ctrlr->opts.multipath != ctx->bdev_opts.multipath) {
6792 		/* All controllers with the same name must be configured the same
6793 		 * way, either for multipath or failover. If the configuration doesn't
6794 		 * match - report error.
6795 		 */
6796 		free_nvme_async_probe_ctx(ctx);
6797 		return -EINVAL;
6798 	}
6799 
6800 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
6801 	if (ctx->probe_ctx == NULL) {
6802 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
6803 		free_nvme_async_probe_ctx(ctx);
6804 		return -ENODEV;
6805 	}
6806 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
6807 
6808 	return 0;
6809 }
6810 
6811 struct bdev_nvme_delete_ctx {
6812 	char                        *name;
6813 	struct nvme_path_id         path_id;
6814 	bdev_nvme_delete_done_fn    delete_done;
6815 	void                        *delete_done_ctx;
6816 	uint64_t                    timeout_ticks;
6817 	struct spdk_poller          *poller;
6818 };
6819 
6820 static void
6821 free_bdev_nvme_delete_ctx(struct bdev_nvme_delete_ctx *ctx)
6822 {
6823 	if (ctx != NULL) {
6824 		free(ctx->name);
6825 		free(ctx);
6826 	}
6827 }
6828 
6829 static bool
6830 nvme_path_id_compare(struct nvme_path_id *p, const struct nvme_path_id *path_id)
6831 {
6832 	if (path_id->trid.trtype != 0) {
6833 		if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
6834 			if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
6835 				return false;
6836 			}
6837 		} else {
6838 			if (path_id->trid.trtype != p->trid.trtype) {
6839 				return false;
6840 			}
6841 		}
6842 	}
6843 
6844 	if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
6845 		if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
6846 			return false;
6847 		}
6848 	}
6849 
6850 	if (path_id->trid.adrfam != 0) {
6851 		if (path_id->trid.adrfam != p->trid.adrfam) {
6852 			return false;
6853 		}
6854 	}
6855 
6856 	if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
6857 		if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
6858 			return false;
6859 		}
6860 	}
6861 
6862 	if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
6863 		if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
6864 			return false;
6865 		}
6866 	}
6867 
6868 	if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
6869 		if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
6870 			return false;
6871 		}
6872 	}
6873 
6874 	if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
6875 		if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
6876 			return false;
6877 		}
6878 	}
6879 
6880 	return true;
6881 }
6882 
6883 static bool
6884 nvme_path_id_exists(const char *name, const struct nvme_path_id *path_id)
6885 {
6886 	struct nvme_bdev_ctrlr  *nbdev_ctrlr;
6887 	struct nvme_ctrlr       *ctrlr;
6888 	struct nvme_path_id     *p;
6889 
6890 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6891 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6892 	if (!nbdev_ctrlr) {
6893 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6894 		return false;
6895 	}
6896 
6897 	TAILQ_FOREACH(ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6898 		pthread_mutex_lock(&ctrlr->mutex);
6899 		TAILQ_FOREACH(p, &ctrlr->trids, link) {
6900 			if (nvme_path_id_compare(p, path_id)) {
6901 				pthread_mutex_unlock(&ctrlr->mutex);
6902 				pthread_mutex_unlock(&g_bdev_nvme_mutex);
6903 				return true;
6904 			}
6905 		}
6906 		pthread_mutex_unlock(&ctrlr->mutex);
6907 	}
6908 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6909 
6910 	return false;
6911 }
6912 
6913 static int
6914 bdev_nvme_delete_complete_poll(void *arg)
6915 {
6916 	struct bdev_nvme_delete_ctx     *ctx = arg;
6917 	int                             rc = 0;
6918 
6919 	if (nvme_path_id_exists(ctx->name, &ctx->path_id)) {
6920 		if (ctx->timeout_ticks > spdk_get_ticks()) {
6921 			return SPDK_POLLER_BUSY;
6922 		}
6923 
6924 		SPDK_ERRLOG("NVMe path '%s' still exists after delete\n", ctx->name);
6925 		rc = -ETIMEDOUT;
6926 	}
6927 
6928 	spdk_poller_unregister(&ctx->poller);
6929 
6930 	ctx->delete_done(ctx->delete_done_ctx, rc);
6931 	free_bdev_nvme_delete_ctx(ctx);
6932 
6933 	return SPDK_POLLER_BUSY;
6934 }
6935 
6936 static int
6937 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, const struct nvme_path_id *path_id)
6938 {
6939 	struct nvme_path_id	*p, *t;
6940 	spdk_msg_fn		msg_fn;
6941 	int			rc = -ENXIO;
6942 
6943 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6944 
6945 	TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
6946 		if (p == TAILQ_FIRST(&nvme_ctrlr->trids)) {
6947 			break;
6948 		}
6949 
6950 		if (!nvme_path_id_compare(p, path_id)) {
6951 			continue;
6952 		}
6953 
6954 		/* We are not using the specified path. */
6955 		TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
6956 		free(p);
6957 		rc = 0;
6958 	}
6959 
6960 	if (p == NULL || !nvme_path_id_compare(p, path_id)) {
6961 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
6962 		return rc;
6963 	}
6964 
6965 	/* If we made it here, then this path is a match! Now we need to remove it. */
6966 
6967 	/* This is the active path in use right now. The active path is always the first in the list. */
6968 	assert(p == nvme_ctrlr->active_path_id);
6969 
6970 	if (!TAILQ_NEXT(p, link)) {
6971 		/* The current path is the only path. */
6972 		msg_fn = _nvme_ctrlr_destruct;
6973 		rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, false);
6974 	} else {
6975 		/* There is an alternative path. */
6976 		msg_fn = _bdev_nvme_reset_ctrlr;
6977 		rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, true);
6978 	}
6979 
6980 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6981 
6982 	if (rc == 0) {
6983 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
6984 	} else if (rc == -EALREADY) {
6985 		rc = 0;
6986 	}
6987 
6988 	return rc;
6989 }
6990 
6991 int
6992 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id,
6993 		 bdev_nvme_delete_done_fn delete_done, void *delete_done_ctx)
6994 {
6995 	struct nvme_bdev_ctrlr		*nbdev_ctrlr;
6996 	struct nvme_ctrlr		*nvme_ctrlr, *tmp_nvme_ctrlr;
6997 	struct bdev_nvme_delete_ctx     *ctx = NULL;
6998 	int				rc = -ENXIO, _rc;
6999 
7000 	if (name == NULL || path_id == NULL) {
7001 		rc = -EINVAL;
7002 		goto exit;
7003 	}
7004 
7005 	pthread_mutex_lock(&g_bdev_nvme_mutex);
7006 
7007 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
7008 	if (nbdev_ctrlr == NULL) {
7009 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
7010 
7011 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
7012 		rc = -ENODEV;
7013 		goto exit;
7014 	}
7015 
7016 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
7017 		_rc = _bdev_nvme_delete(nvme_ctrlr, path_id);
7018 		if (_rc < 0 && _rc != -ENXIO) {
7019 			pthread_mutex_unlock(&g_bdev_nvme_mutex);
7020 			rc = _rc;
7021 			goto exit;
7022 		} else if (_rc == 0) {
7023 			/* We traverse all remaining nvme_ctrlrs even if one nvme_ctrlr
7024 			 * was deleted successfully. To remember the successful deletion,
7025 			 * overwrite rc only if _rc is zero.
7026 			 */
7027 			rc = 0;
7028 		}
7029 	}
7030 
7031 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
7032 
7033 	if (rc != 0 || delete_done == NULL) {
7034 		goto exit;
7035 	}
7036 
7037 	ctx = calloc(1, sizeof(*ctx));
7038 	if (ctx == NULL) {
7039 		SPDK_ERRLOG("Failed to allocate context for bdev_nvme_delete\n");
7040 		rc = -ENOMEM;
7041 		goto exit;
7042 	}
7043 
7044 	ctx->name = strdup(name);
7045 	if (ctx->name == NULL) {
7046 		SPDK_ERRLOG("Failed to copy controller name for deletion\n");
7047 		rc = -ENOMEM;
7048 		goto exit;
7049 	}
7050 
7051 	ctx->delete_done = delete_done;
7052 	ctx->delete_done_ctx = delete_done_ctx;
7053 	ctx->path_id = *path_id;
7054 	ctx->timeout_ticks = spdk_get_ticks() + 10 * spdk_get_ticks_hz();
7055 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_delete_complete_poll, ctx, 1000);
7056 	if (ctx->poller == NULL) {
7057 		SPDK_ERRLOG("Failed to register bdev_nvme_delete poller\n");
7058 		rc = -ENOMEM;
7059 		goto exit;
7060 	}
7061 
7062 exit:
7063 	if (rc != 0) {
7064 		free_bdev_nvme_delete_ctx(ctx);
7065 	}
7066 
7067 	return rc;
7068 }
7069 
7070 #define DISCOVERY_INFOLOG(ctx, format, ...) \
7071 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
7072 
7073 #define DISCOVERY_ERRLOG(ctx, format, ...) \
7074 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
7075 
7076 struct discovery_entry_ctx {
7077 	char						name[128];
7078 	struct spdk_nvme_transport_id			trid;
7079 	struct spdk_nvme_ctrlr_opts			drv_opts;
7080 	struct spdk_nvmf_discovery_log_page_entry	entry;
7081 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
7082 	struct discovery_ctx				*ctx;
7083 };
7084 
7085 struct discovery_ctx {
7086 	char					*name;
7087 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
7088 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
7089 	void					*cb_ctx;
7090 	struct spdk_nvme_probe_ctx		*probe_ctx;
7091 	struct spdk_nvme_detach_ctx		*detach_ctx;
7092 	struct spdk_nvme_ctrlr			*ctrlr;
7093 	struct spdk_nvme_transport_id		trid;
7094 	struct discovery_entry_ctx		*entry_ctx_in_use;
7095 	struct spdk_poller			*poller;
7096 	struct spdk_nvme_ctrlr_opts		drv_opts;
7097 	struct spdk_bdev_nvme_ctrlr_opts	bdev_opts;
7098 	struct spdk_nvmf_discovery_log_page	*log_page;
7099 	TAILQ_ENTRY(discovery_ctx)		tailq;
7100 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
7101 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
7102 	int					rc;
7103 	bool					wait_for_attach;
7104 	uint64_t				timeout_ticks;
7105 	/* Denotes that the discovery service is being started. We're waiting
7106 	 * for the initial connection to the discovery controller to be
7107 	 * established and attach discovered NVM ctrlrs.
