xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision 90ba272cee71afa2cb11f6de7581b601d2e44cfe)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  *   Copyright (c) 2022 Dell Inc, or its subsidiaries. All rights reserved.
6  */
7 
8 #include "spdk/stdinc.h"
9 
10 #include "bdev_nvme.h"
11 
12 #include "spdk/accel.h"
13 #include "spdk/config.h"
14 #include "spdk/endian.h"
15 #include "spdk/bdev.h"
16 #include "spdk/json.h"
17 #include "spdk/keyring.h"
18 #include "spdk/likely.h"
19 #include "spdk/nvme.h"
20 #include "spdk/nvme_ocssd.h"
21 #include "spdk/nvme_zns.h"
22 #include "spdk/opal.h"
23 #include "spdk/thread.h"
24 #include "spdk/trace.h"
25 #include "spdk/string.h"
26 #include "spdk/util.h"
27 #include "spdk/uuid.h"
28 
29 #include "spdk/bdev_module.h"
30 #include "spdk/log.h"
31 
32 #include "spdk_internal/usdt.h"
33 #include "spdk_internal/trace_defs.h"
34 
35 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
36 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
37 
38 #define NSID_STR_LEN 10
39 
40 #define SPDK_CONTROLLER_NAME_MAX 512
41 
42 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
43 
44 struct nvme_bdev_io {
45 	/** array of iovecs to transfer. */
46 	struct iovec *iovs;
47 
48 	/** Number of iovecs in iovs array. */
49 	int iovcnt;
50 
51 	/** Current iovec position. */
52 	int iovpos;
53 
54 	/** Offset in current iovec. */
55 	uint32_t iov_offset;
56 
57 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
58 	 *  being reset in a reset I/O.
59 	 */
60 	struct nvme_io_path *io_path;
61 
62 	/** array of iovecs to transfer. */
63 	struct iovec *fused_iovs;
64 
65 	/** Number of iovecs in iovs array. */
66 	int fused_iovcnt;
67 
68 	/** Current iovec position. */
69 	int fused_iovpos;
70 
71 	/** Offset in current iovec. */
72 	uint32_t fused_iov_offset;
73 
74 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
75 	struct spdk_nvme_cpl cpl;
76 
77 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
78 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
79 
80 	/** Keeps track if first of fused commands was submitted */
81 	bool first_fused_submitted;
82 
83 	/** Keeps track if first of fused commands was completed */
84 	bool first_fused_completed;
85 
86 	/** Temporary pointer to zone report buffer */
87 	struct spdk_nvme_zns_zone_report *zone_report_buf;
88 
89 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
90 	uint64_t handled_zones;
91 
92 	/** Expiration value in ticks to retry the current I/O. */
93 	uint64_t retry_ticks;
94 
95 	/* How many times the current I/O was retried. */
96 	int32_t retry_count;
97 
98 	/* Current tsc at submit time. */
99 	uint64_t submit_tsc;
100 
101 	/* Used to put nvme_bdev_io into the list */
102 	TAILQ_ENTRY(nvme_bdev_io) retry_link;
103 };
104 
105 struct nvme_probe_skip_entry {
106 	struct spdk_nvme_transport_id		trid;
107 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
108 };
109 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
110 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
111 			g_skipped_nvme_ctrlrs);
112 
113 #define BDEV_NVME_DEFAULT_DIGESTS (SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA256) | \
114 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA384) | \
115 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA512))
116 
117 #define BDEV_NVME_DEFAULT_DHGROUPS (SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_NULL) | \
118 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_2048) | \
119 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_3072) | \
120 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_4096) | \
121 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_6144) | \
122 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_8192))
123 
124 static struct spdk_bdev_nvme_opts g_opts = {
125 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
126 	.timeout_us = 0,
127 	.timeout_admin_us = 0,
128 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
129 	.transport_retry_count = 4,
130 	.arbitration_burst = 0,
131 	.low_priority_weight = 0,
132 	.medium_priority_weight = 0,
133 	.high_priority_weight = 0,
134 	.nvme_adminq_poll_period_us = 10000ULL,
135 	.nvme_ioq_poll_period_us = 0,
136 	.io_queue_requests = 0,
137 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
138 	.bdev_retry_count = 3,
139 	.transport_ack_timeout = 0,
140 	.ctrlr_loss_timeout_sec = 0,
141 	.reconnect_delay_sec = 0,
142 	.fast_io_fail_timeout_sec = 0,
143 	.disable_auto_failback = false,
144 	.generate_uuids = false,
145 	.transport_tos = 0,
146 	.nvme_error_stat = false,
147 	.io_path_stat = false,
148 	.allow_accel_sequence = false,
149 	.dhchap_digests = BDEV_NVME_DEFAULT_DIGESTS,
150 	.dhchap_dhgroups = BDEV_NVME_DEFAULT_DHGROUPS,
151 };
152 
153 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
154 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
155 
156 static int g_hot_insert_nvme_controller_index = 0;
157 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
158 static bool g_nvme_hotplug_enabled = false;
159 struct spdk_thread *g_bdev_nvme_init_thread;
160 static struct spdk_poller *g_hotplug_poller;
161 static struct spdk_poller *g_hotplug_probe_poller;
162 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
163 
164 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
165 		struct nvme_async_probe_ctx *ctx);
166 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
167 		struct nvme_async_probe_ctx *ctx);
168 static int bdev_nvme_library_init(void);
169 static void bdev_nvme_library_fini(void);
170 static void _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch,
171 				      struct spdk_bdev_io *bdev_io);
172 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
173 				     struct spdk_bdev_io *bdev_io);
174 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
175 			   void *md, uint64_t lba_count, uint64_t lba,
176 			   uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
177 			   struct spdk_accel_sequence *seq);
178 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
179 				 void *md, uint64_t lba_count, uint64_t lba);
180 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
181 			    void *md, uint64_t lba_count, uint64_t lba,
182 			    uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
183 			    struct spdk_accel_sequence *seq);
184 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
185 				  void *md, uint64_t lba_count,
186 				  uint64_t zslba, uint32_t flags);
187 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
188 			      void *md, uint64_t lba_count, uint64_t lba,
189 			      uint32_t flags);
190 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
191 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
192 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
193 		uint32_t flags);
194 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
195 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
196 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
197 				     enum spdk_bdev_zone_action action);
198 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
199 				     struct nvme_bdev_io *bio,
200 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
201 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
202 				 void *buf, size_t nbytes);
203 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
204 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
205 static int bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
206 				     struct iovec *iov, int iovcnt, size_t nbytes,
207 				     void *md_buf, size_t md_len);
208 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
209 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
210 static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio);
211 static int bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
212 static int bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
213 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
214 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
215 
216 static struct nvme_ns *nvme_ns_alloc(void);
217 static void nvme_ns_free(struct nvme_ns *ns);
218 
219 static int
220 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
221 {
222 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
223 }
224 
225 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
226 
227 struct spdk_nvme_qpair *
228 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
229 {
230 	struct nvme_ctrlr_channel *ctrlr_ch;
231 
232 	assert(ctrlr_io_ch != NULL);
233 
234 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
235 
236 	return ctrlr_ch->qpair->qpair;
237 }
238 
239 static int
240 bdev_nvme_get_ctx_size(void)
241 {
242 	return sizeof(struct nvme_bdev_io);
243 }
244 
245 static struct spdk_bdev_module nvme_if = {
246 	.name = "nvme",
247 	.async_fini = true,
248 	.module_init = bdev_nvme_library_init,
249 	.module_fini = bdev_nvme_library_fini,
250 	.config_json = bdev_nvme_config_json,
251 	.get_ctx_size = bdev_nvme_get_ctx_size,
252 
253 };
254 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
255 
256 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
257 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
258 bool g_bdev_nvme_module_finish;
259 
260 struct nvme_bdev_ctrlr *
261 nvme_bdev_ctrlr_get_by_name(const char *name)
262 {
263 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
264 
265 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
266 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
267 			break;
268 		}
269 	}
270 
271 	return nbdev_ctrlr;
272 }
273 
274 static struct nvme_ctrlr *
275 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
276 			  const struct spdk_nvme_transport_id *trid)
277 {
278 	struct nvme_ctrlr *nvme_ctrlr;
279 
280 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
281 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0) {
282 			break;
283 		}
284 	}
285 
286 	return nvme_ctrlr;
287 }
288 
289 struct nvme_ctrlr *
290 nvme_bdev_ctrlr_get_ctrlr_by_id(struct nvme_bdev_ctrlr *nbdev_ctrlr,
291 				uint16_t cntlid)
292 {
293 	struct nvme_ctrlr *nvme_ctrlr;
294 	const struct spdk_nvme_ctrlr_data *cdata;
295 
296 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
297 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
298 		if (cdata->cntlid == cntlid) {
299 			break;
300 		}
301 	}
302 
303 	return nvme_ctrlr;
304 }
305 
306 static struct nvme_bdev *
307 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
308 {
309 	struct nvme_bdev *bdev;
310 
311 	pthread_mutex_lock(&g_bdev_nvme_mutex);
312 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
313 		if (bdev->nsid == nsid) {
314 			break;
315 		}
316 	}
317 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
318 
319 	return bdev;
320 }
321 
322 struct nvme_ns *
323 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
324 {
325 	struct nvme_ns ns;
326 
327 	assert(nsid > 0);
328 
329 	ns.id = nsid;
330 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
331 }
332 
333 struct nvme_ns *
334 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
335 {
336 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
337 }
338 
339 struct nvme_ns *
340 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
341 {
342 	if (ns == NULL) {
343 		return NULL;
344 	}
345 
346 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
347 }
348 
349 static struct nvme_ctrlr *
350 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid)
351 {
352 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
353 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
354 
355 	pthread_mutex_lock(&g_bdev_nvme_mutex);
356 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
357 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid);
358 		if (nvme_ctrlr != NULL) {
359 			break;
360 		}
361 	}
362 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
363 
364 	return nvme_ctrlr;
365 }
366 
367 struct nvme_ctrlr *
368 nvme_ctrlr_get_by_name(const char *name)
369 {
370 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
371 	struct nvme_ctrlr *nvme_ctrlr = NULL;
372 
373 	if (name == NULL) {
374 		return NULL;
375 	}
376 
377 	pthread_mutex_lock(&g_bdev_nvme_mutex);
378 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
379 	if (nbdev_ctrlr != NULL) {
380 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
381 	}
382 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
383 
384 	return nvme_ctrlr;
385 }
386 
387 void
388 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
389 {
390 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
391 
392 	pthread_mutex_lock(&g_bdev_nvme_mutex);
393 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
394 		fn(nbdev_ctrlr, ctx);
395 	}
396 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
397 }
398 
399 void
400 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
401 {
402 	const char *trtype_str;
403 	const char *adrfam_str;
404 
405 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
406 	if (trtype_str) {
407 		spdk_json_write_named_string(w, "trtype", trtype_str);
408 	}
409 
410 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
411 	if (adrfam_str) {
412 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
413 	}
414 
415 	if (trid->traddr[0] != '\0') {
416 		spdk_json_write_named_string(w, "traddr", trid->traddr);
417 	}
418 
419 	if (trid->trsvcid[0] != '\0') {
420 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
421 	}
422 
423 	if (trid->subnqn[0] != '\0') {
424 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
425 	}
426 }
427 
428 static void
429 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
430 		       struct nvme_ctrlr *nvme_ctrlr)
431 {
432 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
433 	pthread_mutex_lock(&g_bdev_nvme_mutex);
434 
435 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
436 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
437 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
438 
439 		return;
440 	}
441 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
442 
443 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
444 
445 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
446 
447 	free(nbdev_ctrlr->name);
448 	free(nbdev_ctrlr);
449 }
450 
451 static void
452 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
453 {
454 	struct nvme_path_id *path_id, *tmp_path;
455 	struct nvme_ns *ns, *tmp_ns;
456 
457 	free(nvme_ctrlr->copied_ana_desc);
458 	spdk_free(nvme_ctrlr->ana_log_page);
459 
460 	if (nvme_ctrlr->opal_dev) {
461 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
462 		nvme_ctrlr->opal_dev = NULL;
463 	}
464 
465 	if (nvme_ctrlr->nbdev_ctrlr) {
466 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
467 	}
468 
469 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
470 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
471 		nvme_ns_free(ns);
472 	}
473 
474 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
475 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
476 		free(path_id);
477 	}
478 
479 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
480 	spdk_keyring_put_key(nvme_ctrlr->psk);
481 	spdk_keyring_put_key(nvme_ctrlr->dhchap_key);
482 	free(nvme_ctrlr);
483 
484 	pthread_mutex_lock(&g_bdev_nvme_mutex);
485 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
486 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
487 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
488 		spdk_bdev_module_fini_done();
489 		return;
490 	}
491 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
492 }
493 
494 static int
495 nvme_detach_poller(void *arg)
496 {
497 	struct nvme_ctrlr *nvme_ctrlr = arg;
498 	int rc;
499 
500 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
501 	if (rc != -EAGAIN) {
502 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
503 		_nvme_ctrlr_delete(nvme_ctrlr);
504 	}
505 
506 	return SPDK_POLLER_BUSY;
507 }
508 
509 static void
510 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
511 {
512 	int rc;
513 
514 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
515 
516 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
517 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
518 
519 	/* If we got here, the reset/detach poller cannot be active */
520 	assert(nvme_ctrlr->reset_detach_poller == NULL);
521 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
522 					  nvme_ctrlr, 1000);
523 	if (nvme_ctrlr->reset_detach_poller == NULL) {
524 		SPDK_ERRLOG("Failed to register detach poller\n");
525 		goto error;
526 	}
527 
528 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
529 	if (rc != 0) {
530 		SPDK_ERRLOG("Failed to detach the NVMe controller\n");
531 		goto error;
532 	}
533 
534 	return;
535 error:
536 	/* We don't have a good way to handle errors here, so just do what we can and delete the
537 	 * controller without detaching the underlying NVMe device.
538 	 */
539 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
540 	_nvme_ctrlr_delete(nvme_ctrlr);
541 }
542 
543 static void
544 nvme_ctrlr_unregister_cb(void *io_device)
545 {
546 	struct nvme_ctrlr *nvme_ctrlr = io_device;
547 
548 	nvme_ctrlr_delete(nvme_ctrlr);
549 }
550 
551 static void
552 nvme_ctrlr_unregister(void *ctx)
553 {
554 	struct nvme_ctrlr *nvme_ctrlr = ctx;
555 
556 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
557 }
558 
559 static bool
560 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
561 {
562 	if (!nvme_ctrlr->destruct) {
563 		return false;
564 	}
565 
566 	if (nvme_ctrlr->ref > 0) {
567 		return false;
568 	}
569 
570 	if (nvme_ctrlr->resetting) {
571 		return false;
572 	}
573 
574 	if (nvme_ctrlr->ana_log_page_updating) {
575 		return false;
576 	}
577 
578 	if (nvme_ctrlr->io_path_cache_clearing) {
579 		return false;
580 	}
581 
582 	return true;
583 }
584 
585 static void
586 nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
587 {
588 	pthread_mutex_lock(&nvme_ctrlr->mutex);
589 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
590 
591 	assert(nvme_ctrlr->ref > 0);
592 	nvme_ctrlr->ref--;
593 
594 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
595 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
596 		return;
597 	}
598 
599 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
600 
601 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
602 }
603 
604 static void
605 bdev_nvme_clear_current_io_path(struct nvme_bdev_channel *nbdev_ch)
606 {
607 	nbdev_ch->current_io_path = NULL;
608 	nbdev_ch->rr_counter = 0;
609 }
610 
611 static struct nvme_io_path *
612 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
613 {
614 	struct nvme_io_path *io_path;
615 
616 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
617 		if (io_path->nvme_ns == nvme_ns) {
618 			break;
619 		}
620 	}
621 
622 	return io_path;
623 }
624 
625 static struct nvme_io_path *
626 nvme_io_path_alloc(void)
627 {
628 	struct nvme_io_path *io_path;
629 
630 	io_path = calloc(1, sizeof(*io_path));
631 	if (io_path == NULL) {
632 		SPDK_ERRLOG("Failed to alloc io_path.\n");
633 		return NULL;
634 	}
635 
636 	if (g_opts.io_path_stat) {
637 		io_path->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
638 		if (io_path->stat == NULL) {
639 			free(io_path);
640 			SPDK_ERRLOG("Failed to alloc io_path stat.\n");
641 			return NULL;
642 		}
643 		spdk_bdev_reset_io_stat(io_path->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
644 	}
645 
646 	return io_path;
647 }
648 
649 static void
650 nvme_io_path_free(struct nvme_io_path *io_path)
651 {
652 	free(io_path->stat);
653 	free(io_path);
654 }
655 
656 static int
657 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
658 {
659 	struct nvme_io_path *io_path;
660 	struct spdk_io_channel *ch;
661 	struct nvme_ctrlr_channel *ctrlr_ch;
662 	struct nvme_qpair *nvme_qpair;
663 
664 	io_path = nvme_io_path_alloc();
665 	if (io_path == NULL) {
666 		return -ENOMEM;
667 	}
668 
669 	io_path->nvme_ns = nvme_ns;
670 
671 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
672 	if (ch == NULL) {
673 		nvme_io_path_free(io_path);
674 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
675 		return -ENOMEM;
676 	}
677 
678 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
679 
680 	nvme_qpair = ctrlr_ch->qpair;
681 	assert(nvme_qpair != NULL);
682 
683 	io_path->qpair = nvme_qpair;
684 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
685 
686 	io_path->nbdev_ch = nbdev_ch;
687 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
688 
689 	bdev_nvme_clear_current_io_path(nbdev_ch);
690 
691 	return 0;
692 }
693 
694 static void
695 bdev_nvme_clear_retry_io_path(struct nvme_bdev_channel *nbdev_ch,
696 			      struct nvme_io_path *io_path)
697 {
698 	struct nvme_bdev_io *bio;
699 
700 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
701 		if (bio->io_path == io_path) {
702 			bio->io_path = NULL;
703 		}
704 	}
705 }
706 
707 static void
708 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
709 {
710 	struct spdk_io_channel *ch;
711 	struct nvme_qpair *nvme_qpair;
712 	struct nvme_ctrlr_channel *ctrlr_ch;
713 	struct nvme_bdev *nbdev;
714 
715 	nbdev = spdk_io_channel_get_io_device(spdk_io_channel_from_ctx(nbdev_ch));
716 
717 	/* Add the statistics to nvme_ns before this path is destroyed. */
718 	pthread_mutex_lock(&nbdev->mutex);
719 	if (nbdev->ref != 0 && io_path->nvme_ns->stat != NULL && io_path->stat != NULL) {
720 		spdk_bdev_add_io_stat(io_path->nvme_ns->stat, io_path->stat);
721 	}
722 	pthread_mutex_unlock(&nbdev->mutex);
723 
724 	bdev_nvme_clear_current_io_path(nbdev_ch);
725 	bdev_nvme_clear_retry_io_path(nbdev_ch, io_path);
726 
727 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
728 	io_path->nbdev_ch = NULL;
729 
730 	nvme_qpair = io_path->qpair;
731 	assert(nvme_qpair != NULL);
732 
733 	ctrlr_ch = nvme_qpair->ctrlr_ch;
734 	assert(ctrlr_ch != NULL);
735 
736 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
737 	spdk_put_io_channel(ch);
738 
739 	/* After an io_path is removed, I/Os submitted to it may complete and update statistics
740 	 * of the io_path. To avoid heap-use-after-free error from this case, do not free the
741 	 * io_path here but free the io_path when the associated qpair is freed. It is ensured
742 	 * that all I/Os submitted to the io_path are completed when the associated qpair is freed.
743 	 */
744 }
745 
746 static void
747 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
748 {
749 	struct nvme_io_path *io_path, *tmp_io_path;
750 
751 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
752 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
753 	}
754 }
755 
756 static int
757 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
758 {
759 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
760 	struct nvme_bdev *nbdev = io_device;
761 	struct nvme_ns *nvme_ns;
762 	int rc;
763 
764 	STAILQ_INIT(&nbdev_ch->io_path_list);
765 	TAILQ_INIT(&nbdev_ch->retry_io_list);
766 
767 	pthread_mutex_lock(&nbdev->mutex);
768 
769 	nbdev_ch->mp_policy = nbdev->mp_policy;
770 	nbdev_ch->mp_selector = nbdev->mp_selector;
771 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
772 
773 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
774 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
775 		if (rc != 0) {
776 			pthread_mutex_unlock(&nbdev->mutex);
777 
778 			_bdev_nvme_delete_io_paths(nbdev_ch);
779 			return rc;
780 		}
781 	}
782 	pthread_mutex_unlock(&nbdev->mutex);
783 
784 	return 0;
785 }
786 
787 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
788  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
789  */
790 static inline void
791 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
792 			const struct spdk_nvme_cpl *cpl)
793 {
794 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
795 			  (uintptr_t)bdev_io);
796 	if (cpl) {
797 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
798 	} else {
799 		spdk_bdev_io_complete(bdev_io, status);
800 	}
801 }
802 
803 static void bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch);
804 
805 static void
806 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
807 {
808 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
809 
810 	bdev_nvme_abort_retry_ios(nbdev_ch);
811 	_bdev_nvme_delete_io_paths(nbdev_ch);
812 }
813 
814 static inline bool
815 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
816 {
817 	switch (io_type) {
818 	case SPDK_BDEV_IO_TYPE_RESET:
819 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
820 	case SPDK_BDEV_IO_TYPE_ABORT:
821 		return true;
822 	default:
823 		break;
824 	}
825 
826 	return false;
827 }
828 
829 static inline bool
830 nvme_ns_is_active(struct nvme_ns *nvme_ns)
831 {
832 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
833 		return false;
834 	}
835 
836 	if (spdk_unlikely(nvme_ns->ns == NULL)) {
837 		return false;
838 	}
839 
840 	return true;
841 }
842 
843 static inline bool
844 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
845 {
846 	if (spdk_unlikely(!nvme_ns_is_active(nvme_ns))) {
847 		return false;
848 	}
849 
850 	switch (nvme_ns->ana_state) {
851 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
852 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
853 		return true;
854 	default:
855 		break;
856 	}
857 
858 	return false;
859 }
860 
861 static inline bool
862 nvme_qpair_is_connected(struct nvme_qpair *nvme_qpair)
863 {
864 	if (spdk_unlikely(nvme_qpair->qpair == NULL)) {
865 		return false;
866 	}
867 
868 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
869 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
870 		return false;
871 	}
872 
873 	if (spdk_unlikely(nvme_qpair->ctrlr_ch->reset_iter != NULL)) {
874 		return false;
875 	}
876 
877 	return true;
878 }
879 
880 static inline bool
881 nvme_io_path_is_available(struct nvme_io_path *io_path)
882 {
883 	if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
884 		return false;
885 	}
886 
887 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
888 		return false;
889 	}
890 
891 	return true;
892 }
893 
894 static inline bool
895 nvme_ctrlr_is_failed(struct nvme_ctrlr *nvme_ctrlr)
896 {
897 	if (nvme_ctrlr->destruct) {
898 		return true;
899 	}
900 
901 	if (nvme_ctrlr->fast_io_fail_timedout) {
902 		return true;
903 	}
904 
905 	if (nvme_ctrlr->resetting) {
906 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
907 			return false;
908 		} else {
909 			return true;
910 		}
911 	}
912 
913 	if (nvme_ctrlr->reconnect_is_delayed) {
914 		return false;
915 	}
916 
917 	if (nvme_ctrlr->disabled) {
918 		return true;
919 	}
920 
921 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
922 		return true;
923 	} else {
924 		return false;
925 	}
926 }
927 
928 static bool
929 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
930 {
931 	if (nvme_ctrlr->destruct) {
932 		return false;
933 	}
934 
935 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
936 		return false;
937 	}
938 
939 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
940 		return false;
941 	}
942 
943 	if (nvme_ctrlr->disabled) {
944 		return false;
945 	}
946 
947 	return true;
948 }
949 
950 /* Simulate circular linked list. */
951 static inline struct nvme_io_path *
952 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
953 {
954 	struct nvme_io_path *next_path;
955 
956 	if (prev_path != NULL) {
957 		next_path = STAILQ_NEXT(prev_path, stailq);
958 		if (next_path != NULL) {
959 			return next_path;
960 		}
961 	}
962 
963 	return STAILQ_FIRST(&nbdev_ch->io_path_list);
964 }
965 
966 static struct nvme_io_path *
967 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
968 {
969 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
970 
971 	start = nvme_io_path_get_next(nbdev_ch, nbdev_ch->current_io_path);
972 
973 	io_path = start;
974 	do {
975 		if (spdk_likely(nvme_qpair_is_connected(io_path->qpair) &&
976 				nvme_ns_is_active(io_path->nvme_ns))) {
977 			switch (io_path->nvme_ns->ana_state) {
978 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
979 				nbdev_ch->current_io_path = io_path;
980 				return io_path;
981 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
982 				if (non_optimized == NULL) {
983 					non_optimized = io_path;
984 				}
985 				break;
986 			default:
987 				break;
988 			}
989 		}
990 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
991 	} while (io_path != start);
992 
993 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
994 		/* We come here only if there is no optimized path. Cache even non_optimized
995 		 * path for load balance across multiple non_optimized paths.
996 		 */
997 		nbdev_ch->current_io_path = non_optimized;
998 	}
999 
1000 	return non_optimized;
1001 }
1002 
1003 static struct nvme_io_path *
1004 _bdev_nvme_find_io_path_min_qd(struct nvme_bdev_channel *nbdev_ch)
1005 {
1006 	struct nvme_io_path *io_path;
1007 	struct nvme_io_path *optimized = NULL, *non_optimized = NULL;
1008 	uint32_t opt_min_qd = UINT32_MAX, non_opt_min_qd = UINT32_MAX;
1009 	uint32_t num_outstanding_reqs;
1010 
1011 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1012 		if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
1013 			/* The device is currently resetting. */
1014 			continue;
1015 		}
1016 
1017 		if (spdk_unlikely(!nvme_ns_is_active(io_path->nvme_ns))) {
1018 			continue;
1019 		}
1020 
1021 		num_outstanding_reqs = spdk_nvme_qpair_get_num_outstanding_reqs(io_path->qpair->qpair);
1022 		switch (io_path->nvme_ns->ana_state) {
1023 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
1024 			if (num_outstanding_reqs < opt_min_qd) {
1025 				opt_min_qd = num_outstanding_reqs;
1026 				optimized = io_path;
1027 			}
1028 			break;
1029 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1030 			if (num_outstanding_reqs < non_opt_min_qd) {
1031 				non_opt_min_qd = num_outstanding_reqs;
1032 				non_optimized = io_path;
1033 			}
1034 			break;
1035 		default:
1036 			break;
1037 		}
1038 	}
1039 
1040 	/* don't cache io path for BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH selector */
1041 	if (optimized != NULL) {
1042 		return optimized;
1043 	}
1044 
1045 	return non_optimized;
1046 }
1047 
1048 static inline struct nvme_io_path *
1049 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1050 {
1051 	if (spdk_likely(nbdev_ch->current_io_path != NULL)) {
1052 		if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE) {
1053 			return nbdev_ch->current_io_path;
1054 		} else if (nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1055 			if (++nbdev_ch->rr_counter < nbdev_ch->rr_min_io) {
1056 				return nbdev_ch->current_io_path;
1057 			}
1058 			nbdev_ch->rr_counter = 0;
1059 		}
1060 	}
1061 
1062 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE ||
1063 	    nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1064 		return _bdev_nvme_find_io_path(nbdev_ch);
1065 	} else {
1066 		return _bdev_nvme_find_io_path_min_qd(nbdev_ch);
1067 	}
1068 }
1069 
1070 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
1071  * or false otherwise.
1072  *
1073  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
1074  * is likely to be non-accessible now but may become accessible.
