xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision 8bbc7b697bbeefe44d7e4099ca6b6a7ee470d0e0)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  *   Copyright (c) 2022 Dell Inc, or its subsidiaries. All rights reserved.
6  */
7 
8 #include "spdk/stdinc.h"
9 
10 #include "bdev_nvme.h"
11 
12 #include "spdk/accel.h"
13 #include "spdk/config.h"
14 #include "spdk/endian.h"
15 #include "spdk/bdev.h"
16 #include "spdk/json.h"
17 #include "spdk/keyring.h"
18 #include "spdk/likely.h"
19 #include "spdk/nvme.h"
20 #include "spdk/nvme_ocssd.h"
21 #include "spdk/nvme_zns.h"
22 #include "spdk/opal.h"
23 #include "spdk/thread.h"
24 #include "spdk/trace.h"
25 #include "spdk/string.h"
26 #include "spdk/util.h"
27 #include "spdk/uuid.h"
28 
29 #include "spdk/bdev_module.h"
30 #include "spdk/log.h"
31 
32 #include "spdk_internal/usdt.h"
33 #include "spdk_internal/trace_defs.h"
34 
35 #define CTRLR_STRING(nvme_ctrlr) \
36 	(spdk_nvme_trtype_is_fabrics(nvme_ctrlr->active_path_id->trid.trtype) ? \
37 	nvme_ctrlr->active_path_id->trid.subnqn : nvme_ctrlr->active_path_id->trid.traddr)
38 
39 #define CTRLR_ID(nvme_ctrlr)	(spdk_nvme_ctrlr_get_id(nvme_ctrlr->ctrlr))
40 
41 #define NVME_CTRLR_ERRLOG(ctrlr, format, ...) \
42 	SPDK_ERRLOG("[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__);
43 
44 #define NVME_CTRLR_WARNLOG(ctrlr, format, ...) \
45 	SPDK_WARNLOG("[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__);
46 
47 #define NVME_CTRLR_NOTICELOG(ctrlr, format, ...) \
48 	SPDK_NOTICELOG("[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__);
49 
50 #define NVME_CTRLR_INFOLOG(ctrlr, format, ...) \
51 	SPDK_INFOLOG(bdev_nvme, "[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__);
52 
53 #ifdef DEBUG
54 #define NVME_CTRLR_DEBUGLOG(ctrlr, format, ...) \
55 	SPDK_DEBUGLOG(bdev_nvme, "[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__);
56 #else
57 #define NVME_CTRLR_DEBUGLOG(ctrlr, ...) do { } while (0)
58 #endif
59 
60 #define BDEV_STRING(nbdev) (nbdev->disk.name)
61 
62 #define NVME_BDEV_ERRLOG(nbdev, format, ...) \
63 	SPDK_ERRLOG("[%s] " format, BDEV_STRING(nbdev), ##__VA_ARGS__);
64 
65 #define NVME_BDEV_WARNLOG(nbdev, format, ...) \
66 	SPDK_WARNLOG("[%s] " format, BDEV_STRING(nbdev), ##__VA_ARGS__);
67 
68 #define NVME_BDEV_NOTICELOG(nbdev, format, ...) \
69 	SPDK_NOTICELOG("[%s] " format, BDEV_STRING(nbdev), ##__VA_ARGS__);
70 
71 #define NVME_BDEV_INFOLOG(nbdev, format, ...) \
72 	SPDK_INFOLOG(bdev_nvme, "[%s] " format, BDEV_STRING(nbdev), ##__VA_ARGS__);
73 
74 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
75 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
76 
77 #define NSID_STR_LEN 10
78 
79 #define SPDK_CONTROLLER_NAME_MAX 512
80 
81 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
82 
83 struct nvme_bdev_io {
84 	/** array of iovecs to transfer. */
85 	struct iovec *iovs;
86 
87 	/** Number of iovecs in iovs array. */
88 	int iovcnt;
89 
90 	/** Current iovec position. */
91 	int iovpos;
92 
93 	/** Offset in current iovec. */
94 	uint32_t iov_offset;
95 
96 	/** Offset in current iovec. */
97 	uint32_t fused_iov_offset;
98 
99 	/** array of iovecs to transfer. */
100 	struct iovec *fused_iovs;
101 
102 	/** Number of iovecs in iovs array. */
103 	int fused_iovcnt;
104 
105 	/** Current iovec position. */
106 	int fused_iovpos;
107 
108 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
109 	 *  being reset in a reset I/O.
110 	 */
111 	struct nvme_io_path *io_path;
112 
113 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
114 	struct spdk_nvme_cpl cpl;
115 
116 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
117 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
118 
119 	/** Keeps track if first of fused commands was submitted */
120 	bool first_fused_submitted;
121 
122 	/** Keeps track if first of fused commands was completed */
123 	bool first_fused_completed;
124 
125 	/* How many times the current I/O was retried. */
126 	int32_t retry_count;
127 
128 	/** Expiration value in ticks to retry the current I/O. */
129 	uint64_t retry_ticks;
130 
131 	/** Temporary pointer to zone report buffer */
132 	struct spdk_nvme_zns_zone_report *zone_report_buf;
133 
134 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
135 	uint64_t handled_zones;
136 
137 	/* Current tsc at submit time. */
138 	uint64_t submit_tsc;
139 
140 	/* Used to put nvme_bdev_io into the list */
141 	TAILQ_ENTRY(nvme_bdev_io) retry_link;
142 };
143 
144 struct nvme_probe_skip_entry {
145 	struct spdk_nvme_transport_id		trid;
146 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
147 };
148 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
149 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
150 			g_skipped_nvme_ctrlrs);
151 
152 #define BDEV_NVME_DEFAULT_DIGESTS (SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA256) | \
153 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA384) | \
154 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA512))
155 
156 #define BDEV_NVME_DEFAULT_DHGROUPS (SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_NULL) | \
157 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_2048) | \
158 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_3072) | \
159 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_4096) | \
160 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_6144) | \
161 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_8192))
162 
163 static struct spdk_bdev_nvme_opts g_opts = {
164 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
165 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
166 	.timeout_us = 0,
167 	.timeout_admin_us = 0,
168 	.transport_retry_count = 4,
169 	.arbitration_burst = 0,
170 	.low_priority_weight = 0,
171 	.medium_priority_weight = 0,
172 	.high_priority_weight = 0,
173 	.io_queue_requests = 0,
174 	.nvme_adminq_poll_period_us = 10000ULL,
175 	.nvme_ioq_poll_period_us = 0,
176 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
177 	.bdev_retry_count = 3,
178 	.ctrlr_loss_timeout_sec = 0,
179 	.reconnect_delay_sec = 0,
180 	.fast_io_fail_timeout_sec = 0,
181 	.transport_ack_timeout = 0,
182 	.disable_auto_failback = false,
183 	.generate_uuids = false,
184 	.transport_tos = 0,
185 	.nvme_error_stat = false,
186 	.io_path_stat = false,
187 	.allow_accel_sequence = false,
188 	.dhchap_digests = BDEV_NVME_DEFAULT_DIGESTS,
189 	.dhchap_dhgroups = BDEV_NVME_DEFAULT_DHGROUPS,
190 };
191 
192 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
193 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
194 
195 static int g_hot_insert_nvme_controller_index = 0;
196 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
197 static bool g_nvme_hotplug_enabled = false;
198 struct spdk_thread *g_bdev_nvme_init_thread;
199 static struct spdk_poller *g_hotplug_poller;
200 static struct spdk_poller *g_hotplug_probe_poller;
201 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
202 
203 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
204 		struct nvme_async_probe_ctx *ctx);
205 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
206 		struct nvme_async_probe_ctx *ctx);
207 static int bdev_nvme_library_init(void);
208 static void bdev_nvme_library_fini(void);
209 static void _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch,
210 				      struct spdk_bdev_io *bdev_io);
211 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
212 				     struct spdk_bdev_io *bdev_io);
213 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
214 			   void *md, uint64_t lba_count, uint64_t lba,
215 			   uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
216 			   struct spdk_accel_sequence *seq);
217 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
218 				 void *md, uint64_t lba_count, uint64_t lba);
219 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
220 			    void *md, uint64_t lba_count, uint64_t lba,
221 			    uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
222 			    struct spdk_accel_sequence *seq,
223 			    union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13);
224 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
225 				  void *md, uint64_t lba_count,
226 				  uint64_t zslba, uint32_t flags);
227 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
228 			      void *md, uint64_t lba_count, uint64_t lba,
229 			      uint32_t flags);
230 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
231 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
232 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
233 		uint32_t flags);
234 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
235 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
236 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
237 				     enum spdk_bdev_zone_action action);
238 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
239 				     struct nvme_bdev_io *bio,
240 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
241 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
242 				 void *buf, size_t nbytes);
243 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
244 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
245 static int bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
246 				     struct iovec *iov, int iovcnt, size_t nbytes,
247 				     void *md_buf, size_t md_len);
248 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
249 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
250 static void bdev_nvme_reset_io(struct nvme_bdev *nbdev, struct nvme_bdev_io *bio);
251 static int bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
252 static int bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
253 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
254 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
255 
256 static struct nvme_ns *nvme_ns_alloc(void);
257 static void nvme_ns_free(struct nvme_ns *ns);
258 
259 static int
260 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
261 {
262 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
263 }
264 
265 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
266 
267 struct spdk_nvme_qpair *
268 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
269 {
270 	struct nvme_ctrlr_channel *ctrlr_ch;
271 
272 	assert(ctrlr_io_ch != NULL);
273 
274 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
275 
276 	return ctrlr_ch->qpair->qpair;
277 }
278 
279 static int
280 bdev_nvme_get_ctx_size(void)
281 {
282 	return sizeof(struct nvme_bdev_io);
283 }
284 
285 static struct spdk_bdev_module nvme_if = {
286 	.name = "nvme",
287 	.async_fini = true,
288 	.module_init = bdev_nvme_library_init,
289 	.module_fini = bdev_nvme_library_fini,
290 	.config_json = bdev_nvme_config_json,
291 	.get_ctx_size = bdev_nvme_get_ctx_size,
292 
293 };
294 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
295 
296 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
297 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
298 bool g_bdev_nvme_module_finish;
299 
300 struct nvme_bdev_ctrlr *
301 nvme_bdev_ctrlr_get_by_name(const char *name)
302 {
303 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
304 
305 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
306 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
307 			break;
308 		}
309 	}
310 
311 	return nbdev_ctrlr;
312 }
313 
314 static struct nvme_ctrlr *
315 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
316 			  const struct spdk_nvme_transport_id *trid, const char *hostnqn)
317 {
318 	const struct spdk_nvme_ctrlr_opts *opts;
319 	struct nvme_ctrlr *nvme_ctrlr;
320 
321 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
322 		opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
323 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0 &&
324 		    strcmp(hostnqn, opts->hostnqn) == 0) {
325 			break;
326 		}
327 	}
328 
329 	return nvme_ctrlr;
330 }
331 
332 struct nvme_ctrlr *
333 nvme_bdev_ctrlr_get_ctrlr_by_id(struct nvme_bdev_ctrlr *nbdev_ctrlr,
334 				uint16_t cntlid)
335 {
336 	struct nvme_ctrlr *nvme_ctrlr;
337 	const struct spdk_nvme_ctrlr_data *cdata;
338 
339 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
340 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
341 		if (cdata->cntlid == cntlid) {
342 			break;
343 		}
344 	}
345 
346 	return nvme_ctrlr;
347 }
348 
349 static struct nvme_bdev *
350 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
351 {
352 	struct nvme_bdev *bdev;
353 
354 	pthread_mutex_lock(&g_bdev_nvme_mutex);
355 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
356 		if (bdev->nsid == nsid) {
357 			break;
358 		}
359 	}
360 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
361 
362 	return bdev;
363 }
364 
365 struct nvme_ns *
366 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
367 {
368 	struct nvme_ns ns;
369 
370 	assert(nsid > 0);
371 
372 	ns.id = nsid;
373 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
374 }
375 
376 struct nvme_ns *
377 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
378 {
379 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
380 }
381 
382 struct nvme_ns *
383 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
384 {
385 	if (ns == NULL) {
386 		return NULL;
387 	}
388 
389 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
390 }
391 
392 static struct nvme_ctrlr *
393 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid, const char *hostnqn)
394 {
395 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
396 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
397 
398 	pthread_mutex_lock(&g_bdev_nvme_mutex);
399 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
400 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid, hostnqn);
401 		if (nvme_ctrlr != NULL) {
402 			break;
403 		}
404 	}
405 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
406 
407 	return nvme_ctrlr;
408 }
409 
410 struct nvme_ctrlr *
411 nvme_ctrlr_get_by_name(const char *name)
412 {
413 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
414 	struct nvme_ctrlr *nvme_ctrlr = NULL;
415 
416 	if (name == NULL) {
417 		return NULL;
418 	}
419 
420 	pthread_mutex_lock(&g_bdev_nvme_mutex);
421 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
422 	if (nbdev_ctrlr != NULL) {
423 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
424 	}
425 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
426 
427 	return nvme_ctrlr;
428 }
429 
430 void
431 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
432 {
433 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
434 
435 	pthread_mutex_lock(&g_bdev_nvme_mutex);
436 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
437 		fn(nbdev_ctrlr, ctx);
438 	}
439 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
440 }
441 
442 struct nvme_ctrlr_channel_iter {
443 	nvme_ctrlr_for_each_channel_msg fn;
444 	nvme_ctrlr_for_each_channel_done cpl;
445 	struct spdk_io_channel_iter *i;
446 	void *ctx;
447 };
448 
449 void
450 nvme_ctrlr_for_each_channel_continue(struct nvme_ctrlr_channel_iter *iter, int status)
451 {
452 	spdk_for_each_channel_continue(iter->i, status);
453 }
454 
455 static void
456 nvme_ctrlr_each_channel_msg(struct spdk_io_channel_iter *i)
457 {
458 	struct nvme_ctrlr_channel_iter *iter = spdk_io_channel_iter_get_ctx(i);
459 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
460 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
461 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
462 
463 	iter->i = i;
464 	iter->fn(iter, nvme_ctrlr, ctrlr_ch, iter->ctx);
465 }
466 
467 static void
468 nvme_ctrlr_each_channel_cpl(struct spdk_io_channel_iter *i, int status)
469 {
470 	struct nvme_ctrlr_channel_iter *iter = spdk_io_channel_iter_get_ctx(i);
471 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
472 
473 	iter->i = i;
474 	iter->cpl(nvme_ctrlr, iter->ctx, status);
475 
476 	free(iter);
477 }
478 
479 void
480 nvme_ctrlr_for_each_channel(struct nvme_ctrlr *nvme_ctrlr,
481 			    nvme_ctrlr_for_each_channel_msg fn, void *ctx,
482 			    nvme_ctrlr_for_each_channel_done cpl)
483 {
484 	struct nvme_ctrlr_channel_iter *iter;
485 
486 	assert(nvme_ctrlr != NULL && fn != NULL);
487 
488 	iter = calloc(1, sizeof(struct nvme_ctrlr_channel_iter));
489 	if (iter == NULL) {
490 		SPDK_ERRLOG("Unable to allocate iterator\n");
491 		assert(false);
492 		return;
493 	}
494 
495 	iter->fn = fn;
496 	iter->cpl = cpl;
497 	iter->ctx = ctx;
498 
499 	spdk_for_each_channel(nvme_ctrlr, nvme_ctrlr_each_channel_msg,
500 			      iter, nvme_ctrlr_each_channel_cpl);
501 }
502 
503 struct nvme_bdev_channel_iter {
504 	nvme_bdev_for_each_channel_msg fn;
505 	nvme_bdev_for_each_channel_done cpl;
506 	struct spdk_io_channel_iter *i;
507 	void *ctx;
508 };
509 
510 void
511 nvme_bdev_for_each_channel_continue(struct nvme_bdev_channel_iter *iter, int status)
512 {
513 	spdk_for_each_channel_continue(iter->i, status);
514 }
515 
516 static void
517 nvme_bdev_each_channel_msg(struct spdk_io_channel_iter *i)
518 {
519 	struct nvme_bdev_channel_iter *iter = spdk_io_channel_iter_get_ctx(i);
520 	struct nvme_bdev *nbdev = spdk_io_channel_iter_get_io_device(i);
521 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
522 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
523 
524 	iter->i = i;
525 	iter->fn(iter, nbdev, nbdev_ch, iter->ctx);
526 }
527 
528 static void
529 nvme_bdev_each_channel_cpl(struct spdk_io_channel_iter *i, int status)
530 {
531 	struct nvme_bdev_channel_iter *iter = spdk_io_channel_iter_get_ctx(i);
532 	struct nvme_bdev *nbdev = spdk_io_channel_iter_get_io_device(i);
533 
534 	iter->i = i;
535 	iter->cpl(nbdev, iter->ctx, status);
536 
537 	free(iter);
538 }
539 
540 void
541 nvme_bdev_for_each_channel(struct nvme_bdev *nbdev,
542 			   nvme_bdev_for_each_channel_msg fn, void *ctx,
543 			   nvme_bdev_for_each_channel_done cpl)
544 {
545 	struct nvme_bdev_channel_iter *iter;
546 
547 	assert(nbdev != NULL && fn != NULL);
548 
549 	iter = calloc(1, sizeof(struct nvme_bdev_channel_iter));
550 	if (iter == NULL) {
551 		SPDK_ERRLOG("Unable to allocate iterator\n");
552 		assert(false);
553 		return;
554 	}
555 
556 	iter->fn = fn;
557 	iter->cpl = cpl;
558 	iter->ctx = ctx;
559 
560 	spdk_for_each_channel(nbdev, nvme_bdev_each_channel_msg, iter,
561 			      nvme_bdev_each_channel_cpl);
562 }
563 
564 void
565 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
566 {
567 	const char *trtype_str;
568 	const char *adrfam_str;
569 
570 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
571 	if (trtype_str) {
572 		spdk_json_write_named_string(w, "trtype", trtype_str);
573 	}
574 
575 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
576 	if (adrfam_str) {
577 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
578 	}
579 
580 	if (trid->traddr[0] != '\0') {
581 		spdk_json_write_named_string(w, "traddr", trid->traddr);
582 	}
583 
584 	if (trid->trsvcid[0] != '\0') {
585 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
586 	}
587 
588 	if (trid->subnqn[0] != '\0') {
589 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
590 	}
591 }
592 
593 static void
594 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
595 		       struct nvme_ctrlr *nvme_ctrlr)
596 {
597 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
598 	pthread_mutex_lock(&g_bdev_nvme_mutex);
599 
600 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
601 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
602 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
603 
604 		return;
605 	}
606 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
607 
608 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
609 
610 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
611 
612 	free(nbdev_ctrlr->name);
613 	free(nbdev_ctrlr);
614 }
615 
616 static void
617 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
618 {
619 	struct nvme_path_id *path_id, *tmp_path;
620 	struct nvme_ns *ns, *tmp_ns;
621 
622 	free(nvme_ctrlr->copied_ana_desc);
623 	spdk_free(nvme_ctrlr->ana_log_page);
624 
625 	if (nvme_ctrlr->opal_dev) {
626 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
627 		nvme_ctrlr->opal_dev = NULL;
628 	}
629 
630 	if (nvme_ctrlr->nbdev_ctrlr) {
631 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
632 	}
633 
634 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
635 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
636 		nvme_ns_free(ns);
637 	}
638 
639 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
640 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
641 		free(path_id);
642 	}
643 
644 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
645 	spdk_keyring_put_key(nvme_ctrlr->psk);
646 	spdk_keyring_put_key(nvme_ctrlr->dhchap_key);
647 	spdk_keyring_put_key(nvme_ctrlr->dhchap_ctrlr_key);
648 	free(nvme_ctrlr);
649 
650 	pthread_mutex_lock(&g_bdev_nvme_mutex);
651 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
652 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
653 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
654 		spdk_bdev_module_fini_done();
655 		return;
656 	}
657 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
658 }
659 
660 static int
661 nvme_detach_poller(void *arg)
662 {
663 	struct nvme_ctrlr *nvme_ctrlr = arg;
664 	int rc;
665 
666 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
667 	if (rc != -EAGAIN) {
668 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
669 		_nvme_ctrlr_delete(nvme_ctrlr);
670 	}
671 
672 	return SPDK_POLLER_BUSY;
673 }
674 
675 static void
676 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
677 {
678 	int rc;
679 
680 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
681 
682 	if (spdk_interrupt_mode_is_enabled()) {
683 		spdk_interrupt_unregister(&nvme_ctrlr->intr);
684 	}
685 
686 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
687 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
688 
689 	/* If we got here, the reset/detach poller cannot be active */
690 	assert(nvme_ctrlr->reset_detach_poller == NULL);
691 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
692 					  nvme_ctrlr, 1000);
693 	if (nvme_ctrlr->reset_detach_poller == NULL) {
694 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to register detach poller\n");
695 		goto error;
696 	}
697 
698 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
699 	if (rc != 0) {
700 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to detach the NVMe controller\n");
701 		goto error;
702 	}
703 
704 	return;
705 error:
706 	/* We don't have a good way to handle errors here, so just do what we can and delete the
707 	 * controller without detaching the underlying NVMe device.
708 	 */
709 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
710 	_nvme_ctrlr_delete(nvme_ctrlr);
711 }
712 
713 static void
714 nvme_ctrlr_unregister_cb(void *io_device)
715 {
716 	struct nvme_ctrlr *nvme_ctrlr = io_device;
717 
718 	nvme_ctrlr_delete(nvme_ctrlr);
719 }
720 
721 static void
722 nvme_ctrlr_unregister(void *ctx)
723 {
724 	struct nvme_ctrlr *nvme_ctrlr = ctx;
725 
726 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
727 }
728 
729 static bool
730 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
731 {
732 	if (!nvme_ctrlr->destruct) {
733 		return false;
734 	}
735 
736 	if (nvme_ctrlr->ref > 0) {
737 		return false;
738 	}
739 
740 	if (nvme_ctrlr->resetting) {
741 		return false;
742 	}
743 
744 	if (nvme_ctrlr->ana_log_page_updating) {
745 		return false;
746 	}
747 
748 	if (nvme_ctrlr->io_path_cache_clearing) {
749 		return false;
750 	}
751 
752 	return true;
753 }
754 
755 static void
756 nvme_ctrlr_put_ref(struct nvme_ctrlr *nvme_ctrlr)
757 {
758 	pthread_mutex_lock(&nvme_ctrlr->mutex);
759 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
760 
761 	assert(nvme_ctrlr->ref > 0);
762 	nvme_ctrlr->ref--;
763 
764 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
765 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
766 		return;
767 	}
768 
769 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
770 
771 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
772 }
773 
774 static void
775 nvme_ctrlr_get_ref(struct nvme_ctrlr *nvme_ctrlr)
776 {
777 	pthread_mutex_lock(&nvme_ctrlr->mutex);
778 	nvme_ctrlr->ref++;
779 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
780 }
781 
782 static void
783 bdev_nvme_clear_current_io_path(struct nvme_bdev_channel *nbdev_ch)
784 {
785 	nbdev_ch->current_io_path = NULL;
786 	nbdev_ch->rr_counter = 0;
787 }
788 
789 static struct nvme_io_path *
790 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
791 {
792 	struct nvme_io_path *io_path;
793 
794 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
795 		if (io_path->nvme_ns == nvme_ns) {
796 			break;
797 		}
798 	}
799 
800 	return io_path;
801 }
802 
803 static struct nvme_io_path *
804 nvme_io_path_alloc(void)
805 {
806 	struct nvme_io_path *io_path;
807 
808 	io_path = calloc(1, sizeof(*io_path));
809 	if (io_path == NULL) {
810 		SPDK_ERRLOG("Failed to alloc io_path.\n");
811 		return NULL;
812 	}
813 
814 	if (g_opts.io_path_stat) {
815 		io_path->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
816 		if (io_path->stat == NULL) {
817 			free(io_path);
818 			SPDK_ERRLOG("Failed to alloc io_path stat.\n");
819 			return NULL;
820 		}
821 		spdk_bdev_reset_io_stat(io_path->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
822 	}
823 
824 	return io_path;
825 }
826 
827 static void
828 nvme_io_path_free(struct nvme_io_path *io_path)
829 {
830 	free(io_path->stat);
831 	free(io_path);
832 }
833 
834 static int
835 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
836 {
837 	struct nvme_io_path *io_path;
838 	struct spdk_io_channel *ch;
839 	struct nvme_ctrlr_channel *ctrlr_ch;
840 	struct nvme_qpair *nvme_qpair;
841 
842 	io_path = nvme_io_path_alloc();
843 	if (io_path == NULL) {
844 		return -ENOMEM;
845 	}
846 
847 	io_path->nvme_ns = nvme_ns;
848 
849 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
850 	if (ch == NULL) {
851 		nvme_io_path_free(io_path);
852 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
853 		return -ENOMEM;
854 	}
855 
856 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
857 
858 	nvme_qpair = ctrlr_ch->qpair;
859 	assert(nvme_qpair != NULL);
860 
861 	io_path->qpair = nvme_qpair;
862 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
863 
864 	io_path->nbdev_ch = nbdev_ch;
865 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
866 
867 	bdev_nvme_clear_current_io_path(nbdev_ch);
868 
869 	return 0;
870 }
871 
872 static void
873 bdev_nvme_clear_retry_io_path(struct nvme_bdev_channel *nbdev_ch,
874 			      struct nvme_io_path *io_path)
875 {
876 	struct nvme_bdev_io *bio;
877 
878 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
879 		if (bio->io_path == io_path) {
880 			bio->io_path = NULL;
881 		}
882 	}
883 }
884 
885 static void
886 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
887 {
888 	struct spdk_io_channel *ch;
889 	struct nvme_qpair *nvme_qpair;
890 	struct nvme_ctrlr_channel *ctrlr_ch;
891 	struct nvme_bdev *nbdev;
892 
893 	nbdev = spdk_io_channel_get_io_device(spdk_io_channel_from_ctx(nbdev_ch));
894 
895 	/* Add the statistics to nvme_ns before this path is destroyed. */
896 	pthread_mutex_lock(&nbdev->mutex);
897 	if (nbdev->ref != 0 && io_path->nvme_ns->stat != NULL && io_path->stat != NULL) {
898 		spdk_bdev_add_io_stat(io_path->nvme_ns->stat, io_path->stat);
899 	}
900 	pthread_mutex_unlock(&nbdev->mutex);
901 
902 	bdev_nvme_clear_current_io_path(nbdev_ch);
903 	bdev_nvme_clear_retry_io_path(nbdev_ch, io_path);
904 
905 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
906 	io_path->nbdev_ch = NULL;
907 
908 	nvme_qpair = io_path->qpair;
909 	assert(nvme_qpair != NULL);
910 
911 	ctrlr_ch = nvme_qpair->ctrlr_ch;
912 	assert(ctrlr_ch != NULL);
913 
914 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
915 	spdk_put_io_channel(ch);
916 
917 	/* After an io_path is removed, I/Os submitted to it may complete and update statistics
918 	 * of the io_path. To avoid heap-use-after-free error from this case, do not free the
919 	 * io_path here but free the io_path when the associated qpair is freed. It is ensured
920 	 * that all I/Os submitted to the io_path are completed when the associated qpair is freed.
921 	 */
922 }
923 
924 static void
925 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
926 {
927 	struct nvme_io_path *io_path, *tmp_io_path;
928 
929 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
930 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
931 	}
932 }
933 
934 static int
935 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
936 {
937 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
938 	struct nvme_bdev *nbdev = io_device;
939 	struct nvme_ns *nvme_ns;
940 	int rc;
941 
942 	STAILQ_INIT(&nbdev_ch->io_path_list);
943 	TAILQ_INIT(&nbdev_ch->retry_io_list);
944 
945 	pthread_mutex_lock(&nbdev->mutex);
946 
947 	nbdev_ch->mp_policy = nbdev->mp_policy;
948 	nbdev_ch->mp_selector = nbdev->mp_selector;
949 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
950 
951 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
952 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
953 		if (rc != 0) {
954 			pthread_mutex_unlock(&nbdev->mutex);
955 
956 			_bdev_nvme_delete_io_paths(nbdev_ch);
957 			return rc;
958 		}
959 	}
960 	pthread_mutex_unlock(&nbdev->mutex);
961 
962 	return 0;
963 }
964 
965 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
966  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
967  */
968 static inline void
969 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
970 			const struct spdk_nvme_cpl *cpl)
971 {
972 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
973 			  (uintptr_t)bdev_io);
974 	if (cpl) {
975 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
976 	} else {
977 		spdk_bdev_io_complete(bdev_io, status);
978 	}
979 }
980 
981 static void bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch);
982 
983 static void
984 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
985 {
986 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
987 
988 	bdev_nvme_abort_retry_ios(nbdev_ch);
989 	_bdev_nvme_delete_io_paths(nbdev_ch);
990 }
991 
992 static inline bool
993 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
994 {
995 	switch (io_type) {
996 	case SPDK_BDEV_IO_TYPE_RESET:
997 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
998 	case SPDK_BDEV_IO_TYPE_ABORT:
999 		return true;
1000 	default:
1001 		break;
1002 	}
1003 
1004 	return false;
1005 }
1006 
1007 static inline bool
1008 nvme_ns_is_active(struct nvme_ns *nvme_ns)
1009 {
1010 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
1011 		return false;
1012 	}
1013 
1014 	if (spdk_unlikely(nvme_ns->ns == NULL)) {
1015 		return false;
1016 	}
1017 
1018 	return true;
1019 }
1020 
1021 static inline bool
1022 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
1023 {
1024 	if (spdk_unlikely(!nvme_ns_is_active(nvme_ns))) {
1025 		return false;
1026 	}
1027 
1028 	switch (nvme_ns->ana_state) {
1029 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
1030 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1031 		return true;
1032 	default:
1033 		break;
1034 	}
1035 
1036 	return false;
1037 }
1038 
1039 static inline bool
1040 nvme_qpair_is_connected(struct nvme_qpair *nvme_qpair)
1041 {
1042 	if (spdk_unlikely(nvme_qpair->qpair == NULL)) {
1043 		return false;
1044 	}
1045 
1046 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1047 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
1048 		return false;
1049 	}
1050 
1051 	if (spdk_unlikely(nvme_qpair->ctrlr_ch->reset_iter != NULL)) {
1052 		return false;
1053 	}
1054 
1055 	return true;
1056 }
1057 
1058 static inline bool
1059 nvme_io_path_is_available(struct nvme_io_path *io_path)
1060 {
1061 	if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
1062 		return false;
1063 	}
1064 
1065 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
1066 		return false;
1067 	}
1068 
1069 	return true;
1070 }
1071 
1072 static inline bool
1073 nvme_ctrlr_is_failed(struct nvme_ctrlr *nvme_ctrlr)
1074 {
1075 	if (nvme_ctrlr->destruct) {
1076 		return true;
1077 	}
1078 
1079 	if (nvme_ctrlr->fast_io_fail_timedout) {
1080 		return true;
1081 	}
1082 
1083 	if (nvme_ctrlr->resetting) {
1084 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
1085 			return false;
1086 		} else {
1087 			return true;
1088 		}
1089 	}
1090 
1091 	if (nvme_ctrlr->reconnect_is_delayed) {
1092 		return false;
1093 	}
1094 
1095 	if (nvme_ctrlr->disabled) {
1096 		return true;
1097 	}
1098 
1099 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
1100 		return true;
1101 	} else {
1102 		return false;
1103 	}
1104 }
1105 
1106 static bool
1107 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
1108 {
1109 	if (nvme_ctrlr->destruct) {
1110 		return false;
1111 	}
1112 
1113 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
1114 		return false;
1115 	}
1116 
1117 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
1118 		return false;
1119 	}
1120 
1121 	if (nvme_ctrlr->disabled) {
1122 		return false;
1123 	}
1124 
1125 	return true;
1126 }
1127 
1128 /* Simulate circular linked list. */
1129 static inline struct nvme_io_path *
1130 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
1131 {
1132 	struct nvme_io_path *next_path;
1133 
1134 	if (prev_path != NULL) {
1135 		next_path = STAILQ_NEXT(prev_path, stailq);
1136 		if (next_path != NULL) {
1137 			return next_path;
1138 		}
1139 	}
1140 
1141 	return STAILQ_FIRST(&nbdev_ch->io_path_list);
1142 }
1143 
1144 static struct nvme_io_path *
1145 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1146 {
1147 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
1148 
1149 	start = nvme_io_path_get_next(nbdev_ch, nbdev_ch->current_io_path);
1150 
1151 	io_path = start;
1152 	do {
1153 		if (spdk_likely(nvme_io_path_is_available(io_path))) {
1154 			switch (io_path->nvme_ns->ana_state) {
1155 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
1156 				nbdev_ch->current_io_path = io_path;
1157 				return io_path;
1158 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1159 				if (non_optimized == NULL) {
1160 					non_optimized = io_path;
1161 				}
1162 				break;
1163 			default:
1164 				assert(false);
1165 				break;
1166 			}
1167 		}
1168 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
1169 	} while (io_path != start);
1170 
1171 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
1172 		/* We come here only if there is no optimized path. Cache even non_optimized
1173 		 * path for load balance across multiple non_optimized paths.
1174 		 */
1175 		nbdev_ch->current_io_path = non_optimized;
1176 	}
1177 
1178 	return non_optimized;
1179 }
1180 
1181 static struct nvme_io_path *
1182 _bdev_nvme_find_io_path_min_qd(struct nvme_bdev_channel *nbdev_ch)
1183 {
1184 	struct nvme_io_path *io_path;
1185 	struct nvme_io_path *optimized = NULL, *non_optimized = NULL;
1186 	uint32_t opt_min_qd = UINT32_MAX, non_opt_min_qd = UINT32_MAX;
1187 	uint32_t num_outstanding_reqs;
1188 
1189 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1190 		if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
1191 			/* The device is currently resetting. */
1192 			continue;
1193 		}
1194 
1195 		if (spdk_unlikely(!nvme_ns_is_active(io_path->nvme_ns))) {
1196 			continue;
1197 		}
1198 
1199 		num_outstanding_reqs = spdk_nvme_qpair_get_num_outstanding_reqs(io_path->qpair->qpair);
1200 		switch (io_path->nvme_ns->ana_state) {
1201 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
1202 			if (num_outstanding_reqs < opt_min_qd) {
1203 				opt_min_qd = num_outstanding_reqs;
1204 				optimized = io_path;
1205 			}
1206 			break;
1207 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1208 			if (num_outstanding_reqs < non_opt_min_qd) {
1209 				non_opt_min_qd = num_outstanding_reqs;
1210 				non_optimized = io_path;
1211 			}
1212 			break;
1213 		default:
1214 			break;
1215 		}
1216 	}
1217 
1218 	/* don't cache io path for BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH selector */
1219 	if (optimized != NULL) {
1220 		return optimized;
1221 	}
1222 
1223 	return non_optimized;
1224 }
1225 
1226 static inline struct nvme_io_path *
1227 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1228 {
1229 	if (spdk_likely(nbdev_ch->current_io_path != NULL)) {
1230 		if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE) {
1231 			return nbdev_ch->current_io_path;
1232 		} else if (nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1233 			if (++nbdev_ch->rr_counter < nbdev_ch->rr_min_io) {
1234 				return nbdev_ch->current_io_path;
1235 			}
1236 			nbdev_ch->rr_counter = 0;
1237 		}
1238 	}
1239 
1240 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE ||
1241 	    nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1242 		return _bdev_nvme_find_io_path(nbdev_ch);
1243 	} else {
1244 		return _bdev_nvme_find_io_path_min_qd(nbdev_ch);
1245 	}
1246 }
1247 
1248 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
1249  * or false otherwise.
1250  *
1251  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
1252  * is likely to be non-accessible now but may become accessible.
