xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision 838e61c3772fdefb17e1a0b8f9880e2bcb9c4c0d)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  *   Copyright (c) 2022 Dell Inc, or its subsidiaries. All rights reserved.
6  */
7 
8 #include "spdk/stdinc.h"
9 
10 #include "bdev_nvme.h"
11 
12 #include "spdk/accel.h"
13 #include "spdk/config.h"
14 #include "spdk/endian.h"
15 #include "spdk/bdev.h"
16 #include "spdk/json.h"
17 #include "spdk/likely.h"
18 #include "spdk/nvme.h"
19 #include "spdk/nvme_ocssd.h"
20 #include "spdk/nvme_zns.h"
21 #include "spdk/opal.h"
22 #include "spdk/thread.h"
23 #include "spdk/trace.h"
24 #include "spdk/string.h"
25 #include "spdk/util.h"
26 #include "spdk/uuid.h"
27 
28 #include "spdk/bdev_module.h"
29 #include "spdk/log.h"
30 
31 #include "spdk_internal/usdt.h"
32 #include "spdk_internal/trace_defs.h"
33 
34 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
35 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
36 
37 #define NSID_STR_LEN 10
38 
39 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
40 
41 struct nvme_bdev_io {
42 	/** array of iovecs to transfer. */
43 	struct iovec *iovs;
44 
45 	/** Number of iovecs in iovs array. */
46 	int iovcnt;
47 
48 	/** Current iovec position. */
49 	int iovpos;
50 
51 	/** Offset in current iovec. */
52 	uint32_t iov_offset;
53 
54 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
55 	 *  being reset in a reset I/O.
56 	 */
57 	struct nvme_io_path *io_path;
58 
59 	/** array of iovecs to transfer. */
60 	struct iovec *fused_iovs;
61 
62 	/** Number of iovecs in iovs array. */
63 	int fused_iovcnt;
64 
65 	/** Current iovec position. */
66 	int fused_iovpos;
67 
68 	/** Offset in current iovec. */
69 	uint32_t fused_iov_offset;
70 
71 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
72 	struct spdk_nvme_cpl cpl;
73 
74 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
75 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
76 
77 	/** Originating thread */
78 	struct spdk_thread *orig_thread;
79 
80 	/** Keeps track if first of fused commands was submitted */
81 	bool first_fused_submitted;
82 
83 	/** Keeps track if first of fused commands was completed */
84 	bool first_fused_completed;
85 
86 	/** Temporary pointer to zone report buffer */
87 	struct spdk_nvme_zns_zone_report *zone_report_buf;
88 
89 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
90 	uint64_t handled_zones;
91 
92 	/** Expiration value in ticks to retry the current I/O. */
93 	uint64_t retry_ticks;
94 
95 	/* How many times the current I/O was retried. */
96 	int32_t retry_count;
97 
98 	/* Current tsc at submit time. */
99 	uint64_t submit_tsc;
100 };
101 
102 struct nvme_probe_skip_entry {
103 	struct spdk_nvme_transport_id		trid;
104 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
105 };
106 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
107 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
108 			g_skipped_nvme_ctrlrs);
109 
110 static struct spdk_bdev_nvme_opts g_opts = {
111 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
112 	.timeout_us = 0,
113 	.timeout_admin_us = 0,
114 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
115 	.transport_retry_count = 4,
116 	.arbitration_burst = 0,
117 	.low_priority_weight = 0,
118 	.medium_priority_weight = 0,
119 	.high_priority_weight = 0,
120 	.nvme_adminq_poll_period_us = 10000ULL,
121 	.nvme_ioq_poll_period_us = 0,
122 	.io_queue_requests = 0,
123 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
124 	.bdev_retry_count = 3,
125 	.transport_ack_timeout = 0,
126 	.ctrlr_loss_timeout_sec = 0,
127 	.reconnect_delay_sec = 0,
128 	.fast_io_fail_timeout_sec = 0,
129 	.disable_auto_failback = false,
130 	.generate_uuids = false,
131 	.transport_tos = 0,
132 	.nvme_error_stat = false,
133 	.io_path_stat = false,
134 };
135 
136 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
137 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
138 
139 static int g_hot_insert_nvme_controller_index = 0;
140 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
141 static bool g_nvme_hotplug_enabled = false;
142 struct spdk_thread *g_bdev_nvme_init_thread;
143 static struct spdk_poller *g_hotplug_poller;
144 static struct spdk_poller *g_hotplug_probe_poller;
145 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
146 
147 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
148 		struct nvme_async_probe_ctx *ctx);
149 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
150 		struct nvme_async_probe_ctx *ctx);
151 static int bdev_nvme_library_init(void);
152 static void bdev_nvme_library_fini(void);
153 static void _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch,
154 				      struct spdk_bdev_io *bdev_io);
155 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
156 				     struct spdk_bdev_io *bdev_io);
157 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
158 			   void *md, uint64_t lba_count, uint64_t lba,
159 			   uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx);
160 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
161 				 void *md, uint64_t lba_count, uint64_t lba);
162 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
163 			    void *md, uint64_t lba_count, uint64_t lba,
164 			    uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx);
165 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
166 				  void *md, uint64_t lba_count,
167 				  uint64_t zslba, uint32_t flags);
168 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
169 			      void *md, uint64_t lba_count, uint64_t lba,
170 			      uint32_t flags);
171 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
172 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
173 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
174 		uint32_t flags);
175 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
176 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
177 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
178 				     enum spdk_bdev_zone_action action);
179 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
180 				     struct nvme_bdev_io *bio,
181 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
182 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
183 				 void *buf, size_t nbytes);
184 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
185 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
186 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
187 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
188 static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio);
189 static int bdev_nvme_reset(struct nvme_ctrlr *nvme_ctrlr);
190 static int bdev_nvme_failover(struct nvme_ctrlr *nvme_ctrlr, bool remove);
191 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
192 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
193 
194 static struct nvme_ns *nvme_ns_alloc(void);
195 static void nvme_ns_free(struct nvme_ns *ns);
196 
197 static int
198 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
199 {
200 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
201 }
202 
203 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
204 
205 struct spdk_nvme_qpair *
206 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
207 {
208 	struct nvme_ctrlr_channel *ctrlr_ch;
209 
210 	assert(ctrlr_io_ch != NULL);
211 
212 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
213 
214 	return ctrlr_ch->qpair->qpair;
215 }
216 
217 static int
218 bdev_nvme_get_ctx_size(void)
219 {
220 	return sizeof(struct nvme_bdev_io);
221 }
222 
223 static struct spdk_bdev_module nvme_if = {
224 	.name = "nvme",
225 	.async_fini = true,
226 	.module_init = bdev_nvme_library_init,
227 	.module_fini = bdev_nvme_library_fini,
228 	.config_json = bdev_nvme_config_json,
229 	.get_ctx_size = bdev_nvme_get_ctx_size,
230 
231 };
232 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
233 
234 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
235 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
236 bool g_bdev_nvme_module_finish;
237 
238 struct nvme_bdev_ctrlr *
239 nvme_bdev_ctrlr_get_by_name(const char *name)
240 {
241 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
242 
243 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
244 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
245 			break;
246 		}
247 	}
248 
249 	return nbdev_ctrlr;
250 }
251 
252 static struct nvme_ctrlr *
253 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
254 			  const struct spdk_nvme_transport_id *trid)
255 {
256 	struct nvme_ctrlr *nvme_ctrlr;
257 
258 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
259 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0) {
260 			break;
261 		}
262 	}
263 
264 	return nvme_ctrlr;
265 }
266 
267 static struct nvme_bdev *
268 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
269 {
270 	struct nvme_bdev *bdev;
271 
272 	pthread_mutex_lock(&g_bdev_nvme_mutex);
273 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
274 		if (bdev->nsid == nsid) {
275 			break;
276 		}
277 	}
278 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
279 
280 	return bdev;
281 }
282 
283 struct nvme_ns *
284 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
285 {
286 	struct nvme_ns ns;
287 
288 	assert(nsid > 0);
289 
290 	ns.id = nsid;
291 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
292 }
293 
294 struct nvme_ns *
295 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
296 {
297 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
298 }
299 
300 struct nvme_ns *
301 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
302 {
303 	if (ns == NULL) {
304 		return NULL;
305 	}
306 
307 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
308 }
309 
310 static struct nvme_ctrlr *
311 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid)
312 {
313 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
314 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
315 
316 	pthread_mutex_lock(&g_bdev_nvme_mutex);
317 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
318 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid);
319 		if (nvme_ctrlr != NULL) {
320 			break;
321 		}
322 	}
323 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
324 
325 	return nvme_ctrlr;
326 }
327 
328 struct nvme_ctrlr *
329 nvme_ctrlr_get_by_name(const char *name)
330 {
331 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
332 	struct nvme_ctrlr *nvme_ctrlr = NULL;
333 
334 	if (name == NULL) {
335 		return NULL;
336 	}
337 
338 	pthread_mutex_lock(&g_bdev_nvme_mutex);
339 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
340 	if (nbdev_ctrlr != NULL) {
341 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
342 	}
343 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
344 
345 	return nvme_ctrlr;
346 }
347 
348 void
349 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
350 {
351 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
352 
353 	pthread_mutex_lock(&g_bdev_nvme_mutex);
354 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
355 		fn(nbdev_ctrlr, ctx);
356 	}
357 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
358 }
359 
360 void
361 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
362 {
363 	const char *trtype_str;
364 	const char *adrfam_str;
365 
366 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
367 	if (trtype_str) {
368 		spdk_json_write_named_string(w, "trtype", trtype_str);
369 	}
370 
371 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
372 	if (adrfam_str) {
373 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
374 	}
375 
376 	if (trid->traddr[0] != '\0') {
377 		spdk_json_write_named_string(w, "traddr", trid->traddr);
378 	}
379 
380 	if (trid->trsvcid[0] != '\0') {
381 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
382 	}
383 
384 	if (trid->subnqn[0] != '\0') {
385 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
386 	}
387 }
388 
389 static void
390 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
391 		       struct nvme_ctrlr *nvme_ctrlr)
392 {
393 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
394 	pthread_mutex_lock(&g_bdev_nvme_mutex);
395 
396 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
397 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
398 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
399 
400 		return;
401 	}
402 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
403 
404 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
405 
406 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
407 
408 	free(nbdev_ctrlr->name);
409 	free(nbdev_ctrlr);
410 }
411 
412 static void
413 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
414 {
415 	struct nvme_path_id *path_id, *tmp_path;
416 	struct nvme_ns *ns, *tmp_ns;
417 
418 	free(nvme_ctrlr->copied_ana_desc);
419 	spdk_free(nvme_ctrlr->ana_log_page);
420 
421 	if (nvme_ctrlr->opal_dev) {
422 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
423 		nvme_ctrlr->opal_dev = NULL;
424 	}
425 
426 	if (nvme_ctrlr->nbdev_ctrlr) {
427 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
428 	}
429 
430 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
431 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
432 		nvme_ns_free(ns);
433 	}
434 
435 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
436 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
437 		free(path_id);
438 	}
439 
440 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
441 
442 	free(nvme_ctrlr);
443 
444 	pthread_mutex_lock(&g_bdev_nvme_mutex);
445 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
446 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
447 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
448 		spdk_bdev_module_fini_done();
449 		return;
450 	}
451 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
452 }
453 
454 static int
455 nvme_detach_poller(void *arg)
456 {
457 	struct nvme_ctrlr *nvme_ctrlr = arg;
458 	int rc;
459 
460 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
461 	if (rc != -EAGAIN) {
462 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
463 		_nvme_ctrlr_delete(nvme_ctrlr);
464 	}
465 
466 	return SPDK_POLLER_BUSY;
467 }
468 
469 static void
470 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
471 {
472 	int rc;
473 
474 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
475 
476 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
477 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
478 
479 	/* If we got here, the reset/detach poller cannot be active */
480 	assert(nvme_ctrlr->reset_detach_poller == NULL);
481 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
482 					  nvme_ctrlr, 1000);
483 	if (nvme_ctrlr->reset_detach_poller == NULL) {
484 		SPDK_ERRLOG("Failed to register detach poller\n");
485 		goto error;
486 	}
487 
488 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
489 	if (rc != 0) {
490 		SPDK_ERRLOG("Failed to detach the NVMe controller\n");
491 		goto error;
492 	}
493 
494 	return;
495 error:
496 	/* We don't have a good way to handle errors here, so just do what we can and delete the
497 	 * controller without detaching the underlying NVMe device.
498 	 */
499 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
500 	_nvme_ctrlr_delete(nvme_ctrlr);
501 }
502 
503 static void
504 nvme_ctrlr_unregister_cb(void *io_device)
505 {
506 	struct nvme_ctrlr *nvme_ctrlr = io_device;
507 
508 	nvme_ctrlr_delete(nvme_ctrlr);
509 }
510 
511 static void
512 nvme_ctrlr_unregister(void *ctx)
513 {
514 	struct nvme_ctrlr *nvme_ctrlr = ctx;
515 
516 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
517 }
518 
519 static bool
520 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
521 {
522 	if (!nvme_ctrlr->destruct) {
523 		return false;
524 	}
525 
526 	if (nvme_ctrlr->ref > 0) {
527 		return false;
528 	}
529 
530 	if (nvme_ctrlr->resetting) {
531 		return false;
532 	}
533 
534 	if (nvme_ctrlr->ana_log_page_updating) {
535 		return false;
536 	}
537 
538 	if (nvme_ctrlr->io_path_cache_clearing) {
539 		return false;
540 	}
541 
542 	return true;
543 }
544 
545 static void
546 nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
547 {
548 	pthread_mutex_lock(&nvme_ctrlr->mutex);
549 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
550 
551 	assert(nvme_ctrlr->ref > 0);
552 	nvme_ctrlr->ref--;
553 
554 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
555 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
556 		return;
557 	}
558 
559 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
560 
561 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
562 }
563 
564 static void
565 bdev_nvme_clear_current_io_path(struct nvme_bdev_channel *nbdev_ch)
566 {
567 	nbdev_ch->current_io_path = NULL;
568 	nbdev_ch->rr_counter = 0;
569 }
570 
571 static struct nvme_io_path *
572 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
573 {
574 	struct nvme_io_path *io_path;
575 
576 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
577 		if (io_path->nvme_ns == nvme_ns) {
578 			break;
579 		}
580 	}
581 
582 	return io_path;
583 }
584 
585 static struct nvme_io_path *
586 nvme_io_path_alloc(void)
587 {
588 	struct nvme_io_path *io_path;
589 
590 	io_path = calloc(1, sizeof(*io_path));
591 	if (io_path == NULL) {
592 		SPDK_ERRLOG("Failed to alloc io_path.\n");
593 		return NULL;
594 	}
595 
596 	if (g_opts.io_path_stat) {
597 		io_path->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
598 		if (io_path->stat == NULL) {
599 			free(io_path);
600 			SPDK_ERRLOG("Failed to alloc io_path stat.\n");
601 			return NULL;
602 		}
603 		spdk_bdev_reset_io_stat(io_path->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
604 	}
605 
606 	return io_path;
607 }
608 
609 static void
610 nvme_io_path_free(struct nvme_io_path *io_path)
611 {
612 	free(io_path->stat);
613 	free(io_path);
614 }
615 
616 static int
617 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
618 {
619 	struct nvme_io_path *io_path;
620 	struct spdk_io_channel *ch;
621 	struct nvme_ctrlr_channel *ctrlr_ch;
622 	struct nvme_qpair *nvme_qpair;
623 
624 	io_path = nvme_io_path_alloc();
625 	if (io_path == NULL) {
626 		return -ENOMEM;
627 	}
628 
629 	io_path->nvme_ns = nvme_ns;
630 
631 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
632 	if (ch == NULL) {
633 		nvme_io_path_free(io_path);
634 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
635 		return -ENOMEM;
636 	}
637 
638 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
639 
640 	nvme_qpair = ctrlr_ch->qpair;
641 	assert(nvme_qpair != NULL);
642 
643 	io_path->qpair = nvme_qpair;
644 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
645 
646 	io_path->nbdev_ch = nbdev_ch;
647 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
648 
649 	bdev_nvme_clear_current_io_path(nbdev_ch);
650 
651 	return 0;
652 }
653 
654 static void
655 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
656 {
657 	struct spdk_io_channel *ch;
658 	struct nvme_qpair *nvme_qpair;
659 	struct nvme_ctrlr_channel *ctrlr_ch;
660 	struct nvme_bdev *nbdev;
661 
662 	nbdev = spdk_io_channel_get_io_device(spdk_io_channel_from_ctx(nbdev_ch));
663 
664 	/* Add the statistics to nvme_ns before this path is destroyed. */
665 	pthread_mutex_lock(&nbdev->mutex);
666 	if (nbdev->ref != 0 && io_path->nvme_ns->stat != NULL && io_path->stat != NULL) {
667 		spdk_bdev_add_io_stat(io_path->nvme_ns->stat, io_path->stat);
668 	}
669 	pthread_mutex_unlock(&nbdev->mutex);
670 
671 	bdev_nvme_clear_current_io_path(nbdev_ch);
672 
673 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
674 	io_path->nbdev_ch = NULL;
675 
676 	nvme_qpair = io_path->qpair;
677 	assert(nvme_qpair != NULL);
678 
679 	ctrlr_ch = nvme_qpair->ctrlr_ch;
680 	assert(ctrlr_ch != NULL);
681 
682 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
683 	spdk_put_io_channel(ch);
684 
685 	/* After an io_path is removed, I/Os submitted to it may complete and update statistics
686 	 * of the io_path. To avoid heap-use-after-free error from this case, do not free the
687 	 * io_path here but free the io_path when the associated qpair is freed. It is ensured
688 	 * that all I/Os submitted to the io_path are completed when the associated qpair is freed.
689 	 */
690 }
691 
692 static void
693 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
694 {
695 	struct nvme_io_path *io_path, *tmp_io_path;
696 
697 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
698 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
699 	}
700 }
701 
702 static int
703 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
704 {
705 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
706 	struct nvme_bdev *nbdev = io_device;
707 	struct nvme_ns *nvme_ns;
708 	int rc;
709 
710 	STAILQ_INIT(&nbdev_ch->io_path_list);
711 	TAILQ_INIT(&nbdev_ch->retry_io_list);
712 
713 	pthread_mutex_lock(&nbdev->mutex);
714 
715 	nbdev_ch->mp_policy = nbdev->mp_policy;
716 	nbdev_ch->mp_selector = nbdev->mp_selector;
717 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
718 
719 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
720 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
721 		if (rc != 0) {
722 			pthread_mutex_unlock(&nbdev->mutex);
723 
724 			_bdev_nvme_delete_io_paths(nbdev_ch);
725 			return rc;
726 		}
727 	}
728 	pthread_mutex_unlock(&nbdev->mutex);
729 
730 	return 0;
731 }
732 
733 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
734  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
735  */
736 static inline void
737 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
738 			const struct spdk_nvme_cpl *cpl)
739 {
740 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
741 			  (uintptr_t)bdev_io);
742 	if (cpl) {
743 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
744 	} else {
745 		spdk_bdev_io_complete(bdev_io, status);
746 	}
747 }
748 
749 static void bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch);
750 
751 static void
752 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
753 {
754 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
755 
756 	bdev_nvme_abort_retry_ios(nbdev_ch);
757 	_bdev_nvme_delete_io_paths(nbdev_ch);
758 }
759 
760 static inline bool
761 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
762 {
763 	switch (io_type) {
764 	case SPDK_BDEV_IO_TYPE_RESET:
765 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
766 	case SPDK_BDEV_IO_TYPE_ABORT:
767 		return true;
768 	default:
769 		break;
770 	}
771 
772 	return false;
773 }
774 
775 static inline bool
776 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
777 {
778 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
779 		return false;
780 	}
781 
782 	switch (nvme_ns->ana_state) {
783 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
784 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
785 		return true;
786 	default:
787 		break;
788 	}
789 
790 	return false;
791 }
792 
793 static inline bool
794 nvme_io_path_is_connected(struct nvme_io_path *io_path)
795 {
796 	if (spdk_unlikely(io_path->qpair->qpair == NULL)) {
797 		return false;
798 	}
799 
800 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(io_path->qpair->qpair) !=
801 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
802 		return false;
803 	}
804 
805 	if (spdk_unlikely(io_path->qpair->ctrlr_ch->reset_iter != NULL)) {
806 		return false;
807 	}
808 
809 	if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(io_path->qpair->ctrlr->ctrlr) !=
810 	    SPDK_NVME_QPAIR_FAILURE_NONE) {
811 		return false;
812 	}
813 
814 	return true;
815 }
816 
817 static inline bool
818 nvme_io_path_is_available(struct nvme_io_path *io_path)
819 {
820 	if (spdk_unlikely(!nvme_io_path_is_connected(io_path))) {
821 		return false;
822 	}
823 
824 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
825 		return false;
826 	}
827 
828 	return true;
829 }
830 
831 static inline bool
832 nvme_io_path_is_failed(struct nvme_io_path *io_path)
833 {
834 	struct nvme_ctrlr *nvme_ctrlr;
835 
836 	nvme_ctrlr = io_path->qpair->ctrlr;
837 
838 	if (nvme_ctrlr->destruct) {
839 		return true;
840 	}
841 
842 	if (nvme_ctrlr->fast_io_fail_timedout) {
843 		return true;
844 	}
845 
846 	if (nvme_ctrlr->resetting) {
847 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
848 			return false;
849 		} else {
850 			return true;
851 		}
852 	}
853 
854 	if (nvme_ctrlr->reconnect_is_delayed) {
855 		return false;
856 	}
857 
858 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
859 		return true;
860 	} else {
861 		return false;
862 	}
863 }
864 
865 static bool
866 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
867 {
868 	if (nvme_ctrlr->destruct) {
869 		return false;
870 	}
871 
872 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
873 		return false;
874 	}
875 
876 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
877 		return false;
878 	}
879 
880 	return true;
881 }
882 
883 /* Simulate circular linked list. */
884 static inline struct nvme_io_path *
885 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
886 {
887 	struct nvme_io_path *next_path;
888 
889 	if (prev_path != NULL) {
890 		next_path = STAILQ_NEXT(prev_path, stailq);
891 		if (next_path != NULL) {
892 			return next_path;
893 		}
894 	}
895 
896 	return STAILQ_FIRST(&nbdev_ch->io_path_list);
897 }
898 
899 static struct nvme_io_path *
900 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
901 {
902 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
903 
904 	start = nvme_io_path_get_next(nbdev_ch, nbdev_ch->current_io_path);
905 
906 	io_path = start;
907 	do {
908 		if (spdk_likely(nvme_io_path_is_connected(io_path) &&
909 				!io_path->nvme_ns->ana_state_updating)) {
910 			switch (io_path->nvme_ns->ana_state) {
911 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
912 				nbdev_ch->current_io_path = io_path;
913 				return io_path;
914 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
915 				if (non_optimized == NULL) {
916 					non_optimized = io_path;
917 				}
918 				break;
919 			default:
920 				break;
921 			}
922 		}
923 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
924 	} while (io_path != start);
925 
926 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
927 		/* We come here only if there is no optimized path. Cache even non_optimized
928 		 * path for load balance across multiple non_optimized paths.
929 		 */
930 		nbdev_ch->current_io_path = non_optimized;
931 	}
932 
933 	return non_optimized;
934 }
935 
936 static struct nvme_io_path *
937 _bdev_nvme_find_io_path_min_qd(struct nvme_bdev_channel *nbdev_ch)
938 {
939 	struct nvme_io_path *io_path;
940 	struct nvme_io_path *optimized = NULL, *non_optimized = NULL;
941 	uint32_t opt_min_qd = UINT32_MAX, non_opt_min_qd = UINT32_MAX;
942 	uint32_t num_outstanding_reqs;
943 
944 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
945 		if (spdk_unlikely(!nvme_io_path_is_connected(io_path))) {
946 			/* The device is currently resetting. */
947 			continue;
948 		}
949 
950 		if (spdk_unlikely(io_path->nvme_ns->ana_state_updating)) {
951 			continue;
952 		}
953 
954 		num_outstanding_reqs = spdk_nvme_qpair_get_num_outstanding_reqs(io_path->qpair->qpair);
955 		switch (io_path->nvme_ns->ana_state) {
956 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
957 			if (num_outstanding_reqs < opt_min_qd) {
958 				opt_min_qd = num_outstanding_reqs;
959 				optimized = io_path;
960 			}
961 			break;
962 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
963 			if (num_outstanding_reqs < non_opt_min_qd) {
964 				non_opt_min_qd = num_outstanding_reqs;
965 				non_optimized = io_path;
966 			}
967 			break;
968 		default:
969 			break;
970 		}
971 	}
972 
973 	/* don't cache io path for BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH selector */
974 	if (optimized != NULL) {
975 		return optimized;
976 	}
977 
978 	return non_optimized;
979 }
980 
981 static inline struct nvme_io_path *
982 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
983 {
984 	if (spdk_likely(nbdev_ch->current_io_path != NULL)) {
985 		if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE) {
986 			return nbdev_ch->current_io_path;
987 		} else if (nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
988 			if (++nbdev_ch->rr_counter < nbdev_ch->rr_min_io) {
989 				return nbdev_ch->current_io_path;
990 			}
991 			nbdev_ch->rr_counter = 0;
992 		}
993 	}
994 
995 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE ||
996 	    nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
997 		return _bdev_nvme_find_io_path(nbdev_ch);
998 	} else {
999 		return _bdev_nvme_find_io_path_min_qd(nbdev_ch);
1000 	}
1001 }
1002 
1003 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
1004  * or false otherwise.
1005  *
1006  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
1007  * is likely to be non-accessible now but may become accessible.