1075  *
1076  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
1077  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
1078  * when starting to reset it but it is set to failed when the reset failed. Hence, if
1079  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
1080  */
1081 static bool
1082 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
1083 {
1084 	struct nvme_io_path *io_path;
1085 
1086 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1087 		if (io_path->nvme_ns->ana_transition_timedout) {
1088 			continue;
1089 		}
1090 
1091 		if (nvme_qpair_is_connected(io_path->qpair) ||
1092 		    !nvme_ctrlr_is_failed(io_path->qpair->ctrlr)) {
1093 			return true;
1094 		}
1095 	}
1096 
1097 	return false;
1098 }
1099 
1100 static void
1101 bdev_nvme_retry_io(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
1102 {
1103 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1104 	struct spdk_io_channel *ch;
1105 
1106 	if (nbdev_io->io_path != NULL && nvme_io_path_is_available(nbdev_io->io_path)) {
1107 		_bdev_nvme_submit_request(nbdev_ch, bdev_io);
1108 	} else {
1109 		ch = spdk_io_channel_from_ctx(nbdev_ch);
1110 		bdev_nvme_submit_request(ch, bdev_io);
1111 	}
1112 }
1113 
1114 static int
1115 bdev_nvme_retry_ios(void *arg)
1116 {
1117 	struct nvme_bdev_channel *nbdev_ch = arg;
1118 	struct nvme_bdev_io *bio, *tmp_bio;
1119 	uint64_t now, delay_us;
1120 
1121 	now = spdk_get_ticks();
1122 
1123 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1124 		if (bio->retry_ticks > now) {
1125 			break;
1126 		}
1127 
1128 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1129 
1130 		bdev_nvme_retry_io(nbdev_ch, spdk_bdev_io_from_ctx(bio));
1131 	}
1132 
1133 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1134 
1135 	bio = TAILQ_FIRST(&nbdev_ch->retry_io_list);
1136 	if (bio != NULL) {
1137 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
1138 
1139 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1140 					    delay_us);
1141 	}
1142 
1143 	return SPDK_POLLER_BUSY;
1144 }
1145 
1146 static void
1147 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
1148 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
1149 {
1150 	struct nvme_bdev_io *tmp_bio;
1151 
1152 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
1153 
1154 	TAILQ_FOREACH_REVERSE(tmp_bio, &nbdev_ch->retry_io_list, retry_io_head, retry_link) {
1155 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1156 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bio, bio,
1157 					   retry_link);
1158 			return;
1159 		}
1160 	}
1161 
1162 	/* No earlier I/Os were found. This I/O must be the new head. */
1163 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bio, retry_link);
1164 
1165 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1166 
1167 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1168 				    delay_ms * 1000ULL);
1169 }
1170 
1171 static void
1172 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
1173 {
1174 	struct nvme_bdev_io *bio, *tmp_bio;
1175 
1176 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1177 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1178 		__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1179 	}
1180 
1181 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1182 }
1183 
1184 static int
1185 bdev_nvme_abort_retry_io(struct nvme_bdev_channel *nbdev_ch,
1186 			 struct nvme_bdev_io *bio_to_abort)
1187 {
1188 	struct nvme_bdev_io *bio;
1189 
1190 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
1191 		if (bio == bio_to_abort) {
1192 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1193 			__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1194 			return 0;
1195 		}
1196 	}
1197 
1198 	return -ENOENT;
1199 }
1200 
1201 static void
1202 bdev_nvme_update_nvme_error_stat(struct spdk_bdev_io *bdev_io, const struct spdk_nvme_cpl *cpl)
1203 {
1204 	struct nvme_bdev *nbdev;
1205 	uint16_t sct, sc;
1206 
1207 	assert(spdk_nvme_cpl_is_error(cpl));
1208 
1209 	nbdev = bdev_io->bdev->ctxt;
1210 
1211 	if (nbdev->err_stat == NULL) {
1212 		return;
1213 	}
1214 
1215 	sct = cpl->status.sct;
1216 	sc = cpl->status.sc;
1217 
1218 	pthread_mutex_lock(&nbdev->mutex);
1219 
1220 	nbdev->err_stat->status_type[sct]++;
1221 	switch (sct) {
1222 	case SPDK_NVME_SCT_GENERIC:
1223 	case SPDK_NVME_SCT_COMMAND_SPECIFIC:
1224 	case SPDK_NVME_SCT_MEDIA_ERROR:
1225 	case SPDK_NVME_SCT_PATH:
1226 		nbdev->err_stat->status[sct][sc]++;
1227 		break;
1228 	default:
1229 		break;
1230 	}
1231 
1232 	pthread_mutex_unlock(&nbdev->mutex);
1233 }
1234 
1235 static inline void
1236 bdev_nvme_update_io_path_stat(struct nvme_bdev_io *bio)
1237 {
1238 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1239 	uint64_t num_blocks = bdev_io->u.bdev.num_blocks;
1240 	uint32_t blocklen = bdev_io->bdev->blocklen;
1241 	struct spdk_bdev_io_stat *stat;
1242 	uint64_t tsc_diff;
1243 
1244 	if (bio->io_path->stat == NULL) {
1245 		return;
1246 	}
1247 
1248 	tsc_diff = spdk_get_ticks() - bio->submit_tsc;
1249 	stat = bio->io_path->stat;
1250 
1251 	switch (bdev_io->type) {
1252 	case SPDK_BDEV_IO_TYPE_READ:
1253 		stat->bytes_read += num_blocks * blocklen;
1254 		stat->num_read_ops++;
1255 		stat->read_latency_ticks += tsc_diff;
1256 		if (stat->max_read_latency_ticks < tsc_diff) {
1257 			stat->max_read_latency_ticks = tsc_diff;
1258 		}
1259 		if (stat->min_read_latency_ticks > tsc_diff) {
1260 			stat->min_read_latency_ticks = tsc_diff;
1261 		}
1262 		break;
1263 	case SPDK_BDEV_IO_TYPE_WRITE:
1264 		stat->bytes_written += num_blocks * blocklen;
1265 		stat->num_write_ops++;
1266 		stat->write_latency_ticks += tsc_diff;
1267 		if (stat->max_write_latency_ticks < tsc_diff) {
1268 			stat->max_write_latency_ticks = tsc_diff;
1269 		}
1270 		if (stat->min_write_latency_ticks > tsc_diff) {
1271 			stat->min_write_latency_ticks = tsc_diff;
1272 		}
1273 		break;
1274 	case SPDK_BDEV_IO_TYPE_UNMAP:
1275 		stat->bytes_unmapped += num_blocks * blocklen;
1276 		stat->num_unmap_ops++;
1277 		stat->unmap_latency_ticks += tsc_diff;
1278 		if (stat->max_unmap_latency_ticks < tsc_diff) {
1279 			stat->max_unmap_latency_ticks = tsc_diff;
1280 		}
1281 		if (stat->min_unmap_latency_ticks > tsc_diff) {
1282 			stat->min_unmap_latency_ticks = tsc_diff;
1283 		}
1284 		break;
1285 	case SPDK_BDEV_IO_TYPE_ZCOPY:
1286 		/* Track the data in the start phase only */
1287 		if (!bdev_io->u.bdev.zcopy.start) {
1288 			break;
1289 		}
1290 		if (bdev_io->u.bdev.zcopy.populate) {
1291 			stat->bytes_read += num_blocks * blocklen;
1292 			stat->num_read_ops++;
1293 			stat->read_latency_ticks += tsc_diff;
1294 			if (stat->max_read_latency_ticks < tsc_diff) {
1295 				stat->max_read_latency_ticks = tsc_diff;
1296 			}
1297 			if (stat->min_read_latency_ticks > tsc_diff) {
1298 				stat->min_read_latency_ticks = tsc_diff;
1299 			}
1300 		} else {
1301 			stat->bytes_written += num_blocks * blocklen;
1302 			stat->num_write_ops++;
1303 			stat->write_latency_ticks += tsc_diff;
1304 			if (stat->max_write_latency_ticks < tsc_diff) {
1305 				stat->max_write_latency_ticks = tsc_diff;
1306 			}
1307 			if (stat->min_write_latency_ticks > tsc_diff) {
1308 				stat->min_write_latency_ticks = tsc_diff;
1309 			}
1310 		}
1311 		break;
1312 	case SPDK_BDEV_IO_TYPE_COPY:
1313 		stat->bytes_copied += num_blocks * blocklen;
1314 		stat->num_copy_ops++;
1315 		stat->copy_latency_ticks += tsc_diff;
1316 		if (stat->max_copy_latency_ticks < tsc_diff) {
1317 			stat->max_copy_latency_ticks = tsc_diff;
1318 		}
1319 		if (stat->min_copy_latency_ticks > tsc_diff) {
1320 			stat->min_copy_latency_ticks = tsc_diff;
1321 		}
1322 		break;
1323 	default:
1324 		break;
1325 	}
1326 }
1327 
1328 static bool
1329 bdev_nvme_check_retry_io(struct nvme_bdev_io *bio,
1330 			 const struct spdk_nvme_cpl *cpl,
1331 			 struct nvme_bdev_channel *nbdev_ch,
1332 			 uint64_t *_delay_ms)
1333 {
1334 	struct nvme_io_path *io_path = bio->io_path;
1335 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1336 	const struct spdk_nvme_ctrlr_data *cdata;
1337 
1338 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1339 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1340 	    !nvme_io_path_is_available(io_path) ||
1341 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1342 		bdev_nvme_clear_current_io_path(nbdev_ch);
1343 		bio->io_path = NULL;
1344 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1345 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1346 				io_path->nvme_ns->ana_state_updating = true;
1347 			}
1348 		}
1349 		if (!any_io_path_may_become_available(nbdev_ch)) {
1350 			return false;
1351 		}
1352 		*_delay_ms = 0;
1353 	} else {
1354 		bio->retry_count++;
1355 
1356 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1357 
1358 		if (cpl->status.crd != 0) {
1359 			*_delay_ms = cdata->crdt[cpl->status.crd] * 100;
1360 		} else {
1361 			*_delay_ms = 0;
1362 		}
1363 	}
1364 
1365 	return true;
1366 }
1367 
1368 static inline void
1369 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1370 				  const struct spdk_nvme_cpl *cpl)
1371 {
1372 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1373 	struct nvme_bdev_channel *nbdev_ch;
1374 	uint64_t delay_ms;
1375 
1376 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1377 
1378 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1379 		bdev_nvme_update_io_path_stat(bio);
1380 		goto complete;
1381 	}
1382 
1383 	/* Update error counts before deciding if retry is needed.
1384 	 * Hence, error counts may be more than the number of I/O errors.
1385 	 */
1386 	bdev_nvme_update_nvme_error_stat(bdev_io, cpl);
1387 
1388 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1389 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1390 		goto complete;
1391 	}
1392 
1393 	/* At this point we don't know whether the sequence was successfully executed or not, so we
1394 	 * cannot retry the IO */
1395 	if (bdev_io->u.bdev.accel_sequence != NULL) {
1396 		goto complete;
1397 	}
1398 
1399 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1400 
1401 	if (bdev_nvme_check_retry_io(bio, cpl, nbdev_ch, &delay_ms)) {
1402 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1403 		return;
1404 	}
1405 
1406 complete:
1407 	bio->retry_count = 0;
1408 	bio->submit_tsc = 0;
1409 	bdev_io->u.bdev.accel_sequence = NULL;
1410 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1411 }
1412 
1413 static inline void
1414 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1415 {
1416 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1417 	struct nvme_bdev_channel *nbdev_ch;
1418 	enum spdk_bdev_io_status io_status;
1419 
1420 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1421 
1422 	switch (rc) {
1423 	case 0:
1424 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1425 		break;
1426 	case -ENOMEM:
1427 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1428 		break;
1429 	case -ENXIO:
1430 		if (g_opts.bdev_retry_count == -1 || bio->retry_count < g_opts.bdev_retry_count) {
1431 			nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1432 
1433 			bdev_nvme_clear_current_io_path(nbdev_ch);
1434 			bio->io_path = NULL;
1435 
1436 			if (any_io_path_may_become_available(nbdev_ch)) {
1437 				bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1438 				return;
1439 			}
1440 		}
1441 
1442 	/* fallthrough */
1443 	default:
1444 		spdk_accel_sequence_abort(bdev_io->u.bdev.accel_sequence);
1445 		bdev_io->u.bdev.accel_sequence = NULL;
1446 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1447 		break;
1448 	}
1449 
1450 	bio->retry_count = 0;
1451 	bio->submit_tsc = 0;
1452 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1453 }
1454 
1455 static inline void
1456 bdev_nvme_admin_complete(struct nvme_bdev_io *bio, int rc)
1457 {
1458 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1459 	enum spdk_bdev_io_status io_status;
1460 
1461 	switch (rc) {
1462 	case 0:
1463 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1464 		break;
1465 	case -ENOMEM:
1466 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1467 		break;
1468 	case -ENXIO:
1469 	/* fallthrough */
1470 	default:
1471 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1472 		break;
1473 	}
1474 
1475 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1476 }
1477 
1478 static void
1479 bdev_nvme_clear_io_path_caches_done(struct spdk_io_channel_iter *i, int status)
1480 {
1481 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1482 
1483 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1484 
1485 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1486 	nvme_ctrlr->io_path_cache_clearing = false;
1487 
1488 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1489 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1490 		return;
1491 	}
1492 
1493 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1494 
1495 	nvme_ctrlr_unregister(nvme_ctrlr);
1496 }
1497 
1498 static void
1499 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1500 {
1501 	struct nvme_io_path *io_path;
1502 
1503 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1504 		if (io_path->nbdev_ch == NULL) {
1505 			continue;
1506 		}
1507 		bdev_nvme_clear_current_io_path(io_path->nbdev_ch);
1508 	}
1509 }
1510 
1511 static void
1512 bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i)
1513 {
1514 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1515 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1516 
1517 	assert(ctrlr_ch->qpair != NULL);
1518 
1519 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1520 
1521 	spdk_for_each_channel_continue(i, 0);
1522 }
1523 
1524 static void
1525 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1526 {
1527 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1528 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1529 	    nvme_ctrlr->io_path_cache_clearing) {
1530 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1531 		return;
1532 	}
1533 
1534 	nvme_ctrlr->io_path_cache_clearing = true;
1535 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1536 
1537 	spdk_for_each_channel(nvme_ctrlr,
1538 			      bdev_nvme_clear_io_path_cache,
1539 			      NULL,
1540 			      bdev_nvme_clear_io_path_caches_done);
1541 }
1542 
1543 static struct nvme_qpair *
1544 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1545 {
1546 	struct nvme_qpair *nvme_qpair;
1547 
1548 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1549 		if (nvme_qpair->qpair == qpair) {
1550 			break;
1551 		}
1552 	}
1553 
1554 	return nvme_qpair;
1555 }
1556 
1557 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1558 
1559 static void
1560 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1561 {
1562 	struct nvme_poll_group *group = poll_group_ctx;
1563 	struct nvme_qpair *nvme_qpair;
1564 	struct nvme_ctrlr_channel *ctrlr_ch;
1565 	int status;
1566 
1567 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1568 	if (nvme_qpair == NULL) {
1569 		return;
1570 	}
1571 
1572 	if (nvme_qpair->qpair != NULL) {
1573 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1574 		nvme_qpair->qpair = NULL;
1575 	}
1576 
1577 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1578 
1579 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1580 
1581 	if (ctrlr_ch != NULL) {
1582 		if (ctrlr_ch->reset_iter != NULL) {
1583 			/* We are in a full reset sequence. */
1584 			if (ctrlr_ch->connect_poller != NULL) {
1585 				/* qpair was failed to connect. Abort the reset sequence. */
1586 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was failed to connect. abort the reset ctrlr sequence.\n",
1587 					      qpair);
1588 				spdk_poller_unregister(&ctrlr_ch->connect_poller);
1589 				status = -1;
1590 			} else {
1591 				/* qpair was completed to disconnect. Just move to the next ctrlr_channel. */
1592 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1593 					      qpair);
1594 				status = 0;
1595 			}
1596 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, status);
1597 			ctrlr_ch->reset_iter = NULL;
1598 		} else {
1599 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1600 			SPDK_NOTICELOG("qpair %p was disconnected and freed. reset controller.\n", qpair);
1601 			bdev_nvme_failover_ctrlr(nvme_qpair->ctrlr);
1602 		}
1603 	} else {
1604 		/* In this case, ctrlr_channel is already deleted. */
1605 		SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed. delete nvme_qpair.\n", qpair);
1606 		nvme_qpair_delete(nvme_qpair);
1607 	}
1608 }
1609 
1610 static void
1611 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1612 {
1613 	struct nvme_qpair *nvme_qpair;
1614 
1615 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1616 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1617 			continue;
1618 		}
1619 
1620 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1621 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1622 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1623 		}
1624 	}
1625 }
1626 
1627 static int
1628 bdev_nvme_poll(void *arg)
1629 {
1630 	struct nvme_poll_group *group = arg;
1631 	int64_t num_completions;
1632 
1633 	if (group->collect_spin_stat && group->start_ticks == 0) {
1634 		group->start_ticks = spdk_get_ticks();
1635 	}
1636 
1637 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1638 			  bdev_nvme_disconnected_qpair_cb);
1639 	if (group->collect_spin_stat) {
1640 		if (num_completions > 0) {
1641 			if (group->end_ticks != 0) {
1642 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1643 				group->end_ticks = 0;
1644 			}
1645 			group->start_ticks = 0;
1646 		} else {
1647 			group->end_ticks = spdk_get_ticks();
1648 		}
1649 	}
1650 
1651 	if (spdk_unlikely(num_completions < 0)) {
1652 		bdev_nvme_check_io_qpairs(group);
1653 	}
1654 
1655 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1656 }
1657 
1658 static int bdev_nvme_poll_adminq(void *arg);
1659 
1660 static void
1661 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1662 {
1663 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1664 
1665 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1666 					  nvme_ctrlr, new_period_us);
1667 }
1668 
1669 static int
1670 bdev_nvme_poll_adminq(void *arg)
1671 {
1672 	int32_t rc;
1673 	struct nvme_ctrlr *nvme_ctrlr = arg;
1674 	nvme_ctrlr_disconnected_cb disconnected_cb;
1675 
1676 	assert(nvme_ctrlr != NULL);
1677 
1678 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1679 	if (rc < 0) {
1680 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1681 		nvme_ctrlr->disconnected_cb = NULL;
1682 
1683 		if (disconnected_cb != NULL) {
1684 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1685 							    g_opts.nvme_adminq_poll_period_us);
1686 			disconnected_cb(nvme_ctrlr);
1687 		} else {
1688 			bdev_nvme_failover_ctrlr(nvme_ctrlr);
1689 		}
1690 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1691 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1692 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1693 	}
1694 
1695 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1696 }
1697 
1698 static void
1699 nvme_bdev_free(void *io_device)
1700 {
1701 	struct nvme_bdev *nvme_disk = io_device;
1702 
1703 	pthread_mutex_destroy(&nvme_disk->mutex);
1704 	free(nvme_disk->disk.name);
1705 	free(nvme_disk->err_stat);
1706 	free(nvme_disk);
1707 }
1708 
1709 static int
1710 bdev_nvme_destruct(void *ctx)
1711 {
1712 	struct nvme_bdev *nvme_disk = ctx;
1713 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1714 
1715 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1716 
1717 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1718 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1719 
1720 		nvme_ns->bdev = NULL;
1721 
1722 		assert(nvme_ns->id > 0);
1723 
1724 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1725 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1726 
1727 			nvme_ctrlr_release(nvme_ns->ctrlr);
1728 			nvme_ns_free(nvme_ns);
1729 		} else {
1730 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1731 		}
1732 	}
1733 
1734 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1735 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1736 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1737 
1738 	spdk_io_device_unregister(nvme_disk, nvme_bdev_free);
1739 
1740 	return 0;
1741 }
1742 
1743 static int
1744 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1745 {
1746 	struct nvme_ctrlr *nvme_ctrlr;
1747 	struct spdk_nvme_io_qpair_opts opts;
1748 	struct spdk_nvme_qpair *qpair;
1749 	int rc;
1750 
1751 	nvme_ctrlr = nvme_qpair->ctrlr;
1752 
1753 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1754 	opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1755 	opts.create_only = true;
1756 	opts.async_mode = true;
1757 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1758 	g_opts.io_queue_requests = opts.io_queue_requests;
1759 
1760 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1761 	if (qpair == NULL) {
1762 		return -1;
1763 	}
1764 
1765 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1766 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1767 
1768 	assert(nvme_qpair->group != NULL);
1769 
1770 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1771 	if (rc != 0) {
1772 		SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
1773 		goto err;
1774 	}
1775 
1776 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1777 	if (rc != 0) {
1778 		SPDK_ERRLOG("Unable to connect I/O qpair.\n");
1779 		goto err;
1780 	}
1781 
1782 	nvme_qpair->qpair = qpair;
1783 
1784 	if (!g_opts.disable_auto_failback) {
1785 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1786 	}
1787 
1788 	return 0;
1789 
1790 err:
1791 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1792 
1793 	return rc;
1794 }
1795 
1796 static void bdev_nvme_reset_io_continue(void *cb_arg, int rc);
1797 
1798 static void
1799 bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
1800 {
1801 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1802 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1803 	int rc = 0;
1804 	struct nvme_bdev_io *bio;
1805 
1806 	if (spdk_io_channel_iter_get_ctx(i) != NULL) {
1807 		rc = -1;
1808 	}
1809 
1810 	while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
1811 		bio = TAILQ_FIRST(&ctrlr_ch->pending_resets);
1812 		TAILQ_REMOVE(&ctrlr_ch->pending_resets, bio, retry_link);
1813 
1814 		bdev_nvme_reset_io_continue(bio, rc);
1815 	}
1816 
1817 	spdk_for_each_channel_continue(i, 0);
1818 }
1819 
1820 /* This function marks the current trid as failed by storing the current ticks
1821  * and then sets the next trid to the active trid within a controller if exists.
1822  *
1823  * The purpose of the boolean return value is to request the caller to disconnect
1824  * the current trid now to try connecting the next trid.
1825  */
1826 static bool
1827 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove, bool start)
1828 {
1829 	struct nvme_path_id *path_id, *next_path;
1830 	int rc __attribute__((unused));
1831 
1832 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1833 	assert(path_id);
1834 	assert(path_id == nvme_ctrlr->active_path_id);
1835 	next_path = TAILQ_NEXT(path_id, link);
1836 
1837 	/* Update the last failed time. It means the trid is failed if its last
1838 	 * failed time is non-zero.
1839 	 */
1840 	path_id->last_failed_tsc = spdk_get_ticks();
1841 
1842 	if (next_path == NULL) {
1843 		/* There is no alternate trid within a controller. */
1844 		return false;
1845 	}
1846 
1847 	if (!start && nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1848 		/* Connect is not retried in a controller reset sequence. Connecting
1849 		 * the next trid will be done by the next bdev_nvme_failover_ctrlr() call.
1850 		 */
1851 		return false;
1852 	}
1853 
1854 	assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
1855 
1856 	SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr,
1857 		       path_id->trid.trsvcid,	next_path->trid.traddr, next_path->trid.trsvcid);
1858 
1859 	spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
1860 	nvme_ctrlr->active_path_id = next_path;
1861 	rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
1862 	assert(rc == 0);
1863 	TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
1864 	if (!remove) {
1865 		/** Shuffle the old trid to the end of the list and use the new one.
1866 		 * Allows for round robin through multiple connections.
1867 		 */
1868 		TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
1869 	} else {
1870 		free(path_id);
1871 	}
1872 
1873 	if (start || next_path->last_failed_tsc == 0) {
1874 		/* bdev_nvme_failover_ctrlr() is just called or the next trid is not failed
1875 		 * or used yet. Try the next trid now.
1876 		 */
1877 		return true;
1878 	}
1879 
1880 	if (spdk_get_ticks() > next_path->last_failed_tsc + spdk_get_ticks_hz() *
1881 	    nvme_ctrlr->opts.reconnect_delay_sec) {
1882 		/* Enough backoff passed since the next trid failed. Try the next trid now. */
1883 		return true;
1884 	}
1885 
1886 	/* The next trid will be tried after reconnect_delay_sec seconds. */
1887 	return false;
1888 }
1889 
1890 static bool
1891 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
1892 {
1893 	int32_t elapsed;
1894 
1895 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
1896 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
1897 		return false;
1898 	}
1899 
1900 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1901 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
1902 		return true;
1903 	} else {
1904 		return false;
1905 	}
1906 }
1907 
1908 static bool
1909 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
1910 {
1911 	uint32_t elapsed;
1912 
1913 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
1914 		return false;
1915 	}
1916 
1917 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1918 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
1919 		return true;
1920 	} else {
1921 		return false;
1922 	}
1923 }
1924 
1925 static void bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
1926 
1927 static void
1928 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
1929 {
1930 	int rc;
1931 
1932 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
1933 	if (rc != 0) {
1934 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
1935 		 * fail the reset sequence immediately.
1936 		 */
1937 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
1938 		return;
1939 	}
1940 
1941 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
1942 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
1943 	 */
1944 	assert(nvme_ctrlr->disconnected_cb == NULL);
1945 	nvme_ctrlr->disconnected_cb = cb_fn;
1946 
1947 	/* During disconnection, reduce the period to poll adminq more often. */
1948 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
1949 }
1950 
1951 enum bdev_nvme_op_after_reset {
1952 	OP_NONE,
1953 	OP_COMPLETE_PENDING_DESTRUCT,
1954 	OP_DESTRUCT,
1955 	OP_DELAYED_RECONNECT,
1956 	OP_FAILOVER,
1957 };
1958 
1959 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
1960 
1961 static _bdev_nvme_op_after_reset
1962 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
1963 {
1964 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1965 		/* Complete pending destruct after reset completes. */
1966 		return OP_COMPLETE_PENDING_DESTRUCT;
1967 	} else if (nvme_ctrlr->pending_failover) {
1968 		nvme_ctrlr->pending_failover = false;
1969 		nvme_ctrlr->reset_start_tsc = 0;
1970 		return OP_FAILOVER;
1971 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1972 		nvme_ctrlr->reset_start_tsc = 0;
1973 		return OP_NONE;
1974 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1975 		return OP_DESTRUCT;
1976 	} else {
1977 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
1978 			nvme_ctrlr->fast_io_fail_timedout = true;
1979 		}
1980 		return OP_DELAYED_RECONNECT;
1981 	}
1982 }
1983 
1984 static int bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
1985 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
1986 
1987 static int
1988 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
1989 {
1990 	struct nvme_ctrlr *nvme_ctrlr = ctx;
1991 
1992 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
1993 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1994 
1995 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
1996 
1997 	if (!nvme_ctrlr->reconnect_is_delayed) {
1998 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1999 		return SPDK_POLLER_BUSY;
2000 	}
2001 
2002 	nvme_ctrlr->reconnect_is_delayed = false;
2003 
2004 	if (nvme_ctrlr->destruct) {
2005 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2006 		return SPDK_POLLER_BUSY;
2007 	}
2008 
2009 	assert(nvme_ctrlr->resetting == false);
2010 	nvme_ctrlr->resetting = true;
2011 
2012 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2013 
2014 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2015 
2016 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2017 	return SPDK_POLLER_BUSY;
2018 }
2019 
2020 static void
2021 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
2022 {
2023 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2024 
2025 	assert(nvme_ctrlr->reconnect_is_delayed == false);
2026 	nvme_ctrlr->reconnect_is_delayed = true;
2027 
2028 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
2029 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
2030 					    nvme_ctrlr,
2031 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
2032 }
2033 
2034 static void remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr);
2035 
2036 static void
2037 _bdev_nvme_reset_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2038 {
2039 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2040 	bool success = spdk_io_channel_iter_get_ctx(i) == NULL;
2041 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2042 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2043 	enum bdev_nvme_op_after_reset op_after_reset;
2044 
2045 	assert(nvme_ctrlr->thread == spdk_get_thread());
2046 
2047 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2048 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2049 
2050 	if (!success) {
2051 		SPDK_ERRLOG("Resetting controller failed.\n");
2052 	} else {
2053 		SPDK_NOTICELOG("Resetting controller successful.\n");
2054 	}
2055 
2056 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2057 	nvme_ctrlr->resetting = false;
2058 	nvme_ctrlr->dont_retry = false;
2059 	nvme_ctrlr->in_failover = false;
2060 
2061 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
2062 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2063 
2064 	/* Delay callbacks when the next operation is a failover. */
2065 	if (ctrlr_op_cb_fn && op_after_reset != OP_FAILOVER) {
2066 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, success ? 0 : -1);
2067 	}
2068 
2069 	switch (op_after_reset) {
2070 	case OP_COMPLETE_PENDING_DESTRUCT:
2071 		nvme_ctrlr_unregister(nvme_ctrlr);
2072 		break;
2073 	case OP_DESTRUCT:
2074 		bdev_nvme_delete_ctrlr(nvme_ctrlr, false);
2075 		remove_discovery_entry(nvme_ctrlr);
2076 		break;
2077 	case OP_DELAYED_RECONNECT:
2078 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
2079 		break;
2080 	case OP_FAILOVER:
2081 		nvme_ctrlr->ctrlr_op_cb_fn = ctrlr_op_cb_fn;
2082 		nvme_ctrlr->ctrlr_op_cb_arg = ctrlr_op_cb_arg;
2083 		bdev_nvme_failover_ctrlr(nvme_ctrlr);
2084 		break;
2085 	default:
2086 		break;
2087 	}
2088 }
2089 
2090 static void
2091 bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
2092 {
2093 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2094 	if (!success) {
2095 		/* Connecting the active trid failed. Set the next alternate trid to the
2096 		 * active trid if it exists.
2097 		 */
2098 		if (bdev_nvme_failover_trid(nvme_ctrlr, false, false)) {
2099 			/* The next alternate trid exists and is ready to try. Try it now. */
2100 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
2101 
2102 			nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2103 			return;
2104 		}
2105 
2106 		/* We came here if there is no alternate trid or if the next trid exists but
2107 		 * is not ready to try. We will try the active trid after reconnect_delay_sec
2108 		 * seconds if it is non-zero or at the next reset call otherwise.
2109 		 */
2110 	} else {
2111 		/* Connecting the active trid succeeded. Clear the last failed time because it
2112 		 * means the trid is failed if its last failed time is non-zero.
2113 		 */
2114 		nvme_ctrlr->active_path_id->last_failed_tsc = 0;
2115 	}
2116 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2117 
2118 	/* Make sure we clear any pending resets before returning. */
2119 	spdk_for_each_channel(nvme_ctrlr,
2120 			      bdev_nvme_complete_pending_resets,
2121 			      success ? NULL : (void *)0x1,
2122 			      _bdev_nvme_reset_ctrlr_complete);
2123 }
2124 
2125 static void
2126 bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status)
2127 {
2128 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2129 
2130 	bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2131 }
2132 
2133 static void
2134 bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
2135 {
2136 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
2137 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
2138 	struct nvme_qpair *nvme_qpair;
2139 
2140 	nvme_qpair = ctrlr_ch->qpair;
2141 	assert(nvme_qpair != NULL);
2142 
2143 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2144 
2145 	if (nvme_qpair->qpair != NULL) {
2146 		if (nvme_qpair->ctrlr->dont_retry) {
2147 			spdk_nvme_qpair_set_abort_dnr(nvme_qpair->qpair, true);
2148 		}
2149 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
2150 
2151 		/* The current full reset sequence will move to the next
2152 		 * ctrlr_channel after the qpair is actually disconnected.
2153 		 */
2154 		assert(ctrlr_ch->reset_iter == NULL);
2155 		ctrlr_ch->reset_iter = i;
2156 	} else {
2157 		spdk_for_each_channel_continue(i, 0);
2158 	}
2159 }
2160 
2161 static void
2162 bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
2163 {
2164 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2165 
2166 	if (status == 0) {
2167 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, true);
2168 	} else {
2169 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
2170 		spdk_for_each_channel(nvme_ctrlr,
2171 				      bdev_nvme_reset_destroy_qpair,
2172 				      NULL,
2173 				      bdev_nvme_reset_create_qpairs_failed);
2174 	}
2175 }
2176 
2177 static int
2178 bdev_nvme_reset_check_qpair_connected(void *ctx)
2179 {
2180 	struct nvme_ctrlr_channel *ctrlr_ch = ctx;
2181 
2182 	if (ctrlr_ch->reset_iter == NULL) {
2183 		/* qpair was already failed to connect and the reset sequence is being aborted. */
2184 		assert(ctrlr_ch->connect_poller == NULL);
2185 		assert(ctrlr_ch->qpair->qpair == NULL);
2186 		return SPDK_POLLER_BUSY;
2187 	}
2188 
2189 	assert(ctrlr_ch->qpair->qpair != NULL);
2190 
2191 	if (!spdk_nvme_qpair_is_connected(ctrlr_ch->qpair->qpair)) {
2192 		return SPDK_POLLER_BUSY;
2193 	}
2194 
2195 	spdk_poller_unregister(&ctrlr_ch->connect_poller);
2196 
2197 	/* qpair was completed to connect. Move to the next ctrlr_channel */
2198 	spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2199 	ctrlr_ch->reset_iter = NULL;
2200 
2201 	if (!g_opts.disable_auto_failback) {
2202 		_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
2203 	}
2204 
2205 	return SPDK_POLLER_BUSY;
2206 }
2207 
2208 static void
2209 bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
2210 {
2211 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2212 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
2213 	int rc;
2214 
2215 	rc = bdev_nvme_create_qpair(ctrlr_ch->qpair);
2216 	if (rc == 0) {
2217 		ctrlr_ch->connect_poller = SPDK_POLLER_REGISTER(bdev_nvme_reset_check_qpair_connected,
2218 					   ctrlr_ch, 0);
2219 
2220 		/* The current full reset sequence will move to the next
2221 		 * ctrlr_channel after the qpair is actually connected.