1253  *
1254  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
1255  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
1256  * when starting to reset it but it is set to failed when the reset failed. Hence, if
1257  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
1258  */
1259 static bool
1260 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
1261 {
1262 	struct nvme_io_path *io_path;
1263 
1264 	if (nbdev_ch->resetting) {
1265 		return false;
1266 	}
1267 
1268 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1269 		if (io_path->nvme_ns->ana_transition_timedout) {
1270 			continue;
1271 		}
1272 
1273 		if (nvme_qpair_is_connected(io_path->qpair) ||
1274 		    !nvme_ctrlr_is_failed(io_path->qpair->ctrlr)) {
1275 			return true;
1276 		}
1277 	}
1278 
1279 	return false;
1280 }
1281 
1282 static void
1283 bdev_nvme_retry_io(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
1284 {
1285 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1286 	struct spdk_io_channel *ch;
1287 
1288 	if (nbdev_io->io_path != NULL && nvme_io_path_is_available(nbdev_io->io_path)) {
1289 		_bdev_nvme_submit_request(nbdev_ch, bdev_io);
1290 	} else {
1291 		ch = spdk_io_channel_from_ctx(nbdev_ch);
1292 		bdev_nvme_submit_request(ch, bdev_io);
1293 	}
1294 }
1295 
1296 static int
1297 bdev_nvme_retry_ios(void *arg)
1298 {
1299 	struct nvme_bdev_channel *nbdev_ch = arg;
1300 	struct nvme_bdev_io *bio, *tmp_bio;
1301 	uint64_t now, delay_us;
1302 
1303 	now = spdk_get_ticks();
1304 
1305 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1306 		if (bio->retry_ticks > now) {
1307 			break;
1308 		}
1309 
1310 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1311 
1312 		bdev_nvme_retry_io(nbdev_ch, spdk_bdev_io_from_ctx(bio));
1313 	}
1314 
1315 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1316 
1317 	bio = TAILQ_FIRST(&nbdev_ch->retry_io_list);
1318 	if (bio != NULL) {
1319 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
1320 
1321 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1322 					    delay_us);
1323 	}
1324 
1325 	return SPDK_POLLER_BUSY;
1326 }
1327 
1328 static void
1329 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
1330 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
1331 {
1332 	struct nvme_bdev_io *tmp_bio;
1333 
1334 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
1335 
1336 	TAILQ_FOREACH_REVERSE(tmp_bio, &nbdev_ch->retry_io_list, retry_io_head, retry_link) {
1337 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1338 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bio, bio,
1339 					   retry_link);
1340 			return;
1341 		}
1342 	}
1343 
1344 	/* No earlier I/Os were found. This I/O must be the new head. */
1345 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bio, retry_link);
1346 
1347 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1348 
1349 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1350 				    delay_ms * 1000ULL);
1351 }
1352 
1353 static void
1354 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
1355 {
1356 	struct nvme_bdev_io *bio, *tmp_bio;
1357 
1358 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1359 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1360 		__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1361 	}
1362 
1363 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1364 }
1365 
1366 static int
1367 bdev_nvme_abort_retry_io(struct nvme_bdev_channel *nbdev_ch,
1368 			 struct nvme_bdev_io *bio_to_abort)
1369 {
1370 	struct nvme_bdev_io *bio;
1371 
1372 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
1373 		if (bio == bio_to_abort) {
1374 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1375 			__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1376 			return 0;
1377 		}
1378 	}
1379 
1380 	return -ENOENT;
1381 }
1382 
1383 static void
1384 bdev_nvme_update_nvme_error_stat(struct spdk_bdev_io *bdev_io, const struct spdk_nvme_cpl *cpl)
1385 {
1386 	struct nvme_bdev *nbdev;
1387 	uint16_t sct, sc;
1388 
1389 	assert(spdk_nvme_cpl_is_error(cpl));
1390 
1391 	nbdev = bdev_io->bdev->ctxt;
1392 
1393 	if (nbdev->err_stat == NULL) {
1394 		return;
1395 	}
1396 
1397 	sct = cpl->status.sct;
1398 	sc = cpl->status.sc;
1399 
1400 	pthread_mutex_lock(&nbdev->mutex);
1401 
1402 	nbdev->err_stat->status_type[sct]++;
1403 	switch (sct) {
1404 	case SPDK_NVME_SCT_GENERIC:
1405 	case SPDK_NVME_SCT_COMMAND_SPECIFIC:
1406 	case SPDK_NVME_SCT_MEDIA_ERROR:
1407 	case SPDK_NVME_SCT_PATH:
1408 		nbdev->err_stat->status[sct][sc]++;
1409 		break;
1410 	default:
1411 		break;
1412 	}
1413 
1414 	pthread_mutex_unlock(&nbdev->mutex);
1415 }
1416 
1417 static inline void
1418 bdev_nvme_update_io_path_stat(struct nvme_bdev_io *bio)
1419 {
1420 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1421 	uint64_t num_blocks = bdev_io->u.bdev.num_blocks;
1422 	uint32_t blocklen = bdev_io->bdev->blocklen;
1423 	struct spdk_bdev_io_stat *stat;
1424 	uint64_t tsc_diff;
1425 
1426 	if (bio->io_path->stat == NULL) {
1427 		return;
1428 	}
1429 
1430 	tsc_diff = spdk_get_ticks() - bio->submit_tsc;
1431 	stat = bio->io_path->stat;
1432 
1433 	switch (bdev_io->type) {
1434 	case SPDK_BDEV_IO_TYPE_READ:
1435 		stat->bytes_read += num_blocks * blocklen;
1436 		stat->num_read_ops++;
1437 		stat->read_latency_ticks += tsc_diff;
1438 		if (stat->max_read_latency_ticks < tsc_diff) {
1439 			stat->max_read_latency_ticks = tsc_diff;
1440 		}
1441 		if (stat->min_read_latency_ticks > tsc_diff) {
1442 			stat->min_read_latency_ticks = tsc_diff;
1443 		}
1444 		break;
1445 	case SPDK_BDEV_IO_TYPE_WRITE:
1446 		stat->bytes_written += num_blocks * blocklen;
1447 		stat->num_write_ops++;
1448 		stat->write_latency_ticks += tsc_diff;
1449 		if (stat->max_write_latency_ticks < tsc_diff) {
1450 			stat->max_write_latency_ticks = tsc_diff;
1451 		}
1452 		if (stat->min_write_latency_ticks > tsc_diff) {
1453 			stat->min_write_latency_ticks = tsc_diff;
1454 		}
1455 		break;
1456 	case SPDK_BDEV_IO_TYPE_UNMAP:
1457 		stat->bytes_unmapped += num_blocks * blocklen;
1458 		stat->num_unmap_ops++;
1459 		stat->unmap_latency_ticks += tsc_diff;
1460 		if (stat->max_unmap_latency_ticks < tsc_diff) {
1461 			stat->max_unmap_latency_ticks = tsc_diff;
1462 		}
1463 		if (stat->min_unmap_latency_ticks > tsc_diff) {
1464 			stat->min_unmap_latency_ticks = tsc_diff;
1465 		}
1466 		break;
1467 	case SPDK_BDEV_IO_TYPE_ZCOPY:
1468 		/* Track the data in the start phase only */
1469 		if (!bdev_io->u.bdev.zcopy.start) {
1470 			break;
1471 		}
1472 		if (bdev_io->u.bdev.zcopy.populate) {
1473 			stat->bytes_read += num_blocks * blocklen;
1474 			stat->num_read_ops++;
1475 			stat->read_latency_ticks += tsc_diff;
1476 			if (stat->max_read_latency_ticks < tsc_diff) {
1477 				stat->max_read_latency_ticks = tsc_diff;
1478 			}
1479 			if (stat->min_read_latency_ticks > tsc_diff) {
1480 				stat->min_read_latency_ticks = tsc_diff;
1481 			}
1482 		} else {
1483 			stat->bytes_written += num_blocks * blocklen;
1484 			stat->num_write_ops++;
1485 			stat->write_latency_ticks += tsc_diff;
1486 			if (stat->max_write_latency_ticks < tsc_diff) {
1487 				stat->max_write_latency_ticks = tsc_diff;
1488 			}
1489 			if (stat->min_write_latency_ticks > tsc_diff) {
1490 				stat->min_write_latency_ticks = tsc_diff;
1491 			}
1492 		}
1493 		break;
1494 	case SPDK_BDEV_IO_TYPE_COPY:
1495 		stat->bytes_copied += num_blocks * blocklen;
1496 		stat->num_copy_ops++;
1497 		stat->copy_latency_ticks += tsc_diff;
1498 		if (stat->max_copy_latency_ticks < tsc_diff) {
1499 			stat->max_copy_latency_ticks = tsc_diff;
1500 		}
1501 		if (stat->min_copy_latency_ticks > tsc_diff) {
1502 			stat->min_copy_latency_ticks = tsc_diff;
1503 		}
1504 		break;
1505 	default:
1506 		break;
1507 	}
1508 }
1509 
1510 static bool
1511 bdev_nvme_check_retry_io(struct nvme_bdev_io *bio,
1512 			 const struct spdk_nvme_cpl *cpl,
1513 			 struct nvme_bdev_channel *nbdev_ch,
1514 			 uint64_t *_delay_ms)
1515 {
1516 	struct nvme_io_path *io_path = bio->io_path;
1517 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1518 	const struct spdk_nvme_ctrlr_data *cdata;
1519 
1520 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1521 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1522 	    !nvme_io_path_is_available(io_path) ||
1523 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1524 		bdev_nvme_clear_current_io_path(nbdev_ch);
1525 		bio->io_path = NULL;
1526 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1527 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1528 				io_path->nvme_ns->ana_state_updating = true;
1529 			}
1530 		}
1531 		if (!any_io_path_may_become_available(nbdev_ch)) {
1532 			return false;
1533 		}
1534 		*_delay_ms = 0;
1535 	} else {
1536 		bio->retry_count++;
1537 
1538 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1539 
1540 		if (cpl->status.crd != 0) {
1541 			*_delay_ms = cdata->crdt[cpl->status.crd] * 100;
1542 		} else {
1543 			*_delay_ms = 0;
1544 		}
1545 	}
1546 
1547 	return true;
1548 }
1549 
1550 static inline void
1551 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1552 				  const struct spdk_nvme_cpl *cpl)
1553 {
1554 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1555 	struct nvme_bdev_channel *nbdev_ch;
1556 	uint64_t delay_ms;
1557 
1558 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1559 
1560 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1561 		bdev_nvme_update_io_path_stat(bio);
1562 		goto complete;
1563 	}
1564 
1565 	/* Update error counts before deciding if retry is needed.
1566 	 * Hence, error counts may be more than the number of I/O errors.
1567 	 */
1568 	bdev_nvme_update_nvme_error_stat(bdev_io, cpl);
1569 
1570 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1571 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1572 		goto complete;
1573 	}
1574 
1575 	/* At this point we don't know whether the sequence was successfully executed or not, so we
1576 	 * cannot retry the IO */
1577 	if (bdev_io->u.bdev.accel_sequence != NULL) {
1578 		goto complete;
1579 	}
1580 
1581 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1582 
1583 	if (bdev_nvme_check_retry_io(bio, cpl, nbdev_ch, &delay_ms)) {
1584 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1585 		return;
1586 	}
1587 
1588 complete:
1589 	bio->retry_count = 0;
1590 	bio->submit_tsc = 0;
1591 	bdev_io->u.bdev.accel_sequence = NULL;
1592 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1593 }
1594 
1595 static inline void
1596 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1597 {
1598 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1599 	struct nvme_bdev_channel *nbdev_ch;
1600 	enum spdk_bdev_io_status io_status;
1601 
1602 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1603 
1604 	switch (rc) {
1605 	case 0:
1606 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1607 		break;
1608 	case -ENOMEM:
1609 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1610 		break;
1611 	case -ENXIO:
1612 		if (g_opts.bdev_retry_count == -1 || bio->retry_count < g_opts.bdev_retry_count) {
1613 			nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1614 
1615 			bdev_nvme_clear_current_io_path(nbdev_ch);
1616 			bio->io_path = NULL;
1617 
1618 			if (any_io_path_may_become_available(nbdev_ch)) {
1619 				bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1620 				return;
1621 			}
1622 		}
1623 
1624 	/* fallthrough */
1625 	default:
1626 		spdk_accel_sequence_abort(bdev_io->u.bdev.accel_sequence);
1627 		bdev_io->u.bdev.accel_sequence = NULL;
1628 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1629 		break;
1630 	}
1631 
1632 	bio->retry_count = 0;
1633 	bio->submit_tsc = 0;
1634 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1635 }
1636 
1637 static inline void
1638 bdev_nvme_admin_complete(struct nvme_bdev_io *bio, int rc)
1639 {
1640 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1641 	enum spdk_bdev_io_status io_status;
1642 
1643 	switch (rc) {
1644 	case 0:
1645 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1646 		break;
1647 	case -ENOMEM:
1648 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1649 		break;
1650 	case -ENXIO:
1651 	/* fallthrough */
1652 	default:
1653 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1654 		break;
1655 	}
1656 
1657 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1658 }
1659 
1660 static void
1661 bdev_nvme_clear_io_path_caches_done(struct nvme_ctrlr *nvme_ctrlr,
1662 				    void *ctx, int status)
1663 {
1664 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1665 
1666 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1667 	nvme_ctrlr->io_path_cache_clearing = false;
1668 
1669 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1670 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1671 		return;
1672 	}
1673 
1674 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1675 
1676 	nvme_ctrlr_unregister(nvme_ctrlr);
1677 }
1678 
1679 static void
1680 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1681 {
1682 	struct nvme_io_path *io_path;
1683 
1684 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1685 		if (io_path->nbdev_ch == NULL) {
1686 			continue;
1687 		}
1688 		bdev_nvme_clear_current_io_path(io_path->nbdev_ch);
1689 	}
1690 }
1691 
1692 static void
1693 bdev_nvme_clear_io_path_cache(struct nvme_ctrlr_channel_iter *i,
1694 			      struct nvme_ctrlr *nvme_ctrlr,
1695 			      struct nvme_ctrlr_channel *ctrlr_ch,
1696 			      void *ctx)
1697 {
1698 	assert(ctrlr_ch->qpair != NULL);
1699 
1700 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1701 
1702 	nvme_ctrlr_for_each_channel_continue(i, 0);
1703 }
1704 
1705 static void
1706 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1707 {
1708 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1709 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1710 	    nvme_ctrlr->io_path_cache_clearing) {
1711 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1712 		return;
1713 	}
1714 
1715 	nvme_ctrlr->io_path_cache_clearing = true;
1716 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1717 
1718 	nvme_ctrlr_for_each_channel(nvme_ctrlr,
1719 				    bdev_nvme_clear_io_path_cache,
1720 				    NULL,
1721 				    bdev_nvme_clear_io_path_caches_done);
1722 }
1723 
1724 static struct nvme_qpair *
1725 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1726 {
1727 	struct nvme_qpair *nvme_qpair;
1728 
1729 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1730 		if (nvme_qpair->qpair == qpair) {
1731 			break;
1732 		}
1733 	}
1734 
1735 	return nvme_qpair;
1736 }
1737 
1738 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1739 
1740 static void
1741 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1742 {
1743 	struct nvme_poll_group *group = poll_group_ctx;
1744 	struct nvme_qpair *nvme_qpair;
1745 	struct nvme_ctrlr *nvme_ctrlr;
1746 	struct nvme_ctrlr_channel *ctrlr_ch;
1747 	int status;
1748 
1749 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1750 	if (nvme_qpair == NULL) {
1751 		return;
1752 	}
1753 
1754 	if (nvme_qpair->qpair != NULL) {
1755 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1756 		nvme_qpair->qpair = NULL;
1757 	}
1758 
1759 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1760 
1761 	nvme_ctrlr = nvme_qpair->ctrlr;
1762 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1763 
1764 	if (ctrlr_ch != NULL) {
1765 		if (ctrlr_ch->reset_iter != NULL) {
1766 			/* We are in a full reset sequence. */
1767 			if (ctrlr_ch->connect_poller != NULL) {
1768 				/* qpair was failed to connect. Abort the reset sequence. */
1769 				NVME_CTRLR_INFOLOG(nvme_ctrlr,
1770 						   "qpair %p was failed to connect. abort the reset ctrlr sequence.\n",
1771 						   qpair);
1772 				spdk_poller_unregister(&ctrlr_ch->connect_poller);
1773 				status = -1;
1774 			} else {
1775 				/* qpair was completed to disconnect. Just move to the next ctrlr_channel. */
1776 				NVME_CTRLR_INFOLOG(nvme_ctrlr,
1777 						   "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1778 						   qpair);
1779 				status = 0;
1780 			}
1781 			nvme_ctrlr_for_each_channel_continue(ctrlr_ch->reset_iter, status);
1782 			ctrlr_ch->reset_iter = NULL;
1783 		} else {
1784 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1785 			NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpair %p was disconnected and freed. reset controller.\n",
1786 					   qpair);
1787 			bdev_nvme_failover_ctrlr(nvme_ctrlr);
1788 		}
1789 	} else {
1790 		/* In this case, ctrlr_channel is already deleted. */
1791 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpair %p was disconnected and freed. delete nvme_qpair.\n",
1792 				   qpair);
1793 		nvme_qpair_delete(nvme_qpair);
1794 	}
1795 }
1796 
1797 static void
1798 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1799 {
1800 	struct nvme_qpair *nvme_qpair;
1801 
1802 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1803 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1804 			continue;
1805 		}
1806 
1807 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1808 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1809 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1810 		}
1811 	}
1812 }
1813 
1814 static int
1815 bdev_nvme_poll(void *arg)
1816 {
1817 	struct nvme_poll_group *group = arg;
1818 	int64_t num_completions;
1819 
1820 	if (group->collect_spin_stat && group->start_ticks == 0) {
1821 		group->start_ticks = spdk_get_ticks();
1822 	}
1823 
1824 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1825 			  bdev_nvme_disconnected_qpair_cb);
1826 	if (group->collect_spin_stat) {
1827 		if (num_completions > 0) {
1828 			if (group->end_ticks != 0) {
1829 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1830 				group->end_ticks = 0;
1831 			}
1832 			group->start_ticks = 0;
1833 		} else {
1834 			group->end_ticks = spdk_get_ticks();
1835 		}
1836 	}
1837 
1838 	if (spdk_unlikely(num_completions < 0)) {
1839 		bdev_nvme_check_io_qpairs(group);
1840 	}
1841 
1842 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1843 }
1844 
1845 static int bdev_nvme_poll_adminq(void *arg);
1846 
1847 static void
1848 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1849 {
1850 	if (spdk_interrupt_mode_is_enabled()) {
1851 		return;
1852 	}
1853 
1854 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1855 
1856 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1857 					  nvme_ctrlr, new_period_us);
1858 }
1859 
1860 static int
1861 bdev_nvme_poll_adminq(void *arg)
1862 {
1863 	int32_t rc;
1864 	struct nvme_ctrlr *nvme_ctrlr = arg;
1865 	nvme_ctrlr_disconnected_cb disconnected_cb;
1866 
1867 	assert(nvme_ctrlr != NULL);
1868 
1869 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1870 	if (rc < 0) {
1871 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1872 		nvme_ctrlr->disconnected_cb = NULL;
1873 
1874 		if (disconnected_cb != NULL) {
1875 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1876 							    g_opts.nvme_adminq_poll_period_us);
1877 			disconnected_cb(nvme_ctrlr);
1878 		} else {
1879 			bdev_nvme_failover_ctrlr(nvme_ctrlr);
1880 		}
1881 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1882 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1883 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1884 	}
1885 
1886 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1887 }
1888 
1889 static void
1890 nvme_bdev_free(void *io_device)
1891 {
1892 	struct nvme_bdev *nvme_disk = io_device;
1893 
1894 	pthread_mutex_destroy(&nvme_disk->mutex);
1895 	free(nvme_disk->disk.name);
1896 	free(nvme_disk->err_stat);
1897 	free(nvme_disk);
1898 }
1899 
1900 static int
1901 bdev_nvme_destruct(void *ctx)
1902 {
1903 	struct nvme_bdev *nvme_disk = ctx;
1904 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1905 
1906 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1907 
1908 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1909 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1910 
1911 		nvme_ns->bdev = NULL;
1912 
1913 		assert(nvme_ns->id > 0);
1914 
1915 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1916 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1917 
1918 			nvme_ctrlr_put_ref(nvme_ns->ctrlr);
1919 			nvme_ns_free(nvme_ns);
1920 		} else {
1921 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1922 		}
1923 	}
1924 
1925 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1926 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1927 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1928 
1929 	spdk_io_device_unregister(nvme_disk, nvme_bdev_free);
1930 
1931 	return 0;
1932 }
1933 
1934 static int
1935 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1936 {
1937 	struct nvme_ctrlr *nvme_ctrlr;
1938 	struct spdk_nvme_io_qpair_opts opts;
1939 	struct spdk_nvme_qpair *qpair;
1940 	int rc;
1941 
1942 	nvme_ctrlr = nvme_qpair->ctrlr;
1943 
1944 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1945 	opts.create_only = true;
1946 	/* In interrupt mode qpairs must be created in sync mode, else it will never be connected.
1947 	 * delay_cmd_submit must be false as in interrupt mode requests cannot be submitted in
1948 	 * completion context.
1949 	 */
1950 	if (!spdk_interrupt_mode_is_enabled()) {
1951 		opts.async_mode = true;
1952 		opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1953 	}
1954 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1955 	g_opts.io_queue_requests = opts.io_queue_requests;
1956 
1957 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1958 	if (qpair == NULL) {
1959 		return -1;
1960 	}
1961 
1962 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1963 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1964 
1965 	assert(nvme_qpair->group != NULL);
1966 
1967 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1968 	if (rc != 0) {
1969 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Unable to begin polling on NVMe Channel.\n");
1970 		goto err;
1971 	}
1972 
1973 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1974 	if (rc != 0) {
1975 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Unable to connect I/O qpair.\n");
1976 		goto err;
1977 	}
1978 
1979 	nvme_qpair->qpair = qpair;
1980 
1981 	if (!g_opts.disable_auto_failback) {
1982 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1983 	}
1984 
1985 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "Connecting qpair %p:%u started.\n",
1986 			   qpair, spdk_nvme_qpair_get_id(qpair));
1987 
1988 	return 0;
1989 
1990 err:
1991 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1992 
1993 	return rc;
1994 }
1995 
1996 static void bdev_nvme_reset_io_continue(void *cb_arg, int rc);
1997 
1998 static void
1999 bdev_nvme_complete_pending_resets(struct nvme_ctrlr *nvme_ctrlr, bool success)
2000 {
2001 	int rc = 0;
2002 	struct nvme_bdev_io *bio;
2003 
2004 	if (!success) {
2005 		rc = -1;
2006 	}
2007 
2008 	while (!TAILQ_EMPTY(&nvme_ctrlr->pending_resets)) {
2009 		bio = TAILQ_FIRST(&nvme_ctrlr->pending_resets);
2010 		TAILQ_REMOVE(&nvme_ctrlr->pending_resets, bio, retry_link);
2011 
2012 		bdev_nvme_reset_io_continue(bio, rc);
2013 	}
2014 }
2015 
2016 /* This function marks the current trid as failed by storing the current ticks
2017  * and then sets the next trid to the active trid within a controller if exists.
2018  *
2019  * The purpose of the boolean return value is to request the caller to disconnect
2020  * the current trid now to try connecting the next trid.
2021  */
2022 static bool
2023 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove, bool start)
2024 {
2025 	struct nvme_path_id *path_id, *next_path;
2026 	int rc __attribute__((unused));
2027 
2028 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
2029 	assert(path_id);
2030 	assert(path_id == nvme_ctrlr->active_path_id);
2031 	next_path = TAILQ_NEXT(path_id, link);
2032 
2033 	/* Update the last failed time. It means the trid is failed if its last
2034 	 * failed time is non-zero.
2035 	 */
2036 	path_id->last_failed_tsc = spdk_get_ticks();
2037 
2038 	if (next_path == NULL) {
2039 		/* There is no alternate trid within a controller. */
2040 		return false;
2041 	}
2042 
2043 	if (!start && nvme_ctrlr->opts.reconnect_delay_sec == 0) {
2044 		/* Connect is not retried in a controller reset sequence. Connecting
2045 		 * the next trid will be done by the next bdev_nvme_failover_ctrlr() call.
2046 		 */
2047 		return false;
2048 	}
2049 
2050 	assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
2051 
2052 	NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Start failover from %s:%s to %s:%s\n",
2053 			     path_id->trid.traddr, path_id->trid.trsvcid,
2054 			     next_path->trid.traddr, next_path->trid.trsvcid);
2055 
2056 	spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
2057 	nvme_ctrlr->active_path_id = next_path;
2058 	rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
2059 	assert(rc == 0);
2060 	TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
2061 	if (!remove) {
2062 		/** Shuffle the old trid to the end of the list and use the new one.
2063 		 * Allows for round robin through multiple connections.
2064 		 */
2065 		TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
2066 	} else {
2067 		free(path_id);
2068 	}
2069 
2070 	if (start || next_path->last_failed_tsc == 0) {
2071 		/* bdev_nvme_failover_ctrlr() is just called or the next trid is not failed
2072 		 * or used yet. Try the next trid now.
2073 		 */
2074 		return true;
2075 	}
2076 
2077 	if (spdk_get_ticks() > next_path->last_failed_tsc + spdk_get_ticks_hz() *
2078 	    nvme_ctrlr->opts.reconnect_delay_sec) {
2079 		/* Enough backoff passed since the next trid failed. Try the next trid now. */
2080 		return true;
2081 	}
2082 
2083 	/* The next trid will be tried after reconnect_delay_sec seconds. */
2084 	return false;
2085 }
2086 
2087 static bool
2088 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
2089 {
2090 	int32_t elapsed;
2091 
2092 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
2093 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
2094 		return false;
2095 	}
2096 
2097 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
2098 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
2099 		return true;
2100 	} else {
2101 		return false;
2102 	}
2103 }
2104 
2105 static bool
2106 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
2107 {
2108 	uint32_t elapsed;
2109 
2110 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
2111 		return false;
2112 	}
2113 
2114 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
2115 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
2116 		return true;
2117 	} else {
2118 		return false;
2119 	}
2120 }
2121 
2122 static void bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
2123 
2124 static void
2125 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
2126 {
2127 	int rc;
2128 
2129 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "Start disconnecting ctrlr.\n");
2130 
2131 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
2132 	if (rc != 0) {
2133 		NVME_CTRLR_WARNLOG(nvme_ctrlr, "disconnecting ctrlr failed.\n");
2134 
2135 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
2136 		 * fail the reset sequence immediately.
2137 		 */
2138 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2139 		return;
2140 	}
2141 
2142 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
2143 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
2144 	 */
2145 	assert(nvme_ctrlr->disconnected_cb == NULL);
2146 	nvme_ctrlr->disconnected_cb = cb_fn;
2147 
2148 	/* During disconnection, reduce the period to poll adminq more often. */
2149 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
2150 }
2151 
2152 enum bdev_nvme_op_after_reset {
2153 	OP_NONE,
2154 	OP_COMPLETE_PENDING_DESTRUCT,
2155 	OP_DESTRUCT,
2156 	OP_DELAYED_RECONNECT,
2157 	OP_FAILOVER,
2158 };
2159 
2160 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
2161 
2162 static _bdev_nvme_op_after_reset
2163 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
2164 {
2165 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
2166 		/* Complete pending destruct after reset completes. */
2167 		return OP_COMPLETE_PENDING_DESTRUCT;
2168 	} else if (nvme_ctrlr->pending_failover) {
2169 		nvme_ctrlr->pending_failover = false;
2170 		nvme_ctrlr->reset_start_tsc = 0;
2171 		return OP_FAILOVER;
2172 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
2173 		nvme_ctrlr->reset_start_tsc = 0;
2174 		return OP_NONE;
2175 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2176 		return OP_DESTRUCT;
2177 	} else {
2178 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
2179 			nvme_ctrlr->fast_io_fail_timedout = true;
2180 		}
2181 		return OP_DELAYED_RECONNECT;
2182 	}
2183 }
2184 
2185 static int bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
2186 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
2187 
2188 static int
2189 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
2190 {
2191 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2192 
2193 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
2194 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2195 
2196 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2197 
2198 	if (!nvme_ctrlr->reconnect_is_delayed) {
2199 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2200 		return SPDK_POLLER_BUSY;
2201 	}
2202 
2203 	nvme_ctrlr->reconnect_is_delayed = false;
2204 
2205 	if (nvme_ctrlr->destruct) {
2206 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2207 		return SPDK_POLLER_BUSY;
2208 	}
2209 
2210 	assert(nvme_ctrlr->resetting == false);
2211 	nvme_ctrlr->resetting = true;
2212 
2213 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2214 
2215 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2216 
2217 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2218 	return SPDK_POLLER_BUSY;
2219 }
2220 
2221 static void
2222 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
2223 {
2224 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2225 
2226 	assert(nvme_ctrlr->reconnect_is_delayed == false);
2227 	nvme_ctrlr->reconnect_is_delayed = true;
2228 
2229 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
2230 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
2231 					    nvme_ctrlr,
2232 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
2233 }
2234 
2235 static void remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr);
2236 
2237 static void
2238 bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
2239 {
2240 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2241 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2242 	enum bdev_nvme_op_after_reset op_after_reset;
2243 
2244 	assert(nvme_ctrlr->thread == spdk_get_thread());
2245 
2246 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2247 	if (!success) {
2248 		/* Connecting the active trid failed. Set the next alternate trid to the
2249 		 * active trid if it exists.
2250 		 */
2251 		if (bdev_nvme_failover_trid(nvme_ctrlr, false, false)) {
2252 			/* The next alternate trid exists and is ready to try. Try it now. */
2253 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
2254 
2255 			NVME_CTRLR_INFOLOG(nvme_ctrlr, "Try the next alternate trid %s:%s now.\n",
2256 					   nvme_ctrlr->active_path_id->trid.traddr,
2257 					   nvme_ctrlr->active_path_id->trid.trsvcid);
2258 
2259 			nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2260 			return;
2261 		}
2262 
2263 		/* We came here if there is no alternate trid or if the next trid exists but
2264 		 * is not ready to try. We will try the active trid after reconnect_delay_sec
2265 		 * seconds if it is non-zero or at the next reset call otherwise.
2266 		 */
2267 	} else {
2268 		/* Connecting the active trid succeeded. Clear the last failed time because it
2269 		 * means the trid is failed if its last failed time is non-zero.
2270 		 */
2271 		nvme_ctrlr->active_path_id->last_failed_tsc = 0;
2272 	}
2273 
2274 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "Clear pending resets.\n");
2275 
2276 	/* Make sure we clear any pending resets before returning. */
2277 	bdev_nvme_complete_pending_resets(nvme_ctrlr, success);
2278 
2279 	if (!success) {
2280 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Resetting controller failed.\n");
2281 	} else {
2282 		NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Resetting controller successful.\n");
2283 	}
2284 
2285 	nvme_ctrlr->resetting = false;
2286 	nvme_ctrlr->dont_retry = false;
2287 	nvme_ctrlr->in_failover = false;
2288 
2289 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2290 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2291 
2292 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
2293 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2294 
2295 	/* Delay callbacks when the next operation is a failover. */
2296 	if (ctrlr_op_cb_fn && op_after_reset != OP_FAILOVER) {
2297 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, success ? 0 : -1);
2298 	}
2299 
2300 	switch (op_after_reset) {
2301 	case OP_COMPLETE_PENDING_DESTRUCT:
2302 		nvme_ctrlr_unregister(nvme_ctrlr);
2303 		break;
2304 	case OP_DESTRUCT:
2305 		bdev_nvme_delete_ctrlr(nvme_ctrlr, false);
2306 		remove_discovery_entry(nvme_ctrlr);
2307 		break;
2308 	case OP_DELAYED_RECONNECT:
2309 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
2310 		break;
2311 	case OP_FAILOVER:
2312 		nvme_ctrlr->ctrlr_op_cb_fn = ctrlr_op_cb_fn;
2313 		nvme_ctrlr->ctrlr_op_cb_arg = ctrlr_op_cb_arg;
2314 		bdev_nvme_failover_ctrlr(nvme_ctrlr);
2315 		break;
2316 	default:
2317 		break;
2318 	}
2319 }
2320 
2321 static void
2322 bdev_nvme_reset_create_qpairs_failed(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2323 {
2324 	bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2325 }
2326 
2327 static void
2328 bdev_nvme_reset_destroy_qpair(struct nvme_ctrlr_channel_iter *i,
2329 			      struct nvme_ctrlr *nvme_ctrlr,
2330 			      struct nvme_ctrlr_channel *ctrlr_ch, void *ctx)
2331 {
2332 	struct nvme_qpair *nvme_qpair;
2333 	struct spdk_nvme_qpair *qpair;
2334 
2335 	nvme_qpair = ctrlr_ch->qpair;
2336 	assert(nvme_qpair != NULL);
2337 
2338 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2339 
2340 	qpair = nvme_qpair->qpair;
2341 	if (qpair != NULL) {
2342 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "Start disconnecting qpair %p:%u.\n",
2343 				   qpair, spdk_nvme_qpair_get_id(qpair));
2344 
2345 		if (nvme_qpair->ctrlr->dont_retry) {
2346 			spdk_nvme_qpair_set_abort_dnr(qpair, true);
2347 		}
2348 		spdk_nvme_ctrlr_disconnect_io_qpair(qpair);
2349 
2350 		/* The current full reset sequence will move to the next
2351 		 * ctrlr_channel after the qpair is actually disconnected.
2352 		 */
2353 		assert(ctrlr_ch->reset_iter == NULL);
2354 		ctrlr_ch->reset_iter = i;
2355 	} else {
2356 		nvme_ctrlr_for_each_channel_continue(i, 0);
2357 	}
2358 }
2359 
2360 static void
2361 bdev_nvme_reset_create_qpairs_done(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2362 {
2363 	if (status == 0) {
2364 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpairs were created after ctrlr reset.\n");
2365 
2366 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, true);
2367 	} else {
2368 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpairs were failed to create after ctrlr reset.\n");
2369 
2370 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
2371 		nvme_ctrlr_for_each_channel(nvme_ctrlr,
2372 					    bdev_nvme_reset_destroy_qpair,
2373 					    NULL,
2374 					    bdev_nvme_reset_create_qpairs_failed);
2375 	}
2376 }
2377 
2378 static int
2379 bdev_nvme_reset_check_qpair_connected(void *ctx)
2380 {
2381 	struct nvme_ctrlr_channel *ctrlr_ch = ctx;
2382 	struct nvme_qpair *nvme_qpair = ctrlr_ch->qpair;
2383 	struct spdk_nvme_qpair *qpair;
2384 
2385 	if (ctrlr_ch->reset_iter == NULL) {
2386 		/* qpair was already failed to connect and the reset sequence is being aborted. */
2387 		assert(ctrlr_ch->connect_poller == NULL);
2388 		assert(nvme_qpair->qpair == NULL);
2389 
2390 		NVME_CTRLR_INFOLOG(nvme_qpair->ctrlr,
2391 				   "qpair was already failed to connect. reset is being aborted.\n");
2392 		return SPDK_POLLER_BUSY;
2393 	}
2394 
2395 	qpair = nvme_qpair->qpair;
2396 	assert(qpair != NULL);
2397 
2398 	if (!spdk_nvme_qpair_is_connected(qpair)) {
2399 		return SPDK_POLLER_BUSY;
2400 	}
2401 
2402 	NVME_CTRLR_INFOLOG(nvme_qpair->ctrlr, "qpair %p:%u was connected.\n",
2403 			   qpair, spdk_nvme_qpair_get_id(qpair));
2404 
2405 	spdk_poller_unregister(&ctrlr_ch->connect_poller);
2406 
2407 	/* qpair was completed to connect. Move to the next ctrlr_channel */
2408 	nvme_ctrlr_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2409 	ctrlr_ch->reset_iter = NULL;
2410 
2411 	if (!g_opts.disable_auto_failback) {
2412 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
2413 	}
2414 
2415 	return SPDK_POLLER_BUSY;
2416 }
2417 
2418 static void
2419 bdev_nvme_reset_create_qpair(struct nvme_ctrlr_channel_iter *i,
2420 			     struct nvme_ctrlr *nvme_ctrlr,
2421 			     struct nvme_ctrlr_channel *ctrlr_ch,
2422 			     void *ctx)
2423 {
2424 	struct nvme_qpair *nvme_qpair = ctrlr_ch->qpair;
2425 	struct spdk_nvme_qpair *qpair;
2426 	int rc = 0;
2427 
2428 	if (nvme_qpair->qpair == NULL) {
2429 		rc = bdev_nvme_create_qpair(nvme_qpair);
2430 	}
2431 	if (rc == 0) {
2432 		ctrlr_ch->connect_poller = SPDK_POLLER_REGISTER(bdev_nvme_reset_check_qpair_connected,
2433 					   ctrlr_ch, 0);
2434 
2435 		qpair = nvme_qpair->qpair;
2436 
2437 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "Start checking qpair %p:%u to be connected.\n",
2438 				   qpair, spdk_nvme_qpair_get_id(qpair));
2439 
2440 		/* The current full reset sequence will move to the next
2441 		 * ctrlr_channel after the qpair is actually connected.
