xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision 71c1bbeeb5dc30a74ce4779c3058f15161340b87)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  *   Copyright (c) 2022 Dell Inc, or its subsidiaries. All rights reserved.
6  */
7 
8 #include "spdk/stdinc.h"
9 
10 #include "bdev_nvme.h"
11 
12 #include "spdk/accel.h"
13 #include "spdk/config.h"
14 #include "spdk/endian.h"
15 #include "spdk/bdev.h"
16 #include "spdk/json.h"
17 #include "spdk/keyring.h"
18 #include "spdk/likely.h"
19 #include "spdk/nvme.h"
20 #include "spdk/nvme_ocssd.h"
21 #include "spdk/nvme_zns.h"
22 #include "spdk/opal.h"
23 #include "spdk/thread.h"
24 #include "spdk/trace.h"
25 #include "spdk/string.h"
26 #include "spdk/util.h"
27 #include "spdk/uuid.h"
28 
29 #include "spdk/bdev_module.h"
30 #include "spdk/log.h"
31 
32 #include "spdk_internal/usdt.h"
33 #include "spdk_internal/trace_defs.h"
34 
35 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
36 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
37 
38 #define NSID_STR_LEN 10
39 
40 #define SPDK_CONTROLLER_NAME_MAX 512
41 
42 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
43 
44 struct nvme_bdev_io {
45 	/** array of iovecs to transfer. */
46 	struct iovec *iovs;
47 
48 	/** Number of iovecs in iovs array. */
49 	int iovcnt;
50 
51 	/** Current iovec position. */
52 	int iovpos;
53 
54 	/** Offset in current iovec. */
55 	uint32_t iov_offset;
56 
57 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
58 	 *  being reset in a reset I/O.
59 	 */
60 	struct nvme_io_path *io_path;
61 
62 	/** array of iovecs to transfer. */
63 	struct iovec *fused_iovs;
64 
65 	/** Number of iovecs in iovs array. */
66 	int fused_iovcnt;
67 
68 	/** Current iovec position. */
69 	int fused_iovpos;
70 
71 	/** Offset in current iovec. */
72 	uint32_t fused_iov_offset;
73 
74 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
75 	struct spdk_nvme_cpl cpl;
76 
77 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
78 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
79 
80 	/** Keeps track if first of fused commands was submitted */
81 	bool first_fused_submitted;
82 
83 	/** Keeps track if first of fused commands was completed */
84 	bool first_fused_completed;
85 
86 	/** Temporary pointer to zone report buffer */
87 	struct spdk_nvme_zns_zone_report *zone_report_buf;
88 
89 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
90 	uint64_t handled_zones;
91 
92 	/** Expiration value in ticks to retry the current I/O. */
93 	uint64_t retry_ticks;
94 
95 	/* How many times the current I/O was retried. */
96 	int32_t retry_count;
97 
98 	/* Current tsc at submit time. */
99 	uint64_t submit_tsc;
100 };
101 
102 struct nvme_probe_skip_entry {
103 	struct spdk_nvme_transport_id		trid;
104 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
105 };
106 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
107 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
108 			g_skipped_nvme_ctrlrs);
109 
110 #define BDEV_NVME_DEFAULT_DIGESTS (SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA256) | \
111 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA384) | \
112 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA512))
113 
114 #define BDEV_NVME_DEFAULT_DHGROUPS (SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_NULL) | \
115 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_2048) | \
116 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_3072) | \
117 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_4096) | \
118 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_6144) | \
119 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_8192))
120 
121 static struct spdk_bdev_nvme_opts g_opts = {
122 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
123 	.timeout_us = 0,
124 	.timeout_admin_us = 0,
125 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
126 	.transport_retry_count = 4,
127 	.arbitration_burst = 0,
128 	.low_priority_weight = 0,
129 	.medium_priority_weight = 0,
130 	.high_priority_weight = 0,
131 	.nvme_adminq_poll_period_us = 10000ULL,
132 	.nvme_ioq_poll_period_us = 0,
133 	.io_queue_requests = 0,
134 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
135 	.bdev_retry_count = 3,
136 	.transport_ack_timeout = 0,
137 	.ctrlr_loss_timeout_sec = 0,
138 	.reconnect_delay_sec = 0,
139 	.fast_io_fail_timeout_sec = 0,
140 	.disable_auto_failback = false,
141 	.generate_uuids = false,
142 	.transport_tos = 0,
143 	.nvme_error_stat = false,
144 	.io_path_stat = false,
145 	.allow_accel_sequence = false,
146 	.dhchap_digests = BDEV_NVME_DEFAULT_DIGESTS,
147 	.dhchap_dhgroups = BDEV_NVME_DEFAULT_DHGROUPS,
148 };
149 
150 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
151 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
152 
153 static int g_hot_insert_nvme_controller_index = 0;
154 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
155 static bool g_nvme_hotplug_enabled = false;
156 struct spdk_thread *g_bdev_nvme_init_thread;
157 static struct spdk_poller *g_hotplug_poller;
158 static struct spdk_poller *g_hotplug_probe_poller;
159 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
160 
161 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
162 		struct nvme_async_probe_ctx *ctx);
163 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
164 		struct nvme_async_probe_ctx *ctx);
165 static int bdev_nvme_library_init(void);
166 static void bdev_nvme_library_fini(void);
167 static void _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch,
168 				      struct spdk_bdev_io *bdev_io);
169 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
170 				     struct spdk_bdev_io *bdev_io);
171 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
172 			   void *md, uint64_t lba_count, uint64_t lba,
173 			   uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
174 			   struct spdk_accel_sequence *seq);
175 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
176 				 void *md, uint64_t lba_count, uint64_t lba);
177 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
178 			    void *md, uint64_t lba_count, uint64_t lba,
179 			    uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
180 			    struct spdk_accel_sequence *seq,
181 			    union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13);
182 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
183 				  void *md, uint64_t lba_count,
184 				  uint64_t zslba, uint32_t flags);
185 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
186 			      void *md, uint64_t lba_count, uint64_t lba,
187 			      uint32_t flags);
188 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
189 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
190 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
191 		uint32_t flags);
192 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
193 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
194 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
195 				     enum spdk_bdev_zone_action action);
196 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
197 				     struct nvme_bdev_io *bio,
198 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
199 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
200 				 void *buf, size_t nbytes);
201 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
202 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
203 static int bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
204 				     struct iovec *iov, int iovcnt, size_t nbytes,
205 				     void *md_buf, size_t md_len);
206 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
207 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
208 static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio);
209 static int bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
210 static int bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
211 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
212 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
213 
214 static struct nvme_ns *nvme_ns_alloc(void);
215 static void nvme_ns_free(struct nvme_ns *ns);
216 
217 static int
218 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
219 {
220 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
221 }
222 
223 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
224 
225 struct spdk_nvme_qpair *
226 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
227 {
228 	struct nvme_ctrlr_channel *ctrlr_ch;
229 