2222 		 */
2223 		assert(ctrlr_ch->reset_iter == NULL);
2224 		ctrlr_ch->reset_iter = i;
2225 	} else {
2226 		spdk_for_each_channel_continue(i, rc);
2227 	}
2228 }
2229 
2230 static void
2231 nvme_ctrlr_check_namespaces(struct nvme_ctrlr *nvme_ctrlr)
2232 {
2233 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
2234 	struct nvme_ns *nvme_ns;
2235 
2236 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
2237 	     nvme_ns != NULL;
2238 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
2239 		if (!spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
2240 			SPDK_DEBUGLOG(bdev_nvme, "NSID %u was removed during reset.\n", nvme_ns->id);
2241 			/* NS can be added again. Just nullify nvme_ns->ns. */
2242 			nvme_ns->ns = NULL;
2243 		}
2244 	}
2245 }
2246 
2247 
2248 static int
2249 bdev_nvme_reconnect_ctrlr_poll(void *arg)
2250 {
2251 	struct nvme_ctrlr *nvme_ctrlr = arg;
2252 	int rc = -ETIMEDOUT;
2253 
2254 	if (!bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2255 		rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
2256 		if (rc == -EAGAIN) {
2257 			return SPDK_POLLER_BUSY;
2258 		}
2259 	}
2260 
2261 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
2262 	if (rc == 0) {
2263 		nvme_ctrlr_check_namespaces(nvme_ctrlr);
2264 
2265 		/* Recreate all of the I/O queue pairs */
2266 		spdk_for_each_channel(nvme_ctrlr,
2267 				      bdev_nvme_reset_create_qpair,
2268 				      NULL,
2269 				      bdev_nvme_reset_create_qpairs_done);
2270 	} else {
2271 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2272 	}
2273 	return SPDK_POLLER_BUSY;
2274 }
2275 
2276 static void
2277 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2278 {
2279 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
2280 
2281 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
2282 	assert(nvme_ctrlr->reset_detach_poller == NULL);
2283 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
2284 					  nvme_ctrlr, 0);
2285 }
2286 
2287 static void
2288 bdev_nvme_reset_destroy_qpair_done(struct spdk_io_channel_iter *i, int status)
2289 {
2290 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2291 
2292 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
2293 	assert(status == 0);
2294 
2295 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2296 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2297 	} else {
2298 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2299 	}
2300 }
2301 
2302 static void
2303 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2304 {
2305 	spdk_for_each_channel(nvme_ctrlr,
2306 			      bdev_nvme_reset_destroy_qpair,
2307 			      NULL,
2308 			      bdev_nvme_reset_destroy_qpair_done);
2309 }
2310 
2311 static void
2312 bdev_nvme_reconnect_ctrlr_now(void *ctx)
2313 {
2314 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2315 
2316 	assert(nvme_ctrlr->resetting == true);
2317 	assert(nvme_ctrlr->thread == spdk_get_thread());
2318 
2319 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2320 
2321 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2322 
2323 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2324 }
2325 
2326 static void
2327 _bdev_nvme_reset_ctrlr(void *ctx)
2328 {
2329 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2330 
2331 	assert(nvme_ctrlr->resetting == true);
2332 	assert(nvme_ctrlr->thread == spdk_get_thread());
2333 
2334 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2335 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
2336 	} else {
2337 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
2338 	}
2339 }
2340 
2341 static int
2342 bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2343 {
2344 	spdk_msg_fn msg_fn;
2345 
2346 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2347 	if (nvme_ctrlr->destruct) {
2348 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2349 		return -ENXIO;
2350 	}
2351 
2352 	if (nvme_ctrlr->resetting) {
2353 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2354 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
2355 		return -EBUSY;
2356 	}
2357 
2358 	if (nvme_ctrlr->disabled) {
2359 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2360 		SPDK_NOTICELOG("Unable to perform reset. Controller is disabled.\n");
2361 		return -EALREADY;
2362 	}
2363 
2364 	nvme_ctrlr->resetting = true;
2365 	nvme_ctrlr->dont_retry = true;
2366 
2367 	if (nvme_ctrlr->reconnect_is_delayed) {
2368 		SPDK_DEBUGLOG(bdev_nvme, "Reconnect is already scheduled.\n");
2369 		msg_fn = bdev_nvme_reconnect_ctrlr_now;
2370 		nvme_ctrlr->reconnect_is_delayed = false;
2371 	} else {
2372 		msg_fn = _bdev_nvme_reset_ctrlr;
2373 		assert(nvme_ctrlr->reset_start_tsc == 0);
2374 	}
2375 
2376 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2377 
2378 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2379 
2380 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2381 	return 0;
2382 }
2383 
2384 static int
2385 bdev_nvme_enable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2386 {
2387 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2388 	if (nvme_ctrlr->destruct) {
2389 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2390 		return -ENXIO;
2391 	}
2392 
2393 	if (nvme_ctrlr->resetting) {
2394 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2395 		return -EBUSY;
2396 	}
2397 
2398 	if (!nvme_ctrlr->disabled) {
2399 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2400 		return -EALREADY;
2401 	}
2402 
2403 	nvme_ctrlr->disabled = false;
2404 	nvme_ctrlr->resetting = true;
2405 
2406 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2407 
2408 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2409 
2410 	spdk_thread_send_msg(nvme_ctrlr->thread, bdev_nvme_reconnect_ctrlr_now, nvme_ctrlr);
2411 	return 0;
2412 }
2413 
2414 static void
2415 _bdev_nvme_disable_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2416 {
2417 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2418 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2419 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2420 	enum bdev_nvme_op_after_reset op_after_disable;
2421 
2422 	assert(nvme_ctrlr->thread == spdk_get_thread());
2423 
2424 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2425 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2426 
2427 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2428 
2429 	nvme_ctrlr->resetting = false;
2430 	nvme_ctrlr->dont_retry = false;
2431 
2432 	op_after_disable = bdev_nvme_check_op_after_reset(nvme_ctrlr, true);
2433 
2434 	nvme_ctrlr->disabled = true;
2435 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2436 
2437 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2438 
2439 	if (ctrlr_op_cb_fn) {
2440 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, 0);
2441 	}
2442 
2443 	switch (op_after_disable) {
2444 	case OP_COMPLETE_PENDING_DESTRUCT:
2445 		nvme_ctrlr_unregister(nvme_ctrlr);
2446 		break;
2447 	default:
2448 		break;
2449 	}
2450 
2451 }
2452 
2453 static void
2454 bdev_nvme_disable_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr)
2455 {
2456 	/* Make sure we clear any pending resets before returning. */
2457 	spdk_for_each_channel(nvme_ctrlr,
2458 			      bdev_nvme_complete_pending_resets,
2459 			      NULL,
2460 			      _bdev_nvme_disable_ctrlr_complete);
2461 }
2462 
2463 static void
2464 bdev_nvme_disable_destroy_qpairs_done(struct spdk_io_channel_iter *i, int status)
2465 {
2466 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2467 
2468 	assert(status == 0);
2469 
2470 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2471 		bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2472 	} else {
2473 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_ctrlr_complete);
2474 	}
2475 }
2476 
2477 static void
2478 bdev_nvme_disable_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2479 {
2480 	spdk_for_each_channel(nvme_ctrlr,
2481 			      bdev_nvme_reset_destroy_qpair,
2482 			      NULL,
2483 			      bdev_nvme_disable_destroy_qpairs_done);
2484 }
2485 
2486 static void
2487 _bdev_nvme_cancel_reconnect_and_disable_ctrlr(void *ctx)
2488 {
2489 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2490 
2491 	assert(nvme_ctrlr->resetting == true);
2492 	assert(nvme_ctrlr->thread == spdk_get_thread());
2493 
2494 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2495 
2496 	bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2497 }
2498 
2499 static void
2500 _bdev_nvme_disconnect_and_disable_ctrlr(void *ctx)
2501 {
2502 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2503 
2504 	assert(nvme_ctrlr->resetting == true);
2505 	assert(nvme_ctrlr->thread == spdk_get_thread());
2506 
2507 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2508 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_destroy_qpairs);
2509 	} else {
2510 		bdev_nvme_disable_destroy_qpairs(nvme_ctrlr);
2511 	}
2512 }
2513 
2514 static int
2515 bdev_nvme_disable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2516 {
2517 	spdk_msg_fn msg_fn;
2518 
2519 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2520 	if (nvme_ctrlr->destruct) {
2521 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2522 		return -ENXIO;
2523 	}
2524 
2525 	if (nvme_ctrlr->resetting) {
2526 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2527 		return -EBUSY;
2528 	}
2529 
2530 	if (nvme_ctrlr->disabled) {
2531 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2532 		return -EALREADY;
2533 	}
2534 
2535 	nvme_ctrlr->resetting = true;
2536 	nvme_ctrlr->dont_retry = true;
2537 
2538 	if (nvme_ctrlr->reconnect_is_delayed) {
2539 		msg_fn = _bdev_nvme_cancel_reconnect_and_disable_ctrlr;
2540 		nvme_ctrlr->reconnect_is_delayed = false;
2541 	} else {
2542 		msg_fn = _bdev_nvme_disconnect_and_disable_ctrlr;
2543 	}
2544 
2545 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2546 
2547 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2548 
2549 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2550 	return 0;
2551 }
2552 
2553 static int
2554 nvme_ctrlr_op(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2555 	      bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2556 {
2557 	int rc;
2558 
2559 	switch (op) {
2560 	case NVME_CTRLR_OP_RESET:
2561 		rc = bdev_nvme_reset_ctrlr(nvme_ctrlr);
2562 		break;
2563 	case NVME_CTRLR_OP_ENABLE:
2564 		rc = bdev_nvme_enable_ctrlr(nvme_ctrlr);
2565 		break;
2566 	case NVME_CTRLR_OP_DISABLE:
2567 		rc = bdev_nvme_disable_ctrlr(nvme_ctrlr);
2568 		break;
2569 	default:
2570 		rc = -EINVAL;
2571 		break;
2572 	}
2573 
2574 	if (rc == 0) {
2575 		assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL);
2576 		assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL);
2577 		nvme_ctrlr->ctrlr_op_cb_fn = cb_fn;
2578 		nvme_ctrlr->ctrlr_op_cb_arg = cb_arg;
2579 	}
2580 	return rc;
2581 }
2582 
2583 struct nvme_ctrlr_op_rpc_ctx {
2584 	struct nvme_ctrlr *nvme_ctrlr;
2585 	struct spdk_thread *orig_thread;
2586 	enum nvme_ctrlr_op op;
2587 	int rc;
2588 	bdev_nvme_ctrlr_op_cb cb_fn;
2589 	void *cb_arg;
2590 };
2591 
2592 static void
2593 _nvme_ctrlr_op_rpc_complete(void *_ctx)
2594 {
2595 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2596 
2597 	assert(ctx != NULL);
2598 	assert(ctx->cb_fn != NULL);
2599 
2600 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2601 
2602 	free(ctx);
2603 }
2604 
2605 static void
2606 nvme_ctrlr_op_rpc_complete(void *cb_arg, int rc)
2607 {
2608 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2609 
2610 	ctx->rc = rc;
2611 
2612 	spdk_thread_send_msg(ctx->orig_thread, _nvme_ctrlr_op_rpc_complete, ctx);
2613 }
2614 
2615 void
2616 nvme_ctrlr_op_rpc(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2617 		  bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2618 {
2619 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2620 	int rc;
2621 
2622 	assert(cb_fn != NULL);
2623 
2624 	ctx = calloc(1, sizeof(*ctx));
2625 	if (ctx == NULL) {
2626 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2627 		cb_fn(cb_arg, -ENOMEM);
2628 		return;
2629 	}
2630 
2631 	ctx->orig_thread = spdk_get_thread();
2632 	ctx->cb_fn = cb_fn;
2633 	ctx->cb_arg = cb_arg;
2634 
2635 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_ctrlr_op_rpc_complete, ctx);
2636 	if (rc == 0) {
2637 		return;
2638 	} else if (rc == -EALREADY) {
2639 		rc = 0;
2640 	}
2641 
2642 	nvme_ctrlr_op_rpc_complete(ctx, rc);
2643 }
2644 
2645 static void nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc);
2646 
2647 static void
2648 _nvme_bdev_ctrlr_op_rpc_continue(void *_ctx)
2649 {
2650 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2651 	struct nvme_ctrlr *prev_nvme_ctrlr, *next_nvme_ctrlr;
2652 	int rc;
2653 
2654 	prev_nvme_ctrlr = ctx->nvme_ctrlr;
2655 	ctx->nvme_ctrlr = NULL;
2656 
2657 	if (ctx->rc != 0) {
2658 		goto complete;
2659 	}
2660 
2661 	next_nvme_ctrlr = TAILQ_NEXT(prev_nvme_ctrlr, tailq);
2662 	if (next_nvme_ctrlr == NULL) {
2663 		goto complete;
2664 	}
2665 
2666 	rc = nvme_ctrlr_op(next_nvme_ctrlr, ctx->op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2667 	if (rc == 0) {
2668 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2669 		return;
2670 	} else if (rc == -EALREADY) {
2671 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2672 		rc = 0;
2673 	}
2674 
2675 	ctx->rc = rc;
2676 
2677 complete:
2678 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2679 	free(ctx);
2680 }
2681 
2682 static void
2683 nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc)
2684 {
2685 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2686 
2687 	ctx->rc = rc;
2688 
2689 	spdk_thread_send_msg(ctx->orig_thread, _nvme_bdev_ctrlr_op_rpc_continue, ctx);
2690 }
2691 
2692 void
2693 nvme_bdev_ctrlr_op_rpc(struct nvme_bdev_ctrlr *nbdev_ctrlr, enum nvme_ctrlr_op op,
2694 		       bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2695 {
2696 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2697 	struct nvme_ctrlr *nvme_ctrlr;
2698 	int rc;
2699 
2700 	assert(cb_fn != NULL);
2701 
2702 	ctx = calloc(1, sizeof(*ctx));
2703 	if (ctx == NULL) {
2704 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2705 		cb_fn(cb_arg, -ENOMEM);
2706 		return;
2707 	}
2708 
2709 	ctx->orig_thread = spdk_get_thread();
2710 	ctx->op = op;
2711 	ctx->cb_fn = cb_fn;
2712 	ctx->cb_arg = cb_arg;
2713 
2714 	nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
2715 	assert(nvme_ctrlr != NULL);
2716 
2717 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2718 	if (rc == 0) {
2719 		ctx->nvme_ctrlr = nvme_ctrlr;
2720 		return;
2721 	} else if (rc == -EALREADY) {
2722 		ctx->nvme_ctrlr = nvme_ctrlr;
2723 		rc = 0;
2724 	}
2725 
2726 	nvme_bdev_ctrlr_op_rpc_continue(ctx, rc);
2727 }
2728 
2729 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
2730 
2731 static void
2732 _bdev_nvme_reset_io_complete(struct spdk_io_channel_iter *i, int status)
2733 {
2734 	struct nvme_bdev_io *bio = spdk_io_channel_iter_get_ctx(i);
2735 	enum spdk_bdev_io_status io_status;
2736 
2737 	if (bio->cpl.cdw0 == 0) {
2738 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2739 	} else {
2740 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
2741 	}
2742 
2743 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
2744 }
2745 
2746 static void
2747 bdev_nvme_abort_bdev_channel(struct spdk_io_channel_iter *i)
2748 {
2749 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2750 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
2751 
2752 	bdev_nvme_abort_retry_ios(nbdev_ch);
2753 
2754 	spdk_for_each_channel_continue(i, 0);
2755 }
2756 
2757 static void
2758 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
2759 {
2760 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2761 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
2762 
2763 	/* Abort all queued I/Os for retry. */
2764 	spdk_for_each_channel(nbdev,
2765 			      bdev_nvme_abort_bdev_channel,
2766 			      bio,
2767 			      _bdev_nvme_reset_io_complete);
2768 }
2769 
2770 static void
2771 _bdev_nvme_reset_io_continue(void *ctx)
2772 {
2773 	struct nvme_bdev_io *bio = ctx;
2774 	struct nvme_io_path *prev_io_path, *next_io_path;
2775 	int rc;
2776 
2777 	prev_io_path = bio->io_path;
2778 	bio->io_path = NULL;
2779 
2780 	if (bio->cpl.cdw0 != 0) {
2781 		goto complete;
2782 	}
2783 
2784 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
2785 	if (next_io_path == NULL) {
2786 		goto complete;
2787 	}
2788 
2789 	rc = _bdev_nvme_reset_io(next_io_path, bio);
2790 	if (rc == 0) {
2791 		return;
2792 	}
2793 
2794 	bio->cpl.cdw0 = 1;
2795 
2796 complete:
2797 	bdev_nvme_reset_io_complete(bio);
2798 }
2799 
2800 static void
2801 bdev_nvme_reset_io_continue(void *cb_arg, int rc)
2802 {
2803 	struct nvme_bdev_io *bio = cb_arg;
2804 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2805 
2806 	bio->cpl.cdw0 = (rc == 0) ? 0 : 1;
2807 
2808 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), _bdev_nvme_reset_io_continue, bio);
2809 }
2810 
2811 static int
2812 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
2813 {
2814 	struct nvme_ctrlr_channel *ctrlr_ch;
2815 	int rc;
2816 
2817 	rc = nvme_ctrlr_op(io_path->qpair->ctrlr, NVME_CTRLR_OP_RESET,
2818 			   bdev_nvme_reset_io_continue, bio);
2819 	if (rc != 0 && rc != -EBUSY) {
2820 		return rc;
2821 	}
2822 
2823 	assert(bio->io_path == NULL);
2824 	bio->io_path = io_path;
2825 
2826 	if (rc == -EBUSY) {
2827 		ctrlr_ch = io_path->qpair->ctrlr_ch;
2828 		assert(ctrlr_ch != NULL);
2829 		/*
2830 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
2831 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
2832 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
2833 		 */
2834 		TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bio, retry_link);
2835 	}
2836 
2837 	return 0;
2838 }
2839 
2840 static void
2841 bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio)
2842 {
2843 	struct nvme_io_path *io_path;
2844 	int rc;
2845 
2846 	bio->cpl.cdw0 = 0;
2847 
2848 	/* Reset all nvme_ctrlrs of a bdev controller sequentially. */
2849 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
2850 	assert(io_path != NULL);
2851 
2852 	rc = _bdev_nvme_reset_io(io_path, bio);
2853 	if (rc != 0) {
2854 		/* If the current nvme_ctrlr is disabled, skip it and move to the next nvme_ctrlr. */
2855 		rc = (rc == -EALREADY) ? 0 : rc;
2856 
2857 		bdev_nvme_reset_io_continue(bio, rc);
2858 	}
2859 }
2860 
2861 static int
2862 bdev_nvme_failover_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool remove)
2863 {
2864 	if (nvme_ctrlr->destruct) {
2865 		/* Don't bother resetting if the controller is in the process of being destructed. */
2866 		return -ENXIO;
2867 	}
2868 
2869 	if (nvme_ctrlr->resetting) {
2870 		if (!nvme_ctrlr->in_failover) {
2871 			SPDK_NOTICELOG("Reset is already in progress. Defer failover until reset completes.\n");
2872 
2873 			/* Defer failover until reset completes. */
2874 			nvme_ctrlr->pending_failover = true;
2875 			return -EINPROGRESS;
2876 		} else {
2877 			SPDK_NOTICELOG("Unable to perform failover, already in progress.\n");
2878 			return -EBUSY;
2879 		}
2880 	}
2881 
2882 	bdev_nvme_failover_trid(nvme_ctrlr, remove, true);
2883 
2884 	if (nvme_ctrlr->reconnect_is_delayed) {
2885 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
2886 
2887 		/* We rely on the next reconnect for the failover. */
2888 		return -EALREADY;
2889 	}
2890 
2891 	if (nvme_ctrlr->disabled) {
2892 		SPDK_NOTICELOG("Controller is disabled.\n");
2893 
2894 		/* We rely on the enablement for the failover. */
2895 		return -EALREADY;
2896 	}
2897 
2898 	nvme_ctrlr->resetting = true;
2899 	nvme_ctrlr->in_failover = true;
2900 
2901 	assert(nvme_ctrlr->reset_start_tsc == 0);
2902 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2903 
2904 	return 0;
2905 }
2906 
2907 static int
2908 bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2909 {
2910 	int rc;
2911 
2912 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2913 	rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, false);
2914 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2915 
2916 	if (rc == 0) {
2917 		spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset_ctrlr, nvme_ctrlr);
2918 	} else if (rc == -EALREADY) {
2919 		rc = 0;
2920 	}
2921 
2922 	return rc;
2923 }
2924 
2925 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2926 			   uint64_t num_blocks);
2927 
2928 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2929 				  uint64_t num_blocks);
2930 
2931 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks,
2932 			  uint64_t src_offset_blocks,
2933 			  uint64_t num_blocks);
2934 
2935 static void
2936 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
2937 		     bool success)
2938 {
2939 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2940 	int ret;
2941 
2942 	if (!success) {
2943 		ret = -EINVAL;
2944 		goto exit;
2945 	}
2946 
2947 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
2948 		ret = -ENXIO;
2949 		goto exit;
2950 	}
2951 
2952 	ret = bdev_nvme_readv(bio,
2953 			      bdev_io->u.bdev.iovs,
2954 			      bdev_io->u.bdev.iovcnt,
2955 			      bdev_io->u.bdev.md_buf,
2956 			      bdev_io->u.bdev.num_blocks,
2957 			      bdev_io->u.bdev.offset_blocks,
2958 			      bdev_io->u.bdev.dif_check_flags,
2959 			      bdev_io->u.bdev.memory_domain,
2960 			      bdev_io->u.bdev.memory_domain_ctx,
2961 			      bdev_io->u.bdev.accel_sequence);
2962 
2963 exit:
2964 	if (spdk_unlikely(ret != 0)) {
2965 		bdev_nvme_io_complete(bio, ret);
2966 	}
2967 }
2968 
2969 static inline void
2970 _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
2971 {
2972 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2973 	struct spdk_bdev *bdev = bdev_io->bdev;
2974 	struct nvme_bdev_io *nbdev_io_to_abort;
2975 	int rc = 0;
2976 
2977 	switch (bdev_io->type) {
2978 	case SPDK_BDEV_IO_TYPE_READ:
2979 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
2980 
2981 			rc = bdev_nvme_readv(nbdev_io,
2982 					     bdev_io->u.bdev.iovs,
2983 					     bdev_io->u.bdev.iovcnt,
2984 					     bdev_io->u.bdev.md_buf,
2985 					     bdev_io->u.bdev.num_blocks,
2986 					     bdev_io->u.bdev.offset_blocks,
2987 					     bdev_io->u.bdev.dif_check_flags,
2988 					     bdev_io->u.bdev.memory_domain,
2989 					     bdev_io->u.bdev.memory_domain_ctx,
2990 					     bdev_io->u.bdev.accel_sequence);
2991 		} else {
2992 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
2993 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
2994 			rc = 0;
2995 		}
2996 		break;
2997 	case SPDK_BDEV_IO_TYPE_WRITE:
2998 		rc = bdev_nvme_writev(nbdev_io,
2999 				      bdev_io->u.bdev.iovs,
3000 				      bdev_io->u.bdev.iovcnt,
3001 				      bdev_io->u.bdev.md_buf,
3002 				      bdev_io->u.bdev.num_blocks,
3003 				      bdev_io->u.bdev.offset_blocks,
3004 				      bdev_io->u.bdev.dif_check_flags,
3005 				      bdev_io->u.bdev.memory_domain,
3006 				      bdev_io->u.bdev.memory_domain_ctx,
3007 				      bdev_io->u.bdev.accel_sequence);
3008 		break;
3009 	case SPDK_BDEV_IO_TYPE_COMPARE:
3010 		rc = bdev_nvme_comparev(nbdev_io,
3011 					bdev_io->u.bdev.iovs,
3012 					bdev_io->u.bdev.iovcnt,
3013 					bdev_io->u.bdev.md_buf,
3014 					bdev_io->u.bdev.num_blocks,
3015 					bdev_io->u.bdev.offset_blocks,
3016 					bdev_io->u.bdev.dif_check_flags);
3017 		break;
3018 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3019 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
3020 						   bdev_io->u.bdev.iovs,
3021 						   bdev_io->u.bdev.iovcnt,
3022 						   bdev_io->u.bdev.fused_iovs,
3023 						   bdev_io->u.bdev.fused_iovcnt,
3024 						   bdev_io->u.bdev.md_buf,
3025 						   bdev_io->u.bdev.num_blocks,
3026 						   bdev_io->u.bdev.offset_blocks,
3027 						   bdev_io->u.bdev.dif_check_flags);
3028 		break;
3029 	case SPDK_BDEV_IO_TYPE_UNMAP:
3030 		rc = bdev_nvme_unmap(nbdev_io,
3031 				     bdev_io->u.bdev.offset_blocks,
3032 				     bdev_io->u.bdev.num_blocks);
3033 		break;
3034 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3035 		rc =  bdev_nvme_write_zeroes(nbdev_io,
3036 					     bdev_io->u.bdev.offset_blocks,
3037 					     bdev_io->u.bdev.num_blocks);
3038 		break;
3039 	case SPDK_BDEV_IO_TYPE_RESET:
3040 		nbdev_io->io_path = NULL;
3041 		bdev_nvme_reset_io(nbdev_ch, nbdev_io);
3042 		return;
3043 
3044 	case SPDK_BDEV_IO_TYPE_FLUSH:
3045 		bdev_nvme_io_complete(nbdev_io, 0);
3046 		return;
3047 
3048 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3049 		rc = bdev_nvme_zone_appendv(nbdev_io,
3050 					    bdev_io->u.bdev.iovs,
3051 					    bdev_io->u.bdev.iovcnt,
3052 					    bdev_io->u.bdev.md_buf,
3053 					    bdev_io->u.bdev.num_blocks,
3054 					    bdev_io->u.bdev.offset_blocks,
3055 					    bdev_io->u.bdev.dif_check_flags);
3056 		break;
3057 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3058 		rc = bdev_nvme_get_zone_info(nbdev_io,
3059 					     bdev_io->u.zone_mgmt.zone_id,
3060 					     bdev_io->u.zone_mgmt.num_zones,
3061 					     bdev_io->u.zone_mgmt.buf);
3062 		break;
3063 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3064 		rc = bdev_nvme_zone_management(nbdev_io,
3065 					       bdev_io->u.zone_mgmt.zone_id,
3066 					       bdev_io->u.zone_mgmt.zone_action);
3067 		break;
3068 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3069 		nbdev_io->io_path = NULL;
3070 		bdev_nvme_admin_passthru(nbdev_ch,
3071 					 nbdev_io,
3072 					 &bdev_io->u.nvme_passthru.cmd,
3073 					 bdev_io->u.nvme_passthru.buf,
3074 					 bdev_io->u.nvme_passthru.nbytes);
3075 		return;
3076 
3077 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3078 		rc = bdev_nvme_io_passthru(nbdev_io,
3079 					   &bdev_io->u.nvme_passthru.cmd,
3080 					   bdev_io->u.nvme_passthru.buf,
3081 					   bdev_io->u.nvme_passthru.nbytes);
3082 		break;
3083 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3084 		rc = bdev_nvme_io_passthru_md(nbdev_io,
3085 					      &bdev_io->u.nvme_passthru.cmd,
3086 					      bdev_io->u.nvme_passthru.buf,
3087 					      bdev_io->u.nvme_passthru.nbytes,
3088 					      bdev_io->u.nvme_passthru.md_buf,
3089 					      bdev_io->u.nvme_passthru.md_len);
3090 		break;
3091 	case SPDK_BDEV_IO_TYPE_NVME_IOV_MD:
3092 		rc = bdev_nvme_iov_passthru_md(nbdev_io,
3093 					       &bdev_io->u.nvme_passthru.cmd,
3094 					       bdev_io->u.nvme_passthru.iovs,
3095 					       bdev_io->u.nvme_passthru.iovcnt,
3096 					       bdev_io->u.nvme_passthru.nbytes,
3097 					       bdev_io->u.nvme_passthru.md_buf,
3098 					       bdev_io->u.nvme_passthru.md_len);
3099 		break;
3100 	case SPDK_BDEV_IO_TYPE_ABORT:
3101 		nbdev_io->io_path = NULL;
3102 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
3103 		bdev_nvme_abort(nbdev_ch,
3104 				nbdev_io,
3105 				nbdev_io_to_abort);
3106 		return;
3107 
3108 	case SPDK_BDEV_IO_TYPE_COPY:
3109 		rc = bdev_nvme_copy(nbdev_io,
3110 				    bdev_io->u.bdev.offset_blocks,
3111 				    bdev_io->u.bdev.copy.src_offset_blocks,
3112 				    bdev_io->u.bdev.num_blocks);
3113 		break;
3114 	default:
3115 		rc = -EINVAL;
3116 		break;
3117 	}
3118 
3119 	if (spdk_unlikely(rc != 0)) {
3120 		bdev_nvme_io_complete(nbdev_io, rc);
3121 	}
3122 }
3123 
3124 static void
3125 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
3126 {
3127 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3128 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3129 
3130 	if (spdk_likely(nbdev_io->submit_tsc == 0)) {
3131 		nbdev_io->submit_tsc = spdk_bdev_io_get_submit_tsc(bdev_io);
3132 	} else {
3133 		/* There are cases where submit_tsc != 0, i.e. retry I/O.
3134 		 * We need to update submit_tsc here.
3135 		 */
3136 		nbdev_io->submit_tsc = spdk_get_ticks();
3137 	}
3138 
3139 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
3140 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
3141 	if (spdk_unlikely(!nbdev_io->io_path)) {
3142 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
3143 			bdev_nvme_io_complete(nbdev_io, -ENXIO);
3144 			return;
3145 		}
3146 
3147 		/* Admin commands do not use the optimal I/O path.
3148 		 * Simply fall through even if it is not found.
3149 		 */
3150 	}
3151 
3152 	_bdev_nvme_submit_request(nbdev_ch, bdev_io);
3153 }
3154 
3155 static bool
3156 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
3157 {
3158 	struct nvme_bdev *nbdev = ctx;
3159 	struct nvme_ns *nvme_ns;
3160 	struct spdk_nvme_ns *ns;
3161 	struct spdk_nvme_ctrlr *ctrlr;
3162 	const struct spdk_nvme_ctrlr_data *cdata;
3163 
3164 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
3165 	assert(nvme_ns != NULL);
3166 	ns = nvme_ns->ns;
3167 	if (ns == NULL) {
3168 		return false;
3169 	}
3170 
3171 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3172 
3173 	switch (io_type) {
3174 	case SPDK_BDEV_IO_TYPE_READ:
3175 	case SPDK_BDEV_IO_TYPE_WRITE:
3176 	case SPDK_BDEV_IO_TYPE_RESET:
3177 	case SPDK_BDEV_IO_TYPE_FLUSH:
3178 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3179 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3180 	case SPDK_BDEV_IO_TYPE_ABORT:
3181 		return true;
3182 
3183 	case SPDK_BDEV_IO_TYPE_COMPARE:
3184 		return spdk_nvme_ns_supports_compare(ns);
3185 
3186 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3187 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
3188 
3189 	case SPDK_BDEV_IO_TYPE_UNMAP:
3190 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3191 		return cdata->oncs.dsm;
3192 
3193 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3194 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3195 		return cdata->oncs.write_zeroes;
3196 
3197 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3198 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
3199 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
3200 			return true;
3201 		}
3202 		return false;
3203 
3204 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3205 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3206 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
3207 
3208 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3209 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
3210 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
3211 
3212 	case SPDK_BDEV_IO_TYPE_COPY:
3213 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3214 		return cdata->oncs.copy;
3215 
3216 	default:
3217 		return false;
3218 	}
3219 }
3220 
3221 static int
3222 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
3223 {
3224 	struct nvme_qpair *nvme_qpair;
3225 	struct spdk_io_channel *pg_ch;
3226 	int rc;
3227 
3228 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
3229 	if (!nvme_qpair) {
3230 		SPDK_ERRLOG("Failed to alloc nvme_qpair.\n");
3231 		return -1;
3232 	}
3233 
3234 	TAILQ_INIT(&nvme_qpair->io_path_list);
3235 
3236 	nvme_qpair->ctrlr = nvme_ctrlr;
3237 	nvme_qpair->ctrlr_ch = ctrlr_ch;
3238 
3239 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
3240 	if (!pg_ch) {
3241 		free(nvme_qpair);
3242 		return -1;
3243 	}
3244 
3245 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
3246 
3247 #ifdef SPDK_CONFIG_VTUNE
3248 	nvme_qpair->group->collect_spin_stat = true;
3249 #else
3250 	nvme_qpair->group->collect_spin_stat = false;
3251 #endif
3252 
3253 	if (!nvme_ctrlr->disabled) {
3254 		/* If a nvme_ctrlr is disabled, don't try to create qpair for it. Qpair will
3255 		 * be created when it's enabled.