2442 		 */
2443 		assert(ctrlr_ch->reset_iter == NULL);
2444 		ctrlr_ch->reset_iter = i;
2445 	} else {
2446 		nvme_ctrlr_for_each_channel_continue(i, rc);
2447 	}
2448 }
2449 
2450 static void
2451 nvme_ctrlr_check_namespaces(struct nvme_ctrlr *nvme_ctrlr)
2452 {
2453 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
2454 	struct nvme_ns *nvme_ns;
2455 
2456 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
2457 	     nvme_ns != NULL;
2458 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
2459 		if (!spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
2460 			SPDK_DEBUGLOG(bdev_nvme, "NSID %u was removed during reset.\n", nvme_ns->id);
2461 			/* NS can be added again. Just nullify nvme_ns->ns. */
2462 			nvme_ns->ns = NULL;
2463 		}
2464 	}
2465 }
2466 
2467 
2468 static int
2469 bdev_nvme_reconnect_ctrlr_poll(void *arg)
2470 {
2471 	struct nvme_ctrlr *nvme_ctrlr = arg;
2472 	struct spdk_nvme_transport_id *trid;
2473 	int rc = -ETIMEDOUT;
2474 
2475 	if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2476 		/* Mark the ctrlr as failed. The next call to
2477 		 * spdk_nvme_ctrlr_reconnect_poll_async() will then
2478 		 * do the necessary cleanup and return failure.
2479 		 */
2480 		spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
2481 	}
2482 
2483 	rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
2484 	if (rc == -EAGAIN) {
2485 		return SPDK_POLLER_BUSY;
2486 	}
2487 
2488 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
2489 	if (rc == 0) {
2490 		trid = &nvme_ctrlr->active_path_id->trid;
2491 
2492 		if (spdk_nvme_trtype_is_fabrics(trid->trtype)) {
2493 			NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr was connected to %s:%s. Create qpairs.\n",
2494 					   trid->traddr, trid->trsvcid);
2495 		} else {
2496 			NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr was connected. Create qpairs.\n");
2497 		}
2498 
2499 		nvme_ctrlr_check_namespaces(nvme_ctrlr);
2500 
2501 		/* Recreate all of the I/O queue pairs */
2502 		nvme_ctrlr_for_each_channel(nvme_ctrlr,
2503 					    bdev_nvme_reset_create_qpair,
2504 					    NULL,
2505 					    bdev_nvme_reset_create_qpairs_done);
2506 	} else {
2507 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr could not be connected.\n");
2508 
2509 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2510 	}
2511 	return SPDK_POLLER_BUSY;
2512 }
2513 
2514 static void
2515 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2516 {
2517 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "Start reconnecting ctrlr.\n");
2518 
2519 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
2520 
2521 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
2522 	assert(nvme_ctrlr->reset_detach_poller == NULL);
2523 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
2524 					  nvme_ctrlr, 0);
2525 }
2526 
2527 static void
2528 bdev_nvme_reset_destroy_qpair_done(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2529 {
2530 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
2531 	assert(status == 0);
2532 
2533 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpairs were deleted.\n");
2534 
2535 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2536 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2537 	} else {
2538 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2539 	}
2540 }
2541 
2542 static void
2543 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2544 {
2545 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "Delete qpairs for reset.\n");
2546 
2547 	nvme_ctrlr_for_each_channel(nvme_ctrlr,
2548 				    bdev_nvme_reset_destroy_qpair,
2549 				    NULL,
2550 				    bdev_nvme_reset_destroy_qpair_done);
2551 }
2552 
2553 static void
2554 bdev_nvme_reconnect_ctrlr_now(void *ctx)
2555 {
2556 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2557 
2558 	assert(nvme_ctrlr->resetting == true);
2559 	assert(nvme_ctrlr->thread == spdk_get_thread());
2560 
2561 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2562 
2563 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2564 
2565 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2566 }
2567 
2568 static void
2569 _bdev_nvme_reset_ctrlr(void *ctx)
2570 {
2571 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2572 
2573 	assert(nvme_ctrlr->resetting == true);
2574 	assert(nvme_ctrlr->thread == spdk_get_thread());
2575 
2576 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2577 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
2578 	} else {
2579 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
2580 	}
2581 }
2582 
2583 static int
2584 bdev_nvme_reset_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, spdk_msg_fn *msg_fn)
2585 {
2586 	if (nvme_ctrlr->destruct) {
2587 		return -ENXIO;
2588 	}
2589 
2590 	if (nvme_ctrlr->resetting) {
2591 		NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Unable to perform reset, already in progress.\n");
2592 		return -EBUSY;
2593 	}
2594 
2595 	if (nvme_ctrlr->disabled) {
2596 		NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Unable to perform reset. Controller is disabled.\n");
2597 		return -EALREADY;
2598 	}
2599 
2600 	nvme_ctrlr->resetting = true;
2601 	nvme_ctrlr->dont_retry = true;
2602 
2603 	if (nvme_ctrlr->reconnect_is_delayed) {
2604 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "Reconnect is already scheduled.\n");
2605 		*msg_fn = bdev_nvme_reconnect_ctrlr_now;
2606 		nvme_ctrlr->reconnect_is_delayed = false;
2607 	} else {
2608 		*msg_fn = _bdev_nvme_reset_ctrlr;
2609 		assert(nvme_ctrlr->reset_start_tsc == 0);
2610 	}
2611 
2612 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2613 
2614 	return 0;
2615 }
2616 
2617 static int
2618 bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2619 {
2620 	spdk_msg_fn msg_fn;
2621 	int rc;
2622 
2623 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2624 	rc = bdev_nvme_reset_ctrlr_unsafe(nvme_ctrlr, &msg_fn);
2625 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2626 
2627 	if (rc == 0) {
2628 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2629 	}
2630 
2631 	return rc;
2632 }
2633 
2634 static int
2635 bdev_nvme_enable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2636 {
2637 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2638 	if (nvme_ctrlr->destruct) {
2639 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2640 		return -ENXIO;
2641 	}
2642 
2643 	if (nvme_ctrlr->resetting) {
2644 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2645 		return -EBUSY;
2646 	}
2647 
2648 	if (!nvme_ctrlr->disabled) {
2649 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2650 		return -EALREADY;
2651 	}
2652 
2653 	nvme_ctrlr->disabled = false;
2654 	nvme_ctrlr->resetting = true;
2655 
2656 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2657 
2658 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2659 
2660 	spdk_thread_send_msg(nvme_ctrlr->thread, bdev_nvme_reconnect_ctrlr_now, nvme_ctrlr);
2661 	return 0;
2662 }
2663 
2664 static void
2665 bdev_nvme_disable_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr)
2666 {
2667 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2668 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2669 	enum bdev_nvme_op_after_reset op_after_disable;
2670 
2671 	assert(nvme_ctrlr->thread == spdk_get_thread());
2672 
2673 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2674 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2675 
2676 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2677 
2678 	nvme_ctrlr->resetting = false;
2679 	nvme_ctrlr->dont_retry = false;
2680 
2681 	op_after_disable = bdev_nvme_check_op_after_reset(nvme_ctrlr, true);
2682 
2683 	nvme_ctrlr->disabled = true;
2684 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2685 
2686 	/* Make sure we clear any pending resets before returning. */
2687 	bdev_nvme_complete_pending_resets(nvme_ctrlr, true);
2688 
2689 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2690 
2691 	if (ctrlr_op_cb_fn) {
2692 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, 0);
2693 	}
2694 
2695 	switch (op_after_disable) {
2696 	case OP_COMPLETE_PENDING_DESTRUCT:
2697 		nvme_ctrlr_unregister(nvme_ctrlr);
2698 		break;
2699 	default:
2700 		break;
2701 	}
2702 }
2703 
2704 static void
2705 bdev_nvme_disable_destroy_qpairs_done(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2706 {
2707 	assert(status == 0);
2708 
2709 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2710 		bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2711 	} else {
2712 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_ctrlr_complete);
2713 	}
2714 }
2715 
2716 static void
2717 bdev_nvme_disable_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2718 {
2719 	nvme_ctrlr_for_each_channel(nvme_ctrlr,
2720 				    bdev_nvme_reset_destroy_qpair,
2721 				    NULL,
2722 				    bdev_nvme_disable_destroy_qpairs_done);
2723 }
2724 
2725 static void
2726 _bdev_nvme_cancel_reconnect_and_disable_ctrlr(void *ctx)
2727 {
2728 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2729 
2730 	assert(nvme_ctrlr->resetting == true);
2731 	assert(nvme_ctrlr->thread == spdk_get_thread());
2732 
2733 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2734 
2735 	bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2736 }
2737 
2738 static void
2739 _bdev_nvme_disconnect_and_disable_ctrlr(void *ctx)
2740 {
2741 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2742 
2743 	assert(nvme_ctrlr->resetting == true);
2744 	assert(nvme_ctrlr->thread == spdk_get_thread());
2745 
2746 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2747 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_destroy_qpairs);
2748 	} else {
2749 		bdev_nvme_disable_destroy_qpairs(nvme_ctrlr);
2750 	}
2751 }
2752 
2753 static int
2754 bdev_nvme_disable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2755 {
2756 	spdk_msg_fn msg_fn;
2757 
2758 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2759 	if (nvme_ctrlr->destruct) {
2760 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2761 		return -ENXIO;
2762 	}
2763 
2764 	if (nvme_ctrlr->resetting) {
2765 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2766 		return -EBUSY;
2767 	}
2768 
2769 	if (nvme_ctrlr->disabled) {
2770 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2771 		return -EALREADY;
2772 	}
2773 
2774 	nvme_ctrlr->resetting = true;
2775 	nvme_ctrlr->dont_retry = true;
2776 
2777 	if (nvme_ctrlr->reconnect_is_delayed) {
2778 		msg_fn = _bdev_nvme_cancel_reconnect_and_disable_ctrlr;
2779 		nvme_ctrlr->reconnect_is_delayed = false;
2780 	} else {
2781 		msg_fn = _bdev_nvme_disconnect_and_disable_ctrlr;
2782 	}
2783 
2784 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2785 
2786 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2787 
2788 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2789 	return 0;
2790 }
2791 
2792 static int
2793 nvme_ctrlr_op(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2794 	      bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2795 {
2796 	int rc;
2797 
2798 	switch (op) {
2799 	case NVME_CTRLR_OP_RESET:
2800 		rc = bdev_nvme_reset_ctrlr(nvme_ctrlr);
2801 		break;
2802 	case NVME_CTRLR_OP_ENABLE:
2803 		rc = bdev_nvme_enable_ctrlr(nvme_ctrlr);
2804 		break;
2805 	case NVME_CTRLR_OP_DISABLE:
2806 		rc = bdev_nvme_disable_ctrlr(nvme_ctrlr);
2807 		break;
2808 	default:
2809 		rc = -EINVAL;
2810 		break;
2811 	}
2812 
2813 	if (rc == 0) {
2814 		assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL);
2815 		assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL);
2816 		nvme_ctrlr->ctrlr_op_cb_fn = cb_fn;
2817 		nvme_ctrlr->ctrlr_op_cb_arg = cb_arg;
2818 	}
2819 	return rc;
2820 }
2821 
2822 struct nvme_ctrlr_op_rpc_ctx {
2823 	struct nvme_ctrlr *nvme_ctrlr;
2824 	struct spdk_thread *orig_thread;
2825 	enum nvme_ctrlr_op op;
2826 	int rc;
2827 	bdev_nvme_ctrlr_op_cb cb_fn;
2828 	void *cb_arg;
2829 };
2830 
2831 static void
2832 _nvme_ctrlr_op_rpc_complete(void *_ctx)
2833 {
2834 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2835 
2836 	assert(ctx != NULL);
2837 	assert(ctx->cb_fn != NULL);
2838 
2839 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2840 
2841 	free(ctx);
2842 }
2843 
2844 static void
2845 nvme_ctrlr_op_rpc_complete(void *cb_arg, int rc)
2846 {
2847 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2848 
2849 	ctx->rc = rc;
2850 
2851 	spdk_thread_send_msg(ctx->orig_thread, _nvme_ctrlr_op_rpc_complete, ctx);
2852 }
2853 
2854 void
2855 nvme_ctrlr_op_rpc(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2856 		  bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2857 {
2858 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2859 	int rc;
2860 
2861 	assert(cb_fn != NULL);
2862 
2863 	ctx = calloc(1, sizeof(*ctx));
2864 	if (ctx == NULL) {
2865 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2866 		cb_fn(cb_arg, -ENOMEM);
2867 		return;
2868 	}
2869 
2870 	ctx->orig_thread = spdk_get_thread();
2871 	ctx->cb_fn = cb_fn;
2872 	ctx->cb_arg = cb_arg;
2873 
2874 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_ctrlr_op_rpc_complete, ctx);
2875 	if (rc == 0) {
2876 		return;
2877 	} else if (rc == -EALREADY) {
2878 		rc = 0;
2879 	}
2880 
2881 	nvme_ctrlr_op_rpc_complete(ctx, rc);
2882 }
2883 
2884 static void nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc);
2885 
2886 static void
2887 _nvme_bdev_ctrlr_op_rpc_continue(void *_ctx)
2888 {
2889 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2890 	struct nvme_ctrlr *prev_nvme_ctrlr, *next_nvme_ctrlr;
2891 	int rc;
2892 
2893 	prev_nvme_ctrlr = ctx->nvme_ctrlr;
2894 	ctx->nvme_ctrlr = NULL;
2895 
2896 	if (ctx->rc != 0) {
2897 		goto complete;
2898 	}
2899 
2900 	next_nvme_ctrlr = TAILQ_NEXT(prev_nvme_ctrlr, tailq);
2901 	if (next_nvme_ctrlr == NULL) {
2902 		goto complete;
2903 	}
2904 
2905 	rc = nvme_ctrlr_op(next_nvme_ctrlr, ctx->op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2906 	if (rc == 0) {
2907 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2908 		return;
2909 	} else if (rc == -EALREADY) {
2910 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2911 		rc = 0;
2912 	}
2913 
2914 	ctx->rc = rc;
2915 
2916 complete:
2917 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2918 	free(ctx);
2919 }
2920 
2921 static void
2922 nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc)
2923 {
2924 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2925 
2926 	ctx->rc = rc;
2927 
2928 	spdk_thread_send_msg(ctx->orig_thread, _nvme_bdev_ctrlr_op_rpc_continue, ctx);
2929 }
2930 
2931 void
2932 nvme_bdev_ctrlr_op_rpc(struct nvme_bdev_ctrlr *nbdev_ctrlr, enum nvme_ctrlr_op op,
2933 		       bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2934 {
2935 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2936 	struct nvme_ctrlr *nvme_ctrlr;
2937 	int rc;
2938 
2939 	assert(cb_fn != NULL);
2940 
2941 	ctx = calloc(1, sizeof(*ctx));
2942 	if (ctx == NULL) {
2943 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2944 		cb_fn(cb_arg, -ENOMEM);
2945 		return;
2946 	}
2947 
2948 	ctx->orig_thread = spdk_get_thread();
2949 	ctx->op = op;
2950 	ctx->cb_fn = cb_fn;
2951 	ctx->cb_arg = cb_arg;
2952 
2953 	nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
2954 	assert(nvme_ctrlr != NULL);
2955 
2956 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2957 	if (rc == 0) {
2958 		ctx->nvme_ctrlr = nvme_ctrlr;
2959 		return;
2960 	} else if (rc == -EALREADY) {
2961 		ctx->nvme_ctrlr = nvme_ctrlr;
2962 		rc = 0;
2963 	}
2964 
2965 	nvme_bdev_ctrlr_op_rpc_continue(ctx, rc);
2966 }
2967 
2968 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
2969 
2970 static void
2971 bdev_nvme_unfreeze_bdev_channel_done(struct nvme_bdev *nbdev, void *ctx, int status)
2972 {
2973 	struct nvme_bdev_io *bio = ctx;
2974 	enum spdk_bdev_io_status io_status;
2975 
2976 	if (bio->cpl.cdw0 == 0) {
2977 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2978 	} else {
2979 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
2980 	}
2981 
2982 	NVME_BDEV_INFOLOG(nbdev, "reset_io %p completed, status:%d\n", bio, io_status);
2983 
2984 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
2985 }
2986 
2987 static void
2988 bdev_nvme_unfreeze_bdev_channel(struct nvme_bdev_channel_iter *i,
2989 				struct nvme_bdev *nbdev,
2990 				struct nvme_bdev_channel *nbdev_ch, void *ctx)
2991 {
2992 	bdev_nvme_abort_retry_ios(nbdev_ch);
2993 	nbdev_ch->resetting = false;
2994 
2995 	nvme_bdev_for_each_channel_continue(i, 0);
2996 }
2997 
2998 static void
2999 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
3000 {
3001 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
3002 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
3003 
3004 	/* Abort all queued I/Os for retry. */
3005 	nvme_bdev_for_each_channel(nbdev,
3006 				   bdev_nvme_unfreeze_bdev_channel,
3007 				   bio,
3008 				   bdev_nvme_unfreeze_bdev_channel_done);
3009 }
3010 
3011 static void
3012 _bdev_nvme_reset_io_continue(void *ctx)
3013 {
3014 	struct nvme_bdev_io *bio = ctx;
3015 	struct nvme_io_path *prev_io_path, *next_io_path;
3016 	int rc;
3017 
3018 	prev_io_path = bio->io_path;
3019 	bio->io_path = NULL;
3020 
3021 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
3022 	if (next_io_path == NULL) {
3023 		goto complete;
3024 	}
3025 
3026 	rc = _bdev_nvme_reset_io(next_io_path, bio);
3027 	if (rc == 0) {
3028 		return;
3029 	}
3030 
3031 complete:
3032 	bdev_nvme_reset_io_complete(bio);
3033 }
3034 
3035 static void
3036 bdev_nvme_reset_io_continue(void *cb_arg, int rc)
3037 {
3038 	struct nvme_bdev_io *bio = cb_arg;
3039 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
3040 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
3041 
3042 	NVME_BDEV_INFOLOG(nbdev, "continue reset_io %p, rc:%d\n", bio, rc);
3043 
3044 	/* Reset status is initialized as "failed". Set to "success" once we have at least one
3045 	 * successfully reset nvme_ctrlr.
3046 	 */
3047 	if (rc == 0) {
3048 		bio->cpl.cdw0 = 0;
3049 	}
3050 
3051 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), _bdev_nvme_reset_io_continue, bio);
3052 }
3053 
3054 static int
3055 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
3056 {
3057 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
3058 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
3059 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
3060 	spdk_msg_fn msg_fn;
3061 	int rc;
3062 
3063 	assert(bio->io_path == NULL);
3064 	bio->io_path = io_path;
3065 
3066 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3067 	rc = bdev_nvme_reset_ctrlr_unsafe(nvme_ctrlr, &msg_fn);
3068 	if (rc == -EBUSY) {
3069 		/*
3070 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
3071 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
3072 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
3073 		 */
3074 		TAILQ_INSERT_TAIL(&nvme_ctrlr->pending_resets, bio, retry_link);
3075 	}
3076 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
3077 
3078 	if (rc == 0) {
3079 		assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL);
3080 		assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL);
3081 		nvme_ctrlr->ctrlr_op_cb_fn = bdev_nvme_reset_io_continue;
3082 		nvme_ctrlr->ctrlr_op_cb_arg = bio;
3083 
3084 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
3085 
3086 		NVME_BDEV_INFOLOG(nbdev, "reset_io %p started resetting ctrlr [%s, %u].\n",
3087 				  bio, CTRLR_STRING(nvme_ctrlr), CTRLR_ID(nvme_ctrlr));
3088 	} else if (rc == -EBUSY) {
3089 		rc = 0;
3090 
3091 		NVME_BDEV_INFOLOG(nbdev, "reset_io %p was queued to ctrlr [%s, %u].\n",
3092 				  bio, CTRLR_STRING(nvme_ctrlr), CTRLR_ID(nvme_ctrlr));
3093 	} else {
3094 		NVME_BDEV_INFOLOG(nbdev, "reset_io %p could not reset ctrlr [%s, %u], rc:%d\n",
3095 				  bio, CTRLR_STRING(nvme_ctrlr), CTRLR_ID(nvme_ctrlr), rc);
3096 	}
3097 
3098 	return rc;
3099 }
3100 
3101 static void
3102 bdev_nvme_freeze_bdev_channel_done(struct nvme_bdev *nbdev, void *ctx, int status)
3103 {
3104 	struct nvme_bdev_io *bio = ctx;
3105 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
3106 	struct nvme_bdev_channel *nbdev_ch;
3107 	struct nvme_io_path *io_path;
3108 	int rc;
3109 
3110 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
3111 
3112 	/* Initialize with failed status. With multipath it is enough to have at least one successful
3113 	 * nvme_ctrlr reset. If there is none, reset status will remain failed.
3114 	 */
3115 	bio->cpl.cdw0 = 1;
3116 
3117 	/* Reset all nvme_ctrlrs of a bdev controller sequentially. */
3118 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
3119 	assert(io_path != NULL);
3120 
3121 	rc = _bdev_nvme_reset_io(io_path, bio);
3122 	if (rc != 0) {
3123 		/* If the current nvme_ctrlr is disabled, skip it and move to the next nvme_ctrlr. */
3124 		rc = (rc == -EALREADY) ? 0 : rc;
3125 
3126 		bdev_nvme_reset_io_continue(bio, rc);
3127 	}
3128 }
3129 
3130 static void
3131 bdev_nvme_freeze_bdev_channel(struct nvme_bdev_channel_iter *i,
3132 			      struct nvme_bdev *nbdev,
3133 			      struct nvme_bdev_channel *nbdev_ch, void *ctx)
3134 {
3135 	nbdev_ch->resetting = true;
3136 
3137 	nvme_bdev_for_each_channel_continue(i, 0);
3138 }
3139 
3140 static void
3141 bdev_nvme_reset_io(struct nvme_bdev *nbdev, struct nvme_bdev_io *bio)
3142 {
3143 	NVME_BDEV_INFOLOG(nbdev, "reset_io %p started.\n", bio);
3144 
3145 	nvme_bdev_for_each_channel(nbdev,
3146 				   bdev_nvme_freeze_bdev_channel,
3147 				   bio,
3148 				   bdev_nvme_freeze_bdev_channel_done);
3149 }
3150 
3151 static int
3152 bdev_nvme_failover_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool remove)
3153 {
3154 	if (nvme_ctrlr->destruct) {
3155 		/* Don't bother resetting if the controller is in the process of being destructed. */
3156 		return -ENXIO;
3157 	}
3158 
3159 	if (nvme_ctrlr->resetting) {
3160 		if (!nvme_ctrlr->in_failover) {
3161 			NVME_CTRLR_NOTICELOG(nvme_ctrlr,
3162 					     "Reset is already in progress. Defer failover until reset completes.\n");
3163 
3164 			/* Defer failover until reset completes. */
3165 			nvme_ctrlr->pending_failover = true;
3166 			return -EINPROGRESS;
3167 		} else {
3168 			NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Unable to perform failover, already in progress.\n");
3169 			return -EBUSY;
3170 		}
3171 	}
3172 
3173 	bdev_nvme_failover_trid(nvme_ctrlr, remove, true);
3174 
3175 	if (nvme_ctrlr->reconnect_is_delayed) {
3176 		NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Reconnect is already scheduled.\n");
3177 
3178 		/* We rely on the next reconnect for the failover. */
3179 		return -EALREADY;
3180 	}
3181 
3182 	if (nvme_ctrlr->disabled) {
3183 		NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Controller is disabled.\n");
3184 
3185 		/* We rely on the enablement for the failover. */
3186 		return -EALREADY;
3187 	}
3188 
3189 	nvme_ctrlr->resetting = true;
3190 	nvme_ctrlr->in_failover = true;
3191 
3192 	assert(nvme_ctrlr->reset_start_tsc == 0);
3193 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
3194 
3195 	return 0;
3196 }
3197 
3198 static int
3199 bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
3200 {
3201 	int rc;
3202 
3203 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3204 	rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, false);
3205 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
3206 
3207 	if (rc == 0) {
3208 		spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset_ctrlr, nvme_ctrlr);
3209 	} else if (rc == -EALREADY) {
3210 		rc = 0;
3211 	}
3212 
3213 	return rc;
3214 }
3215 
3216 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
3217 			   uint64_t num_blocks);
3218 
3219 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
3220 				  uint64_t num_blocks);
3221 
3222 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks,
3223 			  uint64_t src_offset_blocks,
3224 			  uint64_t num_blocks);
3225 
3226 static void
3227 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
3228 		     bool success)
3229 {
3230 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3231 	int ret;
3232 
3233 	if (!success) {
3234 		ret = -EINVAL;
3235 		goto exit;
3236 	}
3237 
3238 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
3239 		ret = -ENXIO;
3240 		goto exit;
3241 	}
3242 
3243 	ret = bdev_nvme_readv(bio,
3244 			      bdev_io->u.bdev.iovs,
3245 			      bdev_io->u.bdev.iovcnt,
3246 			      bdev_io->u.bdev.md_buf,
3247 			      bdev_io->u.bdev.num_blocks,
3248 			      bdev_io->u.bdev.offset_blocks,
3249 			      bdev_io->u.bdev.dif_check_flags,
3250 			      bdev_io->u.bdev.memory_domain,
3251 			      bdev_io->u.bdev.memory_domain_ctx,
3252 			      bdev_io->u.bdev.accel_sequence);
3253 
3254 exit:
3255 	if (spdk_unlikely(ret != 0)) {
3256 		bdev_nvme_io_complete(bio, ret);
3257 	}
3258 }
3259 
3260 static inline void
3261 _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
3262 {
3263 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3264 	struct spdk_bdev *bdev = bdev_io->bdev;
3265 	struct nvme_bdev_io *nbdev_io_to_abort;
3266 	int rc = 0;
3267 
3268 	switch (bdev_io->type) {
3269 	case SPDK_BDEV_IO_TYPE_READ:
3270 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
3271 
3272 			rc = bdev_nvme_readv(nbdev_io,
3273 					     bdev_io->u.bdev.iovs,
3274 					     bdev_io->u.bdev.iovcnt,
3275 					     bdev_io->u.bdev.md_buf,
3276 					     bdev_io->u.bdev.num_blocks,
3277 					     bdev_io->u.bdev.offset_blocks,
3278 					     bdev_io->u.bdev.dif_check_flags,
3279 					     bdev_io->u.bdev.memory_domain,
3280 					     bdev_io->u.bdev.memory_domain_ctx,
3281 					     bdev_io->u.bdev.accel_sequence);
3282 		} else {
3283 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
3284 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
3285 			rc = 0;
3286 		}
3287 		break;
3288 	case SPDK_BDEV_IO_TYPE_WRITE:
3289 		rc = bdev_nvme_writev(nbdev_io,
3290 				      bdev_io->u.bdev.iovs,
3291 				      bdev_io->u.bdev.iovcnt,
3292 				      bdev_io->u.bdev.md_buf,
3293 				      bdev_io->u.bdev.num_blocks,
3294 				      bdev_io->u.bdev.offset_blocks,
3295 				      bdev_io->u.bdev.dif_check_flags,
3296 				      bdev_io->u.bdev.memory_domain,
3297 				      bdev_io->u.bdev.memory_domain_ctx,
3298 				      bdev_io->u.bdev.accel_sequence,
3299 				      bdev_io->u.bdev.nvme_cdw12,
3300 				      bdev_io->u.bdev.nvme_cdw13);
3301 		break;
3302 	case SPDK_BDEV_IO_TYPE_COMPARE:
3303 		rc = bdev_nvme_comparev(nbdev_io,
3304 					bdev_io->u.bdev.iovs,
3305 					bdev_io->u.bdev.iovcnt,
3306 					bdev_io->u.bdev.md_buf,
3307 					bdev_io->u.bdev.num_blocks,
3308 					bdev_io->u.bdev.offset_blocks,
3309 					bdev_io->u.bdev.dif_check_flags);
3310 		break;
3311 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3312 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
3313 						   bdev_io->u.bdev.iovs,
3314 						   bdev_io->u.bdev.iovcnt,
3315 						   bdev_io->u.bdev.fused_iovs,
3316 						   bdev_io->u.bdev.fused_iovcnt,
3317 						   bdev_io->u.bdev.md_buf,
3318 						   bdev_io->u.bdev.num_blocks,
3319 						   bdev_io->u.bdev.offset_blocks,
3320 						   bdev_io->u.bdev.dif_check_flags);
3321 		break;
3322 	case SPDK_BDEV_IO_TYPE_UNMAP:
3323 		rc = bdev_nvme_unmap(nbdev_io,
3324 				     bdev_io->u.bdev.offset_blocks,
3325 				     bdev_io->u.bdev.num_blocks);
3326 		break;
3327 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3328 		rc =  bdev_nvme_write_zeroes(nbdev_io,
3329 					     bdev_io->u.bdev.offset_blocks,
3330 					     bdev_io->u.bdev.num_blocks);
3331 		break;
3332 	case SPDK_BDEV_IO_TYPE_RESET:
3333 		nbdev_io->io_path = NULL;
3334 		bdev_nvme_reset_io(bdev->ctxt, nbdev_io);
3335 		return;
3336 
3337 	case SPDK_BDEV_IO_TYPE_FLUSH:
3338 		bdev_nvme_io_complete(nbdev_io, 0);
3339 		return;
3340 
3341 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3342 		rc = bdev_nvme_zone_appendv(nbdev_io,
3343 					    bdev_io->u.bdev.iovs,
3344 					    bdev_io->u.bdev.iovcnt,
3345 					    bdev_io->u.bdev.md_buf,
3346 					    bdev_io->u.bdev.num_blocks,
3347 					    bdev_io->u.bdev.offset_blocks,
3348 					    bdev_io->u.bdev.dif_check_flags);
3349 		break;
3350 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3351 		rc = bdev_nvme_get_zone_info(nbdev_io,
3352 					     bdev_io->u.zone_mgmt.zone_id,
3353 					     bdev_io->u.zone_mgmt.num_zones,
3354 					     bdev_io->u.zone_mgmt.buf);
3355 		break;
3356 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3357 		rc = bdev_nvme_zone_management(nbdev_io,
3358 					       bdev_io->u.zone_mgmt.zone_id,
3359 					       bdev_io->u.zone_mgmt.zone_action);
3360 		break;
3361 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3362 		nbdev_io->io_path = NULL;
3363 		bdev_nvme_admin_passthru(nbdev_ch,
3364 					 nbdev_io,
3365 					 &bdev_io->u.nvme_passthru.cmd,
3366 					 bdev_io->u.nvme_passthru.buf,
3367 					 bdev_io->u.nvme_passthru.nbytes);
3368 		return;
3369 
3370 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3371 		rc = bdev_nvme_io_passthru(nbdev_io,
3372 					   &bdev_io->u.nvme_passthru.cmd,
3373 					   bdev_io->u.nvme_passthru.buf,
3374 					   bdev_io->u.nvme_passthru.nbytes);
3375 		break;
3376 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3377 		rc = bdev_nvme_io_passthru_md(nbdev_io,
3378 					      &bdev_io->u.nvme_passthru.cmd,
3379 					      bdev_io->u.nvme_passthru.buf,
3380 					      bdev_io->u.nvme_passthru.nbytes,
3381 					      bdev_io->u.nvme_passthru.md_buf,
3382 					      bdev_io->u.nvme_passthru.md_len);
3383 		break;
3384 	case SPDK_BDEV_IO_TYPE_NVME_IOV_MD:
3385 		rc = bdev_nvme_iov_passthru_md(nbdev_io,
3386 					       &bdev_io->u.nvme_passthru.cmd,
3387 					       bdev_io->u.nvme_passthru.iovs,
3388 					       bdev_io->u.nvme_passthru.iovcnt,
3389 					       bdev_io->u.nvme_passthru.nbytes,
3390 					       bdev_io->u.nvme_passthru.md_buf,
3391 					       bdev_io->u.nvme_passthru.md_len);
3392 		break;
3393 	case SPDK_BDEV_IO_TYPE_ABORT:
3394 		nbdev_io->io_path = NULL;
3395 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
3396 		bdev_nvme_abort(nbdev_ch,
3397 				nbdev_io,
3398 				nbdev_io_to_abort);
3399 		return;
3400 
3401 	case SPDK_BDEV_IO_TYPE_COPY:
3402 		rc = bdev_nvme_copy(nbdev_io,
3403 				    bdev_io->u.bdev.offset_blocks,
3404 				    bdev_io->u.bdev.copy.src_offset_blocks,
3405 				    bdev_io->u.bdev.num_blocks);
3406 		break;
3407 	default:
3408 		rc = -EINVAL;
3409 		break;
3410 	}
3411 
3412 	if (spdk_unlikely(rc != 0)) {
3413 		bdev_nvme_io_complete(nbdev_io, rc);
3414 	}
3415 }
3416 
3417 static void
3418 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
3419 {
3420 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3421 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3422 
3423 	if (spdk_likely(nbdev_io->submit_tsc == 0)) {
3424 		nbdev_io->submit_tsc = spdk_bdev_io_get_submit_tsc(bdev_io);
3425 	} else {
3426 		/* There are cases where submit_tsc != 0, i.e. retry I/O.
3427 		 * We need to update submit_tsc here.
3428 		 */
3429 		nbdev_io->submit_tsc = spdk_get_ticks();
3430 	}
3431 
3432 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
3433 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
3434 	if (spdk_unlikely(!nbdev_io->io_path)) {
3435 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
3436 			bdev_nvme_io_complete(nbdev_io, -ENXIO);
3437 			return;
3438 		}
3439 
3440 		/* Admin commands do not use the optimal I/O path.
3441 		 * Simply fall through even if it is not found.
3442 		 */
3443 	}
3444 
3445 	_bdev_nvme_submit_request(nbdev_ch, bdev_io);
3446 }
3447 
3448 static bool
3449 bdev_nvme_is_supported_csi(enum spdk_nvme_csi csi)
3450 {
3451 	switch (csi) {
3452 	case SPDK_NVME_CSI_NVM:
3453 		return true;
3454 	case SPDK_NVME_CSI_ZNS:
3455 		return true;
3456 	default:
3457 		return false;
3458 	}
3459 }
3460 
3461 static bool
3462 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
3463 {
3464 	struct nvme_bdev *nbdev = ctx;
3465 	struct nvme_ns *nvme_ns;
3466 	struct spdk_nvme_ns *ns;
3467 	struct spdk_nvme_ctrlr *ctrlr;
3468 	const struct spdk_nvme_ctrlr_data *cdata;
3469 
3470 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
3471 	assert(nvme_ns != NULL);
3472 	ns = nvme_ns->ns;
3473 	if (ns == NULL) {
3474 		return false;
3475 	}
3476 
3477 	if (!bdev_nvme_is_supported_csi(spdk_nvme_ns_get_csi(ns))) {
3478 		switch (io_type) {
3479 		case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3480 		case SPDK_BDEV_IO_TYPE_NVME_IO:
3481 			return true;
3482 
3483 		case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3484 			return spdk_nvme_ns_get_md_size(ns) ? true : false;
3485 
3486 		default:
3487 			return false;
3488 		}
3489 	}
3490 
3491 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3492 
3493 	switch (io_type) {
3494 	case SPDK_BDEV_IO_TYPE_READ:
3495 	case SPDK_BDEV_IO_TYPE_WRITE:
3496 	case SPDK_BDEV_IO_TYPE_RESET:
3497 	case SPDK_BDEV_IO_TYPE_FLUSH:
3498 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3499 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3500 	case SPDK_BDEV_IO_TYPE_ABORT:
3501 		return true;
3502 
3503 	case SPDK_BDEV_IO_TYPE_COMPARE:
3504 		return spdk_nvme_ns_supports_compare(ns);
3505 
3506 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3507 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
3508 
3509 	case SPDK_BDEV_IO_TYPE_UNMAP:
3510 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3511 		return cdata->oncs.dsm;
3512 
3513 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3514 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3515 		return cdata->oncs.write_zeroes;
3516 
3517 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3518 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
3519 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
3520 			return true;
3521 		}
3522 		return false;
3523 
3524 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3525 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3526 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
3527 
3528 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3529 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
3530 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
3531 
3532 	case SPDK_BDEV_IO_TYPE_COPY:
3533 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3534 		return cdata->oncs.copy;
3535 
3536 	default:
3537 		return false;
3538 	}
3539 }
3540 
3541 static int
3542 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
3543 {
3544 	struct nvme_qpair *nvme_qpair;
3545 	struct spdk_io_channel *pg_ch;
3546 	int rc;
3547 
3548 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
3549 	if (!nvme_qpair) {
3550 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to alloc nvme_qpair.\n");
3551 		return -1;
3552 	}
3553 
3554 	TAILQ_INIT(&nvme_qpair->io_path_list);
3555 
3556 	nvme_qpair->ctrlr = nvme_ctrlr;
3557 	nvme_qpair->ctrlr_ch = ctrlr_ch;
3558 
3559 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
3560 	if (!pg_ch) {
3561 		free(nvme_qpair);
3562 		return -1;
3563 	}
3564 
3565 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
3566 
3567 #ifdef SPDK_CONFIG_VTUNE
3568 	nvme_qpair->group->collect_spin_stat = true;
3569 #else
3570 	nvme_qpair->group->collect_spin_stat = false;
3571 #endif
3572 
3573 	if (!nvme_ctrlr->disabled) {
3574 		/* If a nvme_ctrlr is disabled, don't try to create qpair for it. Qpair will
3575 		 * be created when it's enabled.