7108 	 */
7109 	bool					initializing;
7110 	/* Denotes if a discovery is currently in progress for this context.
7111 	 * That includes connecting to newly discovered subsystems.  Used to
7112 	 * ensure we do not start a new discovery until an existing one is
7113 	 * complete.
7114 	 */
7115 	bool					in_progress;
7116 
7117 	/* Denotes if another discovery is needed after the one in progress
7118 	 * completes.  Set when we receive an AER completion while a discovery
7119 	 * is already in progress.
7120 	 */
7121 	bool					pending;
7122 
7123 	/* Signal to the discovery context poller that it should stop the
7124 	 * discovery service, including detaching from the current discovery
7125 	 * controller.
7126 	 */
7127 	bool					stop;
7128 
7129 	struct spdk_thread			*calling_thread;
7130 	uint32_t				index;
7131 	uint32_t				attach_in_progress;
7132 	char					*hostnqn;
7133 
7134 	/* Denotes if the discovery service was started by the mdns discovery.
7135 	 */
7136 	bool					from_mdns_discovery_service;
7137 };
7138 
7139 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
7140 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
7141 
7142 static void get_discovery_log_page(struct discovery_ctx *ctx);
7143 
7144 static void
7145 free_discovery_ctx(struct discovery_ctx *ctx)
7146 {
7147 	free(ctx->log_page);
7148 	free(ctx->hostnqn);
7149 	free(ctx->name);
7150 	free(ctx);
7151 }
7152 
7153 static void
7154 discovery_complete(struct discovery_ctx *ctx)
7155 {
7156 	ctx->initializing = false;
7157 	ctx->in_progress = false;
7158 	if (ctx->pending) {
7159 		ctx->pending = false;
7160 		get_discovery_log_page(ctx);
7161 	}
7162 }
7163 
7164 static void
7165 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
7166 			       struct spdk_nvmf_discovery_log_page_entry *entry)
7167 {
7168 	char *space;
7169 
7170 	trid->trtype = entry->trtype;
7171 	trid->adrfam = entry->adrfam;
7172 	memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr));
7173 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid));
7174 	/* Because the source buffer (entry->subnqn) is longer than trid->subnqn, and
7175 	 * before call to this function trid->subnqn is zeroed out, we need
7176 	 * to copy sizeof(trid->subnqn) minus one byte to make sure the last character
7177 	 * remains 0. Then we can shorten the string (replace ' ' with 0) if required
7178 	 */
7179 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn) - 1);
7180 
7181 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
7182 	 * But the log page entries typically pad them with spaces, not zeroes.
7183 	 * So add a NULL terminator to each of these fields at the appropriate
7184 	 * location.
7185 	 */
7186 	space = strchr(trid->traddr, ' ');
7187 	if (space) {
7188 		*space = 0;
7189 	}
7190 	space = strchr(trid->trsvcid, ' ');
7191 	if (space) {
7192 		*space = 0;
7193 	}
7194 	space = strchr(trid->subnqn, ' ');
7195 	if (space) {
7196 		*space = 0;
7197 	}
7198 }
7199 
7200 static void
7201 _stop_discovery(void *_ctx)
7202 {
7203 	struct discovery_ctx *ctx = _ctx;
7204 
7205 	if (ctx->attach_in_progress > 0) {
7206 		spdk_thread_send_msg(spdk_get_thread(), _stop_discovery, ctx);
7207 		return;
7208 	}
7209 
7210 	ctx->stop = true;
7211 
7212 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
7213 		struct discovery_entry_ctx *entry_ctx;
7214 		struct nvme_path_id path = {};
7215 
7216 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
7217 		path.trid = entry_ctx->trid;
7218 		bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
7219 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
7220 		free(entry_ctx);
7221 	}
7222 
7223 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
7224 		struct discovery_entry_ctx *entry_ctx;
7225 
7226 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
7227 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
7228 		free(entry_ctx);
7229 	}
7230 
7231 	free(ctx->entry_ctx_in_use);
7232 	ctx->entry_ctx_in_use = NULL;
7233 }
7234 
7235 static void
7236 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
7237 {
7238 	ctx->stop_cb_fn = cb_fn;
7239 	ctx->cb_ctx = cb_ctx;
7240 
7241 	if (ctx->attach_in_progress > 0) {
7242 		DISCOVERY_INFOLOG(ctx, "stopping discovery with attach_in_progress: %"PRIu32"\n",
7243 				  ctx->attach_in_progress);
7244 	}
7245 
7246 	_stop_discovery(ctx);
7247 }
7248 
7249 static void
7250 remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr)
7251 {
7252 	struct discovery_ctx *d_ctx;
7253 	struct nvme_path_id *path_id;
7254 	struct spdk_nvme_transport_id trid = {};
7255 	struct discovery_entry_ctx *entry_ctx, *tmp;
7256 
7257 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
7258 
7259 	TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
7260 		TAILQ_FOREACH_SAFE(entry_ctx, &d_ctx->nvm_entry_ctxs, tailq, tmp) {
7261 			build_trid_from_log_page_entry(&trid, &entry_ctx->entry);
7262 			if (spdk_nvme_transport_id_compare(&trid, &path_id->trid) != 0) {
7263 				continue;
7264 			}
7265 
7266 			TAILQ_REMOVE(&d_ctx->nvm_entry_ctxs, entry_ctx, tailq);
7267 			free(entry_ctx);
7268 			DISCOVERY_INFOLOG(d_ctx, "Remove discovery entry: %s:%s:%s\n",
7269 					  trid.subnqn, trid.traddr, trid.trsvcid);
7270 
7271 			/* Fail discovery ctrlr to force reattach attempt */
7272 			spdk_nvme_ctrlr_fail(d_ctx->ctrlr);
7273 		}
7274 	}
7275 }
7276 
7277 static void
7278 discovery_remove_controllers(struct discovery_ctx *ctx)
7279 {
7280 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
7281 	struct discovery_entry_ctx *entry_ctx, *tmp;
7282 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
7283 	struct spdk_nvme_transport_id old_trid = {};
7284 	uint64_t numrec, i;
7285 	bool found;
7286 
7287 	numrec = from_le64(&log_page->numrec);
7288 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
7289 		found = false;
7290 		old_entry = &entry_ctx->entry;
7291 		build_trid_from_log_page_entry(&old_trid, old_entry);
7292 		for (i = 0; i < numrec; i++) {
7293 			new_entry = &log_page->entries[i];
7294 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
7295 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
7296 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
7297 				found = true;
7298 				break;
7299 			}
7300 		}
7301 		if (!found) {
7302 			struct nvme_path_id path = {};
7303 
7304 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
7305 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
7306 
7307 			path.trid = entry_ctx->trid;
7308 			bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
7309 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
7310 			free(entry_ctx);
7311 		}
7312 	}
7313 	free(log_page);
7314 	ctx->log_page = NULL;
7315 	discovery_complete(ctx);
7316 }
7317 
7318 static void
7319 complete_discovery_start(struct discovery_ctx *ctx, int status)
7320 {
7321 	ctx->timeout_ticks = 0;
7322 	ctx->rc = status;
7323 	if (ctx->start_cb_fn) {
7324 		ctx->start_cb_fn(ctx->cb_ctx, status);
7325 		ctx->start_cb_fn = NULL;
7326 		ctx->cb_ctx = NULL;
7327 	}
7328 }
7329 
7330 static void
7331 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
7332 {
7333 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
7334 	struct discovery_ctx *ctx = entry_ctx->ctx;
7335 
7336 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
7337 	ctx->attach_in_progress--;
7338 	if (ctx->attach_in_progress == 0) {
7339 		complete_discovery_start(ctx, ctx->rc);
7340 		if (ctx->initializing && ctx->rc != 0) {
7341 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
7342 			stop_discovery(ctx, NULL, ctx->cb_ctx);
7343 		} else {
7344 			discovery_remove_controllers(ctx);
7345 		}
7346 	}
7347 }
7348 
7349 static struct discovery_entry_ctx *
7350 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
7351 {
7352 	struct discovery_entry_ctx *new_ctx;
7353 
7354 	new_ctx = calloc(1, sizeof(*new_ctx));
7355 	if (new_ctx == NULL) {
7356 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7357 		return NULL;
7358 	}
7359 
7360 	new_ctx->ctx = ctx;
7361 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
7362 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
7363 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
7364 	return new_ctx;
7365 }
7366 
7367 static void
7368 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
7369 		      struct spdk_nvmf_discovery_log_page *log_page)
7370 {
7371 	struct discovery_ctx *ctx = cb_arg;
7372 	struct discovery_entry_ctx *entry_ctx, *tmp;
7373 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
7374 	uint64_t numrec, i;
7375 	bool found;
7376 
7377 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
7378 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
7379 		return;
7380 	}
7381 
7382 	ctx->log_page = log_page;
7383 	assert(ctx->attach_in_progress == 0);
7384 	numrec = from_le64(&log_page->numrec);
7385 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
7386 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
7387 		free(entry_ctx);
7388 	}
7389 	for (i = 0; i < numrec; i++) {
7390 		found = false;
7391 		new_entry = &log_page->entries[i];
7392 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY_CURRENT ||
7393 		    new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
7394 			struct discovery_entry_ctx *new_ctx;
7395 			struct spdk_nvme_transport_id trid = {};
7396 
7397 			build_trid_from_log_page_entry(&trid, new_entry);
7398 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
7399 			if (new_ctx == NULL) {
7400 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7401 				break;
7402 			}
7403 
7404 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