3256 		 */
3257 		rc = bdev_nvme_create_qpair(nvme_qpair);
3258 		if (rc != 0) {
3259 			/* nvme_ctrlr can't create IO qpair if connection is down.
3260 			 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
3261 			 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
3262 			 * submitted IO will be queued until IO qpair is successfully created.
3263 			 *
3264 			 * Hence, if both are satisfied, ignore the failure.
3265 			 */
3266 			if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
3267 				spdk_put_io_channel(pg_ch);
3268 				free(nvme_qpair);
3269 				return rc;
3270 			}
3271 		}
3272 	}
3273 
3274 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3275 
3276 	ctrlr_ch->qpair = nvme_qpair;
3277 
3278 	pthread_mutex_lock(&nvme_qpair->ctrlr->mutex);
3279 	nvme_qpair->ctrlr->ref++;
3280 	pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex);
3281 
3282 	return 0;
3283 }
3284 
3285 static int
3286 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3287 {
3288 	struct nvme_ctrlr *nvme_ctrlr = io_device;
3289 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3290 
3291 	TAILQ_INIT(&ctrlr_ch->pending_resets);
3292 
3293 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
3294 }
3295 
3296 static void
3297 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
3298 {
3299 	struct nvme_io_path *io_path, *next;
3300 
3301 	assert(nvme_qpair->group != NULL);
3302 
3303 	TAILQ_FOREACH_SAFE(io_path, &nvme_qpair->io_path_list, tailq, next) {
3304 		TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
3305 		nvme_io_path_free(io_path);
3306 	}
3307 
3308 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3309 
3310 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
3311 
3312 	nvme_ctrlr_release(nvme_qpair->ctrlr);
3313 
3314 	free(nvme_qpair);
3315 }
3316 
3317 static void
3318 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3319 {
3320 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3321 	struct nvme_qpair *nvme_qpair;
3322 
3323 	nvme_qpair = ctrlr_ch->qpair;
3324 	assert(nvme_qpair != NULL);
3325 
3326 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
3327 
3328 	if (nvme_qpair->qpair != NULL) {
3329 		if (ctrlr_ch->reset_iter == NULL) {
3330 			spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
3331 		} else {
3332 			/* Skip current ctrlr_channel in a full reset sequence because
3333 			 * it is being deleted now. The qpair is already being disconnected.
3334 			 * We do not have to restart disconnecting it.
3335 			 */
3336 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
3337 		}
3338 
3339 		/* We cannot release a reference to the poll group now.
3340 		 * The qpair may be disconnected asynchronously later.
3341 		 * We need to poll it until it is actually disconnected.
3342 		 * Just detach the qpair from the deleting ctrlr_channel.
3343 		 */
3344 		nvme_qpair->ctrlr_ch = NULL;
3345 	} else {
3346 		assert(ctrlr_ch->reset_iter == NULL);
3347 
3348 		nvme_qpair_delete(nvme_qpair);
3349 	}
3350 }
3351 
3352 static inline struct spdk_io_channel *
3353 bdev_nvme_get_accel_channel(struct nvme_poll_group *group)
3354 {
3355 	if (spdk_unlikely(!group->accel_channel)) {
3356 		group->accel_channel = spdk_accel_get_io_channel();
3357 		if (!group->accel_channel) {
3358 			SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
3359 				    group);
3360 			return NULL;
3361 		}
3362 	}
3363 
3364 	return group->accel_channel;
3365 }
3366 
3367 static void
3368 bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
3369 			      uint32_t iov_cnt, uint32_t seed,
3370 			      spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3371 {
3372 	struct spdk_io_channel *accel_ch;
3373 	struct nvme_poll_group *group = ctx;
3374 	int rc;
3375 
3376 	assert(cb_fn != NULL);
3377 
3378 	accel_ch = bdev_nvme_get_accel_channel(group);
3379 	if (spdk_unlikely(accel_ch == NULL)) {
3380 		cb_fn(cb_arg, -ENOMEM);
3381 		return;
3382 	}
3383 
3384 	rc = spdk_accel_submit_crc32cv(accel_ch, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
3385 	if (rc) {
3386 		/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
3387 		if (rc == -ENOMEM || rc == -EINVAL) {
3388 			cb_fn(cb_arg, rc);
3389 		}
3390 		SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
3391 	}
3392 }
3393 
3394 static void
3395 bdev_nvme_finish_sequence(void *seq, spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3396 {
3397 	spdk_accel_sequence_finish(seq, cb_fn, cb_arg);
3398 }
3399 
3400 static void
3401 bdev_nvme_abort_sequence(void *seq)
3402 {
3403 	spdk_accel_sequence_abort(seq);
3404 }
3405 
3406 static void
3407 bdev_nvme_reverse_sequence(void *seq)
3408 {
3409 	spdk_accel_sequence_reverse(seq);
3410 }
3411 
3412 static int
3413 bdev_nvme_append_crc32c(void *ctx, void **seq, uint32_t *dst, struct iovec *iovs, uint32_t iovcnt,
3414 			struct spdk_memory_domain *domain, void *domain_ctx, uint32_t seed,
3415 			spdk_nvme_accel_step_cb cb_fn, void *cb_arg)
3416 {
3417 	struct spdk_io_channel *ch;
3418 	struct nvme_poll_group *group = ctx;
3419 
3420 	ch = bdev_nvme_get_accel_channel(group);
3421 	if (spdk_unlikely(ch == NULL)) {
3422 		return -ENOMEM;
3423 	}
3424 
3425 	return spdk_accel_append_crc32c((struct spdk_accel_sequence **)seq, ch, dst, iovs, iovcnt,
3426 					domain, domain_ctx, seed, cb_fn, cb_arg);
3427 }
3428 
3429 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
3430 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
3431 	.submit_accel_crc32c	= bdev_nvme_submit_accel_crc32c,
3432 	.append_crc32c		= bdev_nvme_append_crc32c,
3433 	.finish_sequence	= bdev_nvme_finish_sequence,
3434 	.reverse_sequence	= bdev_nvme_reverse_sequence,
3435 	.abort_sequence		= bdev_nvme_abort_sequence,
3436 };
3437 
3438 static int
3439 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
3440 {
3441 	struct nvme_poll_group *group = ctx_buf;
3442 
3443 	TAILQ_INIT(&group->qpair_list);
3444 
3445 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
3446 	if (group->group == NULL) {
3447 		return -1;
3448 	}
3449 
3450 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
3451 
3452 	if (group->poller == NULL) {
3453 		spdk_nvme_poll_group_destroy(group->group);
3454 		return -1;
3455 	}
3456 
3457 	return 0;
3458 }
3459 
3460 static void
3461 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
3462 {
3463 	struct nvme_poll_group *group = ctx_buf;
3464 
3465 	assert(TAILQ_EMPTY(&group->qpair_list));
3466 
3467 	if (group->accel_channel) {
3468 		spdk_put_io_channel(group->accel_channel);
3469 	}
3470 
3471 	spdk_poller_unregister(&group->poller);
3472 	if (spdk_nvme_poll_group_destroy(group->group)) {
3473 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
3474 		assert(false);
3475 	}
3476 }
3477 
3478 static struct spdk_io_channel *
3479 bdev_nvme_get_io_channel(void *ctx)
3480 {
3481 	struct nvme_bdev *nvme_bdev = ctx;
3482 
3483 	return spdk_get_io_channel(nvme_bdev);
3484 }
3485 
3486 static void *
3487 bdev_nvme_get_module_ctx(void *ctx)
3488 {
3489 	struct nvme_bdev *nvme_bdev = ctx;
3490 	struct nvme_ns *nvme_ns;
3491 
3492 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
3493 		return NULL;
3494 	}
3495 
3496 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
3497 	if (!nvme_ns) {
3498 		return NULL;
3499 	}
3500 
3501 	return nvme_ns->ns;
3502 }
3503 
3504 static const char *
3505 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
3506 {
3507 	switch (ana_state) {
3508 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3509 		return "optimized";
3510 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3511 		return "non_optimized";
3512 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3513 		return "inaccessible";
3514 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
3515 		return "persistent_loss";
3516 	case SPDK_NVME_ANA_CHANGE_STATE:
3517 		return "change";
3518 	default:
3519 		return NULL;
3520 	}
3521 }
3522 
3523 static int
3524 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
3525 {
3526 	struct spdk_memory_domain **_domains = NULL;
3527 	struct nvme_bdev *nbdev = ctx;
3528 	struct nvme_ns *nvme_ns;
3529 	int i = 0, _array_size = array_size;
3530 	int rc = 0;
3531 
3532 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3533 		if (domains && array_size >= i) {
3534 			_domains = &domains[i];
3535 		} else {
3536 			_domains = NULL;
3537 		}
3538 		rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size);
3539 		if (rc > 0) {
3540 			i += rc;
3541 			if (_array_size >= rc) {
3542 				_array_size -= rc;
3543 			} else {
3544 				_array_size = 0;
3545 			}
3546 		} else if (rc < 0) {
3547 			return rc;
3548 		}
3549 	}
3550 
3551 	return i;
3552 }
3553 
3554 static const char *
3555 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
3556 {
3557 	if (nvme_ctrlr->destruct) {
3558 		return "deleting";
3559 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
3560 		return "failed";
3561 	} else if (nvme_ctrlr->resetting) {
3562 		return "resetting";
3563 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
3564 		return "reconnect_is_delayed";
3565 	} else if (nvme_ctrlr->disabled) {
3566 		return "disabled";
3567 	} else {
3568 		return "enabled";
3569 	}
3570 }
3571 
3572 void
3573 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
3574 {
3575 	struct spdk_nvme_transport_id *trid;
3576 	const struct spdk_nvme_ctrlr_opts *opts;
3577 	const struct spdk_nvme_ctrlr_data *cdata;
3578 	struct nvme_path_id *path_id;
3579 
3580 	spdk_json_write_object_begin(w);
3581 
3582 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
3583 
3584 #ifdef SPDK_CONFIG_NVME_CUSE
3585 	size_t cuse_name_size = 128;
3586 	char cuse_name[cuse_name_size];
3587 
3588 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
3589 	if (rc == 0) {
3590 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3591 	}
3592 #endif
3593 	trid = &nvme_ctrlr->active_path_id->trid;
3594 	spdk_json_write_named_object_begin(w, "trid");
3595 	nvme_bdev_dump_trid_json(trid, w);
3596 	spdk_json_write_object_end(w);
3597 
3598 	path_id = TAILQ_NEXT(nvme_ctrlr->active_path_id, link);
3599 	if (path_id != NULL) {
3600 		spdk_json_write_named_array_begin(w, "alternate_trids");
3601 		do {
3602 			trid = &path_id->trid;
3603 			spdk_json_write_object_begin(w);
3604 			nvme_bdev_dump_trid_json(trid, w);
3605 			spdk_json_write_object_end(w);
3606 
3607 			path_id = TAILQ_NEXT(path_id, link);
3608 		} while (path_id != NULL);
3609 		spdk_json_write_array_end(w);
3610 	}
3611 
3612 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
3613 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3614 
3615 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
3616 	spdk_json_write_named_object_begin(w, "host");
3617 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
3618 	spdk_json_write_named_string(w, "addr", opts->src_addr);
3619 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
3620 	spdk_json_write_object_end(w);
3621 
3622 	spdk_json_write_object_end(w);
3623 }
3624 
3625 static void
3626 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
3627 			 struct nvme_ns *nvme_ns)
3628 {
3629 	struct spdk_nvme_ns *ns;
3630 	struct spdk_nvme_ctrlr *ctrlr;
3631 	const struct spdk_nvme_ctrlr_data *cdata;
3632 	const struct spdk_nvme_transport_id *trid;
3633 	union spdk_nvme_vs_register vs;
3634 	const struct spdk_nvme_ns_data *nsdata;
3635 	char buf[128];
3636 
3637 	ns = nvme_ns->ns;
3638 	if (ns == NULL) {
3639 		return;
3640 	}
3641 
3642 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3643 
3644 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3645 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
3646 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
3647 
3648 	spdk_json_write_object_begin(w);
3649 
3650 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
3651 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
3652 	}
3653 
3654 	spdk_json_write_named_object_begin(w, "trid");
3655 
3656 	nvme_bdev_dump_trid_json(trid, w);
3657 
3658 	spdk_json_write_object_end(w);
3659 
3660 #ifdef SPDK_CONFIG_NVME_CUSE
3661 	size_t cuse_name_size = 128;
3662 	char cuse_name[cuse_name_size];
3663 
3664 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
3665 					    cuse_name, &cuse_name_size);
3666 	if (rc == 0) {
3667 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3668 	}
3669 #endif
3670 
3671 	spdk_json_write_named_object_begin(w, "ctrlr_data");
3672 
3673 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3674 
3675 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
3676 
3677 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
3678 	spdk_str_trim(buf);
3679 	spdk_json_write_named_string(w, "model_number", buf);
3680 
3681 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
3682 	spdk_str_trim(buf);
3683 	spdk_json_write_named_string(w, "serial_number", buf);
3684 
3685 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
3686 	spdk_str_trim(buf);
3687 	spdk_json_write_named_string(w, "firmware_revision", buf);
3688 
3689 	if (cdata->subnqn[0] != '\0') {
3690 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
3691 	}
3692 
3693 	spdk_json_write_named_object_begin(w, "oacs");
3694 
3695 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
3696 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
3697 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
3698 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
3699 
3700 	spdk_json_write_object_end(w);
3701 
3702 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
3703 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
3704 
3705 	spdk_json_write_object_end(w);
3706 
3707 	spdk_json_write_named_object_begin(w, "vs");
3708 
3709 	spdk_json_write_name(w, "nvme_version");
3710 	if (vs.bits.ter) {
3711 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
3712 	} else {
3713 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
3714 	}
3715 
3716 	spdk_json_write_object_end(w);
3717 
3718 	nsdata = spdk_nvme_ns_get_data(ns);
3719 
3720 	spdk_json_write_named_object_begin(w, "ns_data");
3721 
3722 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
3723 
3724 	if (cdata->cmic.ana_reporting) {
3725 		spdk_json_write_named_string(w, "ana_state",
3726 					     _nvme_ana_state_str(nvme_ns->ana_state));
3727 	}
3728 
3729 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
3730 
3731 	spdk_json_write_object_end(w);
3732 
3733 	if (cdata->oacs.security) {
3734 		spdk_json_write_named_object_begin(w, "security");
3735 
3736 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
3737 
3738 		spdk_json_write_object_end(w);
3739 	}
3740 
3741 	spdk_json_write_object_end(w);
3742 }
3743 
3744 static const char *
3745 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
3746 {
3747 	switch (nbdev->mp_policy) {
3748 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
3749 		return "active_passive";
3750 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
3751 		return "active_active";
3752 	default:
3753 		assert(false);
3754 		return "invalid";
3755 	}
3756 }
3757 
3758 static int
3759 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
3760 {
3761 	struct nvme_bdev *nvme_bdev = ctx;
3762 	struct nvme_ns *nvme_ns;
3763 
3764 	pthread_mutex_lock(&nvme_bdev->mutex);
3765 	spdk_json_write_named_array_begin(w, "nvme");
3766 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
3767 		nvme_namespace_info_json(w, nvme_ns);
3768 	}
3769 	spdk_json_write_array_end(w);
3770 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
3771 	pthread_mutex_unlock(&nvme_bdev->mutex);
3772 
3773 	return 0;
3774 }
3775 
3776 static void
3777 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
3778 {
3779 	/* No config per bdev needed */
3780 }
3781 
3782 static uint64_t
3783 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
3784 {
3785 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3786 	struct nvme_io_path *io_path;
3787 	struct nvme_poll_group *group;
3788 	uint64_t spin_time = 0;
3789 
3790 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
3791 		group = io_path->qpair->group;
3792 
3793 		if (!group || !group->collect_spin_stat) {
3794 			continue;
3795 		}
3796 
3797 		if (group->end_ticks != 0) {
3798 			group->spin_ticks += (group->end_ticks - group->start_ticks);
3799 			group->end_ticks = 0;
3800 		}
3801 
3802 		spin_time += group->spin_ticks;
3803 		group->start_ticks = 0;
3804 		group->spin_ticks = 0;
3805 	}
3806 
3807 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
3808 }
3809 
3810 static void
3811 bdev_nvme_reset_device_stat(void *ctx)
3812 {
3813 	struct nvme_bdev *nbdev = ctx;
3814 
3815 	if (nbdev->err_stat != NULL) {
3816 		memset(nbdev->err_stat, 0, sizeof(struct nvme_error_stat));
3817 	}
3818 }
3819 
3820 /* JSON string should be lowercases and underscore delimited string. */
3821 static void
3822 bdev_nvme_format_nvme_status(char *dst, const char *src)
3823 {
3824 	char tmp[256];
3825 
3826 	spdk_strcpy_replace(dst, 256, src, " - ", "_");
3827 	spdk_strcpy_replace(tmp, 256, dst, "-", "_");
3828 	spdk_strcpy_replace(dst, 256, tmp, " ", "_");
3829 	spdk_strlwr(dst);
3830 }
3831 
3832 static void
3833 bdev_nvme_dump_device_stat_json(void *ctx, struct spdk_json_write_ctx *w)
3834 {
3835 	struct nvme_bdev *nbdev = ctx;
3836 	struct spdk_nvme_status status = {};
3837 	uint16_t sct, sc;
3838 	char status_json[256];
3839 	const char *status_str;
3840 
3841 	if (nbdev->err_stat == NULL) {
3842 		return;
3843 	}
3844 
3845 	spdk_json_write_named_object_begin(w, "nvme_error");
3846 
3847 	spdk_json_write_named_object_begin(w, "status_type");
3848 	for (sct = 0; sct < 8; sct++) {
3849 		if (nbdev->err_stat->status_type[sct] == 0) {
3850 			continue;
3851 		}
3852 		status.sct = sct;
3853 
3854 		status_str = spdk_nvme_cpl_get_status_type_string(&status);
3855 		assert(status_str != NULL);
3856 		bdev_nvme_format_nvme_status(status_json, status_str);
3857 
3858 		spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status_type[sct]);
3859 	}
3860 	spdk_json_write_object_end(w);
3861 
3862 	spdk_json_write_named_object_begin(w, "status_code");
3863 	for (sct = 0; sct < 4; sct++) {
3864 		status.sct = sct;
3865 		for (sc = 0; sc < 256; sc++) {
3866 			if (nbdev->err_stat->status[sct][sc] == 0) {
3867 				continue;
3868 			}
3869 			status.sc = sc;
3870 
3871 			status_str = spdk_nvme_cpl_get_status_string(&status);
3872 			assert(status_str != NULL);
3873 			bdev_nvme_format_nvme_status(status_json, status_str);
3874 
3875 			spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status[sct][sc]);
3876 		}
3877 	}
3878 	spdk_json_write_object_end(w);
3879 
3880 	spdk_json_write_object_end(w);
3881 }
3882 
3883 static bool
3884 bdev_nvme_accel_sequence_supported(void *ctx, enum spdk_bdev_io_type type)
3885 {
3886 	struct nvme_bdev *nbdev = ctx;
3887 	struct spdk_nvme_ctrlr *ctrlr;
3888 
3889 	if (!g_opts.allow_accel_sequence) {
3890 		return false;
3891 	}
3892 
3893 	switch (type) {
3894 	case SPDK_BDEV_IO_TYPE_WRITE:
3895 	case SPDK_BDEV_IO_TYPE_READ:
3896 		break;
3897 	default:
3898 		return false;
3899 	}
3900 
3901 	ctrlr = bdev_nvme_get_ctrlr(&nbdev->disk);
3902 	assert(ctrlr != NULL);
3903 
3904 	return spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ACCEL_SEQUENCE_SUPPORTED;
3905 }
3906 
3907 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
3908 	.destruct			= bdev_nvme_destruct,
3909 	.submit_request			= bdev_nvme_submit_request,
3910 	.io_type_supported		= bdev_nvme_io_type_supported,
3911 	.get_io_channel			= bdev_nvme_get_io_channel,
3912 	.dump_info_json			= bdev_nvme_dump_info_json,
3913 	.write_config_json		= bdev_nvme_write_config_json,
3914 	.get_spin_time			= bdev_nvme_get_spin_time,
3915 	.get_module_ctx			= bdev_nvme_get_module_ctx,
3916 	.get_memory_domains		= bdev_nvme_get_memory_domains,
3917 	.accel_sequence_supported	= bdev_nvme_accel_sequence_supported,
3918 	.reset_device_stat		= bdev_nvme_reset_device_stat,
3919 	.dump_device_stat_json		= bdev_nvme_dump_device_stat_json,
3920 };
3921 
3922 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
3923 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
3924 
3925 static int
3926 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
3927 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
3928 {
3929 	struct spdk_nvme_ana_group_descriptor *copied_desc;
3930 	uint8_t *orig_desc;
3931 	uint32_t i, desc_size, copy_len;
3932 	int rc = 0;
3933 
3934 	if (nvme_ctrlr->ana_log_page == NULL) {
3935 		return -EINVAL;
3936 	}
3937 
3938 	copied_desc = nvme_ctrlr->copied_ana_desc;
3939 
3940 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
3941 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
3942 
3943 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
3944 		memcpy(copied_desc, orig_desc, copy_len);
3945 
3946 		rc = cb_fn(copied_desc, cb_arg);
3947 		if (rc != 0) {
3948 			break;
3949 		}
3950 
3951 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
3952 			    copied_desc->num_of_nsid * sizeof(uint32_t);
3953 		orig_desc += desc_size;
3954 		copy_len -= desc_size;
3955 	}
3956 
3957 	return rc;
3958 }
3959 
3960 static int
3961 nvme_ns_ana_transition_timedout(void *ctx)
3962 {
3963 	struct nvme_ns *nvme_ns = ctx;
3964 
3965 	spdk_poller_unregister(&nvme_ns->anatt_timer);
3966 	nvme_ns->ana_transition_timedout = true;
3967 
3968 	return SPDK_POLLER_BUSY;
3969 }
3970 
3971 static void
3972 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
3973 		       const struct spdk_nvme_ana_group_descriptor *desc)
3974 {
3975 	const struct spdk_nvme_ctrlr_data *cdata;
3976 
3977 	nvme_ns->ana_group_id = desc->ana_group_id;
3978 	nvme_ns->ana_state = desc->ana_state;
3979 	nvme_ns->ana_state_updating = false;
3980 
3981 	switch (nvme_ns->ana_state) {
3982 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3983 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3984 		nvme_ns->ana_transition_timedout = false;
3985 		spdk_poller_unregister(&nvme_ns->anatt_timer);
3986 		break;
3987 
3988 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3989 	case SPDK_NVME_ANA_CHANGE_STATE:
3990 		if (nvme_ns->anatt_timer != NULL) {
3991 			break;
3992 		}
3993 
3994 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
3995 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
3996 				       nvme_ns,
3997 				       cdata->anatt * SPDK_SEC_TO_USEC);
3998 		break;
3999 	default:
4000 		break;
4001 	}
4002 }
4003 
4004 static int
4005 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
4006 {
4007 	struct nvme_ns *nvme_ns = cb_arg;
4008 	uint32_t i;
4009 
4010 	assert(nvme_ns->ns != NULL);
4011 
4012 	for (i = 0; i < desc->num_of_nsid; i++) {
4013 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
4014 			continue;
4015 		}
4016 
4017 		_nvme_ns_set_ana_state(nvme_ns, desc);
4018 		return 1;
4019 	}
4020 
4021 	return 0;
4022 }
4023 
4024 static int
4025 nvme_generate_uuid(const char *sn, uint32_t nsid, struct spdk_uuid *uuid)
4026 {
4027 	int rc = 0;
4028 	struct spdk_uuid new_uuid, namespace_uuid;
4029 	char merged_str[SPDK_NVME_CTRLR_SN_LEN + NSID_STR_LEN + 1] = {'\0'};
4030 	/* This namespace UUID was generated using uuid_generate() method. */
4031 	const char *namespace_str = {"edaed2de-24bc-4b07-b559-f47ecbe730fd"};
4032 	int size;
4033 
4034 	assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN);
4035 
4036 	spdk_uuid_set_null(&new_uuid);
4037 	spdk_uuid_set_null(&namespace_uuid);
4038 
4039 	size = snprintf(merged_str, sizeof(merged_str), "%s%"PRIu32, sn, nsid);
4040 	if (size <= 0 || (unsigned long)size >= sizeof(merged_str)) {
4041 		return -EINVAL;
4042 	}
4043 
4044 	spdk_uuid_parse(&namespace_uuid, namespace_str);
4045 
4046 	rc = spdk_uuid_generate_sha1(&new_uuid, &namespace_uuid, merged_str, size);
4047 	if (rc == 0) {
4048 		memcpy(uuid, &new_uuid, sizeof(struct spdk_uuid));
4049 	}
4050 
4051 	return rc;
4052 }
4053 
4054 static int
4055 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
4056 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
4057 		 uint32_t prchk_flags, void *ctx)
4058 {
4059 	const struct spdk_uuid		*uuid;
4060 	const uint8_t *nguid;
4061 	const struct spdk_nvme_ctrlr_data *cdata;
4062 	const struct spdk_nvme_ns_data	*nsdata;
4063 	const struct spdk_nvme_ctrlr_opts *opts;
4064 	enum spdk_nvme_csi		csi;
4065 	uint32_t atomic_bs, phys_bs, bs;
4066 	char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'};
4067 	int rc;
4068 
4069 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4070 	csi = spdk_nvme_ns_get_csi(ns);
4071 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
4072 
4073 	switch (csi) {
4074 	case SPDK_NVME_CSI_NVM:
4075 		disk->product_name = "NVMe disk";
4076 		break;
4077 	case SPDK_NVME_CSI_ZNS:
4078 		disk->product_name = "NVMe ZNS disk";
4079 		disk->zoned = true;
4080 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
4081 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
4082 					     spdk_nvme_ns_get_extended_sector_size(ns);
4083 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
4084 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
4085 		break;
4086 	default:
4087 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
4088 		return -ENOTSUP;
4089 	}
4090 
4091 	nguid = spdk_nvme_ns_get_nguid(ns);
4092 	if (!nguid) {
4093 		uuid = spdk_nvme_ns_get_uuid(ns);
4094 		if (uuid) {
4095 			disk->uuid = *uuid;
4096 		} else if (g_opts.generate_uuids) {
4097 			spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0');
4098 			rc = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns), &disk->uuid);
4099 			if (rc < 0) {
4100 				SPDK_ERRLOG("UUID generation failed (%s)\n", spdk_strerror(-rc));
4101 				return rc;
4102 			}
4103 		}
4104 	} else {
4105 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
4106 	}
4107 
4108 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
4109 	if (!disk->name) {
4110 		return -ENOMEM;
4111 	}
4112 
4113 	disk->write_cache = 0;
4114 	if (cdata->vwc.present) {
4115 		/* Enable if the Volatile Write Cache exists */
4116 		disk->write_cache = 1;
4117 	}
4118 	if (cdata->oncs.write_zeroes) {
4119 		disk->max_write_zeroes = UINT16_MAX + 1;
4120 	}
4121 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
4122 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
4123 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
4124 	/* NVMe driver will split one request into multiple requests
4125 	 * based on MDTS and stripe boundary, the bdev layer will use
4126 	 * max_segment_size and max_num_segments to split one big IO
4127 	 * into multiple requests, then small request can't run out
4128 	 * of NVMe internal requests data structure.
4129 	 */
4130 	if (opts && opts->io_queue_requests) {
4131 		disk->max_num_segments = opts->io_queue_requests / 2;
4132 	}
4133 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
4134 		/* The nvme driver will try to split I/O that have too many
4135 		 * SGEs, but it doesn't work if that last SGE doesn't end on
4136 		 * an aggregate total that is block aligned. The bdev layer has
4137 		 * a more robust splitting framework, so use that instead for
4138 		 * this case. (See issue #3269.)