3576 		 */
3577 		rc = bdev_nvme_create_qpair(nvme_qpair);
3578 		if (rc != 0) {
3579 			/* nvme_ctrlr can't create IO qpair if connection is down.
3580 			 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
3581 			 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
3582 			 * submitted IO will be queued until IO qpair is successfully created.
3583 			 *
3584 			 * Hence, if both are satisfied, ignore the failure.
3585 			 */
3586 			if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
3587 				spdk_put_io_channel(pg_ch);
3588 				free(nvme_qpair);
3589 				return rc;
3590 			}
3591 		}
3592 	}
3593 
3594 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3595 
3596 	ctrlr_ch->qpair = nvme_qpair;
3597 
3598 	nvme_ctrlr_get_ref(nvme_ctrlr);
3599 
3600 	return 0;
3601 }
3602 
3603 static int
3604 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3605 {
3606 	struct nvme_ctrlr *nvme_ctrlr = io_device;
3607 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3608 
3609 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
3610 }
3611 
3612 static void
3613 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
3614 {
3615 	struct nvme_io_path *io_path, *next;
3616 
3617 	assert(nvme_qpair->group != NULL);
3618 
3619 	TAILQ_FOREACH_SAFE(io_path, &nvme_qpair->io_path_list, tailq, next) {
3620 		TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
3621 		nvme_io_path_free(io_path);
3622 	}
3623 
3624 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3625 
3626 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
3627 
3628 	nvme_ctrlr_put_ref(nvme_qpair->ctrlr);
3629 
3630 	free(nvme_qpair);
3631 }
3632 
3633 static void
3634 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3635 {
3636 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3637 	struct nvme_qpair *nvme_qpair;
3638 
3639 	nvme_qpair = ctrlr_ch->qpair;
3640 	assert(nvme_qpair != NULL);
3641 
3642 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
3643 
3644 	if (nvme_qpair->qpair != NULL) {
3645 		/* Always try to disconnect the qpair, even if a reset is in progress.
3646 		 * The qpair may have been created after the reset process started.
3647 		 */
3648 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
3649 		if (ctrlr_ch->reset_iter) {
3650 			/* Skip current ctrlr_channel in a full reset sequence because
3651 			 * it is being deleted now.
3652 			 */
3653 			nvme_ctrlr_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
3654 		}
3655 
3656 		/* We cannot release a reference to the poll group now.
3657 		 * The qpair may be disconnected asynchronously later.
3658 		 * We need to poll it until it is actually disconnected.
3659 		 * Just detach the qpair from the deleting ctrlr_channel.
3660 		 */
3661 		nvme_qpair->ctrlr_ch = NULL;
3662 	} else {
3663 		assert(ctrlr_ch->reset_iter == NULL);
3664 
3665 		nvme_qpair_delete(nvme_qpair);
3666 	}
3667 }
3668 
3669 static inline struct spdk_io_channel *
3670 bdev_nvme_get_accel_channel(struct nvme_poll_group *group)
3671 {
3672 	if (spdk_unlikely(!group->accel_channel)) {
3673 		group->accel_channel = spdk_accel_get_io_channel();
3674 		if (!group->accel_channel) {
3675 			SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
3676 				    group);
3677 			return NULL;
3678 		}
3679 	}
3680 
3681 	return group->accel_channel;
3682 }
3683 
3684 static void
3685 bdev_nvme_finish_sequence(void *seq, spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3686 {
3687 	spdk_accel_sequence_finish(seq, cb_fn, cb_arg);
3688 }
3689 
3690 static void
3691 bdev_nvme_abort_sequence(void *seq)
3692 {
3693 	spdk_accel_sequence_abort(seq);
3694 }
3695 
3696 static void
3697 bdev_nvme_reverse_sequence(void *seq)
3698 {
3699 	spdk_accel_sequence_reverse(seq);
3700 }
3701 
3702 static int
3703 bdev_nvme_append_crc32c(void *ctx, void **seq, uint32_t *dst, struct iovec *iovs, uint32_t iovcnt,
3704 			struct spdk_memory_domain *domain, void *domain_ctx, uint32_t seed,
3705 			spdk_nvme_accel_step_cb cb_fn, void *cb_arg)
3706 {
3707 	struct spdk_io_channel *ch;
3708 	struct nvme_poll_group *group = ctx;
3709 
3710 	ch = bdev_nvme_get_accel_channel(group);
3711 	if (spdk_unlikely(ch == NULL)) {
3712 		return -ENOMEM;
3713 	}
3714 
3715 	return spdk_accel_append_crc32c((struct spdk_accel_sequence **)seq, ch, dst, iovs, iovcnt,
3716 					domain, domain_ctx, seed, cb_fn, cb_arg);
3717 }
3718 
3719 static int
3720 bdev_nvme_append_copy(void *ctx, void **seq, struct iovec *dst_iovs, uint32_t dst_iovcnt,
3721 		      struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
3722 		      struct iovec *src_iovs, uint32_t src_iovcnt,
3723 		      struct spdk_memory_domain *src_domain, void *src_domain_ctx,
3724 		      spdk_nvme_accel_step_cb cb_fn, void *cb_arg)
3725 {
3726 	struct spdk_io_channel *ch;
3727 	struct nvme_poll_group *group = ctx;
3728 
3729 	ch = bdev_nvme_get_accel_channel(group);
3730 	if (spdk_unlikely(ch == NULL)) {
3731 		return -ENOMEM;
3732 	}
3733 
3734 	return spdk_accel_append_copy((struct spdk_accel_sequence **)seq, ch,
3735 				      dst_iovs, dst_iovcnt, dst_domain, dst_domain_ctx,
3736 				      src_iovs, src_iovcnt, src_domain, src_domain_ctx,
3737 				      cb_fn, cb_arg);
3738 }
3739 
3740 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
3741 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
3742 	.append_crc32c		= bdev_nvme_append_crc32c,
3743 	.append_copy		= bdev_nvme_append_copy,
3744 	.finish_sequence	= bdev_nvme_finish_sequence,
3745 	.reverse_sequence	= bdev_nvme_reverse_sequence,
3746 	.abort_sequence		= bdev_nvme_abort_sequence,
3747 };
3748 
3749 static int
3750 bdev_nvme_interrupt_wrapper(void *ctx)
3751 {
3752 	int num_events;
3753 	struct nvme_poll_group *group = ctx;
3754 
3755 	num_events = spdk_nvme_poll_group_wait(group->group, bdev_nvme_disconnected_qpair_cb);
3756 	if (spdk_unlikely(num_events < 0)) {
3757 		bdev_nvme_check_io_qpairs(group);
3758 	}
3759 
3760 	return num_events;
3761 }
3762 
3763 static int
3764 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
3765 {
3766 	struct nvme_poll_group *group = ctx_buf;
3767 	uint64_t period;
3768 	int fd;
3769 
3770 	TAILQ_INIT(&group->qpair_list);
3771 
3772 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
3773 	if (group->group == NULL) {
3774 		return -1;
3775 	}
3776 
3777 	period = spdk_interrupt_mode_is_enabled() ? 0 : g_opts.nvme_ioq_poll_period_us;
3778 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, period);
3779 
3780 	if (group->poller == NULL) {
3781 		spdk_nvme_poll_group_destroy(group->group);
3782 		return -1;
3783 	}
3784 
3785 	if (spdk_interrupt_mode_is_enabled()) {
3786 		spdk_poller_register_interrupt(group->poller, NULL, NULL);
3787 
3788 		fd = spdk_nvme_poll_group_get_fd(group->group);
3789 		if (fd < 0) {
3790 			spdk_nvme_poll_group_destroy(group->group);
3791 			return -1;
3792 		}
3793 
3794 		group->intr = SPDK_INTERRUPT_REGISTER(fd, bdev_nvme_interrupt_wrapper, group);
3795 		if (!group->intr) {
3796 			spdk_nvme_poll_group_destroy(group->group);
3797 			return -1;
3798 		}
3799 	}
3800 
3801 	return 0;
3802 }
3803 
3804 static void
3805 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
3806 {
3807 	struct nvme_poll_group *group = ctx_buf;
3808 
3809 	assert(TAILQ_EMPTY(&group->qpair_list));
3810 
3811 	if (group->accel_channel) {
3812 		spdk_put_io_channel(group->accel_channel);
3813 	}
3814 
3815 	if (spdk_interrupt_mode_is_enabled()) {
3816 		spdk_interrupt_unregister(&group->intr);
3817 	}
3818 
3819 	spdk_poller_unregister(&group->poller);
3820 	if (spdk_nvme_poll_group_destroy(group->group)) {
3821 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
3822 		assert(false);
3823 	}
3824 }
3825 
3826 static struct spdk_io_channel *
3827 bdev_nvme_get_io_channel(void *ctx)
3828 {
3829 	struct nvme_bdev *nvme_bdev = ctx;
3830 
3831 	return spdk_get_io_channel(nvme_bdev);
3832 }
3833 
3834 static void *
3835 bdev_nvme_get_module_ctx(void *ctx)
3836 {
3837 	struct nvme_bdev *nvme_bdev = ctx;
3838 	struct nvme_ns *nvme_ns;
3839 
3840 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
3841 		return NULL;
3842 	}
3843 
3844 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
3845 	if (!nvme_ns) {
3846 		return NULL;
3847 	}
3848 
3849 	return nvme_ns->ns;
3850 }
3851 
3852 static const char *
3853 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
3854 {
3855 	switch (ana_state) {
3856 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3857 		return "optimized";
3858 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3859 		return "non_optimized";
3860 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3861 		return "inaccessible";
3862 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
3863 		return "persistent_loss";
3864 	case SPDK_NVME_ANA_CHANGE_STATE:
3865 		return "change";
3866 	default:
3867 		return NULL;
3868 	}
3869 }
3870 
3871 static int
3872 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
3873 {
3874 	struct spdk_memory_domain **_domains = NULL;
3875 	struct nvme_bdev *nbdev = ctx;
3876 	struct nvme_ns *nvme_ns;
3877 	int i = 0, _array_size = array_size;
3878 	int rc = 0;
3879 
3880 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3881 		if (domains && array_size >= i) {
3882 			_domains = &domains[i];
3883 		} else {
3884 			_domains = NULL;
3885 		}
3886 		rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size);
3887 		if (rc > 0) {
3888 			i += rc;
3889 			if (_array_size >= rc) {
3890 				_array_size -= rc;
3891 			} else {
3892 				_array_size = 0;
3893 			}
3894 		} else if (rc < 0) {
3895 			return rc;
3896 		}
3897 	}
3898 
3899 	return i;
3900 }
3901 
3902 static const char *
3903 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
3904 {
3905 	if (nvme_ctrlr->destruct) {
3906 		return "deleting";
3907 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
3908 		return "failed";
3909 	} else if (nvme_ctrlr->resetting) {
3910 		return "resetting";
3911 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
3912 		return "reconnect_is_delayed";
3913 	} else if (nvme_ctrlr->disabled) {
3914 		return "disabled";
3915 	} else {
3916 		return "enabled";
3917 	}
3918 }
3919 
3920 void
3921 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
3922 {
3923 	struct spdk_nvme_transport_id *trid;
3924 	const struct spdk_nvme_ctrlr_opts *opts;
3925 	const struct spdk_nvme_ctrlr_data *cdata;
3926 	struct nvme_path_id *path_id;
3927 	int32_t numa_id;
3928 
3929 	spdk_json_write_object_begin(w);
3930 
3931 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
3932 
3933 #ifdef SPDK_CONFIG_NVME_CUSE
3934 	size_t cuse_name_size = 128;
3935 	char cuse_name[cuse_name_size];
3936 
3937 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
3938 	if (rc == 0) {
3939 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3940 	}
3941 #endif
3942 	trid = &nvme_ctrlr->active_path_id->trid;
3943 	spdk_json_write_named_object_begin(w, "trid");
3944 	nvme_bdev_dump_trid_json(trid, w);
3945 	spdk_json_write_object_end(w);
3946 
3947 	path_id = TAILQ_NEXT(nvme_ctrlr->active_path_id, link);
3948 	if (path_id != NULL) {
3949 		spdk_json_write_named_array_begin(w, "alternate_trids");
3950 		do {
3951 			trid = &path_id->trid;
3952 			spdk_json_write_object_begin(w);
3953 			nvme_bdev_dump_trid_json(trid, w);
3954 			spdk_json_write_object_end(w);
3955 
3956 			path_id = TAILQ_NEXT(path_id, link);
3957 		} while (path_id != NULL);
3958 		spdk_json_write_array_end(w);
3959 	}
3960 
3961 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
3962 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3963 
3964 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
3965 	spdk_json_write_named_object_begin(w, "host");
3966 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
3967 	spdk_json_write_named_string(w, "addr", opts->src_addr);
3968 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
3969 	spdk_json_write_object_end(w);
3970 
3971 	numa_id = spdk_nvme_ctrlr_get_numa_id(nvme_ctrlr->ctrlr);
3972 	if (numa_id != SPDK_ENV_NUMA_ID_ANY) {
3973 		spdk_json_write_named_uint32(w, "numa_id", numa_id);
3974 	}
3975 	spdk_json_write_object_end(w);
3976 }
3977 
3978 static void
3979 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
3980 			 struct nvme_ns *nvme_ns)
3981 {
3982 	struct spdk_nvme_ns *ns;
3983 	struct spdk_nvme_ctrlr *ctrlr;
3984 	const struct spdk_nvme_ctrlr_data *cdata;
3985 	const struct spdk_nvme_transport_id *trid;
3986 	union spdk_nvme_vs_register vs;
3987 	const struct spdk_nvme_ns_data *nsdata;
3988 	char buf[128];
3989 
3990 	ns = nvme_ns->ns;
3991 	if (ns == NULL) {
3992 		return;
3993 	}
3994 
3995 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3996 
3997 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3998 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
3999 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
4000 
4001 	spdk_json_write_object_begin(w);
4002 
4003 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
4004 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
4005 	}
4006 
4007 	spdk_json_write_named_object_begin(w, "trid");
4008 
4009 	nvme_bdev_dump_trid_json(trid, w);
4010 
4011 	spdk_json_write_object_end(w);
4012 
4013 #ifdef SPDK_CONFIG_NVME_CUSE
4014 	size_t cuse_name_size = 128;
4015 	char cuse_name[cuse_name_size];
4016 
4017 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
4018 					    cuse_name, &cuse_name_size);
4019 	if (rc == 0) {
4020 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
4021 	}
4022 #endif
4023 
4024 	spdk_json_write_named_object_begin(w, "ctrlr_data");
4025 
4026 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
4027 
4028 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
4029 
4030 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
4031 	spdk_str_trim(buf);
4032 	spdk_json_write_named_string(w, "model_number", buf);
4033 
4034 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
4035 	spdk_str_trim(buf);
4036 	spdk_json_write_named_string(w, "serial_number", buf);
4037 
4038 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
4039 	spdk_str_trim(buf);
4040 	spdk_json_write_named_string(w, "firmware_revision", buf);
4041 
4042 	if (cdata->subnqn[0] != '\0') {
4043 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
4044 	}
4045 
4046 	spdk_json_write_named_object_begin(w, "oacs");
4047 
4048 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
4049 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
4050 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
4051 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
4052 
4053 	spdk_json_write_object_end(w);
4054 
4055 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
4056 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
4057 
4058 	spdk_json_write_object_end(w);
4059 
4060 	spdk_json_write_named_object_begin(w, "vs");
4061 
4062 	spdk_json_write_name(w, "nvme_version");
4063 	if (vs.bits.ter) {
4064 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
4065 	} else {
4066 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
4067 	}
4068 
4069 	spdk_json_write_object_end(w);
4070 
4071 	nsdata = spdk_nvme_ns_get_data(ns);
4072 
4073 	spdk_json_write_named_object_begin(w, "ns_data");
4074 
4075 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
4076 
4077 	if (cdata->cmic.ana_reporting) {
4078 		spdk_json_write_named_string(w, "ana_state",
4079 					     _nvme_ana_state_str(nvme_ns->ana_state));
4080 	}
4081 
4082 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
4083 
4084 	spdk_json_write_object_end(w);
4085 
4086 	if (cdata->oacs.security) {
4087 		spdk_json_write_named_object_begin(w, "security");
4088 
4089 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
4090 
4091 		spdk_json_write_object_end(w);
4092 	}
4093 
4094 	spdk_json_write_object_end(w);
4095 }
4096 
4097 static const char *
4098 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
4099 {
4100 	switch (nbdev->mp_policy) {
4101 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
4102 		return "active_passive";
4103 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
4104 		return "active_active";
4105 	default:
4106 		assert(false);
4107 		return "invalid";
4108 	}
4109 }
4110 
4111 static const char *
4112 nvme_bdev_get_mp_selector_str(struct nvme_bdev *nbdev)
4113 {
4114 	switch (nbdev->mp_selector) {
4115 	case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN:
4116 		return "round_robin";
4117 	case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH:
4118 		return "queue_depth";
4119 	default:
4120 		assert(false);
4121 		return "invalid";
4122 	}
4123 }
4124 
4125 static int
4126 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
4127 {
4128 	struct nvme_bdev *nvme_bdev = ctx;
4129 	struct nvme_ns *nvme_ns;
4130 
4131 	pthread_mutex_lock(&nvme_bdev->mutex);
4132 	spdk_json_write_named_array_begin(w, "nvme");
4133 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
4134 		nvme_namespace_info_json(w, nvme_ns);
4135 	}
4136 	spdk_json_write_array_end(w);
4137 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
4138 	if (nvme_bdev->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
4139 		spdk_json_write_named_string(w, "selector", nvme_bdev_get_mp_selector_str(nvme_bdev));
4140 		if (nvme_bdev->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
4141 			spdk_json_write_named_uint32(w, "rr_min_io", nvme_bdev->rr_min_io);
4142 		}
4143 	}
4144 	pthread_mutex_unlock(&nvme_bdev->mutex);
4145 
4146 	return 0;
4147 }
4148 
4149 static void
4150 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
4151 {
4152 	/* No config per bdev needed */
4153 }
4154 
4155 static uint64_t
4156 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
4157 {
4158 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
4159 	struct nvme_io_path *io_path;
4160 	struct nvme_poll_group *group;
4161 	uint64_t spin_time = 0;
4162 
4163 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
4164 		group = io_path->qpair->group;
4165 
4166 		if (!group || !group->collect_spin_stat) {
4167 			continue;
4168 		}
4169 
4170 		if (group->end_ticks != 0) {
4171 			group->spin_ticks += (group->end_ticks - group->start_ticks);
4172 			group->end_ticks = 0;
4173 		}
4174 
4175 		spin_time += group->spin_ticks;
4176 		group->start_ticks = 0;
4177 		group->spin_ticks = 0;
4178 	}
4179 
4180 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
4181 }
4182 
4183 static void
4184 bdev_nvme_reset_device_stat(void *ctx)
4185 {
4186 	struct nvme_bdev *nbdev = ctx;
4187 
4188 	if (nbdev->err_stat != NULL) {
4189 		memset(nbdev->err_stat, 0, sizeof(struct nvme_error_stat));
4190 	}
4191 }
4192 
4193 /* JSON string should be lowercases and underscore delimited string. */
4194 static void
4195 bdev_nvme_format_nvme_status(char *dst, const char *src)
4196 {
4197 	char tmp[256];
4198 
4199 	spdk_strcpy_replace(dst, 256, src, " - ", "_");
4200 	spdk_strcpy_replace(tmp, 256, dst, "-", "_");
4201 	spdk_strcpy_replace(dst, 256, tmp, " ", "_");
4202 	spdk_strlwr(dst);
4203 }
4204 
4205 static void
4206 bdev_nvme_dump_device_stat_json(void *ctx, struct spdk_json_write_ctx *w)
4207 {
4208 	struct nvme_bdev *nbdev = ctx;
4209 	struct spdk_nvme_status status = {};
4210 	uint16_t sct, sc;
4211 	char status_json[256];
4212 	const char *status_str;
4213 
4214 	if (nbdev->err_stat == NULL) {
4215 		return;
4216 	}
4217 
4218 	spdk_json_write_named_object_begin(w, "nvme_error");
4219 
4220 	spdk_json_write_named_object_begin(w, "status_type");
4221 	for (sct = 0; sct < 8; sct++) {
4222 		if (nbdev->err_stat->status_type[sct] == 0) {
4223 			continue;
4224 		}
4225 		status.sct = sct;
4226 
4227 		status_str = spdk_nvme_cpl_get_status_type_string(&status);
4228 		assert(status_str != NULL);
4229 		bdev_nvme_format_nvme_status(status_json, status_str);
4230 
4231 		spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status_type[sct]);
4232 	}
4233 	spdk_json_write_object_end(w);
4234 
4235 	spdk_json_write_named_object_begin(w, "status_code");
4236 	for (sct = 0; sct < 4; sct++) {
4237 		status.sct = sct;
4238 		for (sc = 0; sc < 256; sc++) {
4239 			if (nbdev->err_stat->status[sct][sc] == 0) {
4240 				continue;
4241 			}
4242 			status.sc = sc;
4243 
4244 			status_str = spdk_nvme_cpl_get_status_string(&status);
4245 			assert(status_str != NULL);
4246 			bdev_nvme_format_nvme_status(status_json, status_str);
4247 
4248 			spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status[sct][sc]);
4249 		}
4250 	}
4251 	spdk_json_write_object_end(w);
4252 
4253 	spdk_json_write_object_end(w);
4254 }
4255 
4256 static bool
4257 bdev_nvme_accel_sequence_supported(void *ctx, enum spdk_bdev_io_type type)
4258 {
4259 	struct nvme_bdev *nbdev = ctx;
4260 	struct nvme_ns *nvme_ns;
4261 	struct spdk_nvme_ctrlr *ctrlr;
4262 
4263 	if (!g_opts.allow_accel_sequence) {
4264 		return false;
4265 	}
4266 
4267 	switch (type) {
4268 	case SPDK_BDEV_IO_TYPE_WRITE:
4269 	case SPDK_BDEV_IO_TYPE_READ:
4270 		break;
4271 	default:
4272 		return false;
4273 	}
4274 
4275 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
4276 	assert(nvme_ns != NULL);
4277 
4278 	ctrlr = nvme_ns->ctrlr->ctrlr;
4279 	assert(ctrlr != NULL);
4280 
4281 	return spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ACCEL_SEQUENCE_SUPPORTED;
4282 }
4283 
4284 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
4285 	.destruct			= bdev_nvme_destruct,
4286 	.submit_request			= bdev_nvme_submit_request,
4287 	.io_type_supported		= bdev_nvme_io_type_supported,
4288 	.get_io_channel			= bdev_nvme_get_io_channel,
4289 	.dump_info_json			= bdev_nvme_dump_info_json,
4290 	.write_config_json		= bdev_nvme_write_config_json,
4291 	.get_spin_time			= bdev_nvme_get_spin_time,
4292 	.get_module_ctx			= bdev_nvme_get_module_ctx,
4293 	.get_memory_domains		= bdev_nvme_get_memory_domains,
4294 	.accel_sequence_supported	= bdev_nvme_accel_sequence_supported,
4295 	.reset_device_stat		= bdev_nvme_reset_device_stat,
4296 	.dump_device_stat_json		= bdev_nvme_dump_device_stat_json,
4297 };
4298 
4299 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
4300 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
4301 
4302 static int
4303 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
4304 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
4305 {
4306 	struct spdk_nvme_ana_group_descriptor *copied_desc;
4307 	uint8_t *orig_desc;
4308 	uint32_t i, desc_size, copy_len;
4309 	int rc = 0;
4310 
4311 	if (nvme_ctrlr->ana_log_page == NULL) {
4312 		return -EINVAL;
4313 	}
4314 
4315 	copied_desc = nvme_ctrlr->copied_ana_desc;
4316 
4317 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
4318 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
4319 
4320 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
4321 		memcpy(copied_desc, orig_desc, copy_len);
4322 
4323 		rc = cb_fn(copied_desc, cb_arg);
4324 		if (rc != 0) {
4325 			break;
4326 		}
4327 
4328 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
4329 			    copied_desc->num_of_nsid * sizeof(uint32_t);
4330 		orig_desc += desc_size;
4331 		copy_len -= desc_size;
4332 	}
4333 
4334 	return rc;
4335 }
4336 
4337 static int
4338 nvme_ns_ana_transition_timedout(void *ctx)
4339 {
4340 	struct nvme_ns *nvme_ns = ctx;
4341 
4342 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4343 	nvme_ns->ana_transition_timedout = true;
4344 
4345 	return SPDK_POLLER_BUSY;
4346 }
4347 
4348 static void
4349 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
4350 		       const struct spdk_nvme_ana_group_descriptor *desc)
4351 {
4352 	const struct spdk_nvme_ctrlr_data *cdata;
4353 
4354 	nvme_ns->ana_group_id = desc->ana_group_id;
4355 	nvme_ns->ana_state = desc->ana_state;
4356 	nvme_ns->ana_state_updating = false;
4357 
4358 	switch (nvme_ns->ana_state) {
4359 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
4360 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
4361 		nvme_ns->ana_transition_timedout = false;
4362 		spdk_poller_unregister(&nvme_ns->anatt_timer);
4363 		break;
4364 
4365 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
4366 	case SPDK_NVME_ANA_CHANGE_STATE:
4367 		if (nvme_ns->anatt_timer != NULL) {
4368 			break;
4369 		}
4370 
4371 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
4372 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
4373 				       nvme_ns,
4374 				       cdata->anatt * SPDK_SEC_TO_USEC);
4375 		break;
4376 	default:
4377 		break;
4378 	}
4379 }
4380 
4381 static int
4382 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
4383 {
4384 	struct nvme_ns *nvme_ns = cb_arg;
4385 	uint32_t i;
4386 
4387 	assert(nvme_ns->ns != NULL);
4388 
4389 	for (i = 0; i < desc->num_of_nsid; i++) {
4390 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
4391 			continue;
4392 		}
4393 
4394 		_nvme_ns_set_ana_state(nvme_ns, desc);
4395 		return 1;
4396 	}
4397 
4398 	return 0;
4399 }
4400 
4401 static int
4402 nvme_generate_uuid(const char *sn, uint32_t nsid, struct spdk_uuid *uuid)
4403 {
4404 	int rc = 0;
4405 	struct spdk_uuid new_uuid, namespace_uuid;
4406 	char merged_str[SPDK_NVME_CTRLR_SN_LEN + NSID_STR_LEN + 1] = {'\0'};
4407 	/* This namespace UUID was generated using uuid_generate() method. */
4408 	const char *namespace_str = {"edaed2de-24bc-4b07-b559-f47ecbe730fd"};
4409 	int size;
4410 
4411 	assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN);
4412 
4413 	spdk_uuid_set_null(&new_uuid);
4414 	spdk_uuid_set_null(&namespace_uuid);
4415 
4416 	size = snprintf(merged_str, sizeof(merged_str), "%s%"PRIu32, sn, nsid);
4417 	if (size <= 0 || (unsigned long)size >= sizeof(merged_str)) {
4418 		return -EINVAL;
4419 	}
4420 
4421 	spdk_uuid_parse(&namespace_uuid, namespace_str);
4422 
4423 	rc = spdk_uuid_generate_sha1(&new_uuid, &namespace_uuid, merged_str, size);
4424 	if (rc == 0) {
4425 		memcpy(uuid, &new_uuid, sizeof(struct spdk_uuid));
4426 	}
4427 
4428 	return rc;
4429 }
4430 
4431 static int
4432 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
4433 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
4434 		 struct spdk_bdev_nvme_ctrlr_opts *bdev_opts, void *ctx)
4435 {
4436 	const struct spdk_uuid		*uuid;
4437 	const uint8_t *nguid;
4438 	const struct spdk_nvme_ctrlr_data *cdata;
4439 	const struct spdk_nvme_ns_data	*nsdata;
4440 	const struct spdk_nvme_ctrlr_opts *opts;
4441 	enum spdk_nvme_csi		csi;
4442 	uint32_t atomic_bs, phys_bs, bs;
4443 	char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'};
4444 	int rc;
4445 
4446 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4447 	csi = spdk_nvme_ns_get_csi(ns);
4448 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
4449 
4450 	switch (csi) {
4451 	case SPDK_NVME_CSI_NVM:
4452 		disk->product_name = "NVMe disk";
4453 		break;
4454 	case SPDK_NVME_CSI_ZNS:
4455 		disk->product_name = "NVMe ZNS disk";
4456 		disk->zoned = true;
4457 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
4458 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
4459 					     spdk_nvme_ns_get_extended_sector_size(ns);
4460 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
4461 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
4462 		break;
4463 	default:
4464 		if (bdev_opts->allow_unrecognized_csi) {
4465 			disk->product_name = "NVMe Passthrough disk";
4466 			break;
4467 		}
4468 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
4469 		return -ENOTSUP;
4470 	}
4471 
4472 	nguid = spdk_nvme_ns_get_nguid(ns);
4473 	if (!nguid) {
4474 		uuid = spdk_nvme_ns_get_uuid(ns);
4475 		if (uuid) {
4476 			disk->uuid = *uuid;
4477 		} else if (g_opts.generate_uuids) {
4478 			spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0');
4479 			rc = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns), &disk->uuid);
4480 			if (rc < 0) {
4481 				SPDK_ERRLOG("UUID generation failed (%s)\n", spdk_strerror(-rc));
4482 				return rc;
4483 			}
4484 		}
4485 	} else {
4486 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
4487 	}
4488 
4489 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
4490 	if (!disk->name) {
4491 		return -ENOMEM;
4492 	}
4493 
4494 	disk->write_cache = 0;
4495 	if (cdata->vwc.present) {
4496 		/* Enable if the Volatile Write Cache exists */
4497 		disk->write_cache = 1;
4498 	}
4499 	if (cdata->oncs.write_zeroes) {
4500 		disk->max_write_zeroes = UINT16_MAX + 1;
4501 	}
4502 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
4503 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
4504 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
4505 	disk->ctratt.raw = cdata->ctratt.raw;
4506 	disk->nsid = spdk_nvme_ns_get_id(ns);
4507 	/* NVMe driver will split one request into multiple requests
4508 	 * based on MDTS and stripe boundary, the bdev layer will use
4509 	 * max_segment_size and max_num_segments to split one big IO
4510 	 * into multiple requests, then small request can't run out
4511 	 * of NVMe internal requests data structure.
4512 	 */
4513 	if (opts && opts->io_queue_requests) {
4514 		disk->max_num_segments = opts->io_queue_requests / 2;
4515 	}
4516 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
4517 		/* The nvme driver will try to split I/O that have too many
4518 		 * SGEs, but it doesn't work if that last SGE doesn't end on
4519 		 * an aggregate total that is block aligned. The bdev layer has
4520 		 * a more robust splitting framework, so use that instead for
4521 		 * this case. (See issue #3269.)
4522 		 */
4523 		uint16_t max_sges = spdk_nvme_ctrlr_get_max_sges(ctrlr);
4524 
4525 		if (disk->max_num_segments == 0) {
4526 			disk->max_num_segments = max_sges;
4527 		} else {
4528 			disk->max_num_segments = spdk_min(disk->max_num_segments, max_sges);
4529 		}
4530 	}
4531 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
4532 
4533 	nsdata = spdk_nvme_ns_get_data(ns);
4534 	bs = spdk_nvme_ns_get_sector_size(ns);
4535 	atomic_bs = bs;
4536 	phys_bs = bs;
4537 	if (nsdata->nabo == 0) {
4538 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
4539 			atomic_bs = bs * (1 + nsdata->nawupf);
4540 		} else {
4541 			atomic_bs = bs * (1 + cdata->awupf);
4542 		}
4543 	}
4544 	if (nsdata->nsfeat.optperf) {
4545 		phys_bs = bs * (1 + nsdata->npwg);
4546 	}
4547 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
4548 
4549 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
4550 	if (disk->md_len != 0) {
4551 		disk->md_interleave = nsdata->flbas.extended;
4552 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
4553 		if (disk->dif_type != SPDK_DIF_DISABLE) {
4554 			disk->dif_is_head_of_md = nsdata->dps.md_start;
4555 			disk->dif_check_flags = bdev_opts->prchk_flags;
4556 			disk->dif_pi_format = (enum spdk_dif_pi_format)spdk_nvme_ns_get_pi_format(ns);
4557 		}
4558 	}
4559 
4560 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
4561 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
4562 		disk->acwu = 0;
4563 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
4564 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
4565 	} else {
4566 		disk->acwu = cdata->acwu + 1; /* 0-based */
4567 	}
4568 
4569 	if (cdata->oncs.copy) {
4570 		/* For now bdev interface allows only single segment copy */
4571 		disk->max_copy = nsdata->mssrl;
4572 	}
4573 
4574 	disk->ctxt = ctx;
4575 	disk->fn_table = &nvmelib_fn_table;
4576 	disk->module = &nvme_if;
4577 
4578 	disk->numa.id_valid = 1;
4579 	disk->numa.id = spdk_nvme_ctrlr_get_numa_id(ctrlr);
4580 
4581 	return 0;
4582 }
4583 
4584 static struct nvme_bdev *
4585 nvme_bdev_alloc(void)
4586 {
4587 	struct nvme_bdev *bdev;
4588 	int rc;
4589 
4590 	bdev = calloc(1, sizeof(*bdev));
4591 	if (!bdev) {
4592 		SPDK_ERRLOG("bdev calloc() failed\n");
4593 		return NULL;
4594 	}
4595 
4596 	if (g_opts.nvme_error_stat) {
4597 		bdev->err_stat = calloc(1, sizeof(struct nvme_error_stat));
4598 		if (!bdev->err_stat) {
4599 			SPDK_ERRLOG("err_stat calloc() failed\n");
4600 			free(bdev);
4601 			return NULL;
4602 		}
4603 	}
4604 
4605 	rc = pthread_mutex_init(&bdev->mutex, NULL);
4606 	if (rc != 0) {
4607 		free(bdev->err_stat);
4608 		free(bdev);
4609 		return NULL;
4610 	}
4611 
4612 	bdev->ref = 1;
4613 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
4614 	bdev->mp_selector = BDEV_NVME_MP_SELECTOR_ROUND_ROBIN;
4615 	bdev->rr_min_io = UINT32_MAX;
4616 	TAILQ_INIT(&bdev->nvme_ns_list);
4617 
4618 	return bdev;
4619 }
4620 
4621 static int
4622 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4623 {
4624 	struct nvme_bdev *bdev;
4625 	struct nvme_bdev_ctrlr *nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
4626 	int rc;
4627 
4628 	bdev = nvme_bdev_alloc();
4629 	if (bdev == NULL) {
4630 		SPDK_ERRLOG("Failed to allocate NVMe bdev\n");
4631 		return -ENOMEM;
4632 	}
4633 
4634 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
4635 
4636 	rc = nvme_disk_create(&bdev->disk, nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
4637 			      nvme_ns->ns, &nvme_ctrlr->opts, bdev);
4638 	if (rc != 0) {
4639 		SPDK_ERRLOG("Failed to create NVMe disk\n");
4640 		nvme_bdev_free(bdev);
4641 		return rc;
4642 	}
4643 
4644 	spdk_io_device_register(bdev,
4645 				bdev_nvme_create_bdev_channel_cb,
4646 				bdev_nvme_destroy_bdev_channel_cb,
4647 				sizeof(struct nvme_bdev_channel),
4648 				bdev->disk.name);
4649 
4650 	nvme_ns->bdev = bdev;
4651 	bdev->nsid = nvme_ns->id;
4652 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4653 
4654 	bdev->nbdev_ctrlr = nbdev_ctrlr;
4655 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->bdevs, bdev, tailq);
4656 
4657 	rc = spdk_bdev_register(&bdev->disk);
4658 	if (rc != 0) {
4659 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
4660 		spdk_io_device_unregister(bdev, NULL);
4661 		nvme_ns->bdev = NULL;
4662 		TAILQ_REMOVE(&nbdev_ctrlr->bdevs, bdev, tailq);
4663 		nvme_bdev_free(bdev);
4664 		return rc;
4665 	}
4666 
4667 	return 0;
4668 }
4669 
4670 static bool
4671 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
4672 {
4673 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
4674 	const struct spdk_uuid *uuid1, *uuid2;
4675 
4676 	nsdata1 = spdk_nvme_ns_get_data(ns1);
4677 	nsdata2 = spdk_nvme_ns_get_data(ns2);
4678 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
4679 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
4680 
4681 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
4682 	       nsdata1->eui64 == nsdata2->eui64 &&
4683 	       ((uuid1 == NULL && uuid2 == NULL) ||
4684 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
4685 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
4686 }
4687 
4688 static bool
4689 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4690 		 struct spdk_nvme_ctrlr_opts *opts)
4691 {
4692 	struct nvme_probe_skip_entry *entry;
4693 
4694 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
4695 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4696 			return false;
4697 		}
4698 	}
4699 
4700 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
4701 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
4702 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
4703 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
4704 	opts->disable_read_ana_log_page = true;
4705 
4706 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
4707 
4708 	return true;
4709 }
4710 
4711 static void
4712 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
4713 {
4714 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4715 
4716 	if (spdk_nvme_cpl_is_error(cpl)) {
4717 		NVME_CTRLR_WARNLOG(nvme_ctrlr, "Abort failed. Resetting controller. sc is %u, sct is %u.\n",
4718 				   cpl->status.sc, cpl->status.sct);
4719 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4720 	} else if (cpl->cdw0 & 0x1) {
4721 		NVME_CTRLR_WARNLOG(nvme_ctrlr, "Specified command could not be aborted.\n");
4722 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4723 	}
4724 }
4725 
4726 static void
4727 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
4728 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
4729 {
4730 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4731 	union spdk_nvme_csts_register csts;
4732 	int rc;
4733 
4734 	assert(nvme_ctrlr->ctrlr == ctrlr);
4735 
4736 	NVME_CTRLR_WARNLOG(nvme_ctrlr, "Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n",
4737 			   ctrlr, qpair, cid);
4738 
4739 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
4740 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
4741 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
4742 	 * completion recursively.