1008  *
1009  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
1010  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
1011  * when starting to reset it but it is set to failed when the reset failed. Hence, if
1012  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
1013  */
1014 static bool
1015 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
1016 {
1017 	struct nvme_io_path *io_path;
1018 
1019 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1020 		if (io_path->nvme_ns->ana_transition_timedout) {
1021 			continue;
1022 		}
1023 
1024 		if (nvme_io_path_is_connected(io_path) ||
1025 		    !nvme_io_path_is_failed(io_path)) {
1026 			return true;
1027 		}
1028 	}
1029 
1030 	return false;
1031 }
1032 
1033 static void
1034 bdev_nvme_retry_io(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
1035 {
1036 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1037 	struct spdk_io_channel *ch;
1038 
1039 	if (nbdev_io->io_path != NULL && nvme_io_path_is_available(nbdev_io->io_path)) {
1040 		_bdev_nvme_submit_request(nbdev_ch, bdev_io);
1041 	} else {
1042 		ch = spdk_io_channel_from_ctx(nbdev_ch);
1043 		bdev_nvme_submit_request(ch, bdev_io);
1044 	}
1045 }
1046 
1047 static int
1048 bdev_nvme_retry_ios(void *arg)
1049 {
1050 	struct nvme_bdev_channel *nbdev_ch = arg;
1051 	struct spdk_bdev_io *bdev_io, *tmp_bdev_io;
1052 	struct nvme_bdev_io *bio;
1053 	uint64_t now, delay_us;
1054 
1055 	now = spdk_get_ticks();
1056 
1057 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_bdev_io) {
1058 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1059 		if (bio->retry_ticks > now) {
1060 			break;
1061 		}
1062 
1063 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
1064 
1065 		bdev_nvme_retry_io(nbdev_ch, bdev_io);
1066 	}
1067 
1068 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1069 
1070 	bdev_io = TAILQ_FIRST(&nbdev_ch->retry_io_list);
1071 	if (bdev_io != NULL) {
1072 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1073 
1074 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
1075 
1076 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1077 					    delay_us);
1078 	}
1079 
1080 	return SPDK_POLLER_BUSY;
1081 }
1082 
1083 static void
1084 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
1085 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
1086 {
1087 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1088 	struct spdk_bdev_io *tmp_bdev_io;
1089 	struct nvme_bdev_io *tmp_bio;
1090 
1091 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
1092 
1093 	TAILQ_FOREACH_REVERSE(tmp_bdev_io, &nbdev_ch->retry_io_list, retry_io_head, module_link) {
1094 		tmp_bio = (struct nvme_bdev_io *)tmp_bdev_io->driver_ctx;
1095 
1096 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1097 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bdev_io, bdev_io,
1098 					   module_link);
1099 			return;
1100 		}
1101 	}
1102 
1103 	/* No earlier I/Os were found. This I/O must be the new head. */
1104 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bdev_io, module_link);
1105 
1106 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1107 
1108 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1109 				    delay_ms * 1000ULL);
1110 }
1111 
1112 static void
1113 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
1114 {
1115 	struct spdk_bdev_io *bdev_io, *tmp_io;
1116 
1117 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_io) {
1118 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
1119 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1120 	}
1121 
1122 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1123 }
1124 
1125 static int
1126 bdev_nvme_abort_retry_io(struct nvme_bdev_channel *nbdev_ch,
1127 			 struct nvme_bdev_io *bio_to_abort)
1128 {
1129 	struct spdk_bdev_io *bdev_io_to_abort;
1130 
1131 	TAILQ_FOREACH(bdev_io_to_abort, &nbdev_ch->retry_io_list, module_link) {
1132 		if ((struct nvme_bdev_io *)bdev_io_to_abort->driver_ctx == bio_to_abort) {
1133 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io_to_abort, module_link);
1134 			__bdev_nvme_io_complete(bdev_io_to_abort, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1135 			return 0;
1136 		}
1137 	}
1138 
1139 	return -ENOENT;
1140 }
1141 
1142 static void
1143 bdev_nvme_update_nvme_error_stat(struct spdk_bdev_io *bdev_io, const struct spdk_nvme_cpl *cpl)
1144 {
1145 	struct nvme_bdev *nbdev;
1146 	uint16_t sct, sc;
1147 
1148 	assert(spdk_nvme_cpl_is_error(cpl));
1149 
1150 	nbdev = bdev_io->bdev->ctxt;
1151 
1152 	if (nbdev->err_stat == NULL) {
1153 		return;
1154 	}
1155 
1156 	sct = cpl->status.sct;
1157 	sc = cpl->status.sc;
1158 
1159 	pthread_mutex_lock(&nbdev->mutex);
1160 
1161 	nbdev->err_stat->status_type[sct]++;
1162 	switch (sct) {
1163 	case SPDK_NVME_SCT_GENERIC:
1164 	case SPDK_NVME_SCT_COMMAND_SPECIFIC:
1165 	case SPDK_NVME_SCT_MEDIA_ERROR:
1166 	case SPDK_NVME_SCT_PATH:
1167 		nbdev->err_stat->status[sct][sc]++;
1168 		break;
1169 	default:
1170 		break;
1171 	}
1172 
1173 	pthread_mutex_unlock(&nbdev->mutex);
1174 }
1175 
1176 static inline void
1177 bdev_nvme_update_io_path_stat(struct nvme_bdev_io *bio)
1178 {
1179 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1180 	uint64_t num_blocks = bdev_io->u.bdev.num_blocks;
1181 	uint32_t blocklen = bdev_io->bdev->blocklen;
1182 	struct spdk_bdev_io_stat *stat;
1183 	uint64_t tsc_diff;
1184 
1185 	if (bio->io_path->stat == NULL) {
1186 		return;
1187 	}
1188 
1189 	tsc_diff = spdk_get_ticks() - bio->submit_tsc;
1190 	stat = bio->io_path->stat;
1191 
1192 	switch (bdev_io->type) {
1193 	case SPDK_BDEV_IO_TYPE_READ:
1194 		stat->bytes_read += num_blocks * blocklen;
1195 		stat->num_read_ops++;
1196 		stat->read_latency_ticks += tsc_diff;
1197 		if (stat->max_read_latency_ticks < tsc_diff) {
1198 			stat->max_read_latency_ticks = tsc_diff;
1199 		}
1200 		if (stat->min_read_latency_ticks > tsc_diff) {
1201 			stat->min_read_latency_ticks = tsc_diff;
1202 		}
1203 		break;
1204 	case SPDK_BDEV_IO_TYPE_WRITE:
1205 		stat->bytes_written += num_blocks * blocklen;
1206 		stat->num_write_ops++;
1207 		stat->write_latency_ticks += tsc_diff;
1208 		if (stat->max_write_latency_ticks < tsc_diff) {
1209 			stat->max_write_latency_ticks = tsc_diff;
1210 		}
1211 		if (stat->min_write_latency_ticks > tsc_diff) {
1212 			stat->min_write_latency_ticks = tsc_diff;
1213 		}
1214 		break;
1215 	case SPDK_BDEV_IO_TYPE_UNMAP:
1216 		stat->bytes_unmapped += num_blocks * blocklen;
1217 		stat->num_unmap_ops++;
1218 		stat->unmap_latency_ticks += tsc_diff;
1219 		if (stat->max_unmap_latency_ticks < tsc_diff) {
1220 			stat->max_unmap_latency_ticks = tsc_diff;
1221 		}
1222 		if (stat->min_unmap_latency_ticks > tsc_diff) {
1223 			stat->min_unmap_latency_ticks = tsc_diff;
1224 		}
1225 		break;
1226 	case SPDK_BDEV_IO_TYPE_ZCOPY:
1227 		/* Track the data in the start phase only */
1228 		if (!bdev_io->u.bdev.zcopy.start) {
1229 			break;
1230 		}
1231 		if (bdev_io->u.bdev.zcopy.populate) {
1232 			stat->bytes_read += num_blocks * blocklen;
1233 			stat->num_read_ops++;
1234 			stat->read_latency_ticks += tsc_diff;
1235 			if (stat->max_read_latency_ticks < tsc_diff) {
1236 				stat->max_read_latency_ticks = tsc_diff;
1237 			}
1238 			if (stat->min_read_latency_ticks > tsc_diff) {
1239 				stat->min_read_latency_ticks = tsc_diff;
1240 			}
1241 		} else {
1242 			stat->bytes_written += num_blocks * blocklen;
1243 			stat->num_write_ops++;
1244 			stat->write_latency_ticks += tsc_diff;
1245 			if (stat->max_write_latency_ticks < tsc_diff) {
1246 				stat->max_write_latency_ticks = tsc_diff;
1247 			}
1248 			if (stat->min_write_latency_ticks > tsc_diff) {
1249 				stat->min_write_latency_ticks = tsc_diff;
1250 			}
1251 		}
1252 		break;
1253 	case SPDK_BDEV_IO_TYPE_COPY:
1254 		stat->bytes_copied += num_blocks * blocklen;
1255 		stat->num_copy_ops++;
1256 		stat->copy_latency_ticks += tsc_diff;
1257 		if (stat->max_copy_latency_ticks < tsc_diff) {
1258 			stat->max_copy_latency_ticks = tsc_diff;
1259 		}
1260 		if (stat->min_copy_latency_ticks > tsc_diff) {
1261 			stat->min_copy_latency_ticks = tsc_diff;
1262 		}
1263 		break;
1264 	default:
1265 		break;
1266 	}
1267 }
1268 
1269 static inline void
1270 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1271 				  const struct spdk_nvme_cpl *cpl)
1272 {
1273 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1274 	struct nvme_bdev_channel *nbdev_ch;
1275 	struct nvme_io_path *io_path;
1276 	struct nvme_ctrlr *nvme_ctrlr;
1277 	const struct spdk_nvme_ctrlr_data *cdata;
1278 	uint64_t delay_ms;
1279 
1280 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1281 
1282 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1283 		bdev_nvme_update_io_path_stat(bio);
1284 		goto complete;
1285 	}
1286 
1287 	/* Update error counts before deciding if retry is needed.
1288 	 * Hence, error counts may be more than the number of I/O errors.
1289 	 */
1290 	bdev_nvme_update_nvme_error_stat(bdev_io, cpl);
1291 
1292 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1293 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1294 		goto complete;
1295 	}
1296 
1297 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1298 
1299 	assert(bio->io_path != NULL);
1300 	io_path = bio->io_path;
1301 
1302 	nvme_ctrlr = io_path->qpair->ctrlr;
1303 
1304 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1305 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1306 	    !nvme_io_path_is_available(io_path) ||
1307 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1308 		bdev_nvme_clear_current_io_path(nbdev_ch);
1309 		bio->io_path = NULL;
1310 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1311 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1312 				io_path->nvme_ns->ana_state_updating = true;
1313 			}
1314 		}
1315 		if (!any_io_path_may_become_available(nbdev_ch)) {
1316 			goto complete;
1317 		}
1318 		delay_ms = 0;
1319 	} else {
1320 		bio->retry_count++;
1321 
1322 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1323 
1324 		if (cpl->status.crd != 0) {
1325 			delay_ms = cdata->crdt[cpl->status.crd] * 100;
1326 		} else {
1327 			delay_ms = 0;
1328 		}
1329 	}
1330 
1331 	bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1332 	return;
1333 
1334 complete:
1335 	bio->retry_count = 0;
1336 	bio->submit_tsc = 0;
1337 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1338 }
1339 
1340 static inline void
1341 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1342 {
1343 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1344 	struct nvme_bdev_channel *nbdev_ch;
1345 	enum spdk_bdev_io_status io_status;
1346 
1347 	switch (rc) {
1348 	case 0:
1349 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1350 		break;
1351 	case -ENOMEM:
1352 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1353 		break;
1354 	case -ENXIO:
1355 		nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1356 
1357 		bdev_nvme_clear_current_io_path(nbdev_ch);
1358 		bio->io_path = NULL;
1359 
1360 		if (any_io_path_may_become_available(nbdev_ch)) {
1361 			bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1362 			return;
1363 		}
1364 
1365 	/* fallthrough */
1366 	default:
1367 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1368 		break;
1369 	}
1370 
1371 	bio->retry_count = 0;
1372 	bio->submit_tsc = 0;
1373 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1374 }
1375 
1376 static inline void
1377 bdev_nvme_admin_passthru_complete(struct nvme_bdev_io *bio, int rc)
1378 {
1379 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1380 	enum spdk_bdev_io_status io_status;
1381 
1382 	switch (rc) {
1383 	case 0:
1384 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1385 		break;
1386 	case -ENOMEM:
1387 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1388 		break;
1389 	case -ENXIO:
1390 	/* fallthrough */
1391 	default:
1392 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1393 		break;
1394 	}
1395 
1396 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1397 }
1398 
1399 static void
1400 bdev_nvme_clear_io_path_caches_done(struct spdk_io_channel_iter *i, int status)
1401 {
1402 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1403 
1404 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1405 
1406 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1407 	nvme_ctrlr->io_path_cache_clearing = false;
1408 
1409 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1410 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1411 		return;
1412 	}
1413 
1414 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1415 
1416 	nvme_ctrlr_unregister(nvme_ctrlr);
1417 }
1418 
1419 static void
1420 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1421 {
1422 	struct nvme_io_path *io_path;
1423 
1424 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1425 		if (io_path->nbdev_ch == NULL) {
1426 			continue;
1427 		}
1428 		bdev_nvme_clear_current_io_path(io_path->nbdev_ch);
1429 	}
1430 }
1431 
1432 static void
1433 bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i)
1434 {
1435 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1436 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1437 
1438 	assert(ctrlr_ch->qpair != NULL);
1439 
1440 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1441 
1442 	spdk_for_each_channel_continue(i, 0);
1443 }
1444 
1445 static void
1446 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1447 {
1448 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1449 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1450 	    nvme_ctrlr->io_path_cache_clearing) {
1451 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1452 		return;
1453 	}
1454 
1455 	nvme_ctrlr->io_path_cache_clearing = true;
1456 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1457 
1458 	spdk_for_each_channel(nvme_ctrlr,
1459 			      bdev_nvme_clear_io_path_cache,
1460 			      NULL,
1461 			      bdev_nvme_clear_io_path_caches_done);
1462 }
1463 
1464 static struct nvme_qpair *
1465 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1466 {
1467 	struct nvme_qpair *nvme_qpair;
1468 
1469 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1470 		if (nvme_qpair->qpair == qpair) {
1471 			break;
1472 		}
1473 	}
1474 
1475 	return nvme_qpair;
1476 }
1477 
1478 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1479 
1480 static void
1481 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1482 {
1483 	struct nvme_poll_group *group = poll_group_ctx;
1484 	struct nvme_qpair *nvme_qpair;
1485 	struct nvme_ctrlr_channel *ctrlr_ch;
1486 
1487 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1488 	if (nvme_qpair == NULL) {
1489 		return;
1490 	}
1491 
1492 	if (nvme_qpair->qpair != NULL) {
1493 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1494 		nvme_qpair->qpair = NULL;
1495 	}
1496 
1497 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1498 
1499 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1500 
1501 	if (ctrlr_ch != NULL) {
1502 		if (ctrlr_ch->reset_iter != NULL) {
1503 			/* If we are already in a full reset sequence, we do not have
1504 			 * to restart it. Just move to the next ctrlr_channel.
1505 			 */
1506 			SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1507 				      qpair);
1508 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
1509 			ctrlr_ch->reset_iter = NULL;
1510 		} else {
1511 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1512 			SPDK_NOTICELOG("qpair %p was disconnected and freed. reset controller.\n", qpair);
1513 			bdev_nvme_failover(nvme_qpair->ctrlr, false);
1514 		}
1515 	} else {
1516 		/* In this case, ctrlr_channel is already deleted. */
1517 		SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed. delete nvme_qpair.\n", qpair);
1518 		nvme_qpair_delete(nvme_qpair);
1519 	}
1520 }
1521 
1522 static void
1523 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1524 {
1525 	struct nvme_qpair *nvme_qpair;
1526 
1527 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1528 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1529 			continue;
1530 		}
1531 
1532 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1533 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1534 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1535 		}
1536 	}
1537 }
1538 
1539 static int
1540 bdev_nvme_poll(void *arg)
1541 {
1542 	struct nvme_poll_group *group = arg;
1543 	int64_t num_completions;
1544 
1545 	if (group->collect_spin_stat && group->start_ticks == 0) {
1546 		group->start_ticks = spdk_get_ticks();
1547 	}
1548 
1549 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1550 			  bdev_nvme_disconnected_qpair_cb);
1551 	if (group->collect_spin_stat) {
1552 		if (num_completions > 0) {
1553 			if (group->end_ticks != 0) {
1554 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1555 				group->end_ticks = 0;
1556 			}
1557 			group->start_ticks = 0;
1558 		} else {
1559 			group->end_ticks = spdk_get_ticks();
1560 		}
1561 	}
1562 
1563 	if (spdk_unlikely(num_completions < 0)) {
1564 		bdev_nvme_check_io_qpairs(group);
1565 	}
1566 
1567 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1568 }
1569 
1570 static int bdev_nvme_poll_adminq(void *arg);
1571 
1572 static void
1573 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1574 {
1575 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1576 
1577 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1578 					  nvme_ctrlr, new_period_us);
1579 }
1580 
1581 static int
1582 bdev_nvme_poll_adminq(void *arg)
1583 {
1584 	int32_t rc;
1585 	struct nvme_ctrlr *nvme_ctrlr = arg;
1586 	nvme_ctrlr_disconnected_cb disconnected_cb;
1587 
1588 	assert(nvme_ctrlr != NULL);
1589 
1590 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1591 	if (rc < 0) {
1592 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1593 		nvme_ctrlr->disconnected_cb = NULL;
1594 
1595 		if (rc == -ENXIO && disconnected_cb != NULL) {
1596 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1597 							    g_opts.nvme_adminq_poll_period_us);
1598 			disconnected_cb(nvme_ctrlr);
1599 		} else {
1600 			bdev_nvme_failover(nvme_ctrlr, false);
1601 		}
1602 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1603 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1604 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1605 	}
1606 
1607 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1608 }
1609 
1610 static void
1611 _bdev_nvme_unregister_dev_cb(void *io_device)
1612 {
1613 	struct nvme_bdev *nvme_disk = io_device;
1614 
1615 	free(nvme_disk->disk.name);
1616 	free(nvme_disk->err_stat);
1617 	free(nvme_disk);
1618 }
1619 
1620 static int
1621 bdev_nvme_destruct(void *ctx)
1622 {
1623 	struct nvme_bdev *nvme_disk = ctx;
1624 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1625 
1626 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1627 
1628 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1629 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1630 
1631 		nvme_ns->bdev = NULL;
1632 
1633 		assert(nvme_ns->id > 0);
1634 
1635 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1636 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1637 
1638 			nvme_ctrlr_release(nvme_ns->ctrlr);
1639 			nvme_ns_free(nvme_ns);
1640 		} else {
1641 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1642 		}
1643 	}
1644 
1645 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1646 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1647 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1648 
1649 	spdk_io_device_unregister(nvme_disk, _bdev_nvme_unregister_dev_cb);
1650 
1651 	return 0;
1652 }
1653 
1654 static int
1655 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1656 {
1657 	struct nvme_ctrlr *nvme_ctrlr;
1658 	struct spdk_nvme_io_qpair_opts opts;
1659 	struct spdk_nvme_qpair *qpair;
1660 	int rc;
1661 
1662 	nvme_ctrlr = nvme_qpair->ctrlr;
1663 
1664 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1665 	opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1666 	opts.create_only = true;
1667 	opts.async_mode = true;
1668 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1669 	g_opts.io_queue_requests = opts.io_queue_requests;
1670 
1671 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1672 	if (qpair == NULL) {
1673 		return -1;
1674 	}
1675 
1676 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1677 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1678 
1679 	assert(nvme_qpair->group != NULL);
1680 
1681 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1682 	if (rc != 0) {
1683 		SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
1684 		goto err;
1685 	}
1686 
1687 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1688 	if (rc != 0) {
1689 		SPDK_ERRLOG("Unable to connect I/O qpair.\n");
1690 		goto err;
1691 	}
1692 
1693 	nvme_qpair->qpair = qpair;
1694 
1695 	if (!g_opts.disable_auto_failback) {
1696 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1697 	}
1698 
1699 	return 0;
1700 
1701 err:
1702 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1703 
1704 	return rc;
1705 }
1706 
1707 static void
1708 bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
1709 {
1710 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1711 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1712 	enum spdk_bdev_io_status status = SPDK_BDEV_IO_STATUS_SUCCESS;
1713 	struct spdk_bdev_io *bdev_io;
1714 
1715 	if (spdk_io_channel_iter_get_ctx(i) != NULL) {
1716 		status = SPDK_BDEV_IO_STATUS_FAILED;
1717 	}
1718 
1719 	while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
1720 		bdev_io = TAILQ_FIRST(&ctrlr_ch->pending_resets);
1721 		TAILQ_REMOVE(&ctrlr_ch->pending_resets, bdev_io, module_link);
1722 		__bdev_nvme_io_complete(bdev_io, status, NULL);
1723 	}
1724 
1725 	spdk_for_each_channel_continue(i, 0);
1726 }
1727 
1728 static void
1729 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove)
1730 {
1731 	struct nvme_path_id *path_id, *next_path;
1732 	int rc __attribute__((unused));
1733 
1734 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1735 	assert(path_id);
1736 	assert(path_id == nvme_ctrlr->active_path_id);
1737 	next_path = TAILQ_NEXT(path_id, link);
1738 
1739 	path_id->is_failed = true;
1740 
1741 	if (next_path == NULL) {
1742 		return;
1743 	}
1744 
1745 	assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
1746 
1747 	SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr,
1748 		       path_id->trid.trsvcid,	next_path->trid.traddr, next_path->trid.trsvcid);
1749 
1750 	spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
1751 	nvme_ctrlr->active_path_id = next_path;
1752 	rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
1753 	assert(rc == 0);
1754 	TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
1755 	if (!remove) {
1756 		/** Shuffle the old trid to the end of the list and use the new one.
1757 		 * Allows for round robin through multiple connections.
1758 		 */
1759 		TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
1760 	} else {
1761 		free(path_id);
1762 	}
1763 }
1764 
1765 static bool
1766 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
1767 {
1768 	int32_t elapsed;
1769 
1770 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
1771 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
1772 		return false;
1773 	}
1774 
1775 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1776 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
1777 		return true;
1778 	} else {
1779 		return false;
1780 	}
1781 }
1782 
1783 static bool
1784 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
1785 {
1786 	uint32_t elapsed;
1787 
1788 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
1789 		return false;
1790 	}
1791 
1792 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1793 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
1794 		return true;
1795 	} else {
1796 		return false;
1797 	}
1798 }
1799 
1800 static void bdev_nvme_reset_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
1801 
1802 static void
1803 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
1804 {
1805 	int rc;
1806 
1807 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
1808 	if (rc != 0) {
1809 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
1810 		 * fail the reset sequence immediately.
1811 		 */
1812 		bdev_nvme_reset_complete(nvme_ctrlr, false);
1813 		return;
1814 	}
1815 
1816 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
1817 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
1818 	 */
1819 	assert(nvme_ctrlr->disconnected_cb == NULL);
1820 	nvme_ctrlr->disconnected_cb = cb_fn;
1821 
1822 	/* During disconnection, reduce the period to poll adminq more often. */
1823 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
1824 }
1825 
1826 enum bdev_nvme_op_after_reset {
1827 	OP_NONE,
1828 	OP_COMPLETE_PENDING_DESTRUCT,
1829 	OP_DESTRUCT,
1830 	OP_DELAYED_RECONNECT,
1831 };
1832 
1833 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
1834 
1835 static _bdev_nvme_op_after_reset
1836 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
1837 {
1838 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1839 		/* Complete pending destruct after reset completes. */
1840 		return OP_COMPLETE_PENDING_DESTRUCT;
1841 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1842 		nvme_ctrlr->reset_start_tsc = 0;
1843 		return OP_NONE;
1844 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1845 		return OP_DESTRUCT;
1846 	} else {
1847 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
1848 			nvme_ctrlr->fast_io_fail_timedout = true;
1849 		}
1850 		bdev_nvme_failover_trid(nvme_ctrlr, false);
1851 		return OP_DELAYED_RECONNECT;
1852 	}
1853 }
1854 
1855 static int bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
1856 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
1857 
1858 static int
1859 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
1860 {
1861 	struct nvme_ctrlr *nvme_ctrlr = ctx;
1862 
1863 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
1864 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1865 
1866 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
1867 
1868 	if (!nvme_ctrlr->reconnect_is_delayed) {
1869 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1870 		return SPDK_POLLER_BUSY;
1871 	}
1872 
1873 	nvme_ctrlr->reconnect_is_delayed = false;
1874 
1875 	if (nvme_ctrlr->destruct) {
1876 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1877 		return SPDK_POLLER_BUSY;
1878 	}
1879 
1880 	assert(nvme_ctrlr->resetting == false);
1881 	nvme_ctrlr->resetting = true;
1882 
1883 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1884 
1885 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
1886 
1887 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
1888 	return SPDK_POLLER_BUSY;
1889 }
1890 
1891 static void
1892 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
1893 {
1894 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
1895 
1896 	assert(nvme_ctrlr->reconnect_is_delayed == false);
1897 	nvme_ctrlr->reconnect_is_delayed = true;
1898 
1899 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
1900 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
1901 					    nvme_ctrlr,
1902 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
1903 }
1904 
1905 static void
1906 _bdev_nvme_reset_complete(struct spdk_io_channel_iter *i, int status)
1907 {
1908 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1909 	bool success = spdk_io_channel_iter_get_ctx(i) == NULL;
1910 	struct nvme_path_id *path_id;
1911 	bdev_nvme_reset_cb reset_cb_fn = nvme_ctrlr->reset_cb_fn;
1912 	void *reset_cb_arg = nvme_ctrlr->reset_cb_arg;
1913 	enum bdev_nvme_op_after_reset op_after_reset;
1914 
1915 	assert(nvme_ctrlr->thread == spdk_get_thread());
1916 
1917 	nvme_ctrlr->reset_cb_fn = NULL;
1918 	nvme_ctrlr->reset_cb_arg = NULL;
1919 
1920 	if (!success) {
1921 		SPDK_ERRLOG("Resetting controller failed.\n");
1922 	} else {
1923 		SPDK_NOTICELOG("Resetting controller successful.\n");
1924 	}
1925 
1926 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1927 	nvme_ctrlr->resetting = false;
1928 	nvme_ctrlr->dont_retry = false;
1929 
1930 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1931 	assert(path_id != NULL);
1932 	assert(path_id == nvme_ctrlr->active_path_id);
1933 
1934 	path_id->is_failed = !success;
1935 
1936 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
1937 
1938 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1939 
1940 	if (reset_cb_fn) {
1941 		reset_cb_fn(reset_cb_arg, success);
1942 	}
1943 
1944 	switch (op_after_reset) {
1945 	case OP_COMPLETE_PENDING_DESTRUCT:
1946 		nvme_ctrlr_unregister(nvme_ctrlr);
1947 		break;
1948 	case OP_DESTRUCT:
1949 		bdev_nvme_delete_ctrlr(nvme_ctrlr, false);
1950 		break;
1951 	case OP_DELAYED_RECONNECT:
1952 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
1953 		break;
1954 	default:
1955 		break;
1956 	}
1957 }
1958 
1959 static void
1960 bdev_nvme_reset_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
1961 {
1962 	/* Make sure we clear any pending resets before returning. */
1963 	spdk_for_each_channel(nvme_ctrlr,
1964 			      bdev_nvme_complete_pending_resets,
1965 			      success ? NULL : (void *)0x1,
1966 			      _bdev_nvme_reset_complete);
1967 }
1968 
1969 static void
1970 bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status)
1971 {
1972 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1973 
1974 	bdev_nvme_reset_complete(nvme_ctrlr, false);
1975 }
1976 
1977 static void
1978 bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
1979 {
1980 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
1981 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
1982 	struct nvme_qpair *nvme_qpair;
1983 
1984 	nvme_qpair = ctrlr_ch->qpair;
1985 	assert(nvme_qpair != NULL);
1986 
1987 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1988 
1989 	if (nvme_qpair->qpair != NULL) {
1990 		if (nvme_qpair->ctrlr->dont_retry) {
1991 			spdk_nvme_qpair_set_abort_dnr(nvme_qpair->qpair, true);
1992 		}
1993 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
1994 
1995 		/* The current full reset sequence will move to the next
1996 		 * ctrlr_channel after the qpair is actually disconnected.