4139 		 */
4140 		uint16_t max_sges = spdk_nvme_ctrlr_get_max_sges(ctrlr);
4141 
4142 		if (disk->max_num_segments == 0) {
4143 			disk->max_num_segments = max_sges;
4144 		} else {
4145 			disk->max_num_segments = spdk_min(disk->max_num_segments, max_sges);
4146 		}
4147 	}
4148 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
4149 
4150 	nsdata = spdk_nvme_ns_get_data(ns);
4151 	bs = spdk_nvme_ns_get_sector_size(ns);
4152 	atomic_bs = bs;
4153 	phys_bs = bs;
4154 	if (nsdata->nabo == 0) {
4155 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
4156 			atomic_bs = bs * (1 + nsdata->nawupf);
4157 		} else {
4158 			atomic_bs = bs * (1 + cdata->awupf);
4159 		}
4160 	}
4161 	if (nsdata->nsfeat.optperf) {
4162 		phys_bs = bs * (1 + nsdata->npwg);
4163 	}
4164 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
4165 
4166 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
4167 	if (disk->md_len != 0) {
4168 		disk->md_interleave = nsdata->flbas.extended;
4169 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
4170 		if (disk->dif_type != SPDK_DIF_DISABLE) {
4171 			disk->dif_is_head_of_md = nsdata->dps.md_start;
4172 			disk->dif_check_flags = prchk_flags;
4173 		}
4174 	}
4175 
4176 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
4177 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
4178 		disk->acwu = 0;
4179 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
4180 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
4181 	} else {
4182 		disk->acwu = cdata->acwu + 1; /* 0-based */
4183 	}
4184 
4185 	if (cdata->oncs.copy) {
4186 		/* For now bdev interface allows only single segment copy */
4187 		disk->max_copy = nsdata->mssrl;
4188 	}
4189 
4190 	disk->ctxt = ctx;
4191 	disk->fn_table = &nvmelib_fn_table;
4192 	disk->module = &nvme_if;
4193 
4194 	return 0;
4195 }
4196 
4197 static struct nvme_bdev *
4198 nvme_bdev_alloc(void)
4199 {
4200 	struct nvme_bdev *bdev;
4201 	int rc;
4202 
4203 	bdev = calloc(1, sizeof(*bdev));
4204 	if (!bdev) {
4205 		SPDK_ERRLOG("bdev calloc() failed\n");
4206 		return NULL;
4207 	}
4208 
4209 	if (g_opts.nvme_error_stat) {
4210 		bdev->err_stat = calloc(1, sizeof(struct nvme_error_stat));
4211 		if (!bdev->err_stat) {
4212 			SPDK_ERRLOG("err_stat calloc() failed\n");
4213 			free(bdev);
4214 			return NULL;
4215 		}
4216 	}
4217 
4218 	rc = pthread_mutex_init(&bdev->mutex, NULL);
4219 	if (rc != 0) {
4220 		free(bdev->err_stat);
4221 		free(bdev);
4222 		return NULL;
4223 	}
4224 
4225 	bdev->ref = 1;
4226 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
4227 	bdev->mp_selector = BDEV_NVME_MP_SELECTOR_ROUND_ROBIN;
4228 	bdev->rr_min_io = UINT32_MAX;
4229 	TAILQ_INIT(&bdev->nvme_ns_list);
4230 
4231 	return bdev;
4232 }
4233 
4234 static int
4235 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4236 {
4237 	struct nvme_bdev *bdev;
4238 	struct nvme_bdev_ctrlr *nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
4239 	int rc;
4240 
4241 	bdev = nvme_bdev_alloc();
4242 	if (bdev == NULL) {
4243 		SPDK_ERRLOG("Failed to allocate NVMe bdev\n");
4244 		return -ENOMEM;
4245 	}
4246 
4247 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
4248 
4249 	rc = nvme_disk_create(&bdev->disk, nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
4250 			      nvme_ns->ns, nvme_ctrlr->opts.prchk_flags, bdev);
4251 	if (rc != 0) {
4252 		SPDK_ERRLOG("Failed to create NVMe disk\n");
4253 		nvme_bdev_free(bdev);
4254 		return rc;
4255 	}
4256 
4257 	spdk_io_device_register(bdev,
4258 				bdev_nvme_create_bdev_channel_cb,
4259 				bdev_nvme_destroy_bdev_channel_cb,
4260 				sizeof(struct nvme_bdev_channel),
4261 				bdev->disk.name);
4262 
4263 	nvme_ns->bdev = bdev;
4264 	bdev->nsid = nvme_ns->id;
4265 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4266 
4267 	bdev->nbdev_ctrlr = nbdev_ctrlr;
4268 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->bdevs, bdev, tailq);
4269 
4270 	rc = spdk_bdev_register(&bdev->disk);
4271 	if (rc != 0) {
4272 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
4273 		spdk_io_device_unregister(bdev, NULL);
4274 		nvme_ns->bdev = NULL;
4275 		TAILQ_REMOVE(&nbdev_ctrlr->bdevs, bdev, tailq);
4276 		nvme_bdev_free(bdev);
4277 		return rc;
4278 	}
4279 
4280 	return 0;
4281 }
4282 
4283 static bool
4284 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
4285 {
4286 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
4287 	const struct spdk_uuid *uuid1, *uuid2;
4288 
4289 	nsdata1 = spdk_nvme_ns_get_data(ns1);
4290 	nsdata2 = spdk_nvme_ns_get_data(ns2);
4291 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
4292 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
4293 
4294 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
4295 	       nsdata1->eui64 == nsdata2->eui64 &&
4296 	       ((uuid1 == NULL && uuid2 == NULL) ||
4297 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
4298 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
4299 }
4300 
4301 static bool
4302 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4303 		 struct spdk_nvme_ctrlr_opts *opts)
4304 {
4305 	struct nvme_probe_skip_entry *entry;
4306 
4307 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
4308 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4309 			return false;
4310 		}
4311 	}
4312 
4313 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
4314 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
4315 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
4316 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
4317 	opts->disable_read_ana_log_page = true;
4318 
4319 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
4320 
4321 	return true;
4322 }
4323 
4324 static void
4325 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
4326 {
4327 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4328 
4329 	if (spdk_nvme_cpl_is_error(cpl)) {
4330 		SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
4331 			     cpl->status.sct);
4332 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4333 	} else if (cpl->cdw0 & 0x1) {
4334 		SPDK_WARNLOG("Specified command could not be aborted.\n");
4335 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4336 	}
4337 }
4338 
4339 static void
4340 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
4341 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
4342 {
4343 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4344 	union spdk_nvme_csts_register csts;
4345 	int rc;
4346 
4347 	assert(nvme_ctrlr->ctrlr == ctrlr);
4348 
4349 	SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
4350 
4351 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
4352 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
4353 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
4354 	 * completion recursively.
4355 	 */
4356 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
4357 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
4358 		if (csts.bits.cfs) {
4359 			SPDK_ERRLOG("Controller Fatal Status, reset required\n");
4360 			bdev_nvme_reset_ctrlr(nvme_ctrlr);
4361 			return;
4362 		}
4363 	}
4364 
4365 	switch (g_opts.action_on_timeout) {
4366 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
4367 		if (qpair) {
4368 			/* Don't send abort to ctrlr when ctrlr is not available. */
4369 			pthread_mutex_lock(&nvme_ctrlr->mutex);
4370 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
4371 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
4372 				SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n");
4373 				return;
4374 			}
4375 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4376 
4377 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
4378 						       nvme_abort_cpl, nvme_ctrlr);
4379 			if (rc == 0) {
4380 				return;
4381 			}
4382 
4383 			SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
4384 		}
4385 
4386 	/* FALLTHROUGH */
4387 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
4388 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4389 		break;
4390 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
4391 		SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
4392 		break;
4393 	default:
4394 		SPDK_ERRLOG("An invalid timeout action value is found.\n");
4395 		break;
4396 	}
4397 }
4398 
4399 static struct nvme_ns *
4400 nvme_ns_alloc(void)
4401 {
4402 	struct nvme_ns *nvme_ns;
4403 
4404 	nvme_ns = calloc(1, sizeof(struct nvme_ns));
4405 	if (nvme_ns == NULL) {
4406 		return NULL;
4407 	}
4408 
4409 	if (g_opts.io_path_stat) {
4410 		nvme_ns->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
4411 		if (nvme_ns->stat == NULL) {
4412 			free(nvme_ns);
4413 			return NULL;
4414 		}
4415 		spdk_bdev_reset_io_stat(nvme_ns->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
4416 	}
4417 
4418 	return nvme_ns;
4419 }
4420 
4421 static void
4422 nvme_ns_free(struct nvme_ns *nvme_ns)
4423 {
4424 	free(nvme_ns->stat);
4425 	free(nvme_ns);
4426 }
4427 
4428 static void
4429 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
4430 {
4431 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4432 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
4433 
4434 	if (rc == 0) {
4435 		nvme_ns->probe_ctx = NULL;
4436 		pthread_mutex_lock(&nvme_ctrlr->mutex);
4437 		nvme_ctrlr->ref++;
4438 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4439 	} else {
4440 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4441 		nvme_ns_free(nvme_ns);
4442 	}
4443 
4444 	if (ctx) {
4445 		ctx->populates_in_progress--;
4446 		if (ctx->populates_in_progress == 0) {
4447 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4448 		}
4449 	}
4450 }
4451 
4452 static void
4453 bdev_nvme_add_io_path(struct spdk_io_channel_iter *i)
4454 {
4455 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4456 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4457 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4458 	int rc;
4459 
4460 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
4461 	if (rc != 0) {
4462 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
4463 	}
4464 
4465 	spdk_for_each_channel_continue(i, rc);
4466 }
4467 
4468 static void
4469 bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i)
4470 {
4471 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4472 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4473 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4474 	struct nvme_io_path *io_path;
4475 
4476 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
4477 	if (io_path != NULL) {
4478 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
4479 	}
4480 
4481 	spdk_for_each_channel_continue(i, 0);
4482 }
4483 
4484 static void
4485 bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status)
4486 {
4487 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4488 
4489 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
4490 }
4491 
4492 static void
4493 bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status)
4494 {
4495 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4496 	struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i);
4497 
4498 	if (status == 0) {
4499 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
4500 	} else {
4501 		/* Delete the added io_paths and fail populating the namespace. */
4502 		spdk_for_each_channel(bdev,
4503 				      bdev_nvme_delete_io_path,
4504 				      nvme_ns,
4505 				      bdev_nvme_add_io_path_failed);
4506 	}
4507 }
4508 
4509 static int
4510 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
4511 {
4512 	struct nvme_ns *tmp_ns;
4513 	const struct spdk_nvme_ns_data *nsdata;
4514 
4515 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
4516 	if (!nsdata->nmic.can_share) {
4517 		SPDK_ERRLOG("Namespace cannot be shared.\n");
4518 		return -EINVAL;
4519 	}
4520 
4521 	pthread_mutex_lock(&bdev->mutex);
4522 
4523 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
4524 	assert(tmp_ns != NULL);
4525 
4526 	if (tmp_ns->ns != NULL && !bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
4527 		pthread_mutex_unlock(&bdev->mutex);
4528 		SPDK_ERRLOG("Namespaces are not identical.\n");
4529 		return -EINVAL;
4530 	}
4531 
4532 	bdev->ref++;
4533 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4534 	nvme_ns->bdev = bdev;
4535 
4536 	pthread_mutex_unlock(&bdev->mutex);
4537 
4538 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
4539 	spdk_for_each_channel(bdev,
4540 			      bdev_nvme_add_io_path,
4541 			      nvme_ns,
4542 			      bdev_nvme_add_io_path_done);
4543 
4544 	return 0;
4545 }
4546 
4547 static void
4548 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4549 {
4550 	struct spdk_nvme_ns	*ns;
4551 	struct nvme_bdev	*bdev;
4552 	int			rc = 0;
4553 
4554 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
4555 	if (!ns) {
4556 		SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
4557 		rc = -EINVAL;
4558 		goto done;
4559 	}
4560 
4561 	nvme_ns->ns = ns;
4562 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4563 
4564 	if (nvme_ctrlr->ana_log_page != NULL) {
4565 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
4566 	}
4567 
4568 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
4569 	if (bdev == NULL) {
4570 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
4571 	} else {
4572 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
4573 		if (rc == 0) {
4574 			return;
4575 		}
4576 	}
4577 done:
4578 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
4579 }
4580 
4581 static void
4582 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
4583 {
4584 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4585 
4586 	assert(nvme_ctrlr != NULL);
4587 
4588 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4589 
4590 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4591 
4592 	if (nvme_ns->bdev != NULL) {
4593 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4594 		return;
4595 	}
4596 
4597 	nvme_ns_free(nvme_ns);
4598 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4599 
4600 	nvme_ctrlr_release(nvme_ctrlr);
4601 }
4602 
4603 static void
4604 bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status)
4605 {
4606 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4607 
4608 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4609 }
4610 
4611 static void
4612 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4613 {
4614 	struct nvme_bdev *bdev;
4615 
4616 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4617 
4618 	bdev = nvme_ns->bdev;
4619 	if (bdev != NULL) {
4620 		pthread_mutex_lock(&bdev->mutex);
4621 
4622 		assert(bdev->ref > 0);
4623 		bdev->ref--;
4624 		if (bdev->ref == 0) {
4625 			pthread_mutex_unlock(&bdev->mutex);
4626 
4627 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
4628 		} else {
4629 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
4630 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
4631 			 * and clear nvme_ns->bdev here.
4632 			 */
4633 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
4634 			nvme_ns->bdev = NULL;
4635 
4636 			pthread_mutex_unlock(&bdev->mutex);
4637 
4638 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
4639 			 * we call depopulate_namespace_done() to avoid use-after-free.
4640 			 */
4641 			spdk_for_each_channel(bdev,
4642 					      bdev_nvme_delete_io_path,
4643 					      nvme_ns,
4644 					      bdev_nvme_delete_io_path_done);
4645 			return;
4646 		}
4647 	}
4648 
4649 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4650 }
4651 
4652 static void
4653 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
4654 			       struct nvme_async_probe_ctx *ctx)
4655 {
4656 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
4657 	struct nvme_ns	*nvme_ns, *next;
4658 	struct spdk_nvme_ns	*ns;
4659 	struct nvme_bdev	*bdev;
4660 	uint32_t		nsid;
4661 	int			rc;
4662 	uint64_t		num_sectors;
4663 
4664 	if (ctx) {
4665 		/* Initialize this count to 1 to handle the populate functions
4666 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
4667 		 */
4668 		ctx->populates_in_progress = 1;
4669 	}
4670 
4671 	/* First loop over our existing namespaces and see if they have been
4672 	 * removed. */
4673 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4674 	while (nvme_ns != NULL) {
4675 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4676 
4677 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
4678 			/* NS is still there or added again. Its attributes may have changed. */
4679 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
4680 			if (nvme_ns->ns != ns) {
4681 				assert(nvme_ns->ns == NULL);
4682 				nvme_ns->ns = ns;
4683 				SPDK_DEBUGLOG(bdev_nvme, "NSID %u was added\n", nvme_ns->id);
4684 			}
4685 
4686 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
4687 			bdev = nvme_ns->bdev;
4688 			assert(bdev != NULL);
4689 			if (bdev->disk.blockcnt != num_sectors) {
4690 				SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
4691 					       nvme_ns->id,
4692 					       bdev->disk.name,
4693 					       bdev->disk.blockcnt,
4694 					       num_sectors);
4695 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
4696 				if (rc != 0) {
4697 					SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
4698 						    bdev->disk.name, rc);
4699 				}
4700 			}
4701 		} else {
4702 			/* Namespace was removed */
4703 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4704 		}
4705 
4706 		nvme_ns = next;
4707 	}
4708 
4709 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
4710 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4711 	while (nsid != 0) {
4712 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4713 
4714 		if (nvme_ns == NULL) {
4715 			/* Found a new one */
4716 			nvme_ns = nvme_ns_alloc();
4717 			if (nvme_ns == NULL) {
4718 				SPDK_ERRLOG("Failed to allocate namespace\n");
4719 				/* This just fails to attach the namespace. It may work on a future attempt. */
4720 				continue;
4721 			}
4722 
4723 			nvme_ns->id = nsid;
4724 			nvme_ns->ctrlr = nvme_ctrlr;
4725 
4726 			nvme_ns->bdev = NULL;
4727 
4728 			if (ctx) {
4729 				ctx->populates_in_progress++;
4730 			}
4731 			nvme_ns->probe_ctx = ctx;
4732 
4733 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4734 
4735 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
4736 		}
4737 
4738 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
4739 	}
4740 
4741 	if (ctx) {
4742 		/* Decrement this count now that the loop is over to account
4743 		 * for the one we started with.  If the count is then 0, we
4744 		 * know any populate_namespace functions completed immediately,
4745 		 * so we'll kick the callback here.
4746 		 */
4747 		ctx->populates_in_progress--;
4748 		if (ctx->populates_in_progress == 0) {
4749 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4750 		}
4751 	}
4752 
4753 }
4754 
4755 static void
4756 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
4757 {
4758 	struct nvme_ns *nvme_ns, *tmp;
4759 
4760 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
4761 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4762 	}
4763 }
4764 
4765 static uint32_t
4766 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
4767 {
4768 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
4769 	const struct spdk_nvme_ctrlr_data *cdata;
4770 	uint32_t nsid, ns_count = 0;
4771 
4772 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4773 
4774 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4775 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
4776 		ns_count++;
4777 	}
4778 
4779 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
4780 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
4781 	       sizeof(uint32_t);
4782 }
4783 
4784 static int
4785 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
4786 			  void *cb_arg)
4787 {
4788 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4789 	struct nvme_ns *nvme_ns;
4790 	uint32_t i, nsid;
4791 
4792 	for (i = 0; i < desc->num_of_nsid; i++) {
4793 		nsid = desc->nsid[i];
4794 		if (nsid == 0) {
4795 			continue;
4796 		}
4797 
4798 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4799 
4800 		assert(nvme_ns != NULL);
4801 		if (nvme_ns == NULL) {
4802 			/* Target told us that an inactive namespace had an ANA change */
4803 			continue;
4804 		}
4805 
4806 		_nvme_ns_set_ana_state(nvme_ns, desc);
4807 	}
4808 
4809 	return 0;
4810 }
4811 
4812 static void
4813 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4814 {
4815 	struct nvme_ns *nvme_ns;
4816 
4817 	spdk_free(nvme_ctrlr->ana_log_page);
4818 	nvme_ctrlr->ana_log_page = NULL;
4819 
4820 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4821 	     nvme_ns != NULL;
4822 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
4823 		nvme_ns->ana_state_updating = false;
4824 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4825 	}
4826 }
4827 
4828 static void
4829 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
4830 {
4831 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4832 
4833 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
4834 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
4835 					     nvme_ctrlr);
4836 	} else {
4837 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
4838 	}
4839 
4840 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4841 
4842 	assert(nvme_ctrlr->ana_log_page_updating == true);
4843 	nvme_ctrlr->ana_log_page_updating = false;
4844 
4845 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
4846 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4847 
4848 		nvme_ctrlr_unregister(nvme_ctrlr);
4849 	} else {
4850 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4851 
4852 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
4853 	}
4854 }
4855 
4856 static int
4857 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4858 {
4859 	uint32_t ana_log_page_size;
4860 	int rc;
4861 
4862 	if (nvme_ctrlr->ana_log_page == NULL) {
4863 		return -EINVAL;
4864 	}
4865 
4866 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
4867 
4868 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
4869 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
4870 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
4871 		return -EINVAL;
4872 	}
4873 
4874 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4875 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
4876 	    nvme_ctrlr->ana_log_page_updating) {
4877 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4878 		return -EBUSY;
4879 	}
4880 
4881 	nvme_ctrlr->ana_log_page_updating = true;
4882 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4883 
4884 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
4885 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
4886 					      SPDK_NVME_GLOBAL_NS_TAG,
4887 					      nvme_ctrlr->ana_log_page,
4888 					      ana_log_page_size, 0,
4889 					      nvme_ctrlr_read_ana_log_page_done,
4890 					      nvme_ctrlr);
4891 	if (rc != 0) {
4892 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
4893 	}
4894 
4895 	return rc;
4896 }
4897 
4898 static void
4899 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
4900 {
4901 }
4902 
4903 struct bdev_nvme_set_preferred_path_ctx {
4904 	struct spdk_bdev_desc *desc;
4905 	struct nvme_ns *nvme_ns;
4906 	bdev_nvme_set_preferred_path_cb cb_fn;
4907 	void *cb_arg;
4908 };
4909 
4910 static void
4911 bdev_nvme_set_preferred_path_done(struct spdk_io_channel_iter *i, int status)
4912 {
4913 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4914 
4915 	assert(ctx != NULL);
4916 	assert(ctx->desc != NULL);
4917 	assert(ctx->cb_fn != NULL);
4918 
4919 	spdk_bdev_close(ctx->desc);
4920 
4921 	ctx->cb_fn(ctx->cb_arg, status);
4922 
4923 	free(ctx);
4924 }
4925 
4926 static void
4927 _bdev_nvme_set_preferred_path(struct spdk_io_channel_iter *i)
4928 {
4929 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4930 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4931 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4932 	struct nvme_io_path *io_path, *prev;
4933 
4934 	prev = NULL;
4935 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
4936 		if (io_path->nvme_ns == ctx->nvme_ns) {
4937 			break;
4938 		}
4939 		prev = io_path;
4940 	}
4941 
4942 	if (io_path != NULL) {
4943 		if (prev != NULL) {
4944 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
4945 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
4946 		}
4947 
4948 		/* We can set io_path to nbdev_ch->current_io_path directly here.
4949 		 * However, it needs to be conditional. To simplify the code,
4950 		 * just clear nbdev_ch->current_io_path and let find_io_path()
4951 		 * fill it.
4952 		 *
4953 		 * Automatic failback may be disabled. Hence even if the io_path is
4954 		 * already at the head, clear nbdev_ch->current_io_path.
4955 		 */
4956 		bdev_nvme_clear_current_io_path(nbdev_ch);
4957 	}
4958 
4959 	spdk_for_each_channel_continue(i, 0);
4960 }
4961 
4962 static struct nvme_ns *
4963 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
4964 {
4965 	struct nvme_ns *nvme_ns, *prev;
4966 	const struct spdk_nvme_ctrlr_data *cdata;
4967 
4968 	prev = NULL;
4969 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
4970 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
4971 
4972 		if (cdata->cntlid == cntlid) {
4973 			break;
4974 		}
4975 		prev = nvme_ns;
4976 	}
4977 
4978 	if (nvme_ns != NULL && prev != NULL) {
4979 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
4980 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
4981 	}
4982 
4983 	return nvme_ns;
4984 }
4985 
4986 /* This function supports only multipath mode. There is only a single I/O path
4987  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
4988  * head of the I/O path list for each NVMe bdev channel.
4989  *
4990  * NVMe bdev channel may be acquired after completing this function. move the
4991  * matched namespace to the head of the namespace list for the NVMe bdev too.
4992  */
4993 void
4994 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
4995 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
4996 {
4997 	struct bdev_nvme_set_preferred_path_ctx *ctx;
4998 	struct spdk_bdev *bdev;
4999 	struct nvme_bdev *nbdev;
5000 	int rc = 0;
5001 
5002 	assert(cb_fn != NULL);
5003 
5004 	ctx = calloc(1, sizeof(*ctx));
5005 	if (ctx == NULL) {
5006 		SPDK_ERRLOG("Failed to alloc context.\n");
5007 		rc = -ENOMEM;
5008 		goto err_alloc;
5009 	}
5010 
5011 	ctx->cb_fn = cb_fn;
5012 	ctx->cb_arg = cb_arg;
5013 
5014 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5015 	if (rc != 0) {
5016 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5017 		goto err_open;
5018 	}
5019 
5020 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5021 
5022 	if (bdev->module != &nvme_if) {
5023 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5024 		rc = -ENODEV;
5025 		goto err_bdev;
5026 	}
5027 
5028 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5029 
5030 	pthread_mutex_lock(&nbdev->mutex);
5031 
5032 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
5033 	if (ctx->nvme_ns == NULL) {
5034 		pthread_mutex_unlock(&nbdev->mutex);
5035 
5036 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
5037 		rc = -ENODEV;
5038 		goto err_bdev;
5039 	}
5040 
5041 	pthread_mutex_unlock(&nbdev->mutex);
5042 
5043 	spdk_for_each_channel(nbdev,
5044 			      _bdev_nvme_set_preferred_path,
5045 			      ctx,
5046 			      bdev_nvme_set_preferred_path_done);
5047 	return;
5048 
5049 err_bdev:
5050 	spdk_bdev_close(ctx->desc);
5051 err_open:
5052 	free(ctx);
5053 err_alloc:
5054 	cb_fn(cb_arg, rc);
5055 }
5056 
5057 struct bdev_nvme_set_multipath_policy_ctx {
5058 	struct spdk_bdev_desc *desc;
5059 	bdev_nvme_set_multipath_policy_cb cb_fn;
5060 	void *cb_arg;
5061 };
5062 
5063 static void
5064 bdev_nvme_set_multipath_policy_done(struct spdk_io_channel_iter *i, int status)
5065 {
5066 	struct bdev_nvme_set_multipath_policy_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
5067 
5068 	assert(ctx != NULL);
5069 	assert(ctx->desc != NULL);
5070 	assert(ctx->cb_fn != NULL);
5071 
5072 	spdk_bdev_close(ctx->desc);
5073 
5074 	ctx->cb_fn(ctx->cb_arg, status);
5075 
5076 	free(ctx);
5077 }
5078 
5079 static void
5080 _bdev_nvme_set_multipath_policy(struct spdk_io_channel_iter *i)
5081 {
5082 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
5083 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
5084 	struct nvme_bdev *nbdev = spdk_io_channel_get_io_device(_ch);
5085 
5086 	nbdev_ch->mp_policy = nbdev->mp_policy;
5087 	nbdev_ch->mp_selector = nbdev->mp_selector;
5088 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
5089 	bdev_nvme_clear_current_io_path(nbdev_ch);
5090 
5091 	spdk_for_each_channel_continue(i, 0);
5092 }
5093 
5094 void
5095 bdev_nvme_set_multipath_policy(const char *name, enum bdev_nvme_multipath_policy policy,
5096 			       enum bdev_nvme_multipath_selector selector, uint32_t rr_min_io,
5097 			       bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
5098 {
5099 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
5100 	struct spdk_bdev *bdev;
5101 	struct nvme_bdev *nbdev;
5102 	int rc;
5103 
5104 	assert(cb_fn != NULL);
5105 
5106 	switch (policy) {
5107 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
5108 		break;
5109 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
5110 		switch (selector) {
5111 		case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN:
5112 			if (rr_min_io == UINT32_MAX) {
5113 				rr_min_io = 1;
5114 			} else if (rr_min_io == 0) {
5115 				rc = -EINVAL;
5116 				goto exit;
5117 			}
5118 			break;
5119 		case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH:
5120 			break;
5121 		default:
5122 			rc = -EINVAL;
5123 			goto exit;
5124 		}
5125 		break;
5126 	default:
5127 		rc = -EINVAL;
5128 		goto exit;
5129 	}
5130 
5131 	ctx = calloc(1, sizeof(*ctx));
5132 	if (ctx == NULL) {
5133 		SPDK_ERRLOG("Failed to alloc context.\n");
5134 		rc = -ENOMEM;
5135 		goto exit;
5136 	}
5137 
5138 	ctx->cb_fn = cb_fn;
5139 	ctx->cb_arg = cb_arg;
5140 
5141 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5142 	if (rc != 0) {
5143 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5144 		rc = -ENODEV;
5145 		goto err_open;
5146 	}
5147 
5148 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5149 	if (bdev->module != &nvme_if) {
5150 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5151 		rc = -ENODEV;
5152 		goto err_module;
5153 	}
5154 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5155 
5156 	pthread_mutex_lock(&nbdev->mutex);
5157 	nbdev->mp_policy = policy;
5158 	nbdev->mp_selector = selector;
5159 	nbdev->rr_min_io = rr_min_io;
5160 	pthread_mutex_unlock(&nbdev->mutex);
5161 
5162 	spdk_for_each_channel(nbdev,
5163 			      _bdev_nvme_set_multipath_policy,
5164 			      ctx,
5165 			      bdev_nvme_set_multipath_policy_done);
5166 	return;
5167 
5168 err_module:
5169 	spdk_bdev_close(ctx->desc);
5170 err_open:
5171 	free(ctx);
5172 exit:
5173 	cb_fn(cb_arg, rc);
5174 }
5175 
5176 static void
5177 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5178 {
5179 	struct nvme_ctrlr *nvme_ctrlr		= arg;
5180 	union spdk_nvme_async_event_completion	event;
5181 
5182 	if (spdk_nvme_cpl_is_error(cpl)) {
5183 		SPDK_WARNLOG("AER request execute failed\n");
5184 		return;
5185 	}
5186 
5187 	event.raw = cpl->cdw0;
5188 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5189 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
5190 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
5191 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5192 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
5193 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
5194 	}
5195 }
5196 
5197 static void
5198 free_nvme_async_probe_ctx(struct nvme_async_probe_ctx *ctx)
5199 {
5200 	spdk_keyring_put_key(ctx->drv_opts.tls_psk);
5201 	spdk_keyring_put_key(ctx->drv_opts.dhchap_key);
5202 	free(ctx);
5203 }
5204 
5205 static void
5206 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, int rc)
5207 {
5208 	if (ctx->cb_fn) {
5209 		ctx->cb_fn(ctx->cb_ctx, ctx->reported_bdevs, rc);
5210 	}
5211 
5212 	ctx->namespaces_populated = true;
5213 	if (ctx->probe_done) {
5214 		/* The probe was already completed, so we need to free the context
5215 		 * here.  This can happen for cases like OCSSD, where we need to
5216 		 * send additional commands to the SSD after attach.
5217 		 */
5218 		free_nvme_async_probe_ctx(ctx);
5219 	}
5220 }
5221 
5222 static void
5223 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
5224 		       struct nvme_async_probe_ctx *ctx)
5225 {
5226 	spdk_io_device_register(nvme_ctrlr,
5227 				bdev_nvme_create_ctrlr_channel_cb,
5228 				bdev_nvme_destroy_ctrlr_channel_cb,
5229 				sizeof(struct nvme_ctrlr_channel),
5230 				nvme_ctrlr->nbdev_ctrlr->name);
5231 
5232 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
5233 }
5234 
5235 static void
5236 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
5237 {
5238 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
5239 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
5240 
5241 	nvme_ctrlr->probe_ctx = NULL;
5242 
5243 	if (spdk_nvme_cpl_is_error(cpl)) {
5244 		nvme_ctrlr_delete(nvme_ctrlr);
5245 
5246 		if (ctx != NULL) {
5247 			ctx->reported_bdevs = 0;
5248 			populate_namespaces_cb(ctx, -1);
5249 		}
5250 		return;
5251 	}
5252 
5253 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5254 }
5255 
5256 static int
5257 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
5258 			     struct nvme_async_probe_ctx *ctx)
5259 {
5260 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5261 	const struct spdk_nvme_ctrlr_data *cdata;
5262 	uint32_t ana_log_page_size;
5263 
5264 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5265 
5266 	/* Set buffer size enough to include maximum number of allowed namespaces. */
5267 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5268 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
5269 			    sizeof(uint32_t);
5270 
5271 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
5272 						SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
5273 	if (nvme_ctrlr->ana_log_page == NULL) {
5274 		SPDK_ERRLOG("could not allocate ANA log page buffer\n");
5275 		return -ENXIO;
5276 	}
5277 
5278 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
5279 	 * Hence copy each descriptor to a temporary area when parsing it.
5280 	 *
5281 	 * Allocate a buffer whose size is as large as ANA log page buffer because
5282 	 * we do not know the size of a descriptor until actually reading it.
5283 	 */
5284 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
5285 	if (nvme_ctrlr->copied_ana_desc == NULL) {
5286 		SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
5287 		return -ENOMEM;
5288 	}
5289 
5290 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
5291 
5292 	nvme_ctrlr->probe_ctx = ctx;
5293 
5294 	/* Then, set the read size only to include the current active namespaces. */
5295 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5296 
5297 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5298 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5299 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5300 		return -EINVAL;
5301 	}
5302 
5303 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
5304 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5305 						SPDK_NVME_GLOBAL_NS_TAG,
5306 						nvme_ctrlr->ana_log_page,
5307 						ana_log_page_size, 0,
5308 						nvme_ctrlr_init_ana_log_page_done,
5309 						nvme_ctrlr);
5310 }
5311 
5312 /* hostnqn and subnqn were already verified before attaching a controller.
5313  * Hence check only the multipath capability and cntlid here.