4743 	 */
4744 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
4745 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
4746 		if (csts.bits.cfs) {
4747 			NVME_CTRLR_ERRLOG(nvme_ctrlr, "Controller Fatal Status, reset required\n");
4748 			bdev_nvme_reset_ctrlr(nvme_ctrlr);
4749 			return;
4750 		}
4751 	}
4752 
4753 	switch (g_opts.action_on_timeout) {
4754 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
4755 		if (qpair) {
4756 			/* Don't send abort to ctrlr when ctrlr is not available. */
4757 			pthread_mutex_lock(&nvme_ctrlr->mutex);
4758 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
4759 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
4760 				NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Quit abort. Ctrlr is not available.\n");
4761 				return;
4762 			}
4763 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4764 
4765 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
4766 						       nvme_abort_cpl, nvme_ctrlr);
4767 			if (rc == 0) {
4768 				return;
4769 			}
4770 
4771 			NVME_CTRLR_ERRLOG(nvme_ctrlr, "Unable to send abort. Resetting, rc is %d.\n", rc);
4772 		}
4773 
4774 	/* FALLTHROUGH */
4775 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
4776 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4777 		break;
4778 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
4779 		NVME_CTRLR_DEBUGLOG(nvme_ctrlr, "No action for nvme controller timeout.\n");
4780 		break;
4781 	default:
4782 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "An invalid timeout action value is found.\n");
4783 		break;
4784 	}
4785 }
4786 
4787 static struct nvme_ns *
4788 nvme_ns_alloc(void)
4789 {
4790 	struct nvme_ns *nvme_ns;
4791 
4792 	nvme_ns = calloc(1, sizeof(struct nvme_ns));
4793 	if (nvme_ns == NULL) {
4794 		return NULL;
4795 	}
4796 
4797 	if (g_opts.io_path_stat) {
4798 		nvme_ns->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
4799 		if (nvme_ns->stat == NULL) {
4800 			free(nvme_ns);
4801 			return NULL;
4802 		}
4803 		spdk_bdev_reset_io_stat(nvme_ns->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
4804 	}
4805 
4806 	return nvme_ns;
4807 }
4808 
4809 static void
4810 nvme_ns_free(struct nvme_ns *nvme_ns)
4811 {
4812 	free(nvme_ns->stat);
4813 	free(nvme_ns);
4814 }
4815 
4816 static void
4817 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
4818 {
4819 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4820 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
4821 
4822 	if (rc == 0) {
4823 		nvme_ns->probe_ctx = NULL;
4824 		nvme_ctrlr_get_ref(nvme_ctrlr);
4825 	} else {
4826 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4827 		nvme_ns_free(nvme_ns);
4828 	}
4829 
4830 	if (ctx) {
4831 		ctx->populates_in_progress--;
4832 		if (ctx->populates_in_progress == 0) {
4833 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4834 		}
4835 	}
4836 }
4837 
4838 static void
4839 bdev_nvme_add_io_path(struct nvme_bdev_channel_iter *i,
4840 		      struct nvme_bdev *nbdev,
4841 		      struct nvme_bdev_channel *nbdev_ch, void *ctx)
4842 {
4843 	struct nvme_ns *nvme_ns = ctx;
4844 	int rc;
4845 
4846 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
4847 	if (rc != 0) {
4848 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
4849 	}
4850 
4851 	nvme_bdev_for_each_channel_continue(i, rc);
4852 }
4853 
4854 static void
4855 bdev_nvme_delete_io_path(struct nvme_bdev_channel_iter *i,
4856 			 struct nvme_bdev *nbdev,
4857 			 struct nvme_bdev_channel *nbdev_ch, void *ctx)
4858 {
4859 	struct nvme_ns *nvme_ns = ctx;
4860 	struct nvme_io_path *io_path;
4861 
4862 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
4863 	if (io_path != NULL) {
4864 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
4865 	}
4866 
4867 	nvme_bdev_for_each_channel_continue(i, 0);
4868 }
4869 
4870 static void
4871 bdev_nvme_add_io_path_failed(struct nvme_bdev *nbdev, void *ctx, int status)
4872 {
4873 	struct nvme_ns *nvme_ns = ctx;
4874 
4875 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
4876 }
4877 
4878 static void
4879 bdev_nvme_add_io_path_done(struct nvme_bdev *nbdev, void *ctx, int status)
4880 {
4881 	struct nvme_ns *nvme_ns = ctx;
4882 
4883 	if (status == 0) {
4884 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
4885 	} else {
4886 		/* Delete the added io_paths and fail populating the namespace. */
4887 		nvme_bdev_for_each_channel(nbdev,
4888 					   bdev_nvme_delete_io_path,
4889 					   nvme_ns,
4890 					   bdev_nvme_add_io_path_failed);
4891 	}
4892 }
4893 
4894 static int
4895 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
4896 {
4897 	struct nvme_ns *tmp_ns;
4898 	const struct spdk_nvme_ns_data *nsdata;
4899 
4900 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
4901 	if (!nsdata->nmic.can_share) {
4902 		SPDK_ERRLOG("Namespace cannot be shared.\n");
4903 		return -EINVAL;
4904 	}
4905 
4906 	pthread_mutex_lock(&bdev->mutex);
4907 
4908 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
4909 	assert(tmp_ns != NULL);
4910 
4911 	if (tmp_ns->ns != NULL && !bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
4912 		pthread_mutex_unlock(&bdev->mutex);
4913 		SPDK_ERRLOG("Namespaces are not identical.\n");
4914 		return -EINVAL;
4915 	}
4916 
4917 	bdev->ref++;
4918 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4919 	nvme_ns->bdev = bdev;
4920 
4921 	pthread_mutex_unlock(&bdev->mutex);
4922 
4923 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
4924 	nvme_bdev_for_each_channel(bdev,
4925 				   bdev_nvme_add_io_path,
4926 				   nvme_ns,
4927 				   bdev_nvme_add_io_path_done);
4928 
4929 	return 0;
4930 }
4931 
4932 static void
4933 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4934 {
4935 	struct spdk_nvme_ns	*ns;
4936 	struct nvme_bdev	*bdev;
4937 	int			rc = 0;
4938 
4939 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
4940 	if (!ns) {
4941 		NVME_CTRLR_DEBUGLOG(nvme_ctrlr, "Invalid NS %d\n", nvme_ns->id);
4942 		rc = -EINVAL;
4943 		goto done;
4944 	}
4945 
4946 	nvme_ns->ns = ns;
4947 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4948 
4949 	if (nvme_ctrlr->ana_log_page != NULL) {
4950 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
4951 	}
4952 
4953 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
4954 	if (bdev == NULL) {
4955 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
4956 	} else {
4957 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
4958 		if (rc == 0) {
4959 			return;
4960 		}
4961 	}
4962 done:
4963 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
4964 }
4965 
4966 static void
4967 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
4968 {
4969 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4970 
4971 	assert(nvme_ctrlr != NULL);
4972 
4973 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4974 
4975 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4976 
4977 	if (nvme_ns->bdev != NULL) {
4978 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4979 		return;
4980 	}
4981 
4982 	nvme_ns_free(nvme_ns);
4983 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4984 
4985 	nvme_ctrlr_put_ref(nvme_ctrlr);
4986 }
4987 
4988 static void
4989 bdev_nvme_delete_io_path_done(struct nvme_bdev *nbdev, void *ctx, int status)
4990 {
4991 	struct nvme_ns *nvme_ns = ctx;
4992 
4993 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4994 }
4995 
4996 static void
4997 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4998 {
4999 	struct nvme_bdev *bdev;
5000 
5001 	spdk_poller_unregister(&nvme_ns->anatt_timer);
5002 
5003 	bdev = nvme_ns->bdev;
5004 	if (bdev != NULL) {
5005 		pthread_mutex_lock(&bdev->mutex);
5006 
5007 		assert(bdev->ref > 0);
5008 		bdev->ref--;
5009 		if (bdev->ref == 0) {
5010 			pthread_mutex_unlock(&bdev->mutex);
5011 
5012 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
5013 		} else {
5014 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
5015 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
5016 			 * and clear nvme_ns->bdev here.
5017 			 */
5018 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
5019 			nvme_ns->bdev = NULL;
5020 
5021 			pthread_mutex_unlock(&bdev->mutex);
5022 
5023 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
5024 			 * we call depopulate_namespace_done() to avoid use-after-free.
5025 			 */
5026 			nvme_bdev_for_each_channel(bdev,
5027 						   bdev_nvme_delete_io_path,
5028 						   nvme_ns,
5029 						   bdev_nvme_delete_io_path_done);
5030 			return;
5031 		}
5032 	}
5033 
5034 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
5035 }
5036 
5037 static void
5038 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
5039 			       struct nvme_async_probe_ctx *ctx)
5040 {
5041 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
5042 	struct nvme_ns	*nvme_ns, *next;
5043 	struct spdk_nvme_ns	*ns;
5044 	struct nvme_bdev	*bdev;
5045 	uint32_t		nsid;
5046 	int			rc;
5047 	uint64_t		num_sectors;
5048 
5049 	if (ctx) {
5050 		/* Initialize this count to 1 to handle the populate functions
5051 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
5052 		 */
5053 		ctx->populates_in_progress = 1;
5054 	}
5055 
5056 	/* First loop over our existing namespaces and see if they have been
5057 	 * removed. */
5058 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5059 	while (nvme_ns != NULL) {
5060 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5061 
5062 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
5063 			/* NS is still there or added again. Its attributes may have changed. */
5064 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
5065 			if (nvme_ns->ns != ns) {
5066 				assert(nvme_ns->ns == NULL);
5067 				nvme_ns->ns = ns;
5068 				NVME_CTRLR_DEBUGLOG(nvme_ctrlr, "NSID %u was added\n", nvme_ns->id);
5069 			}
5070 
5071 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
5072 			bdev = nvme_ns->bdev;
5073 			assert(bdev != NULL);
5074 			if (bdev->disk.blockcnt != num_sectors) {
5075 				NVME_CTRLR_NOTICELOG(nvme_ctrlr,
5076 						     "NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
5077 						     nvme_ns->id,
5078 						     bdev->disk.name,
5079 						     bdev->disk.blockcnt,
5080 						     num_sectors);
5081 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
5082 				if (rc != 0) {
5083 					NVME_CTRLR_ERRLOG(nvme_ctrlr,
5084 							  "Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
5085 							  bdev->disk.name, rc);
5086 				}
5087 			}
5088 		} else {
5089 			/* Namespace was removed */
5090 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
5091 		}
5092 
5093 		nvme_ns = next;
5094 	}
5095 
5096 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
5097 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
5098 	while (nsid != 0) {
5099 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
5100 
5101 		if (nvme_ns == NULL) {
5102 			/* Found a new one */
5103 			nvme_ns = nvme_ns_alloc();
5104 			if (nvme_ns == NULL) {
5105 				NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to allocate namespace\n");
5106 				/* This just fails to attach the namespace. It may work on a future attempt. */
5107 				continue;
5108 			}
5109 
5110 			nvme_ns->id = nsid;
5111 			nvme_ns->ctrlr = nvme_ctrlr;
5112 
5113 			nvme_ns->bdev = NULL;
5114 
5115 			if (ctx) {
5116 				ctx->populates_in_progress++;
5117 			}
5118 			nvme_ns->probe_ctx = ctx;
5119 
5120 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
5121 
5122 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
5123 		}
5124 
5125 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
5126 	}
5127 
5128 	if (ctx) {
5129 		/* Decrement this count now that the loop is over to account
5130 		 * for the one we started with.  If the count is then 0, we
5131 		 * know any populate_namespace functions completed immediately,
5132 		 * so we'll kick the callback here.
5133 		 */
5134 		ctx->populates_in_progress--;
5135 		if (ctx->populates_in_progress == 0) {
5136 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
5137 		}
5138 	}
5139 
5140 }
5141 
5142 static void
5143 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
5144 {
5145 	struct nvme_ns *nvme_ns, *tmp;
5146 
5147 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
5148 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
5149 	}
5150 }
5151 
5152 static uint32_t
5153 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
5154 {
5155 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5156 	const struct spdk_nvme_ctrlr_data *cdata;
5157 	uint32_t nsid, ns_count = 0;
5158 
5159 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5160 
5161 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
5162 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
5163 		ns_count++;
5164 	}
5165 
5166 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5167 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
5168 	       sizeof(uint32_t);
5169 }
5170 
5171 static int
5172 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
5173 			  void *cb_arg)
5174 {
5175 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
5176 	struct nvme_ns *nvme_ns;
5177 	uint32_t i, nsid;
5178 
5179 	for (i = 0; i < desc->num_of_nsid; i++) {
5180 		nsid = desc->nsid[i];
5181 		if (nsid == 0) {
5182 			continue;
5183 		}
5184 
5185 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
5186 
5187 		if (nvme_ns == NULL) {
5188 			/* Target told us that an inactive namespace had an ANA change */
5189 			continue;
5190 		}
5191 
5192 		_nvme_ns_set_ana_state(nvme_ns, desc);
5193 	}
5194 
5195 	return 0;
5196 }
5197 
5198 static void
5199 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
5200 {
5201 	struct nvme_ns *nvme_ns;
5202 
5203 	spdk_free(nvme_ctrlr->ana_log_page);
5204 	nvme_ctrlr->ana_log_page = NULL;
5205 
5206 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5207 	     nvme_ns != NULL;
5208 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
5209 		nvme_ns->ana_state_updating = false;
5210 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
5211 	}
5212 }
5213 
5214 static void
5215 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
5216 {
5217 	struct nvme_ctrlr *nvme_ctrlr = ctx;
5218 
5219 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
5220 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
5221 					     nvme_ctrlr);
5222 	} else {
5223 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
5224 	}
5225 
5226 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5227 
5228 	assert(nvme_ctrlr->ana_log_page_updating == true);
5229 	nvme_ctrlr->ana_log_page_updating = false;
5230 
5231 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
5232 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
5233 
5234 		nvme_ctrlr_unregister(nvme_ctrlr);
5235 	} else {
5236 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
5237 
5238 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
5239 	}
5240 }
5241 
5242 static int
5243 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
5244 {
5245 	uint32_t ana_log_page_size;
5246 	int rc;
5247 
5248 	if (nvme_ctrlr->ana_log_page == NULL) {
5249 		return -EINVAL;
5250 	}
5251 
5252 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5253 
5254 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5255 		NVME_CTRLR_ERRLOG(nvme_ctrlr,
5256 				  "ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5257 				  ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5258 		return -EINVAL;
5259 	}
5260 
5261 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5262 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
5263 	    nvme_ctrlr->ana_log_page_updating) {
5264 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
5265 		return -EBUSY;
5266 	}
5267 
5268 	nvme_ctrlr->ana_log_page_updating = true;
5269 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5270 
5271 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
5272 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5273 					      SPDK_NVME_GLOBAL_NS_TAG,
5274 					      nvme_ctrlr->ana_log_page,
5275 					      ana_log_page_size, 0,
5276 					      nvme_ctrlr_read_ana_log_page_done,
5277 					      nvme_ctrlr);
5278 	if (rc != 0) {
5279 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
5280 	}
5281 
5282 	return rc;
5283 }
5284 
5285 static void
5286 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
5287 {
5288 }
5289 
5290 struct bdev_nvme_set_preferred_path_ctx {
5291 	struct spdk_bdev_desc *desc;
5292 	struct nvme_ns *nvme_ns;
5293 	bdev_nvme_set_preferred_path_cb cb_fn;
5294 	void *cb_arg;
5295 };
5296 
5297 static void
5298 bdev_nvme_set_preferred_path_done(struct nvme_bdev *nbdev, void *_ctx, int status)
5299 {
5300 	struct bdev_nvme_set_preferred_path_ctx *ctx = _ctx;
5301 
5302 	assert(ctx != NULL);
5303 	assert(ctx->desc != NULL);
5304 	assert(ctx->cb_fn != NULL);
5305 
5306 	spdk_bdev_close(ctx->desc);
5307 
5308 	ctx->cb_fn(ctx->cb_arg, status);
5309 
5310 	free(ctx);
5311 }
5312 
5313 static void
5314 _bdev_nvme_set_preferred_path(struct nvme_bdev_channel_iter *i,
5315 			      struct nvme_bdev *nbdev,
5316 			      struct nvme_bdev_channel *nbdev_ch, void *_ctx)
5317 {
5318 	struct bdev_nvme_set_preferred_path_ctx *ctx = _ctx;
5319 	struct nvme_io_path *io_path, *prev;
5320 
5321 	prev = NULL;
5322 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
5323 		if (io_path->nvme_ns == ctx->nvme_ns) {
5324 			break;
5325 		}
5326 		prev = io_path;
5327 	}
5328 
5329 	if (io_path != NULL) {
5330 		if (prev != NULL) {
5331 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
5332 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
5333 		}
5334 
5335 		/* We can set io_path to nbdev_ch->current_io_path directly here.
5336 		 * However, it needs to be conditional. To simplify the code,
5337 		 * just clear nbdev_ch->current_io_path and let find_io_path()
5338 		 * fill it.
5339 		 *
5340 		 * Automatic failback may be disabled. Hence even if the io_path is
5341 		 * already at the head, clear nbdev_ch->current_io_path.
5342 		 */
5343 		bdev_nvme_clear_current_io_path(nbdev_ch);
5344 	}
5345 
5346 	nvme_bdev_for_each_channel_continue(i, 0);
5347 }
5348 
5349 static struct nvme_ns *
5350 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
5351 {
5352 	struct nvme_ns *nvme_ns, *prev;
5353 	const struct spdk_nvme_ctrlr_data *cdata;
5354 
5355 	prev = NULL;
5356 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
5357 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
5358 
5359 		if (cdata->cntlid == cntlid) {
5360 			break;
5361 		}
5362 		prev = nvme_ns;
5363 	}
5364 
5365 	if (nvme_ns != NULL && prev != NULL) {
5366 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
5367 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
5368 	}
5369 
5370 	return nvme_ns;
5371 }
5372 
5373 /* This function supports only multipath mode. There is only a single I/O path
5374  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
5375  * head of the I/O path list for each NVMe bdev channel.
5376  *
5377  * NVMe bdev channel may be acquired after completing this function. move the
5378  * matched namespace to the head of the namespace list for the NVMe bdev too.
5379  */
5380 void
5381 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
5382 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
5383 {
5384 	struct bdev_nvme_set_preferred_path_ctx *ctx;
5385 	struct spdk_bdev *bdev;
5386 	struct nvme_bdev *nbdev;
5387 	int rc = 0;
5388 
5389 	assert(cb_fn != NULL);
5390 
5391 	ctx = calloc(1, sizeof(*ctx));
5392 	if (ctx == NULL) {
5393 		SPDK_ERRLOG("Failed to alloc context.\n");
5394 		rc = -ENOMEM;
5395 		goto err_alloc;
5396 	}
5397 
5398 	ctx->cb_fn = cb_fn;
5399 	ctx->cb_arg = cb_arg;
5400 
5401 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5402 	if (rc != 0) {
5403 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5404 		goto err_open;
5405 	}
5406 
5407 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5408 
5409 	if (bdev->module != &nvme_if) {
5410 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5411 		rc = -ENODEV;
5412 		goto err_bdev;
5413 	}
5414 
5415 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5416 
5417 	pthread_mutex_lock(&nbdev->mutex);
5418 
5419 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
5420 	if (ctx->nvme_ns == NULL) {
5421 		pthread_mutex_unlock(&nbdev->mutex);
5422 
5423 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
5424 		rc = -ENODEV;
5425 		goto err_bdev;
5426 	}
5427 
5428 	pthread_mutex_unlock(&nbdev->mutex);
5429 
5430 	nvme_bdev_for_each_channel(nbdev,
5431 				   _bdev_nvme_set_preferred_path,
5432 				   ctx,
5433 				   bdev_nvme_set_preferred_path_done);
5434 	return;
5435 
5436 err_bdev:
5437 	spdk_bdev_close(ctx->desc);
5438 err_open:
5439 	free(ctx);
5440 err_alloc:
5441 	cb_fn(cb_arg, rc);
5442 }
5443 
5444 struct bdev_nvme_set_multipath_policy_ctx {
5445 	struct spdk_bdev_desc *desc;
5446 	spdk_bdev_nvme_set_multipath_policy_cb cb_fn;
5447 	void *cb_arg;
5448 };
5449 
5450 static void
5451 bdev_nvme_set_multipath_policy_done(struct nvme_bdev *nbdev, void *_ctx, int status)
5452 {
5453 	struct bdev_nvme_set_multipath_policy_ctx *ctx = _ctx;
5454 
5455 	assert(ctx != NULL);
5456 	assert(ctx->desc != NULL);
5457 	assert(ctx->cb_fn != NULL);
5458 
5459 	spdk_bdev_close(ctx->desc);
5460 
5461 	ctx->cb_fn(ctx->cb_arg, status);
5462 
5463 	free(ctx);
5464 }
5465 
5466 static void
5467 _bdev_nvme_set_multipath_policy(struct nvme_bdev_channel_iter *i,
5468 				struct nvme_bdev *nbdev,
5469 				struct nvme_bdev_channel *nbdev_ch, void *ctx)
5470 {
5471 	nbdev_ch->mp_policy = nbdev->mp_policy;
5472 	nbdev_ch->mp_selector = nbdev->mp_selector;
5473 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
5474 	bdev_nvme_clear_current_io_path(nbdev_ch);
5475 
5476 	nvme_bdev_for_each_channel_continue(i, 0);
5477 }
5478 
5479 void
5480 spdk_bdev_nvme_set_multipath_policy(const char *name, enum spdk_bdev_nvme_multipath_policy policy,
5481 				    enum spdk_bdev_nvme_multipath_selector selector, uint32_t rr_min_io,
5482 				    spdk_bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
5483 {
5484 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
5485 	struct spdk_bdev *bdev;
5486 	struct nvme_bdev *nbdev;
5487 	int rc;
5488 
5489 	assert(cb_fn != NULL);
5490 
5491 	switch (policy) {
5492 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
5493 		break;
5494 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
5495 		switch (selector) {
5496 		case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN:
5497 			if (rr_min_io == UINT32_MAX) {
5498 				rr_min_io = 1;
5499 			} else if (rr_min_io == 0) {
5500 				rc = -EINVAL;
5501 				goto exit;
5502 			}
5503 			break;
5504 		case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH:
5505 			break;
5506 		default:
5507 			rc = -EINVAL;
5508 			goto exit;
5509 		}
5510 		break;
5511 	default:
5512 		rc = -EINVAL;
5513 		goto exit;
5514 	}
5515 
5516 	ctx = calloc(1, sizeof(*ctx));
5517 	if (ctx == NULL) {
5518 		SPDK_ERRLOG("Failed to alloc context.\n");
5519 		rc = -ENOMEM;
5520 		goto exit;
5521 	}
5522 
5523 	ctx->cb_fn = cb_fn;
5524 	ctx->cb_arg = cb_arg;
5525 
5526 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5527 	if (rc != 0) {
5528 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5529 		rc = -ENODEV;
5530 		goto err_open;
5531 	}
5532 
5533 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5534 	if (bdev->module != &nvme_if) {
5535 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5536 		rc = -ENODEV;
5537 		goto err_module;
5538 	}
5539 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5540 
5541 	pthread_mutex_lock(&nbdev->mutex);
5542 	nbdev->mp_policy = policy;
5543 	nbdev->mp_selector = selector;
5544 	nbdev->rr_min_io = rr_min_io;
5545 	pthread_mutex_unlock(&nbdev->mutex);
5546 
5547 	nvme_bdev_for_each_channel(nbdev,
5548 				   _bdev_nvme_set_multipath_policy,
5549 				   ctx,
5550 				   bdev_nvme_set_multipath_policy_done);
5551 	return;
5552 
5553 err_module:
5554 	spdk_bdev_close(ctx->desc);
5555 err_open:
5556 	free(ctx);
5557 exit:
5558 	cb_fn(cb_arg, rc);
5559 }
5560 
5561 static void
5562 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5563 {
5564 	struct nvme_ctrlr *nvme_ctrlr		= arg;
5565 	union spdk_nvme_async_event_completion	event;
5566 
5567 	if (spdk_nvme_cpl_is_error(cpl)) {
5568 		SPDK_WARNLOG("AER request execute failed\n");
5569 		return;
5570 	}
5571 
5572 	event.raw = cpl->cdw0;
5573 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5574 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
5575 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
5576 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5577 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
5578 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
5579 	}
5580 }
5581 
5582 static void
5583 free_nvme_async_probe_ctx(struct nvme_async_probe_ctx *ctx)
5584 {
5585 	spdk_keyring_put_key(ctx->drv_opts.tls_psk);
5586 	spdk_keyring_put_key(ctx->drv_opts.dhchap_key);
5587 	spdk_keyring_put_key(ctx->drv_opts.dhchap_ctrlr_key);
5588 	free(ctx);
5589 }
5590 
5591 static void
5592 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, int rc)
5593 {
5594 	if (ctx->cb_fn) {
5595 		ctx->cb_fn(ctx->cb_ctx, ctx->reported_bdevs, rc);
5596 	}
5597 
5598 	ctx->namespaces_populated = true;
5599 	if (ctx->probe_done) {
5600 		/* The probe was already completed, so we need to free the context
5601 		 * here.  This can happen for cases like OCSSD, where we need to
5602 		 * send additional commands to the SSD after attach.
5603 		 */
5604 		free_nvme_async_probe_ctx(ctx);
5605 	}
5606 }
5607 
5608 static int
5609 bdev_nvme_remove_poller(void *ctx)
5610 {
5611 	struct spdk_nvme_transport_id trid_pcie;
5612 
5613 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5614 		spdk_poller_unregister(&g_hotplug_poller);
5615 		return SPDK_POLLER_IDLE;
5616 	}
5617 
5618 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5619 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5620 
5621 	if (spdk_nvme_scan_attached(&trid_pcie)) {
5622 		SPDK_ERRLOG_RATELIMIT("spdk_nvme_scan_attached() failed\n");
5623 	}
5624 
5625 	return SPDK_POLLER_BUSY;
5626 }
5627 
5628 static void
5629 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
5630 		       struct nvme_async_probe_ctx *ctx)
5631 {
5632 	struct spdk_nvme_transport_id *trid = &nvme_ctrlr->active_path_id->trid;
5633 
5634 	if (spdk_nvme_trtype_is_fabrics(trid->trtype)) {
5635 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr was created to %s:%s\n",
5636 				   trid->traddr, trid->trsvcid);
5637 	} else {
5638 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr was created\n");
5639 	}
5640 
5641 	spdk_io_device_register(nvme_ctrlr,
5642 				bdev_nvme_create_ctrlr_channel_cb,
5643 				bdev_nvme_destroy_ctrlr_channel_cb,
5644 				sizeof(struct nvme_ctrlr_channel),
5645 				nvme_ctrlr->nbdev_ctrlr->name);
5646 
5647 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
5648 
5649 	if (g_hotplug_poller == NULL) {
5650 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_remove_poller, NULL,
5651 							NVME_HOTPLUG_POLL_PERIOD_DEFAULT);
5652 	}
5653 }
5654 
5655 static void
5656 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
5657 {
5658 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
5659 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
5660 
5661 	nvme_ctrlr->probe_ctx = NULL;
5662 
5663 	if (spdk_nvme_cpl_is_error(cpl)) {
5664 		nvme_ctrlr_delete(nvme_ctrlr);
5665 
5666 		if (ctx != NULL) {
5667 			ctx->reported_bdevs = 0;
5668 			populate_namespaces_cb(ctx, -1);
5669 		}
5670 		return;
5671 	}
5672 
5673 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5674 }
5675 
5676 static int
5677 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
5678 			     struct nvme_async_probe_ctx *ctx)
5679 {
5680 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5681 	const struct spdk_nvme_ctrlr_data *cdata;
5682 	uint32_t ana_log_page_size;
5683 
5684 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5685 
5686 	/* Set buffer size enough to include maximum number of allowed namespaces. */
5687 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5688 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
5689 			    sizeof(uint32_t);
5690 
5691 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
5692 						SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
5693 	if (nvme_ctrlr->ana_log_page == NULL) {
5694 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "could not allocate ANA log page buffer\n");
5695 		return -ENXIO;
5696 	}
5697 
5698 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
5699 	 * Hence copy each descriptor to a temporary area when parsing it.
5700 	 *
5701 	 * Allocate a buffer whose size is as large as ANA log page buffer because
5702 	 * we do not know the size of a descriptor until actually reading it.
5703 	 */
5704 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
5705 	if (nvme_ctrlr->copied_ana_desc == NULL) {
5706 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "could not allocate a buffer to parse ANA descriptor\n");
5707 		return -ENOMEM;
5708 	}
5709 
5710 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
5711 
5712 	nvme_ctrlr->probe_ctx = ctx;
5713 
5714 	/* Then, set the read size only to include the current active namespaces. */
5715 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5716 
5717 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5718 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5719 				  ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5720 		return -EINVAL;
5721 	}
5722 
5723 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
5724 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5725 						SPDK_NVME_GLOBAL_NS_TAG,
5726 						nvme_ctrlr->ana_log_page,
5727 						ana_log_page_size, 0,
5728 						nvme_ctrlr_init_ana_log_page_done,
5729 						nvme_ctrlr);
5730 }
5731 
5732 /* hostnqn and subnqn were already verified before attaching a controller.
5733  * Hence check only the multipath capability and cntlid here.
5734  */
5735 static bool
5736 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
5737 {
5738 	struct nvme_ctrlr *tmp;
5739 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
5740 
5741 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5742 
5743 	if (!cdata->cmic.multi_ctrlr) {
5744 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5745 		return false;
5746 	}
5747 
5748 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
5749 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
5750 
5751 		if (!tmp_cdata->cmic.multi_ctrlr) {
5752 			NVME_CTRLR_ERRLOG(tmp, "Ctrlr%u does not support multipath.\n", cdata->cntlid);
5753 			return false;
5754 		}
5755 		if (cdata->cntlid == tmp_cdata->cntlid) {
5756 			NVME_CTRLR_ERRLOG(tmp, "cntlid %u are duplicated.\n", tmp_cdata->cntlid);
5757 			return false;
5758 		}
5759 	}
5760 
5761 	return true;
5762 }
5763 
5764 
5765 static int
5766 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
5767 {
5768 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5769 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5770 	struct nvme_ctrlr      *nctrlr;
5771 	int rc = 0;
5772 
5773 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5774 
5775 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
5776 	if (nbdev_ctrlr != NULL) {
5777 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
5778 			rc = -EINVAL;
5779 			goto exit;
5780 		}
5781 		TAILQ_FOREACH(nctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
5782 			if (nctrlr->opts.multipath != nvme_ctrlr->opts.multipath) {
5783 				/* All controllers with the same name must be configured the same
5784 				 * way, either for multipath or failover. If the configuration doesn't
5785 				 * match - report error.