230 	assert(ctrlr_io_ch != NULL);
231 
232 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
233 
234 	return ctrlr_ch->qpair->qpair;
235 }
236 
237 static int
238 bdev_nvme_get_ctx_size(void)
239 {
240 	return sizeof(struct nvme_bdev_io);
241 }
242 
243 static struct spdk_bdev_module nvme_if = {
244 	.name = "nvme",
245 	.async_fini = true,
246 	.module_init = bdev_nvme_library_init,
247 	.module_fini = bdev_nvme_library_fini,
248 	.config_json = bdev_nvme_config_json,
249 	.get_ctx_size = bdev_nvme_get_ctx_size,
250 
251 };
252 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
253 
254 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
255 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
256 bool g_bdev_nvme_module_finish;
257 
258 struct nvme_bdev_ctrlr *
259 nvme_bdev_ctrlr_get_by_name(const char *name)
260 {
261 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
262 
263 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
264 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
265 			break;
266 		}
267 	}
268 
269 	return nbdev_ctrlr;
270 }
271 
272 static struct nvme_ctrlr *
273 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
274 			  const struct spdk_nvme_transport_id *trid)
275 {
276 	struct nvme_ctrlr *nvme_ctrlr;
277 
278 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
279 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0) {
280 			break;
281 		}
282 	}
283 
284 	return nvme_ctrlr;
285 }
286 
287 struct nvme_ctrlr *
288 nvme_bdev_ctrlr_get_ctrlr_by_id(struct nvme_bdev_ctrlr *nbdev_ctrlr,
289 				uint16_t cntlid)
290 {
291 	struct nvme_ctrlr *nvme_ctrlr;
292 	const struct spdk_nvme_ctrlr_data *cdata;
293 
294 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
295 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
296 		if (cdata->cntlid == cntlid) {
297 			break;
298 		}
299 	}
300 
301 	return nvme_ctrlr;
302 }
303 
304 static struct nvme_bdev *
305 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
306 {
307 	struct nvme_bdev *bdev;
308 
309 	pthread_mutex_lock(&g_bdev_nvme_mutex);
310 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
311 		if (bdev->nsid == nsid) {
312 			break;
313 		}
314 	}
315 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
316 
317 	return bdev;
318 }
319 
320 struct nvme_ns *
321 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
322 {
323 	struct nvme_ns ns;
324 
325 	assert(nsid > 0);
326 
327 	ns.id = nsid;
328 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
329 }
330 
331 struct nvme_ns *
332 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
333 {
334 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
335 }
336 
337 struct nvme_ns *
338 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
339 {
340 	if (ns == NULL) {
341 		return NULL;
342 	}
343 
344 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
345 }
346 
347 static struct nvme_ctrlr *
348 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid)
349 {
350 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
351 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
352 
353 	pthread_mutex_lock(&g_bdev_nvme_mutex);
354 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
355 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid);
356 		if (nvme_ctrlr != NULL) {
357 			break;
358 		}
359 	}
360 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
361 
362 	return nvme_ctrlr;
363 }
364 
365 struct nvme_ctrlr *
366 nvme_ctrlr_get_by_name(const char *name)
367 {
368 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
369 	struct nvme_ctrlr *nvme_ctrlr = NULL;
370 
371 	if (name == NULL) {
372 		return NULL;
373 	}
374 
375 	pthread_mutex_lock(&g_bdev_nvme_mutex);
376 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
377 	if (nbdev_ctrlr != NULL) {
378 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
379 	}
380 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
381 
382 	return nvme_ctrlr;
383 }
384 
385 void
386 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
387 {
388 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
389 
390 	pthread_mutex_lock(&g_bdev_nvme_mutex);
391 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
392 		fn(nbdev_ctrlr, ctx);
393 	}
394 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
395 }
396 
397 void
398 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
399 {
400 	const char *trtype_str;
401 	const char *adrfam_str;
402 
403 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
404 	if (trtype_str) {
405 		spdk_json_write_named_string(w, "trtype", trtype_str);
406 	}
407 
408 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
409 	if (adrfam_str) {
410 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
411 	}
412 
413 	if (trid->traddr[0] != '\0') {
414 		spdk_json_write_named_string(w, "traddr", trid->traddr);
415 	}
416 
417 	if (trid->trsvcid[0] != '\0') {
418 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
419 	}
420 
421 	if (trid->subnqn[0] != '\0') {
422 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
423 	}
424 }
425 
426 static void
427 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
428 		       struct nvme_ctrlr *nvme_ctrlr)
429 {
430 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
431 	pthread_mutex_lock(&g_bdev_nvme_mutex);
432 
433 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
434 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
435 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
436 
437 		return;
438 	}
439 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
440 
441 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
442 
443 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
444 
445 	free(nbdev_ctrlr->name);
446 	free(nbdev_ctrlr);
447 }
448 
449 static void
450 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
451 {
452 	struct nvme_path_id *path_id, *tmp_path;
453 	struct nvme_ns *ns, *tmp_ns;
454 
455 	free(nvme_ctrlr->copied_ana_desc);
456 	spdk_free(nvme_ctrlr->ana_log_page);
457 
458 	if (nvme_ctrlr->opal_dev) {
459 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
460 		nvme_ctrlr->opal_dev = NULL;
461 	}
462 
463 	if (nvme_ctrlr->nbdev_ctrlr) {
464 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
465 	}
466 
467 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
468 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
469 		nvme_ns_free(ns);
470 	}
471 
472 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
473 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
474 		free(path_id);
475 	}
476 
477 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
478 	spdk_keyring_put_key(nvme_ctrlr->psk);
479 	spdk_keyring_put_key(nvme_ctrlr->dhchap_key);
480 	spdk_keyring_put_key(nvme_ctrlr->dhchap_ctrlr_key);
481 	free(nvme_ctrlr);
482 
483 	pthread_mutex_lock(&g_bdev_nvme_mutex);
484 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
485 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
486 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
487 		spdk_bdev_module_fini_done();
488 		return;
489 	}
490 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
491 }
492 
493 static int
494 nvme_detach_poller(void *arg)
495 {
496 	struct nvme_ctrlr *nvme_ctrlr = arg;
497 	int rc;
498 
499 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
500 	if (rc != -EAGAIN) {
501 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
502 		_nvme_ctrlr_delete(nvme_ctrlr);
503 	}
504 
505 	return SPDK_POLLER_BUSY;
506 }
507 
508 static void
509 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
510 {
511 	int rc;
512 
513 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
514 
515 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
516 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
517 
518 	/* If we got here, the reset/detach poller cannot be active */
519 	assert(nvme_ctrlr->reset_detach_poller == NULL);
520 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
521 					  nvme_ctrlr, 1000);
522 	if (nvme_ctrlr->reset_detach_poller == NULL) {
523 		SPDK_ERRLOG("Failed to register detach poller\n");
524 		goto error;
525 	}
526 
527 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
528 	if (rc != 0) {
529 		SPDK_ERRLOG("Failed to detach the NVMe controller\n");
530 		goto error;
531 	}
532 
533 	return;
534 error:
535 	/* We don't have a good way to handle errors here, so just do what we can and delete the
536 	 * controller without detaching the underlying NVMe device.