5314  */
5315 static bool
5316 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
5317 {
5318 	struct nvme_ctrlr *tmp;
5319 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
5320 
5321 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5322 
5323 	if (!cdata->cmic.multi_ctrlr) {
5324 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5325 		return false;
5326 	}
5327 
5328 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
5329 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
5330 
5331 		if (!tmp_cdata->cmic.multi_ctrlr) {
5332 			SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5333 			return false;
5334 		}
5335 		if (cdata->cntlid == tmp_cdata->cntlid) {
5336 			SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid);
5337 			return false;
5338 		}
5339 	}
5340 
5341 	return true;
5342 }
5343 
5344 static int
5345 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
5346 {
5347 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5348 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5349 	int rc = 0;
5350 
5351 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5352 
5353 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
5354 	if (nbdev_ctrlr != NULL) {
5355 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
5356 			rc = -EINVAL;
5357 			goto exit;
5358 		}
5359 	} else {
5360 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
5361 		if (nbdev_ctrlr == NULL) {
5362 			SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n");
5363 			rc = -ENOMEM;
5364 			goto exit;
5365 		}
5366 		nbdev_ctrlr->name = strdup(name);
5367 		if (nbdev_ctrlr->name == NULL) {
5368 			SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n");
5369 			free(nbdev_ctrlr);
5370 			goto exit;
5371 		}
5372 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
5373 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
5374 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
5375 	}
5376 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
5377 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
5378 exit:
5379 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5380 	return rc;
5381 }
5382 
5383 static int
5384 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
5385 		  const char *name,
5386 		  const struct spdk_nvme_transport_id *trid,
5387 		  struct nvme_async_probe_ctx *ctx)
5388 {
5389 	struct nvme_ctrlr *nvme_ctrlr;
5390 	struct nvme_path_id *path_id;
5391 	const struct spdk_nvme_ctrlr_data *cdata;
5392 	int rc;
5393 
5394 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
5395 	if (nvme_ctrlr == NULL) {
5396 		SPDK_ERRLOG("Failed to allocate device struct\n");
5397 		return -ENOMEM;
5398 	}
5399 
5400 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
5401 	if (rc != 0) {
5402 		free(nvme_ctrlr);
5403 		return rc;
5404 	}
5405 
5406 	TAILQ_INIT(&nvme_ctrlr->trids);
5407 	RB_INIT(&nvme_ctrlr->namespaces);
5408 
5409 	/* Get another reference to the key, so the first one can be released from probe_ctx */
5410 	if (ctx != NULL) {
5411 		if (ctx->drv_opts.tls_psk != NULL) {
5412 			nvme_ctrlr->psk = spdk_keyring_get_key(
5413 						  spdk_key_get_name(ctx->drv_opts.tls_psk));
5414 			if (nvme_ctrlr->psk == NULL) {
5415 				/* Could only happen if the key was removed in the meantime */
5416 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5417 					    spdk_key_get_name(ctx->drv_opts.tls_psk));
5418 				rc = -ENOKEY;
5419 				goto err;
5420 			}
5421 		}
5422 
5423 		if (ctx->drv_opts.dhchap_key != NULL) {
5424 			nvme_ctrlr->dhchap_key = spdk_keyring_get_key(
5425 							 spdk_key_get_name(ctx->drv_opts.dhchap_key));
5426 			if (nvme_ctrlr->dhchap_key == NULL) {
5427 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5428 					    spdk_key_get_name(ctx->drv_opts.dhchap_key));
5429 				rc = -ENOKEY;
5430 				goto err;
5431 			}
5432 		}
5433 	}
5434 
5435 	path_id = calloc(1, sizeof(*path_id));
5436 	if (path_id == NULL) {
5437 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
5438 		rc = -ENOMEM;
5439 		goto err;
5440 	}
5441 
5442 	path_id->trid = *trid;
5443 	if (ctx != NULL) {
5444 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
5445 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
5446 	}
5447 	nvme_ctrlr->active_path_id = path_id;
5448 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
5449 
5450 	nvme_ctrlr->thread = spdk_get_thread();
5451 	nvme_ctrlr->ctrlr = ctrlr;
5452 	nvme_ctrlr->ref = 1;
5453 
5454 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
5455 		SPDK_ERRLOG("OCSSDs are not supported");
5456 		rc = -ENOTSUP;
5457 		goto err;
5458 	}
5459 
5460 	if (ctx != NULL) {
5461 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
5462 	} else {
5463 		bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
5464 	}
5465 
5466 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
5467 					  g_opts.nvme_adminq_poll_period_us);
5468 
5469 	if (g_opts.timeout_us > 0) {
5470 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
5471 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
5472 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
5473 					  g_opts.timeout_us : g_opts.timeout_admin_us;
5474 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
5475 				adm_timeout_us, timeout_cb, nvme_ctrlr);
5476 	}
5477 
5478 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
5479 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
5480 
5481 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
5482 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
5483 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
5484 	}
5485 
5486 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
5487 	if (rc != 0) {
5488 		goto err;
5489 	}
5490 
5491 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5492 
5493 	if (cdata->cmic.ana_reporting) {
5494 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
5495 		if (rc == 0) {
5496 			return 0;
5497 		}
5498 	} else {
5499 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5500 		return 0;
5501 	}
5502 
5503 err:
5504 	nvme_ctrlr_delete(nvme_ctrlr);
5505 	return rc;
5506 }
5507 
5508 void
5509 bdev_nvme_get_default_ctrlr_opts(struct nvme_ctrlr_opts *opts)
5510 {
5511 	opts->prchk_flags = 0;
5512 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
5513 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
5514 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
5515 }
5516 
5517 static void
5518 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5519 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
5520 {
5521 	char *name;
5522 
5523 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
5524 	if (!name) {
5525 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
5526 		return;
5527 	}
5528 
5529 	if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) {
5530 		SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
5531 	} else {
5532 		SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name);
5533 	}
5534 
5535 	free(name);
5536 }
5537 
5538 static void
5539 _nvme_ctrlr_destruct(void *ctx)
5540 {
5541 	struct nvme_ctrlr *nvme_ctrlr = ctx;
5542 
5543 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
5544 	nvme_ctrlr_release(nvme_ctrlr);
5545 }
5546 
5547 static int
5548 bdev_nvme_delete_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5549 {
5550 	struct nvme_probe_skip_entry *entry;
5551 
5552 	/* The controller's destruction was already started */
5553 	if (nvme_ctrlr->destruct) {
5554 		return -EALREADY;
5555 	}
5556 
5557 	if (!hotplug &&
5558 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
5559 		entry = calloc(1, sizeof(*entry));
5560 		if (!entry) {
5561 			return -ENOMEM;
5562 		}
5563 		entry->trid = nvme_ctrlr->active_path_id->trid;
5564 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
5565 	}
5566 
5567 	nvme_ctrlr->destruct = true;
5568 	return 0;
5569 }
5570 
5571 static int
5572 bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5573 {
5574 	int rc;
5575 
5576 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5577 	rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, hotplug);
5578 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5579 
5580 	if (rc == 0) {
5581 		_nvme_ctrlr_destruct(nvme_ctrlr);
5582 	} else if (rc == -EALREADY) {
5583 		rc = 0;
5584 	}
5585 
5586 	return rc;
5587 }
5588 
5589 static void
5590 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
5591 {
5592 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
5593 
5594 	bdev_nvme_delete_ctrlr(nvme_ctrlr, true);
5595 }
5596 
5597 static int
5598 bdev_nvme_hotplug_probe(void *arg)
5599 {
5600 	if (g_hotplug_probe_ctx == NULL) {
5601 		spdk_poller_unregister(&g_hotplug_probe_poller);
5602 		return SPDK_POLLER_IDLE;
5603 	}
5604 
5605 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
5606 		g_hotplug_probe_ctx = NULL;
5607 		spdk_poller_unregister(&g_hotplug_probe_poller);
5608 	}
5609 
5610 	return SPDK_POLLER_BUSY;
5611 }
5612 
5613 static int
5614 bdev_nvme_hotplug(void *arg)
5615 {
5616 	struct spdk_nvme_transport_id trid_pcie;
5617 
5618 	if (g_hotplug_probe_ctx) {
5619 		return SPDK_POLLER_BUSY;
5620 	}
5621 
5622 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5623 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5624 
5625 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
5626 			      hotplug_probe_cb, attach_cb, NULL);
5627 
5628 	if (g_hotplug_probe_ctx) {
5629 		assert(g_hotplug_probe_poller == NULL);
5630 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
5631 	}
5632 
5633 	return SPDK_POLLER_BUSY;
5634 }
5635 
5636 void
5637 bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
5638 {
5639 	*opts = g_opts;
5640 }
5641 
5642 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5643 		uint32_t reconnect_delay_sec,
5644 		uint32_t fast_io_fail_timeout_sec);
5645 
5646 static int
5647 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
5648 {
5649 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
5650 		/* Can't set timeout_admin_us without also setting timeout_us */
5651 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
5652 		return -EINVAL;
5653 	}
5654 
5655 	if (opts->bdev_retry_count < -1) {
5656 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
5657 		return -EINVAL;
5658 	}
5659 
5660 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
5661 			opts->reconnect_delay_sec,
5662 			opts->fast_io_fail_timeout_sec)) {
5663 		return -EINVAL;
5664 	}
5665 
5666 	return 0;
5667 }
5668 
5669 int
5670 bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
5671 {
5672 	int ret;
5673 
5674 	ret = bdev_nvme_validate_opts(opts);
5675 	if (ret) {
5676 		SPDK_WARNLOG("Failed to set nvme opts.\n");
5677 		return ret;
5678 	}
5679 
5680 	if (g_bdev_nvme_init_thread != NULL) {
5681 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5682 			return -EPERM;
5683 		}
5684 	}
5685 
5686 	if (opts->rdma_srq_size != 0 ||
5687 	    opts->rdma_max_cq_size != 0 ||
5688 	    opts->rdma_cm_event_timeout_ms != 0) {
5689 		struct spdk_nvme_transport_opts drv_opts;
5690 
5691 		spdk_nvme_transport_get_opts(&drv_opts, sizeof(drv_opts));
5692 		if (opts->rdma_srq_size != 0) {
5693 			drv_opts.rdma_srq_size = opts->rdma_srq_size;
5694 		}
5695 		if (opts->rdma_max_cq_size != 0) {
5696 			drv_opts.rdma_max_cq_size = opts->rdma_max_cq_size;
5697 		}
5698 		if (opts->rdma_cm_event_timeout_ms != 0) {
5699 			drv_opts.rdma_cm_event_timeout_ms = opts->rdma_cm_event_timeout_ms;
5700 		}
5701 
5702 		ret = spdk_nvme_transport_set_opts(&drv_opts, sizeof(drv_opts));
5703 		if (ret) {
5704 			SPDK_ERRLOG("Failed to set NVMe transport opts.\n");
5705 			return ret;
5706 		}
5707 	}
5708 
5709 	g_opts = *opts;
5710 
5711 	return 0;
5712 }
5713 
5714 struct set_nvme_hotplug_ctx {
5715 	uint64_t period_us;
5716 	bool enabled;
5717 	spdk_msg_fn fn;
5718 	void *fn_ctx;
5719 };
5720 
5721 static void
5722 set_nvme_hotplug_period_cb(void *_ctx)
5723 {
5724 	struct set_nvme_hotplug_ctx *ctx = _ctx;
5725 
5726 	spdk_poller_unregister(&g_hotplug_poller);
5727 	if (ctx->enabled) {
5728 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
5729 	}
5730 
5731 	g_nvme_hotplug_poll_period_us = ctx->period_us;
5732 	g_nvme_hotplug_enabled = ctx->enabled;
5733 	if (ctx->fn) {
5734 		ctx->fn(ctx->fn_ctx);
5735 	}
5736 
5737 	free(ctx);
5738 }
5739 
5740 int
5741 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
5742 {
5743 	struct set_nvme_hotplug_ctx *ctx;
5744 
5745 	if (enabled == true && !spdk_process_is_primary()) {
5746 		return -EPERM;
5747 	}
5748 
5749 	ctx = calloc(1, sizeof(*ctx));
5750 	if (ctx == NULL) {
5751 		return -ENOMEM;
5752 	}
5753 
5754 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
5755 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
5756 	ctx->enabled = enabled;
5757 	ctx->fn = cb;
5758 	ctx->fn_ctx = cb_ctx;
5759 
5760 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
5761 	return 0;
5762 }
5763 
5764 static void
5765 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
5766 				    struct nvme_async_probe_ctx *ctx)
5767 {
5768 	struct nvme_ns	*nvme_ns;
5769 	struct nvme_bdev	*nvme_bdev;
5770 	size_t			j;
5771 
5772 	assert(nvme_ctrlr != NULL);
5773 
5774 	if (ctx->names == NULL) {
5775 		ctx->reported_bdevs = 0;
5776 		populate_namespaces_cb(ctx, 0);
5777 		return;
5778 	}
5779 
5780 	/*
5781 	 * Report the new bdevs that were created in this call.
5782 	 * There can be more than one bdev per NVMe controller.
5783 	 */
5784 	j = 0;
5785 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5786 	while (nvme_ns != NULL) {
5787 		nvme_bdev = nvme_ns->bdev;
5788 		if (j < ctx->max_bdevs) {
5789 			ctx->names[j] = nvme_bdev->disk.name;
5790 			j++;
5791 		} else {
5792 			SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
5793 				    ctx->max_bdevs);
5794 			ctx->reported_bdevs = 0;
5795 			populate_namespaces_cb(ctx, -ERANGE);
5796 			return;
5797 		}
5798 
5799 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5800 	}
5801 
5802 	ctx->reported_bdevs = j;
5803 	populate_namespaces_cb(ctx, 0);
5804 }
5805 
5806 static int
5807 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5808 			       struct spdk_nvme_ctrlr *new_ctrlr,
5809 			       struct spdk_nvme_transport_id *trid)
5810 {
5811 	struct nvme_path_id *tmp_trid;
5812 
5813 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
5814 		SPDK_ERRLOG("PCIe failover is not supported.\n");
5815 		return -ENOTSUP;
5816 	}
5817 
5818 	/* Currently we only support failover to the same transport type. */
5819 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
5820 		SPDK_WARNLOG("Failover from trtype: %s to a different trtype: %s is not supported currently\n",
5821 			     spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
5822 			     spdk_nvme_transport_id_trtype_str(trid->trtype));
5823 		return -EINVAL;
5824 	}
5825 
5826 
5827 	/* Currently we only support failover to the same NQN. */
5828 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
5829 		SPDK_WARNLOG("Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
5830 			     nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
5831 		return -EINVAL;
5832 	}
5833 
5834 	/* Skip all the other checks if we've already registered this path. */
5835 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
5836 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
5837 			SPDK_WARNLOG("This path (traddr: %s subnqn: %s) is already registered\n", trid->traddr,
5838 				     trid->subnqn);
5839 			return -EEXIST;
5840 		}
5841 	}
5842 
5843 	return 0;
5844 }
5845 
5846 static int
5847 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
5848 				    struct spdk_nvme_ctrlr *new_ctrlr)
5849 {
5850 	struct nvme_ns *nvme_ns;
5851 	struct spdk_nvme_ns *new_ns;
5852 
5853 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5854 	while (nvme_ns != NULL) {
5855 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
5856 		assert(new_ns != NULL);
5857 
5858 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
5859 			return -EINVAL;
5860 		}
5861 
5862 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5863 	}
5864 
5865 	return 0;
5866 }
5867 
5868 static int
5869 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5870 			      struct spdk_nvme_transport_id *trid)
5871 {
5872 	struct nvme_path_id *active_id, *new_trid, *tmp_trid;
5873 
5874 	new_trid = calloc(1, sizeof(*new_trid));
5875 	if (new_trid == NULL) {
5876 		return -ENOMEM;
5877 	}
5878 	new_trid->trid = *trid;
5879 
5880 	active_id = nvme_ctrlr->active_path_id;
5881 	assert(active_id != NULL);
5882 	assert(active_id == TAILQ_FIRST(&nvme_ctrlr->trids));
5883 
5884 	/* Skip the active trid not to replace it until it is failed. */
5885 	tmp_trid = TAILQ_NEXT(active_id, link);
5886 	if (tmp_trid == NULL) {
5887 		goto add_tail;
5888 	}
5889 
5890 	/* It means the trid is faled if its last failed time is non-zero.
5891 	 * Insert the new alternate trid before any failed trid.
5892 	 */
5893 	TAILQ_FOREACH_FROM(tmp_trid, &nvme_ctrlr->trids, link) {
5894 		if (tmp_trid->last_failed_tsc != 0) {
5895 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
5896 			return 0;
5897 		}
5898 	}
5899 
5900 add_tail:
5901 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
5902 	return 0;
5903 }
5904 
5905 /* This is the case that a secondary path is added to an existing
5906  * nvme_ctrlr for failover. After checking if it can access the same
5907  * namespaces as the primary path, it is disconnected until failover occurs.
5908  */
5909 static int
5910 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5911 			     struct spdk_nvme_ctrlr *new_ctrlr,
5912 			     struct spdk_nvme_transport_id *trid)
5913 {
5914 	int rc;
5915 
5916 	assert(nvme_ctrlr != NULL);
5917 
5918 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5919 
5920 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
5921 	if (rc != 0) {
5922 		goto exit;
5923 	}
5924 
5925 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
5926 	if (rc != 0) {
5927 		goto exit;
5928 	}
5929 
5930 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
5931 
5932 exit:
5933 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5934 
5935 	spdk_nvme_detach(new_ctrlr);
5936 
5937 	return rc;
5938 }
5939 
5940 static void
5941 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5942 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
5943 {
5944 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5945 	struct nvme_async_probe_ctx *ctx;
5946 	int rc;
5947 
5948 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
5949 	ctx->ctrlr_attached = true;
5950 
5951 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
5952 	if (rc != 0) {
5953 		ctx->reported_bdevs = 0;
5954 		populate_namespaces_cb(ctx, rc);
5955 	}
5956 }
5957 
5958 static void
5959 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5960 			struct spdk_nvme_ctrlr *ctrlr,
5961 			const struct spdk_nvme_ctrlr_opts *opts)
5962 {
5963 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5964 	struct nvme_ctrlr *nvme_ctrlr;
5965 	struct nvme_async_probe_ctx *ctx;
5966 	int rc;
5967 
5968 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
5969 	ctx->ctrlr_attached = true;
5970 
5971 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
5972 	if (nvme_ctrlr) {
5973 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
5974 	} else {
5975 		rc = -ENODEV;
5976 	}
5977 
5978 	ctx->reported_bdevs = 0;
5979 	populate_namespaces_cb(ctx, rc);
5980 }
5981 
5982 static int
5983 bdev_nvme_async_poll(void *arg)
5984 {
5985 	struct nvme_async_probe_ctx	*ctx = arg;
5986 	int				rc;
5987 
5988 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
5989 	if (spdk_unlikely(rc != -EAGAIN)) {
5990 		ctx->probe_done = true;
5991 		spdk_poller_unregister(&ctx->poller);
5992 		if (!ctx->ctrlr_attached) {
5993 			/* The probe is done, but no controller was attached.
5994 			 * That means we had a failure, so report -EIO back to
5995 			 * the caller (usually the RPC). populate_namespaces_cb()
5996 			 * will take care of freeing the nvme_async_probe_ctx.
5997 			 */
5998 			ctx->reported_bdevs = 0;
5999 			populate_namespaces_cb(ctx, -EIO);
6000 		} else if (ctx->namespaces_populated) {
6001 			/* The namespaces for the attached controller were all
6002 			 * populated and the response was already sent to the
6003 			 * caller (usually the RPC).  So free the context here.
6004 			 */
6005 			free_nvme_async_probe_ctx(ctx);
6006 		}
6007 	}
6008 
6009 	return SPDK_POLLER_BUSY;
6010 }
6011 
6012 static bool
6013 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
6014 		uint32_t reconnect_delay_sec,
6015 		uint32_t fast_io_fail_timeout_sec)
6016 {
6017 	if (ctrlr_loss_timeout_sec < -1) {
6018 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
6019 		return false;
6020 	} else if (ctrlr_loss_timeout_sec == -1) {
6021 		if (reconnect_delay_sec == 0) {
6022 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6023 			return false;
6024 		} else if (fast_io_fail_timeout_sec != 0 &&
6025 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
6026 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
6027 			return false;
6028 		}
6029 	} else if (ctrlr_loss_timeout_sec != 0) {
6030 		if (reconnect_delay_sec == 0) {
6031 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6032 			return false;
6033 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6034 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
6035 			return false;
6036 		} else if (fast_io_fail_timeout_sec != 0) {
6037 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
6038 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
6039 				return false;
6040 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6041 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
6042 				return false;
6043 			}
6044 		}
6045 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
6046 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
6047 		return false;
6048 	}
6049 
6050 	return true;
6051 }
6052 
6053 static int
6054 bdev_nvme_load_psk(const char *fname, char *buf, size_t bufsz)
6055 {
6056 	FILE *psk_file;
6057 	struct stat statbuf;
6058 	int rc;
6059 #define TCP_PSK_INVALID_PERMISSIONS 0177
6060 
6061 	if (stat(fname, &statbuf) != 0) {
6062 		SPDK_ERRLOG("Could not read permissions for PSK file\n");
6063 		return -EACCES;
6064 	}
6065 
6066 	if ((statbuf.st_mode & TCP_PSK_INVALID_PERMISSIONS) != 0) {
6067 		SPDK_ERRLOG("Incorrect permissions for PSK file\n");
6068 		return -EPERM;
6069 	}
6070 	if ((size_t)statbuf.st_size >= bufsz) {
6071 		SPDK_ERRLOG("Invalid PSK: too long\n");
6072 		return -EINVAL;
6073 	}
6074 	psk_file = fopen(fname, "r");
6075 	if (psk_file == NULL) {
6076 		SPDK_ERRLOG("Could not open PSK file\n");
6077 		return -EINVAL;
6078 	}
6079 
6080 	memset(buf, 0, bufsz);
6081 	rc = fread(buf, 1, statbuf.st_size, psk_file);
6082 	if (rc != statbuf.st_size) {
6083 		SPDK_ERRLOG("Failed to read PSK\n");
6084 		fclose(psk_file);
6085 		return -EINVAL;
6086 	}
6087 
6088 	fclose(psk_file);
6089 	return 0;
6090 }
6091 
6092 int
6093 bdev_nvme_create(struct spdk_nvme_transport_id *trid,
6094 		 const char *base_name,
6095 		 const char **names,
6096 		 uint32_t count,
6097 		 spdk_bdev_create_nvme_fn cb_fn,
6098 		 void *cb_ctx,
6099 		 struct spdk_nvme_ctrlr_opts *drv_opts,
6100 		 struct nvme_ctrlr_opts *bdev_opts,
6101 		 bool multipath)
6102 {
6103 	struct nvme_probe_skip_entry *entry, *tmp;
6104 	struct nvme_async_probe_ctx *ctx;
6105 	spdk_nvme_attach_cb attach_cb;
6106 	int rc, len;
6107 
6108 	/* TODO expand this check to include both the host and target TRIDs.
6109 	 * Only if both are the same should we fail.
6110 	 */
6111 	if (nvme_ctrlr_get(trid) != NULL) {
6112 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr);
6113 		return -EEXIST;
6114 	}
6115 
6116 	len = strnlen(base_name, SPDK_CONTROLLER_NAME_MAX);
6117 
6118 	if (len == 0 || len == SPDK_CONTROLLER_NAME_MAX) {
6119 		SPDK_ERRLOG("controller name must be between 1 and %d characters\n", SPDK_CONTROLLER_NAME_MAX - 1);
6120 		return -EINVAL;
6121 	}
6122 
6123 	if (bdev_opts != NULL &&
6124 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
6125 			    bdev_opts->reconnect_delay_sec,
6126 			    bdev_opts->fast_io_fail_timeout_sec)) {
6127 		return -EINVAL;
6128 	}
6129 
6130 	ctx = calloc(1, sizeof(*ctx));
6131 	if (!ctx) {
6132 		return -ENOMEM;
6133 	}
6134 	ctx->base_name = base_name;
6135 	ctx->names = names;
6136 	ctx->max_bdevs = count;
6137 	ctx->cb_fn = cb_fn;
6138 	ctx->cb_ctx = cb_ctx;
6139 	ctx->trid = *trid;
6140 
6141 	if (bdev_opts) {
6142 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
6143 	} else {
6144 		bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
6145 	}
6146 
6147 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
6148 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
6149 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
6150 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
6151 				free(entry);
6152 				break;
6153 			}
6154 		}
6155 	}
6156 
6157 	if (drv_opts) {
6158 		memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
6159 	} else {
6160 		spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->drv_opts, sizeof(ctx->drv_opts));
6161 	}
6162 
6163 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
6164 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
6165 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
6166 	ctx->drv_opts.disable_read_ana_log_page = true;
6167 	ctx->drv_opts.transport_tos = g_opts.transport_tos;
6168 
6169 	if (ctx->bdev_opts.psk[0] != '\0') {
6170 		/* Try to use the keyring first */
6171 		ctx->drv_opts.tls_psk = spdk_keyring_get_key(ctx->bdev_opts.psk);
6172 		if (ctx->drv_opts.tls_psk == NULL) {
6173 			rc = bdev_nvme_load_psk(ctx->bdev_opts.psk,
6174 						ctx->drv_opts.psk, sizeof(ctx->drv_opts.psk));
6175 			if (rc != 0) {
6176 				SPDK_ERRLOG("Could not load PSK from %s\n", ctx->bdev_opts.psk);
6177 				free_nvme_async_probe_ctx(ctx);
6178 				return rc;
6179 			}
6180 		}
6181 	}
6182 
6183 	if (ctx->bdev_opts.dhchap_key != NULL) {
6184 		ctx->drv_opts.dhchap_key = spdk_keyring_get_key(ctx->bdev_opts.dhchap_key);
6185 		if (ctx->drv_opts.dhchap_key == NULL) {
6186 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP key: %s\n",
6187 				    ctx->bdev_opts.dhchap_key);
6188 			free_nvme_async_probe_ctx(ctx);
6189 			return -ENOKEY;
6190 		}
6191 
6192 		ctx->drv_opts.dhchap_digests = g_opts.dhchap_digests;
6193 		ctx->drv_opts.dhchap_dhgroups = g_opts.dhchap_dhgroups;
6194 	}
6195 
6196 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) {
6197 		attach_cb = connect_attach_cb;
6198 	} else {
6199 		attach_cb = connect_set_failover_cb;
6200 	}
6201 
6202 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
6203 	if (ctx->probe_ctx == NULL) {
6204 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
6205 		free_nvme_async_probe_ctx(ctx);
6206 		return -ENODEV;
6207 	}
6208 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
6209 
6210 	return 0;
6211 }
6212 
6213 struct bdev_nvme_delete_ctx {
6214 	char                        *name;
6215 	struct nvme_path_id         path_id;
6216 	bdev_nvme_delete_done_fn    delete_done;
6217 	void                        *delete_done_ctx;
6218 	uint64_t                    timeout_ticks;
6219 	struct spdk_poller          *poller;
6220 };
6221 
6222 static void
6223 free_bdev_nvme_delete_ctx(struct bdev_nvme_delete_ctx *ctx)
6224 {
6225 	if (ctx != NULL) {
6226 		free(ctx->name);
6227 		free(ctx);
6228 	}
6229 }
6230 
6231 static bool
6232 nvme_path_id_compare(struct nvme_path_id *p, const struct nvme_path_id *path_id)
6233 {
6234 	if (path_id->trid.trtype != 0) {
6235 		if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
6236 			if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
6237 				return false;
6238 			}
6239 		} else {
6240 			if (path_id->trid.trtype != p->trid.trtype) {
6241 				return false;
6242 			}
6243 		}
6244 	}
6245 
6246 	if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
6247 		if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
6248 			return false;
6249 		}
6250 	}
6251 
6252 	if (path_id->trid.adrfam != 0) {
6253 		if (path_id->trid.adrfam != p->trid.adrfam) {
6254 			return false;
6255 		}
6256 	}
6257 
6258 	if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
6259 		if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
6260 			return false;
6261 		}
6262 	}
6263 
6264 	if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
6265 		if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
6266 			return false;
6267 		}
6268 	}
6269 
6270 	if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
6271 		if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
6272 			return false;
6273 		}
6274 	}
6275 
6276 	if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
6277 		if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
6278 			return false;
6279 		}
6280 	}
6281 
6282 	return true;
6283 }
6284 
6285 static bool
6286 nvme_path_id_exists(const char *name, const struct nvme_path_id *path_id)
6287 {
6288 	struct nvme_bdev_ctrlr  *nbdev_ctrlr;
6289 	struct nvme_ctrlr       *ctrlr;
6290 	struct nvme_path_id     *p;
6291 
6292 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6293 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6294 	if (!nbdev_ctrlr) {
6295 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6296 		return false;
6297 	}
6298 
6299 	TAILQ_FOREACH(ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6300 		pthread_mutex_lock(&ctrlr->mutex);
6301 		TAILQ_FOREACH(p, &ctrlr->trids, link) {
6302 			if (nvme_path_id_compare(p, path_id)) {
6303 				pthread_mutex_unlock(&ctrlr->mutex);
6304 				pthread_mutex_unlock(&g_bdev_nvme_mutex);
6305 				return true;
6306 			}
6307 		}
6308 		pthread_mutex_unlock(&ctrlr->mutex);
6309 	}
6310 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6311 
6312 	return false;
6313 }
6314 
6315 static int
6316 bdev_nvme_delete_complete_poll(void *arg)
6317 {
6318 	struct bdev_nvme_delete_ctx     *ctx = arg;
6319 	int                             rc = 0;
6320 
6321 	if (nvme_path_id_exists(ctx->name, &ctx->path_id)) {
6322 		if (ctx->timeout_ticks > spdk_get_ticks()) {
6323 			return SPDK_POLLER_BUSY;
6324 		}
6325 
6326 		SPDK_ERRLOG("NVMe path '%s' still exists after delete\n", ctx->name);
6327 		rc = -ETIMEDOUT;
6328 	}
6329 
6330 	spdk_poller_unregister(&ctx->poller);
6331 
6332 	ctx->delete_done(ctx->delete_done_ctx, rc);
6333 	free_bdev_nvme_delete_ctx(ctx);
6334 
6335 	return SPDK_POLLER_BUSY;
6336 }
6337 
6338 static int
6339 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, const struct nvme_path_id *path_id)
6340 {
6341 	struct nvme_path_id	*p, *t;
6342 	spdk_msg_fn		msg_fn;
6343 	int			rc = -ENXIO;
6344 
6345 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6346 
6347 	TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
6348 		if (p == TAILQ_FIRST(&nvme_ctrlr->trids)) {
6349 			break;
6350 		}
6351 
6352 		if (!nvme_path_id_compare(p, path_id)) {
6353 			continue;
6354 		}
6355 
6356 		/* We are not using the specified path. */
6357 		TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
6358 		free(p);
6359 		rc = 0;
6360 	}
6361 
6362 	if (p == NULL || !nvme_path_id_compare(p, path_id)) {
6363 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
6364 		return rc;
6365 	}
6366 
6367 	/* If we made it here, then this path is a match! Now we need to remove it. */
6368 
6369 	/* This is the active path in use right now. The active path is always the first in the list. */
6370 	assert(p == nvme_ctrlr->active_path_id);
6371 
6372 	if (!TAILQ_NEXT(p, link)) {
6373 		/* The current path is the only path. */
6374 		msg_fn = _nvme_ctrlr_destruct;
6375 		rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, false);
6376 	} else {
6377 		/* There is an alternative path. */
6378 		msg_fn = _bdev_nvme_reset_ctrlr;
6379 		rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, true);
6380 	}
6381 
6382 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6383 
6384 	if (rc == 0) {
6385 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
6386 	} else if (rc == -EALREADY) {
6387 		rc = 0;
6388 	}
6389 
6390 	return rc;
6391 }
6392 
6393 int
6394 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id,
6395 		 bdev_nvme_delete_done_fn delete_done, void *delete_done_ctx)
6396 {
6397 	struct nvme_bdev_ctrlr		*nbdev_ctrlr;
6398 	struct nvme_ctrlr		*nvme_ctrlr, *tmp_nvme_ctrlr;
6399 	struct bdev_nvme_delete_ctx     *ctx = NULL;
6400 	int				rc = -ENXIO, _rc;
6401 
6402 	if (name == NULL || path_id == NULL) {
6403 		rc = -EINVAL;
6404 		goto exit;
6405 	}
6406 
6407 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6408 
6409 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6410 	if (nbdev_ctrlr == NULL) {
6411 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6412 
6413 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
6414 		rc = -ENODEV;
6415 		goto exit;
6416 	}
6417 
6418 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
6419 		_rc = _bdev_nvme_delete(nvme_ctrlr, path_id);
6420 		if (_rc < 0 && _rc != -ENXIO) {
6421 			pthread_mutex_unlock(&g_bdev_nvme_mutex);
6422 			rc = _rc;
6423 			goto exit;
6424 		} else if (_rc == 0) {
6425 			/* We traverse all remaining nvme_ctrlrs even if one nvme_ctrlr
6426 			 * was deleted successfully. To remember the successful deletion,
6427 			 * overwrite rc only if _rc is zero.