5786 				 */
5787 				rc = -EINVAL;
5788 				goto exit;
5789 			}
5790 		}
5791 	} else {
5792 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
5793 		if (nbdev_ctrlr == NULL) {
5794 			NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to allocate nvme_bdev_ctrlr.\n");
5795 			rc = -ENOMEM;
5796 			goto exit;
5797 		}
5798 		nbdev_ctrlr->name = strdup(name);
5799 		if (nbdev_ctrlr->name == NULL) {
5800 			NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to allocate name of nvme_bdev_ctrlr.\n");
5801 			free(nbdev_ctrlr);
5802 			goto exit;
5803 		}
5804 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
5805 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
5806 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
5807 	}
5808 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
5809 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
5810 exit:
5811 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5812 	return rc;
5813 }
5814 
5815 static int
5816 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
5817 		  const char *name,
5818 		  const struct spdk_nvme_transport_id *trid,
5819 		  struct nvme_async_probe_ctx *ctx)
5820 {
5821 	struct nvme_ctrlr *nvme_ctrlr;
5822 	struct nvme_path_id *path_id;
5823 	const struct spdk_nvme_ctrlr_data *cdata;
5824 	struct spdk_event_handler_opts opts = {
5825 		.opts_size = SPDK_SIZEOF(&opts, fd_type),
5826 	};
5827 	uint64_t period;
5828 	int fd, rc;
5829 
5830 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
5831 	if (nvme_ctrlr == NULL) {
5832 		SPDK_ERRLOG("Failed to allocate device struct\n");
5833 		return -ENOMEM;
5834 	}
5835 
5836 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
5837 	if (rc != 0) {
5838 		free(nvme_ctrlr);
5839 		return rc;
5840 	}
5841 
5842 	TAILQ_INIT(&nvme_ctrlr->trids);
5843 	TAILQ_INIT(&nvme_ctrlr->pending_resets);
5844 	RB_INIT(&nvme_ctrlr->namespaces);
5845 
5846 	/* Get another reference to the key, so the first one can be released from probe_ctx */
5847 	if (ctx != NULL) {
5848 		if (ctx->drv_opts.tls_psk != NULL) {
5849 			nvme_ctrlr->psk = spdk_keyring_get_key(
5850 						  spdk_key_get_name(ctx->drv_opts.tls_psk));
5851 			if (nvme_ctrlr->psk == NULL) {
5852 				/* Could only happen if the key was removed in the meantime */
5853 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5854 					    spdk_key_get_name(ctx->drv_opts.tls_psk));
5855 				rc = -ENOKEY;
5856 				goto err;
5857 			}
5858 		}
5859 
5860 		if (ctx->drv_opts.dhchap_key != NULL) {
5861 			nvme_ctrlr->dhchap_key = spdk_keyring_get_key(
5862 							 spdk_key_get_name(ctx->drv_opts.dhchap_key));
5863 			if (nvme_ctrlr->dhchap_key == NULL) {
5864 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5865 					    spdk_key_get_name(ctx->drv_opts.dhchap_key));
5866 				rc = -ENOKEY;
5867 				goto err;
5868 			}
5869 		}
5870 
5871 		if (ctx->drv_opts.dhchap_ctrlr_key != NULL) {
5872 			nvme_ctrlr->dhchap_ctrlr_key =
5873 				spdk_keyring_get_key(
5874 					spdk_key_get_name(ctx->drv_opts.dhchap_ctrlr_key));
5875 			if (nvme_ctrlr->dhchap_ctrlr_key == NULL) {
5876 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5877 					    spdk_key_get_name(ctx->drv_opts.dhchap_ctrlr_key));
5878 				rc = -ENOKEY;
5879 				goto err;
5880 			}
5881 		}
5882 	}
5883 
5884 	/* Check if we manage to enable interrupts on the controller. */
5885 	if (spdk_interrupt_mode_is_enabled() && ctx != NULL && !ctx->drv_opts.enable_interrupts) {
5886 		SPDK_ERRLOG("Failed to enable interrupts on the controller\n");
5887 		rc = -ENOTSUP;
5888 		goto err;
5889 	}
5890 
5891 	path_id = calloc(1, sizeof(*path_id));
5892 	if (path_id == NULL) {
5893 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
5894 		rc = -ENOMEM;
5895 		goto err;
5896 	}
5897 
5898 	path_id->trid = *trid;
5899 	if (ctx != NULL) {
5900 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
5901 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
5902 	}
5903 	nvme_ctrlr->active_path_id = path_id;
5904 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
5905 
5906 	nvme_ctrlr->thread = spdk_get_thread();
5907 	nvme_ctrlr->ctrlr = ctrlr;
5908 	nvme_ctrlr->ref = 1;
5909 
5910 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
5911 		SPDK_ERRLOG("OCSSDs are not supported");
5912 		rc = -ENOTSUP;
5913 		goto err;
5914 	}
5915 
5916 	if (ctx != NULL) {
5917 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
5918 	} else {
5919 		spdk_bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
5920 	}
5921 
5922 	period = spdk_interrupt_mode_is_enabled() ? 0 : g_opts.nvme_adminq_poll_period_us;
5923 
5924 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
5925 					  period);
5926 
5927 	if (spdk_interrupt_mode_is_enabled()) {
5928 		spdk_poller_register_interrupt(nvme_ctrlr->adminq_timer_poller, NULL, NULL);
5929 
5930 		fd = spdk_nvme_ctrlr_get_admin_qp_fd(nvme_ctrlr->ctrlr, &opts);
5931 		if (fd < 0) {
5932 			rc = fd;
5933 			goto err;
5934 		}
5935 
5936 		nvme_ctrlr->intr = SPDK_INTERRUPT_REGISTER_EXT(fd, bdev_nvme_poll_adminq,
5937 				   nvme_ctrlr, &opts);
5938 		if (!nvme_ctrlr->intr) {
5939 			rc = -EINVAL;
5940 			goto err;
5941 		}
5942 	}
5943 
5944 	if (g_opts.timeout_us > 0) {
5945 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
5946 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
5947 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
5948 					  g_opts.timeout_us : g_opts.timeout_admin_us;
5949 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
5950 				adm_timeout_us, timeout_cb, nvme_ctrlr);
5951 	}
5952 
5953 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
5954 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
5955 
5956 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
5957 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
5958 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
5959 	}
5960 
5961 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
5962 	if (rc != 0) {
5963 		goto err;
5964 	}
5965 
5966 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5967 
5968 	if (cdata->cmic.ana_reporting) {
5969 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
5970 		if (rc == 0) {
5971 			return 0;
5972 		}
5973 	} else {
5974 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5975 		return 0;
5976 	}
5977 
5978 err:
5979 	nvme_ctrlr_delete(nvme_ctrlr);
5980 	return rc;
5981 }
5982 
5983 void
5984 spdk_bdev_nvme_get_default_ctrlr_opts(struct spdk_bdev_nvme_ctrlr_opts *opts)
5985 {
5986 	opts->prchk_flags = 0;
5987 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
5988 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
5989 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
5990 	opts->multipath = true;
5991 }
5992 
5993 static void
5994 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5995 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
5996 {
5997 	char *name;
5998 
5999 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
6000 	if (!name) {
6001 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
6002 		return;
6003 	}
6004 
6005 	if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) {
6006 		SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
6007 	} else {
6008 		SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name);
6009 	}
6010 
6011 	free(name);
6012 }
6013 
6014 static void
6015 _nvme_ctrlr_destruct(void *ctx)
6016 {
6017 	struct nvme_ctrlr *nvme_ctrlr = ctx;
6018 
6019 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
6020 	nvme_ctrlr_put_ref(nvme_ctrlr);
6021 }
6022 
6023 static int
6024 bdev_nvme_delete_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
6025 {
6026 	struct nvme_probe_skip_entry *entry;
6027 
6028 	/* The controller's destruction was already started */
6029 	if (nvme_ctrlr->destruct) {
6030 		return -EALREADY;
6031 	}
6032 
6033 	if (!hotplug &&
6034 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
6035 		entry = calloc(1, sizeof(*entry));
6036 		if (!entry) {
6037 			return -ENOMEM;
6038 		}
6039 		entry->trid = nvme_ctrlr->active_path_id->trid;
6040 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
6041 	}
6042 
6043 	nvme_ctrlr->destruct = true;
6044 	return 0;
6045 }
6046 
6047 static int
6048 bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
6049 {
6050 	int rc;
6051 
6052 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6053 	rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, hotplug);
6054 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6055 
6056 	if (rc == 0) {
6057 		_nvme_ctrlr_destruct(nvme_ctrlr);
6058 	} else if (rc == -EALREADY) {
6059 		rc = 0;
6060 	}
6061 
6062 	return rc;
6063 }
6064 
6065 static void
6066 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
6067 {
6068 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
6069 
6070 	bdev_nvme_delete_ctrlr(nvme_ctrlr, true);
6071 }
6072 
6073 static int
6074 bdev_nvme_hotplug_probe(void *arg)
6075 {
6076 	if (g_hotplug_probe_ctx == NULL) {
6077 		spdk_poller_unregister(&g_hotplug_probe_poller);
6078 		return SPDK_POLLER_IDLE;
6079 	}
6080 
6081 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
6082 		g_hotplug_probe_ctx = NULL;
6083 		spdk_poller_unregister(&g_hotplug_probe_poller);
6084 	}
6085 
6086 	return SPDK_POLLER_BUSY;
6087 }
6088 
6089 static int
6090 bdev_nvme_hotplug(void *arg)
6091 {
6092 	struct spdk_nvme_transport_id trid_pcie;
6093 
6094 	if (g_hotplug_probe_ctx) {
6095 		return SPDK_POLLER_BUSY;
6096 	}
6097 
6098 	memset(&trid_pcie, 0, sizeof(trid_pcie));
6099 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
6100 
6101 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
6102 			      hotplug_probe_cb, attach_cb, NULL);
6103 
6104 	if (g_hotplug_probe_ctx) {
6105 		assert(g_hotplug_probe_poller == NULL);
6106 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
6107 	}
6108 
6109 	return SPDK_POLLER_BUSY;
6110 }
6111 
6112 void
6113 spdk_bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts, size_t opts_size)
6114 {
6115 	if (!opts) {
6116 		SPDK_ERRLOG("opts should not be NULL\n");
6117 		return;
6118 	}
6119 
6120 	if (!opts_size) {
6121 		SPDK_ERRLOG("opts_size should not be zero value\n");
6122 		return;
6123 	}
6124 
6125 	opts->opts_size = opts_size;
6126 
6127 #define SET_FIELD(field, defval) \
6128 		opts->field = SPDK_GET_FIELD(&g_opts, field, defval, opts_size); \
6129 
6130 	SET_FIELD(action_on_timeout, 0);
6131 	SET_FIELD(keep_alive_timeout_ms, 0);
6132 	SET_FIELD(timeout_us, 0);
6133 	SET_FIELD(timeout_admin_us, 0);
6134 	SET_FIELD(transport_retry_count, 0);
6135 	SET_FIELD(arbitration_burst, 0);
6136 	SET_FIELD(low_priority_weight, 0);
6137 	SET_FIELD(medium_priority_weight, 0);
6138 	SET_FIELD(high_priority_weight, 0);
6139 	SET_FIELD(io_queue_requests, 0);
6140 	SET_FIELD(nvme_adminq_poll_period_us, 0);
6141 	SET_FIELD(nvme_ioq_poll_period_us, 0);
6142 	SET_FIELD(delay_cmd_submit, 0);
6143 	SET_FIELD(bdev_retry_count, 0);
6144 	SET_FIELD(ctrlr_loss_timeout_sec, 0);
6145 	SET_FIELD(reconnect_delay_sec, 0);
6146 	SET_FIELD(fast_io_fail_timeout_sec, 0);
6147 	SET_FIELD(transport_ack_timeout, 0);
6148 	SET_FIELD(disable_auto_failback, false);
6149 	SET_FIELD(generate_uuids, false);
6150 	SET_FIELD(transport_tos, 0);
6151 	SET_FIELD(nvme_error_stat, false);
6152 	SET_FIELD(io_path_stat, false);
6153 	SET_FIELD(allow_accel_sequence, false);
6154 	SET_FIELD(rdma_srq_size, 0);
6155 	SET_FIELD(rdma_max_cq_size, 0);
6156 	SET_FIELD(rdma_cm_event_timeout_ms, 0);
6157 	SET_FIELD(dhchap_digests, 0);
6158 	SET_FIELD(dhchap_dhgroups, 0);
6159 
6160 #undef SET_FIELD
6161 
6162 	/* Do not remove this statement, you should always update this statement when you adding a new field,
6163 	 * and do not forget to add the SET_FIELD statement for your added field. */
6164 	SPDK_STATIC_ASSERT(sizeof(struct spdk_bdev_nvme_opts) == 120, "Incorrect size");
6165 }
6166 
6167 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
6168 		uint32_t reconnect_delay_sec,
6169 		uint32_t fast_io_fail_timeout_sec);
6170 
6171 static int
6172 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
6173 {
6174 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
6175 		/* Can't set timeout_admin_us without also setting timeout_us */
6176 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
6177 		return -EINVAL;
6178 	}
6179 
6180 	if (opts->bdev_retry_count < -1) {
6181 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
6182 		return -EINVAL;
6183 	}
6184 
6185 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
6186 			opts->reconnect_delay_sec,
6187 			opts->fast_io_fail_timeout_sec)) {
6188 		return -EINVAL;
6189 	}
6190 
6191 	return 0;
6192 }
6193 
6194 int
6195 spdk_bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
6196 {
6197 	if (!opts) {
6198 		SPDK_ERRLOG("opts cannot be NULL\n");
6199 		return -1;
6200 	}
6201 
6202 	if (!opts->opts_size) {
6203 		SPDK_ERRLOG("opts_size inside opts cannot be zero value\n");
6204 		return -1;
6205 	}
6206 
6207 	int ret;
6208 
6209 	ret = bdev_nvme_validate_opts(opts);
6210 	if (ret) {
6211 		SPDK_WARNLOG("Failed to set nvme opts.\n");
6212 		return ret;
6213 	}
6214 
6215 	if (g_bdev_nvme_init_thread != NULL) {
6216 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
6217 			return -EPERM;
6218 		}
6219 	}
6220 
6221 	if (opts->rdma_srq_size != 0 ||
6222 	    opts->rdma_max_cq_size != 0 ||
6223 	    opts->rdma_cm_event_timeout_ms != 0) {
6224 		struct spdk_nvme_transport_opts drv_opts;
6225 
6226 		spdk_nvme_transport_get_opts(&drv_opts, sizeof(drv_opts));
6227 		if (opts->rdma_srq_size != 0) {
6228 			drv_opts.rdma_srq_size = opts->rdma_srq_size;
6229 		}
6230 		if (opts->rdma_max_cq_size != 0) {
6231 			drv_opts.rdma_max_cq_size = opts->rdma_max_cq_size;
6232 		}
6233 		if (opts->rdma_cm_event_timeout_ms != 0) {
6234 			drv_opts.rdma_cm_event_timeout_ms = opts->rdma_cm_event_timeout_ms;
6235 		}
6236 
6237 		ret = spdk_nvme_transport_set_opts(&drv_opts, sizeof(drv_opts));
6238 		if (ret) {
6239 			SPDK_ERRLOG("Failed to set NVMe transport opts.\n");
6240 			return ret;
6241 		}
6242 	}
6243 
6244 #define SET_FIELD(field, defval) \
6245 		g_opts.field = SPDK_GET_FIELD(opts, field, defval, opts->opts_size); \
6246 
6247 	SET_FIELD(action_on_timeout, 0);
6248 	SET_FIELD(keep_alive_timeout_ms, 0);
6249 	SET_FIELD(timeout_us, 0);
6250 	SET_FIELD(timeout_admin_us, 0);
6251 	SET_FIELD(transport_retry_count, 0);
6252 	SET_FIELD(arbitration_burst, 0);
6253 	SET_FIELD(low_priority_weight, 0);
6254 	SET_FIELD(medium_priority_weight, 0);
6255 	SET_FIELD(high_priority_weight, 0);
6256 	SET_FIELD(io_queue_requests, 0);
6257 	SET_FIELD(nvme_adminq_poll_period_us, 0);
6258 	SET_FIELD(nvme_ioq_poll_period_us, 0);
6259 	SET_FIELD(delay_cmd_submit, 0);
6260 	SET_FIELD(bdev_retry_count, 0);
6261 	SET_FIELD(ctrlr_loss_timeout_sec, 0);
6262 	SET_FIELD(reconnect_delay_sec, 0);
6263 	SET_FIELD(fast_io_fail_timeout_sec, 0);
6264 	SET_FIELD(transport_ack_timeout, 0);
6265 	SET_FIELD(disable_auto_failback, false);
6266 	SET_FIELD(generate_uuids, false);
6267 	SET_FIELD(transport_tos, 0);
6268 	SET_FIELD(nvme_error_stat, false);
6269 	SET_FIELD(io_path_stat, false);
6270 	SET_FIELD(allow_accel_sequence, false);
6271 	SET_FIELD(rdma_srq_size, 0);
6272 	SET_FIELD(rdma_max_cq_size, 0);
6273 	SET_FIELD(rdma_cm_event_timeout_ms, 0);
6274 	SET_FIELD(dhchap_digests, 0);
6275 	SET_FIELD(dhchap_dhgroups, 0);
6276 
6277 	g_opts.opts_size = opts->opts_size;
6278 
6279 #undef SET_FIELD
6280 
6281 	return 0;
6282 }
6283 
6284 struct set_nvme_hotplug_ctx {
6285 	uint64_t period_us;
6286 	bool enabled;
6287 	spdk_msg_fn fn;
6288 	void *fn_ctx;
6289 };
6290 
6291 static void
6292 set_nvme_hotplug_period_cb(void *_ctx)
6293 {
6294 	struct set_nvme_hotplug_ctx *ctx = _ctx;
6295 
6296 	spdk_poller_unregister(&g_hotplug_poller);
6297 	if (ctx->enabled) {
6298 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
6299 	} else {
6300 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_remove_poller, NULL,
6301 							NVME_HOTPLUG_POLL_PERIOD_DEFAULT);
6302 	}
6303 
6304 	g_nvme_hotplug_poll_period_us = ctx->period_us;
6305 	g_nvme_hotplug_enabled = ctx->enabled;
6306 	if (ctx->fn) {
6307 		ctx->fn(ctx->fn_ctx);
6308 	}
6309 
6310 	free(ctx);
6311 }
6312 
6313 int
6314 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
6315 {
6316 	struct set_nvme_hotplug_ctx *ctx;
6317 
6318 	if (enabled == true && !spdk_process_is_primary()) {
6319 		return -EPERM;
6320 	}
6321 
6322 	ctx = calloc(1, sizeof(*ctx));
6323 	if (ctx == NULL) {
6324 		return -ENOMEM;
6325 	}
6326 
6327 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
6328 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
6329 	ctx->enabled = enabled;
6330 	ctx->fn = cb;
6331 	ctx->fn_ctx = cb_ctx;
6332 
6333 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
6334 	return 0;
6335 }
6336 
6337 static void
6338 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
6339 				    struct nvme_async_probe_ctx *ctx)
6340 {
6341 	struct nvme_ns	*nvme_ns;
6342 	struct nvme_bdev	*nvme_bdev;
6343 	size_t			j;
6344 
6345 	assert(nvme_ctrlr != NULL);
6346 
6347 	if (ctx->names == NULL) {
6348 		ctx->reported_bdevs = 0;
6349 		populate_namespaces_cb(ctx, 0);
6350 		return;
6351 	}
6352 
6353 	/*
6354 	 * Report the new bdevs that were created in this call.
6355 	 * There can be more than one bdev per NVMe controller.
6356 	 */
6357 	j = 0;
6358 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
6359 	while (nvme_ns != NULL) {
6360 		nvme_bdev = nvme_ns->bdev;
6361 		if (j < ctx->max_bdevs) {
6362 			ctx->names[j] = nvme_bdev->disk.name;
6363 			j++;
6364 		} else {
6365 			NVME_CTRLR_ERRLOG(nvme_ctrlr,
6366 					  "Maximum number of namespaces supported per NVMe controller is %du. "
6367 					  "Unable to return all names of created bdevs\n",
6368 					  ctx->max_bdevs);
6369 			ctx->reported_bdevs = 0;
6370 			populate_namespaces_cb(ctx, -ERANGE);
6371 			return;
6372 		}
6373 
6374 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
6375 	}
6376 
6377 	ctx->reported_bdevs = j;
6378 	populate_namespaces_cb(ctx, 0);
6379 }
6380 
6381 static int
6382 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
6383 			       struct spdk_nvme_ctrlr *new_ctrlr,
6384 			       struct spdk_nvme_transport_id *trid)
6385 {
6386 	struct nvme_path_id *tmp_trid;
6387 
6388 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
6389 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "PCIe failover is not supported.\n");
6390 		return -ENOTSUP;
6391 	}
6392 
6393 	/* Currently we only support failover to the same transport type. */
6394 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
6395 		NVME_CTRLR_WARNLOG(nvme_ctrlr,
6396 				   "Failover from trtype: %s to a different trtype: %s is not supported currently\n",
6397 				   spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
6398 				   spdk_nvme_transport_id_trtype_str(trid->trtype));
6399 		return -EINVAL;
6400 	}
6401 
6402 
6403 	/* Currently we only support failover to the same NQN. */
6404 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
6405 		NVME_CTRLR_WARNLOG(nvme_ctrlr,
6406 				   "Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
6407 				   nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
6408 		return -EINVAL;
6409 	}
6410 
6411 	/* Skip all the other checks if we've already registered this path. */
6412 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
6413 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
6414 			NVME_CTRLR_WARNLOG(nvme_ctrlr, "This path (traddr: %s subnqn: %s) is already registered\n",
6415 					   trid->traddr, trid->subnqn);
6416 			return -EALREADY;
6417 		}
6418 	}
6419 
6420 	return 0;
6421 }
6422 
6423 static int
6424 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
6425 				    struct spdk_nvme_ctrlr *new_ctrlr)
6426 {
6427 	struct nvme_ns *nvme_ns;
6428 	struct spdk_nvme_ns *new_ns;
6429 
6430 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
6431 	while (nvme_ns != NULL) {
6432 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
6433 		assert(new_ns != NULL);
6434 
6435 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
6436 			return -EINVAL;
6437 		}
6438 
6439 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
6440 	}
6441 
6442 	return 0;
6443 }
6444 
6445 static int
6446 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
6447 			      struct spdk_nvme_transport_id *trid)
6448 {
6449 	struct nvme_path_id *active_id, *new_trid, *tmp_trid;
6450 
6451 	new_trid = calloc(1, sizeof(*new_trid));
6452 	if (new_trid == NULL) {
6453 		return -ENOMEM;
6454 	}
6455 	new_trid->trid = *trid;
6456 
6457 	active_id = nvme_ctrlr->active_path_id;
6458 	assert(active_id != NULL);
6459 	assert(active_id == TAILQ_FIRST(&nvme_ctrlr->trids));
6460 
6461 	/* Skip the active trid not to replace it until it is failed. */
6462 	tmp_trid = TAILQ_NEXT(active_id, link);
6463 	if (tmp_trid == NULL) {
6464 		goto add_tail;
6465 	}
6466 
6467 	/* It means the trid is faled if its last failed time is non-zero.
6468 	 * Insert the new alternate trid before any failed trid.
6469 	 */
6470 	TAILQ_FOREACH_FROM(tmp_trid, &nvme_ctrlr->trids, link) {
6471 		if (tmp_trid->last_failed_tsc != 0) {
6472 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
6473 			return 0;
6474 		}
6475 	}
6476 
6477 add_tail:
6478 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
6479 	return 0;
6480 }
6481 
6482 /* This is the case that a secondary path is added to an existing
6483  * nvme_ctrlr for failover. After checking if it can access the same
6484  * namespaces as the primary path, it is disconnected until failover occurs.
6485  */
6486 static int
6487 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
6488 			     struct spdk_nvme_ctrlr *new_ctrlr,
6489 			     struct spdk_nvme_transport_id *trid)
6490 {
6491 	int rc;
6492 
6493 	assert(nvme_ctrlr != NULL);
6494 
6495 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6496 
6497 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
6498 	if (rc != 0) {
6499 		goto exit;
6500 	}
6501 
6502 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
6503 	if (rc != 0) {
6504 		goto exit;
6505 	}
6506 
6507 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
6508 
6509 exit:
6510 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6511 
6512 	spdk_nvme_detach(new_ctrlr);
6513 
6514 	return rc;
6515 }
6516 
6517 static void
6518 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6519 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
6520 {
6521 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6522 	struct nvme_async_probe_ctx *ctx;
6523 	int rc;
6524 
6525 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
6526 	ctx->ctrlr_attached = true;
6527 
6528 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
6529 	if (rc != 0) {
6530 		ctx->reported_bdevs = 0;
6531 		populate_namespaces_cb(ctx, rc);
6532 	}
6533 }
6534 
6535 
6536 static void
6537 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6538 			struct spdk_nvme_ctrlr *ctrlr,
6539 			const struct spdk_nvme_ctrlr_opts *opts)
6540 {
6541 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6542 	struct nvme_ctrlr *nvme_ctrlr;
6543 	struct nvme_async_probe_ctx *ctx;
6544 	int rc;
6545 
6546 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
6547 	ctx->ctrlr_attached = true;
6548 
6549 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
6550 	if (nvme_ctrlr) {
6551 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
6552 	} else {
6553 		rc = -ENODEV;
6554 	}
6555 
6556 	ctx->reported_bdevs = 0;
6557 	populate_namespaces_cb(ctx, rc);
6558 }
6559 
6560 static int
6561 bdev_nvme_async_poll(void *arg)
6562 {
6563 	struct nvme_async_probe_ctx	*ctx = arg;
6564 	int				rc;
6565 
6566 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
6567 	if (spdk_unlikely(rc != -EAGAIN)) {
6568 		ctx->probe_done = true;
6569 		spdk_poller_unregister(&ctx->poller);
6570 		if (!ctx->ctrlr_attached) {
6571 			/* The probe is done, but no controller was attached.
6572 			 * That means we had a failure, so report -EIO back to
6573 			 * the caller (usually the RPC). populate_namespaces_cb()
6574 			 * will take care of freeing the nvme_async_probe_ctx.
6575 			 */
6576 			ctx->reported_bdevs = 0;
6577 			populate_namespaces_cb(ctx, -EIO);
6578 		} else if (ctx->namespaces_populated) {
6579 			/* The namespaces for the attached controller were all
6580 			 * populated and the response was already sent to the
6581 			 * caller (usually the RPC).  So free the context here.
6582 			 */
6583 			free_nvme_async_probe_ctx(ctx);
6584 		}
6585 	}
6586 
6587 	return SPDK_POLLER_BUSY;
6588 }
6589 
6590 static bool
6591 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
6592 		uint32_t reconnect_delay_sec,
6593 		uint32_t fast_io_fail_timeout_sec)
6594 {
6595 	if (ctrlr_loss_timeout_sec < -1) {
6596 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
6597 		return false;
6598 	} else if (ctrlr_loss_timeout_sec == -1) {
6599 		if (reconnect_delay_sec == 0) {
6600 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6601 			return false;
6602 		} else if (fast_io_fail_timeout_sec != 0 &&
6603 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
6604 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
6605 			return false;
6606 		}
6607 	} else if (ctrlr_loss_timeout_sec != 0) {
6608 		if (reconnect_delay_sec == 0) {
6609 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6610 			return false;
6611 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6612 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
6613 			return false;
6614 		} else if (fast_io_fail_timeout_sec != 0) {
6615 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
6616 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
6617 				return false;
6618 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6619 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
6620 				return false;
6621 			}
6622 		}
6623 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
6624 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
6625 		return false;
6626 	}
6627 
6628 	return true;
6629 }
6630 
6631 int
6632 spdk_bdev_nvme_create(struct spdk_nvme_transport_id *trid,
6633 		      const char *base_name,
6634 		      const char **names,
6635 		      uint32_t count,
6636 		      spdk_bdev_nvme_create_cb cb_fn,
6637 		      void *cb_ctx,
6638 		      struct spdk_nvme_ctrlr_opts *drv_opts,
6639 		      struct spdk_bdev_nvme_ctrlr_opts *bdev_opts)
6640 {
6641 	struct nvme_probe_skip_entry *entry, *tmp;
6642 	struct nvme_async_probe_ctx *ctx;
6643 	spdk_nvme_attach_cb attach_cb;
6644 	struct nvme_ctrlr *nvme_ctrlr;
6645 	int len;
6646 
6647 	/* TODO expand this check to include both the host and target TRIDs.
6648 	 * Only if both are the same should we fail.
6649 	 */
6650 	if (nvme_ctrlr_get(trid, drv_opts->hostnqn) != NULL) {
6651 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s, hostnqn: %s) "
6652 			    "already exists.\n", trid->traddr, drv_opts->hostnqn);
6653 		return -EEXIST;
6654 	}
6655 
6656 	len = strnlen(base_name, SPDK_CONTROLLER_NAME_MAX);
6657 
6658 	if (len == 0 || len == SPDK_CONTROLLER_NAME_MAX) {
6659 		SPDK_ERRLOG("controller name must be between 1 and %d characters\n", SPDK_CONTROLLER_NAME_MAX - 1);
6660 		return -EINVAL;
6661 	}
6662 
6663 	if (bdev_opts != NULL &&
6664 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
6665 			    bdev_opts->reconnect_delay_sec,
6666 			    bdev_opts->fast_io_fail_timeout_sec)) {
6667 		return -EINVAL;
6668 	}
6669 
6670 	ctx = calloc(1, sizeof(*ctx));
6671 	if (!ctx) {
6672 		return -ENOMEM;
6673 	}
6674 	ctx->base_name = base_name;
6675 	ctx->names = names;
6676 	ctx->max_bdevs = count;
6677 	ctx->cb_fn = cb_fn;
6678 	ctx->cb_ctx = cb_ctx;
6679 	ctx->trid = *trid;
6680 
6681 	if (bdev_opts) {
6682 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
6683 	} else {
6684 		spdk_bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
6685 	}
6686 
6687 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
6688 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
6689 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
6690 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
6691 				free(entry);
6692 				break;
6693 			}
6694 		}
6695 	}
6696 
6697 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
6698 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
6699 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
6700 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
6701 	ctx->drv_opts.disable_read_ana_log_page = true;
6702 	ctx->drv_opts.transport_tos = g_opts.transport_tos;
6703 
6704 	if (spdk_interrupt_mode_is_enabled()) {
6705 		if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
6706 			ctx->drv_opts.enable_interrupts = true;
6707 		} else {
6708 			SPDK_ERRLOG("Interrupt mode is only supported with PCIe transport\n");
6709 			free_nvme_async_probe_ctx(ctx);
6710 			return -ENOTSUP;
6711 		}
6712 	}
6713 
6714 	if (ctx->bdev_opts.psk != NULL) {
6715 		ctx->drv_opts.tls_psk = spdk_keyring_get_key(ctx->bdev_opts.psk);
6716 		if (ctx->drv_opts.tls_psk == NULL) {
6717 			SPDK_ERRLOG("Could not load PSK: %s\n", ctx->bdev_opts.psk);
6718 			free_nvme_async_probe_ctx(ctx);
6719 			return -ENOKEY;
6720 		}
6721 	}
6722 
6723 	if (ctx->bdev_opts.dhchap_key != NULL) {
6724 		ctx->drv_opts.dhchap_key = spdk_keyring_get_key(ctx->bdev_opts.dhchap_key);
6725 		if (ctx->drv_opts.dhchap_key == NULL) {
6726 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP key: %s\n",
6727 				    ctx->bdev_opts.dhchap_key);
6728 			free_nvme_async_probe_ctx(ctx);
6729 			return -ENOKEY;
6730 		}
6731 
6732 		ctx->drv_opts.dhchap_digests = g_opts.dhchap_digests;
6733 		ctx->drv_opts.dhchap_dhgroups = g_opts.dhchap_dhgroups;
6734 	}
6735 	if (ctx->bdev_opts.dhchap_ctrlr_key != NULL) {
6736 		ctx->drv_opts.dhchap_ctrlr_key =
6737 			spdk_keyring_get_key(ctx->bdev_opts.dhchap_ctrlr_key);
6738 		if (ctx->drv_opts.dhchap_ctrlr_key == NULL) {
6739 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP controller key: %s\n",
6740 				    ctx->bdev_opts.dhchap_ctrlr_key);
6741 			free_nvme_async_probe_ctx(ctx);
6742 			return -ENOKEY;
6743 		}
6744 	}
6745 
6746 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || ctx->bdev_opts.multipath) {
6747 		attach_cb = connect_attach_cb;
6748 	} else {
6749 		attach_cb = connect_set_failover_cb;
6750 	}
6751 
6752 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
6753 	if (nvme_ctrlr  && nvme_ctrlr->opts.multipath != ctx->bdev_opts.multipath) {
6754 		/* All controllers with the same name must be configured the same
6755 		 * way, either for multipath or failover. If the configuration doesn't
6756 		 * match - report error.
6757 		 */
6758 		free_nvme_async_probe_ctx(ctx);
6759 		return -EINVAL;
6760 	}
6761 
6762 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
6763 	if (ctx->probe_ctx == NULL) {
6764 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
6765 		free_nvme_async_probe_ctx(ctx);
6766 		return -ENODEV;
6767 	}
6768 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
6769 
6770 	return 0;
6771 }
6772 
6773 struct bdev_nvme_delete_ctx {
6774 	char                        *name;
6775 	struct nvme_path_id         path_id;
6776 	bdev_nvme_delete_done_fn    delete_done;
6777 	void                        *delete_done_ctx;
6778 	uint64_t                    timeout_ticks;
6779 	struct spdk_poller          *poller;
6780 };
6781 
6782 static void
6783 free_bdev_nvme_delete_ctx(struct bdev_nvme_delete_ctx *ctx)
6784 {
6785 	if (ctx != NULL) {
6786 		free(ctx->name);
6787 		free(ctx);
6788 	}
6789 }
6790 
6791 static bool
6792 nvme_path_id_compare(struct nvme_path_id *p, const struct nvme_path_id *path_id)
6793 {
6794 	if (path_id->trid.trtype != 0) {
6795 		if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
6796 			if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
6797 				return false;
6798 			}
6799 		} else {
6800 			if (path_id->trid.trtype != p->trid.trtype) {
6801 				return false;
6802 			}
6803 		}
6804 	}
6805 
6806 	if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
6807 		if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
6808 			return false;
6809 		}
6810 	}
6811 
6812 	if (path_id->trid.adrfam != 0) {
6813 		if (path_id->trid.adrfam != p->trid.adrfam) {
6814 			return false;
6815 		}
6816 	}
6817 
6818 	if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
6819 		if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
6820 			return false;
6821 		}
6822 	}
6823 
6824 	if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
6825 		if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
6826 			return false;
6827 		}
6828 	}
6829 
6830 	if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
6831 		if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
6832 			return false;
6833 		}
6834 	}
6835 
6836 	if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
6837 		if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
6838 			return false;
6839 		}
6840 	}
6841 
6842 	return true;
6843 }
6844 
6845 static bool
6846 nvme_path_id_exists(const char *name, const struct nvme_path_id *path_id)
6847 {
6848 	struct nvme_bdev_ctrlr  *nbdev_ctrlr;
6849 	struct nvme_ctrlr       *ctrlr;
6850 	struct nvme_path_id     *p;
6851 
6852 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6853 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6854 	if (!nbdev_ctrlr) {
6855 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6856 		return false;
6857 	}
6858 
6859 	TAILQ_FOREACH(ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6860 		pthread_mutex_lock(&ctrlr->mutex);
6861 		TAILQ_FOREACH(p, &ctrlr->trids, link) {
6862 			if (nvme_path_id_compare(p, path_id)) {
6863 				pthread_mutex_unlock(&ctrlr->mutex);
6864 				pthread_mutex_unlock(&g_bdev_nvme_mutex);
6865 				return true;
6866 			}
6867 		}
6868 		pthread_mutex_unlock(&ctrlr->mutex);
6869 	}
6870 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6871 
6872 	return false;
6873 }
6874 
6875 static int
6876 bdev_nvme_delete_complete_poll(void *arg)
6877 {
6878 	struct bdev_nvme_delete_ctx     *ctx = arg;
6879 	int                             rc = 0;
6880 
6881 	if (nvme_path_id_exists(ctx->name, &ctx->path_id)) {
6882 		if (ctx->timeout_ticks > spdk_get_ticks()) {
6883 			return SPDK_POLLER_BUSY;
6884 		}
6885 
6886 		SPDK_ERRLOG("NVMe path '%s' still exists after delete\n", ctx->name);
6887 		rc = -ETIMEDOUT;
6888 	}
6889 
6890 	spdk_poller_unregister(&ctx->poller);
6891 
6892 	ctx->delete_done(ctx->delete_done_ctx, rc);
6893 	free_bdev_nvme_delete_ctx(ctx);
6894 
6895 	return SPDK_POLLER_BUSY;
6896 }
6897 
6898 static int
6899 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, const struct nvme_path_id *path_id)
6900 {
6901 	struct nvme_path_id	*p, *t;
6902 	spdk_msg_fn		msg_fn;
6903 	int			rc = -ENXIO;
6904 
6905 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6906 
6907 	TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
6908 		if (p == TAILQ_FIRST(&nvme_ctrlr->trids)) {
6909 			break;
6910 		}
6911 
6912 		if (!nvme_path_id_compare(p, path_id)) {
6913 			continue;
6914 		}
6915 
6916 		/* We are not using the specified path. */
6917 		TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
6918 		free(p);
6919 		rc = 0;
6920 	}
6921 
6922 	if (p == NULL || !nvme_path_id_compare(p, path_id)) {
6923 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
6924 		return rc;
6925 	}
6926 
6927 	/* If we made it here, then this path is a match! Now we need to remove it. */
6928 
6929 	/* This is the active path in use right now. The active path is always the first in the list. */
6930 	assert(p == nvme_ctrlr->active_path_id);
6931 
6932 	if (!TAILQ_NEXT(p, link)) {
6933 		/* The current path is the only path. */
6934 		msg_fn = _nvme_ctrlr_destruct;
6935 		rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, false);
6936 	} else {
6937 		/* There is an alternative path. */
6938 		msg_fn = _bdev_nvme_reset_ctrlr;
6939 		rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, true);
6940 	}
6941 
6942 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6943 
6944 	if (rc == 0) {
6945 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
6946 	} else if (rc == -EALREADY) {
6947 		rc = 0;
6948 	}
6949 
6950 	return rc;
6951 }
6952 
6953 int
6954 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id,
6955 		 bdev_nvme_delete_done_fn delete_done, void *delete_done_ctx)
6956 {
6957 	struct nvme_bdev_ctrlr		*nbdev_ctrlr;
6958 	struct nvme_ctrlr		*nvme_ctrlr, *tmp_nvme_ctrlr;
6959 	struct bdev_nvme_delete_ctx     *ctx = NULL;
6960 	int				rc = -ENXIO, _rc;
6961 
6962 	if (name == NULL || path_id == NULL) {
6963 		rc = -EINVAL;
6964 		goto exit;
6965 	}
6966 
6967 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6968 
6969 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6970 	if (nbdev_ctrlr == NULL) {
6971 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6972 
6973 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
6974 		rc = -ENODEV;
6975 		goto exit;
6976 	}
6977 
6978 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
6979 		_rc = _bdev_nvme_delete(nvme_ctrlr, path_id);
6980 		if (_rc < 0 && _rc != -ENXIO) {
6981 			pthread_mutex_unlock(&g_bdev_nvme_mutex);
6982 			rc = _rc;
6983 			goto exit;
6984 		} else if (_rc == 0) {
6985 			/* We traverse all remaining nvme_ctrlrs even if one nvme_ctrlr
6986 			 * was deleted successfully. To remember the successful deletion,
6987 			 * overwrite rc only if _rc is zero.