537 	 */
538 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
539 	_nvme_ctrlr_delete(nvme_ctrlr);
540 }
541 
542 static void
543 nvme_ctrlr_unregister_cb(void *io_device)
544 {
545 	struct nvme_ctrlr *nvme_ctrlr = io_device;
546 
547 	nvme_ctrlr_delete(nvme_ctrlr);
548 }
549 
550 static void
551 nvme_ctrlr_unregister(void *ctx)
552 {
553 	struct nvme_ctrlr *nvme_ctrlr = ctx;
554 
555 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
556 }
557 
558 static bool
559 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
560 {
561 	if (!nvme_ctrlr->destruct) {
562 		return false;
563 	}
564 
565 	if (nvme_ctrlr->ref > 0) {
566 		return false;
567 	}
568 
569 	if (nvme_ctrlr->resetting) {
570 		return false;
571 	}
572 
573 	if (nvme_ctrlr->ana_log_page_updating) {
574 		return false;
575 	}
576 
577 	if (nvme_ctrlr->io_path_cache_clearing) {
578 		return false;
579 	}
580 
581 	return true;
582 }
583 
584 static void
585 nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
586 {
587 	pthread_mutex_lock(&nvme_ctrlr->mutex);
588 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
589 
590 	assert(nvme_ctrlr->ref > 0);
591 	nvme_ctrlr->ref--;
592 
593 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
594 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
595 		return;
596 	}
597 
598 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
599 
600 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
601 }
602 
603 static void
604 bdev_nvme_clear_current_io_path(struct nvme_bdev_channel *nbdev_ch)
605 {
606 	nbdev_ch->current_io_path = NULL;
607 	nbdev_ch->rr_counter = 0;
608 }
609 
610 static struct nvme_io_path *
611 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
612 {
613 	struct nvme_io_path *io_path;
614 
615 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
616 		if (io_path->nvme_ns == nvme_ns) {
617 			break;
618 		}
619 	}
620 
621 	return io_path;
622 }
623 
624 static struct nvme_io_path *
625 nvme_io_path_alloc(void)
626 {
627 	struct nvme_io_path *io_path;
628 
629 	io_path = calloc(1, sizeof(*io_path));
630 	if (io_path == NULL) {
631 		SPDK_ERRLOG("Failed to alloc io_path.\n");
632 		return NULL;
633 	}
634 
635 	if (g_opts.io_path_stat) {
636 		io_path->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
637 		if (io_path->stat == NULL) {
638 			free(io_path);
639 			SPDK_ERRLOG("Failed to alloc io_path stat.\n");
640 			return NULL;
641 		}
642 		spdk_bdev_reset_io_stat(io_path->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
643 	}
644 
645 	return io_path;
646 }
647 
648 static void
649 nvme_io_path_free(struct nvme_io_path *io_path)
650 {
651 	free(io_path->stat);
652 	free(io_path);
653 }
654 
655 static int
656 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
657 {
658 	struct nvme_io_path *io_path;
659 	struct spdk_io_channel *ch;
660 	struct nvme_ctrlr_channel *ctrlr_ch;
661 	struct nvme_qpair *nvme_qpair;
662 
663 	io_path = nvme_io_path_alloc();
664 	if (io_path == NULL) {
665 		return -ENOMEM;
666 	}
667 
668 	io_path->nvme_ns = nvme_ns;
669 
670 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
671 	if (ch == NULL) {
672 		nvme_io_path_free(io_path);
673 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
674 		return -ENOMEM;
675 	}
676 
677 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
678 
679 	nvme_qpair = ctrlr_ch->qpair;
680 	assert(nvme_qpair != NULL);
681 
682 	io_path->qpair = nvme_qpair;
683 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
684 
685 	io_path->nbdev_ch = nbdev_ch;
686 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
687 
688 	bdev_nvme_clear_current_io_path(nbdev_ch);
689 
690 	return 0;
691 }
692 
693 static void
694 bdev_nvme_clear_retry_io_path(struct nvme_bdev_channel *nbdev_ch,
695 			      struct nvme_io_path *io_path)
696 {
697 	struct spdk_bdev_io *bdev_io;
698 	struct nvme_bdev_io *bio;
699 
700 	TAILQ_FOREACH(bdev_io, &nbdev_ch->retry_io_list, module_link) {
701 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
702 		if (bio->io_path == io_path) {
703 			bio->io_path = NULL;
704 		}
705 	}
706 }
707 
708 static void
709 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
710 {
711 	struct spdk_io_channel *ch;
712 	struct nvme_qpair *nvme_qpair;
713 	struct nvme_ctrlr_channel *ctrlr_ch;
714 	struct nvme_bdev *nbdev;
715 
716 	nbdev = spdk_io_channel_get_io_device(spdk_io_channel_from_ctx(nbdev_ch));
717 
718 	/* Add the statistics to nvme_ns before this path is destroyed. */
719 	pthread_mutex_lock(&nbdev->mutex);
720 	if (nbdev->ref != 0 && io_path->nvme_ns->stat != NULL && io_path->stat != NULL) {
721 		spdk_bdev_add_io_stat(io_path->nvme_ns->stat, io_path->stat);
722 	}
723 	pthread_mutex_unlock(&nbdev->mutex);
724 
725 	bdev_nvme_clear_current_io_path(nbdev_ch);
726 	bdev_nvme_clear_retry_io_path(nbdev_ch, io_path);
727 
728 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
729 	io_path->nbdev_ch = NULL;
730 
731 	nvme_qpair = io_path->qpair;
732 	assert(nvme_qpair != NULL);
733 
734 	ctrlr_ch = nvme_qpair->ctrlr_ch;
735 	assert(ctrlr_ch != NULL);
736 
737 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
738 	spdk_put_io_channel(ch);
739 
740 	/* After an io_path is removed, I/Os submitted to it may complete and update statistics
741 	 * of the io_path. To avoid heap-use-after-free error from this case, do not free the
742 	 * io_path here but free the io_path when the associated qpair is freed. It is ensured
743 	 * that all I/Os submitted to the io_path are completed when the associated qpair is freed.