1997 		 */
1998 		assert(ctrlr_ch->reset_iter == NULL);
1999 		ctrlr_ch->reset_iter = i;
2000 	} else {
2001 		spdk_for_each_channel_continue(i, 0);
2002 	}
2003 }
2004 
2005 static void
2006 bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
2007 {
2008 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2009 
2010 	if (status == 0) {
2011 		bdev_nvme_reset_complete(nvme_ctrlr, true);
2012 	} else {
2013 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
2014 		spdk_for_each_channel(nvme_ctrlr,
2015 				      bdev_nvme_reset_destroy_qpair,
2016 				      NULL,
2017 				      bdev_nvme_reset_create_qpairs_failed);
2018 	}
2019 }
2020 
2021 static void
2022 bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
2023 {
2024 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2025 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
2026 	int rc;
2027 
2028 	rc = bdev_nvme_create_qpair(ctrlr_ch->qpair);
2029 
2030 	spdk_for_each_channel_continue(i, rc);
2031 }
2032 
2033 static int
2034 bdev_nvme_reconnect_ctrlr_poll(void *arg)
2035 {
2036 	struct nvme_ctrlr *nvme_ctrlr = arg;
2037 	int rc = -ETIMEDOUT;
2038 
2039 	if (!bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2040 		rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
2041 		if (rc == -EAGAIN) {
2042 			return SPDK_POLLER_BUSY;
2043 		}
2044 	}
2045 
2046 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
2047 	if (rc == 0) {
2048 		/* Recreate all of the I/O queue pairs */
2049 		spdk_for_each_channel(nvme_ctrlr,
2050 				      bdev_nvme_reset_create_qpair,
2051 				      NULL,
2052 				      bdev_nvme_reset_create_qpairs_done);
2053 	} else {
2054 		bdev_nvme_reset_complete(nvme_ctrlr, false);
2055 	}
2056 	return SPDK_POLLER_BUSY;
2057 }
2058 
2059 static void
2060 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2061 {
2062 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
2063 
2064 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
2065 	assert(nvme_ctrlr->reset_detach_poller == NULL);
2066 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
2067 					  nvme_ctrlr, 0);
2068 }
2069 
2070 static void
2071 bdev_nvme_reset_ctrlr(struct spdk_io_channel_iter *i, int status)
2072 {
2073 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2074 
2075 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
2076 	assert(status == 0);
2077 
2078 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2079 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2080 	} else {
2081 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2082 	}
2083 }
2084 
2085 static void
2086 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2087 {
2088 	spdk_for_each_channel(nvme_ctrlr,
2089 			      bdev_nvme_reset_destroy_qpair,
2090 			      NULL,
2091 			      bdev_nvme_reset_ctrlr);
2092 }
2093 
2094 static void
2095 _bdev_nvme_reconnect(void *ctx)
2096 {
2097 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2098 
2099 	assert(nvme_ctrlr->resetting == true);
2100 	assert(nvme_ctrlr->thread == spdk_get_thread());
2101 
2102 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2103 
2104 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2105 
2106 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2107 }
2108 
2109 static void
2110 _bdev_nvme_reset(void *ctx)
2111 {
2112 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2113 
2114 	assert(nvme_ctrlr->resetting == true);
2115 	assert(nvme_ctrlr->thread == spdk_get_thread());
2116 
2117 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2118 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
2119 	} else {
2120 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
2121 	}
2122 }
2123 
2124 static int
2125 bdev_nvme_reset(struct nvme_ctrlr *nvme_ctrlr)
2126 {
2127 	spdk_msg_fn msg_fn;
2128 
2129 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2130 	if (nvme_ctrlr->destruct) {
2131 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2132 		return -ENXIO;
2133 	}
2134 
2135 	if (nvme_ctrlr->resetting) {
2136 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2137 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
2138 		return -EBUSY;
2139 	}
2140 
2141 	nvme_ctrlr->resetting = true;
2142 	nvme_ctrlr->dont_retry = true;
2143 
2144 	if (nvme_ctrlr->reconnect_is_delayed) {
2145 		SPDK_DEBUGLOG(bdev_nvme, "Reconnect is already scheduled.\n");
2146 		msg_fn = _bdev_nvme_reconnect;
2147 		nvme_ctrlr->reconnect_is_delayed = false;
2148 	} else {
2149 		msg_fn = _bdev_nvme_reset;
2150 		assert(nvme_ctrlr->reset_start_tsc == 0);
2151 	}
2152 
2153 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2154 
2155 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2156 
2157 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2158 	return 0;
2159 }
2160 
2161 int
2162 bdev_nvme_reset_rpc(struct nvme_ctrlr *nvme_ctrlr, bdev_nvme_reset_cb cb_fn, void *cb_arg)
2163 {
2164 	int rc;
2165 
2166 	rc = bdev_nvme_reset(nvme_ctrlr);
2167 	if (rc == 0) {
2168 		nvme_ctrlr->reset_cb_fn = cb_fn;
2169 		nvme_ctrlr->reset_cb_arg = cb_arg;
2170 	}
2171 	return rc;
2172 }
2173 
2174 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
2175 
2176 static void
2177 _bdev_nvme_reset_io_complete(struct spdk_io_channel_iter *i, int status)
2178 {
2179 	struct nvme_bdev_io *bio = spdk_io_channel_iter_get_ctx(i);
2180 	enum spdk_bdev_io_status io_status;
2181 
2182 	if (bio->cpl.cdw0 == 0) {
2183 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2184 	} else {
2185 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
2186 	}
2187 
2188 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
2189 }
2190 
2191 static void
2192 bdev_nvme_abort_bdev_channel(struct spdk_io_channel_iter *i)
2193 {
2194 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2195 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
2196 
2197 	bdev_nvme_abort_retry_ios(nbdev_ch);
2198 
2199 	spdk_for_each_channel_continue(i, 0);
2200 }
2201 
2202 static void
2203 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
2204 {
2205 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2206 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
2207 
2208 	/* Abort all queued I/Os for retry. */
2209 	spdk_for_each_channel(nbdev,
2210 			      bdev_nvme_abort_bdev_channel,
2211 			      bio,
2212 			      _bdev_nvme_reset_io_complete);
2213 }
2214 
2215 static void
2216 _bdev_nvme_reset_io_continue(void *ctx)
2217 {
2218 	struct nvme_bdev_io *bio = ctx;
2219 	struct nvme_io_path *prev_io_path, *next_io_path;
2220 	int rc;
2221 
2222 	prev_io_path = bio->io_path;
2223 	bio->io_path = NULL;
2224 
2225 	if (bio->cpl.cdw0 != 0) {
2226 		goto complete;
2227 	}
2228 
2229 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
2230 	if (next_io_path == NULL) {
2231 		goto complete;
2232 	}
2233 
2234 	rc = _bdev_nvme_reset_io(next_io_path, bio);
2235 	if (rc == 0) {
2236 		return;
2237 	}
2238 
2239 	bio->cpl.cdw0 = 1;
2240 
2241 complete:
2242 	bdev_nvme_reset_io_complete(bio);
2243 }
2244 
2245 static void
2246 bdev_nvme_reset_io_continue(void *cb_arg, bool success)
2247 {
2248 	struct nvme_bdev_io *bio = cb_arg;
2249 
2250 	bio->cpl.cdw0 = !success;
2251 
2252 	spdk_thread_send_msg(bio->orig_thread, _bdev_nvme_reset_io_continue, bio);
2253 }
2254 
2255 static int
2256 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
2257 {
2258 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
2259 	struct nvme_ctrlr_channel *ctrlr_ch;
2260 	struct spdk_bdev_io *bdev_io;
2261 	int rc;
2262 
2263 	rc = bdev_nvme_reset(nvme_ctrlr);
2264 	if (rc == 0) {
2265 		assert(bio->io_path == NULL);
2266 		bio->io_path = io_path;
2267 
2268 		assert(nvme_ctrlr->reset_cb_fn == NULL);
2269 		assert(nvme_ctrlr->reset_cb_arg == NULL);
2270 		nvme_ctrlr->reset_cb_fn = bdev_nvme_reset_io_continue;
2271 		nvme_ctrlr->reset_cb_arg = bio;
2272 	} else if (rc == -EBUSY) {
2273 		ctrlr_ch = io_path->qpair->ctrlr_ch;
2274 		assert(ctrlr_ch != NULL);
2275 		/*
2276 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
2277 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
2278 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
2279 		 */
2280 		bdev_io = spdk_bdev_io_from_ctx(bio);
2281 		TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bdev_io, module_link);
2282 		rc = 0;
2283 	}
2284 
2285 	return rc;
2286 }
2287 
2288 static void
2289 bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio)
2290 {
2291 	struct nvme_io_path *io_path;
2292 	int rc;
2293 
2294 	bio->cpl.cdw0 = 0;
2295 	bio->orig_thread = spdk_get_thread();
2296 
2297 	/* Reset all nvme_ctrlrs of a bdev controller sequentially. */
2298 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
2299 	assert(io_path != NULL);
2300 
2301 	rc = _bdev_nvme_reset_io(io_path, bio);
2302 	if (rc != 0) {
2303 		bio->cpl.cdw0 = 1;
2304 		bdev_nvme_reset_io_complete(bio);
2305 	}
2306 }
2307 
2308 static int
2309 bdev_nvme_failover_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool remove)
2310 {
2311 	if (nvme_ctrlr->destruct) {
2312 		/* Don't bother resetting if the controller is in the process of being destructed. */
2313 		return -ENXIO;
2314 	}
2315 
2316 	if (nvme_ctrlr->resetting) {
2317 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
2318 		return -EBUSY;
2319 	}
2320 
2321 	bdev_nvme_failover_trid(nvme_ctrlr, remove);
2322 
2323 	if (nvme_ctrlr->reconnect_is_delayed) {
2324 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
2325 
2326 		/* We rely on the next reconnect for the failover. */
2327 		return -EALREADY;
2328 	}
2329 
2330 	nvme_ctrlr->resetting = true;
2331 
2332 	assert(nvme_ctrlr->reset_start_tsc == 0);
2333 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2334 
2335 	return 0;
2336 }
2337 
2338 static int
2339 bdev_nvme_failover(struct nvme_ctrlr *nvme_ctrlr, bool remove)
2340 {
2341 	int rc;
2342 
2343 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2344 	rc = bdev_nvme_failover_unsafe(nvme_ctrlr, remove);
2345 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2346 
2347 	if (rc == 0) {
2348 		spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset, nvme_ctrlr);
2349 	} else if (rc == -EALREADY) {
2350 		rc = 0;
2351 	}
2352 
2353 	return rc;
2354 }
2355 
2356 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2357 			   uint64_t num_blocks);
2358 
2359 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2360 				  uint64_t num_blocks);
2361 
2362 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks,
2363 			  uint64_t src_offset_blocks,
2364 			  uint64_t num_blocks);
2365 
2366 static void
2367 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
2368 		     bool success)
2369 {
2370 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2371 	struct spdk_bdev *bdev = bdev_io->bdev;
2372 	int ret;
2373 
2374 	if (!success) {
2375 		ret = -EINVAL;
2376 		goto exit;
2377 	}
2378 
2379 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
2380 		ret = -ENXIO;
2381 		goto exit;
2382 	}
2383 
2384 	ret = bdev_nvme_readv(bio,
2385 			      bdev_io->u.bdev.iovs,
2386 			      bdev_io->u.bdev.iovcnt,
2387 			      bdev_io->u.bdev.md_buf,
2388 			      bdev_io->u.bdev.num_blocks,
2389 			      bdev_io->u.bdev.offset_blocks,
2390 			      bdev->dif_check_flags,
2391 			      bdev_io->u.bdev.memory_domain,
2392 			      bdev_io->u.bdev.memory_domain_ctx);
2393 
2394 exit:
2395 	if (spdk_unlikely(ret != 0)) {
2396 		bdev_nvme_io_complete(bio, ret);
2397 	}
2398 }
2399 
2400 static inline void
2401 _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
2402 {
2403 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2404 	struct spdk_bdev *bdev = bdev_io->bdev;
2405 	struct nvme_bdev_io *nbdev_io_to_abort;
2406 	int rc = 0;
2407 
2408 	switch (bdev_io->type) {
2409 	case SPDK_BDEV_IO_TYPE_READ:
2410 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
2411 			rc = bdev_nvme_readv(nbdev_io,
2412 					     bdev_io->u.bdev.iovs,
2413 					     bdev_io->u.bdev.iovcnt,
2414 					     bdev_io->u.bdev.md_buf,
2415 					     bdev_io->u.bdev.num_blocks,
2416 					     bdev_io->u.bdev.offset_blocks,
2417 					     bdev->dif_check_flags,
2418 					     bdev_io->u.bdev.memory_domain,
2419 					     bdev_io->u.bdev.memory_domain_ctx);
2420 		} else {
2421 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
2422 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
2423 			rc = 0;
2424 		}
2425 		break;
2426 	case SPDK_BDEV_IO_TYPE_WRITE:
2427 		rc = bdev_nvme_writev(nbdev_io,
2428 				      bdev_io->u.bdev.iovs,
2429 				      bdev_io->u.bdev.iovcnt,
2430 				      bdev_io->u.bdev.md_buf,
2431 				      bdev_io->u.bdev.num_blocks,
2432 				      bdev_io->u.bdev.offset_blocks,
2433 				      bdev->dif_check_flags,
2434 				      bdev_io->u.bdev.memory_domain,
2435 				      bdev_io->u.bdev.memory_domain_ctx);
2436 		break;
2437 	case SPDK_BDEV_IO_TYPE_COMPARE:
2438 		rc = bdev_nvme_comparev(nbdev_io,
2439 					bdev_io->u.bdev.iovs,
2440 					bdev_io->u.bdev.iovcnt,
2441 					bdev_io->u.bdev.md_buf,
2442 					bdev_io->u.bdev.num_blocks,
2443 					bdev_io->u.bdev.offset_blocks,
2444 					bdev->dif_check_flags);
2445 		break;
2446 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
2447 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
2448 						   bdev_io->u.bdev.iovs,
2449 						   bdev_io->u.bdev.iovcnt,
2450 						   bdev_io->u.bdev.fused_iovs,
2451 						   bdev_io->u.bdev.fused_iovcnt,
2452 						   bdev_io->u.bdev.md_buf,
2453 						   bdev_io->u.bdev.num_blocks,
2454 						   bdev_io->u.bdev.offset_blocks,
2455 						   bdev->dif_check_flags);
2456 		break;
2457 	case SPDK_BDEV_IO_TYPE_UNMAP:
2458 		rc = bdev_nvme_unmap(nbdev_io,
2459 				     bdev_io->u.bdev.offset_blocks,
2460 				     bdev_io->u.bdev.num_blocks);
2461 		break;
2462 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
2463 		rc =  bdev_nvme_write_zeroes(nbdev_io,
2464 					     bdev_io->u.bdev.offset_blocks,
2465 					     bdev_io->u.bdev.num_blocks);
2466 		break;
2467 	case SPDK_BDEV_IO_TYPE_RESET:
2468 		nbdev_io->io_path = NULL;
2469 		bdev_nvme_reset_io(nbdev_ch, nbdev_io);
2470 		break;
2471 	case SPDK_BDEV_IO_TYPE_FLUSH:
2472 		bdev_nvme_io_complete(nbdev_io, 0);
2473 		break;
2474 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
2475 		rc = bdev_nvme_zone_appendv(nbdev_io,
2476 					    bdev_io->u.bdev.iovs,
2477 					    bdev_io->u.bdev.iovcnt,
2478 					    bdev_io->u.bdev.md_buf,
2479 					    bdev_io->u.bdev.num_blocks,
2480 					    bdev_io->u.bdev.offset_blocks,
2481 					    bdev->dif_check_flags);
2482 		break;
2483 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
2484 		rc = bdev_nvme_get_zone_info(nbdev_io,
2485 					     bdev_io->u.zone_mgmt.zone_id,
2486 					     bdev_io->u.zone_mgmt.num_zones,
2487 					     bdev_io->u.zone_mgmt.buf);
2488 		break;
2489 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
2490 		rc = bdev_nvme_zone_management(nbdev_io,
2491 					       bdev_io->u.zone_mgmt.zone_id,
2492 					       bdev_io->u.zone_mgmt.zone_action);
2493 		break;
2494 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
2495 		nbdev_io->io_path = NULL;
2496 		bdev_nvme_admin_passthru(nbdev_ch,
2497 					 nbdev_io,
2498 					 &bdev_io->u.nvme_passthru.cmd,
2499 					 bdev_io->u.nvme_passthru.buf,
2500 					 bdev_io->u.nvme_passthru.nbytes);
2501 		break;
2502 	case SPDK_BDEV_IO_TYPE_NVME_IO:
2503 		rc = bdev_nvme_io_passthru(nbdev_io,
2504 					   &bdev_io->u.nvme_passthru.cmd,
2505 					   bdev_io->u.nvme_passthru.buf,
2506 					   bdev_io->u.nvme_passthru.nbytes);
2507 		break;
2508 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
2509 		rc = bdev_nvme_io_passthru_md(nbdev_io,
2510 					      &bdev_io->u.nvme_passthru.cmd,
2511 					      bdev_io->u.nvme_passthru.buf,
2512 					      bdev_io->u.nvme_passthru.nbytes,
2513 					      bdev_io->u.nvme_passthru.md_buf,
2514 					      bdev_io->u.nvme_passthru.md_len);
2515 		break;
2516 	case SPDK_BDEV_IO_TYPE_ABORT:
2517 		nbdev_io->io_path = NULL;
2518 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
2519 		bdev_nvme_abort(nbdev_ch,
2520 				nbdev_io,
2521 				nbdev_io_to_abort);
2522 		break;
2523 	case SPDK_BDEV_IO_TYPE_COPY:
2524 		rc = bdev_nvme_copy(nbdev_io,
2525 				    bdev_io->u.bdev.offset_blocks,
2526 				    bdev_io->u.bdev.copy.src_offset_blocks,
2527 				    bdev_io->u.bdev.num_blocks);
2528 		break;
2529 	default:
2530 		rc = -EINVAL;
2531 		break;
2532 	}
2533 
2534 	if (spdk_unlikely(rc != 0)) {
2535 		bdev_nvme_io_complete(nbdev_io, rc);
2536 	}
2537 }
2538 
2539 static void
2540 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
2541 {
2542 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
2543 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2544 
2545 	if (spdk_likely(nbdev_io->submit_tsc == 0)) {
2546 		nbdev_io->submit_tsc = spdk_bdev_io_get_submit_tsc(bdev_io);
2547 	} else {
2548 		/* There are cases where submit_tsc != 0, i.e. retry I/O.
2549 		 * We need to update submit_tsc here.
2550 		 */
2551 		nbdev_io->submit_tsc = spdk_get_ticks();
2552 	}
2553 
2554 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
2555 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
2556 	if (spdk_unlikely(!nbdev_io->io_path)) {
2557 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
2558 			bdev_nvme_io_complete(nbdev_io, -ENXIO);
2559 			return;
2560 		}
2561 
2562 		/* Admin commands do not use the optimal I/O path.
2563 		 * Simply fall through even if it is not found.
2564 		 */
2565 	}
2566 
2567 	_bdev_nvme_submit_request(nbdev_ch, bdev_io);
2568 }
2569 
2570 static bool
2571 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
2572 {
2573 	struct nvme_bdev *nbdev = ctx;
2574 	struct nvme_ns *nvme_ns;
2575 	struct spdk_nvme_ns *ns;
2576 	struct spdk_nvme_ctrlr *ctrlr;
2577 	const struct spdk_nvme_ctrlr_data *cdata;
2578 
2579 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
2580 	assert(nvme_ns != NULL);
2581 	ns = nvme_ns->ns;
2582 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
2583 
2584 	switch (io_type) {
2585 	case SPDK_BDEV_IO_TYPE_READ:
2586 	case SPDK_BDEV_IO_TYPE_WRITE:
2587 	case SPDK_BDEV_IO_TYPE_RESET:
2588 	case SPDK_BDEV_IO_TYPE_FLUSH:
2589 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
2590 	case SPDK_BDEV_IO_TYPE_NVME_IO:
2591 	case SPDK_BDEV_IO_TYPE_ABORT:
2592 		return true;
2593 
2594 	case SPDK_BDEV_IO_TYPE_COMPARE:
2595 		return spdk_nvme_ns_supports_compare(ns);
2596 
2597 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
2598 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
2599 
2600 	case SPDK_BDEV_IO_TYPE_UNMAP:
2601 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2602 		return cdata->oncs.dsm;
2603 
2604 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
2605 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2606 		return cdata->oncs.write_zeroes;
2607 
2608 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
2609 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
2610 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
2611 			return true;
2612 		}
2613 		return false;
2614 
2615 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
2616 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
2617 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
2618 
2619 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
2620 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
2621 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
2622 
2623 	case SPDK_BDEV_IO_TYPE_COPY:
2624 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2625 		return cdata->oncs.copy;
2626 
2627 	default:
2628 		return false;
2629 	}
2630 }
2631 
2632 static int
2633 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
2634 {
2635 	struct nvme_qpair *nvme_qpair;
2636 	struct spdk_io_channel *pg_ch;
2637 	int rc;
2638 
2639 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
2640 	if (!nvme_qpair) {
2641 		SPDK_ERRLOG("Failed to alloc nvme_qpair.\n");
2642 		return -1;
2643 	}
2644 
2645 	TAILQ_INIT(&nvme_qpair->io_path_list);
2646 
2647 	nvme_qpair->ctrlr = nvme_ctrlr;
2648 	nvme_qpair->ctrlr_ch = ctrlr_ch;
2649 
2650 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
2651 	if (!pg_ch) {
2652 		free(nvme_qpair);
2653 		return -1;
2654 	}
2655 
2656 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
2657 
2658 #ifdef SPDK_CONFIG_VTUNE
2659 	nvme_qpair->group->collect_spin_stat = true;
2660 #else
2661 	nvme_qpair->group->collect_spin_stat = false;
2662 #endif
2663 
2664 	rc = bdev_nvme_create_qpair(nvme_qpair);
2665 	if (rc != 0) {
2666 		/* nvme_ctrlr can't create IO qpair if connection is down.
2667 		 *
2668 		 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
2669 		 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
2670 		 * submitted IO will be queued until IO qpair is successfully created.
2671 		 *
2672 		 * Hence, if both are satisfied, ignore the failure.
2673 		 */
2674 		if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
2675 			spdk_put_io_channel(pg_ch);
2676 			free(nvme_qpair);
2677 			return rc;
2678 		}
2679 	}
2680 
2681 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
2682 
2683 	ctrlr_ch->qpair = nvme_qpair;
2684 
2685 	pthread_mutex_lock(&nvme_qpair->ctrlr->mutex);
2686 	nvme_qpair->ctrlr->ref++;
2687 	pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex);
2688 
2689 	return 0;
2690 }
2691 
2692 static int
2693 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
2694 {
2695 	struct nvme_ctrlr *nvme_ctrlr = io_device;
2696 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
2697 
2698 	TAILQ_INIT(&ctrlr_ch->pending_resets);
2699 
2700 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
2701 }
2702 
2703 static void
2704 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
2705 {
2706 	struct nvme_io_path *io_path, *next;
2707 
2708 	assert(nvme_qpair->group != NULL);
2709 
2710 	TAILQ_FOREACH_SAFE(io_path, &nvme_qpair->io_path_list, tailq, next) {
2711 		TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
2712 		nvme_io_path_free(io_path);
2713 	}
2714 
2715 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
2716 
2717 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
2718 
2719 	nvme_ctrlr_release(nvme_qpair->ctrlr);
2720 
2721 	free(nvme_qpair);
2722 }
2723 
2724 static void
2725 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
2726 {
2727 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
2728 	struct nvme_qpair *nvme_qpair;
2729 
2730 	nvme_qpair = ctrlr_ch->qpair;
2731 	assert(nvme_qpair != NULL);
2732 
2733 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2734 
2735 	if (nvme_qpair->qpair != NULL) {
2736 		if (ctrlr_ch->reset_iter == NULL) {
2737 			spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
2738 		} else {
2739 			/* Skip current ctrlr_channel in a full reset sequence because
2740 			 * it is being deleted now. The qpair is already being disconnected.
2741 			 * We do not have to restart disconnecting it.
2742 			 */
2743 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2744 		}
2745 
2746 		/* We cannot release a reference to the poll group now.
2747 		 * The qpair may be disconnected asynchronously later.
2748 		 * We need to poll it until it is actually disconnected.
2749 		 * Just detach the qpair from the deleting ctrlr_channel.