6988 			 */
6989 			rc = 0;
6990 		}
6991 	}
6992 
6993 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6994 
6995 	if (rc != 0 || delete_done == NULL) {
6996 		goto exit;
6997 	}
6998 
6999 	ctx = calloc(1, sizeof(*ctx));
7000 	if (ctx == NULL) {
7001 		SPDK_ERRLOG("Failed to allocate context for bdev_nvme_delete\n");
7002 		rc = -ENOMEM;
7003 		goto exit;
7004 	}
7005 
7006 	ctx->name = strdup(name);
7007 	if (ctx->name == NULL) {
7008 		SPDK_ERRLOG("Failed to copy controller name for deletion\n");
7009 		rc = -ENOMEM;
7010 		goto exit;
7011 	}
7012 
7013 	ctx->delete_done = delete_done;
7014 	ctx->delete_done_ctx = delete_done_ctx;
7015 	ctx->path_id = *path_id;
7016 	ctx->timeout_ticks = spdk_get_ticks() + 10 * spdk_get_ticks_hz();
7017 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_delete_complete_poll, ctx, 1000);
7018 	if (ctx->poller == NULL) {
7019 		SPDK_ERRLOG("Failed to register bdev_nvme_delete poller\n");
7020 		rc = -ENOMEM;
7021 		goto exit;
7022 	}
7023 
7024 exit:
7025 	if (rc != 0) {
7026 		free_bdev_nvme_delete_ctx(ctx);
7027 	}
7028 
7029 	return rc;
7030 }
7031 
7032 #define DISCOVERY_INFOLOG(ctx, format, ...) \
7033 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
7034 
7035 #define DISCOVERY_ERRLOG(ctx, format, ...) \
7036 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
7037 
7038 struct discovery_entry_ctx {
7039 	char						name[128];
7040 	struct spdk_nvme_transport_id			trid;
7041 	struct spdk_nvme_ctrlr_opts			drv_opts;
7042 	struct spdk_nvmf_discovery_log_page_entry	entry;
7043 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
7044 	struct discovery_ctx				*ctx;
7045 };
7046 
7047 struct discovery_ctx {
7048 	char					*name;
7049 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
7050 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
7051 	void					*cb_ctx;
7052 	struct spdk_nvme_probe_ctx		*probe_ctx;
7053 	struct spdk_nvme_detach_ctx		*detach_ctx;
7054 	struct spdk_nvme_ctrlr			*ctrlr;
7055 	struct spdk_nvme_transport_id		trid;
7056 	struct discovery_entry_ctx		*entry_ctx_in_use;
7057 	struct spdk_poller			*poller;
7058 	struct spdk_nvme_ctrlr_opts		drv_opts;
7059 	struct spdk_bdev_nvme_ctrlr_opts	bdev_opts;
7060 	struct spdk_nvmf_discovery_log_page	*log_page;
7061 	TAILQ_ENTRY(discovery_ctx)		tailq;
7062 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
7063 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
7064 	int					rc;
7065 	bool					wait_for_attach;
7066 	uint64_t				timeout_ticks;
7067 	/* Denotes that the discovery service is being started. We're waiting
7068 	 * for the initial connection to the discovery controller to be
7069 	 * established and attach discovered NVM ctrlrs.
7070 	 */
7071 	bool					initializing;
7072 	/* Denotes if a discovery is currently in progress for this context.
7073 	 * That includes connecting to newly discovered subsystems.  Used to
7074 	 * ensure we do not start a new discovery until an existing one is
7075 	 * complete.
7076 	 */
7077 	bool					in_progress;
7078 
7079 	/* Denotes if another discovery is needed after the one in progress
7080 	 * completes.  Set when we receive an AER completion while a discovery
7081 	 * is already in progress.
7082 	 */
7083 	bool					pending;
7084 
7085 	/* Signal to the discovery context poller that it should stop the
7086 	 * discovery service, including detaching from the current discovery
7087 	 * controller.
7088 	 */
7089 	bool					stop;
7090 
7091 	struct spdk_thread			*calling_thread;
7092 	uint32_t				index;
7093 	uint32_t				attach_in_progress;
7094 	char					*hostnqn;
7095 
7096 	/* Denotes if the discovery service was started by the mdns discovery.
7097 	 */
7098 	bool					from_mdns_discovery_service;
7099 };
7100 
7101 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
7102 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
7103 
7104 static void get_discovery_log_page(struct discovery_ctx *ctx);
7105 
7106 static void
7107 free_discovery_ctx(struct discovery_ctx *ctx)
7108 {
7109 	free(ctx->log_page);
7110 	free(ctx->hostnqn);
7111 	free(ctx->name);
7112 	free(ctx);
7113 }
7114 
7115 static void
7116 discovery_complete(struct discovery_ctx *ctx)
7117 {
7118 	ctx->initializing = false;
7119 	ctx->in_progress = false;
7120 	if (ctx->pending) {
7121 		ctx->pending = false;
7122 		get_discovery_log_page(ctx);
7123 	}
7124 }
7125 
7126 static void
7127 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
7128 			       struct spdk_nvmf_discovery_log_page_entry *entry)
7129 {
7130 	char *space;
7131 
7132 	trid->trtype = entry->trtype;
7133 	trid->adrfam = entry->adrfam;
7134 	memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr));
7135 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid));
7136 	/* Because the source buffer (entry->subnqn) is longer than trid->subnqn, and
7137 	 * before call to this function trid->subnqn is zeroed out, we need
7138 	 * to copy sizeof(trid->subnqn) minus one byte to make sure the last character
7139 	 * remains 0. Then we can shorten the string (replace ' ' with 0) if required
7140 	 */
7141 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn) - 1);
7142 
7143 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
7144 	 * But the log page entries typically pad them with spaces, not zeroes.
7145 	 * So add a NULL terminator to each of these fields at the appropriate
7146 	 * location.
7147 	 */
7148 	space = strchr(trid->traddr, ' ');
7149 	if (space) {
7150 		*space = 0;
7151 	}
7152 	space = strchr(trid->trsvcid, ' ');
7153 	if (space) {
7154 		*space = 0;
7155 	}
7156 	space = strchr(trid->subnqn, ' ');
7157 	if (space) {
7158 		*space = 0;
7159 	}
7160 }
7161 
7162 static void
7163 _stop_discovery(void *_ctx)
7164 {
7165 	struct discovery_ctx *ctx = _ctx;
7166 
7167 	if (ctx->attach_in_progress > 0) {
7168 		spdk_thread_send_msg(spdk_get_thread(), _stop_discovery, ctx);
7169 		return;
7170 	}
7171 
7172 	ctx->stop = true;
7173 
7174 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
7175 		struct discovery_entry_ctx *entry_ctx;
7176 		struct nvme_path_id path = {};
7177 
7178 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
7179 		path.trid = entry_ctx->trid;
7180 		bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
7181 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
7182 		free(entry_ctx);
7183 	}
7184 
7185 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
7186 		struct discovery_entry_ctx *entry_ctx;
7187 
7188 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
7189 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
7190 		free(entry_ctx);
7191 	}
7192 
7193 	free(ctx->entry_ctx_in_use);
7194 	ctx->entry_ctx_in_use = NULL;
7195 }
7196 
7197 static void
7198 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
7199 {
7200 	ctx->stop_cb_fn = cb_fn;
7201 	ctx->cb_ctx = cb_ctx;
7202 
7203 	if (ctx->attach_in_progress > 0) {
7204 		DISCOVERY_INFOLOG(ctx, "stopping discovery with attach_in_progress: %"PRIu32"\n",
7205 				  ctx->attach_in_progress);
7206 	}
7207 
7208 	_stop_discovery(ctx);
7209 }
7210 
7211 static void
7212 remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr)
7213 {
7214 	struct discovery_ctx *d_ctx;
7215 	struct nvme_path_id *path_id;
7216 	struct spdk_nvme_transport_id trid = {};
7217 	struct discovery_entry_ctx *entry_ctx, *tmp;
7218 
7219 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
7220 
7221 	TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
7222 		TAILQ_FOREACH_SAFE(entry_ctx, &d_ctx->nvm_entry_ctxs, tailq, tmp) {
7223 			build_trid_from_log_page_entry(&trid, &entry_ctx->entry);
7224 			if (spdk_nvme_transport_id_compare(&trid, &path_id->trid) != 0) {
7225 				continue;
7226 			}
7227 
7228 			TAILQ_REMOVE(&d_ctx->nvm_entry_ctxs, entry_ctx, tailq);
7229 			free(entry_ctx);
7230 			DISCOVERY_INFOLOG(d_ctx, "Remove discovery entry: %s:%s:%s\n",
7231 					  trid.subnqn, trid.traddr, trid.trsvcid);
7232 
7233 			/* Fail discovery ctrlr to force reattach attempt */
7234 			spdk_nvme_ctrlr_fail(d_ctx->ctrlr);
7235 		}
7236 	}
7237 }
7238 
7239 static void
7240 discovery_remove_controllers(struct discovery_ctx *ctx)
7241 {
7242 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
7243 	struct discovery_entry_ctx *entry_ctx, *tmp;
7244 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
7245 	struct spdk_nvme_transport_id old_trid = {};
7246 	uint64_t numrec, i;
7247 	bool found;
7248 
7249 	numrec = from_le64(&log_page->numrec);
7250 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
7251 		found = false;
7252 		old_entry = &entry_ctx->entry;
7253 		build_trid_from_log_page_entry(&old_trid, old_entry);
7254 		for (i = 0; i < numrec; i++) {
7255 			new_entry = &log_page->entries[i];
7256 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
7257 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
7258 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
7259 				found = true;
7260 				break;
7261 			}
7262 		}
7263 		if (!found) {
7264 			struct nvme_path_id path = {};
7265 
7266 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
7267 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
7268 
7269 			path.trid = entry_ctx->trid;
7270 			bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
7271 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
7272 			free(entry_ctx);
7273 		}
7274 	}
7275 	free(log_page);
7276 	ctx->log_page = NULL;
7277 	discovery_complete(ctx);
7278 }
7279 
7280 static void
7281 complete_discovery_start(struct discovery_ctx *ctx, int status)
7282 {
7283 	ctx->timeout_ticks = 0;
7284 	ctx->rc = status;
7285 	if (ctx->start_cb_fn) {
7286 		ctx->start_cb_fn(ctx->cb_ctx, status);
7287 		ctx->start_cb_fn = NULL;
7288 		ctx->cb_ctx = NULL;
7289 	}
7290 }
7291 
7292 static void
7293 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
7294 {
7295 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
7296 	struct discovery_ctx *ctx = entry_ctx->ctx;
7297 
7298 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
7299 	ctx->attach_in_progress--;
7300 	if (ctx->attach_in_progress == 0) {
7301 		complete_discovery_start(ctx, ctx->rc);
7302 		if (ctx->initializing && ctx->rc != 0) {
7303 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
7304 			stop_discovery(ctx, NULL, ctx->cb_ctx);
7305 		} else {
7306 			discovery_remove_controllers(ctx);
7307 		}
7308 	}
7309 }
7310 
7311 static struct discovery_entry_ctx *
7312 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
7313 {
7314 	struct discovery_entry_ctx *new_ctx;
7315 
7316 	new_ctx = calloc(1, sizeof(*new_ctx));
7317 	if (new_ctx == NULL) {
7318 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7319 		return NULL;
7320 	}
7321 
7322 	new_ctx->ctx = ctx;
7323 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
7324 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
7325 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
7326 	return new_ctx;
7327 }
7328 
7329 static void
7330 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
7331 		      struct spdk_nvmf_discovery_log_page *log_page)
7332 {
7333 	struct discovery_ctx *ctx = cb_arg;
7334 	struct discovery_entry_ctx *entry_ctx, *tmp;
7335 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
7336 	uint64_t numrec, i;
7337 	bool found;
7338 
7339 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
7340 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
7341 		return;
7342 	}
7343 
7344 	ctx->log_page = log_page;
7345 	assert(ctx->attach_in_progress == 0);
7346 	numrec = from_le64(&log_page->numrec);
7347 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
7348 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
7349 		free(entry_ctx);
7350 	}
7351 	for (i = 0; i < numrec; i++) {
7352 		found = false;
7353 		new_entry = &log_page->entries[i];
7354 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY_CURRENT ||
7355 		    new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
7356 			struct discovery_entry_ctx *new_ctx;
7357 			struct spdk_nvme_transport_id trid = {};
7358 
7359 			build_trid_from_log_page_entry(&trid, new_entry);
7360 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
7361 			if (new_ctx == NULL) {
7362 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7363 				break;
7364 			}
7365 
7366 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
7367 			continue;
7368 		}
7369 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
7370 			old_entry = &entry_ctx->entry;
7371 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
7372 				found = true;
7373 				break;
7374 			}
7375 		}
7376 		if (!found) {
7377 			struct discovery_entry_ctx *subnqn_ctx = NULL, *new_ctx;
7378 			struct discovery_ctx *d_ctx;
7379 
7380 			TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
7381 				TAILQ_FOREACH(subnqn_ctx, &d_ctx->nvm_entry_ctxs, tailq) {
7382 					if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
7383 						    sizeof(new_entry->subnqn))) {
7384 						break;
7385 					}
7386 				}
7387 				if (subnqn_ctx) {
7388 					break;
7389 				}
7390 			}
7391 
7392 			new_ctx = calloc(1, sizeof(*new_ctx));
7393 			if (new_ctx == NULL) {
7394 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7395 				break;
7396 			}
7397 
7398 			new_ctx->ctx = ctx;
7399 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
7400 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
7401 			if (subnqn_ctx) {
7402 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
7403 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
7404 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
7405 						  new_ctx->name);
7406 			} else {
7407 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
7408 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
7409 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
7410 						  new_ctx->name);
7411 			}
7412 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
7413 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
7414 			rc = spdk_bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
7415 						   discovery_attach_controller_done, new_ctx,
7416 						   &new_ctx->drv_opts, &ctx->bdev_opts);
7417 			if (rc == 0) {
7418 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
7419 				ctx->attach_in_progress++;
7420 			} else {
7421 				DISCOVERY_ERRLOG(ctx, "spdk_bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
7422 			}
7423 		}
7424 	}
7425 
7426 	if (ctx->attach_in_progress == 0) {
7427 		discovery_remove_controllers(ctx);
7428 	}
7429 }
7430 
7431 static void
7432 get_discovery_log_page(struct discovery_ctx *ctx)
7433 {
7434 	int rc;
7435 
7436 	assert(ctx->in_progress == false);
7437 	ctx->in_progress = true;
7438 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
7439 	if (rc != 0) {
7440 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
7441 	}
7442 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
7443 }
7444 
7445 static void
7446 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
7447 {
7448 	struct discovery_ctx *ctx = arg;
7449 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
7450 
7451 	if (spdk_nvme_cpl_is_error(cpl)) {
7452 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
7453 		return;
7454 	}
7455 
7456 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
7457 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
7458 		return;
7459 	}
7460 
7461 	DISCOVERY_INFOLOG(ctx, "got aer\n");
7462 	if (ctx->in_progress) {
7463 		ctx->pending = true;
7464 		return;
7465 	}
7466 
7467 	get_discovery_log_page(ctx);
7468 }
7469 
7470 static void
7471 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
7472 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
7473 {
7474 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
7475 	struct discovery_ctx *ctx;
7476 
7477 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
7478 
7479 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
7480 	ctx->probe_ctx = NULL;
7481 	ctx->ctrlr = ctrlr;
7482 
7483 	if (ctx->rc != 0) {
7484 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
7485 				 ctx->rc);
7486 		return;
7487 	}
7488 
7489 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
7490 }
7491 
7492 static int
7493 discovery_poller(void *arg)
7494 {
7495 	struct discovery_ctx *ctx = arg;
7496 	struct spdk_nvme_transport_id *trid;
7497 	int rc;
7498 
7499 	if (ctx->detach_ctx) {
7500 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
7501 		if (rc != -EAGAIN) {
7502 			ctx->detach_ctx = NULL;
7503 			ctx->ctrlr = NULL;
7504 		}
7505 	} else if (ctx->stop) {
7506 		if (ctx->ctrlr != NULL) {
7507 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
7508 			if (rc == 0) {
7509 				return SPDK_POLLER_BUSY;
7510 			}
7511 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7512 		}
7513 		spdk_poller_unregister(&ctx->poller);
7514 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
7515 		assert(ctx->start_cb_fn == NULL);
7516 		if (ctx->stop_cb_fn != NULL) {
7517 			ctx->stop_cb_fn(ctx->cb_ctx);
7518 		}
7519 		free_discovery_ctx(ctx);
7520 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
7521 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7522 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
7523 			assert(ctx->initializing);
7524 			spdk_poller_unregister(&ctx->poller);
7525 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
7526 			complete_discovery_start(ctx, -ETIMEDOUT);
7527 			stop_discovery(ctx, NULL, NULL);
7528 			free_discovery_ctx(ctx);
7529 			return SPDK_POLLER_BUSY;
7530 		}
7531 
7532 		assert(ctx->entry_ctx_in_use == NULL);
7533 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
7534 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7535 		trid = &ctx->entry_ctx_in_use->trid;
7536 
7537 		/* All controllers must be configured explicitely either for multipath or failover.
7538 		 * While discovery use multipath mode, we need to set this in bdev options as well.
7539 		 */
7540 		ctx->bdev_opts.multipath = true;
7541 
7542 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
7543 		if (ctx->probe_ctx) {
7544 			spdk_poller_unregister(&ctx->poller);
7545 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
7546 		} else {
7547 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
7548 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7549 			ctx->entry_ctx_in_use = NULL;
7550 		}
7551 	} else if (ctx->probe_ctx) {
7552 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7553 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
7554 			complete_discovery_start(ctx, -ETIMEDOUT);
7555 			return SPDK_POLLER_BUSY;
7556 		}
7557 
7558 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
7559 		if (rc != -EAGAIN) {
7560 			if (ctx->rc != 0) {
7561 				assert(ctx->initializing);
7562 				stop_discovery(ctx, NULL, ctx->cb_ctx);
7563 			} else {
7564 				assert(rc == 0);
7565 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
7566 				ctx->rc = rc;
7567 				get_discovery_log_page(ctx);
7568 			}
7569 		}
7570 	} else {
7571 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7572 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
7573 			complete_discovery_start(ctx, -ETIMEDOUT);
7574 			/* We need to wait until all NVM ctrlrs are attached before we stop the
7575 			 * discovery service to make sure we don't detach a ctrlr that is still
7576 			 * being attached.
7577 			 */
7578 			if (ctx->attach_in_progress == 0) {
7579 				stop_discovery(ctx, NULL, ctx->cb_ctx);
7580 				return SPDK_POLLER_BUSY;
7581 			}
7582 		}
7583 
7584 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
7585 		if (rc < 0) {
7586 			spdk_poller_unregister(&ctx->poller);
7587 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7588 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7589 			ctx->entry_ctx_in_use = NULL;
7590 
7591 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
7592 			if (rc != 0) {
7593 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7594 				ctx->ctrlr = NULL;
7595 			}
7596 		}
7597 	}
7598 
7599 	return SPDK_POLLER_BUSY;
7600 }
7601 
7602 static void
7603 start_discovery_poller(void *arg)
7604 {
7605 	struct discovery_ctx *ctx = arg;
7606 
7607 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
7608 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7609 }
7610 
7611 int
7612 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
7613 			  const char *base_name,
7614 			  struct spdk_nvme_ctrlr_opts *drv_opts,
7615 			  struct spdk_bdev_nvme_ctrlr_opts *bdev_opts,
7616 			  uint64_t attach_timeout,
7617 			  bool from_mdns,
7618 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
7619 {
7620 	struct discovery_ctx *ctx;
7621 	struct discovery_entry_ctx *discovery_entry_ctx;
7622 
7623 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
7624 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7625 		if (strcmp(ctx->name, base_name) == 0) {
7626 			return -EEXIST;
7627 		}
7628 
7629 		if (ctx->entry_ctx_in_use != NULL) {
7630 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
7631 				return -EEXIST;
7632 			}
7633 		}
7634 
7635 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
7636 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
7637 				return -EEXIST;
7638 			}
7639 		}
7640 	}
7641 
7642 	ctx = calloc(1, sizeof(*ctx));
7643 	if (ctx == NULL) {
7644 		return -ENOMEM;
7645 	}
7646 
7647 	ctx->name = strdup(base_name);
7648 	if (ctx->name == NULL) {
7649 		free_discovery_ctx(ctx);
7650 		return -ENOMEM;
7651 	}
7652 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
7653 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
7654 	ctx->from_mdns_discovery_service = from_mdns;
7655 	ctx->bdev_opts.from_discovery_service = true;
7656 	ctx->calling_thread = spdk_get_thread();
7657 	ctx->start_cb_fn = cb_fn;
7658 	ctx->cb_ctx = cb_ctx;
7659 	ctx->initializing = true;
7660 	if (ctx->start_cb_fn) {
7661 		/* We can use this when dumping json to denote if this RPC parameter
7662 		 * was specified or not.
7663 		 */
7664 		ctx->wait_for_attach = true;
7665 	}
7666 	if (attach_timeout != 0) {
7667 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
7668 				     spdk_get_ticks_hz() / 1000ull;
7669 	}
7670 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
7671 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
7672 	memcpy(&ctx->trid, trid, sizeof(*trid));
7673 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
7674 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
7675 	if (ctx->hostnqn == NULL) {
7676 		free_discovery_ctx(ctx);
7677 		return -ENOMEM;
7678 	}
7679 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
7680 	if (discovery_entry_ctx == NULL) {
7681 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7682 		free_discovery_ctx(ctx);
7683 		return -ENOMEM;
7684 	}
7685 
7686 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
7687 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
7688 	return 0;
7689 }
7690 
7691 int
7692 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
7693 {
7694 	struct discovery_ctx *ctx;
7695 
7696 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7697 		if (strcmp(name, ctx->name) == 0) {
7698 			if (ctx->stop) {
7699 				return -EALREADY;
7700 			}
7701 			/* If we're still starting the discovery service and ->rc is non-zero, we're
7702 			 * going to stop it as soon as we can
7703 			 */
7704 			if (ctx->initializing && ctx->rc != 0) {
7705 				return -EALREADY;
7706 			}
7707 			stop_discovery(ctx, cb_fn, cb_ctx);
7708 			return 0;
7709 		}
7710 	}
7711 
7712 	return -ENOENT;
7713 }
7714 
7715 static int
7716 bdev_nvme_library_init(void)
7717 {
7718 	g_bdev_nvme_init_thread = spdk_get_thread();
7719 
7720 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
7721 				bdev_nvme_destroy_poll_group_cb,
7722 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
7723 
7724 	return 0;
7725 }
7726 
7727 static void
7728 bdev_nvme_fini_destruct_ctrlrs(void)
7729 {
7730 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
7731 	struct nvme_ctrlr *nvme_ctrlr;
7732 
7733 	pthread_mutex_lock(&g_bdev_nvme_mutex);
7734 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
7735 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
7736 			pthread_mutex_lock(&nvme_ctrlr->mutex);
7737 			if (nvme_ctrlr->destruct) {
7738 				/* This controller's destruction was already started
7739 				 * before the application started shutting down
7740 				 */
7741 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
7742 				continue;
7743 			}
7744 			nvme_ctrlr->destruct = true;
7745 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
7746 
7747 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
7748 					     nvme_ctrlr);
7749 		}
7750 	}
7751 
7752 	g_bdev_nvme_module_finish = true;
7753 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
7754 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
7755 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
7756 		spdk_bdev_module_fini_done();
7757 		return;
7758 	}
7759 
7760 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
7761 }
7762 
7763 static void
7764 check_discovery_fini(void *arg)
7765 {
7766 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7767 		bdev_nvme_fini_destruct_ctrlrs();
7768 	}
7769 }
7770 
7771 static void
7772 bdev_nvme_library_fini(void)
7773 {
7774 	struct nvme_probe_skip_entry *entry, *entry_tmp;
7775 	struct discovery_ctx *ctx;
7776 
7777 	spdk_poller_unregister(&g_hotplug_poller);
7778 	free(g_hotplug_probe_ctx);
7779 	g_hotplug_probe_ctx = NULL;
7780 
7781 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
7782 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
7783 		free(entry);
7784 	}
7785 
7786 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
7787 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7788 		bdev_nvme_fini_destruct_ctrlrs();
7789 	} else {
7790 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7791 			stop_discovery(ctx, check_discovery_fini, NULL);
7792 		}
7793 	}
7794 }
7795 
7796 static void
7797 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
7798 {
7799 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7800 	struct spdk_bdev *bdev = bdev_io->bdev;
7801 	struct spdk_dif_ctx dif_ctx;
7802 	struct spdk_dif_error err_blk = {};
7803 	int rc;
7804 	struct spdk_dif_ctx_init_ext_opts dif_opts;
7805 
7806 	dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format);
7807 	dif_opts.dif_pi_format = bdev->dif_pi_format;
7808 	rc = spdk_dif_ctx_init(&dif_ctx,
7809 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
7810 			       bdev->dif_is_head_of_md, bdev->dif_type,
7811 			       bdev_io->u.bdev.dif_check_flags,
7812 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0, &dif_opts);
7813 	if (rc != 0) {
7814 		SPDK_ERRLOG("Initialization of DIF context failed\n");
7815 		return;
7816 	}
7817 
7818 	if (bdev->md_interleave) {
7819 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7820 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7821 	} else {
7822 		struct iovec md_iov = {
7823 			.iov_base	= bdev_io->u.bdev.md_buf,
7824 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
7825 		};
7826 
7827 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7828 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7829 	}
7830 
7831 	if (rc != 0) {
7832 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
7833 			    err_blk.err_type, err_blk.err_offset);
7834 	} else {
7835 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
7836 	}
7837 }
7838 
7839 static void
7840 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7841 {
7842 	struct nvme_bdev_io *bio = ref;
7843 
7844 	if (spdk_nvme_cpl_is_success(cpl)) {
7845 		/* Run PI verification for read data buffer. */
7846 		bdev_nvme_verify_pi_error(bio);
7847 	}
7848 
7849 	/* Return original completion status */
7850 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7851 }
7852 
7853 static void
7854 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7855 {
7856 	struct nvme_bdev_io *bio = ref;
7857 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7858 	int ret;
7859 
7860 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7861 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
7862 			    cpl->status.sct, cpl->status.sc);
7863 
7864 		/* Save completion status to use after verifying PI error. */
7865 		bio->cpl = *cpl;
7866 
7867 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
7868 			/* Read without PI checking to verify PI error. */
7869 			ret = bdev_nvme_no_pi_readv(bio,
7870 						    bdev_io->u.bdev.iovs,
7871 						    bdev_io->u.bdev.iovcnt,
7872 						    bdev_io->u.bdev.md_buf,
7873 						    bdev_io->u.bdev.num_blocks,
7874 						    bdev_io->u.bdev.offset_blocks);
7875 			if (ret == 0) {
7876 				return;
7877 			}
7878 		}
7879 	}
7880 
7881 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7882 }
7883 
7884 static void
7885 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7886 {
7887 	struct nvme_bdev_io *bio = ref;
7888 
7889 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7890 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
7891 			    cpl->status.sct, cpl->status.sc);
7892 		/* Run PI verification for write data buffer if PI error is detected. */
7893 		bdev_nvme_verify_pi_error(bio);
7894 	}
7895 
7896 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7897 }
7898 
7899 static void
7900 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7901 {
7902 	struct nvme_bdev_io *bio = ref;
7903 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7904 
7905 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
7906 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
7907 	 */
7908 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
7909 
7910 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7911 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
7912 			    cpl->status.sct, cpl->status.sc);
7913 		/* Run PI verification for zone append data buffer if PI error is detected. */
7914 		bdev_nvme_verify_pi_error(bio);
7915 	}
7916 
7917 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7918 }
7919 
7920 static void
7921 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7922 {
7923 	struct nvme_bdev_io *bio = ref;
7924 
7925 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7926 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
7927 			    cpl->status.sct, cpl->status.sc);
7928 		/* Run PI verification for compare data buffer if PI error is detected. */
7929 		bdev_nvme_verify_pi_error(bio);
7930 	}
7931 
7932 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7933 }
7934 
7935 static void
7936 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7937 {
7938 	struct nvme_bdev_io *bio = ref;
7939 
7940 	/* Compare operation completion */
7941 	if (!bio->first_fused_completed) {
7942 		/* Save compare result for write callback */
7943 		bio->cpl = *cpl;
7944 		bio->first_fused_completed = true;
7945 		return;
7946 	}
7947 
7948 	/* Write operation completion */
7949 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
7950 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
7951 		 * complete the IO with the compare operation's status.