744 	 */
745 }
746 
747 static void
748 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
749 {
750 	struct nvme_io_path *io_path, *tmp_io_path;
751 
752 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
753 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
754 	}
755 }
756 
757 static int
758 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
759 {
760 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
761 	struct nvme_bdev *nbdev = io_device;
762 	struct nvme_ns *nvme_ns;
763 	int rc;
764 
765 	STAILQ_INIT(&nbdev_ch->io_path_list);
766 	TAILQ_INIT(&nbdev_ch->retry_io_list);
767 
768 	pthread_mutex_lock(&nbdev->mutex);
769 
770 	nbdev_ch->mp_policy = nbdev->mp_policy;
771 	nbdev_ch->mp_selector = nbdev->mp_selector;
772 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
773 
774 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
775 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
776 		if (rc != 0) {
777 			pthread_mutex_unlock(&nbdev->mutex);
778 
779 			_bdev_nvme_delete_io_paths(nbdev_ch);
780 			return rc;
781 		}
782 	}
783 	pthread_mutex_unlock(&nbdev->mutex);
784 
785 	return 0;
786 }
787 
788 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
789  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
790  */
791 static inline void
792 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
793 			const struct spdk_nvme_cpl *cpl)
794 {
795 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
796 			  (uintptr_t)bdev_io);
797 	if (cpl) {
798 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
799 	} else {
800 		spdk_bdev_io_complete(bdev_io, status);
801 	}
802 }
803 
804 static void bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch);
805 
806 static void
807 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
808 {
809 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
810 
811 	bdev_nvme_abort_retry_ios(nbdev_ch);
812 	_bdev_nvme_delete_io_paths(nbdev_ch);
813 }
814 
815 static inline bool
816 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
817 {
818 	switch (io_type) {
819 	case SPDK_BDEV_IO_TYPE_RESET:
820 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
821 	case SPDK_BDEV_IO_TYPE_ABORT:
822 		return true;
823 	default:
824 		break;
825 	}
826 
827 	return false;
828 }
829 
830 static inline bool
831 nvme_ns_is_active(struct nvme_ns *nvme_ns)
832 {
833 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
834 		return false;
835 	}
836 
837 	if (spdk_unlikely(nvme_ns->ns == NULL)) {
838 		return false;
839 	}
840 
841 	return true;
842 }
843 
844 static inline bool
845 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
846 {
847 	if (spdk_unlikely(!nvme_ns_is_active(nvme_ns))) {
848 		return false;
849 	}
850 
851 	switch (nvme_ns->ana_state) {
852 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
853 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
854 		return true;
855 	default:
856 		break;
857 	}
858 
859 	return false;
860 }
861 
862 static inline bool
863 nvme_qpair_is_connected(struct nvme_qpair *nvme_qpair)
864 {
865 	if (spdk_unlikely(nvme_qpair->qpair == NULL)) {
866 		return false;
867 	}
868 
869 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
870 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
871 		return false;
872 	}
873 
874 	if (spdk_unlikely(nvme_qpair->ctrlr_ch->reset_iter != NULL)) {
875 		return false;
876 	}
877 
878 	return true;
879 }
880 
881 static inline bool
882 nvme_io_path_is_available(struct nvme_io_path *io_path)
883 {
884 	if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
885 		return false;
886 	}
887 
888 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
889 		return false;
890 	}
891 
892 	return true;
893 }
894 
895 static inline bool
896 nvme_ctrlr_is_failed(struct nvme_ctrlr *nvme_ctrlr)
897 {
898 	if (nvme_ctrlr->destruct) {
899 		return true;
900 	}
901 
902 	if (nvme_ctrlr->fast_io_fail_timedout) {
903 		return true;
904 	}
905 
906 	if (nvme_ctrlr->resetting) {
907 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
908 			return false;
909 		} else {
910 			return true;
911 		}
912 	}
913 
914 	if (nvme_ctrlr->reconnect_is_delayed) {
915 		return false;
916 	}
917 
918 	if (nvme_ctrlr->disabled) {
919 		return true;
920 	}
921 
922 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
923 		return true;
924 	} else {
925 		return false;
926 	}
927 }
928 
929 static bool
930 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
931 {
932 	if (nvme_ctrlr->destruct) {
933 		return false;
934 	}
935 
936 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
937 		return false;
938 	}
939 
940 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
941 		return false;
942 	}
943 
944 	if (nvme_ctrlr->disabled) {
945 		return false;
946 	}
947 
948 	return true;
949 }
950 
951 /* Simulate circular linked list. */
952 static inline struct nvme_io_path *
953 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
954 {
955 	struct nvme_io_path *next_path;
956 
957 	if (prev_path != NULL) {
958 		next_path = STAILQ_NEXT(prev_path, stailq);
959 		if (next_path != NULL) {
960 			return next_path;
961 		}
962 	}
963 
964 	return STAILQ_FIRST(&nbdev_ch->io_path_list);
965 }
966 
967 static struct nvme_io_path *
968 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
969 {
970 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
971 
972 	start = nvme_io_path_get_next(nbdev_ch, nbdev_ch->current_io_path);
973 
974 	io_path = start;
975 	do {
976 		if (spdk_likely(nvme_io_path_is_available(io_path))) {
977 			switch (io_path->nvme_ns->ana_state) {
978 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
979 				nbdev_ch->current_io_path = io_path;
980 				return io_path;
981 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
982 				if (non_optimized == NULL) {
983 					non_optimized = io_path;
984 				}
985 				break;
986 			default:
987 				assert(false);
988 				break;
989 			}
990 		}
991 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
992 	} while (io_path != start);
993 
994 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
995 		/* We come here only if there is no optimized path. Cache even non_optimized
996 		 * path for load balance across multiple non_optimized paths.
997 		 */
998 		nbdev_ch->current_io_path = non_optimized;
999 	}
1000 
1001 	return non_optimized;
1002 }
1003 
1004 static struct nvme_io_path *
1005 _bdev_nvme_find_io_path_min_qd(struct nvme_bdev_channel *nbdev_ch)
1006 {
1007 	struct nvme_io_path *io_path;
1008 	struct nvme_io_path *optimized = NULL, *non_optimized = NULL;
1009 	uint32_t opt_min_qd = UINT32_MAX, non_opt_min_qd = UINT32_MAX;
1010 	uint32_t num_outstanding_reqs;
1011 
1012 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1013 		if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
1014 			/* The device is currently resetting. */
1015 			continue;
1016 		}
1017 
1018 		if (spdk_unlikely(!nvme_ns_is_active(io_path->nvme_ns))) {
1019 			continue;
1020 		}
1021 
1022 		num_outstanding_reqs = spdk_nvme_qpair_get_num_outstanding_reqs(io_path->qpair->qpair);
1023 		switch (io_path->nvme_ns->ana_state) {
1024 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
1025 			if (num_outstanding_reqs < opt_min_qd) {
1026 				opt_min_qd = num_outstanding_reqs;
1027 				optimized = io_path;
1028 			}
1029 			break;
1030 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1031 			if (num_outstanding_reqs < non_opt_min_qd) {
1032 				non_opt_min_qd = num_outstanding_reqs;
1033 				non_optimized = io_path;
1034 			}
1035 			break;
1036 		default:
1037 			break;
1038 		}
1039 	}
1040 
1041 	/* don't cache io path for BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH selector */
1042 	if (optimized != NULL) {
1043 		return optimized;
1044 	}
1045 
1046 	return non_optimized;
1047 }
1048 
1049 static inline struct nvme_io_path *
1050 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1051 {
1052 	if (spdk_likely(nbdev_ch->current_io_path != NULL)) {
1053 		if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE) {
1054 			return nbdev_ch->current_io_path;
1055 		} else if (nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1056 			if (++nbdev_ch->rr_counter < nbdev_ch->rr_min_io) {
1057 				return nbdev_ch->current_io_path;
1058 			}
1059 			nbdev_ch->rr_counter = 0;
1060 		}
1061 	}
1062 
1063 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE ||
1064 	    nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1065 		return _bdev_nvme_find_io_path(nbdev_ch);
1066 	} else {
1067 		return _bdev_nvme_find_io_path_min_qd(nbdev_ch);
1068 	}
1069 }
1070 
1071 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
1072  * or false otherwise.
1073  *
1074  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
1075  * is likely to be non-accessible now but may become accessible.