6428 			 */
6429 			rc = 0;
6430 		}
6431 	}
6432 
6433 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6434 
6435 	if (rc != 0 || delete_done == NULL) {
6436 		goto exit;
6437 	}
6438 
6439 	ctx = calloc(1, sizeof(*ctx));
6440 	if (ctx == NULL) {
6441 		SPDK_ERRLOG("Failed to allocate context for bdev_nvme_delete\n");
6442 		rc = -ENOMEM;
6443 		goto exit;
6444 	}
6445 
6446 	ctx->name = strdup(name);
6447 	if (ctx->name == NULL) {
6448 		SPDK_ERRLOG("Failed to copy controller name for deletion\n");
6449 		rc = -ENOMEM;
6450 		goto exit;
6451 	}
6452 
6453 	ctx->delete_done = delete_done;
6454 	ctx->delete_done_ctx = delete_done_ctx;
6455 	ctx->path_id = *path_id;
6456 	ctx->timeout_ticks = spdk_get_ticks() + 10 * spdk_get_ticks_hz();
6457 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_delete_complete_poll, ctx, 1000);
6458 	if (ctx->poller == NULL) {
6459 		SPDK_ERRLOG("Failed to register bdev_nvme_delete poller\n");
6460 		rc = -ENOMEM;
6461 		goto exit;
6462 	}
6463 
6464 exit:
6465 	if (rc != 0) {
6466 		free_bdev_nvme_delete_ctx(ctx);
6467 	}
6468 
6469 	return rc;
6470 }
6471 
6472 #define DISCOVERY_INFOLOG(ctx, format, ...) \
6473 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6474 
6475 #define DISCOVERY_ERRLOG(ctx, format, ...) \
6476 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6477 
6478 struct discovery_entry_ctx {
6479 	char						name[128];
6480 	struct spdk_nvme_transport_id			trid;
6481 	struct spdk_nvme_ctrlr_opts			drv_opts;
6482 	struct spdk_nvmf_discovery_log_page_entry	entry;
6483 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
6484 	struct discovery_ctx				*ctx;
6485 };
6486 
6487 struct discovery_ctx {
6488 	char					*name;
6489 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
6490 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
6491 	void					*cb_ctx;
6492 	struct spdk_nvme_probe_ctx		*probe_ctx;
6493 	struct spdk_nvme_detach_ctx		*detach_ctx;
6494 	struct spdk_nvme_ctrlr			*ctrlr;
6495 	struct spdk_nvme_transport_id		trid;
6496 	struct discovery_entry_ctx		*entry_ctx_in_use;
6497 	struct spdk_poller			*poller;
6498 	struct spdk_nvme_ctrlr_opts		drv_opts;
6499 	struct nvme_ctrlr_opts			bdev_opts;
6500 	struct spdk_nvmf_discovery_log_page	*log_page;
6501 	TAILQ_ENTRY(discovery_ctx)		tailq;
6502 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
6503 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
6504 	int					rc;
6505 	bool					wait_for_attach;
6506 	uint64_t				timeout_ticks;
6507 	/* Denotes that the discovery service is being started. We're waiting
6508 	 * for the initial connection to the discovery controller to be
6509 	 * established and attach discovered NVM ctrlrs.
6510 	 */
6511 	bool					initializing;
6512 	/* Denotes if a discovery is currently in progress for this context.
6513 	 * That includes connecting to newly discovered subsystems.  Used to
6514 	 * ensure we do not start a new discovery until an existing one is
6515 	 * complete.
6516 	 */
6517 	bool					in_progress;
6518 
6519 	/* Denotes if another discovery is needed after the one in progress
6520 	 * completes.  Set when we receive an AER completion while a discovery
6521 	 * is already in progress.
6522 	 */
6523 	bool					pending;
6524 
6525 	/* Signal to the discovery context poller that it should stop the
6526 	 * discovery service, including detaching from the current discovery
6527 	 * controller.
6528 	 */
6529 	bool					stop;
6530 
6531 	struct spdk_thread			*calling_thread;
6532 	uint32_t				index;
6533 	uint32_t				attach_in_progress;
6534 	char					*hostnqn;
6535 
6536 	/* Denotes if the discovery service was started by the mdns discovery.
6537 	 */
6538 	bool					from_mdns_discovery_service;
6539 };
6540 
6541 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
6542 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
6543 
6544 static void get_discovery_log_page(struct discovery_ctx *ctx);
6545 
6546 static void
6547 free_discovery_ctx(struct discovery_ctx *ctx)
6548 {
6549 	free(ctx->log_page);
6550 	free(ctx->hostnqn);
6551 	free(ctx->name);
6552 	free(ctx);
6553 }
6554 
6555 static void
6556 discovery_complete(struct discovery_ctx *ctx)
6557 {
6558 	ctx->initializing = false;
6559 	ctx->in_progress = false;
6560 	if (ctx->pending) {
6561 		ctx->pending = false;
6562 		get_discovery_log_page(ctx);
6563 	}
6564 }
6565 
6566 static void
6567 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
6568 			       struct spdk_nvmf_discovery_log_page_entry *entry)
6569 {
6570 	char *space;
6571 
6572 	trid->trtype = entry->trtype;
6573 	trid->adrfam = entry->adrfam;
6574 	memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr));
6575 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid));
6576 	/* Because the source buffer (entry->subnqn) is longer than trid->subnqn, and
6577 	 * before call to this function trid->subnqn is zeroed out, we need
6578 	 * to copy sizeof(trid->subnqn) minus one byte to make sure the last character
6579 	 * remains 0. Then we can shorten the string (replace ' ' with 0) if required
6580 	 */
6581 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn) - 1);
6582 
6583 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
6584 	 * But the log page entries typically pad them with spaces, not zeroes.
6585 	 * So add a NULL terminator to each of these fields at the appropriate
6586 	 * location.
6587 	 */
6588 	space = strchr(trid->traddr, ' ');
6589 	if (space) {
6590 		*space = 0;
6591 	}
6592 	space = strchr(trid->trsvcid, ' ');
6593 	if (space) {
6594 		*space = 0;
6595 	}
6596 	space = strchr(trid->subnqn, ' ');
6597 	if (space) {
6598 		*space = 0;
6599 	}
6600 }
6601 
6602 static void
6603 _stop_discovery(void *_ctx)
6604 {
6605 	struct discovery_ctx *ctx = _ctx;
6606 
6607 	if (ctx->attach_in_progress > 0) {
6608 		spdk_thread_send_msg(spdk_get_thread(), _stop_discovery, ctx);
6609 		return;
6610 	}
6611 
6612 	ctx->stop = true;
6613 
6614 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
6615 		struct discovery_entry_ctx *entry_ctx;
6616 		struct nvme_path_id path = {};
6617 
6618 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
6619 		path.trid = entry_ctx->trid;
6620 		bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6621 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6622 		free(entry_ctx);
6623 	}
6624 
6625 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
6626 		struct discovery_entry_ctx *entry_ctx;
6627 
6628 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6629 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6630 		free(entry_ctx);
6631 	}
6632 
6633 	free(ctx->entry_ctx_in_use);
6634 	ctx->entry_ctx_in_use = NULL;
6635 }
6636 
6637 static void
6638 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
6639 {
6640 	ctx->stop_cb_fn = cb_fn;
6641 	ctx->cb_ctx = cb_ctx;
6642 
6643 	if (ctx->attach_in_progress > 0) {
6644 		DISCOVERY_INFOLOG(ctx, "stopping discovery with attach_in_progress: %"PRIu32"\n",
6645 				  ctx->attach_in_progress);
6646 	}
6647 
6648 	_stop_discovery(ctx);
6649 }
6650 
6651 static void
6652 remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr)
6653 {
6654 	struct discovery_ctx *d_ctx;
6655 	struct nvme_path_id *path_id;
6656 	struct spdk_nvme_transport_id trid = {};
6657 	struct discovery_entry_ctx *entry_ctx, *tmp;
6658 
6659 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
6660 
6661 	TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6662 		TAILQ_FOREACH_SAFE(entry_ctx, &d_ctx->nvm_entry_ctxs, tailq, tmp) {
6663 			build_trid_from_log_page_entry(&trid, &entry_ctx->entry);
6664 			if (spdk_nvme_transport_id_compare(&trid, &path_id->trid) != 0) {
6665 				continue;
6666 			}
6667 
6668 			TAILQ_REMOVE(&d_ctx->nvm_entry_ctxs, entry_ctx, tailq);
6669 			free(entry_ctx);
6670 			DISCOVERY_INFOLOG(d_ctx, "Remove discovery entry: %s:%s:%s\n",
6671 					  trid.subnqn, trid.traddr, trid.trsvcid);
6672 
6673 			/* Fail discovery ctrlr to force reattach attempt */
6674 			spdk_nvme_ctrlr_fail(d_ctx->ctrlr);
6675 		}
6676 	}
6677 }
6678 
6679 static void
6680 discovery_remove_controllers(struct discovery_ctx *ctx)
6681 {
6682 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
6683 	struct discovery_entry_ctx *entry_ctx, *tmp;
6684 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6685 	struct spdk_nvme_transport_id old_trid = {};
6686 	uint64_t numrec, i;
6687 	bool found;
6688 
6689 	numrec = from_le64(&log_page->numrec);
6690 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
6691 		found = false;
6692 		old_entry = &entry_ctx->entry;
6693 		build_trid_from_log_page_entry(&old_trid, old_entry);
6694 		for (i = 0; i < numrec; i++) {
6695 			new_entry = &log_page->entries[i];
6696 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
6697 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
6698 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6699 				found = true;
6700 				break;
6701 			}
6702 		}
6703 		if (!found) {
6704 			struct nvme_path_id path = {};
6705 
6706 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
6707 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6708 
6709 			path.trid = entry_ctx->trid;
6710 			bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6711 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6712 			free(entry_ctx);
6713 		}
6714 	}
6715 	free(log_page);
6716 	ctx->log_page = NULL;
6717 	discovery_complete(ctx);
6718 }
6719 
6720 static void
6721 complete_discovery_start(struct discovery_ctx *ctx, int status)
6722 {
6723 	ctx->timeout_ticks = 0;
6724 	ctx->rc = status;
6725 	if (ctx->start_cb_fn) {
6726 		ctx->start_cb_fn(ctx->cb_ctx, status);
6727 		ctx->start_cb_fn = NULL;
6728 		ctx->cb_ctx = NULL;
6729 	}
6730 }
6731 
6732 static void
6733 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
6734 {
6735 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
6736 	struct discovery_ctx *ctx = entry_ctx->ctx;
6737 
6738 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
6739 	ctx->attach_in_progress--;
6740 	if (ctx->attach_in_progress == 0) {
6741 		complete_discovery_start(ctx, ctx->rc);
6742 		if (ctx->initializing && ctx->rc != 0) {
6743 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
6744 			stop_discovery(ctx, NULL, ctx->cb_ctx);
6745 		} else {
6746 			discovery_remove_controllers(ctx);
6747 		}
6748 	}
6749 }
6750 
6751 static struct discovery_entry_ctx *
6752 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
6753 {
6754 	struct discovery_entry_ctx *new_ctx;
6755 
6756 	new_ctx = calloc(1, sizeof(*new_ctx));
6757 	if (new_ctx == NULL) {
6758 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6759 		return NULL;
6760 	}
6761 
6762 	new_ctx->ctx = ctx;
6763 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
6764 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6765 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6766 	return new_ctx;
6767 }
6768 
6769 static void
6770 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
6771 		      struct spdk_nvmf_discovery_log_page *log_page)
6772 {
6773 	struct discovery_ctx *ctx = cb_arg;
6774 	struct discovery_entry_ctx *entry_ctx, *tmp;
6775 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6776 	uint64_t numrec, i;
6777 	bool found;
6778 
6779 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
6780 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6781 		return;
6782 	}
6783 
6784 	ctx->log_page = log_page;
6785 	assert(ctx->attach_in_progress == 0);
6786 	numrec = from_le64(&log_page->numrec);
6787 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
6788 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6789 		free(entry_ctx);
6790 	}
6791 	for (i = 0; i < numrec; i++) {
6792 		found = false;
6793 		new_entry = &log_page->entries[i];
6794 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY_CURRENT ||
6795 		    new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
6796 			struct discovery_entry_ctx *new_ctx;
6797 			struct spdk_nvme_transport_id trid = {};
6798 
6799 			build_trid_from_log_page_entry(&trid, new_entry);
6800 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
6801 			if (new_ctx == NULL) {
6802 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6803 				break;
6804 			}
6805 
6806 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
6807 			continue;
6808 		}
6809 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
6810 			old_entry = &entry_ctx->entry;
6811 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
6812 				found = true;
6813 				break;
6814 			}
6815 		}
6816 		if (!found) {
6817 			struct discovery_entry_ctx *subnqn_ctx = NULL, *new_ctx;
6818 			struct discovery_ctx *d_ctx;
6819 
6820 			TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6821 				TAILQ_FOREACH(subnqn_ctx, &d_ctx->nvm_entry_ctxs, tailq) {
6822 					if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
6823 						    sizeof(new_entry->subnqn))) {
6824 						break;
6825 					}
6826 				}
6827 				if (subnqn_ctx) {
6828 					break;
6829 				}
6830 			}
6831 
6832 			new_ctx = calloc(1, sizeof(*new_ctx));
6833 			if (new_ctx == NULL) {
6834 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6835 				break;
6836 			}
6837 
6838 			new_ctx->ctx = ctx;
6839 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
6840 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
6841 			if (subnqn_ctx) {
6842 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
6843 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
6844 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6845 						  new_ctx->name);
6846 			} else {
6847 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
6848 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
6849 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6850 						  new_ctx->name);
6851 			}
6852 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6853 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6854 			rc = bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
6855 					      discovery_attach_controller_done, new_ctx,
6856 					      &new_ctx->drv_opts, &ctx->bdev_opts, true);
6857 			if (rc == 0) {
6858 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
6859 				ctx->attach_in_progress++;
6860 			} else {
6861 				DISCOVERY_ERRLOG(ctx, "bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
6862 			}
6863 		}
6864 	}
6865 
6866 	if (ctx->attach_in_progress == 0) {
6867 		discovery_remove_controllers(ctx);
6868 	}
6869 }
6870 
6871 static void
6872 get_discovery_log_page(struct discovery_ctx *ctx)
6873 {
6874 	int rc;
6875 
6876 	assert(ctx->in_progress == false);
6877 	ctx->in_progress = true;
6878 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
6879 	if (rc != 0) {
6880 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6881 	}
6882 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
6883 }
6884 
6885 static void
6886 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
6887 {
6888 	struct discovery_ctx *ctx = arg;
6889 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
6890 
6891 	if (spdk_nvme_cpl_is_error(cpl)) {
6892 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
6893 		return;
6894 	}
6895 
6896 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
6897 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
6898 		return;
6899 	}
6900 
6901 	DISCOVERY_INFOLOG(ctx, "got aer\n");
6902 	if (ctx->in_progress) {
6903 		ctx->pending = true;
6904 		return;
6905 	}
6906 
6907 	get_discovery_log_page(ctx);
6908 }
6909 
6910 static void
6911 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6912 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
6913 {
6914 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6915 	struct discovery_ctx *ctx;
6916 
6917 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
6918 
6919 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
6920 	ctx->probe_ctx = NULL;
6921 	ctx->ctrlr = ctrlr;
6922 
6923 	if (ctx->rc != 0) {
6924 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
6925 				 ctx->rc);
6926 		return;
6927 	}
6928 
6929 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
6930 }
6931 
6932 static int
6933 discovery_poller(void *arg)
6934 {
6935 	struct discovery_ctx *ctx = arg;
6936 	struct spdk_nvme_transport_id *trid;
6937 	int rc;
6938 
6939 	if (ctx->detach_ctx) {
6940 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
6941 		if (rc != -EAGAIN) {
6942 			ctx->detach_ctx = NULL;
6943 			ctx->ctrlr = NULL;
6944 		}
6945 	} else if (ctx->stop) {
6946 		if (ctx->ctrlr != NULL) {
6947 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
6948 			if (rc == 0) {
6949 				return SPDK_POLLER_BUSY;
6950 			}
6951 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
6952 		}
6953 		spdk_poller_unregister(&ctx->poller);
6954 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
6955 		assert(ctx->start_cb_fn == NULL);
6956 		if (ctx->stop_cb_fn != NULL) {
6957 			ctx->stop_cb_fn(ctx->cb_ctx);
6958 		}
6959 		free_discovery_ctx(ctx);
6960 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
6961 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6962 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
6963 			assert(ctx->initializing);
6964 			spdk_poller_unregister(&ctx->poller);
6965 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
6966 			complete_discovery_start(ctx, -ETIMEDOUT);
6967 			stop_discovery(ctx, NULL, NULL);
6968 			free_discovery_ctx(ctx);
6969 			return SPDK_POLLER_BUSY;
6970 		}
6971 
6972 		assert(ctx->entry_ctx_in_use == NULL);
6973 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6974 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6975 		trid = &ctx->entry_ctx_in_use->trid;
6976 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
6977 		if (ctx->probe_ctx) {
6978 			spdk_poller_unregister(&ctx->poller);
6979 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
6980 		} else {
6981 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
6982 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6983 			ctx->entry_ctx_in_use = NULL;
6984 		}
6985 	} else if (ctx->probe_ctx) {
6986 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6987 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
6988 			complete_discovery_start(ctx, -ETIMEDOUT);
6989 			return SPDK_POLLER_BUSY;
6990 		}
6991 
6992 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
6993 		if (rc != -EAGAIN) {
6994 			if (ctx->rc != 0) {
6995 				assert(ctx->initializing);
6996 				stop_discovery(ctx, NULL, ctx->cb_ctx);
6997 			} else {
6998 				assert(rc == 0);
6999 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
7000 				ctx->rc = rc;
7001 				get_discovery_log_page(ctx);
7002 			}
7003 		}
7004 	} else {
7005 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7006 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
7007 			complete_discovery_start(ctx, -ETIMEDOUT);
7008 			/* We need to wait until all NVM ctrlrs are attached before we stop the
7009 			 * discovery service to make sure we don't detach a ctrlr that is still
7010 			 * being attached.
7011 			 */
7012 			if (ctx->attach_in_progress == 0) {
7013 				stop_discovery(ctx, NULL, ctx->cb_ctx);
7014 				return SPDK_POLLER_BUSY;
7015 			}
7016 		}
7017 
7018 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
7019 		if (rc < 0) {
7020 			spdk_poller_unregister(&ctx->poller);
7021 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7022 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7023 			ctx->entry_ctx_in_use = NULL;
7024 
7025 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
7026 			if (rc != 0) {
7027 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7028 				ctx->ctrlr = NULL;
7029 			}
7030 		}
7031 	}
7032 
7033 	return SPDK_POLLER_BUSY;
7034 }
7035 
7036 static void
7037 start_discovery_poller(void *arg)
7038 {
7039 	struct discovery_ctx *ctx = arg;
7040 
7041 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
7042 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7043 }
7044 
7045 int
7046 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
7047 			  const char *base_name,
7048 			  struct spdk_nvme_ctrlr_opts *drv_opts,
7049 			  struct nvme_ctrlr_opts *bdev_opts,
7050 			  uint64_t attach_timeout,
7051 			  bool from_mdns,
7052 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
7053 {
7054 	struct discovery_ctx *ctx;
7055 	struct discovery_entry_ctx *discovery_entry_ctx;
7056 
7057 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
7058 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7059 		if (strcmp(ctx->name, base_name) == 0) {
7060 			return -EEXIST;
7061 		}
7062 
7063 		if (ctx->entry_ctx_in_use != NULL) {
7064 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
7065 				return -EEXIST;
7066 			}
7067 		}
7068 
7069 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
7070 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
7071 				return -EEXIST;
7072 			}
7073 		}
7074 	}
7075 
7076 	ctx = calloc(1, sizeof(*ctx));
7077 	if (ctx == NULL) {
7078 		return -ENOMEM;
7079 	}
7080 
7081 	ctx->name = strdup(base_name);
7082 	if (ctx->name == NULL) {
7083 		free_discovery_ctx(ctx);
7084 		return -ENOMEM;
7085 	}
7086 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
7087 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
7088 	ctx->from_mdns_discovery_service = from_mdns;
7089 	ctx->bdev_opts.from_discovery_service = true;
7090 	ctx->calling_thread = spdk_get_thread();
7091 	ctx->start_cb_fn = cb_fn;
7092 	ctx->cb_ctx = cb_ctx;
7093 	ctx->initializing = true;
7094 	if (ctx->start_cb_fn) {
7095 		/* We can use this when dumping json to denote if this RPC parameter
7096 		 * was specified or not.
7097 		 */
7098 		ctx->wait_for_attach = true;
7099 	}
7100 	if (attach_timeout != 0) {
7101 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
7102 				     spdk_get_ticks_hz() / 1000ull;
7103 	}
7104 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
7105 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
7106 	memcpy(&ctx->trid, trid, sizeof(*trid));
7107 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
7108 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
7109 	if (ctx->hostnqn == NULL) {
7110 		free_discovery_ctx(ctx);
7111 		return -ENOMEM;
7112 	}
7113 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
7114 	if (discovery_entry_ctx == NULL) {
7115 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7116 		free_discovery_ctx(ctx);
7117 		return -ENOMEM;
7118 	}
7119 
7120 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
7121 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
7122 	return 0;
7123 }
7124 
7125 int
7126 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
7127 {
7128 	struct discovery_ctx *ctx;
7129 
7130 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7131 		if (strcmp(name, ctx->name) == 0) {
7132 			if (ctx->stop) {
7133 				return -EALREADY;
7134 			}
7135 			/* If we're still starting the discovery service and ->rc is non-zero, we're
7136 			 * going to stop it as soon as we can
7137 			 */
7138 			if (ctx->initializing && ctx->rc != 0) {
7139 				return -EALREADY;
7140 			}
7141 			stop_discovery(ctx, cb_fn, cb_ctx);
7142 			return 0;
7143 		}
7144 	}
7145 
7146 	return -ENOENT;
7147 }
7148 
7149 static int
7150 bdev_nvme_library_init(void)
7151 {
7152 	g_bdev_nvme_init_thread = spdk_get_thread();
7153 
7154 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
7155 				bdev_nvme_destroy_poll_group_cb,
7156 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
7157 
7158 	return 0;
7159 }
7160 
7161 static void
7162 bdev_nvme_fini_destruct_ctrlrs(void)
7163 {
7164 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
7165 	struct nvme_ctrlr *nvme_ctrlr;
7166 
7167 	pthread_mutex_lock(&g_bdev_nvme_mutex);
7168 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
7169 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
7170 			pthread_mutex_lock(&nvme_ctrlr->mutex);
7171 			if (nvme_ctrlr->destruct) {
7172 				/* This controller's destruction was already started
7173 				 * before the application started shutting down
7174 				 */
7175 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
7176 				continue;
7177 			}
7178 			nvme_ctrlr->destruct = true;
7179 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
7180 
7181 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
7182 					     nvme_ctrlr);
7183 		}
7184 	}
7185 
7186 	g_bdev_nvme_module_finish = true;
7187 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
7188 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
7189 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
7190 		spdk_bdev_module_fini_done();
7191 		return;
7192 	}
7193 
7194 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
7195 }
7196 
7197 static void
7198 check_discovery_fini(void *arg)
7199 {
7200 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7201 		bdev_nvme_fini_destruct_ctrlrs();
7202 	}
7203 }
7204 
7205 static void
7206 bdev_nvme_library_fini(void)
7207 {
7208 	struct nvme_probe_skip_entry *entry, *entry_tmp;
7209 	struct discovery_ctx *ctx;
7210 
7211 	spdk_poller_unregister(&g_hotplug_poller);
7212 	free(g_hotplug_probe_ctx);
7213 	g_hotplug_probe_ctx = NULL;
7214 
7215 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
7216 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
7217 		free(entry);
7218 	}
7219 
7220 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
7221 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7222 		bdev_nvme_fini_destruct_ctrlrs();
7223 	} else {
7224 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7225 			stop_discovery(ctx, check_discovery_fini, NULL);
7226 		}
7227 	}
7228 }
7229 
7230 static void
7231 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
7232 {
7233 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7234 	struct spdk_bdev *bdev = bdev_io->bdev;
7235 	struct spdk_dif_ctx dif_ctx;
7236 	struct spdk_dif_error err_blk = {};
7237 	int rc;
7238 	struct spdk_dif_ctx_init_ext_opts dif_opts;
7239 
7240 	dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format);
7241 	dif_opts.dif_pi_format = SPDK_DIF_PI_FORMAT_16;
7242 	rc = spdk_dif_ctx_init(&dif_ctx,
7243 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
7244 			       bdev->dif_is_head_of_md, bdev->dif_type,
7245 			       bdev_io->u.bdev.dif_check_flags,
7246 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0, &dif_opts);
7247 	if (rc != 0) {
7248 		SPDK_ERRLOG("Initialization of DIF context failed\n");
7249 		return;
7250 	}
7251 
7252 	if (bdev->md_interleave) {
7253 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7254 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7255 	} else {
7256 		struct iovec md_iov = {
7257 			.iov_base	= bdev_io->u.bdev.md_buf,
7258 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
7259 		};
7260 
7261 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7262 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7263 	}
7264 
7265 	if (rc != 0) {
7266 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
7267 			    err_blk.err_type, err_blk.err_offset);
7268 	} else {
7269 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
7270 	}
7271 }
7272 
7273 static void
7274 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7275 {
7276 	struct nvme_bdev_io *bio = ref;
7277 
7278 	if (spdk_nvme_cpl_is_success(cpl)) {
7279 		/* Run PI verification for read data buffer. */
7280 		bdev_nvme_verify_pi_error(bio);
7281 	}
7282 
7283 	/* Return original completion status */
7284 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7285 }
7286 
7287 static void
7288 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7289 {
7290 	struct nvme_bdev_io *bio = ref;
7291 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7292 	int ret;
7293 
7294 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7295 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
7296 			    cpl->status.sct, cpl->status.sc);
7297 
7298 		/* Save completion status to use after verifying PI error. */
7299 		bio->cpl = *cpl;
7300 
7301 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
7302 			/* Read without PI checking to verify PI error. */
7303 			ret = bdev_nvme_no_pi_readv(bio,
7304 						    bdev_io->u.bdev.iovs,
7305 						    bdev_io->u.bdev.iovcnt,
7306 						    bdev_io->u.bdev.md_buf,
7307 						    bdev_io->u.bdev.num_blocks,
7308 						    bdev_io->u.bdev.offset_blocks);
7309 			if (ret == 0) {
7310 				return;
7311 			}
7312 		}
7313 	}
7314 
7315 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7316 }
7317 
7318 static void
7319 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7320 {
7321 	struct nvme_bdev_io *bio = ref;
7322 
7323 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7324 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
7325 			    cpl->status.sct, cpl->status.sc);
7326 		/* Run PI verification for write data buffer if PI error is detected. */
7327 		bdev_nvme_verify_pi_error(bio);
7328 	}
7329 
7330 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7331 }
7332 
7333 static void
7334 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7335 {
7336 	struct nvme_bdev_io *bio = ref;
7337 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7338 
7339 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
7340 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
7341 	 */
7342 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
7343 
7344 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7345 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
7346 			    cpl->status.sct, cpl->status.sc);
7347 		/* Run PI verification for zone append data buffer if PI error is detected. */
7348 		bdev_nvme_verify_pi_error(bio);
7349 	}
7350 
7351 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7352 }
7353 
7354 static void
7355 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7356 {
7357 	struct nvme_bdev_io *bio = ref;
7358 
7359 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7360 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
7361 			    cpl->status.sct, cpl->status.sc);
7362 		/* Run PI verification for compare data buffer if PI error is detected. */
7363 		bdev_nvme_verify_pi_error(bio);
7364 	}
7365 
7366 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7367 }
7368 
7369 static void
7370 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7371 {
7372 	struct nvme_bdev_io *bio = ref;
7373 
7374 	/* Compare operation completion */
7375 	if (!bio->first_fused_completed) {
7376 		/* Save compare result for write callback */
7377 		bio->cpl = *cpl;
7378 		bio->first_fused_completed = true;
7379 		return;
7380 	}
7381 
7382 	/* Write operation completion */
7383 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
7384 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
7385 		 * complete the IO with the compare operation's status.