2750 		 */
2751 		nvme_qpair->ctrlr_ch = NULL;
2752 	} else {
2753 		assert(ctrlr_ch->reset_iter == NULL);
2754 
2755 		nvme_qpair_delete(nvme_qpair);
2756 	}
2757 }
2758 
2759 static void
2760 bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
2761 			      uint32_t iov_cnt, uint32_t seed,
2762 			      spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
2763 {
2764 	struct nvme_poll_group *group = ctx;
2765 	int rc;
2766 
2767 	assert(cb_fn != NULL);
2768 
2769 	if (spdk_unlikely(!group->accel_channel)) {
2770 		group->accel_channel = spdk_accel_get_io_channel();
2771 		if (!group->accel_channel) {
2772 			cb_fn(cb_arg, -ENOMEM);
2773 			SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
2774 				    group);
2775 			return;
2776 		}
2777 	}
2778 
2779 	rc = spdk_accel_submit_crc32cv(group->accel_channel, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
2780 	if (rc) {
2781 		/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
2782 		if (rc == -ENOMEM || rc == -EINVAL) {
2783 			cb_fn(cb_arg, rc);
2784 		}
2785 		SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
2786 	}
2787 }
2788 
2789 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
2790 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
2791 	.submit_accel_crc32c	= bdev_nvme_submit_accel_crc32c,
2792 };
2793 
2794 static int
2795 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
2796 {
2797 	struct nvme_poll_group *group = ctx_buf;
2798 
2799 	TAILQ_INIT(&group->qpair_list);
2800 
2801 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
2802 	if (group->group == NULL) {
2803 		return -1;
2804 	}
2805 
2806 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
2807 
2808 	if (group->poller == NULL) {
2809 		spdk_nvme_poll_group_destroy(group->group);
2810 		return -1;
2811 	}
2812 
2813 	return 0;
2814 }
2815 
2816 static void
2817 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
2818 {
2819 	struct nvme_poll_group *group = ctx_buf;
2820 
2821 	assert(TAILQ_EMPTY(&group->qpair_list));
2822 
2823 	if (group->accel_channel) {
2824 		spdk_put_io_channel(group->accel_channel);
2825 	}
2826 
2827 	spdk_poller_unregister(&group->poller);
2828 	if (spdk_nvme_poll_group_destroy(group->group)) {
2829 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
2830 		assert(false);
2831 	}
2832 }
2833 
2834 static struct spdk_io_channel *
2835 bdev_nvme_get_io_channel(void *ctx)
2836 {
2837 	struct nvme_bdev *nvme_bdev = ctx;
2838 
2839 	return spdk_get_io_channel(nvme_bdev);
2840 }
2841 
2842 static void *
2843 bdev_nvme_get_module_ctx(void *ctx)
2844 {
2845 	struct nvme_bdev *nvme_bdev = ctx;
2846 	struct nvme_ns *nvme_ns;
2847 
2848 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
2849 		return NULL;
2850 	}
2851 
2852 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
2853 	if (!nvme_ns) {
2854 		return NULL;
2855 	}
2856 
2857 	return nvme_ns->ns;
2858 }
2859 
2860 static const char *
2861 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
2862 {
2863 	switch (ana_state) {
2864 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
2865 		return "optimized";
2866 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
2867 		return "non_optimized";
2868 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
2869 		return "inaccessible";
2870 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
2871 		return "persistent_loss";
2872 	case SPDK_NVME_ANA_CHANGE_STATE:
2873 		return "change";
2874 	default:
2875 		return NULL;
2876 	}
2877 }
2878 
2879 static int
2880 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
2881 {
2882 	struct spdk_memory_domain **_domains = NULL;
2883 	struct nvme_bdev *nbdev = ctx;
2884 	struct nvme_ns *nvme_ns;
2885 	int i = 0, _array_size = array_size;
2886 	int rc = 0;
2887 
2888 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
2889 		if (domains && array_size >= i) {
2890 			_domains = &domains[i];
2891 		} else {
2892 			_domains = NULL;
2893 		}
2894 		rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size);
2895 		if (rc > 0) {
2896 			i += rc;
2897 			if (_array_size >= rc) {
2898 				_array_size -= rc;
2899 			} else {
2900 				_array_size = 0;
2901 			}
2902 		} else if (rc < 0) {
2903 			return rc;
2904 		}
2905 	}
2906 
2907 	return i;
2908 }
2909 
2910 static const char *
2911 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
2912 {
2913 	if (nvme_ctrlr->destruct) {
2914 		return "deleting";
2915 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
2916 		return "failed";
2917 	} else if (nvme_ctrlr->resetting) {
2918 		return "resetting";
2919 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
2920 		return "reconnect_is_delayed";
2921 	} else {
2922 		return "enabled";
2923 	}
2924 }
2925 
2926 void
2927 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
2928 {
2929 	struct spdk_nvme_transport_id *trid;
2930 	const struct spdk_nvme_ctrlr_opts *opts;
2931 	const struct spdk_nvme_ctrlr_data *cdata;
2932 
2933 	spdk_json_write_object_begin(w);
2934 
2935 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
2936 
2937 #ifdef SPDK_CONFIG_NVME_CUSE
2938 	size_t cuse_name_size = 128;
2939 	char cuse_name[cuse_name_size];
2940 
2941 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
2942 	if (rc == 0) {
2943 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
2944 	}
2945 #endif
2946 	trid = &nvme_ctrlr->active_path_id->trid;
2947 	spdk_json_write_named_object_begin(w, "trid");
2948 	nvme_bdev_dump_trid_json(trid, w);
2949 	spdk_json_write_object_end(w);
2950 
2951 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
2952 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
2953 
2954 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
2955 	spdk_json_write_named_object_begin(w, "host");
2956 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
2957 	spdk_json_write_named_string(w, "addr", opts->src_addr);
2958 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
2959 	spdk_json_write_object_end(w);
2960 
2961 	spdk_json_write_object_end(w);
2962 }
2963 
2964 static void
2965 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
2966 			 struct nvme_ns *nvme_ns)
2967 {
2968 	struct spdk_nvme_ns *ns;
2969 	struct spdk_nvme_ctrlr *ctrlr;
2970 	const struct spdk_nvme_ctrlr_data *cdata;
2971 	const struct spdk_nvme_transport_id *trid;
2972 	union spdk_nvme_vs_register vs;
2973 	const struct spdk_nvme_ns_data *nsdata;
2974 	char buf[128];
2975 
2976 	ns = nvme_ns->ns;
2977 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
2978 
2979 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2980 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
2981 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
2982 
2983 	spdk_json_write_object_begin(w);
2984 
2985 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
2986 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
2987 	}
2988 
2989 	spdk_json_write_named_object_begin(w, "trid");
2990 
2991 	nvme_bdev_dump_trid_json(trid, w);
2992 
2993 	spdk_json_write_object_end(w);
2994 
2995 #ifdef SPDK_CONFIG_NVME_CUSE
2996 	size_t cuse_name_size = 128;
2997 	char cuse_name[cuse_name_size];
2998 
2999 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
3000 					    cuse_name, &cuse_name_size);
3001 	if (rc == 0) {
3002 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3003 	}
3004 #endif
3005 
3006 	spdk_json_write_named_object_begin(w, "ctrlr_data");
3007 
3008 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3009 
3010 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
3011 
3012 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
3013 	spdk_str_trim(buf);
3014 	spdk_json_write_named_string(w, "model_number", buf);
3015 
3016 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
3017 	spdk_str_trim(buf);
3018 	spdk_json_write_named_string(w, "serial_number", buf);
3019 
3020 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
3021 	spdk_str_trim(buf);
3022 	spdk_json_write_named_string(w, "firmware_revision", buf);
3023 
3024 	if (cdata->subnqn[0] != '\0') {
3025 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
3026 	}
3027 
3028 	spdk_json_write_named_object_begin(w, "oacs");
3029 
3030 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
3031 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
3032 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
3033 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
3034 
3035 	spdk_json_write_object_end(w);
3036 
3037 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
3038 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
3039 
3040 	spdk_json_write_object_end(w);
3041 
3042 	spdk_json_write_named_object_begin(w, "vs");
3043 
3044 	spdk_json_write_name(w, "nvme_version");
3045 	if (vs.bits.ter) {
3046 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
3047 	} else {
3048 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
3049 	}
3050 
3051 	spdk_json_write_object_end(w);
3052 
3053 	nsdata = spdk_nvme_ns_get_data(ns);
3054 
3055 	spdk_json_write_named_object_begin(w, "ns_data");
3056 
3057 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
3058 
3059 	if (cdata->cmic.ana_reporting) {
3060 		spdk_json_write_named_string(w, "ana_state",
3061 					     _nvme_ana_state_str(nvme_ns->ana_state));
3062 	}
3063 
3064 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
3065 
3066 	spdk_json_write_object_end(w);
3067 
3068 	if (cdata->oacs.security) {
3069 		spdk_json_write_named_object_begin(w, "security");
3070 
3071 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
3072 
3073 		spdk_json_write_object_end(w);
3074 	}
3075 
3076 	spdk_json_write_object_end(w);
3077 }
3078 
3079 static const char *
3080 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
3081 {
3082 	switch (nbdev->mp_policy) {
3083 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
3084 		return "active_passive";
3085 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
3086 		return "active_active";
3087 	default:
3088 		assert(false);
3089 		return "invalid";
3090 	}
3091 }
3092 
3093 static int
3094 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
3095 {
3096 	struct nvme_bdev *nvme_bdev = ctx;
3097 	struct nvme_ns *nvme_ns;
3098 
3099 	pthread_mutex_lock(&nvme_bdev->mutex);
3100 	spdk_json_write_named_array_begin(w, "nvme");
3101 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
3102 		nvme_namespace_info_json(w, nvme_ns);
3103 	}
3104 	spdk_json_write_array_end(w);
3105 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
3106 	pthread_mutex_unlock(&nvme_bdev->mutex);
3107 
3108 	return 0;
3109 }
3110 
3111 static void
3112 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
3113 {
3114 	/* No config per bdev needed */
3115 }
3116 
3117 static uint64_t
3118 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
3119 {
3120 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3121 	struct nvme_io_path *io_path;
3122 	struct nvme_poll_group *group;
3123 	uint64_t spin_time = 0;
3124 
3125 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
3126 		group = io_path->qpair->group;
3127 
3128 		if (!group || !group->collect_spin_stat) {
3129 			continue;
3130 		}
3131 
3132 		if (group->end_ticks != 0) {
3133 			group->spin_ticks += (group->end_ticks - group->start_ticks);
3134 			group->end_ticks = 0;
3135 		}
3136 
3137 		spin_time += group->spin_ticks;
3138 		group->start_ticks = 0;
3139 		group->spin_ticks = 0;
3140 	}
3141 
3142 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
3143 }
3144 
3145 static void
3146 bdev_nvme_reset_device_stat(void *ctx)
3147 {
3148 	struct nvme_bdev *nbdev = ctx;
3149 
3150 	if (nbdev->err_stat != NULL) {
3151 		memset(nbdev->err_stat, 0, sizeof(struct nvme_error_stat));
3152 	}
3153 }
3154 
3155 /* JSON string should be lowercases and underscore delimited string. */
3156 static void
3157 bdev_nvme_format_nvme_status(char *dst, const char *src)
3158 {
3159 	char tmp[256];
3160 
3161 	spdk_strcpy_replace(dst, 256, src, " - ", "_");
3162 	spdk_strcpy_replace(tmp, 256, dst, "-", "_");
3163 	spdk_strcpy_replace(dst, 256, tmp, " ", "_");
3164 	spdk_strlwr(dst);
3165 }
3166 
3167 static void
3168 bdev_nvme_dump_device_stat_json(void *ctx, struct spdk_json_write_ctx *w)
3169 {
3170 	struct nvme_bdev *nbdev = ctx;
3171 	struct spdk_nvme_status status = {};
3172 	uint16_t sct, sc;
3173 	char status_json[256];
3174 	const char *status_str;
3175 
3176 	if (nbdev->err_stat == NULL) {
3177 		return;
3178 	}
3179 
3180 	spdk_json_write_named_object_begin(w, "nvme_error");
3181 
3182 	spdk_json_write_named_object_begin(w, "status_type");
3183 	for (sct = 0; sct < 8; sct++) {
3184 		if (nbdev->err_stat->status_type[sct] == 0) {
3185 			continue;
3186 		}
3187 		status.sct = sct;
3188 
3189 		status_str = spdk_nvme_cpl_get_status_type_string(&status);
3190 		assert(status_str != NULL);
3191 		bdev_nvme_format_nvme_status(status_json, status_str);
3192 
3193 		spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status_type[sct]);
3194 	}
3195 	spdk_json_write_object_end(w);
3196 
3197 	spdk_json_write_named_object_begin(w, "status_code");
3198 	for (sct = 0; sct < 4; sct++) {
3199 		status.sct = sct;
3200 		for (sc = 0; sc < 256; sc++) {
3201 			if (nbdev->err_stat->status[sct][sc] == 0) {
3202 				continue;
3203 			}
3204 			status.sc = sc;
3205 
3206 			status_str = spdk_nvme_cpl_get_status_string(&status);
3207 			assert(status_str != NULL);
3208 			bdev_nvme_format_nvme_status(status_json, status_str);
3209 
3210 			spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status[sct][sc]);
3211 		}
3212 	}
3213 	spdk_json_write_object_end(w);
3214 
3215 	spdk_json_write_object_end(w);
3216 }
3217 
3218 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
3219 	.destruct		= bdev_nvme_destruct,
3220 	.submit_request		= bdev_nvme_submit_request,
3221 	.io_type_supported	= bdev_nvme_io_type_supported,
3222 	.get_io_channel		= bdev_nvme_get_io_channel,
3223 	.dump_info_json		= bdev_nvme_dump_info_json,
3224 	.write_config_json	= bdev_nvme_write_config_json,
3225 	.get_spin_time		= bdev_nvme_get_spin_time,
3226 	.get_module_ctx		= bdev_nvme_get_module_ctx,
3227 	.get_memory_domains	= bdev_nvme_get_memory_domains,
3228 	.reset_device_stat	= bdev_nvme_reset_device_stat,
3229 	.dump_device_stat_json	= bdev_nvme_dump_device_stat_json,
3230 };
3231 
3232 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
3233 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
3234 
3235 static int
3236 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
3237 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
3238 {
3239 	struct spdk_nvme_ana_group_descriptor *copied_desc;
3240 	uint8_t *orig_desc;
3241 	uint32_t i, desc_size, copy_len;
3242 	int rc = 0;
3243 
3244 	if (nvme_ctrlr->ana_log_page == NULL) {
3245 		return -EINVAL;
3246 	}
3247 
3248 	copied_desc = nvme_ctrlr->copied_ana_desc;
3249 
3250 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
3251 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
3252 
3253 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
3254 		memcpy(copied_desc, orig_desc, copy_len);
3255 
3256 		rc = cb_fn(copied_desc, cb_arg);
3257 		if (rc != 0) {
3258 			break;
3259 		}
3260 
3261 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
3262 			    copied_desc->num_of_nsid * sizeof(uint32_t);
3263 		orig_desc += desc_size;
3264 		copy_len -= desc_size;
3265 	}
3266 
3267 	return rc;
3268 }
3269 
3270 static int
3271 nvme_ns_ana_transition_timedout(void *ctx)
3272 {
3273 	struct nvme_ns *nvme_ns = ctx;
3274 
3275 	spdk_poller_unregister(&nvme_ns->anatt_timer);
3276 	nvme_ns->ana_transition_timedout = true;
3277 
3278 	return SPDK_POLLER_BUSY;
3279 }
3280 
3281 static void
3282 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
3283 		       const struct spdk_nvme_ana_group_descriptor *desc)
3284 {
3285 	const struct spdk_nvme_ctrlr_data *cdata;
3286 
3287 	nvme_ns->ana_group_id = desc->ana_group_id;
3288 	nvme_ns->ana_state = desc->ana_state;
3289 	nvme_ns->ana_state_updating = false;
3290 
3291 	switch (nvme_ns->ana_state) {
3292 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3293 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3294 		nvme_ns->ana_transition_timedout = false;
3295 		spdk_poller_unregister(&nvme_ns->anatt_timer);
3296 		break;
3297 
3298 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3299 	case SPDK_NVME_ANA_CHANGE_STATE:
3300 		if (nvme_ns->anatt_timer != NULL) {
3301 			break;
3302 		}
3303 
3304 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
3305 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
3306 				       nvme_ns,
3307 				       cdata->anatt * SPDK_SEC_TO_USEC);
3308 		break;
3309 	default:
3310 		break;
3311 	}
3312 }
3313 
3314 static int
3315 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
3316 {
3317 	struct nvme_ns *nvme_ns = cb_arg;
3318 	uint32_t i;
3319 
3320 	for (i = 0; i < desc->num_of_nsid; i++) {
3321 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
3322 			continue;
3323 		}
3324 
3325 		_nvme_ns_set_ana_state(nvme_ns, desc);
3326 		return 1;
3327 	}
3328 
3329 	return 0;
3330 }
3331 
3332 static struct spdk_uuid
3333 nvme_generate_uuid(const char *sn, uint32_t nsid)
3334 {
3335 	struct spdk_uuid new_uuid, namespace_uuid;
3336 	char merged_str[SPDK_NVME_CTRLR_SN_LEN + NSID_STR_LEN + 1] = {'\0'};
3337 	/* This namespace UUID was generated using uuid_generate() method. */
3338 	const char *namespace_str = {"edaed2de-24bc-4b07-b559-f47ecbe730fd"};
3339 	int size;
3340 
3341 	assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN);
3342 
3343 	memset(&new_uuid, 0, sizeof(new_uuid));
3344 	memset(&namespace_uuid, 0, sizeof(namespace_uuid));
3345 
3346 	size = snprintf(merged_str, sizeof(merged_str), "%s%"PRIu32, sn, nsid);
3347 	assert(size > 0 && (unsigned long)size < sizeof(merged_str));
3348 
3349 	spdk_uuid_parse(&namespace_uuid, namespace_str);
3350 
3351 	spdk_uuid_generate_sha1(&new_uuid, &namespace_uuid, merged_str, size);
3352 
3353 	return new_uuid;
3354 }
3355 
3356 static int
3357 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
3358 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
3359 		 uint32_t prchk_flags, void *ctx)
3360 {
3361 	const struct spdk_uuid		*uuid;
3362 	const uint8_t *nguid;
3363 	const struct spdk_nvme_ctrlr_data *cdata;
3364 	const struct spdk_nvme_ns_data	*nsdata;
3365 	const struct spdk_nvme_ctrlr_opts *opts;
3366 	enum spdk_nvme_csi		csi;
3367 	uint32_t atomic_bs, phys_bs, bs;
3368 	char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'};
3369 
3370 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3371 	csi = spdk_nvme_ns_get_csi(ns);
3372 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
3373 
3374 	switch (csi) {
3375 	case SPDK_NVME_CSI_NVM:
3376 		disk->product_name = "NVMe disk";
3377 		break;
3378 	case SPDK_NVME_CSI_ZNS:
3379 		disk->product_name = "NVMe ZNS disk";
3380 		disk->zoned = true;
3381 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
3382 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
3383 					     spdk_nvme_ns_get_extended_sector_size(ns);
3384 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
3385 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
3386 		break;
3387 	default:
3388 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
3389 		return -ENOTSUP;
3390 	}
3391 
3392 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
3393 	if (!disk->name) {
3394 		return -ENOMEM;
3395 	}
3396 
3397 	disk->write_cache = 0;
3398 	if (cdata->vwc.present) {
3399 		/* Enable if the Volatile Write Cache exists */
3400 		disk->write_cache = 1;
3401 	}
3402 	if (cdata->oncs.write_zeroes) {
3403 		disk->max_write_zeroes = UINT16_MAX + 1;
3404 	}
3405 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
3406 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
3407 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
3408 	/* NVMe driver will split one request into multiple requests
3409 	 * based on MDTS and stripe boundary, the bdev layer will use
3410 	 * max_segment_size and max_num_segments to split one big IO
3411 	 * into multiple requests, then small request can't run out
3412 	 * of NVMe internal requests data structure.
3413 	 */
3414 	if (opts && opts->io_queue_requests) {
3415 		disk->max_num_segments = opts->io_queue_requests / 2;
3416 	}
3417 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
3418 
3419 	nguid = spdk_nvme_ns_get_nguid(ns);
3420 	if (!nguid) {
3421 		uuid = spdk_nvme_ns_get_uuid(ns);
3422 		if (uuid) {
3423 			disk->uuid = *uuid;
3424 		} else if (g_opts.generate_uuids) {
3425 			spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0');
3426 			disk->uuid = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns));
3427 		}
3428 	} else {
3429 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
3430 	}
3431 
3432 	nsdata = spdk_nvme_ns_get_data(ns);
3433 	bs = spdk_nvme_ns_get_sector_size(ns);
3434 	atomic_bs = bs;
3435 	phys_bs = bs;
3436 	if (nsdata->nabo == 0) {
3437 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
3438 			atomic_bs = bs * (1 + nsdata->nawupf);
3439 		} else {
3440 			atomic_bs = bs * (1 + cdata->awupf);
3441 		}
3442 	}
3443 	if (nsdata->nsfeat.optperf) {
3444 		phys_bs = bs * (1 + nsdata->npwg);
3445 	}
3446 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
3447 
3448 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
3449 	if (disk->md_len != 0) {
3450 		disk->md_interleave = nsdata->flbas.extended;
3451 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
3452 		if (disk->dif_type != SPDK_DIF_DISABLE) {
3453 			disk->dif_is_head_of_md = nsdata->dps.md_start;
3454 			disk->dif_check_flags = prchk_flags;
3455 		}
3456 	}
3457 
3458 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
3459 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
3460 		disk->acwu = 0;
3461 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
3462 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
3463 	} else {
3464 		disk->acwu = cdata->acwu + 1; /* 0-based */
3465 	}
3466 
3467 	if (cdata->oncs.copy) {
3468 		/* For now bdev interface allows only single segment copy */
3469 		disk->max_copy = nsdata->mssrl;
3470 	}
3471 
3472 	disk->ctxt = ctx;
3473 	disk->fn_table = &nvmelib_fn_table;
3474 	disk->module = &nvme_if;
3475 
3476 	return 0;
3477 }
3478 
3479 static int
3480 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
3481 {
3482 	struct nvme_bdev *bdev;
3483 	int rc;
3484 
3485 	bdev = calloc(1, sizeof(*bdev));
3486 	if (!bdev) {
3487 		SPDK_ERRLOG("bdev calloc() failed\n");
3488 		return -ENOMEM;
3489 	}
3490 
3491 	if (g_opts.nvme_error_stat) {
3492 		bdev->err_stat = calloc(1, sizeof(struct nvme_error_stat));
3493 		if (!bdev->err_stat) {
3494 			SPDK_ERRLOG("err_stat calloc() failed\n");
3495 			free(bdev);
3496 			return -ENOMEM;
3497 		}
3498 	}
3499 
3500 	rc = pthread_mutex_init(&bdev->mutex, NULL);
3501 	if (rc != 0) {
3502 		free(bdev->err_stat);
3503 		free(bdev);
3504 		return rc;
3505 	}
3506 
3507 	bdev->ref = 1;
3508 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
3509 	bdev->mp_selector = BDEV_NVME_MP_SELECTOR_ROUND_ROBIN;
3510 	bdev->rr_min_io = UINT32_MAX;
3511 	TAILQ_INIT(&bdev->nvme_ns_list);
3512 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
3513 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
3514 
3515 	rc = nvme_disk_create(&bdev->disk, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
3516 			      nvme_ns->ns, nvme_ctrlr->opts.prchk_flags, bdev);
3517 	if (rc != 0) {
3518 		SPDK_ERRLOG("Failed to create NVMe disk\n");
3519 		pthread_mutex_destroy(&bdev->mutex);
3520 		free(bdev->err_stat);
3521 		free(bdev);
3522 		return rc;
3523 	}
3524 
3525 	spdk_io_device_register(bdev,
3526 				bdev_nvme_create_bdev_channel_cb,
3527 				bdev_nvme_destroy_bdev_channel_cb,
3528 				sizeof(struct nvme_bdev_channel),
3529 				bdev->disk.name);
3530 
3531 	rc = spdk_bdev_register(&bdev->disk);
3532 	if (rc != 0) {
3533 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
3534 		spdk_io_device_unregister(bdev, NULL);
3535 		pthread_mutex_destroy(&bdev->mutex);
3536 		free(bdev->disk.name);
3537 		free(bdev->err_stat);
3538 		free(bdev);
3539 		return rc;
3540 	}
3541 
3542 	nvme_ns->bdev = bdev;
3543 	bdev->nsid = nvme_ns->id;
3544 
3545 	bdev->nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
3546 	TAILQ_INSERT_TAIL(&nvme_ctrlr->nbdev_ctrlr->bdevs, bdev, tailq);
3547 
3548 	return 0;
3549 }
3550 
3551 static bool
3552 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
3553 {
3554 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
3555 	const struct spdk_uuid *uuid1, *uuid2;
3556 
3557 	nsdata1 = spdk_nvme_ns_get_data(ns1);
3558 	nsdata2 = spdk_nvme_ns_get_data(ns2);
3559 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
3560 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
3561 
3562 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
3563 	       nsdata1->eui64 == nsdata2->eui64 &&
3564 	       ((uuid1 == NULL && uuid2 == NULL) ||
3565 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
3566 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
3567 }
3568 
3569 static bool
3570 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
3571 		 struct spdk_nvme_ctrlr_opts *opts)
3572 {
3573 	struct nvme_probe_skip_entry *entry;
3574 
3575 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
3576 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
3577 			return false;
3578 		}
3579 	}
3580 
3581 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
3582 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
3583 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
3584 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
3585 	opts->disable_read_ana_log_page = true;
3586 
3587 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
3588 
3589 	return true;
3590 }
3591 
3592 static void
3593 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
3594 {
3595 	struct nvme_ctrlr *nvme_ctrlr = ctx;
3596 
3597 	if (spdk_nvme_cpl_is_error(cpl)) {
3598 		SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
3599 			     cpl->status.sct);
3600 		bdev_nvme_reset(nvme_ctrlr);
3601 	} else if (cpl->cdw0 & 0x1) {
3602 		SPDK_WARNLOG("Specified command could not be aborted.\n");
3603 		bdev_nvme_reset(nvme_ctrlr);
3604 	}
3605 }
3606 
3607 static void
3608 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
3609 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
3610 {
3611 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
3612 	union spdk_nvme_csts_register csts;
3613 	int rc;
3614 
3615 	assert(nvme_ctrlr->ctrlr == ctrlr);
3616 
3617 	SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
3618 
3619 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
3620 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
3621 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
3622 	 * completion recursively.