1076  *
1077  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
1078  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
1079  * when starting to reset it but it is set to failed when the reset failed. Hence, if
1080  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
1081  */
1082 static bool
1083 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
1084 {
1085 	struct nvme_io_path *io_path;
1086 
1087 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1088 		if (io_path->nvme_ns->ana_transition_timedout) {
1089 			continue;
1090 		}
1091 
1092 		if (nvme_qpair_is_connected(io_path->qpair) ||
1093 		    !nvme_ctrlr_is_failed(io_path->qpair->ctrlr)) {
1094 			return true;
1095 		}
1096 	}
1097 
1098 	return false;
1099 }
1100 
1101 static void
1102 bdev_nvme_retry_io(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
1103 {
1104 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1105 	struct spdk_io_channel *ch;
1106 
1107 	if (nbdev_io->io_path != NULL && nvme_io_path_is_available(nbdev_io->io_path)) {
1108 		_bdev_nvme_submit_request(nbdev_ch, bdev_io);
1109 	} else {
1110 		ch = spdk_io_channel_from_ctx(nbdev_ch);
1111 		bdev_nvme_submit_request(ch, bdev_io);
1112 	}
1113 }
1114 
1115 static int
1116 bdev_nvme_retry_ios(void *arg)
1117 {
1118 	struct nvme_bdev_channel *nbdev_ch = arg;
1119 	struct spdk_bdev_io *bdev_io, *tmp_bdev_io;
1120 	struct nvme_bdev_io *bio;
1121 	uint64_t now, delay_us;
1122 
1123 	now = spdk_get_ticks();
1124 
1125 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_bdev_io) {
1126 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1127 		if (bio->retry_ticks > now) {
1128 			break;
1129 		}
1130 
1131 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
1132 
1133 		bdev_nvme_retry_io(nbdev_ch, bdev_io);
1134 	}
1135 
1136 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1137 
1138 	bdev_io = TAILQ_FIRST(&nbdev_ch->retry_io_list);
1139 	if (bdev_io != NULL) {
1140 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1141 
1142 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
1143 
1144 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1145 					    delay_us);
1146 	}
1147 
1148 	return SPDK_POLLER_BUSY;
1149 }
1150 
1151 static void
1152 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
1153 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
1154 {
1155 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1156 	struct spdk_bdev_io *tmp_bdev_io;
1157 	struct nvme_bdev_io *tmp_bio;
1158 
1159 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
1160 
1161 	TAILQ_FOREACH_REVERSE(tmp_bdev_io, &nbdev_ch->retry_io_list, retry_io_head, module_link) {
1162 		tmp_bio = (struct nvme_bdev_io *)tmp_bdev_io->driver_ctx;
1163 
1164 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1165 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bdev_io, bdev_io,
1166 					   module_link);
1167 			return;
1168 		}
1169 	}
1170 
1171 	/* No earlier I/Os were found. This I/O must be the new head. */
1172 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bdev_io, module_link);
1173 
1174 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1175 
1176 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1177 				    delay_ms * 1000ULL);
1178 }
1179 
1180 static void
1181 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
1182 {
1183 	struct spdk_bdev_io *bdev_io, *tmp_io;
1184 
1185 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_io) {
1186 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
1187 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1188 	}
1189 
1190 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1191 }
1192 
1193 static int
1194 bdev_nvme_abort_retry_io(struct nvme_bdev_channel *nbdev_ch,
1195 			 struct nvme_bdev_io *bio_to_abort)
1196 {
1197 	struct spdk_bdev_io *bdev_io_to_abort;
1198 
1199 	TAILQ_FOREACH(bdev_io_to_abort, &nbdev_ch->retry_io_list, module_link) {
1200 		if ((struct nvme_bdev_io *)bdev_io_to_abort->driver_ctx == bio_to_abort) {
1201 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io_to_abort, module_link);
1202 			__bdev_nvme_io_complete(bdev_io_to_abort, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1203 			return 0;
1204 		}
1205 	}
1206 
1207 	return -ENOENT;
1208 }
1209 
1210 static void
1211 bdev_nvme_update_nvme_error_stat(struct spdk_bdev_io *bdev_io, const struct spdk_nvme_cpl *cpl)
1212 {
1213 	struct nvme_bdev *nbdev;
1214 	uint16_t sct, sc;
1215 
1216 	assert(spdk_nvme_cpl_is_error(cpl));
1217 
1218 	nbdev = bdev_io->bdev->ctxt;
1219 
1220 	if (nbdev->err_stat == NULL) {
1221 		return;
1222 	}
1223 
1224 	sct = cpl->status.sct;
1225 	sc = cpl->status.sc;
1226 
1227 	pthread_mutex_lock(&nbdev->mutex);
1228 
1229 	nbdev->err_stat->status_type[sct]++;
1230 	switch (sct) {
1231 	case SPDK_NVME_SCT_GENERIC:
1232 	case SPDK_NVME_SCT_COMMAND_SPECIFIC:
1233 	case SPDK_NVME_SCT_MEDIA_ERROR:
1234 	case SPDK_NVME_SCT_PATH:
1235 		nbdev->err_stat->status[sct][sc]++;
1236 		break;
1237 	default:
1238 		break;
1239 	}
1240 
1241 	pthread_mutex_unlock(&nbdev->mutex);
1242 }
1243 
1244 static inline void
1245 bdev_nvme_update_io_path_stat(struct nvme_bdev_io *bio)
1246 {
1247 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1248 	uint64_t num_blocks = bdev_io->u.bdev.num_blocks;
1249 	uint32_t blocklen = bdev_io->bdev->blocklen;
1250 	struct spdk_bdev_io_stat *stat;
1251 	uint64_t tsc_diff;
1252 
1253 	if (bio->io_path->stat == NULL) {
1254 		return;
1255 	}
1256 
1257 	tsc_diff = spdk_get_ticks() - bio->submit_tsc;
1258 	stat = bio->io_path->stat;
1259 
1260 	switch (bdev_io->type) {
1261 	case SPDK_BDEV_IO_TYPE_READ:
1262 		stat->bytes_read += num_blocks * blocklen;
1263 		stat->num_read_ops++;
1264 		stat->read_latency_ticks += tsc_diff;
1265 		if (stat->max_read_latency_ticks < tsc_diff) {
1266 			stat->max_read_latency_ticks = tsc_diff;
1267 		}
1268 		if (stat->min_read_latency_ticks > tsc_diff) {
1269 			stat->min_read_latency_ticks = tsc_diff;
1270 		}
1271 		break;
1272 	case SPDK_BDEV_IO_TYPE_WRITE:
1273 		stat->bytes_written += num_blocks * blocklen;
1274 		stat->num_write_ops++;
1275 		stat->write_latency_ticks += tsc_diff;
1276 		if (stat->max_write_latency_ticks < tsc_diff) {
1277 			stat->max_write_latency_ticks = tsc_diff;
1278 		}
1279 		if (stat->min_write_latency_ticks > tsc_diff) {
1280 			stat->min_write_latency_ticks = tsc_diff;
1281 		}
1282 		break;
1283 	case SPDK_BDEV_IO_TYPE_UNMAP:
1284 		stat->bytes_unmapped += num_blocks * blocklen;
1285 		stat->num_unmap_ops++;
1286 		stat->unmap_latency_ticks += tsc_diff;
1287 		if (stat->max_unmap_latency_ticks < tsc_diff) {
1288 			stat->max_unmap_latency_ticks = tsc_diff;
1289 		}
1290 		if (stat->min_unmap_latency_ticks > tsc_diff) {
1291 			stat->min_unmap_latency_ticks = tsc_diff;
1292 		}
1293 		break;
1294 	case SPDK_BDEV_IO_TYPE_ZCOPY:
1295 		/* Track the data in the start phase only */
1296 		if (!bdev_io->u.bdev.zcopy.start) {
1297 			break;
1298 		}
1299 		if (bdev_io->u.bdev.zcopy.populate) {
1300 			stat->bytes_read += num_blocks * blocklen;
1301 			stat->num_read_ops++;
1302 			stat->read_latency_ticks += tsc_diff;
1303 			if (stat->max_read_latency_ticks < tsc_diff) {
1304 				stat->max_read_latency_ticks = tsc_diff;
1305 			}
1306 			if (stat->min_read_latency_ticks > tsc_diff) {
1307 				stat->min_read_latency_ticks = tsc_diff;
1308 			}
1309 		} else {
1310 			stat->bytes_written += num_blocks * blocklen;
1311 			stat->num_write_ops++;
1312 			stat->write_latency_ticks += tsc_diff;
1313 			if (stat->max_write_latency_ticks < tsc_diff) {
1314 				stat->max_write_latency_ticks = tsc_diff;
1315 			}
1316 			if (stat->min_write_latency_ticks > tsc_diff) {
1317 				stat->min_write_latency_ticks = tsc_diff;
1318 			}
1319 		}
1320 		break;
1321 	case SPDK_BDEV_IO_TYPE_COPY:
1322 		stat->bytes_copied += num_blocks * blocklen;
1323 		stat->num_copy_ops++;
1324 		stat->copy_latency_ticks += tsc_diff;
1325 		if (stat->max_copy_latency_ticks < tsc_diff) {