7405 			continue;
7406 		}
7407 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
7408 			old_entry = &entry_ctx->entry;
7409 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
7410 				found = true;
7411 				break;
7412 			}
7413 		}
7414 		if (!found) {
7415 			struct discovery_entry_ctx *subnqn_ctx = NULL, *new_ctx;
7416 			struct discovery_ctx *d_ctx;
7417 
7418 			TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
7419 				TAILQ_FOREACH(subnqn_ctx, &d_ctx->nvm_entry_ctxs, tailq) {
7420 					if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
7421 						    sizeof(new_entry->subnqn))) {
7422 						break;
7423 					}
7424 				}
7425 				if (subnqn_ctx) {
7426 					break;
7427 				}
7428 			}
7429 
7430 			new_ctx = calloc(1, sizeof(*new_ctx));
7431 			if (new_ctx == NULL) {
7432 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7433 				break;
7434 			}
7435 
7436 			new_ctx->ctx = ctx;
7437 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
7438 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
7439 			if (subnqn_ctx) {
7440 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
7441 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
7442 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
7443 						  new_ctx->name);
7444 			} else {
7445 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
7446 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
7447 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
7448 						  new_ctx->name);
7449 			}
7450 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
7451 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
7452 			rc = spdk_bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
7453 						   discovery_attach_controller_done, new_ctx,
7454 						   &new_ctx->drv_opts, &ctx->bdev_opts);
7455 			if (rc == 0) {
7456 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
7457 				ctx->attach_in_progress++;
7458 			} else {
7459 				DISCOVERY_ERRLOG(ctx, "spdk_bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
7460 			}
7461 		}
7462 	}
7463 
7464 	if (ctx->attach_in_progress == 0) {
7465 		discovery_remove_controllers(ctx);
7466 	}
7467 }
7468 
7469 static void
7470 get_discovery_log_page(struct discovery_ctx *ctx)
7471 {
7472 	int rc;
7473 
7474 	assert(ctx->in_progress == false);
7475 	ctx->in_progress = true;
7476 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
7477 	if (rc != 0) {
7478 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
7479 	}
7480 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
7481 }
7482 
7483 static void
7484 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
7485 {
7486 	struct discovery_ctx *ctx = arg;
7487 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
7488 
7489 	if (spdk_nvme_cpl_is_error(cpl)) {
7490 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
7491 		return;
7492 	}
7493 
7494 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
7495 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
7496 		return;
7497 	}
7498 
7499 	DISCOVERY_INFOLOG(ctx, "got aer\n");
7500 	if (ctx->in_progress) {
7501 		ctx->pending = true;
7502 		return;
7503 	}
7504 
7505 	get_discovery_log_page(ctx);
7506 }
7507 
7508 static void
7509 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
7510 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
7511 {
7512 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
7513 	struct discovery_ctx *ctx;
7514 
7515 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
7516 
7517 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
7518 	ctx->probe_ctx = NULL;
7519 	ctx->ctrlr = ctrlr;
7520 
7521 	if (ctx->rc != 0) {
7522 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
7523 				 ctx->rc);
7524 		return;
7525 	}
7526 
7527 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
7528 }
7529 
7530 static int
7531 discovery_poller(void *arg)
7532 {
7533 	struct discovery_ctx *ctx = arg;
7534 	struct spdk_nvme_transport_id *trid;
7535 	int rc;
7536 
7537 	if (ctx->detach_ctx) {
7538 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
7539 		if (rc != -EAGAIN) {
7540 			ctx->detach_ctx = NULL;
7541 			ctx->ctrlr = NULL;
7542 		}
7543 	} else if (ctx->stop) {
7544 		if (ctx->ctrlr != NULL) {
7545 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
7546 			if (rc == 0) {
7547 				return SPDK_POLLER_BUSY;
7548 			}
7549 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7550 		}
7551 		spdk_poller_unregister(&ctx->poller);
7552 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
7553 		assert(ctx->start_cb_fn == NULL);
7554 		if (ctx->stop_cb_fn != NULL) {
7555 			ctx->stop_cb_fn(ctx->cb_ctx);
7556 		}
7557 		free_discovery_ctx(ctx);
7558 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
7559 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7560 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
7561 			assert(ctx->initializing);
7562 			spdk_poller_unregister(&ctx->poller);
7563 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
7564 			complete_discovery_start(ctx, -ETIMEDOUT);
7565 			stop_discovery(ctx, NULL, NULL);
7566 			free_discovery_ctx(ctx);
7567 			return SPDK_POLLER_BUSY;
7568 		}
7569 
7570 		assert(ctx->entry_ctx_in_use == NULL);
7571 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
7572 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7573 		trid = &ctx->entry_ctx_in_use->trid;
7574 
7575 		/* All controllers must be configured explicitely either for multipath or failover.
7576 		 * While discovery use multipath mode, we need to set this in bdev options as well.
7577 		 */
7578 		ctx->bdev_opts.multipath = true;
7579 
7580 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
7581 		if (ctx->probe_ctx) {
7582 			spdk_poller_unregister(&ctx->poller);
7583 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
7584 		} else {
7585 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
7586 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7587 			ctx->entry_ctx_in_use = NULL;
7588 		}
7589 	} else if (ctx->probe_ctx) {
7590 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7591 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
7592 			complete_discovery_start(ctx, -ETIMEDOUT);
7593 			return SPDK_POLLER_BUSY;
7594 		}
7595 
7596 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
7597 		if (rc != -EAGAIN) {
7598 			if (ctx->rc != 0) {
7599 				assert(ctx->initializing);
7600 				stop_discovery(ctx, NULL, ctx->cb_ctx);
7601 			} else {
7602 				assert(rc == 0);
7603 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
7604 				ctx->rc = rc;
7605 				get_discovery_log_page(ctx);
7606 			}
7607 		}
7608 	} else {
7609 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7610 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
7611 			complete_discovery_start(ctx, -ETIMEDOUT);
7612 			/* We need to wait until all NVM ctrlrs are attached before we stop the
7613 			 * discovery service to make sure we don't detach a ctrlr that is still
7614 			 * being attached.
7615 			 */
7616 			if (ctx->attach_in_progress == 0) {
7617 				stop_discovery(ctx, NULL, ctx->cb_ctx);
7618 				return SPDK_POLLER_BUSY;
7619 			}
7620 		}
7621 
7622 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
7623 		if (rc < 0) {
7624 			spdk_poller_unregister(&ctx->poller);
7625 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7626 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7627 			ctx->entry_ctx_in_use = NULL;
7628 
7629 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
7630 			if (rc != 0) {
7631 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7632 				ctx->ctrlr = NULL;
7633 			}
7634 		}
7635 	}
7636 
7637 	return SPDK_POLLER_BUSY;
7638 }
7639 
7640 static void
7641 start_discovery_poller(void *arg)
7642 {
7643 	struct discovery_ctx *ctx = arg;
7644 
7645 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
7646 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7647 }
7648 
7649 int
7650 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
7651 			  const char *base_name,
7652 			  struct spdk_nvme_ctrlr_opts *drv_opts,
7653 			  struct spdk_bdev_nvme_ctrlr_opts *bdev_opts,
7654 			  uint64_t attach_timeout,
7655 			  bool from_mdns,
7656 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
7657 {
7658 	struct discovery_ctx *ctx;
7659 	struct discovery_entry_ctx *discovery_entry_ctx;
7660 
7661 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
7662 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7663 		if (strcmp(ctx->name, base_name) == 0) {
7664 			return -EEXIST;
7665 		}
7666 
7667 		if (ctx->entry_ctx_in_use != NULL) {
7668 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
7669 				return -EEXIST;
7670 			}
7671 		}
7672 
7673 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
7674 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
7675 				return -EEXIST;
7676 			}
7677 		}
7678 	}
7679 
7680 	ctx = calloc(1, sizeof(*ctx));
7681 	if (ctx == NULL) {
7682 		return -ENOMEM;
7683 	}
7684 
7685 	ctx->name = strdup(base_name);
7686 	if (ctx->name == NULL) {
7687 		free_discovery_ctx(ctx);
7688 		return -ENOMEM;
7689 	}
7690 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
7691 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
7692 	ctx->from_mdns_discovery_service = from_mdns;
7693 	ctx->bdev_opts.from_discovery_service = true;
7694 	ctx->calling_thread = spdk_get_thread();
7695 	ctx->start_cb_fn = cb_fn;
7696 	ctx->cb_ctx = cb_ctx;
7697 	ctx->initializing = true;
7698 	if (ctx->start_cb_fn) {
7699 		/* We can use this when dumping json to denote if this RPC parameter
7700 		 * was specified or not.