3623 	 */
3624 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
3625 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
3626 		if (csts.bits.cfs) {
3627 			SPDK_ERRLOG("Controller Fatal Status, reset required\n");
3628 			bdev_nvme_reset(nvme_ctrlr);
3629 			return;
3630 		}
3631 	}
3632 
3633 	switch (g_opts.action_on_timeout) {
3634 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
3635 		if (qpair) {
3636 			/* Don't send abort to ctrlr when ctrlr is not available. */
3637 			pthread_mutex_lock(&nvme_ctrlr->mutex);
3638 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
3639 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
3640 				SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n");
3641 				return;
3642 			}
3643 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
3644 
3645 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
3646 						       nvme_abort_cpl, nvme_ctrlr);
3647 			if (rc == 0) {
3648 				return;
3649 			}
3650 
3651 			SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
3652 		}
3653 
3654 	/* FALLTHROUGH */
3655 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
3656 		bdev_nvme_reset(nvme_ctrlr);
3657 		break;
3658 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
3659 		SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
3660 		break;
3661 	default:
3662 		SPDK_ERRLOG("An invalid timeout action value is found.\n");
3663 		break;
3664 	}
3665 }
3666 
3667 static struct nvme_ns *
3668 nvme_ns_alloc(void)
3669 {
3670 	struct nvme_ns *nvme_ns;
3671 
3672 	nvme_ns = calloc(1, sizeof(struct nvme_ns));
3673 	if (nvme_ns == NULL) {
3674 		return NULL;
3675 	}
3676 
3677 	if (g_opts.io_path_stat) {
3678 		nvme_ns->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
3679 		if (nvme_ns->stat == NULL) {
3680 			free(nvme_ns);
3681 			return NULL;
3682 		}
3683 		spdk_bdev_reset_io_stat(nvme_ns->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
3684 	}
3685 
3686 	return nvme_ns;
3687 }
3688 
3689 static void
3690 nvme_ns_free(struct nvme_ns *nvme_ns)
3691 {
3692 	free(nvme_ns->stat);
3693 	free(nvme_ns);
3694 }
3695 
3696 static void
3697 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
3698 {
3699 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
3700 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
3701 
3702 	if (rc == 0) {
3703 		nvme_ns->probe_ctx = NULL;
3704 		pthread_mutex_lock(&nvme_ctrlr->mutex);
3705 		nvme_ctrlr->ref++;
3706 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3707 	} else {
3708 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
3709 		nvme_ns_free(nvme_ns);
3710 	}
3711 
3712 	if (ctx) {
3713 		ctx->populates_in_progress--;
3714 		if (ctx->populates_in_progress == 0) {
3715 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
3716 		}
3717 	}
3718 }
3719 
3720 static void
3721 bdev_nvme_add_io_path(struct spdk_io_channel_iter *i)
3722 {
3723 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
3724 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
3725 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3726 	int rc;
3727 
3728 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
3729 	if (rc != 0) {
3730 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
3731 	}
3732 
3733 	spdk_for_each_channel_continue(i, rc);
3734 }
3735 
3736 static void
3737 bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i)
3738 {
3739 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
3740 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
3741 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3742 	struct nvme_io_path *io_path;
3743 
3744 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
3745 	if (io_path != NULL) {
3746 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
3747 	}
3748 
3749 	spdk_for_each_channel_continue(i, 0);
3750 }
3751 
3752 static void
3753 bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status)
3754 {
3755 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3756 
3757 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
3758 }
3759 
3760 static void
3761 bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status)
3762 {
3763 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3764 	struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i);
3765 
3766 	if (status == 0) {
3767 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
3768 	} else {
3769 		/* Delete the added io_paths and fail populating the namespace. */
3770 		spdk_for_each_channel(bdev,
3771 				      bdev_nvme_delete_io_path,
3772 				      nvme_ns,
3773 				      bdev_nvme_add_io_path_failed);
3774 	}
3775 }
3776 
3777 static int
3778 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
3779 {
3780 	struct nvme_ns *tmp_ns;
3781 	const struct spdk_nvme_ns_data *nsdata;
3782 
3783 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
3784 	if (!nsdata->nmic.can_share) {
3785 		SPDK_ERRLOG("Namespace cannot be shared.\n");
3786 		return -EINVAL;
3787 	}
3788 
3789 	pthread_mutex_lock(&bdev->mutex);
3790 
3791 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
3792 	assert(tmp_ns != NULL);
3793 
3794 	if (!bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
3795 		pthread_mutex_unlock(&bdev->mutex);
3796 		SPDK_ERRLOG("Namespaces are not identical.\n");
3797 		return -EINVAL;
3798 	}
3799 
3800 	bdev->ref++;
3801 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
3802 	nvme_ns->bdev = bdev;
3803 
3804 	pthread_mutex_unlock(&bdev->mutex);
3805 
3806 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
3807 	spdk_for_each_channel(bdev,
3808 			      bdev_nvme_add_io_path,
3809 			      nvme_ns,
3810 			      bdev_nvme_add_io_path_done);
3811 
3812 	return 0;
3813 }
3814 
3815 static void
3816 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
3817 {
3818 	struct spdk_nvme_ns	*ns;
3819 	struct nvme_bdev	*bdev;
3820 	int			rc = 0;
3821 
3822 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
3823 	if (!ns) {
3824 		SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
3825 		rc = -EINVAL;
3826 		goto done;
3827 	}
3828 
3829 	nvme_ns->ns = ns;
3830 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
3831 
3832 	if (nvme_ctrlr->ana_log_page != NULL) {
3833 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
3834 	}
3835 
3836 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
3837 	if (bdev == NULL) {
3838 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
3839 	} else {
3840 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
3841 		if (rc == 0) {
3842 			return;
3843 		}
3844 	}
3845 done:
3846 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
3847 }
3848 
3849 static void
3850 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
3851 {
3852 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
3853 
3854 	assert(nvme_ctrlr != NULL);
3855 
3856 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3857 
3858 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
3859 
3860 	if (nvme_ns->bdev != NULL) {
3861 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3862 		return;
3863 	}
3864 
3865 	nvme_ns_free(nvme_ns);
3866 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
3867 
3868 	nvme_ctrlr_release(nvme_ctrlr);
3869 }
3870 
3871 static void
3872 bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status)
3873 {
3874 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3875 
3876 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
3877 }
3878 
3879 static void
3880 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
3881 {
3882 	struct nvme_bdev *bdev;
3883 
3884 	spdk_poller_unregister(&nvme_ns->anatt_timer);
3885 
3886 	bdev = nvme_ns->bdev;
3887 	if (bdev != NULL) {
3888 		pthread_mutex_lock(&bdev->mutex);
3889 
3890 		assert(bdev->ref > 0);
3891 		bdev->ref--;
3892 		if (bdev->ref == 0) {
3893 			pthread_mutex_unlock(&bdev->mutex);
3894 
3895 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
3896 		} else {
3897 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
3898 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
3899 			 * and clear nvme_ns->bdev here.
3900 			 */
3901 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
3902 			nvme_ns->bdev = NULL;
3903 
3904 			pthread_mutex_unlock(&bdev->mutex);
3905 
3906 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
3907 			 * we call depopulate_namespace_done() to avoid use-after-free.
3908 			 */
3909 			spdk_for_each_channel(bdev,
3910 					      bdev_nvme_delete_io_path,
3911 					      nvme_ns,
3912 					      bdev_nvme_delete_io_path_done);
3913 			return;
3914 		}
3915 	}
3916 
3917 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
3918 }
3919 
3920 static void
3921 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
3922 			       struct nvme_async_probe_ctx *ctx)
3923 {
3924 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
3925 	struct nvme_ns	*nvme_ns, *next;
3926 	struct spdk_nvme_ns	*ns;
3927 	struct nvme_bdev	*bdev;
3928 	uint32_t		nsid;
3929 	int			rc;
3930 	uint64_t		num_sectors;
3931 
3932 	if (ctx) {
3933 		/* Initialize this count to 1 to handle the populate functions
3934 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
3935 		 */
3936 		ctx->populates_in_progress = 1;
3937 	}
3938 
3939 	/* First loop over our existing namespaces and see if they have been
3940 	 * removed. */
3941 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
3942 	while (nvme_ns != NULL) {
3943 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
3944 
3945 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
3946 			/* NS is still there but attributes may have changed */
3947 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
3948 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
3949 			bdev = nvme_ns->bdev;
3950 			assert(bdev != NULL);
3951 			if (bdev->disk.blockcnt != num_sectors) {
3952 				SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
3953 					       nvme_ns->id,
3954 					       bdev->disk.name,
3955 					       bdev->disk.blockcnt,
3956 					       num_sectors);
3957 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
3958 				if (rc != 0) {
3959 					SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
3960 						    bdev->disk.name, rc);
3961 				}
3962 			}
3963 		} else {
3964 			/* Namespace was removed */
3965 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
3966 		}
3967 
3968 		nvme_ns = next;
3969 	}
3970 
3971 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
3972 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
3973 	while (nsid != 0) {
3974 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
3975 
3976 		if (nvme_ns == NULL) {
3977 			/* Found a new one */
3978 			nvme_ns = nvme_ns_alloc();
3979 			if (nvme_ns == NULL) {
3980 				SPDK_ERRLOG("Failed to allocate namespace\n");
3981 				/* This just fails to attach the namespace. It may work on a future attempt. */
3982 				continue;
3983 			}
3984 
3985 			nvme_ns->id = nsid;
3986 			nvme_ns->ctrlr = nvme_ctrlr;
3987 
3988 			nvme_ns->bdev = NULL;
3989 
3990 			if (ctx) {
3991 				ctx->populates_in_progress++;
3992 			}
3993 			nvme_ns->probe_ctx = ctx;
3994 
3995 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
3996 
3997 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
3998 		}
3999 
4000 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
4001 	}
4002 
4003 	if (ctx) {
4004 		/* Decrement this count now that the loop is over to account
4005 		 * for the one we started with.  If the count is then 0, we
4006 		 * know any populate_namespace functions completed immediately,
4007 		 * so we'll kick the callback here.
4008 		 */
4009 		ctx->populates_in_progress--;
4010 		if (ctx->populates_in_progress == 0) {
4011 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4012 		}
4013 	}
4014 
4015 }
4016 
4017 static void
4018 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
4019 {
4020 	struct nvme_ns *nvme_ns, *tmp;
4021 
4022 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
4023 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4024 	}
4025 }
4026 
4027 static uint32_t
4028 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
4029 {
4030 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
4031 	const struct spdk_nvme_ctrlr_data *cdata;
4032 	uint32_t nsid, ns_count = 0;
4033 
4034 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4035 
4036 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4037 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
4038 		ns_count++;
4039 	}
4040 
4041 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
4042 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
4043 	       sizeof(uint32_t);
4044 }
4045 
4046 static int
4047 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
4048 			  void *cb_arg)
4049 {
4050 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4051 	struct nvme_ns *nvme_ns;
4052 	uint32_t i, nsid;
4053 
4054 	for (i = 0; i < desc->num_of_nsid; i++) {
4055 		nsid = desc->nsid[i];
4056 		if (nsid == 0) {
4057 			continue;
4058 		}
4059 
4060 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4061 
4062 		assert(nvme_ns != NULL);
4063 		if (nvme_ns == NULL) {
4064 			/* Target told us that an inactive namespace had an ANA change */
4065 			continue;
4066 		}
4067 
4068 		_nvme_ns_set_ana_state(nvme_ns, desc);
4069 	}
4070 
4071 	return 0;
4072 }
4073 
4074 static void
4075 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4076 {
4077 	struct nvme_ns *nvme_ns;
4078 
4079 	spdk_free(nvme_ctrlr->ana_log_page);
4080 	nvme_ctrlr->ana_log_page = NULL;
4081 
4082 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4083 	     nvme_ns != NULL;
4084 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
4085 		nvme_ns->ana_state_updating = false;
4086 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4087 	}
4088 }
4089 
4090 static void
4091 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
4092 {
4093 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4094 
4095 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
4096 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
4097 					     nvme_ctrlr);
4098 	} else {
4099 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
4100 	}
4101 
4102 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4103 
4104 	assert(nvme_ctrlr->ana_log_page_updating == true);
4105 	nvme_ctrlr->ana_log_page_updating = false;
4106 
4107 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
4108 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4109 
4110 		nvme_ctrlr_unregister(nvme_ctrlr);
4111 	} else {
4112 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4113 
4114 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
4115 	}
4116 }
4117 
4118 static int
4119 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4120 {
4121 	uint32_t ana_log_page_size;
4122 	int rc;
4123 
4124 	if (nvme_ctrlr->ana_log_page == NULL) {
4125 		return -EINVAL;
4126 	}
4127 
4128 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
4129 
4130 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
4131 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
4132 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
4133 		return -EINVAL;
4134 	}
4135 
4136 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4137 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
4138 	    nvme_ctrlr->ana_log_page_updating) {
4139 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4140 		return -EBUSY;
4141 	}
4142 
4143 	nvme_ctrlr->ana_log_page_updating = true;
4144 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4145 
4146 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
4147 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
4148 					      SPDK_NVME_GLOBAL_NS_TAG,
4149 					      nvme_ctrlr->ana_log_page,
4150 					      ana_log_page_size, 0,
4151 					      nvme_ctrlr_read_ana_log_page_done,
4152 					      nvme_ctrlr);
4153 	if (rc != 0) {
4154 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
4155 	}
4156 
4157 	return rc;
4158 }
4159 
4160 static void
4161 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
4162 {
4163 }
4164 
4165 struct bdev_nvme_set_preferred_path_ctx {
4166 	struct spdk_bdev_desc *desc;
4167 	struct nvme_ns *nvme_ns;
4168 	bdev_nvme_set_preferred_path_cb cb_fn;
4169 	void *cb_arg;
4170 };
4171 
4172 static void
4173 bdev_nvme_set_preferred_path_done(struct spdk_io_channel_iter *i, int status)
4174 {
4175 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4176 
4177 	assert(ctx != NULL);
4178 	assert(ctx->desc != NULL);
4179 	assert(ctx->cb_fn != NULL);
4180 
4181 	spdk_bdev_close(ctx->desc);
4182 
4183 	ctx->cb_fn(ctx->cb_arg, status);
4184 
4185 	free(ctx);
4186 }
4187 
4188 static void
4189 _bdev_nvme_set_preferred_path(struct spdk_io_channel_iter *i)
4190 {
4191 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4192 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4193 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4194 	struct nvme_io_path *io_path, *prev;
4195 
4196 	prev = NULL;
4197 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
4198 		if (io_path->nvme_ns == ctx->nvme_ns) {
4199 			break;
4200 		}
4201 		prev = io_path;
4202 	}
4203 
4204 	if (io_path != NULL) {
4205 		if (prev != NULL) {
4206 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
4207 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
4208 		}
4209 
4210 		/* We can set io_path to nbdev_ch->current_io_path directly here.
4211 		 * However, it needs to be conditional. To simplify the code,
4212 		 * just clear nbdev_ch->current_io_path and let find_io_path()
4213 		 * fill it.
4214 		 *
4215 		 * Automatic failback may be disabled. Hence even if the io_path is
4216 		 * already at the head, clear nbdev_ch->current_io_path.
4217 		 */
4218 		bdev_nvme_clear_current_io_path(nbdev_ch);
4219 	}
4220 
4221 	spdk_for_each_channel_continue(i, 0);
4222 }
4223 
4224 static struct nvme_ns *
4225 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
4226 {
4227 	struct nvme_ns *nvme_ns, *prev;
4228 	const struct spdk_nvme_ctrlr_data *cdata;
4229 
4230 	prev = NULL;
4231 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
4232 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
4233 
4234 		if (cdata->cntlid == cntlid) {
4235 			break;
4236 		}
4237 		prev = nvme_ns;
4238 	}
4239 
4240 	if (nvme_ns != NULL && prev != NULL) {
4241 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
4242 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
4243 	}
4244 
4245 	return nvme_ns;
4246 }
4247 
4248 /* This function supports only multipath mode. There is only a single I/O path
4249  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
4250  * head of the I/O path list for each NVMe bdev channel.
4251  *
4252  * NVMe bdev channel may be acquired after completing this function. move the
4253  * matched namespace to the head of the namespace list for the NVMe bdev too.
4254  */
4255 void
4256 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
4257 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
4258 {
4259 	struct bdev_nvme_set_preferred_path_ctx *ctx;
4260 	struct spdk_bdev *bdev;
4261 	struct nvme_bdev *nbdev;
4262 	int rc = 0;
4263 
4264 	assert(cb_fn != NULL);
4265 
4266 	ctx = calloc(1, sizeof(*ctx));
4267 	if (ctx == NULL) {
4268 		SPDK_ERRLOG("Failed to alloc context.\n");
4269 		rc = -ENOMEM;
4270 		goto err_alloc;
4271 	}
4272 
4273 	ctx->cb_fn = cb_fn;
4274 	ctx->cb_arg = cb_arg;
4275 
4276 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
4277 	if (rc != 0) {
4278 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
4279 		goto err_open;
4280 	}
4281 
4282 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
4283 
4284 	if (bdev->module != &nvme_if) {
4285 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
4286 		rc = -ENODEV;
4287 		goto err_bdev;
4288 	}
4289 
4290 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
4291 
4292 	pthread_mutex_lock(&nbdev->mutex);
4293 
4294 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
4295 	if (ctx->nvme_ns == NULL) {
4296 		pthread_mutex_unlock(&nbdev->mutex);
4297 
4298 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
4299 		rc = -ENODEV;
4300 		goto err_bdev;
4301 	}
4302 
4303 	pthread_mutex_unlock(&nbdev->mutex);
4304 
4305 	spdk_for_each_channel(nbdev,
4306 			      _bdev_nvme_set_preferred_path,
4307 			      ctx,
4308 			      bdev_nvme_set_preferred_path_done);
4309 	return;
4310 
4311 err_bdev:
4312 	spdk_bdev_close(ctx->desc);
4313 err_open:
4314 	free(ctx);
4315 err_alloc:
4316 	cb_fn(cb_arg, rc);
4317 }
4318 
4319 struct bdev_nvme_set_multipath_policy_ctx {
4320 	struct spdk_bdev_desc *desc;
4321 	bdev_nvme_set_multipath_policy_cb cb_fn;
4322 	void *cb_arg;
4323 };
4324 
4325 static void
4326 bdev_nvme_set_multipath_policy_done(struct spdk_io_channel_iter *i, int status)
4327 {
4328 	struct bdev_nvme_set_multipath_policy_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4329 
4330 	assert(ctx != NULL);
4331 	assert(ctx->desc != NULL);
4332 	assert(ctx->cb_fn != NULL);
4333 
4334 	spdk_bdev_close(ctx->desc);
4335 
4336 	ctx->cb_fn(ctx->cb_arg, status);
4337 
4338 	free(ctx);
4339 }
4340 
4341 static void
4342 _bdev_nvme_set_multipath_policy(struct spdk_io_channel_iter *i)
4343 {
4344 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4345 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4346 	struct nvme_bdev *nbdev = spdk_io_channel_get_io_device(_ch);
4347 
4348 	nbdev_ch->mp_policy = nbdev->mp_policy;
4349 	nbdev_ch->mp_selector = nbdev->mp_selector;
4350 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
4351 	bdev_nvme_clear_current_io_path(nbdev_ch);
4352 
4353 	spdk_for_each_channel_continue(i, 0);
4354 }
4355 
4356 void
4357 bdev_nvme_set_multipath_policy(const char *name, enum bdev_nvme_multipath_policy policy,
4358 			       enum bdev_nvme_multipath_selector selector, uint32_t rr_min_io,
4359 			       bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
4360 {
4361 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
4362 	struct spdk_bdev *bdev;
4363 	struct nvme_bdev *nbdev;
4364 	int rc;
4365 
4366 	assert(cb_fn != NULL);
4367 
4368 	if (policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE && selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
4369 		if (rr_min_io == UINT32_MAX) {
4370 			rr_min_io = 1;
4371 		} else if (rr_min_io == 0) {
4372 			rc = -EINVAL;
4373 			goto exit;
4374 		}
4375 	} else if (rr_min_io != UINT32_MAX) {
4376 		rc = -EINVAL;
4377 		goto exit;
4378 	}
4379 
4380 	ctx = calloc(1, sizeof(*ctx));
4381 	if (ctx == NULL) {
4382 		SPDK_ERRLOG("Failed to alloc context.\n");
4383 		rc = -ENOMEM;
4384 		goto exit;
4385 	}
4386 
4387 	ctx->cb_fn = cb_fn;
4388 	ctx->cb_arg = cb_arg;
4389 
4390 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
4391 	if (rc != 0) {
4392 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
4393 		rc = -ENODEV;
4394 		goto err_open;
4395 	}
4396 
4397 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
4398 	if (bdev->module != &nvme_if) {
4399 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
4400 		rc = -ENODEV;
4401 		goto err_module;
4402 	}
4403 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
4404 
4405 	pthread_mutex_lock(&nbdev->mutex);
4406 	nbdev->mp_policy = policy;
4407 	nbdev->mp_selector = selector;
4408 	nbdev->rr_min_io = rr_min_io;
4409 	pthread_mutex_unlock(&nbdev->mutex);
4410 
4411 	spdk_for_each_channel(nbdev,
4412 			      _bdev_nvme_set_multipath_policy,
4413 			      ctx,
4414 			      bdev_nvme_set_multipath_policy_done);
4415 	return;
4416 
4417 err_module:
4418 	spdk_bdev_close(ctx->desc);
4419 err_open:
4420 	free(ctx);
4421 exit:
4422 	cb_fn(cb_arg, rc);
4423 }
4424 
4425 static void
4426 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
4427 {
4428 	struct nvme_ctrlr *nvme_ctrlr		= arg;
4429 	union spdk_nvme_async_event_completion	event;
4430 
4431 	if (spdk_nvme_cpl_is_error(cpl)) {
4432 		SPDK_WARNLOG("AER request execute failed\n");
4433 		return;
4434 	}
4435 
4436 	event.raw = cpl->cdw0;
4437 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
4438 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
4439 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
4440 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
4441 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
4442 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
4443 	}
4444 }
4445 
4446 static void
4447 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, size_t count, int rc)
4448 {
4449 	if (ctx->cb_fn) {
4450 		ctx->cb_fn(ctx->cb_ctx, count, rc);
4451 	}
4452 
4453 	ctx->namespaces_populated = true;
4454 	if (ctx->probe_done) {
4455 		/* The probe was already completed, so we need to free the context
4456 		 * here.  This can happen for cases like OCSSD, where we need to
4457 		 * send additional commands to the SSD after attach.
4458 		 */
4459 		free(ctx);
4460 	}
4461 }
4462 
4463 static void
4464 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
4465 		       struct nvme_async_probe_ctx *ctx)
4466 {
4467 	spdk_io_device_register(nvme_ctrlr,
4468 				bdev_nvme_create_ctrlr_channel_cb,
4469 				bdev_nvme_destroy_ctrlr_channel_cb,
4470 				sizeof(struct nvme_ctrlr_channel),
4471 				nvme_ctrlr->nbdev_ctrlr->name);
4472 
4473 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
4474 }
4475 
4476 static void
4477 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
4478 {
4479 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
4480 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
4481 
4482 	nvme_ctrlr->probe_ctx = NULL;
4483 
4484 	if (spdk_nvme_cpl_is_error(cpl)) {
4485 		nvme_ctrlr_delete(nvme_ctrlr);
4486 
4487 		if (ctx != NULL) {
4488 			populate_namespaces_cb(ctx, 0, -1);
4489 		}
4490 		return;
4491 	}
4492 
4493 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
4494 }
4495 
4496 static int
4497 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
4498 			     struct nvme_async_probe_ctx *ctx)
4499 {
4500 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
4501 	const struct spdk_nvme_ctrlr_data *cdata;
4502 	uint32_t ana_log_page_size;
4503 
4504 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4505 
4506 	/* Set buffer size enough to include maximum number of allowed namespaces. */
4507 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
4508 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
4509 			    sizeof(uint32_t);
4510 
4511 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
4512 						SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
4513 	if (nvme_ctrlr->ana_log_page == NULL) {
4514 		SPDK_ERRLOG("could not allocate ANA log page buffer\n");
4515 		return -ENXIO;
4516 	}
4517 
4518 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
4519 	 * Hence copy each descriptor to a temporary area when parsing it.
4520 	 *
4521 	 * Allocate a buffer whose size is as large as ANA log page buffer because
4522 	 * we do not know the size of a descriptor until actually reading it.
4523 	 */
4524 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
4525 	if (nvme_ctrlr->copied_ana_desc == NULL) {
4526 		SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
4527 		return -ENOMEM;
4528 	}
4529 
4530 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
4531 
4532 	nvme_ctrlr->probe_ctx = ctx;
4533 
4534 	/* Then, set the read size only to include the current active namespaces. */
4535 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
4536 
4537 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
4538 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
4539 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
4540 		return -EINVAL;
4541 	}
4542 
4543 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
4544 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
4545 						SPDK_NVME_GLOBAL_NS_TAG,
4546 						nvme_ctrlr->ana_log_page,
4547 						ana_log_page_size, 0,
4548 						nvme_ctrlr_init_ana_log_page_done,
4549 						nvme_ctrlr);
4550 }
4551 
4552 /* hostnqn and subnqn were already verified before attaching a controller.
4553  * Hence check only the multipath capability and cntlid here.