1326 			stat->max_copy_latency_ticks = tsc_diff;
1327 		}
1328 		if (stat->min_copy_latency_ticks > tsc_diff) {
1329 			stat->min_copy_latency_ticks = tsc_diff;
1330 		}
1331 		break;
1332 	default:
1333 		break;
1334 	}
1335 }
1336 
1337 static bool
1338 bdev_nvme_check_retry_io(struct nvme_bdev_io *bio,
1339 			 const struct spdk_nvme_cpl *cpl,
1340 			 struct nvme_bdev_channel *nbdev_ch,
1341 			 uint64_t *_delay_ms)
1342 {
1343 	struct nvme_io_path *io_path = bio->io_path;
1344 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1345 	const struct spdk_nvme_ctrlr_data *cdata;
1346 
1347 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1348 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1349 	    !nvme_io_path_is_available(io_path) ||
1350 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1351 		bdev_nvme_clear_current_io_path(nbdev_ch);
1352 		bio->io_path = NULL;
1353 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1354 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1355 				io_path->nvme_ns->ana_state_updating = true;
1356 			}
1357 		}
1358 		if (!any_io_path_may_become_available(nbdev_ch)) {
1359 			return false;
1360 		}
1361 		*_delay_ms = 0;
1362 	} else {
1363 		bio->retry_count++;
1364 
1365 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1366 
1367 		if (cpl->status.crd != 0) {
1368 			*_delay_ms = cdata->crdt[cpl->status.crd] * 100;
1369 		} else {
1370 			*_delay_ms = 0;
1371 		}
1372 	}
1373 
1374 	return true;
1375 }
1376 
1377 static inline void
1378 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1379 				  const struct spdk_nvme_cpl *cpl)
1380 {
1381 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1382 	struct nvme_bdev_channel *nbdev_ch;
1383 	uint64_t delay_ms;
1384 
1385 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1386 
1387 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1388 		bdev_nvme_update_io_path_stat(bio);
1389 		goto complete;
1390 	}
1391 
1392 	/* Update error counts before deciding if retry is needed.
1393 	 * Hence, error counts may be more than the number of I/O errors.
1394 	 */
1395 	bdev_nvme_update_nvme_error_stat(bdev_io, cpl);
1396 
1397 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1398 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1399 		goto complete;
1400 	}
1401 
1402 	/* At this point we don't know whether the sequence was successfully executed or not, so we
1403 	 * cannot retry the IO */
1404 	if (bdev_io->u.bdev.accel_sequence != NULL) {
1405 		goto complete;
1406 	}
1407 
1408 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1409 
1410 	if (bdev_nvme_check_retry_io(bio, cpl, nbdev_ch, &delay_ms)) {
1411 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1412 		return;
1413 	}
1414 
1415 complete:
1416 	bio->retry_count = 0;
1417 	bio->submit_tsc = 0;
1418 	bdev_io->u.bdev.accel_sequence = NULL;
1419 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1420 }
1421 
1422 static inline void
1423 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1424 {
1425 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1426 	struct nvme_bdev_channel *nbdev_ch;
1427 	enum spdk_bdev_io_status io_status;
1428 
1429 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1430 
1431 	switch (rc) {
1432 	case 0:
1433 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1434 		break;
1435 	case -ENOMEM:
1436 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1437 		break;
1438 	case -ENXIO:
1439 		if (g_opts.bdev_retry_count == -1 || bio->retry_count < g_opts.bdev_retry_count) {
1440 			nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1441 
1442 			bdev_nvme_clear_current_io_path(nbdev_ch);
1443 			bio->io_path = NULL;
1444 
1445 			if (any_io_path_may_become_available(nbdev_ch)) {
1446 				bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1447 				return;
1448 			}
1449 		}
1450 
1451 	/* fallthrough */
1452 	default:
1453 		spdk_accel_sequence_abort(bdev_io->u.bdev.accel_sequence);
1454 		bdev_io->u.bdev.accel_sequence = NULL;
1455 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1456 		break;
1457 	}
1458 
1459 	bio->retry_count = 0;
1460 	bio->submit_tsc = 0;
1461 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1462 }
1463 
1464 static inline void
1465 bdev_nvme_admin_complete(struct nvme_bdev_io *bio, int rc)
1466 {
1467 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1468 	enum spdk_bdev_io_status io_status;
1469 
1470 	switch (rc) {
1471 	case 0:
1472 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1473 		break;
1474 	case -ENOMEM:
1475 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1476 		break;
1477 	case -ENXIO:
1478 	/* fallthrough */
1479 	default:
1480 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1481 		break;
1482 	}
1483 
1484 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1485 }
1486 
1487 static void
1488 bdev_nvme_clear_io_path_caches_done(struct spdk_io_channel_iter *i, int status)
1489 {
1490 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1491 
1492 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1493 
1494 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1495 	nvme_ctrlr->io_path_cache_clearing = false;
1496 
1497 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1498 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1499 		return;
1500 	}
1501 
1502 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1503 
1504 	nvme_ctrlr_unregister(nvme_ctrlr);
1505 }
1506 
1507 static void
1508 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1509 {
1510 	struct nvme_io_path *io_path;
1511 
1512 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1513 		if (io_path->nbdev_ch == NULL) {
1514 			continue;
1515 		}
1516 		bdev_nvme_clear_current_io_path(io_path->nbdev_ch);
1517 	}
1518 }
1519 
1520 static void
1521 bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i)
1522 {
1523 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1524 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1525 
1526 	assert(ctrlr_ch->qpair != NULL);
1527 
1528 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1529 
1530 	spdk_for_each_channel_continue(i, 0);
1531 }
1532 
1533 static void
1534 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1535 {
1536 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1537 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1538 	    nvme_ctrlr->io_path_cache_clearing) {
1539 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1540 		return;
1541 	}
1542 
1543 	nvme_ctrlr->io_path_cache_clearing = true;
1544 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1545 
1546 	spdk_for_each_channel(nvme_ctrlr,
1547 			      bdev_nvme_clear_io_path_cache,
1548 			      NULL,
1549 			      bdev_nvme_clear_io_path_caches_done);
1550 }
1551 
1552 static struct nvme_qpair *
1553 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1554 {
1555 	struct nvme_qpair *nvme_qpair;
1556 
1557 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1558 		if (nvme_qpair->qpair == qpair) {
1559 			break;
1560 		}
1561 	}
1562 
1563 	return nvme_qpair;
1564 }
1565 
1566 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1567 
1568 static void
1569 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1570 {
1571 	struct nvme_poll_group *group = poll_group_ctx;
1572 	struct nvme_qpair *nvme_qpair;
1573 	struct nvme_ctrlr_channel *ctrlr_ch;
1574 	int status;
1575 
1576 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1577 	if (nvme_qpair == NULL) {
1578 		return;
1579 	}
1580 
1581 	if (nvme_qpair->qpair != NULL) {
1582 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1583 		nvme_qpair->qpair = NULL;
1584 	}
1585 
1586 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1587 
1588 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1589 
1590 	if (ctrlr_ch != NULL) {
1591 		if (ctrlr_ch->reset_iter != NULL) {
1592 			/* We are in a full reset sequence. */
1593 			if (ctrlr_ch->connect_poller != NULL) {