7952 		 */
7953 		if (!spdk_nvme_cpl_is_error(cpl)) {
7954 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
7955 		}
7956 
7957 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7958 	} else {
7959 		bdev_nvme_io_complete_nvme_status(bio, cpl);
7960 	}
7961 }
7962 
7963 static void
7964 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
7965 {
7966 	struct nvme_bdev_io *bio = ref;
7967 
7968 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7969 }
7970 
7971 static int
7972 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
7973 {
7974 	switch (desc->zt) {
7975 	case SPDK_NVME_ZONE_TYPE_SEQWR:
7976 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
7977 		break;
7978 	default:
7979 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
7980 		return -EIO;
7981 	}
7982 
7983 	switch (desc->zs) {
7984 	case SPDK_NVME_ZONE_STATE_EMPTY:
7985 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
7986 		break;
7987 	case SPDK_NVME_ZONE_STATE_IOPEN:
7988 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
7989 		break;
7990 	case SPDK_NVME_ZONE_STATE_EOPEN:
7991 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
7992 		break;
7993 	case SPDK_NVME_ZONE_STATE_CLOSED:
7994 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
7995 		break;
7996 	case SPDK_NVME_ZONE_STATE_RONLY:
7997 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
7998 		break;
7999 	case SPDK_NVME_ZONE_STATE_FULL:
8000 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
8001 		break;
8002 	case SPDK_NVME_ZONE_STATE_OFFLINE:
8003 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
8004 		break;
8005 	default:
8006 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
8007 		return -EIO;
8008 	}
8009 
8010 	info->zone_id = desc->zslba;
8011 	info->write_pointer = desc->wp;
8012 	info->capacity = desc->zcap;
8013 
8014 	return 0;
8015 }
8016 
8017 static void
8018 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
8019 {
8020 	struct nvme_bdev_io *bio = ref;
8021 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
8022 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
8023 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
8024 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
8025 	uint64_t max_zones_per_buf, i;
8026 	uint32_t zone_report_bufsize;
8027 	struct spdk_nvme_ns *ns;
8028 	struct spdk_nvme_qpair *qpair;
8029 	int ret;
8030 
8031 	if (spdk_nvme_cpl_is_error(cpl)) {
8032 		goto out_complete_io_nvme_cpl;
8033 	}
8034 
8035 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
8036 		ret = -ENXIO;
8037 		goto out_complete_io_ret;
8038 	}
8039 
8040 	ns = bio->io_path->nvme_ns->ns;
8041 	qpair = bio->io_path->qpair->qpair;
8042 
8043 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
8044 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
8045 			    sizeof(bio->zone_report_buf->descs[0]);
8046 
8047 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
8048 		ret = -EINVAL;
8049 		goto out_complete_io_ret;
8050 	}
8051 
8052 	if (!bio->zone_report_buf->nr_zones) {
8053 		ret = -EINVAL;
8054 		goto out_complete_io_ret;
8055 	}
8056 
8057 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
8058 		ret = fill_zone_from_report(&info[bio->handled_zones],
8059 					    &bio->zone_report_buf->descs[i]);
8060 		if (ret) {
8061 			goto out_complete_io_ret;
8062 		}
8063 		bio->handled_zones++;
8064 	}
8065 
8066 	if (bio->handled_zones < zones_to_copy) {
8067 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
8068 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
8069 
8070 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
8071 		ret = spdk_nvme_zns_report_zones(ns, qpair,
8072 						 bio->zone_report_buf, zone_report_bufsize,
8073 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
8074 						 bdev_nvme_get_zone_info_done, bio);
8075 		if (!ret) {
8076 			return;
8077 		} else {
8078 			goto out_complete_io_ret;
8079 		}
8080 	}
8081 
8082 out_complete_io_nvme_cpl:
8083 	free(bio->zone_report_buf);
8084 	bio->zone_report_buf = NULL;
8085 	bdev_nvme_io_complete_nvme_status(bio, cpl);
8086 	return;
8087 
8088 out_complete_io_ret:
8089 	free(bio->zone_report_buf);
8090 	bio->zone_report_buf = NULL;
8091 	bdev_nvme_io_complete(bio, ret);
8092 }
8093 
8094 static void
8095 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
8096 {
8097 	struct nvme_bdev_io *bio = ref;
8098 
8099 	bdev_nvme_io_complete_nvme_status(bio, cpl);
8100 }
8101 
8102 static void
8103 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
8104 {
8105 	struct nvme_bdev_io *bio = ctx;
8106 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
8107 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
8108 
8109 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
8110 
8111 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
8112 }
8113 
8114 static void
8115 bdev_nvme_abort_complete(void *ctx)
8116 {
8117 	struct nvme_bdev_io *bio = ctx;
8118 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
8119 
8120 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
8121 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
8122 	} else {
8123 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
8124 	}
8125 }
8126 
8127 static void
8128 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
8129 {
8130 	struct nvme_bdev_io *bio = ref;
8131 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
8132 
8133 	bio->cpl = *cpl;
8134 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), bdev_nvme_abort_complete, bio);
8135 }
8136 
8137 static void
8138 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
8139 {
8140 	struct nvme_bdev_io *bio = ref;
8141 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
8142 
8143 	bio->cpl = *cpl;
8144 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io),
8145 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
8146 }
8147 
8148 static void
8149 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
8150 {
8151 	struct nvme_bdev_io *bio = ref;
8152 	struct iovec *iov;
8153 
8154 	bio->iov_offset = sgl_offset;
8155 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
8156 		iov = &bio->iovs[bio->iovpos];
8157 		if (bio->iov_offset < iov->iov_len) {
8158 			break;
8159 		}
8160 
8161 		bio->iov_offset -= iov->iov_len;
8162 	}
8163 }
8164 
8165 static int
8166 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
8167 {
8168 	struct nvme_bdev_io *bio = ref;
8169 	struct iovec *iov;
8170 
8171 	assert(bio->iovpos < bio->iovcnt);
8172 
8173 	iov = &bio->iovs[bio->iovpos];
8174 
8175 	*address = iov->iov_base;
8176 	*length = iov->iov_len;
8177 
8178 	if (bio->iov_offset) {
8179 		assert(bio->iov_offset <= iov->iov_len);
8180 		*address += bio->iov_offset;
8181 		*length -= bio->iov_offset;
8182 	}
8183 
8184 	bio->iov_offset += *length;
8185 	if (bio->iov_offset == iov->iov_len) {
8186 		bio->iovpos++;
8187 		bio->iov_offset = 0;
8188 	}
8189 
8190 	return 0;
8191 }
8192 
8193 static void
8194 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
8195 {
8196 	struct nvme_bdev_io *bio = ref;
8197 	struct iovec *iov;
8198 
8199 	bio->fused_iov_offset = sgl_offset;
8200 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
8201 		iov = &bio->fused_iovs[bio->fused_iovpos];
8202 		if (bio->fused_iov_offset < iov->iov_len) {
8203 			break;
8204 		}
8205 
8206 		bio->fused_iov_offset -= iov->iov_len;
8207 	}
8208 }
8209 
8210 static int
8211 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
8212 {
8213 	struct nvme_bdev_io *bio = ref;
8214 	struct iovec *iov;
8215 
8216 	assert(bio->fused_iovpos < bio->fused_iovcnt);
8217 
8218 	iov = &bio->fused_iovs[bio->fused_iovpos];
8219 
8220 	*address = iov->iov_base;
8221 	*length = iov->iov_len;
8222 
8223 	if (bio->fused_iov_offset) {
8224 		assert(bio->fused_iov_offset <= iov->iov_len);
8225 		*address += bio->fused_iov_offset;
8226 		*length -= bio->fused_iov_offset;
8227 	}
8228 
8229 	bio->fused_iov_offset += *length;
8230 	if (bio->fused_iov_offset == iov->iov_len) {
8231 		bio->fused_iovpos++;
8232 		bio->fused_iov_offset = 0;
8233 	}
8234 
8235 	return 0;
8236 }
8237 
8238 static int
8239 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8240 		      void *md, uint64_t lba_count, uint64_t lba)
8241 {
8242 	int rc;
8243 
8244 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
8245 		      lba_count, lba);
8246 
8247 	bio->iovs = iov;
8248 	bio->iovcnt = iovcnt;
8249 	bio->iovpos = 0;
8250 	bio->iov_offset = 0;
8251 
8252 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
8253 					    bio->io_path->qpair->qpair,
8254 					    lba, lba_count,
8255 					    bdev_nvme_no_pi_readv_done, bio, 0,
8256 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
8257 					    md, 0, 0);
8258 
8259 	if (rc != 0 && rc != -ENOMEM) {
8260 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
8261 	}
8262 	return rc;
8263 }
8264 
8265 static int
8266 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8267 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
8268 		struct spdk_memory_domain *domain, void *domain_ctx,
8269 		struct spdk_accel_sequence *seq)
8270 {
8271 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8272 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8273 	int rc;
8274 
8275 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
8276 		      lba_count, lba);
8277 
8278 	bio->iovs = iov;
8279 	bio->iovcnt = iovcnt;
8280 	bio->iovpos = 0;
8281 	bio->iov_offset = 0;
8282 
8283 	if (domain != NULL || seq != NULL) {
8284 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
8285 		bio->ext_opts.memory_domain = domain;
8286 		bio->ext_opts.memory_domain_ctx = domain_ctx;
8287 		bio->ext_opts.io_flags = flags;
8288 		bio->ext_opts.metadata = md;
8289 		bio->ext_opts.accel_sequence = seq;
8290 
8291 		if (iovcnt == 1) {
8292 			rc = spdk_nvme_ns_cmd_read_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_readv_done,
8293 						       bio, &bio->ext_opts);
8294 		} else {
8295 			rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
8296 							bdev_nvme_readv_done, bio,
8297 							bdev_nvme_queued_reset_sgl,
8298 							bdev_nvme_queued_next_sge,
8299 							&bio->ext_opts);
8300 		}
8301 	} else if (iovcnt == 1) {
8302 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base,
8303 						   md, lba, lba_count, bdev_nvme_readv_done,
8304 						   bio, flags, 0, 0);
8305 	} else {
8306 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
8307 						    bdev_nvme_readv_done, bio, flags,
8308 						    bdev_nvme_queued_reset_sgl,
8309 						    bdev_nvme_queued_next_sge, md, 0, 0);
8310 	}
8311 
8312 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
8313 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
8314 	}
8315 	return rc;
8316 }
8317 
8318 static int
8319 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8320 		 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
8321 		 struct spdk_memory_domain *domain, void *domain_ctx,
8322 		 struct spdk_accel_sequence *seq,
8323 		 union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13)
8324 {
8325 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8326 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8327 	int rc;
8328 
8329 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
8330 		      lba_count, lba);
8331 
8332 	bio->iovs = iov;
8333 	bio->iovcnt = iovcnt;
8334 	bio->iovpos = 0;
8335 	bio->iov_offset = 0;
8336 
8337 	if (domain != NULL || seq != NULL) {
8338 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
8339 		bio->ext_opts.memory_domain = domain;
8340 		bio->ext_opts.memory_domain_ctx = domain_ctx;
8341 		bio->ext_opts.io_flags = flags | SPDK_NVME_IO_FLAGS_DIRECTIVE(cdw12.write.dtype);
8342 		bio->ext_opts.cdw13 = cdw13.raw;
8343 		bio->ext_opts.metadata = md;
8344 		bio->ext_opts.accel_sequence = seq;
8345 
8346 		if (iovcnt == 1) {
8347 			rc = spdk_nvme_ns_cmd_write_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_writev_done,
8348 							bio, &bio->ext_opts);
8349 		} else {
8350 			rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
8351 							 bdev_nvme_writev_done, bio,
8352 							 bdev_nvme_queued_reset_sgl,
8353 							 bdev_nvme_queued_next_sge,
8354 							 &bio->ext_opts);
8355 		}
8356 	} else if (iovcnt == 1) {
8357 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base,
8358 						    md, lba, lba_count, bdev_nvme_writev_done,
8359 						    bio, flags, 0, 0);
8360 	} else {
8361 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
8362 						     bdev_nvme_writev_done, bio, flags,
8363 						     bdev_nvme_queued_reset_sgl,
8364 						     bdev_nvme_queued_next_sge, md, 0, 0);
8365 	}
8366 
8367 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
8368 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
8369 	}
8370 	return rc;
8371 }
8372 
8373 static int
8374 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8375 		       void *md, uint64_t lba_count, uint64_t zslba,
8376 		       uint32_t flags)
8377 {
8378 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8379 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8380 	int rc;
8381 
8382 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
8383 		      lba_count, zslba);
8384 
8385 	bio->iovs = iov;
8386 	bio->iovcnt = iovcnt;
8387 	bio->iovpos = 0;
8388 	bio->iov_offset = 0;
8389 
8390 	if (iovcnt == 1) {
8391 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
8392 						       lba_count,
8393 						       bdev_nvme_zone_appendv_done, bio,
8394 						       flags,
8395 						       0, 0);
8396 	} else {
8397 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
8398 							bdev_nvme_zone_appendv_done, bio, flags,
8399 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
8400 							md, 0, 0);
8401 	}
8402 
8403 	if (rc != 0 && rc != -ENOMEM) {
8404 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
8405 	}
8406 	return rc;
8407 }
8408 
8409 static int
8410 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8411 		   void *md, uint64_t lba_count, uint64_t lba,
8412 		   uint32_t flags)
8413 {
8414 	int rc;
8415 
8416 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
8417 		      lba_count, lba);
8418 
8419 	bio->iovs = iov;
8420 	bio->iovcnt = iovcnt;
8421 	bio->iovpos = 0;
8422 	bio->iov_offset = 0;
8423 
8424 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
8425 					       bio->io_path->qpair->qpair,
8426 					       lba, lba_count,
8427 					       bdev_nvme_comparev_done, bio, flags,
8428 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
8429 					       md, 0, 0);
8430 
8431 	if (rc != 0 && rc != -ENOMEM) {
8432 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
8433 	}
8434 	return rc;
8435 }
8436 
8437 static int
8438 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
8439 			      struct iovec *write_iov, int write_iovcnt,
8440 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
8441 {
8442 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8443 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8444 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
8445 	int rc;
8446 
8447 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
8448 		      lba_count, lba);
8449 
8450 	bio->iovs = cmp_iov;
8451 	bio->iovcnt = cmp_iovcnt;
8452 	bio->iovpos = 0;
8453 	bio->iov_offset = 0;
8454 	bio->fused_iovs = write_iov;
8455 	bio->fused_iovcnt = write_iovcnt;
8456 	bio->fused_iovpos = 0;
8457 	bio->fused_iov_offset = 0;
8458 
8459 	if (bdev_io->num_retries == 0) {
8460 		bio->first_fused_submitted = false;
8461 		bio->first_fused_completed = false;
8462 	}
8463 
8464 	if (!bio->first_fused_submitted) {
8465 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
8466 		memset(&bio->cpl, 0, sizeof(bio->cpl));
8467 
8468 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
8469 						       bdev_nvme_comparev_and_writev_done, bio, flags,
8470 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
8471 		if (rc == 0) {
8472 			bio->first_fused_submitted = true;
8473 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
8474 		} else {
8475 			if (rc != -ENOMEM) {
8476 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
8477 			}
8478 			return rc;
8479 		}
8480 	}
8481 
8482 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
8483 
8484 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
8485 					     bdev_nvme_comparev_and_writev_done, bio, flags,
8486 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
8487 	if (rc != 0 && rc != -ENOMEM) {
8488 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
8489 		rc = 0;
8490 	}
8491 
8492 	return rc;
8493 }
8494 
8495 static int
8496 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
8497 {
8498 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
8499 	struct spdk_nvme_dsm_range *range;
8500 	uint64_t offset, remaining;
8501 	uint64_t num_ranges_u64;
8502 	uint16_t num_ranges;
8503 	int rc;
8504 
8505 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
8506 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8507 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
8508 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
8509 		return -EINVAL;
8510 	}
8511 	num_ranges = (uint16_t)num_ranges_u64;
8512 
8513 	offset = offset_blocks;
8514 	remaining = num_blocks;
8515 	range = &dsm_ranges[0];
8516 
8517 	/* Fill max-size ranges until the remaining blocks fit into one range */
8518 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
8519 		range->attributes.raw = 0;
8520 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8521 		range->starting_lba = offset;
8522 
8523 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8524 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8525 		range++;
8526 	}
8527 
8528 	/* Final range describes the remaining blocks */
8529 	range->attributes.raw = 0;
8530 	range->length = remaining;
8531 	range->starting_lba = offset;
8532 
8533 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
8534 			bio->io_path->qpair->qpair,
8535 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
8536 			dsm_ranges, num_ranges,
8537 			bdev_nvme_queued_done, bio);
8538 
8539 	return rc;
8540 }
8541 
8542 static int
8543 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
8544 {
8545 	if (num_blocks > UINT16_MAX + 1) {
8546 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
8547 		return -EINVAL;
8548 	}
8549 
8550 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
8551 					     bio->io_path->qpair->qpair,
8552 					     offset_blocks, num_blocks,
8553 					     bdev_nvme_queued_done, bio,
8554 					     0);
8555 }
8556 
8557 static int
8558 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
8559 			struct spdk_bdev_zone_info *info)
8560 {
8561 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8562 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8563 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
8564 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
8565 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
8566 
8567 	if (zone_id % zone_size != 0) {
8568 		return -EINVAL;
8569 	}
8570 
8571 	if (num_zones > total_zones || !num_zones) {
8572 		return -EINVAL;
8573 	}
8574 
8575 	assert(!bio->zone_report_buf);
8576 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
8577 	if (!bio->zone_report_buf) {
8578 		return -ENOMEM;
8579 	}
8580 
8581 	bio->handled_zones = 0;
8582 
8583 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
8584 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
8585 					  bdev_nvme_get_zone_info_done, bio);
8586 }
8587 
8588 static int
8589 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
8590 			  enum spdk_bdev_zone_action action)
8591 {
8592 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8593 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8594 
8595 	switch (action) {
8596 	case SPDK_BDEV_ZONE_CLOSE:
8597 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
8598 						bdev_nvme_zone_management_done, bio);
8599 	case SPDK_BDEV_ZONE_FINISH:
8600 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
8601 						 bdev_nvme_zone_management_done, bio);
8602 	case SPDK_BDEV_ZONE_OPEN:
8603 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
8604 					       bdev_nvme_zone_management_done, bio);
8605 	case SPDK_BDEV_ZONE_RESET:
8606 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
8607 						bdev_nvme_zone_management_done, bio);
8608 	case SPDK_BDEV_ZONE_OFFLINE:
8609 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
8610 						  bdev_nvme_zone_management_done, bio);
8611 	default:
8612 		return -EINVAL;
8613 	}
8614 }
8615 
8616 static void
8617 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8618 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
8619 {
8620 	struct nvme_io_path *io_path;
8621 	struct nvme_ctrlr *nvme_ctrlr;
8622 	uint32_t max_xfer_size;
8623 	int rc = -ENXIO;
8624 
8625 	/* Choose the first ctrlr which is not failed. */
8626 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8627 		nvme_ctrlr = io_path->qpair->ctrlr;
8628 
8629 		/* We should skip any unavailable nvme_ctrlr rather than checking
8630 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
8631 		 */
8632 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
8633 			continue;
8634 		}
8635 
8636 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
8637 
8638 		if (nbytes > max_xfer_size) {
8639 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8640 			rc = -EINVAL;
8641 			goto err;
8642 		}
8643 
8644 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
8645 						   bdev_nvme_admin_passthru_done, bio);
8646 		if (rc == 0) {
8647 			return;
8648 		}
8649 	}
8650 
8651 err:
8652 	bdev_nvme_admin_complete(bio, rc);
8653 }
8654 
8655 static int
8656 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8657 		      void *buf, size_t nbytes)
8658 {
8659 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8660 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8661 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8662 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8663 
8664 	if (nbytes > max_xfer_size) {
8665 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8666 		return -EINVAL;
8667 	}
8668 
8669 	/*
8670 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8671 	 * so fill it out automatically.
8672 	 */
8673 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8674 
8675 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
8676 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
8677 }
8678 
8679 static int
8680 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8681 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
8682 {
8683 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8684 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8685 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8686 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8687 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8688 
8689 	if (nbytes > max_xfer_size) {
8690 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8691 		return -EINVAL;
8692 	}
8693 
8694 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8695 		SPDK_ERRLOG("invalid meta data buffer size\n");
8696 		return -EINVAL;
8697 	}
8698 
8699 	/*
8700 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8701 	 * so fill it out automatically.
8702 	 */
8703 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8704 
8705 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
8706 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
8707 }
8708 
8709 static int
8710 bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio,
8711 			  struct spdk_nvme_cmd *cmd, struct iovec *iov, int iovcnt,
8712 			  size_t nbytes, void *md_buf, size_t md_len)
8713 {
8714 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8715 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8716 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8717 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8718 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8719 
8720 	bio->iovs = iov;
8721 	bio->iovcnt = iovcnt;
8722 	bio->iovpos = 0;
8723 	bio->iov_offset = 0;
8724 
8725 	if (nbytes > max_xfer_size) {
8726 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8727 		return -EINVAL;
8728 	}
8729 
8730 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8731 		SPDK_ERRLOG("invalid meta data buffer size\n");
8732 		return -EINVAL;
8733 	}
8734 
8735 	/*
8736 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands
8737 	 * require a nsid, so fill it out automatically.
8738 	 */
8739 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8740 
8741 	return spdk_nvme_ctrlr_cmd_iov_raw_with_md(
8742 		       ctrlr, qpair, cmd, (uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio,
8743 		       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge);
8744 }
8745 
8746 static void
8747 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8748 		struct nvme_bdev_io *bio_to_abort)
8749 {
8750 	struct nvme_io_path *io_path;
8751 	int rc = 0;
8752 
8753 	rc = bdev_nvme_abort_retry_io(nbdev_ch, bio_to_abort);
8754 	if (rc == 0) {
8755 		bdev_nvme_admin_complete(bio, 0);
8756 		return;
8757 	}
8758 
8759 	io_path = bio_to_abort->io_path;
8760 	if (io_path != NULL) {
8761 		rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8762 						   io_path->qpair->qpair,
8763 						   bio_to_abort,
8764 						   bdev_nvme_abort_done, bio);
8765 	} else {
8766 		STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8767 			rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8768 							   NULL,
8769 							   bio_to_abort,
8770 							   bdev_nvme_abort_done, bio);
8771 
8772 			if (rc != -ENOENT) {
8773 				break;
8774 			}
8775 		}
8776 	}
8777 
8778 	if (rc != 0) {
8779 		/* If no command was found or there was any error, complete the abort
8780 		 * request with failure.
8781 		 */
8782 		bdev_nvme_admin_complete(bio, rc);
8783 	}
8784 }
8785 
8786 static int
8787 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks,
8788 	       uint64_t num_blocks)
8789 {
8790 	struct spdk_nvme_scc_source_range range = {
8791 		.slba = src_offset_blocks,
8792 		.nlb = num_blocks - 1
8793 	};
8794 
8795 	return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns,
8796 				     bio->io_path->qpair->qpair,
8797 				     &range, 1, dst_offset_blocks,
8798 				     bdev_nvme_queued_done, bio);
8799 }
8800 
8801 static void
8802 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
8803 {
8804 	const char *action;
8805 	uint32_t i;
8806 
8807 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
8808 		action = "reset";
8809 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
8810 		action = "abort";
8811 	} else {
8812 		action = "none";
8813 	}
8814 
8815 	spdk_json_write_object_begin(w);
8816 
8817 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
8818 
8819 	spdk_json_write_named_object_begin(w, "params");
8820 	spdk_json_write_named_string(w, "action_on_timeout", action);
8821 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
8822 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
8823 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
8824 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
8825 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
8826 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
8827 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
8828 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
8829 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
8830 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
8831 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
8832 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
8833 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
8834 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
8835 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
8836 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
8837 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
8838 	spdk_json_write_named_bool(w, "disable_auto_failback", g_opts.disable_auto_failback);
8839 	spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids);
8840 	spdk_json_write_named_uint8(w, "transport_tos", g_opts.transport_tos);
8841 	spdk_json_write_named_bool(w, "nvme_error_stat", g_opts.nvme_error_stat);
8842 	spdk_json_write_named_uint32(w, "rdma_srq_size", g_opts.rdma_srq_size);
8843 	spdk_json_write_named_bool(w, "io_path_stat", g_opts.io_path_stat);
8844 	spdk_json_write_named_bool(w, "allow_accel_sequence", g_opts.allow_accel_sequence);
8845 	spdk_json_write_named_uint32(w, "rdma_max_cq_size", g_opts.rdma_max_cq_size);
8846 	spdk_json_write_named_uint16(w, "rdma_cm_event_timeout_ms", g_opts.rdma_cm_event_timeout_ms);
8847 	spdk_json_write_named_array_begin(w, "dhchap_digests");
8848 	for (i = 0; i < 32; ++i) {
8849 		if (g_opts.dhchap_digests & SPDK_BIT(i)) {
8850 			spdk_json_write_string(w, spdk_nvme_dhchap_get_digest_name(i));
8851 		}
8852 	}
8853 	spdk_json_write_array_end(w);
8854 	spdk_json_write_named_array_begin(w, "dhchap_dhgroups");
8855 	for (i = 0; i < 32; ++i) {
8856 		if (g_opts.dhchap_dhgroups & SPDK_BIT(i)) {
8857 			spdk_json_write_string(w, spdk_nvme_dhchap_get_dhgroup_name(i));
8858 		}
8859 	}
8860 
8861 	spdk_json_write_array_end(w);
8862 	spdk_json_write_object_end(w);
8863 
8864 	spdk_json_write_object_end(w);
8865 }
8866 
8867 static void
8868 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
8869 {
8870 	struct spdk_nvme_transport_id trid;
8871 
8872 	spdk_json_write_object_begin(w);
8873 
8874 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
8875 
8876 	spdk_json_write_named_object_begin(w, "params");
8877 	spdk_json_write_named_string(w, "name", ctx->name);
8878 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
8879 
8880 	trid = ctx->trid;
8881 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
8882 	nvme_bdev_dump_trid_json(&trid, w);
8883 
8884 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
8885 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
8886 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
8887 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8888 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
8889 	spdk_json_write_object_end(w);
8890 
8891 	spdk_json_write_object_end(w);
8892 }
8893 
8894 #ifdef SPDK_CONFIG_NVME_CUSE
8895 static void
8896 nvme_ctrlr_cuse_config_json(struct spdk_json_write_ctx *w,
8897 			    struct nvme_ctrlr *nvme_ctrlr)
8898 {
8899 	size_t cuse_name_size = 128;
8900 	char cuse_name[cuse_name_size];
8901 
8902 	if (spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr,
8903 					  cuse_name, &cuse_name_size) != 0) {
8904 		return;
8905 	}
8906 
8907 	spdk_json_write_object_begin(w);
8908 
8909 	spdk_json_write_named_string(w, "method", "bdev_nvme_cuse_register");
8910 
8911 	spdk_json_write_named_object_begin(w, "params");
8912 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8913 	spdk_json_write_object_end(w);
8914 
8915 	spdk_json_write_object_end(w);
8916 }
8917 #endif
8918 
8919 static void
8920 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
8921 		       struct nvme_ctrlr *nvme_ctrlr,
8922 		       struct nvme_path_id *path_id)
8923 {
8924 	struct spdk_nvme_transport_id	*trid;
8925 	const struct spdk_nvme_ctrlr_opts *opts;
8926 
8927 	if (nvme_ctrlr->opts.from_discovery_service) {
8928 		/* Do not emit an RPC for this - it will be implicitly
8929 		 * covered by a separate bdev_nvme_start_discovery or
8930 		 * bdev_nvme_start_mdns_discovery RPC.
8931 		 */
8932 		return;
8933 	}
8934 
8935 	trid = &path_id->trid;
8936 
8937 	spdk_json_write_object_begin(w);
8938 
8939 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
8940 
8941 	spdk_json_write_named_object_begin(w, "params");
8942 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8943 	nvme_bdev_dump_trid_json(trid, w);
8944 	spdk_json_write_named_bool(w, "prchk_reftag",
8945 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
8946 	spdk_json_write_named_bool(w, "prchk_guard",
8947 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
8948 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
8949 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
8950 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8951 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
8952 	if (nvme_ctrlr->psk != NULL) {
8953 		spdk_json_write_named_string(w, "psk", spdk_key_get_name(nvme_ctrlr->psk));
8954 	}
8955 	if (nvme_ctrlr->dhchap_key != NULL) {
8956 		spdk_json_write_named_string(w, "dhchap_key",
8957 					     spdk_key_get_name(nvme_ctrlr->dhchap_key));
8958 	}
8959 	if (nvme_ctrlr->dhchap_ctrlr_key != NULL) {
8960 		spdk_json_write_named_string(w, "dhchap_ctrlr_key",
8961 					     spdk_key_get_name(nvme_ctrlr->dhchap_ctrlr_key));
8962 	}
8963 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
8964 	spdk_json_write_named_string(w, "hostnqn", opts->hostnqn);
8965 	spdk_json_write_named_bool(w, "hdgst", opts->header_digest);
8966 	spdk_json_write_named_bool(w, "ddgst", opts->data_digest);
8967 	if (opts->src_addr[0] != '\0') {
8968 		spdk_json_write_named_string(w, "hostaddr", opts->src_addr);
8969 	}
8970 	if (opts->src_svcid[0] != '\0') {
8971 		spdk_json_write_named_string(w, "hostsvcid", opts->src_svcid);
8972 	}
8973 
8974 	if (nvme_ctrlr->opts.multipath) {
8975 		spdk_json_write_named_string(w, "multipath", "multipath");
8976 	}
8977 	spdk_json_write_object_end(w);
8978 
8979 	spdk_json_write_object_end(w);
8980 }
8981 
8982 static void
8983 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
8984 {
8985 	spdk_json_write_object_begin(w);
8986 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
8987 
8988 	spdk_json_write_named_object_begin(w, "params");
8989 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
8990 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
8991 	spdk_json_write_object_end(w);
8992 
8993 	spdk_json_write_object_end(w);
8994 }
8995 
8996 static int
8997 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
8998 {
8999 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
9000 	struct nvme_ctrlr	*nvme_ctrlr;
9001 	struct discovery_ctx	*ctx;
9002 	struct nvme_path_id	*path_id;
9003 
9004 	bdev_nvme_opts_config_json(w);
9005 
9006 	pthread_mutex_lock(&g_bdev_nvme_mutex);
9007 
9008 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
9009 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
9010 			path_id = nvme_ctrlr->active_path_id;
9011 			assert(path_id == TAILQ_FIRST(&nvme_ctrlr->trids));
9012 			nvme_ctrlr_config_json(w, nvme_ctrlr, path_id);
9013 
9014 			path_id = TAILQ_NEXT(path_id, link);
9015 			while (path_id != NULL) {
9016 				nvme_ctrlr_config_json(w, nvme_ctrlr, path_id);
9017 				path_id = TAILQ_NEXT(path_id, link);
9018 			}
9019 
9020 #ifdef SPDK_CONFIG_NVME_CUSE
9021 			nvme_ctrlr_cuse_config_json(w, nvme_ctrlr);
9022 #endif
9023 		}
9024 	}
9025 
9026 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
9027 		if (!ctx->from_mdns_discovery_service) {
9028 			bdev_nvme_discovery_config_json(w, ctx);
9029 		}
9030 	}
9031 
9032 	bdev_nvme_mdns_discovery_config_json(w);
9033 
9034 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
9035 	 * before enabling hotplug poller.
9036 	 */
9037 	bdev_nvme_hotplug_config_json(w);
9038 
9039 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
9040 	return 0;
9041 }
9042 
9043 struct spdk_nvme_ctrlr *
9044 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
9045 {
9046 	struct nvme_bdev *nbdev;
9047 	struct nvme_ns *nvme_ns;
9048 
9049 	if (!bdev || bdev->module != &nvme_if) {
9050 		return NULL;
9051 	}
9052 
9053 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
9054 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
9055 	assert(nvme_ns != NULL);
9056 
9057 	return nvme_ns->ctrlr->ctrlr;
9058 }
9059 
9060 static bool
9061 nvme_io_path_is_current(struct nvme_io_path *io_path)
9062 {
9063 	const struct nvme_bdev_channel *nbdev_ch;
9064 	bool current;
9065 
9066 	if (!nvme_io_path_is_available(io_path)) {
9067 		return false;
9068 	}
9069 
9070 	nbdev_ch = io_path->nbdev_ch;
9071 	if (nbdev_ch == NULL) {
9072 		current = false;
9073 	} else if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
9074 		struct nvme_io_path *optimized_io_path = NULL;
9075 
9076 		STAILQ_FOREACH(optimized_io_path, &nbdev_ch->io_path_list, stailq) {
9077 			if (optimized_io_path->nvme_ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE) {
9078 				break;
9079 			}
9080 		}
9081 
9082 		/* A non-optimized path is only current if there are no optimized paths. */
9083 		current = (io_path->nvme_ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE) ||
9084 			  (optimized_io_path == NULL);
9085 	} else {
9086 		if (nbdev_ch->current_io_path) {
9087 			current = (io_path == nbdev_ch->current_io_path);
9088 		} else {
9089 			struct nvme_io_path *first_path;
9090 
9091 			/* We arrived here as there are no optimized paths for active-passive
9092 			 * mode. Check if this io_path is the first one available on the list.
9093 			 */
9094 			current = false;
9095 			STAILQ_FOREACH(first_path, &nbdev_ch->io_path_list, stailq) {
9096 				if (nvme_io_path_is_available(first_path)) {
9097 					current = (io_path == first_path);
9098 					break;
9099 				}
9100 			}
9101 		}
9102 	}
9103 
9104 	return current;
9105 }
9106 
9107 static struct nvme_ctrlr *
9108 bdev_nvme_next_ctrlr_unsafe(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct nvme_ctrlr *prev)
9109 {
9110 	struct nvme_ctrlr *next;
9111 
9112 	/* Must be called under g_bdev_nvme_mutex */
9113 	next = prev != NULL ? TAILQ_NEXT(prev, tailq) : TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
9114 	while (next != NULL) {
9115 		/* ref can be 0 when the ctrlr was released, but hasn't been detached yet */
9116 		pthread_mutex_lock(&next->mutex);
9117 		if (next->ref > 0) {
9118 			next->ref++;
9119 			pthread_mutex_unlock(&next->mutex);
9120 			return next;
9121 		}
9122 
9123 		pthread_mutex_unlock(&next->mutex);
9124 		next = TAILQ_NEXT(next, tailq);
9125 	}
9126 
9127 	return NULL;
9128 }
9129 
9130 struct bdev_nvme_set_keys_ctx {
9131 	struct nvme_ctrlr	*nctrlr;
9132 	struct spdk_key		*dhchap_key;
9133 	struct spdk_key		*dhchap_ctrlr_key;
9134 	struct spdk_thread	*thread;
9135 	bdev_nvme_set_keys_cb	cb_fn;
9136 	void			*cb_ctx;
9137 	int			status;
9138 };
9139 
9140 static void
9141 bdev_nvme_free_set_keys_ctx(struct bdev_nvme_set_keys_ctx *ctx)
9142 {
9143 	if (ctx == NULL) {
9144 		return;
9145 	}
9146 
9147 	spdk_keyring_put_key(ctx->dhchap_key);
9148 	spdk_keyring_put_key(ctx->dhchap_ctrlr_key);
9149 	free(ctx);
9150 }
9151 
9152 static void
9153 _bdev_nvme_set_keys_done(void *_ctx)
9154 {
9155 	struct bdev_nvme_set_keys_ctx *ctx = _ctx;
9156 
9157 	ctx->cb_fn(ctx->cb_ctx, ctx->status);
9158 
9159 	if (ctx->nctrlr != NULL) {
9160 		nvme_ctrlr_put_ref(ctx->nctrlr);
9161 	}
9162 	bdev_nvme_free_set_keys_ctx(ctx);
9163 }
9164 
9165 static void
9166 bdev_nvme_set_keys_done(struct bdev_nvme_set_keys_ctx *ctx, int status)
9167 {
9168 	ctx->status = status;
9169 	spdk_thread_exec_msg(ctx->thread, _bdev_nvme_set_keys_done, ctx);
9170 }
9171 
9172 static void bdev_nvme_authenticate_ctrlr(struct bdev_nvme_set_keys_ctx *ctx);
9173 
9174 static void
9175 bdev_nvme_authenticate_ctrlr_continue(struct bdev_nvme_set_keys_ctx *ctx)
9176 {
9177 	struct nvme_ctrlr *next;
9178 
9179 	pthread_mutex_lock(&g_bdev_nvme_mutex);
9180 	next = bdev_nvme_next_ctrlr_unsafe(NULL, ctx->nctrlr);
9181 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
9182 
9183 	nvme_ctrlr_put_ref(ctx->nctrlr);
9184 	ctx->nctrlr = next;
9185 
9186 	if (next == NULL) {
9187 		bdev_nvme_set_keys_done(ctx, 0);
9188 	} else {
9189 		bdev_nvme_authenticate_ctrlr(ctx);
9190 	}
9191 }
9192 
9193 static void
9194 bdev_nvme_authenticate_qpairs_done(struct spdk_io_channel_iter *i, int status)
9195 {
9196 	struct bdev_nvme_set_keys_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
9197 
9198 	if (status != 0) {
9199 		bdev_nvme_set_keys_done(ctx, status);
9200 		return;
9201 	}
9202 	bdev_nvme_authenticate_ctrlr_continue(ctx);
9203 }
9204 
9205 static void
9206 bdev_nvme_authenticate_qpair_done(void *ctx, int status)
9207 {
9208 	spdk_for_each_channel_continue(ctx, status);
9209 }
9210 
9211 static void
9212 bdev_nvme_authenticate_qpair(struct spdk_io_channel_iter *i)
9213 {
9214 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
9215 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
9216 	struct nvme_qpair *qpair = ctrlr_ch->qpair;
9217 	int rc;
9218 
9219 	if (!nvme_qpair_is_connected(qpair)) {
9220 		spdk_for_each_channel_continue(i, 0);
9221 		return;
9222 	}
9223 
9224 	rc = spdk_nvme_qpair_authenticate(qpair->qpair, bdev_nvme_authenticate_qpair_done, i);
9225 	if (rc != 0) {
9226 		spdk_for_each_channel_continue(i, rc);
9227 	}
9228 }
9229 
9230 static void
9231 bdev_nvme_authenticate_ctrlr_done(void *_ctx, int status)
9232 {
9233 	struct bdev_nvme_set_keys_ctx *ctx = _ctx;
9234 
9235 	if (status != 0) {
9236 		bdev_nvme_set_keys_done(ctx, status);
9237 		return;
9238 	}
9239 
9240 	spdk_for_each_channel(ctx->nctrlr, bdev_nvme_authenticate_qpair, ctx,
9241 			      bdev_nvme_authenticate_qpairs_done);
9242 }
9243 
9244 static void
9245 bdev_nvme_authenticate_ctrlr(struct bdev_nvme_set_keys_ctx *ctx)
9246 {
9247 	struct spdk_nvme_ctrlr_key_opts opts = {};
9248 	struct nvme_ctrlr *nctrlr = ctx->nctrlr;
9249 	int rc;
9250 
9251 	opts.size = SPDK_SIZEOF(&opts, dhchap_ctrlr_key);
9252 	opts.dhchap_key = ctx->dhchap_key;
9253 	opts.dhchap_ctrlr_key = ctx->dhchap_ctrlr_key;
9254 	rc = spdk_nvme_ctrlr_set_keys(nctrlr->ctrlr, &opts);
9255 	if (rc != 0) {
9256 		bdev_nvme_set_keys_done(ctx, rc);
9257 		return;
9258 	}
9259 
9260 	if (ctx->dhchap_key != NULL) {
9261 		rc = spdk_nvme_ctrlr_authenticate(nctrlr->ctrlr,
9262 						  bdev_nvme_authenticate_ctrlr_done, ctx);
9263 		if (rc != 0) {
9264 			bdev_nvme_set_keys_done(ctx, rc);
9265 		}
9266 	} else {
9267 		bdev_nvme_authenticate_ctrlr_continue(ctx);
9268 	}
9269 }
9270 
9271 int
9272 bdev_nvme_set_keys(const char *name, const char *dhchap_key, const char *dhchap_ctrlr_key,
9273 		   bdev_nvme_set_keys_cb cb_fn, void *cb_ctx)
9274 {
9275 	struct bdev_nvme_set_keys_ctx *ctx;
9276 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
9277 	struct nvme_ctrlr *nctrlr;
9278 
9279 	ctx = calloc(1, sizeof(*ctx));
9280 	if (ctx == NULL) {
9281 		return -ENOMEM;
9282 	}
9283 
9284 	if (dhchap_key != NULL) {
9285 		ctx->dhchap_key = spdk_keyring_get_key(dhchap_key);
9286 		if (ctx->dhchap_key == NULL) {
9287 			SPDK_ERRLOG("Could not find key %s for bdev %s\n", dhchap_key, name);
9288 			bdev_nvme_free_set_keys_ctx(ctx);
9289 			return -ENOKEY;
9290 		}
9291 	}
9292 	if (dhchap_ctrlr_key != NULL) {
9293 		ctx->dhchap_ctrlr_key = spdk_keyring_get_key(dhchap_ctrlr_key);
9294 		if (ctx->dhchap_ctrlr_key == NULL) {
9295 			SPDK_ERRLOG("Could not find key %s for bdev %s\n", dhchap_ctrlr_key, name);
9296 			bdev_nvme_free_set_keys_ctx(ctx);
9297 			return -ENOKEY;
9298 		}
9299 	}
9300 
9301 	pthread_mutex_lock(&g_bdev_nvme_mutex);
9302 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
9303 	if (nbdev_ctrlr == NULL) {
9304 		SPDK_ERRLOG("Could not find bdev_ctrlr %s\n", name);
9305 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
9306 		bdev_nvme_free_set_keys_ctx(ctx);
9307 		return -ENODEV;
9308 	}
9309 	nctrlr = bdev_nvme_next_ctrlr_unsafe(nbdev_ctrlr, NULL);
9310 	if (nctrlr == NULL) {
9311 		SPDK_ERRLOG("Could not find any nvme_ctrlrs on bdev_ctrlr %s\n", name);
9312 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
9313 		bdev_nvme_free_set_keys_ctx(ctx);
9314 		return -ENODEV;
9315 	}
9316 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
9317 
9318 	ctx->nctrlr = nctrlr;
9319 	ctx->cb_fn = cb_fn;
9320 	ctx->cb_ctx = cb_ctx;
9321 	ctx->thread = spdk_get_thread();
9322 
9323 	bdev_nvme_authenticate_ctrlr(ctx);
9324 
9325 	return 0;
9326 }
9327 
9328 void
9329 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
9330 {
9331 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
9332 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
9333 	const struct spdk_nvme_ctrlr_data *cdata;
9334 	const struct spdk_nvme_transport_id *trid;
9335 	const char *adrfam_str;
9336 
9337 	spdk_json_write_object_begin(w);
9338 
9339 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
9340 
9341 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
9342 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
9343 
9344 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
9345 	spdk_json_write_named_bool(w, "current", nvme_io_path_is_current(io_path));
9346 	spdk_json_write_named_bool(w, "connected", nvme_qpair_is_connected(io_path->qpair));
9347 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
9348 
9349 	spdk_json_write_named_object_begin(w, "transport");
9350 	spdk_json_write_named_string(w, "trtype", trid->trstring);
9351 	spdk_json_write_named_string(w, "traddr", trid->traddr);
9352 	if (trid->trsvcid[0] != '\0') {
9353 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
9354 	}
9355 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
9356 	if (adrfam_str) {
9357 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
9358 	}
9359 	spdk_json_write_object_end(w);
9360 
9361 	spdk_json_write_object_end(w);
9362 }
9363 
9364 void
9365 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
9366 {
9367 	struct discovery_ctx *ctx;
9368 	struct discovery_entry_ctx *entry_ctx;
9369 
9370 	spdk_json_write_array_begin(w);
9371 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
9372 		spdk_json_write_object_begin(w);
9373 		spdk_json_write_named_string(w, "name", ctx->name);
9374 
9375 		spdk_json_write_named_object_begin(w, "trid");
9376 		nvme_bdev_dump_trid_json(&ctx->trid, w);
9377 		spdk_json_write_object_end(w);
9378 
9379 		spdk_json_write_named_array_begin(w, "referrals");
9380 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
9381 			spdk_json_write_object_begin(w);
9382 			spdk_json_write_named_object_begin(w, "trid");
9383 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
9384 			spdk_json_write_object_end(w);
9385 			spdk_json_write_object_end(w);
9386 		}
9387 		spdk_json_write_array_end(w);
9388 
9389 		spdk_json_write_object_end(w);
9390 	}
9391 	spdk_json_write_array_end(w);
9392 }
9393 
9394 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
9395 
9396 static void
9397 bdev_nvme_trace(void)
9398 {
9399 	struct spdk_trace_tpoint_opts opts[] = {
9400 		{
9401 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
9402 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 1,
9403 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
9404 		},
9405 		{
9406 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
9407 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 0,
9408 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
9409 		}
9410 	};
9411 
9412 
9413 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
9414 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
9415 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
9416 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
9417 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
9418 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
9419 }
9420 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
9421