4554  */
4555 static bool
4556 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
4557 {
4558 	struct nvme_ctrlr *tmp;
4559 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
4560 
4561 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4562 
4563 	if (!cdata->cmic.multi_ctrlr) {
4564 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
4565 		return false;
4566 	}
4567 
4568 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
4569 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
4570 
4571 		if (!tmp_cdata->cmic.multi_ctrlr) {
4572 			SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
4573 			return false;
4574 		}
4575 		if (cdata->cntlid == tmp_cdata->cntlid) {
4576 			SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid);
4577 			return false;
4578 		}
4579 	}
4580 
4581 	return true;
4582 }
4583 
4584 static int
4585 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
4586 {
4587 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
4588 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
4589 	int rc = 0;
4590 
4591 	pthread_mutex_lock(&g_bdev_nvme_mutex);
4592 
4593 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
4594 	if (nbdev_ctrlr != NULL) {
4595 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
4596 			rc = -EINVAL;
4597 			goto exit;
4598 		}
4599 	} else {
4600 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
4601 		if (nbdev_ctrlr == NULL) {
4602 			SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n");
4603 			rc = -ENOMEM;
4604 			goto exit;
4605 		}
4606 		nbdev_ctrlr->name = strdup(name);
4607 		if (nbdev_ctrlr->name == NULL) {
4608 			SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n");
4609 			free(nbdev_ctrlr);
4610 			goto exit;
4611 		}
4612 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
4613 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
4614 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
4615 	}
4616 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
4617 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
4618 exit:
4619 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
4620 	return rc;
4621 }
4622 
4623 static int
4624 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
4625 		  const char *name,
4626 		  const struct spdk_nvme_transport_id *trid,
4627 		  struct nvme_async_probe_ctx *ctx)
4628 {
4629 	struct nvme_ctrlr *nvme_ctrlr;
4630 	struct nvme_path_id *path_id;
4631 	const struct spdk_nvme_ctrlr_data *cdata;
4632 	int rc;
4633 
4634 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
4635 	if (nvme_ctrlr == NULL) {
4636 		SPDK_ERRLOG("Failed to allocate device struct\n");
4637 		return -ENOMEM;
4638 	}
4639 
4640 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
4641 	if (rc != 0) {
4642 		free(nvme_ctrlr);
4643 		return rc;
4644 	}
4645 
4646 	TAILQ_INIT(&nvme_ctrlr->trids);
4647 
4648 	RB_INIT(&nvme_ctrlr->namespaces);
4649 
4650 	path_id = calloc(1, sizeof(*path_id));
4651 	if (path_id == NULL) {
4652 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
4653 		rc = -ENOMEM;
4654 		goto err;
4655 	}
4656 
4657 	path_id->trid = *trid;
4658 	if (ctx != NULL) {
4659 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
4660 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
4661 	}
4662 	nvme_ctrlr->active_path_id = path_id;
4663 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
4664 
4665 	nvme_ctrlr->thread = spdk_get_thread();
4666 	nvme_ctrlr->ctrlr = ctrlr;
4667 	nvme_ctrlr->ref = 1;
4668 
4669 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
4670 		SPDK_ERRLOG("OCSSDs are not supported");
4671 		rc = -ENOTSUP;
4672 		goto err;
4673 	}
4674 
4675 	if (ctx != NULL) {
4676 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
4677 	} else {
4678 		bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
4679 	}
4680 
4681 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
4682 					  g_opts.nvme_adminq_poll_period_us);
4683 
4684 	if (g_opts.timeout_us > 0) {
4685 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
4686 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
4687 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
4688 					  g_opts.timeout_us : g_opts.timeout_admin_us;
4689 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
4690 				adm_timeout_us, timeout_cb, nvme_ctrlr);
4691 	}
4692 
4693 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
4694 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
4695 
4696 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
4697 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
4698 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
4699 	}
4700 
4701 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
4702 	if (rc != 0) {
4703 		goto err;
4704 	}
4705 
4706 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4707 
4708 	if (cdata->cmic.ana_reporting) {
4709 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
4710 		if (rc == 0) {
4711 			return 0;
4712 		}
4713 	} else {
4714 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
4715 		return 0;
4716 	}
4717 
4718 err:
4719 	nvme_ctrlr_delete(nvme_ctrlr);
4720 	return rc;
4721 }
4722 
4723 void
4724 bdev_nvme_get_default_ctrlr_opts(struct nvme_ctrlr_opts *opts)
4725 {
4726 	opts->prchk_flags = 0;
4727 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
4728 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
4729 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
4730 }
4731 
4732 static void
4733 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4734 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
4735 {
4736 	char *name;
4737 
4738 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
4739 	if (!name) {
4740 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
4741 		return;
4742 	}
4743 
4744 	if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) {
4745 		SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
4746 	} else {
4747 		SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name);
4748 	}
4749 
4750 	free(name);
4751 }
4752 
4753 static void
4754 _nvme_ctrlr_destruct(void *ctx)
4755 {
4756 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4757 
4758 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
4759 	nvme_ctrlr_release(nvme_ctrlr);
4760 }
4761 
4762 static int
4763 bdev_nvme_delete_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
4764 {
4765 	struct nvme_probe_skip_entry *entry;
4766 
4767 	/* The controller's destruction was already started */
4768 	if (nvme_ctrlr->destruct) {
4769 		return -EALREADY;
4770 	}
4771 
4772 	if (!hotplug &&
4773 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
4774 		entry = calloc(1, sizeof(*entry));
4775 		if (!entry) {
4776 			return -ENOMEM;
4777 		}
4778 		entry->trid = nvme_ctrlr->active_path_id->trid;
4779 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
4780 	}
4781 
4782 	nvme_ctrlr->destruct = true;
4783 	return 0;
4784 }
4785 
4786 static int
4787 bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
4788 {
4789 	int rc;
4790 
4791 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4792 	rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, hotplug);
4793 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4794 
4795 	if (rc == 0) {
4796 		_nvme_ctrlr_destruct(nvme_ctrlr);
4797 	} else if (rc == -EALREADY) {
4798 		rc = 0;
4799 	}
4800 
4801 	return rc;
4802 }
4803 
4804 static void
4805 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
4806 {
4807 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
4808 
4809 	bdev_nvme_delete_ctrlr(nvme_ctrlr, true);
4810 }
4811 
4812 static int
4813 bdev_nvme_hotplug_probe(void *arg)
4814 {
4815 	if (g_hotplug_probe_ctx == NULL) {
4816 		spdk_poller_unregister(&g_hotplug_probe_poller);
4817 		return SPDK_POLLER_IDLE;
4818 	}
4819 
4820 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
4821 		g_hotplug_probe_ctx = NULL;
4822 		spdk_poller_unregister(&g_hotplug_probe_poller);
4823 	}
4824 
4825 	return SPDK_POLLER_BUSY;
4826 }
4827 
4828 static int
4829 bdev_nvme_hotplug(void *arg)
4830 {
4831 	struct spdk_nvme_transport_id trid_pcie;
4832 
4833 	if (g_hotplug_probe_ctx) {
4834 		return SPDK_POLLER_BUSY;
4835 	}
4836 
4837 	memset(&trid_pcie, 0, sizeof(trid_pcie));
4838 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
4839 
4840 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
4841 			      hotplug_probe_cb, attach_cb, NULL);
4842 
4843 	if (g_hotplug_probe_ctx) {
4844 		assert(g_hotplug_probe_poller == NULL);
4845 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
4846 	}
4847 
4848 	return SPDK_POLLER_BUSY;
4849 }
4850 
4851 void
4852 bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
4853 {
4854 	*opts = g_opts;
4855 }
4856 
4857 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
4858 		uint32_t reconnect_delay_sec,
4859 		uint32_t fast_io_fail_timeout_sec);
4860 
4861 static int
4862 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
4863 {
4864 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
4865 		/* Can't set timeout_admin_us without also setting timeout_us */
4866 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
4867 		return -EINVAL;
4868 	}
4869 
4870 	if (opts->bdev_retry_count < -1) {
4871 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
4872 		return -EINVAL;
4873 	}
4874 
4875 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
4876 			opts->reconnect_delay_sec,
4877 			opts->fast_io_fail_timeout_sec)) {
4878 		return -EINVAL;
4879 	}
4880 
4881 	return 0;
4882 }
4883 
4884 int
4885 bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
4886 {
4887 	int ret;
4888 
4889 	ret = bdev_nvme_validate_opts(opts);
4890 	if (ret) {
4891 		SPDK_WARNLOG("Failed to set nvme opts.\n");
4892 		return ret;
4893 	}
4894 
4895 	if (g_bdev_nvme_init_thread != NULL) {
4896 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
4897 			return -EPERM;
4898 		}
4899 	}
4900 
4901 	if (opts->rdma_srq_size != 0) {
4902 		struct spdk_nvme_transport_opts drv_opts;
4903 
4904 		spdk_nvme_transport_get_opts(&drv_opts, sizeof(drv_opts));
4905 		drv_opts.rdma_srq_size = opts->rdma_srq_size;
4906 
4907 		ret = spdk_nvme_transport_set_opts(&drv_opts, sizeof(drv_opts));
4908 		if (ret) {
4909 			SPDK_ERRLOG("Failed to set NVMe transport opts.\n");
4910 			return ret;
4911 		}
4912 	}
4913 
4914 	g_opts = *opts;
4915 
4916 	return 0;
4917 }
4918 
4919 struct set_nvme_hotplug_ctx {
4920 	uint64_t period_us;
4921 	bool enabled;
4922 	spdk_msg_fn fn;
4923 	void *fn_ctx;
4924 };
4925 
4926 static void
4927 set_nvme_hotplug_period_cb(void *_ctx)
4928 {
4929 	struct set_nvme_hotplug_ctx *ctx = _ctx;
4930 
4931 	spdk_poller_unregister(&g_hotplug_poller);
4932 	if (ctx->enabled) {
4933 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
4934 	}
4935 
4936 	g_nvme_hotplug_poll_period_us = ctx->period_us;
4937 	g_nvme_hotplug_enabled = ctx->enabled;
4938 	if (ctx->fn) {
4939 		ctx->fn(ctx->fn_ctx);
4940 	}
4941 
4942 	free(ctx);
4943 }
4944 
4945 int
4946 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
4947 {
4948 	struct set_nvme_hotplug_ctx *ctx;
4949 
4950 	if (enabled == true && !spdk_process_is_primary()) {
4951 		return -EPERM;
4952 	}
4953 
4954 	ctx = calloc(1, sizeof(*ctx));
4955 	if (ctx == NULL) {
4956 		return -ENOMEM;
4957 	}
4958 
4959 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
4960 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
4961 	ctx->enabled = enabled;
4962 	ctx->fn = cb;
4963 	ctx->fn_ctx = cb_ctx;
4964 
4965 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
4966 	return 0;
4967 }
4968 
4969 static void
4970 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
4971 				    struct nvme_async_probe_ctx *ctx)
4972 {
4973 	struct nvme_ns	*nvme_ns;
4974 	struct nvme_bdev	*nvme_bdev;
4975 	size_t			j;
4976 
4977 	assert(nvme_ctrlr != NULL);
4978 
4979 	if (ctx->names == NULL) {
4980 		populate_namespaces_cb(ctx, 0, 0);
4981 		return;
4982 	}
4983 
4984 	/*
4985 	 * Report the new bdevs that were created in this call.
4986 	 * There can be more than one bdev per NVMe controller.
4987 	 */
4988 	j = 0;
4989 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4990 	while (nvme_ns != NULL) {
4991 		nvme_bdev = nvme_ns->bdev;
4992 		if (j < ctx->count) {
4993 			ctx->names[j] = nvme_bdev->disk.name;
4994 			j++;
4995 		} else {
4996 			SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
4997 				    ctx->count);
4998 			populate_namespaces_cb(ctx, 0, -ERANGE);
4999 			return;
5000 		}
5001 
5002 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5003 	}
5004 
5005 	populate_namespaces_cb(ctx, j, 0);
5006 }
5007 
5008 static int
5009 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5010 			       struct spdk_nvme_ctrlr *new_ctrlr,
5011 			       struct spdk_nvme_transport_id *trid)
5012 {
5013 	struct nvme_path_id *tmp_trid;
5014 
5015 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
5016 		SPDK_ERRLOG("PCIe failover is not supported.\n");
5017 		return -ENOTSUP;
5018 	}
5019 
5020 	/* Currently we only support failover to the same transport type. */
5021 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
5022 		SPDK_WARNLOG("Failover from trtype: %s to a different trtype: %s is not supported currently\n",
5023 			     spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
5024 			     spdk_nvme_transport_id_trtype_str(trid->trtype));
5025 		return -EINVAL;
5026 	}
5027 
5028 
5029 	/* Currently we only support failover to the same NQN. */
5030 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
5031 		SPDK_WARNLOG("Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
5032 			     nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
5033 		return -EINVAL;
5034 	}
5035 
5036 	/* Skip all the other checks if we've already registered this path. */
5037 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
5038 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
5039 			SPDK_WARNLOG("This path (traddr: %s subnqn: %s) is already registered\n", trid->traddr,
5040 				     trid->subnqn);
5041 			return -EEXIST;
5042 		}
5043 	}
5044 
5045 	return 0;
5046 }
5047 
5048 static int
5049 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
5050 				    struct spdk_nvme_ctrlr *new_ctrlr)
5051 {
5052 	struct nvme_ns *nvme_ns;
5053 	struct spdk_nvme_ns *new_ns;
5054 
5055 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5056 	while (nvme_ns != NULL) {
5057 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
5058 		assert(new_ns != NULL);
5059 
5060 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
5061 			return -EINVAL;
5062 		}
5063 
5064 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5065 	}
5066 
5067 	return 0;
5068 }
5069 
5070 static int
5071 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5072 			      struct spdk_nvme_transport_id *trid)
5073 {
5074 	struct nvme_path_id *new_trid, *tmp_trid;
5075 
5076 	new_trid = calloc(1, sizeof(*new_trid));
5077 	if (new_trid == NULL) {
5078 		return -ENOMEM;
5079 	}
5080 	new_trid->trid = *trid;
5081 	new_trid->is_failed = false;
5082 
5083 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
5084 		if (tmp_trid->is_failed && tmp_trid != nvme_ctrlr->active_path_id) {
5085 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
5086 			return 0;
5087 		}
5088 	}
5089 
5090 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
5091 	return 0;
5092 }
5093 
5094 /* This is the case that a secondary path is added to an existing
5095  * nvme_ctrlr for failover. After checking if it can access the same
5096  * namespaces as the primary path, it is disconnected until failover occurs.
5097  */
5098 static int
5099 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5100 			     struct spdk_nvme_ctrlr *new_ctrlr,
5101 			     struct spdk_nvme_transport_id *trid)
5102 {
5103 	int rc;
5104 
5105 	assert(nvme_ctrlr != NULL);
5106 
5107 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5108 
5109 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
5110 	if (rc != 0) {
5111 		goto exit;
5112 	}
5113 
5114 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
5115 	if (rc != 0) {
5116 		goto exit;
5117 	}
5118 
5119 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
5120 
5121 exit:
5122 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5123 
5124 	spdk_nvme_detach(new_ctrlr);
5125 
5126 	return rc;
5127 }
5128 
5129 static void
5130 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5131 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
5132 {
5133 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5134 	struct nvme_async_probe_ctx *ctx;
5135 	int rc;
5136 
5137 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
5138 	ctx->ctrlr_attached = true;
5139 
5140 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
5141 	if (rc != 0) {
5142 		populate_namespaces_cb(ctx, 0, rc);
5143 	}
5144 }
5145 
5146 static void
5147 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5148 			struct spdk_nvme_ctrlr *ctrlr,
5149 			const struct spdk_nvme_ctrlr_opts *opts)
5150 {
5151 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5152 	struct nvme_ctrlr *nvme_ctrlr;
5153 	struct nvme_async_probe_ctx *ctx;
5154 	int rc;
5155 
5156 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
5157 	ctx->ctrlr_attached = true;
5158 
5159 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
5160 	if (nvme_ctrlr) {
5161 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
5162 	} else {
5163 		rc = -ENODEV;
5164 	}
5165 
5166 	populate_namespaces_cb(ctx, 0, rc);
5167 }
5168 
5169 static int
5170 bdev_nvme_async_poll(void *arg)
5171 {
5172 	struct nvme_async_probe_ctx	*ctx = arg;
5173 	int				rc;
5174 
5175 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
5176 	if (spdk_unlikely(rc != -EAGAIN)) {
5177 		ctx->probe_done = true;
5178 		spdk_poller_unregister(&ctx->poller);
5179 		if (!ctx->ctrlr_attached) {
5180 			/* The probe is done, but no controller was attached.
5181 			 * That means we had a failure, so report -EIO back to
5182 			 * the caller (usually the RPC). populate_namespaces_cb()
5183 			 * will take care of freeing the nvme_async_probe_ctx.
5184 			 */
5185 			populate_namespaces_cb(ctx, 0, -EIO);
5186 		} else if (ctx->namespaces_populated) {
5187 			/* The namespaces for the attached controller were all
5188 			 * populated and the response was already sent to the
5189 			 * caller (usually the RPC).  So free the context here.
5190 			 */
5191 			free(ctx);
5192 		}
5193 	}
5194 
5195 	return SPDK_POLLER_BUSY;
5196 }
5197 
5198 static bool
5199 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5200 		uint32_t reconnect_delay_sec,
5201 		uint32_t fast_io_fail_timeout_sec)
5202 {
5203 	if (ctrlr_loss_timeout_sec < -1) {
5204 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
5205 		return false;
5206 	} else if (ctrlr_loss_timeout_sec == -1) {
5207 		if (reconnect_delay_sec == 0) {
5208 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
5209 			return false;
5210 		} else if (fast_io_fail_timeout_sec != 0 &&
5211 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
5212 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
5213 			return false;
5214 		}
5215 	} else if (ctrlr_loss_timeout_sec != 0) {
5216 		if (reconnect_delay_sec == 0) {
5217 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
5218 			return false;
5219 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
5220 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
5221 			return false;
5222 		} else if (fast_io_fail_timeout_sec != 0) {
5223 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
5224 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
5225 				return false;
5226 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
5227 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
5228 				return false;
5229 			}
5230 		}
5231 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
5232 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
5233 		return false;
5234 	}
5235 
5236 	return true;
5237 }
5238 
5239 int
5240 bdev_nvme_create(struct spdk_nvme_transport_id *trid,
5241 		 const char *base_name,
5242 		 const char **names,
5243 		 uint32_t count,
5244 		 spdk_bdev_create_nvme_fn cb_fn,
5245 		 void *cb_ctx,
5246 		 struct spdk_nvme_ctrlr_opts *drv_opts,
5247 		 struct nvme_ctrlr_opts *bdev_opts,
5248 		 bool multipath)
5249 {
5250 	struct nvme_probe_skip_entry	*entry, *tmp;
5251 	struct nvme_async_probe_ctx	*ctx;
5252 	spdk_nvme_attach_cb attach_cb;
5253 
5254 	/* TODO expand this check to include both the host and target TRIDs.
5255 	 * Only if both are the same should we fail.
5256 	 */
5257 	if (nvme_ctrlr_get(trid) != NULL) {
5258 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr);
5259 		return -EEXIST;
5260 	}
5261 
5262 	if (bdev_opts != NULL &&
5263 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
5264 			    bdev_opts->reconnect_delay_sec,
5265 			    bdev_opts->fast_io_fail_timeout_sec)) {
5266 		return -EINVAL;
5267 	}
5268 
5269 	ctx = calloc(1, sizeof(*ctx));
5270 	if (!ctx) {
5271 		return -ENOMEM;
5272 	}
5273 	ctx->base_name = base_name;
5274 	ctx->names = names;
5275 	ctx->count = count;
5276 	ctx->cb_fn = cb_fn;
5277 	ctx->cb_ctx = cb_ctx;
5278 	ctx->trid = *trid;
5279 
5280 	if (bdev_opts) {
5281 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
5282 	} else {
5283 		bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
5284 	}
5285 
5286 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
5287 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
5288 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
5289 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
5290 				free(entry);
5291 				break;
5292 			}
5293 		}
5294 	}
5295 
5296 	if (drv_opts) {
5297 		memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
5298 	} else {
5299 		spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->drv_opts, sizeof(ctx->drv_opts));
5300 	}
5301 
5302 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
5303 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
5304 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
5305 	ctx->drv_opts.disable_read_ana_log_page = true;
5306 	ctx->drv_opts.transport_tos = g_opts.transport_tos;
5307 
5308 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) {
5309 		attach_cb = connect_attach_cb;
5310 	} else {
5311 		attach_cb = connect_set_failover_cb;
5312 	}
5313 
5314 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
5315 	if (ctx->probe_ctx == NULL) {
5316 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
5317 		free(ctx);
5318 		return -ENODEV;
5319 	}
5320 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
5321 
5322 	return 0;
5323 }
5324 
5325 static bool
5326 nvme_path_should_delete(struct nvme_path_id *p, const struct nvme_path_id *path_id)
5327 {
5328 	if (path_id->trid.trtype != 0) {
5329 		if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
5330 			if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
5331 				return false;
5332 			}
5333 		} else {
5334 			if (path_id->trid.trtype != p->trid.trtype) {
5335 				return false;
5336 			}
5337 		}
5338 	}
5339 
5340 	if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
5341 		if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
5342 			return false;
5343 		}
5344 	}
5345 
5346 	if (path_id->trid.adrfam != 0) {
5347 		if (path_id->trid.adrfam != p->trid.adrfam) {
5348 			return false;
5349 		}
5350 	}
5351 
5352 	if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
5353 		if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
5354 			return false;
5355 		}
5356 	}
5357 
5358 	if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
5359 		if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
5360 			return false;
5361 		}
5362 	}
5363 
5364 	if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
5365 		if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
5366 			return false;
5367 		}
5368 	}
5369 
5370 	if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
5371 		if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
5372 			return false;
5373 		}
5374 	}
5375 
5376 	return true;
5377 }
5378 
5379 static int
5380 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, const struct nvme_path_id *path_id)
5381 {
5382 	struct nvme_path_id	*p, *t;
5383 	spdk_msg_fn		msg_fn;
5384 	int			rc = -ENXIO;
5385 
5386 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5387 
5388 	TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
5389 		if (p == TAILQ_FIRST(&nvme_ctrlr->trids)) {
5390 			break;
5391 		}
5392 
5393 		if (!nvme_path_should_delete(p, path_id)) {
5394 			continue;
5395 		}
5396 
5397 		/* We are not using the specified path. */
5398 		TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
5399 		free(p);
5400 		rc = 0;
5401 	}
5402 
5403 	if (p == NULL || !nvme_path_should_delete(p, path_id)) {
5404 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
5405 		return rc;
5406 	}
5407 
5408 	/* If we made it here, then this path is a match! Now we need to remove it. */
5409 
5410 	/* This is the active path in use right now. The active path is always the first in the list. */
5411 	assert(p == nvme_ctrlr->active_path_id);
5412 
5413 	if (!TAILQ_NEXT(p, link)) {
5414 		/* The current path is the only path. */
5415 		msg_fn = _nvme_ctrlr_destruct;
5416 		rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, false);
5417 	} else {
5418 		/* There is an alternative path. */
5419 		msg_fn = _bdev_nvme_reset;
5420 		rc = bdev_nvme_failover_unsafe(nvme_ctrlr, true);
5421 	}
5422 
5423 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5424 
5425 	if (rc == 0) {
5426 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
5427 	} else if (rc == -EALREADY) {
5428 		rc = 0;
5429 	}
5430 
5431 	return rc;
5432 }
5433 
5434 int
5435 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id)
5436 {
5437 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
5438 	struct nvme_ctrlr	*nvme_ctrlr, *tmp_nvme_ctrlr;
5439 	int			rc = -ENXIO, _rc;
5440 
5441 	if (name == NULL || path_id == NULL) {
5442 		return -EINVAL;
5443 	}
5444 
5445 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5446 
5447 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
5448 	if (nbdev_ctrlr == NULL) {
5449 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
5450 
5451 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
5452 		return -ENODEV;
5453 	}
5454 
5455 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
5456 		_rc = _bdev_nvme_delete(nvme_ctrlr, path_id);
5457 		if (_rc < 0 && _rc != -ENXIO) {
5458 			pthread_mutex_unlock(&g_bdev_nvme_mutex);
5459 
5460 			return _rc;
5461 		} else if (_rc == 0) {
5462 			/* We traverse all remaining nvme_ctrlrs even if one nvme_ctrlr
5463 			 * was deleted successfully. To remember the successful deletion,
5464 			 * overwrite rc only if _rc is zero.
5465 			 */
5466 			rc = 0;
5467 		}
5468 	}
5469 
5470 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5471 
5472 	/* All nvme_ctrlrs were deleted or no nvme_ctrlr which had the trid was found. */
5473 	return rc;
5474 }
5475 
5476 #define DISCOVERY_INFOLOG(ctx, format, ...) \
5477 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
5478 
5479 #define DISCOVERY_ERRLOG(ctx, format, ...) \
5480 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
5481 
5482 struct discovery_entry_ctx {
5483 	char						name[128];
5484 	struct spdk_nvme_transport_id			trid;
5485 	struct spdk_nvme_ctrlr_opts			drv_opts;
5486 	struct spdk_nvmf_discovery_log_page_entry	entry;
5487 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
5488 	struct discovery_ctx				*ctx;
5489 };
5490 
5491 struct discovery_ctx {
5492 	char					*name;
5493 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
5494 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
5495 	void					*cb_ctx;
5496 	struct spdk_nvme_probe_ctx		*probe_ctx;
5497 	struct spdk_nvme_detach_ctx		*detach_ctx;
5498 	struct spdk_nvme_ctrlr			*ctrlr;
5499 	struct spdk_nvme_transport_id		trid;
5500 	struct discovery_entry_ctx		*entry_ctx_in_use;
5501 	struct spdk_poller			*poller;
5502 	struct spdk_nvme_ctrlr_opts		drv_opts;
5503 	struct nvme_ctrlr_opts			bdev_opts;
5504 	struct spdk_nvmf_discovery_log_page	*log_page;
5505 	TAILQ_ENTRY(discovery_ctx)		tailq;
5506 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
5507 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
5508 	int					rc;
5509 	bool					wait_for_attach;
5510 	uint64_t				timeout_ticks;
5511 	/* Denotes that the discovery service is being started. We're waiting
5512 	 * for the initial connection to the discovery controller to be
5513 	 * established and attach discovered NVM ctrlrs.
5514 	 */
5515 	bool					initializing;
5516 	/* Denotes if a discovery is currently in progress for this context.
5517 	 * That includes connecting to newly discovered subsystems.  Used to
5518 	 * ensure we do not start a new discovery until an existing one is
5519 	 * complete.
5520 	 */
5521 	bool					in_progress;
5522 
5523 	/* Denotes if another discovery is needed after the one in progress
5524 	 * completes.  Set when we receive an AER completion while a discovery
5525 	 * is already in progress.