1594 				/* qpair was failed to connect. Abort the reset sequence. */
1595 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was failed to connect. abort the reset ctrlr sequence.\n",
1596 					      qpair);
1597 				spdk_poller_unregister(&ctrlr_ch->connect_poller);
1598 				status = -1;
1599 			} else {
1600 				/* qpair was completed to disconnect. Just move to the next ctrlr_channel. */
1601 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1602 					      qpair);
1603 				status = 0;
1604 			}
1605 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, status);
1606 			ctrlr_ch->reset_iter = NULL;
1607 		} else {
1608 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1609 			SPDK_NOTICELOG("qpair %p was disconnected and freed. reset controller.\n", qpair);
1610 			bdev_nvme_failover_ctrlr(nvme_qpair->ctrlr);
1611 		}
1612 	} else {
1613 		/* In this case, ctrlr_channel is already deleted. */
1614 		SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed. delete nvme_qpair.\n", qpair);
1615 		nvme_qpair_delete(nvme_qpair);
1616 	}
1617 }
1618 
1619 static void
1620 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1621 {
1622 	struct nvme_qpair *nvme_qpair;
1623 
1624 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1625 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1626 			continue;
1627 		}
1628 
1629 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1630 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1631 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1632 		}
1633 	}
1634 }
1635 
1636 static int
1637 bdev_nvme_poll(void *arg)
1638 {
1639 	struct nvme_poll_group *group = arg;
1640 	int64_t num_completions;
1641 
1642 	if (group->collect_spin_stat && group->start_ticks == 0) {
1643 		group->start_ticks = spdk_get_ticks();
1644 	}
1645 
1646 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1647 			  bdev_nvme_disconnected_qpair_cb);
1648 	if (group->collect_spin_stat) {
1649 		if (num_completions > 0) {
1650 			if (group->end_ticks != 0) {
1651 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1652 				group->end_ticks = 0;
1653 			}
1654 			group->start_ticks = 0;
1655 		} else {
1656 			group->end_ticks = spdk_get_ticks();
1657 		}
1658 	}
1659 
1660 	if (spdk_unlikely(num_completions < 0)) {
1661 		bdev_nvme_check_io_qpairs(group);
1662 	}
1663 
1664 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1665 }
1666 
1667 static int bdev_nvme_poll_adminq(void *arg);
1668 
1669 static void
1670 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1671 {
1672 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1673 
1674 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1675 					  nvme_ctrlr, new_period_us);
1676 }
1677 
1678 static int
1679 bdev_nvme_poll_adminq(void *arg)
1680 {
1681 	int32_t rc;
1682 	struct nvme_ctrlr *nvme_ctrlr = arg;
1683 	nvme_ctrlr_disconnected_cb disconnected_cb;
1684 
1685 	assert(nvme_ctrlr != NULL);
1686 
1687 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1688 	if (rc < 0) {
1689 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1690 		nvme_ctrlr->disconnected_cb = NULL;
1691 
1692 		if (disconnected_cb != NULL) {
1693 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1694 							    g_opts.nvme_adminq_poll_period_us);
1695 			disconnected_cb(nvme_ctrlr);
1696 		} else {
1697 			bdev_nvme_failover_ctrlr(nvme_ctrlr);
1698 		}
1699 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1700 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1701 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1702 	}
1703 
1704 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1705 }
1706 
1707 static void
1708 nvme_bdev_free(void *io_device)
1709 {
1710 	struct nvme_bdev *nvme_disk = io_device;
1711 
1712 	pthread_mutex_destroy(&nvme_disk->mutex);
1713 	free(nvme_disk->disk.name);
1714 	free(nvme_disk->err_stat);
1715 	free(nvme_disk);
1716 }
1717 
1718 static int
1719 bdev_nvme_destruct(void *ctx)
1720 {
1721 	struct nvme_bdev *nvme_disk = ctx;
1722 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1723 
1724 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1725 
1726 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1727 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1728 
1729 		nvme_ns->bdev = NULL;
1730 
1731 		assert(nvme_ns->id > 0);
1732 
1733 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1734 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1735 
1736 			nvme_ctrlr_release(nvme_ns->ctrlr);
1737 			nvme_ns_free(nvme_ns);
1738 		} else {
1739 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1740 		}
1741 	}
1742 
1743 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1744 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1745 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1746 
1747 	spdk_io_device_unregister(nvme_disk, nvme_bdev_free);
1748 
1749 	return 0;
1750 }
1751 
1752 static int
1753 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1754 {
1755 	struct nvme_ctrlr *nvme_ctrlr;
1756 	struct spdk_nvme_io_qpair_opts opts;
1757 	struct spdk_nvme_qpair *qpair;
1758 	int rc;
1759 
1760 	nvme_ctrlr = nvme_qpair->ctrlr;
1761 
1762 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1763 	opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1764 	opts.create_only = true;
1765 	opts.async_mode = true;
1766 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1767 	g_opts.io_queue_requests = opts.io_queue_requests;
1768 
1769 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1770 	if (qpair == NULL) {
1771 		return -1;
1772 	}
1773 
1774 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1775 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1776 
1777 	assert(nvme_qpair->group != NULL);
1778 
1779 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1780 	if (rc != 0) {
1781 		SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
1782 		goto err;
1783 	}
1784 
1785 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1786 	if (rc != 0) {
1787 		SPDK_ERRLOG("Unable to connect I/O qpair.\n");
1788 		goto err;
1789 	}
1790 
1791 	nvme_qpair->qpair = qpair;
1792 
1793 	if (!g_opts.disable_auto_failback) {
1794 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1795 	}
1796 
1797 	return 0;
1798 
1799 err:
1800 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1801 
1802 	return rc;
1803 }
1804 
1805 static void bdev_nvme_reset_io_continue(void *cb_arg, int rc);
1806 
1807 static void
1808 bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
1809 {
1810 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1811 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1812 	int rc = 0;
1813 	struct spdk_bdev_io *bdev_io;
1814 	struct nvme_bdev_io *bio;
1815 
1816 	if (spdk_io_channel_iter_get_ctx(i) != NULL) {
1817 		rc = -1;
1818 	}
1819 
1820 	while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
1821 		bdev_io = TAILQ_FIRST(&ctrlr_ch->pending_resets);
1822 		TAILQ_REMOVE(&ctrlr_ch->pending_resets, bdev_io, module_link);
1823 
1824 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1825 		bdev_nvme_reset_io_continue(bio, rc);
1826 	}
1827 
1828 	spdk_for_each_channel_continue(i, 0);
1829 }
1830 
1831 /* This function marks the current trid as failed by storing the current ticks
1832  * and then sets the next trid to the active trid within a controller if exists.
1833  *
1834  * The purpose of the boolean return value is to request the caller to disconnect
1835  * the current trid now to try connecting the next trid.
1836  */
1837 static bool
1838 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove, bool start)
1839 {
1840 	struct nvme_path_id *path_id, *next_path;
1841 	int rc __attribute__((unused));
1842 
1843 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1844 	assert(path_id);
1845 	assert(path_id == nvme_ctrlr->active_path_id);
1846 	next_path = TAILQ_NEXT(path_id, link);
1847 
1848 	/* Update the last failed time. It means the trid is failed if its last
1849 	 * failed time is non-zero.