7701 		 */
7702 		ctx->wait_for_attach = true;
7703 	}
7704 	if (attach_timeout != 0) {
7705 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
7706 				     spdk_get_ticks_hz() / 1000ull;
7707 	}
7708 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
7709 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
7710 	memcpy(&ctx->trid, trid, sizeof(*trid));
7711 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
7712 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
7713 	if (ctx->hostnqn == NULL) {
7714 		free_discovery_ctx(ctx);
7715 		return -ENOMEM;
7716 	}
7717 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
7718 	if (discovery_entry_ctx == NULL) {
7719 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7720 		free_discovery_ctx(ctx);
7721 		return -ENOMEM;
7722 	}
7723 
7724 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
7725 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
7726 	return 0;
7727 }
7728 
7729 int
7730 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
7731 {
7732 	struct discovery_ctx *ctx;
7733 
7734 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7735 		if (strcmp(name, ctx->name) == 0) {
7736 			if (ctx->stop) {
7737 				return -EALREADY;
7738 			}
7739 			/* If we're still starting the discovery service and ->rc is non-zero, we're
7740 			 * going to stop it as soon as we can
7741 			 */
7742 			if (ctx->initializing && ctx->rc != 0) {
7743 				return -EALREADY;
7744 			}
7745 			stop_discovery(ctx, cb_fn, cb_ctx);
7746 			return 0;
7747 		}
7748 	}
7749 
7750 	return -ENOENT;
7751 }
7752 
7753 static int
7754 bdev_nvme_library_init(void)
7755 {
7756 	g_bdev_nvme_init_thread = spdk_get_thread();
7757 
7758 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
7759 				bdev_nvme_destroy_poll_group_cb,
7760 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
7761 
7762 	return 0;
7763 }
7764 
7765 static void
7766 bdev_nvme_fini_destruct_ctrlrs(void)
7767 {
7768 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
7769 	struct nvme_ctrlr *nvme_ctrlr;
7770 
7771 	pthread_mutex_lock(&g_bdev_nvme_mutex);
7772 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
7773 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
7774 			pthread_mutex_lock(&nvme_ctrlr->mutex);
7775 			if (nvme_ctrlr->destruct) {
7776 				/* This controller's destruction was already started
7777 				 * before the application started shutting down
7778 				 */
7779 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
7780 				continue;
7781 			}
7782 			nvme_ctrlr->destruct = true;
7783 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
7784 
7785 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
7786 					     nvme_ctrlr);
7787 		}
7788 	}
7789 
7790 	g_bdev_nvme_module_finish = true;
7791 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
7792 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
7793 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
7794 		spdk_bdev_module_fini_done();
7795 		return;
7796 	}
7797 
7798 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
7799 }
7800 
7801 static void
7802 check_discovery_fini(void *arg)
7803 {
7804 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7805 		bdev_nvme_fini_destruct_ctrlrs();
7806 	}
7807 }
7808 
7809 static void
7810 bdev_nvme_library_fini(void)
7811 {
7812 	struct nvme_probe_skip_entry *entry, *entry_tmp;
7813 	struct discovery_ctx *ctx;
7814 
7815 	spdk_poller_unregister(&g_hotplug_poller);
7816 	free(g_hotplug_probe_ctx);
7817 	g_hotplug_probe_ctx = NULL;
7818 
7819 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
7820 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
7821 		free(entry);
7822 	}
7823 
7824 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
7825 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7826 		bdev_nvme_fini_destruct_ctrlrs();
7827 	} else {
7828 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7829 			stop_discovery(ctx, check_discovery_fini, NULL);
7830 		}
7831 	}
7832 }
7833 
7834 static void
7835 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
7836 {
7837 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7838 	struct spdk_bdev *bdev = bdev_io->bdev;
7839 	struct spdk_dif_ctx dif_ctx;
7840 	struct spdk_dif_error err_blk = {};
7841 	int rc;
7842 	struct spdk_dif_ctx_init_ext_opts dif_opts;
7843 
7844 	dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format);
7845 	dif_opts.dif_pi_format = bdev->dif_pi_format;
7846 	rc = spdk_dif_ctx_init(&dif_ctx,
7847 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
7848 			       bdev->dif_is_head_of_md, bdev->dif_type,
7849 			       bdev_io->u.bdev.dif_check_flags,
7850 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0, &dif_opts);
7851 	if (rc != 0) {
7852 		SPDK_ERRLOG("Initialization of DIF context failed\n");
7853 		return;
7854 	}
7855 
7856 	if (bdev->md_interleave) {
7857 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7858 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7859 	} else {
7860 		struct iovec md_iov = {
7861 			.iov_base	= bdev_io->u.bdev.md_buf,
7862 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
7863 		};
7864 
7865 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7866 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7867 	}
7868 
7869 	if (rc != 0) {
7870 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
7871 			    err_blk.err_type, err_blk.err_offset);
7872 	} else {
7873 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
7874 	}
7875 }
7876 
7877 static void
7878 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7879 {
7880 	struct nvme_bdev_io *bio = ref;
7881 
7882 	if (spdk_nvme_cpl_is_success(cpl)) {
7883 		/* Run PI verification for read data buffer. */
7884 		bdev_nvme_verify_pi_error(bio);
7885 	}
7886 
7887 	/* Return original completion status */
7888 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7889 }
7890 
7891 static void
7892 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7893 {
7894 	struct nvme_bdev_io *bio = ref;
7895 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7896 	int ret;
7897 
7898 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7899 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
7900 			    cpl->status.sct, cpl->status.sc);
7901 
7902 		/* Save completion status to use after verifying PI error. */
7903 		bio->cpl = *cpl;
7904 
7905 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
7906 			/* Read without PI checking to verify PI error. */
7907 			ret = bdev_nvme_no_pi_readv(bio,
7908 						    bdev_io->u.bdev.iovs,
7909 						    bdev_io->u.bdev.iovcnt,
7910 						    bdev_io->u.bdev.md_buf,
7911 						    bdev_io->u.bdev.num_blocks,
7912 						    bdev_io->u.bdev.offset_blocks);
7913 			if (ret == 0) {
7914 				return;
7915 			}
7916 		}
7917 	}
7918 
7919 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7920 }
7921 
7922 static void
7923 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7924 {
7925 	struct nvme_bdev_io *bio = ref;
7926 
7927 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7928 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
7929 			    cpl->status.sct, cpl->status.sc);
7930 		/* Run PI verification for write data buffer if PI error is detected. */
7931 		bdev_nvme_verify_pi_error(bio);
7932 	}
7933 
7934 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7935 }
7936 
7937 static void
7938 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7939 {
7940 	struct nvme_bdev_io *bio = ref;
7941 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7942 
7943 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
7944 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
7945 	 */
7946 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
7947 
7948 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7949 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
7950 			    cpl->status.sct, cpl->status.sc);
7951 		/* Run PI verification for zone append data buffer if PI error is detected. */
7952 		bdev_nvme_verify_pi_error(bio);
7953 	}
7954 
7955 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7956 }
7957 
7958 static void
7959 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7960 {
7961 	struct nvme_bdev_io *bio = ref;
7962 
7963 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7964 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
7965 			    cpl->status.sct, cpl->status.sc);
7966 		/* Run PI verification for compare data buffer if PI error is detected. */
7967 		bdev_nvme_verify_pi_error(bio);
7968 	}
7969 
7970 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7971 }
7972 
7973 static void
7974 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7975 {
7976 	struct nvme_bdev_io *bio = ref;
7977 
7978 	/* Compare operation completion */
7979 	if (!bio->first_fused_completed) {
7980 		/* Save compare result for write callback */
7981 		bio->cpl = *cpl;
7982 		bio->first_fused_completed = true;
7983 		return;
7984 	}
7985 
7986 	/* Write operation completion */
7987 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
7988 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
7989 		 * complete the IO with the compare operation's status.
7990 		 */
7991 		if (!spdk_nvme_cpl_is_error(cpl)) {
7992 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
7993 		}
7994 
7995 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7996 	} else {
7997 		bdev_nvme_io_complete_nvme_status(bio, cpl);
7998 	}
7999 }
8000 
8001 static void
8002 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
8003 {
8004 	struct nvme_bdev_io *bio = ref;
8005 
8006 	bdev_nvme_io_complete_nvme_status(bio, cpl);
8007 }
8008 
8009 static int
8010 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
8011 {
8012 	switch (desc->zt) {
8013 	case SPDK_NVME_ZONE_TYPE_SEQWR:
8014 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
8015 		break;
8016 	default:
8017 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
8018 		return -EIO;
8019 	}
8020 
8021 	switch (desc->zs) {
8022 	case SPDK_NVME_ZONE_STATE_EMPTY:
8023 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
8024 		break;
8025 	case SPDK_NVME_ZONE_STATE_IOPEN:
8026 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
8027 		break;
8028 	case SPDK_NVME_ZONE_STATE_EOPEN:
8029 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
8030 		break;
8031 	case SPDK_NVME_ZONE_STATE_CLOSED:
8032 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
8033 		break;
8034 	case SPDK_NVME_ZONE_STATE_RONLY:
8035 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
8036 		break;
8037 	case SPDK_NVME_ZONE_STATE_FULL:
8038 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
8039 		break;
8040 	case SPDK_NVME_ZONE_STATE_OFFLINE:
8041 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
8042 		break;
8043 	default:
8044 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
8045 		return -EIO;
8046 	}
8047 
8048 	info->zone_id = desc->zslba;
8049 	info->write_pointer = desc->wp;
8050 	info->capacity = desc->zcap;
8051 
8052 	return 0;
8053 }
8054 
8055 static void
8056 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
8057 {
8058 	struct nvme_bdev_io *bio = ref;
8059 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
8060 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
8061 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
8062 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
8063 	uint64_t max_zones_per_buf, i;
8064 	uint32_t zone_report_bufsize;
8065 	struct spdk_nvme_ns *ns;
8066 	struct spdk_nvme_qpair *qpair;
8067 	int ret;
8068 
8069 	if (spdk_nvme_cpl_is_error(cpl)) {
8070 		goto out_complete_io_nvme_cpl;
8071 	}
8072 