5526 	 */
5527 	bool					pending;
5528 
5529 	/* Signal to the discovery context poller that it should stop the
5530 	 * discovery service, including detaching from the current discovery
5531 	 * controller.
5532 	 */
5533 	bool					stop;
5534 
5535 	struct spdk_thread			*calling_thread;
5536 	uint32_t				index;
5537 	uint32_t				attach_in_progress;
5538 	char					*hostnqn;
5539 
5540 	/* Denotes if the discovery service was started by the mdns discovery.
5541 	 */
5542 	bool					from_mdns_discovery_service;
5543 };
5544 
5545 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
5546 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
5547 
5548 static void get_discovery_log_page(struct discovery_ctx *ctx);
5549 
5550 static void
5551 free_discovery_ctx(struct discovery_ctx *ctx)
5552 {
5553 	free(ctx->log_page);
5554 	free(ctx->hostnqn);
5555 	free(ctx->name);
5556 	free(ctx);
5557 }
5558 
5559 static void
5560 discovery_complete(struct discovery_ctx *ctx)
5561 {
5562 	ctx->initializing = false;
5563 	ctx->in_progress = false;
5564 	if (ctx->pending) {
5565 		ctx->pending = false;
5566 		get_discovery_log_page(ctx);
5567 	}
5568 }
5569 
5570 static void
5571 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
5572 			       struct spdk_nvmf_discovery_log_page_entry *entry)
5573 {
5574 	char *space;
5575 
5576 	trid->trtype = entry->trtype;
5577 	trid->adrfam = entry->adrfam;
5578 	memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr));
5579 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid));
5580 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn));
5581 
5582 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
5583 	 * But the log page entries typically pad them with spaces, not zeroes.
5584 	 * So add a NULL terminator to each of these fields at the appropriate
5585 	 * location.
5586 	 */
5587 	space = strchr(trid->traddr, ' ');
5588 	if (space) {
5589 		*space = 0;
5590 	}
5591 	space = strchr(trid->trsvcid, ' ');
5592 	if (space) {
5593 		*space = 0;
5594 	}
5595 	space = strchr(trid->subnqn, ' ');
5596 	if (space) {
5597 		*space = 0;
5598 	}
5599 }
5600 
5601 static void
5602 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
5603 {
5604 	ctx->stop = true;
5605 	ctx->stop_cb_fn = cb_fn;
5606 	ctx->cb_ctx = cb_ctx;
5607 
5608 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
5609 		struct discovery_entry_ctx *entry_ctx;
5610 		struct nvme_path_id path = {};
5611 
5612 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
5613 		path.trid = entry_ctx->trid;
5614 		bdev_nvme_delete(entry_ctx->name, &path);
5615 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
5616 		free(entry_ctx);
5617 	}
5618 
5619 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
5620 		struct discovery_entry_ctx *entry_ctx;
5621 
5622 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
5623 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
5624 		free(entry_ctx);
5625 	}
5626 
5627 	free(ctx->entry_ctx_in_use);
5628 	ctx->entry_ctx_in_use = NULL;
5629 }
5630 
5631 static void
5632 discovery_remove_controllers(struct discovery_ctx *ctx)
5633 {
5634 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
5635 	struct discovery_entry_ctx *entry_ctx, *tmp;
5636 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
5637 	struct spdk_nvme_transport_id old_trid;
5638 	uint64_t numrec, i;
5639 	bool found;
5640 
5641 	numrec = from_le64(&log_page->numrec);
5642 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
5643 		found = false;
5644 		old_entry = &entry_ctx->entry;
5645 		build_trid_from_log_page_entry(&old_trid, old_entry);
5646 		for (i = 0; i < numrec; i++) {
5647 			new_entry = &log_page->entries[i];
5648 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
5649 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
5650 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
5651 				found = true;
5652 				break;
5653 			}
5654 		}
5655 		if (!found) {
5656 			struct nvme_path_id path = {};
5657 
5658 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
5659 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
5660 
5661 			path.trid = entry_ctx->trid;
5662 			bdev_nvme_delete(entry_ctx->name, &path);
5663 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
5664 			free(entry_ctx);
5665 		}
5666 	}
5667 	free(log_page);
5668 	ctx->log_page = NULL;
5669 	discovery_complete(ctx);
5670 }
5671 
5672 static void
5673 complete_discovery_start(struct discovery_ctx *ctx, int status)
5674 {
5675 	ctx->timeout_ticks = 0;
5676 	ctx->rc = status;
5677 	if (ctx->start_cb_fn) {
5678 		ctx->start_cb_fn(ctx->cb_ctx, status);
5679 		ctx->start_cb_fn = NULL;
5680 		ctx->cb_ctx = NULL;
5681 	}
5682 }
5683 
5684 static void
5685 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
5686 {
5687 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
5688 	struct discovery_ctx *ctx = entry_ctx->ctx;
5689 
5690 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
5691 	ctx->attach_in_progress--;
5692 	if (ctx->attach_in_progress == 0) {
5693 		complete_discovery_start(ctx, ctx->rc);
5694 		if (ctx->initializing && ctx->rc != 0) {
5695 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
5696 			stop_discovery(ctx, NULL, ctx->cb_ctx);
5697 		} else {
5698 			discovery_remove_controllers(ctx);
5699 		}
5700 	}
5701 }
5702 
5703 static struct discovery_entry_ctx *
5704 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
5705 {
5706 	struct discovery_entry_ctx *new_ctx;
5707 
5708 	new_ctx = calloc(1, sizeof(*new_ctx));
5709 	if (new_ctx == NULL) {
5710 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
5711 		return NULL;
5712 	}
5713 
5714 	new_ctx->ctx = ctx;
5715 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
5716 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
5717 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
5718 	return new_ctx;
5719 }
5720 
5721 static void
5722 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
5723 		      struct spdk_nvmf_discovery_log_page *log_page)
5724 {
5725 	struct discovery_ctx *ctx = cb_arg;
5726 	struct discovery_entry_ctx *entry_ctx, *tmp;
5727 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
5728 	uint64_t numrec, i;
5729 	bool found;
5730 
5731 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
5732 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
5733 		return;
5734 	}
5735 
5736 	ctx->log_page = log_page;
5737 	assert(ctx->attach_in_progress == 0);
5738 	numrec = from_le64(&log_page->numrec);
5739 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
5740 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
5741 		free(entry_ctx);
5742 	}
5743 	for (i = 0; i < numrec; i++) {
5744 		found = false;
5745 		new_entry = &log_page->entries[i];
5746 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
5747 			struct discovery_entry_ctx *new_ctx;
5748 			struct spdk_nvme_transport_id trid = {};
5749 
5750 			build_trid_from_log_page_entry(&trid, new_entry);
5751 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
5752 			if (new_ctx == NULL) {
5753 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
5754 				break;
5755 			}
5756 
5757 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
5758 			continue;
5759 		}
5760 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
5761 			old_entry = &entry_ctx->entry;
5762 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
5763 				found = true;
5764 				break;
5765 			}
5766 		}
5767 		if (!found) {
5768 			struct discovery_entry_ctx *subnqn_ctx = NULL, *new_ctx;
5769 			struct discovery_ctx *d_ctx;
5770 
5771 			TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
5772 				TAILQ_FOREACH(subnqn_ctx, &d_ctx->nvm_entry_ctxs, tailq) {
5773 					if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
5774 						    sizeof(new_entry->subnqn))) {
5775 						break;
5776 					}
5777 				}
5778 				if (subnqn_ctx) {
5779 					break;
5780 				}
5781 			}
5782 
5783 			new_ctx = calloc(1, sizeof(*new_ctx));
5784 			if (new_ctx == NULL) {
5785 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
5786 				break;
5787 			}
5788 
5789 			new_ctx->ctx = ctx;
5790 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
5791 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
5792 			if (subnqn_ctx) {
5793 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
5794 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
5795 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
5796 						  new_ctx->name);
5797 			} else {
5798 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
5799 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
5800 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
5801 						  new_ctx->name);
5802 			}
5803 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
5804 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
5805 			rc = bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
5806 					      discovery_attach_controller_done, new_ctx,
5807 					      &new_ctx->drv_opts, &ctx->bdev_opts, true);
5808 			if (rc == 0) {
5809 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
5810 				ctx->attach_in_progress++;
5811 			} else {
5812 				DISCOVERY_ERRLOG(ctx, "bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
5813 			}
5814 		}
5815 	}
5816 
5817 	if (ctx->attach_in_progress == 0) {
5818 		discovery_remove_controllers(ctx);
5819 	}
5820 }
5821 
5822 static void
5823 get_discovery_log_page(struct discovery_ctx *ctx)
5824 {
5825 	int rc;
5826 
5827 	assert(ctx->in_progress == false);
5828 	ctx->in_progress = true;
5829 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
5830 	if (rc != 0) {
5831 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
5832 	}
5833 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
5834 }
5835 
5836 static void
5837 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5838 {
5839 	struct discovery_ctx *ctx = arg;
5840 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
5841 
5842 	if (spdk_nvme_cpl_is_error(cpl)) {
5843 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
5844 		return;
5845 	}
5846 
5847 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
5848 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
5849 		return;
5850 	}
5851 
5852 	DISCOVERY_INFOLOG(ctx, "got aer\n");
5853 	if (ctx->in_progress) {
5854 		ctx->pending = true;
5855 		return;
5856 	}
5857 
5858 	get_discovery_log_page(ctx);
5859 }
5860 
5861 static void
5862 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5863 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
5864 {
5865 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5866 	struct discovery_ctx *ctx;
5867 
5868 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
5869 
5870 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
5871 	ctx->probe_ctx = NULL;
5872 	ctx->ctrlr = ctrlr;
5873 
5874 	if (ctx->rc != 0) {
5875 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
5876 				 ctx->rc);
5877 		return;
5878 	}
5879 
5880 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
5881 }
5882 
5883 static int
5884 discovery_poller(void *arg)
5885 {
5886 	struct discovery_ctx *ctx = arg;
5887 	struct spdk_nvme_transport_id *trid;
5888 	int rc;
5889 
5890 	if (ctx->detach_ctx) {
5891 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
5892 		if (rc != -EAGAIN) {
5893 			ctx->detach_ctx = NULL;
5894 			ctx->ctrlr = NULL;
5895 		}
5896 	} else if (ctx->stop) {
5897 		if (ctx->ctrlr != NULL) {
5898 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
5899 			if (rc == 0) {
5900 				return SPDK_POLLER_BUSY;
5901 			}
5902 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
5903 		}
5904 		spdk_poller_unregister(&ctx->poller);
5905 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
5906 		assert(ctx->start_cb_fn == NULL);
5907 		if (ctx->stop_cb_fn != NULL) {
5908 			ctx->stop_cb_fn(ctx->cb_ctx);
5909 		}
5910 		free_discovery_ctx(ctx);
5911 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
5912 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
5913 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
5914 			assert(ctx->initializing);
5915 			spdk_poller_unregister(&ctx->poller);
5916 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
5917 			complete_discovery_start(ctx, -ETIMEDOUT);
5918 			stop_discovery(ctx, NULL, NULL);
5919 			free_discovery_ctx(ctx);
5920 			return SPDK_POLLER_BUSY;
5921 		}
5922 
5923 		assert(ctx->entry_ctx_in_use == NULL);
5924 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
5925 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
5926 		trid = &ctx->entry_ctx_in_use->trid;
5927 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
5928 		if (ctx->probe_ctx) {
5929 			spdk_poller_unregister(&ctx->poller);
5930 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
5931 		} else {
5932 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
5933 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
5934 			ctx->entry_ctx_in_use = NULL;
5935 		}
5936 	} else if (ctx->probe_ctx) {
5937 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
5938 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
5939 			complete_discovery_start(ctx, -ETIMEDOUT);
5940 			return SPDK_POLLER_BUSY;
5941 		}
5942 
5943 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
5944 		if (rc != -EAGAIN) {
5945 			if (ctx->rc != 0) {
5946 				assert(ctx->initializing);
5947 				stop_discovery(ctx, NULL, ctx->cb_ctx);
5948 			} else {
5949 				assert(rc == 0);
5950 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
5951 				ctx->rc = rc;
5952 				get_discovery_log_page(ctx);
5953 			}
5954 		}
5955 	} else {
5956 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
5957 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
5958 			complete_discovery_start(ctx, -ETIMEDOUT);
5959 			/* We need to wait until all NVM ctrlrs are attached before we stop the
5960 			 * discovery service to make sure we don't detach a ctrlr that is still
5961 			 * being attached.
5962 			 */
5963 			if (ctx->attach_in_progress == 0) {
5964 				stop_discovery(ctx, NULL, ctx->cb_ctx);
5965 				return SPDK_POLLER_BUSY;
5966 			}
5967 		}
5968 
5969 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
5970 		if (rc < 0) {
5971 			spdk_poller_unregister(&ctx->poller);
5972 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
5973 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
5974 			ctx->entry_ctx_in_use = NULL;
5975 
5976 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
5977 			if (rc != 0) {
5978 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
5979 				ctx->ctrlr = NULL;
5980 			}
5981 		}
5982 	}
5983 
5984 	return SPDK_POLLER_BUSY;
5985 }
5986 
5987 static void
5988 start_discovery_poller(void *arg)
5989 {
5990 	struct discovery_ctx *ctx = arg;
5991 
5992 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
5993 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
5994 }
5995 
5996 int
5997 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
5998 			  const char *base_name,
5999 			  struct spdk_nvme_ctrlr_opts *drv_opts,
6000 			  struct nvme_ctrlr_opts *bdev_opts,
6001 			  uint64_t attach_timeout,
6002 			  bool from_mdns,
6003 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
6004 {
6005 	struct discovery_ctx *ctx;
6006 	struct discovery_entry_ctx *discovery_entry_ctx;
6007 
6008 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
6009 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6010 		if (strcmp(ctx->name, base_name) == 0) {
6011 			return -EEXIST;
6012 		}
6013 
6014 		if (ctx->entry_ctx_in_use != NULL) {
6015 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
6016 				return -EEXIST;
6017 			}
6018 		}
6019 
6020 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
6021 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
6022 				return -EEXIST;
6023 			}
6024 		}
6025 	}
6026 
6027 	ctx = calloc(1, sizeof(*ctx));
6028 	if (ctx == NULL) {
6029 		return -ENOMEM;
6030 	}
6031 
6032 	ctx->name = strdup(base_name);
6033 	if (ctx->name == NULL) {
6034 		free_discovery_ctx(ctx);
6035 		return -ENOMEM;
6036 	}
6037 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
6038 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
6039 	ctx->from_mdns_discovery_service = from_mdns;
6040 	ctx->bdev_opts.from_discovery_service = true;
6041 	ctx->calling_thread = spdk_get_thread();
6042 	ctx->start_cb_fn = cb_fn;
6043 	ctx->cb_ctx = cb_ctx;
6044 	ctx->initializing = true;
6045 	if (ctx->start_cb_fn) {
6046 		/* We can use this when dumping json to denote if this RPC parameter
6047 		 * was specified or not.
6048 		 */
6049 		ctx->wait_for_attach = true;
6050 	}
6051 	if (attach_timeout != 0) {
6052 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
6053 				     spdk_get_ticks_hz() / 1000ull;
6054 	}
6055 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
6056 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
6057 	memcpy(&ctx->trid, trid, sizeof(*trid));
6058 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
6059 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
6060 	if (ctx->hostnqn == NULL) {
6061 		free_discovery_ctx(ctx);
6062 		return -ENOMEM;
6063 	}
6064 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
6065 	if (discovery_entry_ctx == NULL) {
6066 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6067 		free_discovery_ctx(ctx);
6068 		return -ENOMEM;
6069 	}
6070 
6071 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
6072 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
6073 	return 0;
6074 }
6075 
6076 int
6077 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
6078 {
6079 	struct discovery_ctx *ctx;
6080 
6081 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6082 		if (strcmp(name, ctx->name) == 0) {
6083 			if (ctx->stop) {
6084 				return -EALREADY;
6085 			}
6086 			/* If we're still starting the discovery service and ->rc is non-zero, we're
6087 			 * going to stop it as soon as we can
6088 			 */
6089 			if (ctx->initializing && ctx->rc != 0) {
6090 				return -EALREADY;
6091 			}
6092 			stop_discovery(ctx, cb_fn, cb_ctx);
6093 			return 0;
6094 		}
6095 	}
6096 
6097 	return -ENOENT;
6098 }
6099 
6100 static int
6101 bdev_nvme_library_init(void)
6102 {
6103 	g_bdev_nvme_init_thread = spdk_get_thread();
6104 
6105 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
6106 				bdev_nvme_destroy_poll_group_cb,
6107 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
6108 
6109 	return 0;
6110 }
6111 
6112 static void
6113 bdev_nvme_fini_destruct_ctrlrs(void)
6114 {
6115 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
6116 	struct nvme_ctrlr *nvme_ctrlr;
6117 
6118 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6119 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
6120 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6121 			pthread_mutex_lock(&nvme_ctrlr->mutex);
6122 			if (nvme_ctrlr->destruct) {
6123 				/* This controller's destruction was already started
6124 				 * before the application started shutting down
6125 				 */
6126 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
6127 				continue;
6128 			}
6129 			nvme_ctrlr->destruct = true;
6130 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
6131 
6132 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
6133 					     nvme_ctrlr);
6134 		}
6135 	}
6136 
6137 	g_bdev_nvme_module_finish = true;
6138 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
6139 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6140 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
6141 		spdk_bdev_module_fini_done();
6142 		return;
6143 	}
6144 
6145 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6146 }
6147 
6148 static void
6149 check_discovery_fini(void *arg)
6150 {
6151 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
6152 		bdev_nvme_fini_destruct_ctrlrs();
6153 	}
6154 }
6155 
6156 static void
6157 bdev_nvme_library_fini(void)
6158 {
6159 	struct nvme_probe_skip_entry *entry, *entry_tmp;
6160 	struct discovery_ctx *ctx;
6161 
6162 	spdk_poller_unregister(&g_hotplug_poller);
6163 	free(g_hotplug_probe_ctx);
6164 	g_hotplug_probe_ctx = NULL;
6165 
6166 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
6167 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
6168 		free(entry);
6169 	}
6170 
6171 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
6172 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
6173 		bdev_nvme_fini_destruct_ctrlrs();
6174 	} else {
6175 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6176 			stop_discovery(ctx, check_discovery_fini, NULL);
6177 		}
6178 	}
6179 }
6180 
6181 static void
6182 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
6183 {
6184 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6185 	struct spdk_bdev *bdev = bdev_io->bdev;
6186 	struct spdk_dif_ctx dif_ctx;
6187 	struct spdk_dif_error err_blk = {};
6188 	int rc;
6189 
6190 	rc = spdk_dif_ctx_init(&dif_ctx,
6191 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
6192 			       bdev->dif_is_head_of_md, bdev->dif_type, bdev->dif_check_flags,
6193 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0);
6194 	if (rc != 0) {
6195 		SPDK_ERRLOG("Initialization of DIF context failed\n");
6196 		return;
6197 	}
6198 
6199 	if (bdev->md_interleave) {
6200 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
6201 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
6202 	} else {
6203 		struct iovec md_iov = {
6204 			.iov_base	= bdev_io->u.bdev.md_buf,
6205 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
6206 		};
6207 
6208 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
6209 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
6210 	}
6211 
6212 	if (rc != 0) {
6213 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
6214 			    err_blk.err_type, err_blk.err_offset);
6215 	} else {
6216 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
6217 	}
6218 }
6219 
6220 static void
6221 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
6222 {
6223 	struct nvme_bdev_io *bio = ref;
6224 
6225 	if (spdk_nvme_cpl_is_success(cpl)) {
6226 		/* Run PI verification for read data buffer. */
6227 		bdev_nvme_verify_pi_error(bio);
6228 	}
6229 
6230 	/* Return original completion status */
6231 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
6232 }
6233 
6234 static void
6235 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
6236 {
6237 	struct nvme_bdev_io *bio = ref;
6238 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6239 	int ret;
6240 
6241 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
6242 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
6243 			    cpl->status.sct, cpl->status.sc);
6244 
6245 		/* Save completion status to use after verifying PI error. */
6246 		bio->cpl = *cpl;
6247 
6248 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
6249 			/* Read without PI checking to verify PI error. */
6250 			ret = bdev_nvme_no_pi_readv(bio,
6251 						    bdev_io->u.bdev.iovs,
6252 						    bdev_io->u.bdev.iovcnt,
6253 						    bdev_io->u.bdev.md_buf,
6254 						    bdev_io->u.bdev.num_blocks,
6255 						    bdev_io->u.bdev.offset_blocks);
6256 			if (ret == 0) {
6257 				return;
6258 			}
6259 		}
6260 	}
6261 
6262 	bdev_nvme_io_complete_nvme_status(bio, cpl);
6263 }
6264 
6265 static void
6266 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
6267 {
6268 	struct nvme_bdev_io *bio = ref;
6269 
6270 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
6271 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
6272 			    cpl->status.sct, cpl->status.sc);
6273 		/* Run PI verification for write data buffer if PI error is detected. */
6274 		bdev_nvme_verify_pi_error(bio);
6275 	}
6276 
6277 	bdev_nvme_io_complete_nvme_status(bio, cpl);
6278 }
6279 
6280 static void
6281 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
6282 {
6283 	struct nvme_bdev_io *bio = ref;
6284 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6285 
6286 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
6287 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
6288 	 */
6289 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
6290 
6291 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
6292 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
6293 			    cpl->status.sct, cpl->status.sc);
6294 		/* Run PI verification for zone append data buffer if PI error is detected. */
6295 		bdev_nvme_verify_pi_error(bio);
6296 	}
6297 
6298 	bdev_nvme_io_complete_nvme_status(bio, cpl);
6299 }
6300 
6301 static void
6302 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
6303 {
6304 	struct nvme_bdev_io *bio = ref;
6305 
6306 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
6307 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
6308 			    cpl->status.sct, cpl->status.sc);
6309 		/* Run PI verification for compare data buffer if PI error is detected. */
6310 		bdev_nvme_verify_pi_error(bio);
6311 	}
6312 
6313 	bdev_nvme_io_complete_nvme_status(bio, cpl);
6314 }
6315 
6316 static void
6317 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
6318 {
6319 	struct nvme_bdev_io *bio = ref;
6320 
6321 	/* Compare operation completion */
6322 	if (!bio->first_fused_completed) {
6323 		/* Save compare result for write callback */
6324 		bio->cpl = *cpl;
6325 		bio->first_fused_completed = true;
6326 		return;
6327 	}
6328 
6329 	/* Write operation completion */
6330 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
6331 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
6332 		 * complete the IO with the compare operation's status.