7386 		 */
7387 		if (!spdk_nvme_cpl_is_error(cpl)) {
7388 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
7389 		}
7390 
7391 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7392 	} else {
7393 		bdev_nvme_io_complete_nvme_status(bio, cpl);
7394 	}
7395 }
7396 
7397 static void
7398 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
7399 {
7400 	struct nvme_bdev_io *bio = ref;
7401 
7402 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7403 }
7404 
7405 static int
7406 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
7407 {
7408 	switch (desc->zt) {
7409 	case SPDK_NVME_ZONE_TYPE_SEQWR:
7410 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
7411 		break;
7412 	default:
7413 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
7414 		return -EIO;
7415 	}
7416 
7417 	switch (desc->zs) {
7418 	case SPDK_NVME_ZONE_STATE_EMPTY:
7419 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
7420 		break;
7421 	case SPDK_NVME_ZONE_STATE_IOPEN:
7422 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
7423 		break;
7424 	case SPDK_NVME_ZONE_STATE_EOPEN:
7425 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
7426 		break;
7427 	case SPDK_NVME_ZONE_STATE_CLOSED:
7428 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
7429 		break;
7430 	case SPDK_NVME_ZONE_STATE_RONLY:
7431 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
7432 		break;
7433 	case SPDK_NVME_ZONE_STATE_FULL:
7434 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
7435 		break;
7436 	case SPDK_NVME_ZONE_STATE_OFFLINE:
7437 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
7438 		break;
7439 	default:
7440 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
7441 		return -EIO;
7442 	}
7443 
7444 	info->zone_id = desc->zslba;
7445 	info->write_pointer = desc->wp;
7446 	info->capacity = desc->zcap;
7447 
7448 	return 0;
7449 }
7450 
7451 static void
7452 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
7453 {
7454 	struct nvme_bdev_io *bio = ref;
7455 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7456 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
7457 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
7458 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
7459 	uint64_t max_zones_per_buf, i;
7460 	uint32_t zone_report_bufsize;
7461 	struct spdk_nvme_ns *ns;
7462 	struct spdk_nvme_qpair *qpair;
7463 	int ret;
7464 
7465 	if (spdk_nvme_cpl_is_error(cpl)) {
7466 		goto out_complete_io_nvme_cpl;
7467 	}
7468 
7469 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
7470 		ret = -ENXIO;
7471 		goto out_complete_io_ret;
7472 	}
7473 
7474 	ns = bio->io_path->nvme_ns->ns;
7475 	qpair = bio->io_path->qpair->qpair;
7476 
7477 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7478 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
7479 			    sizeof(bio->zone_report_buf->descs[0]);
7480 
7481 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
7482 		ret = -EINVAL;
7483 		goto out_complete_io_ret;
7484 	}
7485 
7486 	if (!bio->zone_report_buf->nr_zones) {
7487 		ret = -EINVAL;
7488 		goto out_complete_io_ret;
7489 	}
7490 
7491 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
7492 		ret = fill_zone_from_report(&info[bio->handled_zones],
7493 					    &bio->zone_report_buf->descs[i]);
7494 		if (ret) {
7495 			goto out_complete_io_ret;
7496 		}
7497 		bio->handled_zones++;
7498 	}
7499 
7500 	if (bio->handled_zones < zones_to_copy) {
7501 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7502 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
7503 
7504 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
7505 		ret = spdk_nvme_zns_report_zones(ns, qpair,
7506 						 bio->zone_report_buf, zone_report_bufsize,
7507 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
7508 						 bdev_nvme_get_zone_info_done, bio);
7509 		if (!ret) {
7510 			return;
7511 		} else {
7512 			goto out_complete_io_ret;
7513 		}
7514 	}
7515 
7516 out_complete_io_nvme_cpl:
7517 	free(bio->zone_report_buf);
7518 	bio->zone_report_buf = NULL;
7519 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7520 	return;
7521 
7522 out_complete_io_ret:
7523 	free(bio->zone_report_buf);
7524 	bio->zone_report_buf = NULL;
7525 	bdev_nvme_io_complete(bio, ret);
7526 }
7527 
7528 static void
7529 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
7530 {
7531 	struct nvme_bdev_io *bio = ref;
7532 
7533 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7534 }
7535 
7536 static void
7537 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
7538 {
7539 	struct nvme_bdev_io *bio = ctx;
7540 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7541 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
7542 
7543 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
7544 
7545 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
7546 }
7547 
7548 static void
7549 bdev_nvme_abort_complete(void *ctx)
7550 {
7551 	struct nvme_bdev_io *bio = ctx;
7552 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7553 
7554 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
7555 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
7556 	} else {
7557 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
7558 	}
7559 }
7560 
7561 static void
7562 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
7563 {
7564 	struct nvme_bdev_io *bio = ref;
7565 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7566 
7567 	bio->cpl = *cpl;
7568 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), bdev_nvme_abort_complete, bio);
7569 }
7570 
7571 static void
7572 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
7573 {
7574 	struct nvme_bdev_io *bio = ref;
7575 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7576 
7577 	bio->cpl = *cpl;
7578 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io),
7579 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
7580 }
7581 
7582 static void
7583 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
7584 {
7585 	struct nvme_bdev_io *bio = ref;
7586 	struct iovec *iov;
7587 
7588 	bio->iov_offset = sgl_offset;
7589 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
7590 		iov = &bio->iovs[bio->iovpos];
7591 		if (bio->iov_offset < iov->iov_len) {
7592 			break;
7593 		}
7594 
7595 		bio->iov_offset -= iov->iov_len;
7596 	}
7597 }
7598 
7599 static int
7600 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
7601 {
7602 	struct nvme_bdev_io *bio = ref;
7603 	struct iovec *iov;
7604 
7605 	assert(bio->iovpos < bio->iovcnt);
7606 
7607 	iov = &bio->iovs[bio->iovpos];
7608 
7609 	*address = iov->iov_base;
7610 	*length = iov->iov_len;
7611 
7612 	if (bio->iov_offset) {
7613 		assert(bio->iov_offset <= iov->iov_len);
7614 		*address += bio->iov_offset;
7615 		*length -= bio->iov_offset;
7616 	}
7617 
7618 	bio->iov_offset += *length;
7619 	if (bio->iov_offset == iov->iov_len) {
7620 		bio->iovpos++;
7621 		bio->iov_offset = 0;
7622 	}
7623 
7624 	return 0;
7625 }
7626 
7627 static void
7628 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
7629 {
7630 	struct nvme_bdev_io *bio = ref;
7631 	struct iovec *iov;
7632 
7633 	bio->fused_iov_offset = sgl_offset;
7634 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
7635 		iov = &bio->fused_iovs[bio->fused_iovpos];
7636 		if (bio->fused_iov_offset < iov->iov_len) {
7637 			break;
7638 		}
7639 
7640 		bio->fused_iov_offset -= iov->iov_len;
7641 	}
7642 }
7643 
7644 static int
7645 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
7646 {
7647 	struct nvme_bdev_io *bio = ref;
7648 	struct iovec *iov;
7649 
7650 	assert(bio->fused_iovpos < bio->fused_iovcnt);
7651 
7652 	iov = &bio->fused_iovs[bio->fused_iovpos];
7653 
7654 	*address = iov->iov_base;
7655 	*length = iov->iov_len;
7656 
7657 	if (bio->fused_iov_offset) {
7658 		assert(bio->fused_iov_offset <= iov->iov_len);
7659 		*address += bio->fused_iov_offset;
7660 		*length -= bio->fused_iov_offset;
7661 	}
7662 
7663 	bio->fused_iov_offset += *length;
7664 	if (bio->fused_iov_offset == iov->iov_len) {
7665 		bio->fused_iovpos++;
7666 		bio->fused_iov_offset = 0;
7667 	}
7668 
7669 	return 0;
7670 }
7671 
7672 static int
7673 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7674 		      void *md, uint64_t lba_count, uint64_t lba)
7675 {
7676 	int rc;
7677 
7678 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
7679 		      lba_count, lba);
7680 
7681 	bio->iovs = iov;
7682 	bio->iovcnt = iovcnt;
7683 	bio->iovpos = 0;
7684 	bio->iov_offset = 0;
7685 
7686 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
7687 					    bio->io_path->qpair->qpair,
7688 					    lba, lba_count,
7689 					    bdev_nvme_no_pi_readv_done, bio, 0,
7690 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7691 					    md, 0, 0);
7692 
7693 	if (rc != 0 && rc != -ENOMEM) {
7694 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
7695 	}
7696 	return rc;
7697 }
7698 
7699 static int
7700 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7701 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7702 		struct spdk_memory_domain *domain, void *domain_ctx,
7703 		struct spdk_accel_sequence *seq)
7704 {
7705 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7706 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7707 	int rc;
7708 
7709 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7710 		      lba_count, lba);
7711 
7712 	bio->iovs = iov;
7713 	bio->iovcnt = iovcnt;
7714 	bio->iovpos = 0;
7715 	bio->iov_offset = 0;
7716 
7717 	if (domain != NULL || seq != NULL) {
7718 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7719 		bio->ext_opts.memory_domain = domain;
7720 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7721 		bio->ext_opts.io_flags = flags;
7722 		bio->ext_opts.metadata = md;
7723 		bio->ext_opts.accel_sequence = seq;
7724 
7725 		if (iovcnt == 1) {
7726 			rc = spdk_nvme_ns_cmd_read_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_readv_done,
7727 						       bio, &bio->ext_opts);
7728 		} else {
7729 			rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
7730 							bdev_nvme_readv_done, bio,
7731 							bdev_nvme_queued_reset_sgl,
7732 							bdev_nvme_queued_next_sge,
7733 							&bio->ext_opts);
7734 		}
7735 	} else if (iovcnt == 1) {
7736 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base,
7737 						   md, lba, lba_count, bdev_nvme_readv_done,
7738 						   bio, flags, 0, 0);
7739 	} else {
7740 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
7741 						    bdev_nvme_readv_done, bio, flags,
7742 						    bdev_nvme_queued_reset_sgl,
7743 						    bdev_nvme_queued_next_sge, md, 0, 0);
7744 	}
7745 
7746 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
7747 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
7748 	}
7749 	return rc;
7750 }
7751 
7752 static int
7753 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7754 		 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7755 		 struct spdk_memory_domain *domain, void *domain_ctx,
7756 		 struct spdk_accel_sequence *seq)
7757 {
7758 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7759 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7760 	int rc;
7761 
7762 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7763 		      lba_count, lba);
7764 
7765 	bio->iovs = iov;
7766 	bio->iovcnt = iovcnt;
7767 	bio->iovpos = 0;
7768 	bio->iov_offset = 0;
7769 
7770 	if (domain != NULL || seq != NULL) {
7771 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7772 		bio->ext_opts.memory_domain = domain;
7773 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7774 		bio->ext_opts.io_flags = flags;
7775 		bio->ext_opts.metadata = md;
7776 		bio->ext_opts.accel_sequence = seq;
7777 
7778 		if (iovcnt == 1) {
7779 			rc = spdk_nvme_ns_cmd_write_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_writev_done,
7780 							bio, &bio->ext_opts);
7781 		} else {
7782 			rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
7783 							 bdev_nvme_writev_done, bio,
7784 							 bdev_nvme_queued_reset_sgl,
7785 							 bdev_nvme_queued_next_sge,
7786 							 &bio->ext_opts);
7787 		}
7788 	} else if (iovcnt == 1) {
7789 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base,
7790 						    md, lba, lba_count, bdev_nvme_writev_done,
7791 						    bio, flags, 0, 0);
7792 	} else {
7793 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7794 						     bdev_nvme_writev_done, bio, flags,
7795 						     bdev_nvme_queued_reset_sgl,
7796 						     bdev_nvme_queued_next_sge, md, 0, 0);
7797 	}
7798 
7799 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
7800 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
7801 	}
7802 	return rc;
7803 }
7804 
7805 static int
7806 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7807 		       void *md, uint64_t lba_count, uint64_t zslba,
7808 		       uint32_t flags)
7809 {
7810 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7811 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7812 	int rc;
7813 
7814 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
7815 		      lba_count, zslba);
7816 
7817 	bio->iovs = iov;
7818 	bio->iovcnt = iovcnt;
7819 	bio->iovpos = 0;
7820 	bio->iov_offset = 0;
7821 
7822 	if (iovcnt == 1) {
7823 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
7824 						       lba_count,
7825 						       bdev_nvme_zone_appendv_done, bio,
7826 						       flags,
7827 						       0, 0);
7828 	} else {
7829 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
7830 							bdev_nvme_zone_appendv_done, bio, flags,
7831 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7832 							md, 0, 0);
7833 	}
7834 
7835 	if (rc != 0 && rc != -ENOMEM) {
7836 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
7837 	}
7838 	return rc;
7839 }
7840 
7841 static int
7842 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7843 		   void *md, uint64_t lba_count, uint64_t lba,
7844 		   uint32_t flags)
7845 {
7846 	int rc;
7847 
7848 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7849 		      lba_count, lba);
7850 
7851 	bio->iovs = iov;
7852 	bio->iovcnt = iovcnt;
7853 	bio->iovpos = 0;
7854 	bio->iov_offset = 0;
7855 
7856 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
7857 					       bio->io_path->qpair->qpair,
7858 					       lba, lba_count,
7859 					       bdev_nvme_comparev_done, bio, flags,
7860 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7861 					       md, 0, 0);
7862 
7863 	if (rc != 0 && rc != -ENOMEM) {
7864 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
7865 	}
7866 	return rc;
7867 }
7868 
7869 static int
7870 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
7871 			      struct iovec *write_iov, int write_iovcnt,
7872 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
7873 {
7874 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7875 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7876 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7877 	int rc;
7878 
7879 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7880 		      lba_count, lba);
7881 
7882 	bio->iovs = cmp_iov;
7883 	bio->iovcnt = cmp_iovcnt;
7884 	bio->iovpos = 0;
7885 	bio->iov_offset = 0;
7886 	bio->fused_iovs = write_iov;
7887 	bio->fused_iovcnt = write_iovcnt;
7888 	bio->fused_iovpos = 0;
7889 	bio->fused_iov_offset = 0;
7890 
7891 	if (bdev_io->num_retries == 0) {
7892 		bio->first_fused_submitted = false;
7893 		bio->first_fused_completed = false;
7894 	}
7895 
7896 	if (!bio->first_fused_submitted) {
7897 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7898 		memset(&bio->cpl, 0, sizeof(bio->cpl));
7899 
7900 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
7901 						       bdev_nvme_comparev_and_writev_done, bio, flags,
7902 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
7903 		if (rc == 0) {
7904 			bio->first_fused_submitted = true;
7905 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7906 		} else {
7907 			if (rc != -ENOMEM) {
7908 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
7909 			}
7910 			return rc;
7911 		}
7912 	}
7913 
7914 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
7915 
7916 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7917 					     bdev_nvme_comparev_and_writev_done, bio, flags,
7918 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
7919 	if (rc != 0 && rc != -ENOMEM) {
7920 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
7921 		rc = 0;
7922 	}
7923 
7924 	return rc;
7925 }
7926 
7927 static int
7928 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
7929 {
7930 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
7931 	struct spdk_nvme_dsm_range *range;
7932 	uint64_t offset, remaining;
7933 	uint64_t num_ranges_u64;
7934 	uint16_t num_ranges;
7935 	int rc;
7936 
7937 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
7938 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7939 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
7940 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
7941 		return -EINVAL;
7942 	}
7943 	num_ranges = (uint16_t)num_ranges_u64;
7944 
7945 	offset = offset_blocks;
7946 	remaining = num_blocks;
7947 	range = &dsm_ranges[0];
7948 
7949 	/* Fill max-size ranges until the remaining blocks fit into one range */
7950 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
7951 		range->attributes.raw = 0;
7952 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7953 		range->starting_lba = offset;
7954 
7955 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7956 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7957 		range++;
7958 	}
7959 
7960 	/* Final range describes the remaining blocks */
7961 	range->attributes.raw = 0;
7962 	range->length = remaining;
7963 	range->starting_lba = offset;
7964 
7965 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
7966 			bio->io_path->qpair->qpair,
7967 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
7968 			dsm_ranges, num_ranges,
7969 			bdev_nvme_queued_done, bio);
7970 
7971 	return rc;
7972 }
7973 
7974 static int
7975 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
7976 {
7977 	if (num_blocks > UINT16_MAX + 1) {
7978 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
7979 		return -EINVAL;
7980 	}
7981 
7982 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
7983 					     bio->io_path->qpair->qpair,
7984 					     offset_blocks, num_blocks,
7985 					     bdev_nvme_queued_done, bio,
7986 					     0);
7987 }
7988 
7989 static int
7990 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
7991 			struct spdk_bdev_zone_info *info)
7992 {
7993 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7994 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7995 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7996 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7997 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
7998 
7999 	if (zone_id % zone_size != 0) {
8000 		return -EINVAL;
8001 	}
8002 
8003 	if (num_zones > total_zones || !num_zones) {
8004 		return -EINVAL;
8005 	}
8006 
8007 	assert(!bio->zone_report_buf);
8008 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
8009 	if (!bio->zone_report_buf) {
8010 		return -ENOMEM;
8011 	}
8012 
8013 	bio->handled_zones = 0;
8014 
8015 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
8016 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
8017 					  bdev_nvme_get_zone_info_done, bio);
8018 }
8019 
8020 static int
8021 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
8022 			  enum spdk_bdev_zone_action action)
8023 {
8024 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8025 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8026 
8027 	switch (action) {
8028 	case SPDK_BDEV_ZONE_CLOSE:
8029 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
8030 						bdev_nvme_zone_management_done, bio);
8031 	case SPDK_BDEV_ZONE_FINISH:
8032 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
8033 						 bdev_nvme_zone_management_done, bio);
8034 	case SPDK_BDEV_ZONE_OPEN:
8035 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
8036 					       bdev_nvme_zone_management_done, bio);
8037 	case SPDK_BDEV_ZONE_RESET:
8038 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
8039 						bdev_nvme_zone_management_done, bio);
8040 	case SPDK_BDEV_ZONE_OFFLINE:
8041 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
8042 						  bdev_nvme_zone_management_done, bio);
8043 	default:
8044 		return -EINVAL;
8045 	}
8046 }
8047 
8048 static void
8049 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8050 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
8051 {
8052 	struct nvme_io_path *io_path;
8053 	struct nvme_ctrlr *nvme_ctrlr;
8054 	uint32_t max_xfer_size;
8055 	int rc = -ENXIO;
8056 
8057 	/* Choose the first ctrlr which is not failed. */
8058 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8059 		nvme_ctrlr = io_path->qpair->ctrlr;
8060 
8061 		/* We should skip any unavailable nvme_ctrlr rather than checking
8062 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
8063 		 */
8064 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
8065 			continue;
8066 		}
8067 
8068 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
8069 
8070 		if (nbytes > max_xfer_size) {
8071 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8072 			rc = -EINVAL;
8073 			goto err;
8074 		}
8075 
8076 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
8077 						   bdev_nvme_admin_passthru_done, bio);
8078 		if (rc == 0) {
8079 			return;
8080 		}
8081 	}
8082 
8083 err:
8084 	bdev_nvme_admin_complete(bio, rc);
8085 }
8086 
8087 static int
8088 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8089 		      void *buf, size_t nbytes)
8090 {
8091 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8092 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8093 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8094 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8095 
8096 	if (nbytes > max_xfer_size) {
8097 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8098 		return -EINVAL;
8099 	}
8100 
8101 	/*
8102 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8103 	 * so fill it out automatically.
8104 	 */
8105 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8106 
8107 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
8108 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
8109 }
8110 
8111 static int
8112 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8113 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
8114 {
8115 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8116 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8117 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8118 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8119 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8120 
8121 	if (nbytes > max_xfer_size) {
8122 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8123 		return -EINVAL;
8124 	}
8125 
8126 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8127 		SPDK_ERRLOG("invalid meta data buffer size\n");
8128 		return -EINVAL;
8129 	}
8130 
8131 	/*
8132 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8133 	 * so fill it out automatically.
8134 	 */
8135 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8136 
8137 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
8138 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
8139 }
8140 
8141 static int
8142 bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio,
8143 			  struct spdk_nvme_cmd *cmd, struct iovec *iov, int iovcnt,
8144 			  size_t nbytes, void *md_buf, size_t md_len)
8145 {
8146 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8147 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8148 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8149 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8150 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8151 
8152 	bio->iovs = iov;
8153 	bio->iovcnt = iovcnt;
8154 	bio->iovpos = 0;
8155 	bio->iov_offset = 0;
8156 
8157 	if (nbytes > max_xfer_size) {
8158 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8159 		return -EINVAL;
8160 	}
8161 
8162 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8163 		SPDK_ERRLOG("invalid meta data buffer size\n");
8164 		return -EINVAL;
8165 	}
8166 
8167 	/*
8168 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands
8169 	 * require a nsid, so fill it out automatically.
8170 	 */
8171 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8172 
8173 	return spdk_nvme_ctrlr_cmd_iov_raw_with_md(
8174 		       ctrlr, qpair, cmd, (uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio,
8175 		       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge);
8176 }
8177 
8178 static void
8179 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8180 		struct nvme_bdev_io *bio_to_abort)
8181 {
8182 	struct nvme_io_path *io_path;
8183 	int rc = 0;
8184 
8185 	rc = bdev_nvme_abort_retry_io(nbdev_ch, bio_to_abort);
8186 	if (rc == 0) {
8187 		bdev_nvme_admin_complete(bio, 0);
8188 		return;
8189 	}
8190 
8191 	io_path = bio_to_abort->io_path;
8192 	if (io_path != NULL) {
8193 		rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8194 						   io_path->qpair->qpair,
8195 						   bio_to_abort,
8196 						   bdev_nvme_abort_done, bio);
8197 	} else {
8198 		STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8199 			rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8200 							   NULL,
8201 							   bio_to_abort,
8202 							   bdev_nvme_abort_done, bio);
8203 
8204 			if (rc != -ENOENT) {
8205 				break;
8206 			}
8207 		}
8208 	}
8209 
8210 	if (rc != 0) {
8211 		/* If no command was found or there was any error, complete the abort
8212 		 * request with failure.
8213 		 */
8214 		bdev_nvme_admin_complete(bio, rc);
8215 	}
8216 }
8217 
8218 static int
8219 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks,
8220 	       uint64_t num_blocks)
8221 {
8222 	struct spdk_nvme_scc_source_range range = {
8223 		.slba = src_offset_blocks,
8224 		.nlb = num_blocks - 1
8225 	};
8226 
8227 	return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns,
8228 				     bio->io_path->qpair->qpair,
8229 				     &range, 1, dst_offset_blocks,
8230 				     bdev_nvme_queued_done, bio);
8231 }
8232 
8233 static void
8234 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
8235 {
8236 	const char *action;
8237 	uint32_t i;
8238 
8239 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
8240 		action = "reset";
8241 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
8242 		action = "abort";
8243 	} else {
8244 		action = "none";
8245 	}
8246 
8247 	spdk_json_write_object_begin(w);
8248 
8249 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
8250 
8251 	spdk_json_write_named_object_begin(w, "params");
8252 	spdk_json_write_named_string(w, "action_on_timeout", action);
8253 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
8254 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
8255 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
8256 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
8257 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
8258 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
8259 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
8260 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
8261 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
8262 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
8263 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
8264 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
8265 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
8266 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
8267 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
8268 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
8269 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
8270 	spdk_json_write_named_bool(w, "disable_auto_failback", g_opts.disable_auto_failback);
8271 	spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids);
8272 	spdk_json_write_named_uint8(w, "transport_tos", g_opts.transport_tos);
8273 	spdk_json_write_named_bool(w, "nvme_error_stat", g_opts.nvme_error_stat);
8274 	spdk_json_write_named_uint32(w, "rdma_srq_size", g_opts.rdma_srq_size);
8275 	spdk_json_write_named_bool(w, "io_path_stat", g_opts.io_path_stat);
8276 	spdk_json_write_named_bool(w, "allow_accel_sequence", g_opts.allow_accel_sequence);
8277 	spdk_json_write_named_uint32(w, "rdma_max_cq_size", g_opts.rdma_max_cq_size);
8278 	spdk_json_write_named_uint16(w, "rdma_cm_event_timeout_ms", g_opts.rdma_cm_event_timeout_ms);
8279 	spdk_json_write_named_array_begin(w, "dhchap_digests");
8280 	for (i = 0; i < 32; ++i) {
8281 		if (g_opts.dhchap_digests & SPDK_BIT(i)) {
8282 			spdk_json_write_string(w, spdk_nvme_dhchap_get_digest_name(i));
8283 		}
8284 	}
8285 	spdk_json_write_array_end(w);
8286 	spdk_json_write_named_array_begin(w, "dhchap_dhgroups");
8287 	for (i = 0; i < 32; ++i) {
8288 		if (g_opts.dhchap_dhgroups & SPDK_BIT(i)) {
8289 			spdk_json_write_string(w, spdk_nvme_dhchap_get_dhgroup_name(i));
8290 		}
8291 	}
8292 
8293 	spdk_json_write_array_end(w);
8294 	spdk_json_write_object_end(w);
8295 
8296 	spdk_json_write_object_end(w);
8297 }
8298 
8299 static void
8300 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
8301 {
8302 	struct spdk_nvme_transport_id trid;
8303 
8304 	spdk_json_write_object_begin(w);
8305 
8306 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
8307 
8308 	spdk_json_write_named_object_begin(w, "params");
8309 	spdk_json_write_named_string(w, "name", ctx->name);
8310 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
8311 
8312 	trid = ctx->trid;
8313 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
8314 	nvme_bdev_dump_trid_json(&trid, w);
8315 
8316 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
8317 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
8318 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
8319 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8320 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
8321 	spdk_json_write_object_end(w);
8322 
8323 	spdk_json_write_object_end(w);
8324 }
8325 
8326 #ifdef SPDK_CONFIG_NVME_CUSE
8327 static void
8328 nvme_ctrlr_cuse_config_json(struct spdk_json_write_ctx *w,
8329 			    struct nvme_ctrlr *nvme_ctrlr)
8330 {
8331 	size_t cuse_name_size = 128;
8332 	char cuse_name[cuse_name_size];
8333 
8334 	if (spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr,
8335 					  cuse_name, &cuse_name_size) != 0) {
8336 		return;
8337 	}
8338 
8339 	spdk_json_write_object_begin(w);
8340 
8341 	spdk_json_write_named_string(w, "method", "bdev_nvme_cuse_register");
8342 
8343 	spdk_json_write_named_object_begin(w, "params");
8344 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8345 	spdk_json_write_object_end(w);
8346 
8347 	spdk_json_write_object_end(w);
8348 }
8349 #endif
8350 
8351 static void
8352 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
8353 		       struct nvme_ctrlr *nvme_ctrlr)
8354 {
8355 	struct spdk_nvme_transport_id	*trid;
8356 	const struct spdk_nvme_ctrlr_opts *opts;
8357 
8358 	if (nvme_ctrlr->opts.from_discovery_service) {
8359 		/* Do not emit an RPC for this - it will be implicitly
8360 		 * covered by a separate bdev_nvme_start_discovery or
8361 		 * bdev_nvme_start_mdns_discovery RPC.
8362 		 */
8363 		return;
8364 	}
8365 
8366 	trid = &nvme_ctrlr->active_path_id->trid;
8367 
8368 	spdk_json_write_object_begin(w);
8369 
8370 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
8371 
8372 	spdk_json_write_named_object_begin(w, "params");
8373 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8374 	nvme_bdev_dump_trid_json(trid, w);
8375 	spdk_json_write_named_bool(w, "prchk_reftag",
8376 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
8377 	spdk_json_write_named_bool(w, "prchk_guard",
8378 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
8379 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
8380 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
8381 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8382 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
8383 	if (nvme_ctrlr->psk != NULL) {
8384 		spdk_json_write_named_string(w, "psk", spdk_key_get_name(nvme_ctrlr->psk));
8385 	} else if (nvme_ctrlr->opts.psk[0] != '\0') {
8386 		spdk_json_write_named_string(w, "psk", nvme_ctrlr->opts.psk);
8387 	}
8388 
8389 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
8390 	spdk_json_write_named_string(w, "hostnqn", opts->hostnqn);
8391 	spdk_json_write_named_bool(w, "hdgst", opts->header_digest);
8392 	spdk_json_write_named_bool(w, "ddgst", opts->data_digest);
8393 	if (opts->src_addr[0] != '\0') {
8394 		spdk_json_write_named_string(w, "hostaddr", opts->src_addr);
8395 	}
8396 	if (opts->src_svcid[0] != '\0') {
8397 		spdk_json_write_named_string(w, "hostsvcid", opts->src_svcid);
8398 	}
8399 
8400 	spdk_json_write_object_end(w);
8401 
8402 	spdk_json_write_object_end(w);
8403 }
8404 
8405 static void
8406 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
8407 {
8408 	spdk_json_write_object_begin(w);
8409 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
8410 
8411 	spdk_json_write_named_object_begin(w, "params");
8412 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
8413 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
8414 	spdk_json_write_object_end(w);
8415 
8416 	spdk_json_write_object_end(w);
8417 }
8418 
8419 static int
8420 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
8421 {
8422 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
8423 	struct nvme_ctrlr	*nvme_ctrlr;
8424 	struct discovery_ctx	*ctx;
8425 
8426 	bdev_nvme_opts_config_json(w);
8427 
8428 	pthread_mutex_lock(&g_bdev_nvme_mutex);
8429 
8430 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
8431 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
8432 			nvme_ctrlr_config_json(w, nvme_ctrlr);
8433 
8434 #ifdef SPDK_CONFIG_NVME_CUSE
8435 			nvme_ctrlr_cuse_config_json(w, nvme_ctrlr);
8436 #endif
8437 		}
8438 	}
8439 
8440 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8441 		if (!ctx->from_mdns_discovery_service) {
8442 			bdev_nvme_discovery_config_json(w, ctx);
8443 		}
8444 	}
8445 
8446 	bdev_nvme_mdns_discovery_config_json(w);
8447 
8448 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
8449 	 * before enabling hotplug poller.
8450 	 */
8451 	bdev_nvme_hotplug_config_json(w);
8452 
8453 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
8454 	return 0;
8455 }
8456 
8457 struct spdk_nvme_ctrlr *
8458 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
8459 {
8460 	struct nvme_bdev *nbdev;
8461 	struct nvme_ns *nvme_ns;
8462 
8463 	if (!bdev || bdev->module != &nvme_if) {
8464 		return NULL;
8465 	}
8466 
8467 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
8468 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
8469 	assert(nvme_ns != NULL);
8470 
8471 	return nvme_ns->ctrlr->ctrlr;
8472 }
8473 
8474 void
8475 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
8476 {
8477 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
8478 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
8479 	const struct spdk_nvme_ctrlr_data *cdata;
8480 	const struct spdk_nvme_transport_id *trid;
8481 	const struct nvme_bdev_channel *nbdev_ch;
8482 	const char *adrfam_str;
8483 	bool current;
8484 
8485 	spdk_json_write_object_begin(w);
8486 
8487 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
8488 
8489 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
8490 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
8491 
8492 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
8493 	nbdev_ch = io_path->nbdev_ch;
8494 	if (nbdev_ch == NULL) {
8495 		current = false;
8496 	} else {
8497 		current = (io_path == nbdev_ch->current_io_path);
8498 	}
8499 	spdk_json_write_named_bool(w, "current", current);
8500 	spdk_json_write_named_bool(w, "connected", nvme_qpair_is_connected(io_path->qpair));
8501 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
8502 
8503 	spdk_json_write_named_object_begin(w, "transport");
8504 	spdk_json_write_named_string(w, "trtype", trid->trstring);
8505 	spdk_json_write_named_string(w, "traddr", trid->traddr);
8506 	if (trid->trsvcid[0] != '\0') {
8507 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
8508 	}
8509 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
8510 	if (adrfam_str) {
8511 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
8512 	}
8513 	spdk_json_write_object_end(w);
8514 
8515 	spdk_json_write_object_end(w);
8516 }
8517 
8518 void
8519 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
8520 {
8521 	struct discovery_ctx *ctx;
8522 	struct discovery_entry_ctx *entry_ctx;
8523 
8524 	spdk_json_write_array_begin(w);
8525 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8526 		spdk_json_write_object_begin(w);
8527 		spdk_json_write_named_string(w, "name", ctx->name);
8528 
8529 		spdk_json_write_named_object_begin(w, "trid");
8530 		nvme_bdev_dump_trid_json(&ctx->trid, w);
8531 		spdk_json_write_object_end(w);
8532 
8533 		spdk_json_write_named_array_begin(w, "referrals");
8534 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
8535 			spdk_json_write_object_begin(w);
8536 			spdk_json_write_named_object_begin(w, "trid");
8537 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
8538 			spdk_json_write_object_end(w);
8539 			spdk_json_write_object_end(w);
8540 		}
8541 		spdk_json_write_array_end(w);
8542 
8543 		spdk_json_write_object_end(w);
8544 	}
8545 	spdk_json_write_array_end(w);
8546 }
8547 
8548 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
8549 
8550 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
8551 {
8552 	struct spdk_trace_tpoint_opts opts[] = {
8553 		{
8554 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
8555 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 1,
8556 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8557 		},
8558 		{
8559 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
8560 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 0,
8561 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8562 		}
8563 	};
8564 
8565 
8566 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
8567 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
8568 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8569 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8570 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8571 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8572 }
8573