8073 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
8074 		ret = -ENXIO;
8075 		goto out_complete_io_ret;
8076 	}
8077 
8078 	ns = bio->io_path->nvme_ns->ns;
8079 	qpair = bio->io_path->qpair->qpair;
8080 
8081 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
8082 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
8083 			    sizeof(bio->zone_report_buf->descs[0]);
8084 
8085 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
8086 		ret = -EINVAL;
8087 		goto out_complete_io_ret;
8088 	}
8089 
8090 	if (!bio->zone_report_buf->nr_zones) {
8091 		ret = -EINVAL;
8092 		goto out_complete_io_ret;
8093 	}
8094 
8095 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
8096 		ret = fill_zone_from_report(&info[bio->handled_zones],
8097 					    &bio->zone_report_buf->descs[i]);
8098 		if (ret) {
8099 			goto out_complete_io_ret;
8100 		}
8101 		bio->handled_zones++;
8102 	}
8103 
8104 	if (bio->handled_zones < zones_to_copy) {
8105 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
8106 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
8107 
8108 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
8109 		ret = spdk_nvme_zns_report_zones(ns, qpair,
8110 						 bio->zone_report_buf, zone_report_bufsize,
8111 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
8112 						 bdev_nvme_get_zone_info_done, bio);
8113 		if (!ret) {
8114 			return;
8115 		} else {
8116 			goto out_complete_io_ret;
8117 		}
8118 	}
8119 
8120 out_complete_io_nvme_cpl:
8121 	free(bio->zone_report_buf);
8122 	bio->zone_report_buf = NULL;
8123 	bdev_nvme_io_complete_nvme_status(bio, cpl);
8124 	return;
8125 
8126 out_complete_io_ret:
8127 	free(bio->zone_report_buf);
8128 	bio->zone_report_buf = NULL;
8129 	bdev_nvme_io_complete(bio, ret);
8130 }
8131 
8132 static void
8133 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
8134 {
8135 	struct nvme_bdev_io *bio = ref;
8136 
8137 	bdev_nvme_io_complete_nvme_status(bio, cpl);
8138 }
8139 
8140 static void
8141 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
8142 {
8143 	struct nvme_bdev_io *bio = ctx;
8144 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
8145 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
8146 
8147 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
8148 
8149 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
8150 }
8151 
8152 static void
8153 bdev_nvme_abort_complete(void *ctx)
8154 {
8155 	struct nvme_bdev_io *bio = ctx;
8156 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
8157 
8158 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
8159 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
8160 	} else {
8161 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
8162 	}
8163 }
8164 
8165 static void
8166 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
8167 {
8168 	struct nvme_bdev_io *bio = ref;
8169 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
8170 
8171 	bio->cpl = *cpl;
8172 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), bdev_nvme_abort_complete, bio);
8173 }
8174 
8175 static void
8176 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
8177 {
8178 	struct nvme_bdev_io *bio = ref;
8179 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
8180 
8181 	bio->cpl = *cpl;
8182 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io),
8183 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
8184 }
8185 
8186 static void
8187 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
8188 {
8189 	struct nvme_bdev_io *bio = ref;
8190 	struct iovec *iov;
8191 
8192 	bio->iov_offset = sgl_offset;
8193 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
8194 		iov = &bio->iovs[bio->iovpos];
8195 		if (bio->iov_offset < iov->iov_len) {
8196 			break;
8197 		}
8198 
8199 		bio->iov_offset -= iov->iov_len;
8200 	}
8201 }
8202 
8203 static int
8204 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
8205 {
8206 	struct nvme_bdev_io *bio = ref;
8207 	struct iovec *iov;
8208 
8209 	assert(bio->iovpos < bio->iovcnt);
8210 
8211 	iov = &bio->iovs[bio->iovpos];
8212 
8213 	*address = iov->iov_base;
8214 	*length = iov->iov_len;
8215 
8216 	if (bio->iov_offset) {
8217 		assert(bio->iov_offset <= iov->iov_len);
8218 		*address += bio->iov_offset;
8219 		*length -= bio->iov_offset;
8220 	}
8221 
8222 	bio->iov_offset += *length;
8223 	if (bio->iov_offset == iov->iov_len) {
8224 		bio->iovpos++;
8225 		bio->iov_offset = 0;
8226 	}
8227 
8228 	return 0;
8229 }
8230 
8231 static void
8232 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
8233 {
8234 	struct nvme_bdev_io *bio = ref;
8235 	struct iovec *iov;
8236 
8237 	bio->fused_iov_offset = sgl_offset;
8238 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
8239 		iov = &bio->fused_iovs[bio->fused_iovpos];
8240 		if (bio->fused_iov_offset < iov->iov_len) {
8241 			break;
8242 		}
8243 
8244 		bio->fused_iov_offset -= iov->iov_len;
8245 	}
8246 }
8247 
8248 static int
8249 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
8250 {
8251 	struct nvme_bdev_io *bio = ref;
8252 	struct iovec *iov;
8253 
8254 	assert(bio->fused_iovpos < bio->fused_iovcnt);
8255 
8256 	iov = &bio->fused_iovs[bio->fused_iovpos];
8257 
8258 	*address = iov->iov_base;
8259 	*length = iov->iov_len;
8260 
8261 	if (bio->fused_iov_offset) {
8262 		assert(bio->fused_iov_offset <= iov->iov_len);
8263 		*address += bio->fused_iov_offset;
8264 		*length -= bio->fused_iov_offset;
8265 	}
8266 
8267 	bio->fused_iov_offset += *length;
8268 	if (bio->fused_iov_offset == iov->iov_len) {
8269 		bio->fused_iovpos++;
8270 		bio->fused_iov_offset = 0;
8271 	}
8272 
8273 	return 0;
8274 }
8275 
8276 static int
8277 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8278 		      void *md, uint64_t lba_count, uint64_t lba)
8279 {
8280 	int rc;
8281 
8282 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
8283 		      lba_count, lba);
8284 
8285 	bio->iovs = iov;
8286 	bio->iovcnt = iovcnt;
8287 	bio->iovpos = 0;
8288 	bio->iov_offset = 0;
8289 
8290 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
8291 					    bio->io_path->qpair->qpair,
8292 					    lba, lba_count,
8293 					    bdev_nvme_no_pi_readv_done, bio, 0,
8294 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
8295 					    md, 0, 0);
8296 
8297 	if (rc != 0 && rc != -ENOMEM) {
8298 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
8299 	}
8300 	return rc;
8301 }
8302 
8303 static int
8304 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8305 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
8306 		struct spdk_memory_domain *domain, void *domain_ctx,
8307 		struct spdk_accel_sequence *seq)
8308 {
8309 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8310 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8311 	int rc;
8312 
8313 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
8314 		      lba_count, lba);
8315 
8316 	bio->iovs = iov;
8317 	bio->iovcnt = iovcnt;
8318 	bio->iovpos = 0;
8319 	bio->iov_offset = 0;
8320 
8321 	if (domain != NULL || seq != NULL) {
8322 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
8323 		bio->ext_opts.memory_domain = domain;
8324 		bio->ext_opts.memory_domain_ctx = domain_ctx;
8325 		bio->ext_opts.io_flags = flags;
8326 		bio->ext_opts.metadata = md;
8327 		bio->ext_opts.accel_sequence = seq;
8328 
8329 		if (iovcnt == 1) {
8330 			rc = spdk_nvme_ns_cmd_read_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_readv_done,
8331 						       bio, &bio->ext_opts);
8332 		} else {
8333 			rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
8334 							bdev_nvme_readv_done, bio,
8335 							bdev_nvme_queued_reset_sgl,
8336 							bdev_nvme_queued_next_sge,
8337 							&bio->ext_opts);
8338 		}
8339 	} else if (iovcnt == 1) {
8340 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base,
8341 						   md, lba, lba_count, bdev_nvme_readv_done,
8342 						   bio, flags, 0, 0);
8343 	} else {
8344 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
8345 						    bdev_nvme_readv_done, bio, flags,
8346 						    bdev_nvme_queued_reset_sgl,
8347 						    bdev_nvme_queued_next_sge, md, 0, 0);
8348 	}
8349 
8350 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
8351 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
8352 	}
8353 	return rc;
8354 }
8355 
8356 static int
8357 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8358 		 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
8359 		 struct spdk_memory_domain *domain, void *domain_ctx,
8360 		 struct spdk_accel_sequence *seq,
8361 		 union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13)
8362 {
8363 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8364 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8365 	int rc;
8366 
8367 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
8368 		      lba_count, lba);
8369 
8370 	bio->iovs = iov;
8371 	bio->iovcnt = iovcnt;
8372 	bio->iovpos = 0;
8373 	bio->iov_offset = 0;
8374 
8375 	if (domain != NULL || seq != NULL) {
8376 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
8377 		bio->ext_opts.memory_domain = domain;
8378 		bio->ext_opts.memory_domain_ctx = domain_ctx;
8379 		bio->ext_opts.io_flags = flags | SPDK_NVME_IO_FLAGS_DIRECTIVE(cdw12.write.dtype);
8380 		bio->ext_opts.cdw13 = cdw13.raw;
8381 		bio->ext_opts.metadata = md;
8382 		bio->ext_opts.accel_sequence = seq;
8383 
8384 		if (iovcnt == 1) {
8385 			rc = spdk_nvme_ns_cmd_write_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_writev_done,
8386 							bio, &bio->ext_opts);
8387 		} else {
8388 			rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
8389 							 bdev_nvme_writev_done, bio,
8390 							 bdev_nvme_queued_reset_sgl,
8391 							 bdev_nvme_queued_next_sge,
8392 							 &bio->ext_opts);
8393 		}
8394 	} else if (iovcnt == 1) {
8395 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base,
8396 						    md, lba, lba_count, bdev_nvme_writev_done,
8397 						    bio, flags, 0, 0);
8398 	} else {
8399 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
8400 						     bdev_nvme_writev_done, bio, flags,
8401 						     bdev_nvme_queued_reset_sgl,
8402 						     bdev_nvme_queued_next_sge, md, 0, 0);
8403 	}
8404 
8405 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
8406 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
8407 	}
8408 	return rc;
8409 }
8410 
8411 static int
8412 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8413 		       void *md, uint64_t lba_count, uint64_t zslba,
8414 		       uint32_t flags)
8415 {
8416 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8417 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8418 	int rc;
8419 
8420 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
8421 		      lba_count, zslba);
8422 
8423 	bio->iovs = iov;
8424 	bio->iovcnt = iovcnt;
8425 	bio->iovpos = 0;
8426 	bio->iov_offset = 0;
8427 
8428 	if (iovcnt == 1) {
8429 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
8430 						       lba_count,
8431 						       bdev_nvme_zone_appendv_done, bio,
8432 						       flags,
8433 						       0, 0);
8434 	} else {
8435 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
8436 							bdev_nvme_zone_appendv_done, bio, flags,
8437 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
8438 							md, 0, 0);
8439 	}
8440 
8441 	if (rc != 0 && rc != -ENOMEM) {
8442 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
8443 	}
8444 	return rc;
8445 }
8446 
8447 static int
8448 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8449 		   void *md, uint64_t lba_count, uint64_t lba,
8450 		   uint32_t flags)
8451 {
8452 	int rc;
8453 
8454 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
8455 		      lba_count, lba);
8456 
8457 	bio->iovs = iov;