6333 		 */
6334 		if (!spdk_nvme_cpl_is_error(cpl)) {
6335 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
6336 		}
6337 
6338 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
6339 	} else {
6340 		bdev_nvme_io_complete_nvme_status(bio, cpl);
6341 	}
6342 }
6343 
6344 static void
6345 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
6346 {
6347 	struct nvme_bdev_io *bio = ref;
6348 
6349 	bdev_nvme_io_complete_nvme_status(bio, cpl);
6350 }
6351 
6352 static int
6353 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
6354 {
6355 	switch (desc->zt) {
6356 	case SPDK_NVME_ZONE_TYPE_SEQWR:
6357 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
6358 		break;
6359 	default:
6360 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
6361 		return -EIO;
6362 	}
6363 
6364 	switch (desc->zs) {
6365 	case SPDK_NVME_ZONE_STATE_EMPTY:
6366 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
6367 		break;
6368 	case SPDK_NVME_ZONE_STATE_IOPEN:
6369 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
6370 		break;
6371 	case SPDK_NVME_ZONE_STATE_EOPEN:
6372 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
6373 		break;
6374 	case SPDK_NVME_ZONE_STATE_CLOSED:
6375 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
6376 		break;
6377 	case SPDK_NVME_ZONE_STATE_RONLY:
6378 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
6379 		break;
6380 	case SPDK_NVME_ZONE_STATE_FULL:
6381 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
6382 		break;
6383 	case SPDK_NVME_ZONE_STATE_OFFLINE:
6384 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
6385 		break;
6386 	default:
6387 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
6388 		return -EIO;
6389 	}
6390 
6391 	info->zone_id = desc->zslba;
6392 	info->write_pointer = desc->wp;
6393 	info->capacity = desc->zcap;
6394 
6395 	return 0;
6396 }
6397 
6398 static void
6399 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
6400 {
6401 	struct nvme_bdev_io *bio = ref;
6402 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6403 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
6404 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
6405 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
6406 	uint64_t max_zones_per_buf, i;
6407 	uint32_t zone_report_bufsize;
6408 	struct spdk_nvme_ns *ns;
6409 	struct spdk_nvme_qpair *qpair;
6410 	int ret;
6411 
6412 	if (spdk_nvme_cpl_is_error(cpl)) {
6413 		goto out_complete_io_nvme_cpl;
6414 	}
6415 
6416 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
6417 		ret = -ENXIO;
6418 		goto out_complete_io_ret;
6419 	}
6420 
6421 	ns = bio->io_path->nvme_ns->ns;
6422 	qpair = bio->io_path->qpair->qpair;
6423 
6424 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
6425 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
6426 			    sizeof(bio->zone_report_buf->descs[0]);
6427 
6428 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
6429 		ret = -EINVAL;
6430 		goto out_complete_io_ret;
6431 	}
6432 
6433 	if (!bio->zone_report_buf->nr_zones) {
6434 		ret = -EINVAL;
6435 		goto out_complete_io_ret;
6436 	}
6437 
6438 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
6439 		ret = fill_zone_from_report(&info[bio->handled_zones],
6440 					    &bio->zone_report_buf->descs[i]);
6441 		if (ret) {
6442 			goto out_complete_io_ret;
6443 		}
6444 		bio->handled_zones++;
6445 	}
6446 
6447 	if (bio->handled_zones < zones_to_copy) {
6448 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
6449 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
6450 
6451 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
6452 		ret = spdk_nvme_zns_report_zones(ns, qpair,
6453 						 bio->zone_report_buf, zone_report_bufsize,
6454 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
6455 						 bdev_nvme_get_zone_info_done, bio);
6456 		if (!ret) {
6457 			return;
6458 		} else {
6459 			goto out_complete_io_ret;
6460 		}
6461 	}
6462 
6463 out_complete_io_nvme_cpl:
6464 	free(bio->zone_report_buf);
6465 	bio->zone_report_buf = NULL;
6466 	bdev_nvme_io_complete_nvme_status(bio, cpl);
6467 	return;
6468 
6469 out_complete_io_ret:
6470 	free(bio->zone_report_buf);
6471 	bio->zone_report_buf = NULL;
6472 	bdev_nvme_io_complete(bio, ret);
6473 }
6474 
6475 static void
6476 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
6477 {
6478 	struct nvme_bdev_io *bio = ref;
6479 
6480 	bdev_nvme_io_complete_nvme_status(bio, cpl);
6481 }
6482 
6483 static void
6484 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
6485 {
6486 	struct nvme_bdev_io *bio = ctx;
6487 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6488 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
6489 
6490 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
6491 
6492 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
6493 }
6494 
6495 static void
6496 bdev_nvme_abort_complete(void *ctx)
6497 {
6498 	struct nvme_bdev_io *bio = ctx;
6499 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6500 
6501 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
6502 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
6503 	} else {
6504 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
6505 	}
6506 }
6507 
6508 static void
6509 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
6510 {
6511 	struct nvme_bdev_io *bio = ref;
6512 
6513 	bio->cpl = *cpl;
6514 	spdk_thread_send_msg(bio->orig_thread, bdev_nvme_abort_complete, bio);
6515 }
6516 
6517 static void
6518 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
6519 {
6520 	struct nvme_bdev_io *bio = ref;
6521 
6522 	bio->cpl = *cpl;
6523 	spdk_thread_send_msg(bio->orig_thread,
6524 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
6525 }
6526 
6527 static void
6528 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
6529 {
6530 	struct nvme_bdev_io *bio = ref;
6531 	struct iovec *iov;
6532 
6533 	bio->iov_offset = sgl_offset;
6534 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
6535 		iov = &bio->iovs[bio->iovpos];
6536 		if (bio->iov_offset < iov->iov_len) {
6537 			break;
6538 		}
6539 
6540 		bio->iov_offset -= iov->iov_len;
6541 	}
6542 }
6543 
6544 static int
6545 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
6546 {
6547 	struct nvme_bdev_io *bio = ref;
6548 	struct iovec *iov;
6549 
6550 	assert(bio->iovpos < bio->iovcnt);
6551 
6552 	iov = &bio->iovs[bio->iovpos];
6553 
6554 	*address = iov->iov_base;
6555 	*length = iov->iov_len;
6556 
6557 	if (bio->iov_offset) {
6558 		assert(bio->iov_offset <= iov->iov_len);
6559 		*address += bio->iov_offset;
6560 		*length -= bio->iov_offset;
6561 	}
6562 
6563 	bio->iov_offset += *length;
6564 	if (bio->iov_offset == iov->iov_len) {
6565 		bio->iovpos++;
6566 		bio->iov_offset = 0;
6567 	}
6568 
6569 	return 0;
6570 }
6571 
6572 static void
6573 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
6574 {
6575 	struct nvme_bdev_io *bio = ref;
6576 	struct iovec *iov;
6577 
6578 	bio->fused_iov_offset = sgl_offset;
6579 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
6580 		iov = &bio->fused_iovs[bio->fused_iovpos];
6581 		if (bio->fused_iov_offset < iov->iov_len) {
6582 			break;
6583 		}
6584 
6585 		bio->fused_iov_offset -= iov->iov_len;
6586 	}
6587 }
6588 
6589 static int
6590 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
6591 {
6592 	struct nvme_bdev_io *bio = ref;
6593 	struct iovec *iov;
6594 
6595 	assert(bio->fused_iovpos < bio->fused_iovcnt);
6596 
6597 	iov = &bio->fused_iovs[bio->fused_iovpos];
6598 
6599 	*address = iov->iov_base;
6600 	*length = iov->iov_len;
6601 
6602 	if (bio->fused_iov_offset) {
6603 		assert(bio->fused_iov_offset <= iov->iov_len);
6604 		*address += bio->fused_iov_offset;
6605 		*length -= bio->fused_iov_offset;
6606 	}
6607 
6608 	bio->fused_iov_offset += *length;
6609 	if (bio->fused_iov_offset == iov->iov_len) {
6610 		bio->fused_iovpos++;
6611 		bio->fused_iov_offset = 0;
6612 	}
6613 
6614 	return 0;
6615 }
6616 
6617 static int
6618 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
6619 		      void *md, uint64_t lba_count, uint64_t lba)
6620 {
6621 	int rc;
6622 
6623 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
6624 		      lba_count, lba);
6625 
6626 	bio->iovs = iov;
6627 	bio->iovcnt = iovcnt;
6628 	bio->iovpos = 0;
6629 	bio->iov_offset = 0;
6630 
6631 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
6632 					    bio->io_path->qpair->qpair,
6633 					    lba, lba_count,
6634 					    bdev_nvme_no_pi_readv_done, bio, 0,
6635 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6636 					    md, 0, 0);
6637 
6638 	if (rc != 0 && rc != -ENOMEM) {
6639 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
6640 	}
6641 	return rc;
6642 }
6643 
6644 static int
6645 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
6646 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
6647 		struct spdk_memory_domain *domain, void *domain_ctx)
6648 {
6649 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6650 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6651 	int rc;
6652 
6653 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
6654 		      lba_count, lba);
6655 
6656 	bio->iovs = iov;
6657 	bio->iovcnt = iovcnt;
6658 	bio->iovpos = 0;
6659 	bio->iov_offset = 0;
6660 
6661 	if (domain != NULL) {
6662 		bio->ext_opts.size = sizeof(struct spdk_nvme_ns_cmd_ext_io_opts);
6663 		bio->ext_opts.memory_domain = domain;
6664 		bio->ext_opts.memory_domain_ctx = domain_ctx;
6665 		bio->ext_opts.io_flags = flags;
6666 		bio->ext_opts.metadata = md;
6667 
6668 		rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
6669 						bdev_nvme_readv_done, bio,
6670 						bdev_nvme_queued_reset_sgl,
6671 						bdev_nvme_queued_next_sge,
6672 						&bio->ext_opts);
6673 	} else if (iovcnt == 1) {
6674 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base,
6675 						   md, lba, lba_count, bdev_nvme_readv_done,
6676 						   bio, flags, 0, 0);
6677 	} else {
6678 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
6679 						    bdev_nvme_readv_done, bio, flags,
6680 						    bdev_nvme_queued_reset_sgl,
6681 						    bdev_nvme_queued_next_sge, md, 0, 0);
6682 	}
6683 
6684 	if (rc != 0 && rc != -ENOMEM) {
6685 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
6686 	}
6687 	return rc;
6688 }
6689 
6690 static int
6691 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
6692 		 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
6693 		 struct spdk_memory_domain *domain, void *domain_ctx)
6694 {
6695 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6696 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6697 	int rc;
6698 
6699 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
6700 		      lba_count, lba);
6701 
6702 	bio->iovs = iov;
6703 	bio->iovcnt = iovcnt;
6704 	bio->iovpos = 0;
6705 	bio->iov_offset = 0;
6706 
6707 	if (domain != NULL) {
6708 		bio->ext_opts.size = sizeof(struct spdk_nvme_ns_cmd_ext_io_opts);
6709 		bio->ext_opts.memory_domain = domain;
6710 		bio->ext_opts.memory_domain_ctx = domain_ctx;
6711 		bio->ext_opts.io_flags = flags;
6712 		bio->ext_opts.metadata = md;
6713 
6714 		rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
6715 						 bdev_nvme_writev_done, bio,
6716 						 bdev_nvme_queued_reset_sgl,
6717 						 bdev_nvme_queued_next_sge,
6718 						 &bio->ext_opts);
6719 	} else if (iovcnt == 1) {
6720 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base,
6721 						    md, lba, lba_count, bdev_nvme_writev_done,
6722 						    bio, flags, 0, 0);
6723 	} else {
6724 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
6725 						     bdev_nvme_writev_done, bio, flags,
6726 						     bdev_nvme_queued_reset_sgl,
6727 						     bdev_nvme_queued_next_sge, md, 0, 0);
6728 	}
6729 
6730 	if (rc != 0 && rc != -ENOMEM) {
6731 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
6732 	}
6733 	return rc;
6734 }
6735 
6736 static int
6737 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
6738 		       void *md, uint64_t lba_count, uint64_t zslba,
6739 		       uint32_t flags)
6740 {
6741 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6742 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6743 	int rc;
6744 
6745 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
6746 		      lba_count, zslba);
6747 
6748 	bio->iovs = iov;
6749 	bio->iovcnt = iovcnt;
6750 	bio->iovpos = 0;
6751 	bio->iov_offset = 0;
6752 
6753 	if (iovcnt == 1) {
6754 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
6755 						       lba_count,
6756 						       bdev_nvme_zone_appendv_done, bio,
6757 						       flags,
6758 						       0, 0);
6759 	} else {
6760 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
6761 							bdev_nvme_zone_appendv_done, bio, flags,
6762 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6763 							md, 0, 0);
6764 	}
6765 
6766 	if (rc != 0 && rc != -ENOMEM) {
6767 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
6768 	}
6769 	return rc;
6770 }
6771 
6772 static int
6773 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
6774 		   void *md, uint64_t lba_count, uint64_t lba,
6775 		   uint32_t flags)
6776 {
6777 	int rc;
6778 
6779 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
6780 		      lba_count, lba);
6781 
6782 	bio->iovs = iov;
6783 	bio->iovcnt = iovcnt;
6784 	bio->iovpos = 0;
6785 	bio->iov_offset = 0;
6786 
6787 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
6788 					       bio->io_path->qpair->qpair,
6789 					       lba, lba_count,
6790 					       bdev_nvme_comparev_done, bio, flags,
6791 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6792 					       md, 0, 0);
6793 
6794 	if (rc != 0 && rc != -ENOMEM) {
6795 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
6796 	}
6797 	return rc;
6798 }
6799 
6800 static int
6801 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
6802 			      struct iovec *write_iov, int write_iovcnt,
6803 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
6804 {
6805 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6806 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6807 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6808 	int rc;
6809 
6810 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
6811 		      lba_count, lba);
6812 
6813 	bio->iovs = cmp_iov;
6814 	bio->iovcnt = cmp_iovcnt;
6815 	bio->iovpos = 0;
6816 	bio->iov_offset = 0;
6817 	bio->fused_iovs = write_iov;
6818 	bio->fused_iovcnt = write_iovcnt;
6819 	bio->fused_iovpos = 0;
6820 	bio->fused_iov_offset = 0;
6821 
6822 	if (bdev_io->num_retries == 0) {
6823 		bio->first_fused_submitted = false;
6824 		bio->first_fused_completed = false;
6825 	}
6826 
6827 	if (!bio->first_fused_submitted) {
6828 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
6829 		memset(&bio->cpl, 0, sizeof(bio->cpl));
6830 
6831 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
6832 						       bdev_nvme_comparev_and_writev_done, bio, flags,
6833 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
6834 		if (rc == 0) {
6835 			bio->first_fused_submitted = true;
6836 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
6837 		} else {
6838 			if (rc != -ENOMEM) {
6839 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
6840 			}
6841 			return rc;
6842 		}
6843 	}
6844 
6845 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
6846 
6847 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
6848 					     bdev_nvme_comparev_and_writev_done, bio, flags,
6849 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
6850 	if (rc != 0 && rc != -ENOMEM) {
6851 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
6852 		rc = 0;
6853 	}
6854 
6855 	return rc;
6856 }
6857 
6858 static int
6859 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
6860 {
6861 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
6862 	struct spdk_nvme_dsm_range *range;
6863 	uint64_t offset, remaining;
6864 	uint64_t num_ranges_u64;
6865 	uint16_t num_ranges;
6866 	int rc;
6867 
6868 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
6869 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6870 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
6871 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
6872 		return -EINVAL;
6873 	}
6874 	num_ranges = (uint16_t)num_ranges_u64;
6875 
6876 	offset = offset_blocks;
6877 	remaining = num_blocks;
6878 	range = &dsm_ranges[0];
6879 
6880 	/* Fill max-size ranges until the remaining blocks fit into one range */
6881 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
6882 		range->attributes.raw = 0;
6883 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6884 		range->starting_lba = offset;
6885 
6886 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6887 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6888 		range++;
6889 	}
6890 
6891 	/* Final range describes the remaining blocks */
6892 	range->attributes.raw = 0;
6893 	range->length = remaining;
6894 	range->starting_lba = offset;
6895 
6896 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
6897 			bio->io_path->qpair->qpair,
6898 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
6899 			dsm_ranges, num_ranges,
6900 			bdev_nvme_queued_done, bio);
6901 
6902 	return rc;
6903 }
6904 
6905 static int
6906 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
6907 {
6908 	if (num_blocks > UINT16_MAX + 1) {
6909 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
6910 		return -EINVAL;
6911 	}
6912 
6913 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
6914 					     bio->io_path->qpair->qpair,
6915 					     offset_blocks, num_blocks,
6916 					     bdev_nvme_queued_done, bio,
6917 					     0);
6918 }
6919 
6920 static int
6921 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
6922 			struct spdk_bdev_zone_info *info)
6923 {
6924 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6925 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6926 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
6927 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
6928 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
6929 
6930 	if (zone_id % zone_size != 0) {
6931 		return -EINVAL;
6932 	}
6933 
6934 	if (num_zones > total_zones || !num_zones) {
6935 		return -EINVAL;
6936 	}
6937 
6938 	assert(!bio->zone_report_buf);
6939 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
6940 	if (!bio->zone_report_buf) {
6941 		return -ENOMEM;
6942 	}
6943 
6944 	bio->handled_zones = 0;
6945 
6946 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
6947 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
6948 					  bdev_nvme_get_zone_info_done, bio);
6949 }
6950 
6951 static int
6952 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
6953 			  enum spdk_bdev_zone_action action)
6954 {
6955 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6956 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6957 
6958 	switch (action) {
6959 	case SPDK_BDEV_ZONE_CLOSE:
6960 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
6961 						bdev_nvme_zone_management_done, bio);
6962 	case SPDK_BDEV_ZONE_FINISH:
6963 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
6964 						 bdev_nvme_zone_management_done, bio);
6965 	case SPDK_BDEV_ZONE_OPEN:
6966 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
6967 					       bdev_nvme_zone_management_done, bio);
6968 	case SPDK_BDEV_ZONE_RESET:
6969 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
6970 						bdev_nvme_zone_management_done, bio);
6971 	case SPDK_BDEV_ZONE_OFFLINE:
6972 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
6973 						  bdev_nvme_zone_management_done, bio);
6974 	default:
6975 		return -EINVAL;
6976 	}
6977 }
6978 
6979 static void
6980 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
6981 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
6982 {
6983 	struct nvme_io_path *io_path;
6984 	struct nvme_ctrlr *nvme_ctrlr;
6985 	uint32_t max_xfer_size;
6986 	int rc = -ENXIO;
6987 
6988 	/* Choose the first ctrlr which is not failed. */
6989 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
6990 		nvme_ctrlr = io_path->qpair->ctrlr;
6991 
6992 		/* We should skip any unavailable nvme_ctrlr rather than checking
6993 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
6994 		 */
6995 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
6996 			continue;
6997 		}
6998 
6999 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
7000 
7001 		if (nbytes > max_xfer_size) {
7002 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
7003 			rc = -EINVAL;
7004 			goto err;
7005 		}
7006 
7007 		bio->io_path = io_path;
7008 		bio->orig_thread = spdk_get_thread();
7009 
7010 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
7011 						   bdev_nvme_admin_passthru_done, bio);
7012 		if (rc == 0) {
7013 			return;
7014 		}
7015 	}
7016 
7017 err:
7018 	bdev_nvme_admin_passthru_complete(bio, rc);
7019 }
7020 
7021 static int
7022 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
7023 		      void *buf, size_t nbytes)
7024 {
7025 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7026 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7027 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
7028 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
7029 
7030 	if (nbytes > max_xfer_size) {
7031 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
7032 		return -EINVAL;
7033 	}
7034 
7035 	/*
7036 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
7037 	 * so fill it out automatically.
7038 	 */
7039 	cmd->nsid = spdk_nvme_ns_get_id(ns);
7040 
7041 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
7042 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
7043 }
7044 
7045 static int
7046 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
7047 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
7048 {
7049 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7050 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7051 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
7052 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
7053 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
7054 
7055 	if (nbytes > max_xfer_size) {
7056 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
7057 		return -EINVAL;
7058 	}
7059 
7060 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
7061 		SPDK_ERRLOG("invalid meta data buffer size\n");
7062 		return -EINVAL;
7063 	}
7064 
7065 	/*
7066 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
7067 	 * so fill it out automatically.
7068 	 */
7069 	cmd->nsid = spdk_nvme_ns_get_id(ns);
7070 
7071 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
7072 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
7073 }
7074 
7075 static void
7076 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
7077 		struct nvme_bdev_io *bio_to_abort)
7078 {
7079 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7080 	struct nvme_io_path *io_path;
7081 	struct nvme_ctrlr *nvme_ctrlr;
7082 	int rc = 0;
7083 
7084 	bio->orig_thread = spdk_get_thread();
7085 
7086 	rc = bdev_nvme_abort_retry_io(nbdev_ch, bio_to_abort);
7087 	if (rc == 0) {
7088 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
7089 		return;
7090 	}
7091 
7092 	rc = 0;
7093 
7094 	/* Even admin commands, they were submitted to only nvme_ctrlrs which were
7095 	 * on any io_path. So traverse the io_path list for not only I/O commands
7096 	 * but also admin commands.
7097 	 */
7098 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
7099 		nvme_ctrlr = io_path->qpair->ctrlr;
7100 
7101 		rc = spdk_nvme_ctrlr_cmd_abort_ext(nvme_ctrlr->ctrlr,
7102 						   io_path->qpair->qpair,
7103 						   bio_to_abort,
7104 						   bdev_nvme_abort_done, bio);
7105 		if (rc == -ENOENT) {
7106 			/* If no command was found in I/O qpair, the target command may be
7107 			 * admin command.
7108 			 */
7109 			rc = spdk_nvme_ctrlr_cmd_abort_ext(nvme_ctrlr->ctrlr,
7110 							   NULL,
7111 							   bio_to_abort,
7112 							   bdev_nvme_abort_done, bio);
7113 		}
7114 
7115 		if (rc != -ENOENT) {
7116 			break;
7117 		}
7118 	}
7119 
7120 	if (rc != 0) {
7121 		/* If no command was found or there was any error, complete the abort
7122 		 * request with failure.
7123 		 */
7124 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
7125 	}
7126 }
7127 
7128 static int
7129 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks,
7130 	       uint64_t num_blocks)
7131 {
7132 	struct spdk_nvme_scc_source_range range = {
7133 		.slba = src_offset_blocks,
7134 		.nlb = num_blocks - 1
7135 	};
7136 
7137 	return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns,
7138 				     bio->io_path->qpair->qpair,
7139 				     &range, 1, dst_offset_blocks,
7140 				     bdev_nvme_queued_done, bio);
7141 }
7142 
7143 static void
7144 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
7145 {
7146 	const char	*action;
7147 
7148 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
7149 		action = "reset";
7150 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
7151 		action = "abort";
7152 	} else {
7153 		action = "none";
7154 	}
7155 
7156 	spdk_json_write_object_begin(w);
7157 
7158 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
7159 
7160 	spdk_json_write_named_object_begin(w, "params");
7161 	spdk_json_write_named_string(w, "action_on_timeout", action);
7162 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
7163 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
7164 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
7165 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
7166 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
7167 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
7168 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
7169 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
7170 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
7171 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
7172 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
7173 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
7174 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
7175 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
7176 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
7177 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
7178 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
7179 	spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids);
7180 	spdk_json_write_named_uint8(w, "transport_tos", g_opts.transport_tos);
7181 	spdk_json_write_named_bool(w, "io_path_stat", g_opts.io_path_stat);
7182 	spdk_json_write_object_end(w);
7183 
7184 	spdk_json_write_object_end(w);
7185 }
7186 
7187 static void
7188 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
7189 {
7190 	struct spdk_nvme_transport_id trid;
7191 
7192 	spdk_json_write_object_begin(w);
7193 
7194 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
7195 
7196 	spdk_json_write_named_object_begin(w, "params");
7197 	spdk_json_write_named_string(w, "name", ctx->name);
7198 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
7199 
7200 	trid = ctx->trid;
7201 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
7202 	nvme_bdev_dump_trid_json(&trid, w);
7203 
7204 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
7205 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
7206 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
7207 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
7208 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
7209 	spdk_json_write_object_end(w);
7210 
7211 	spdk_json_write_object_end(w);
7212 }
7213 
7214 static void
7215 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
7216 		       struct nvme_ctrlr *nvme_ctrlr)
7217 {
7218 	struct spdk_nvme_transport_id	*trid;
7219 	const struct spdk_nvme_ctrlr_opts *opts;
7220 
7221 	if (nvme_ctrlr->opts.from_discovery_service) {
7222 		/* Do not emit an RPC for this - it will be implicitly
7223 		 * covered by a separate bdev_nvme_start_discovery or
7224 		 * bdev_nvme_start_mdns_discovery RPC.
7225 		 */
7226 		return;
7227 	}
7228 
7229 	trid = &nvme_ctrlr->active_path_id->trid;
7230 
7231 	spdk_json_write_object_begin(w);
7232 
7233 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
7234 
7235 	spdk_json_write_named_object_begin(w, "params");
7236 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
7237 	nvme_bdev_dump_trid_json(trid, w);
7238 	spdk_json_write_named_bool(w, "prchk_reftag",
7239 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
7240 	spdk_json_write_named_bool(w, "prchk_guard",
7241 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
7242 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
7243 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
7244 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
7245 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
7246 
7247 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
7248 	spdk_json_write_named_bool(w, "hdgst", opts->header_digest);
7249 	spdk_json_write_named_bool(w, "ddgst", opts->data_digest);
7250 
7251 	spdk_json_write_object_end(w);
7252 
7253 	spdk_json_write_object_end(w);
7254 }
7255 
7256 static void
7257 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
7258 {
7259 	spdk_json_write_object_begin(w);
7260 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
7261 
7262 	spdk_json_write_named_object_begin(w, "params");
7263 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
7264 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
7265 	spdk_json_write_object_end(w);
7266 
7267 	spdk_json_write_object_end(w);
7268 }
7269 
7270 static int
7271 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
7272 {
7273 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
7274 	struct nvme_ctrlr	*nvme_ctrlr;
7275 	struct discovery_ctx	*ctx;
7276 
7277 	bdev_nvme_opts_config_json(w);
7278 
7279 	pthread_mutex_lock(&g_bdev_nvme_mutex);
7280 
7281 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
7282 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
7283 			nvme_ctrlr_config_json(w, nvme_ctrlr);
7284 		}
7285 	}
7286 
7287 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7288 		if (!ctx->from_mdns_discovery_service) {
7289 			bdev_nvme_discovery_config_json(w, ctx);
7290 		}
7291 	}
7292 
7293 	bdev_nvme_mdns_discovery_config_json(w);
7294 
7295 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
7296 	 * before enabling hotplug poller.
7297 	 */
7298 	bdev_nvme_hotplug_config_json(w);
7299 
7300 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
7301 	return 0;
7302 }
7303 
7304 struct spdk_nvme_ctrlr *
7305 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
7306 {
7307 	struct nvme_bdev *nbdev;
7308 	struct nvme_ns *nvme_ns;
7309 
7310 	if (!bdev || bdev->module != &nvme_if) {
7311 		return NULL;
7312 	}
7313 
7314 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
7315 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
7316 	assert(nvme_ns != NULL);
7317 
7318 	return nvme_ns->ctrlr->ctrlr;
7319 }
7320 
7321 void
7322 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
7323 {
7324 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
7325 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
7326 	const struct spdk_nvme_ctrlr_data *cdata;
7327 	const struct spdk_nvme_transport_id *trid;
7328 	const char *adrfam_str;
7329 
7330 	spdk_json_write_object_begin(w);
7331 
7332 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
7333 
7334 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
7335 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
7336 
7337 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
7338 	spdk_json_write_named_bool(w, "current", io_path->nbdev_ch != NULL &&
7339 				   io_path == io_path->nbdev_ch->current_io_path);
7340 	spdk_json_write_named_bool(w, "connected", nvme_io_path_is_connected(io_path));
7341 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
7342 
7343 	spdk_json_write_named_object_begin(w, "transport");
7344 	spdk_json_write_named_string(w, "trtype", trid->trstring);
7345 	spdk_json_write_named_string(w, "traddr", trid->traddr);
7346 	if (trid->trsvcid[0] != '\0') {
7347 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
7348 	}
7349 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
7350 	if (adrfam_str) {
7351 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
7352 	}
7353 	spdk_json_write_object_end(w);
7354 
7355 	spdk_json_write_object_end(w);
7356 }
7357 
7358 void
7359 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
7360 {
7361 	struct discovery_ctx *ctx;
7362 	struct discovery_entry_ctx *entry_ctx;
7363 
7364 	spdk_json_write_array_begin(w);
7365 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7366 		spdk_json_write_object_begin(w);
7367 		spdk_json_write_named_string(w, "name", ctx->name);
7368 
7369 		spdk_json_write_named_object_begin(w, "trid");
7370 		nvme_bdev_dump_trid_json(&ctx->trid, w);
7371 		spdk_json_write_object_end(w);
7372 
7373 		spdk_json_write_named_array_begin(w, "referrals");
7374 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
7375 			spdk_json_write_object_begin(w);
7376 			spdk_json_write_named_object_begin(w, "trid");
7377 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
7378 			spdk_json_write_object_end(w);
7379 			spdk_json_write_object_end(w);
7380 		}
7381 		spdk_json_write_array_end(w);
7382 
7383 		spdk_json_write_object_end(w);
7384 	}
7385 	spdk_json_write_array_end(w);
7386 }
7387 
7388 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
7389 
7390 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
7391 {
7392 	struct spdk_trace_tpoint_opts opts[] = {
7393 		{
7394 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
7395 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 1,
7396 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
7397 		},
7398 		{
7399 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
7400 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 0,
7401 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
7402 		}
7403 	};
7404 
7405 
7406 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
7407 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
7408 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
7409 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
7410 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
7411 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
7412 }
7413