8458 	bio->iovcnt = iovcnt;
8459 	bio->iovpos = 0;
8460 	bio->iov_offset = 0;
8461 
8462 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
8463 					       bio->io_path->qpair->qpair,
8464 					       lba, lba_count,
8465 					       bdev_nvme_comparev_done, bio, flags,
8466 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
8467 					       md, 0, 0);
8468 
8469 	if (rc != 0 && rc != -ENOMEM) {
8470 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
8471 	}
8472 	return rc;
8473 }
8474 
8475 static int
8476 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
8477 			      struct iovec *write_iov, int write_iovcnt,
8478 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
8479 {
8480 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8481 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8482 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
8483 	int rc;
8484 
8485 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
8486 		      lba_count, lba);
8487 
8488 	bio->iovs = cmp_iov;
8489 	bio->iovcnt = cmp_iovcnt;
8490 	bio->iovpos = 0;
8491 	bio->iov_offset = 0;
8492 	bio->fused_iovs = write_iov;
8493 	bio->fused_iovcnt = write_iovcnt;
8494 	bio->fused_iovpos = 0;
8495 	bio->fused_iov_offset = 0;
8496 
8497 	if (bdev_io->num_retries == 0) {
8498 		bio->first_fused_submitted = false;
8499 		bio->first_fused_completed = false;
8500 	}
8501 
8502 	if (!bio->first_fused_submitted) {
8503 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
8504 		memset(&bio->cpl, 0, sizeof(bio->cpl));
8505 
8506 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
8507 						       bdev_nvme_comparev_and_writev_done, bio, flags,
8508 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
8509 		if (rc == 0) {
8510 			bio->first_fused_submitted = true;
8511 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
8512 		} else {
8513 			if (rc != -ENOMEM) {
8514 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
8515 			}
8516 			return rc;
8517 		}
8518 	}
8519 
8520 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
8521 
8522 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
8523 					     bdev_nvme_comparev_and_writev_done, bio, flags,
8524 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
8525 	if (rc != 0 && rc != -ENOMEM) {
8526 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
8527 		rc = 0;
8528 	}
8529 
8530 	return rc;
8531 }
8532 
8533 static int
8534 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
8535 {
8536 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
8537 	struct spdk_nvme_dsm_range *range;
8538 	uint64_t offset, remaining;
8539 	uint64_t num_ranges_u64;
8540 	uint16_t num_ranges;
8541 	int rc;
8542 
8543 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
8544 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8545 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
8546 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
8547 		return -EINVAL;
8548 	}
8549 	num_ranges = (uint16_t)num_ranges_u64;
8550 
8551 	offset = offset_blocks;
8552 	remaining = num_blocks;
8553 	range = &dsm_ranges[0];
8554 
8555 	/* Fill max-size ranges until the remaining blocks fit into one range */
8556 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
8557 		range->attributes.raw = 0;
8558 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8559 		range->starting_lba = offset;
8560 
8561 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8562 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8563 		range++;
8564 	}
8565 
8566 	/* Final range describes the remaining blocks */
8567 	range->attributes.raw = 0;
8568 	range->length = remaining;
8569 	range->starting_lba = offset;
8570 
8571 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
8572 			bio->io_path->qpair->qpair,
8573 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
8574 			dsm_ranges, num_ranges,
8575 			bdev_nvme_queued_done, bio);
8576 
8577 	return rc;
8578 }
8579 
8580 static int
8581 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
8582 {
8583 	if (num_blocks > UINT16_MAX + 1) {
8584 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
8585 		return -EINVAL;
8586 	}
8587 
8588 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
8589 					     bio->io_path->qpair->qpair,
8590 					     offset_blocks, num_blocks,
8591 					     bdev_nvme_queued_done, bio,
8592 					     0);
8593 }
8594 
8595 static int
8596 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
8597 			struct spdk_bdev_zone_info *info)
8598 {
8599 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8600 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8601 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
8602 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
8603 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
8604 
8605 	if (zone_id % zone_size != 0) {
8606 		return -EINVAL;
8607 	}
8608 
8609 	if (num_zones > total_zones || !num_zones) {
8610 		return -EINVAL;
8611 	}
8612 
8613 	assert(!bio->zone_report_buf);
8614 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
8615 	if (!bio->zone_report_buf) {
8616 		return -ENOMEM;
8617 	}
8618 
8619 	bio->handled_zones = 0;
8620 
8621 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
8622 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
8623 					  bdev_nvme_get_zone_info_done, bio);
8624 }
8625 
8626 static int
8627 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
8628 			  enum spdk_bdev_zone_action action)
8629 {
8630 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8631 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8632 
8633 	switch (action) {
8634 	case SPDK_BDEV_ZONE_CLOSE:
8635 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
8636 						bdev_nvme_zone_management_done, bio);
8637 	case SPDK_BDEV_ZONE_FINISH:
8638 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
8639 						 bdev_nvme_zone_management_done, bio);
8640 	case SPDK_BDEV_ZONE_OPEN:
8641 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
8642 					       bdev_nvme_zone_management_done, bio);
8643 	case SPDK_BDEV_ZONE_RESET:
8644 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
8645 						bdev_nvme_zone_management_done, bio);
8646 	case SPDK_BDEV_ZONE_OFFLINE:
8647 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
8648 						  bdev_nvme_zone_management_done, bio);
8649 	default:
8650 		return -EINVAL;
8651 	}
8652 }
8653 
8654 static void
8655 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8656 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
8657 {
8658 	struct nvme_io_path *io_path;
8659 	struct nvme_ctrlr *nvme_ctrlr;
8660 	uint32_t max_xfer_size;
8661 	int rc = -ENXIO;
8662 
8663 	/* Choose the first ctrlr which is not failed. */
8664 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8665 		nvme_ctrlr = io_path->qpair->ctrlr;
8666 
8667 		/* We should skip any unavailable nvme_ctrlr rather than checking
8668 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
8669 		 */
8670 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
8671 			continue;
8672 		}
8673 
8674 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
8675 
8676 		if (nbytes > max_xfer_size) {
8677 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8678 			rc = -EINVAL;
8679 			goto err;
8680 		}
8681 
8682 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
8683 						   bdev_nvme_admin_passthru_done, bio);
8684 		if (rc == 0) {
8685 			return;
8686 		}
8687 	}
8688 
8689 err:
8690 	bdev_nvme_admin_complete(bio, rc);
8691 }
8692 
8693 static int
8694 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8695 		      void *buf, size_t nbytes)
8696 {
8697 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8698 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8699 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8700 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8701 
8702 	if (nbytes > max_xfer_size) {
8703 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8704 		return -EINVAL;
8705 	}
8706 
8707 	/*
8708 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8709 	 * so fill it out automatically.
8710 	 */
8711 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8712 
8713 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
8714 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
8715 }
8716 
8717 static int
8718 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8719 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
8720 {
8721 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8722 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8723 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8724 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8725 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8726 
8727 	if (nbytes > max_xfer_size) {
8728 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8729 		return -EINVAL;
8730 	}
8731 
8732 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8733 		SPDK_ERRLOG("invalid meta data buffer size\n");
8734 		return -EINVAL;
8735 	}
8736 
8737 	/*
8738 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8739 	 * so fill it out automatically.
8740 	 */
8741 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8742 
8743 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
8744 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
8745 }
8746 
8747 static int
8748 bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio,
8749 			  struct spdk_nvme_cmd *cmd, struct iovec *iov, int iovcnt,
8750 			  size_t nbytes, void *md_buf, size_t md_len)
8751 {
8752 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8753 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8754 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8755 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8756 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8757 
8758 	bio->iovs = iov;
8759 	bio->iovcnt = iovcnt;
8760 	bio->iovpos = 0;
8761 	bio->iov_offset = 0;
8762 
8763 	if (nbytes > max_xfer_size) {
8764 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8765 		return -EINVAL;
8766 	}
8767 
8768 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8769 		SPDK_ERRLOG("invalid meta data buffer size\n");
8770 		return -EINVAL;
8771 	}
8772 
8773 	/*
8774 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands
8775 	 * require a nsid, so fill it out automatically.
8776 	 */
8777 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8778 
8779 	return spdk_nvme_ctrlr_cmd_iov_raw_with_md(
8780 		       ctrlr, qpair, cmd, (uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio,
8781 		       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge);
8782 }
8783 
8784 static void
8785 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8786 		struct nvme_bdev_io *bio_to_abort)
8787 {
8788 	struct nvme_io_path *io_path;
8789 	int rc = 0;
8790 
8791 	rc = bdev_nvme_abort_retry_io(nbdev_ch, bio_to_abort);
8792 	if (rc == 0) {
8793 		bdev_nvme_admin_complete(bio, 0);
8794 		return;
8795 	}
8796 
8797 	io_path = bio_to_abort->io_path;
8798 	if (io_path != NULL) {
8799 		rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8800 						   io_path->qpair->qpair,
8801 						   bio_to_abort,
8802 						   bdev_nvme_abort_done, bio);
8803 	} else {
8804 		STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8805 			rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8806 							   NULL,
8807 							   bio_to_abort,
8808 							   bdev_nvme_abort_done, bio);
8809 
8810 			if (rc != -ENOENT) {
8811 				break;
8812 			}
8813 		}
8814 	}
8815 
8816 	if (rc != 0) {
8817 		/* If no command was found or there was any error, complete the abort
8818 		 * request with failure.
8819 		 */
8820 		bdev_nvme_admin_complete(bio, rc);
8821 	}
8822 }
8823 
8824 static int
8825 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks,
8826 	       uint64_t num_blocks)
8827 {
8828 	struct spdk_nvme_scc_source_range range = {
8829 		.slba = src_offset_blocks,
8830 		.nlb = num_blocks - 1
8831 	};
8832 
8833 	return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns,
8834 				     bio->io_path->qpair->qpair,
8835 				     &range, 1, dst_offset_blocks,
8836 				     bdev_nvme_queued_done, bio);
8837 }
8838 
8839 static void
8840 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
8841 {
8842 	const char *action;
8843 	uint32_t i;
8844 
8845 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
8846 		action = "reset";
8847 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
8848 		action = "abort";
8849 	} else {
8850 		action = "none";
8851 	}
8852 
8853 	spdk_json_write_object_begin(w);
8854 
8855 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
8856 
8857 	spdk_json_write_named_object_begin(w, "params");
8858 	spdk_json_write_named_string(w, "action_on_timeout", action);
8859 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
8860 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
8861 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
8862 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
8863 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
8864 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
8865 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
8866 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
8867 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
8868 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
8869 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
8870 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
8871 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
8872 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
8873 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
8874 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
8875 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
8876 	spdk_json_write_named_bool(w, "disable_auto_failback", g_opts.disable_auto_failback);
8877 	spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids);
8878 	spdk_json_write_named_uint8(w, "transport_tos", g_opts.transport_tos);
8879 	spdk_json_write_named_bool(w, "nvme_error_stat", g_opts.nvme_error_stat);
8880 	spdk_json_write_named_uint32(w, "rdma_srq_size", g_opts.rdma_srq_size);
8881 	spdk_json_write_named_bool(w, "io_path_stat", g_opts.io_path_stat);
8882 	spdk_json_write_named_bool(w, "allow_accel_sequence", g_opts.allow_accel_sequence);
8883 	spdk_json_write_named_uint32(w, "rdma_max_cq_size", g_opts.rdma_max_cq_size);
8884 	spdk_json_write_named_uint16(w, "rdma_cm_event_timeout_ms", g_opts.rdma_cm_event_timeout_ms);
8885 	spdk_json_write_named_array_begin(w, "dhchap_digests");
8886 	for (i = 0; i < 32; ++i) {
8887 		if (g_opts.dhchap_digests & SPDK_BIT(i)) {
8888 			spdk_json_write_string(w, spdk_nvme_dhchap_get_digest_name(i));
8889 		}
8890 	}
8891 	spdk_json_write_array_end(w);
8892 	spdk_json_write_named_array_begin(w, "dhchap_dhgroups");
8893 	for (i = 0; i < 32; ++i) {
8894 		if (g_opts.dhchap_dhgroups & SPDK_BIT(i)) {
8895 			spdk_json_write_string(w, spdk_nvme_dhchap_get_dhgroup_name(i));
8896 		}
8897 	}
8898 
8899 	spdk_json_write_array_end(w);
8900 	spdk_json_write_object_end(w);
8901 
8902 	spdk_json_write_object_end(w);
8903 }
8904 
8905 static void
8906 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
8907 {
8908 	struct spdk_nvme_transport_id trid;
8909 
8910 	spdk_json_write_object_begin(w);
8911 
8912 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
8913 
8914 	spdk_json_write_named_object_begin(w, "params");
8915 	spdk_json_write_named_string(w, "name", ctx->name);
8916 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
8917 
8918 	trid = ctx->trid;
8919 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
8920 	nvme_bdev_dump_trid_json(&trid, w);
8921 
8922 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
8923 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
8924 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
8925 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8926 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
8927 	spdk_json_write_object_end(w);
8928 
8929 	spdk_json_write_object_end(w);
8930 }
8931 
8932 #ifdef SPDK_CONFIG_NVME_CUSE
8933 static void
8934 nvme_ctrlr_cuse_config_json(struct spdk_json_write_ctx *w,
8935 			    struct nvme_ctrlr *nvme_ctrlr)
8936 {
8937 	size_t cuse_name_size = 128;
8938 	char cuse_name[cuse_name_size];
8939 
8940 	if (spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr,
8941 					  cuse_name, &cuse_name_size) != 0) {
8942 		return;
8943 	}
8944 
8945 	spdk_json_write_object_begin(w);
8946 
8947 	spdk_json_write_named_string(w, "method", "bdev_nvme_cuse_register");
8948 
8949 	spdk_json_write_named_object_begin(w, "params");
8950 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8951 	spdk_json_write_object_end(w);
8952 
8953 	spdk_json_write_object_end(w);
8954 }
8955 #endif
8956 
8957 static void
8958 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
8959 		       struct nvme_ctrlr *nvme_ctrlr,
8960 		       struct nvme_path_id *path_id)
8961 {
8962 	struct spdk_nvme_transport_id	*trid;
8963 	const struct spdk_nvme_ctrlr_opts *opts;
8964 
8965 	if (nvme_ctrlr->opts.from_discovery_service) {
8966 		/* Do not emit an RPC for this - it will be implicitly
8967 		 * covered by a separate bdev_nvme_start_discovery or
8968 		 * bdev_nvme_start_mdns_discovery RPC.
8969 		 */
8970 		return;
8971 	}
8972 
8973 	trid = &path_id->trid;
8974 
8975 	spdk_json_write_object_begin(w);
8976 
8977 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
8978 
8979 	spdk_json_write_named_object_begin(w, "params");
8980 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8981 	nvme_bdev_dump_trid_json(trid, w);
8982 	spdk_json_write_named_bool(w, "prchk_reftag",
8983 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
8984 	spdk_json_write_named_bool(w, "prchk_guard",
8985 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
8986 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
8987 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
8988 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8989 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
8990 	if (nvme_ctrlr->psk != NULL) {
8991 		spdk_json_write_named_string(w, "psk", spdk_key_get_name(nvme_ctrlr->psk));
8992 	}
8993 	if (nvme_ctrlr->dhchap_key != NULL) {
8994 		spdk_json_write_named_string(w, "dhchap_key",
8995 					     spdk_key_get_name(nvme_ctrlr->dhchap_key));
8996 	}
8997 	if (nvme_ctrlr->dhchap_ctrlr_key != NULL) {
8998 		spdk_json_write_named_string(w, "dhchap_ctrlr_key",
8999 					     spdk_key_get_name(nvme_ctrlr->dhchap_ctrlr_key));
9000 	}
9001 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
9002 	spdk_json_write_named_string(w, "hostnqn", opts->hostnqn);
9003 	spdk_json_write_named_bool(w, "hdgst", opts->header_digest);
9004 	spdk_json_write_named_bool(w, "ddgst", opts->data_digest);
9005 	if (opts->src_addr[0] != '\0') {
9006 		spdk_json_write_named_string(w, "hostaddr", opts->src_addr);
9007 	}
9008 	if (opts->src_svcid[0] != '\0') {
9009 		spdk_json_write_named_string(w, "hostsvcid", opts->src_svcid);
9010 	}
9011 
9012 	if (nvme_ctrlr->opts.multipath) {
9013 		spdk_json_write_named_string(w, "multipath", "multipath");
9014 	}
9015 	spdk_json_write_object_end(w);
9016 
9017 	spdk_json_write_object_end(w);
9018 }
9019 
9020 static void
9021 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
9022 {
9023 	spdk_json_write_object_begin(w);
9024 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
9025 
9026 	spdk_json_write_named_object_begin(w, "params");
9027 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
9028 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
9029 	spdk_json_write_object_end(w);
9030 
9031 	spdk_json_write_object_end(w);
9032 }
9033 
9034 static int
9035 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
9036 {
9037 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
9038 	struct nvme_ctrlr	*nvme_ctrlr;
9039 	struct discovery_ctx	*ctx;
9040 	struct nvme_path_id	*path_id;
9041 
9042 	bdev_nvme_opts_config_json(w);
9043 
9044 	pthread_mutex_lock(&g_bdev_nvme_mutex);
9045 
9046 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
9047 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
9048 			path_id = nvme_ctrlr->active_path_id;
9049 			assert(path_id == TAILQ_FIRST(&nvme_ctrlr->trids));
9050 			nvme_ctrlr_config_json(w, nvme_ctrlr, path_id);
9051 
9052 			path_id = TAILQ_NEXT(path_id, link);
9053 			while (path_id != NULL) {
9054 				nvme_ctrlr_config_json(w, nvme_ctrlr, path_id);
9055 				path_id = TAILQ_NEXT(path_id, link);
9056 			}
9057 
9058 #ifdef SPDK_CONFIG_NVME_CUSE
9059 			nvme_ctrlr_cuse_config_json(w, nvme_ctrlr);
9060 #endif
9061 		}
9062 	}
9063 
9064 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
9065 		if (!ctx->from_mdns_discovery_service) {
9066 			bdev_nvme_discovery_config_json(w, ctx);
9067 		}
9068 	}
9069 
9070 	bdev_nvme_mdns_discovery_config_json(w);
9071 
9072 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
9073 	 * before enabling hotplug poller.
9074 	 */
9075 	bdev_nvme_hotplug_config_json(w);
9076 
9077 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
9078 	return 0;
9079 }
9080 
9081 struct spdk_nvme_ctrlr *
9082 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
9083 {
9084 	struct nvme_bdev *nbdev;
9085 	struct nvme_ns *nvme_ns;
9086 
9087 	if (!bdev || bdev->module != &nvme_if) {
9088 		return NULL;
9089 	}
9090 
9091 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
9092 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
9093 	assert(nvme_ns != NULL);
9094 
9095 	return nvme_ns->ctrlr->ctrlr;
9096 }
9097 
9098 static bool
9099 nvme_io_path_is_current(struct nvme_io_path *io_path)
9100 {
9101 	const struct nvme_bdev_channel *nbdev_ch;
9102 	bool current;
9103 
9104 	if (!nvme_io_path_is_available(io_path)) {
9105 		return false;
9106 	}
9107 
9108 	nbdev_ch = io_path->nbdev_ch;
9109 	if (nbdev_ch == NULL) {
9110 		current = false;
9111 	} else if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
9112 		struct nvme_io_path *optimized_io_path = NULL;
9113 
9114 		STAILQ_FOREACH(optimized_io_path, &nbdev_ch->io_path_list, stailq) {
9115 			if (optimized_io_path->nvme_ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE) {
9116 				break;
9117 			}
9118 		}
9119 
9120 		/* A non-optimized path is only current if there are no optimized paths. */
9121 		current = (io_path->nvme_ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE) ||
9122 			  (optimized_io_path == NULL);
9123 	} else {
9124 		if (nbdev_ch->current_io_path) {
9125 			current = (io_path == nbdev_ch->current_io_path);
9126 		} else {
9127 			struct nvme_io_path *first_path;
9128 
9129 			/* We arrived here as there are no optimized paths for active-passive
9130 			 * mode. Check if this io_path is the first one available on the list.
9131 			 */
9132 			current = false;
9133 			STAILQ_FOREACH(first_path, &nbdev_ch->io_path_list, stailq) {
9134 				if (nvme_io_path_is_available(first_path)) {
9135 					current = (io_path == first_path);
9136 					break;
9137 				}
9138 			}
9139 		}
9140 	}
9141 
9142 	return current;
9143 }
9144 
9145 static struct nvme_ctrlr *
9146 bdev_nvme_next_ctrlr_unsafe(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct nvme_ctrlr *prev)
9147 {
9148 	struct nvme_ctrlr *next;
9149 
9150 	/* Must be called under g_bdev_nvme_mutex */
9151 	next = prev != NULL ? TAILQ_NEXT(prev, tailq) : TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
9152 	while (next != NULL) {
9153 		/* ref can be 0 when the ctrlr was released, but hasn't been detached yet */
9154 		pthread_mutex_lock(&next->mutex);
9155 		if (next->ref > 0) {
9156 			next->ref++;
9157 			pthread_mutex_unlock(&next->mutex);
9158 			return next;
9159 		}
9160 
9161 		pthread_mutex_unlock(&next->mutex);
9162 		next = TAILQ_NEXT(next, tailq);
9163 	}
9164 
9165 	return NULL;
9166 }
9167 
9168 struct bdev_nvme_set_keys_ctx {
9169 	struct nvme_ctrlr	*nctrlr;
9170 	struct spdk_key		*dhchap_key;
9171 	struct spdk_key		*dhchap_ctrlr_key;
9172 	struct spdk_thread	*thread;
9173 	bdev_nvme_set_keys_cb	cb_fn;
9174 	void			*cb_ctx;
9175 	int			status;
9176 };
9177 
9178 static void
9179 bdev_nvme_free_set_keys_ctx(struct bdev_nvme_set_keys_ctx *ctx)
9180 {
9181 	if (ctx == NULL) {
9182 		return;
9183 	}
9184 
9185 	spdk_keyring_put_key(ctx->dhchap_key);
9186 	spdk_keyring_put_key(ctx->dhchap_ctrlr_key);
9187 	free(ctx);
9188 }
9189 
9190 static void
9191 _bdev_nvme_set_keys_done(void *_ctx)
9192 {
9193 	struct bdev_nvme_set_keys_ctx *ctx = _ctx;
9194 
9195 	ctx->cb_fn(ctx->cb_ctx, ctx->status);
9196 
9197 	if (ctx->nctrlr != NULL) {
9198 		nvme_ctrlr_put_ref(ctx->nctrlr);
9199 	}
9200 	bdev_nvme_free_set_keys_ctx(ctx);
9201 }
9202 
9203 static void
9204 bdev_nvme_set_keys_done(struct bdev_nvme_set_keys_ctx *ctx, int status)
9205 {
9206 	ctx->status = status;
9207 	spdk_thread_exec_msg(ctx->thread, _bdev_nvme_set_keys_done, ctx);
9208 }
9209 
9210 static void bdev_nvme_authenticate_ctrlr(struct bdev_nvme_set_keys_ctx *ctx);
9211 
9212 static void
9213 bdev_nvme_authenticate_ctrlr_continue(struct bdev_nvme_set_keys_ctx *ctx)
9214 {
9215 	struct nvme_ctrlr *next;
9216 
9217 	pthread_mutex_lock(&g_bdev_nvme_mutex);
9218 	next = bdev_nvme_next_ctrlr_unsafe(NULL, ctx->nctrlr);
9219 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
9220 
9221 	nvme_ctrlr_put_ref(ctx->nctrlr);
9222 	ctx->nctrlr = next;
9223 
9224 	if (next == NULL) {
9225 		bdev_nvme_set_keys_done(ctx, 0);
9226 	} else {
9227 		bdev_nvme_authenticate_ctrlr(ctx);
9228 	}
9229 }
9230 
9231 static void
9232 bdev_nvme_authenticate_qpairs_done(struct spdk_io_channel_iter *i, int status)
9233 {
9234 	struct bdev_nvme_set_keys_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
9235 
9236 	if (status != 0) {
9237 		bdev_nvme_set_keys_done(ctx, status);
9238 		return;
9239 	}
9240 	bdev_nvme_authenticate_ctrlr_continue(ctx);
9241 }
9242 
9243 static void
9244 bdev_nvme_authenticate_qpair_done(void *ctx, int status)
9245 {
9246 	spdk_for_each_channel_continue(ctx, status);
9247 }
9248 
9249 static void
9250 bdev_nvme_authenticate_qpair(struct spdk_io_channel_iter *i)
9251 {
9252 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
9253 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
9254 	struct nvme_qpair *qpair = ctrlr_ch->qpair;
9255 	int rc;
9256 
9257 	if (!nvme_qpair_is_connected(qpair)) {
9258 		spdk_for_each_channel_continue(i, 0);
9259 		return;
9260 	}
9261 
9262 	rc = spdk_nvme_qpair_authenticate(qpair->qpair, bdev_nvme_authenticate_qpair_done, i);
9263 	if (rc != 0) {
9264 		spdk_for_each_channel_continue(i, rc);
9265 	}
9266 }
9267 
9268 static void
9269 bdev_nvme_authenticate_ctrlr_done(void *_ctx, int status)
9270 {
9271 	struct bdev_nvme_set_keys_ctx *ctx = _ctx;
9272 
9273 	if (status != 0) {
9274 		bdev_nvme_set_keys_done(ctx, status);
9275 		return;
9276 	}
9277 
9278 	spdk_for_each_channel(ctx->nctrlr, bdev_nvme_authenticate_qpair, ctx,
9279 			      bdev_nvme_authenticate_qpairs_done);
9280 }
9281 
9282 static void
9283 bdev_nvme_authenticate_ctrlr(struct bdev_nvme_set_keys_ctx *ctx)
9284 {
9285 	struct spdk_nvme_ctrlr_key_opts opts = {};
9286 	struct nvme_ctrlr *nctrlr = ctx->nctrlr;
9287 	int rc;
9288 
9289 	opts.size = SPDK_SIZEOF(&opts, dhchap_ctrlr_key);
9290 	opts.dhchap_key = ctx->dhchap_key;
9291 	opts.dhchap_ctrlr_key = ctx->dhchap_ctrlr_key;
9292 	rc = spdk_nvme_ctrlr_set_keys(nctrlr->ctrlr, &opts);
9293 	if (rc != 0) {
9294 		bdev_nvme_set_keys_done(ctx, rc);
9295 		return;
9296 	}
9297 
9298 	if (ctx->dhchap_key != NULL) {
9299 		rc = spdk_nvme_ctrlr_authenticate(nctrlr->ctrlr,
9300 						  bdev_nvme_authenticate_ctrlr_done, ctx);
9301 		if (rc != 0) {
9302 			bdev_nvme_set_keys_done(ctx, rc);
9303 		}
9304 	} else {
9305 		bdev_nvme_authenticate_ctrlr_continue(ctx);
9306 	}
9307 }
9308 
9309 int
9310 bdev_nvme_set_keys(const char *name, const char *dhchap_key, const char *dhchap_ctrlr_key,
9311 		   bdev_nvme_set_keys_cb cb_fn, void *cb_ctx)
9312 {
9313 	struct bdev_nvme_set_keys_ctx *ctx;
9314 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
9315 	struct nvme_ctrlr *nctrlr;
9316 
9317 	ctx = calloc(1, sizeof(*ctx));
9318 	if (ctx == NULL) {
9319 		return -ENOMEM;
9320 	}
9321 
9322 	if (dhchap_key != NULL) {
9323 		ctx->dhchap_key = spdk_keyring_get_key(dhchap_key);
9324 		if (ctx->dhchap_key == NULL) {
9325 			SPDK_ERRLOG("Could not find key %s for bdev %s\n", dhchap_key, name);
9326 			bdev_nvme_free_set_keys_ctx(ctx);
9327 			return -ENOKEY;
9328 		}
9329 	}
9330 	if (dhchap_ctrlr_key != NULL) {
9331 		ctx->dhchap_ctrlr_key = spdk_keyring_get_key(dhchap_ctrlr_key);
9332 		if (ctx->dhchap_ctrlr_key == NULL) {
9333 			SPDK_ERRLOG("Could not find key %s for bdev %s\n", dhchap_ctrlr_key, name);
9334 			bdev_nvme_free_set_keys_ctx(ctx);
9335 			return -ENOKEY;
9336 		}
9337 	}
9338 
9339 	pthread_mutex_lock(&g_bdev_nvme_mutex);
9340 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
9341 	if (nbdev_ctrlr == NULL) {
9342 		SPDK_ERRLOG("Could not find bdev_ctrlr %s\n", name);
9343 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
9344 		bdev_nvme_free_set_keys_ctx(ctx);
9345 		return -ENODEV;
9346 	}
9347 	nctrlr = bdev_nvme_next_ctrlr_unsafe(nbdev_ctrlr, NULL);
9348 	if (nctrlr == NULL) {
9349 		SPDK_ERRLOG("Could not find any nvme_ctrlrs on bdev_ctrlr %s\n", name);
9350 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
9351 		bdev_nvme_free_set_keys_ctx(ctx);
9352 		return -ENODEV;
9353 	}
9354 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
9355 
9356 	ctx->nctrlr = nctrlr;
9357 	ctx->cb_fn = cb_fn;
9358 	ctx->cb_ctx = cb_ctx;
9359 	ctx->thread = spdk_get_thread();
9360 
9361 	bdev_nvme_authenticate_ctrlr(ctx);
9362 
9363 	return 0;
9364 }
9365 
9366 void
9367 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
9368 {
9369 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
9370 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
9371 	const struct spdk_nvme_ctrlr_data *cdata;
9372 	const struct spdk_nvme_transport_id *trid;
9373 	const char *adrfam_str;
9374 
9375 	spdk_json_write_object_begin(w);
9376 
9377 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
9378 
9379 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
9380 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
9381 
9382 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
9383 	spdk_json_write_named_bool(w, "current", nvme_io_path_is_current(io_path));
9384 	spdk_json_write_named_bool(w, "connected", nvme_qpair_is_connected(io_path->qpair));
9385 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
9386 
9387 	spdk_json_write_named_object_begin(w, "transport");
9388 	spdk_json_write_named_string(w, "trtype", trid->trstring);
9389 	spdk_json_write_named_string(w, "traddr", trid->traddr);
9390 	if (trid->trsvcid[0] != '\0') {
9391 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
9392 	}
9393 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
9394 	if (adrfam_str) {
9395 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
9396 	}
9397 	spdk_json_write_object_end(w);
9398 
9399 	spdk_json_write_object_end(w);
9400 }
9401 
9402 void
9403 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
9404 {
9405 	struct discovery_ctx *ctx;
9406 	struct discovery_entry_ctx *entry_ctx;
9407 
9408 	spdk_json_write_array_begin(w);
9409 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
9410 		spdk_json_write_object_begin(w);
9411 		spdk_json_write_named_string(w, "name", ctx->name);
9412 
9413 		spdk_json_write_named_object_begin(w, "trid");
9414 		nvme_bdev_dump_trid_json(&ctx->trid, w);
9415 		spdk_json_write_object_end(w);
9416 
9417 		spdk_json_write_named_array_begin(w, "referrals");
9418 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
9419 			spdk_json_write_object_begin(w);
9420 			spdk_json_write_named_object_begin(w, "trid");
9421 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
9422 			spdk_json_write_object_end(w);
9423 			spdk_json_write_object_end(w);
9424 		}
9425 		spdk_json_write_array_end(w);
9426 
9427 		spdk_json_write_object_end(w);
9428 	}
9429 	spdk_json_write_array_end(w);
9430 }
9431 
9432 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
9433 
9434 static void
9435 bdev_nvme_trace(void)
9436 {
9437 	struct spdk_trace_tpoint_opts opts[] = {
9438 		{
9439 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
9440 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 1,
9441 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
9442 		},
9443 		{
9444 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
9445 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 0,
9446 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
9447 		}
9448 	};
9449 
9450 
9451 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
9452 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
9453 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
9454 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
9455 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
9456 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
9457 }
9458 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
9459