1850 	 */
1851 	path_id->last_failed_tsc = spdk_get_ticks();
1852 
1853 	if (next_path == NULL) {
1854 		/* There is no alternate trid within a controller. */
1855 		return false;
1856 	}
1857 
1858 	if (!start && nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1859 		/* Connect is not retried in a controller reset sequence. Connecting
1860 		 * the next trid will be done by the next bdev_nvme_failover_ctrlr() call.
1861 		 */
1862 		return false;
1863 	}
1864 
1865 	assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
1866 
1867 	SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr,
1868 		       path_id->trid.trsvcid,	next_path->trid.traddr, next_path->trid.trsvcid);
1869 
1870 	spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
1871 	nvme_ctrlr->active_path_id = next_path;
1872 	rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
1873 	assert(rc == 0);
1874 	TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
1875 	if (!remove) {
1876 		/** Shuffle the old trid to the end of the list and use the new one.
1877 		 * Allows for round robin through multiple connections.
1878 		 */
1879 		TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
1880 	} else {
1881 		free(path_id);
1882 	}
1883 
1884 	if (start || next_path->last_failed_tsc == 0) {
1885 		/* bdev_nvme_failover_ctrlr() is just called or the next trid is not failed
1886 		 * or used yet. Try the next trid now.
1887 		 */
1888 		return true;
1889 	}
1890 
1891 	if (spdk_get_ticks() > next_path->last_failed_tsc + spdk_get_ticks_hz() *
1892 	    nvme_ctrlr->opts.reconnect_delay_sec) {
1893 		/* Enough backoff passed since the next trid failed. Try the next trid now. */
1894 		return true;
1895 	}
1896 
1897 	/* The next trid will be tried after reconnect_delay_sec seconds. */
1898 	return false;
1899 }
1900 
1901 static bool
1902 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
1903 {
1904 	int32_t elapsed;
1905 
1906 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
1907 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
1908 		return false;
1909 	}
1910 
1911 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1912 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
1913 		return true;
1914 	} else {
1915 		return false;
1916 	}
1917 }
1918 
1919 static bool
1920 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
1921 {
1922 	uint32_t elapsed;
1923 
1924 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
1925 		return false;
1926 	}
1927 
1928 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1929 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
1930 		return true;
1931 	} else {
1932 		return false;
1933 	}
1934 }
1935 
1936 static void bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
1937 
1938 static void
1939 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
1940 {
1941 	int rc;
1942 
1943 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
1944 	if (rc != 0) {
1945 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
1946 		 * fail the reset sequence immediately.
1947 		 */
1948 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
1949 		return;
1950 	}
1951 
1952 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
1953 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
1954 	 */
1955 	assert(nvme_ctrlr->disconnected_cb == NULL);
1956 	nvme_ctrlr->disconnected_cb = cb_fn;
1957 
1958 	/* During disconnection, reduce the period to poll adminq more often. */
1959 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
1960 }
1961 
1962 enum bdev_nvme_op_after_reset {
1963 	OP_NONE,
1964 	OP_COMPLETE_PENDING_DESTRUCT,
1965 	OP_DESTRUCT,
1966 	OP_DELAYED_RECONNECT,
1967 	OP_FAILOVER,
1968 };
1969 
1970 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
1971 
1972 static _bdev_nvme_op_after_reset
1973 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
1974 {
1975 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1976 		/* Complete pending destruct after reset completes. */
1977 		return OP_COMPLETE_PENDING_DESTRUCT;
1978 	} else if (nvme_ctrlr->pending_failover) {
1979 		nvme_ctrlr->pending_failover = false;
1980 		nvme_ctrlr->reset_start_tsc = 0;
1981 		return OP_FAILOVER;
1982 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1983 		nvme_ctrlr->reset_start_tsc = 0;
1984 		return OP_NONE;
1985 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1986 		return OP_DESTRUCT;
1987 	} else {
1988 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
1989 			nvme_ctrlr->fast_io_fail_timedout = true;
1990 		}
1991 		return OP_DELAYED_RECONNECT;
1992 	}
1993 }
1994 
1995 static int bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
1996 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
1997 
1998 static int
1999 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
2000 {
2001 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2002 
2003 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
2004 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2005 
2006 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2007 
2008 	if (!nvme_ctrlr->reconnect_is_delayed) {
2009 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2010 		return SPDK_POLLER_BUSY;
2011 	}
2012 
2013 	nvme_ctrlr->reconnect_is_delayed = false;
2014 
2015 	if (nvme_ctrlr->destruct) {
2016 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2017 		return SPDK_POLLER_BUSY;
2018 	}
2019 
2020 	assert(nvme_ctrlr->resetting == false);
2021 	nvme_ctrlr->resetting = true;
2022 
2023 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2024 
2025 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2026 
2027 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2028 	return SPDK_POLLER_BUSY;
2029 }
2030 
2031 static void
2032 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
2033 {
2034 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2035 
2036 	assert(nvme_ctrlr->reconnect_is_delayed == false);
2037 	nvme_ctrlr->reconnect_is_delayed = true;
2038 
2039 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
2040 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
2041 					    nvme_ctrlr,
2042 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
2043 }
2044 
2045 static void remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr);
2046 
2047 static void
2048 _bdev_nvme_reset_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2049 {
2050 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2051 	bool success = spdk_io_channel_iter_get_ctx(i) == NULL;
2052 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2053 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2054 	enum bdev_nvme_op_after_reset op_after_reset;
2055 
2056 	assert(nvme_ctrlr->thread == spdk_get_thread());
2057 
2058 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2059 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2060 
2061 	if (!success) {
2062 		SPDK_ERRLOG("Resetting controller failed.\n");
2063 	} else {
2064 		SPDK_NOTICELOG("Resetting controller successful.\n");
2065 	}
2066 
2067 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2068 	nvme_ctrlr->resetting = false;
2069 	nvme_ctrlr->dont_retry = false;
2070 	nvme_ctrlr->in_failover = false;
2071 
2072 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
2073 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2074 
2075 	/* Delay callbacks when the next operation is a failover. */
2076 	if (ctrlr_op_cb_fn && op_after_reset != OP_FAILOVER) {
2077 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, success ? 0 : -1);
2078 	}
2079 
2080 	switch (op_after_reset) {
2081 	case OP_COMPLETE_PENDING_DESTRUCT:
2082 		nvme_ctrlr_unregister(nvme_ctrlr);
2083 		break;
2084 	case OP_DESTRUCT:
2085 		bdev_nvme_delete_ctrlr(nvme_ctrlr, false);
2086 		remove_discovery_entry(nvme_ctrlr);
2087 		break;
2088 	case OP_DELAYED_RECONNECT:
2089 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
2090 		break;
2091 	case OP_FAILOVER:
2092 		nvme_ctrlr->ctrlr_op_cb_fn = ctrlr_op_cb_fn;
2093 		nvme_ctrlr->ctrlr_op_cb_arg = ctrlr_op_cb_arg;
2094 		bdev_nvme_failover_ctrlr(nvme_ctrlr);
2095 		break;
2096 	default:
2097 		break;
2098 	}
2099 }
2100 
2101 static void
2102 bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
2103 {
2104 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2105 	if (!success) {
2106 		/* Connecting the active trid failed. Set the next alternate trid to the
2107 		 * active trid if it exists.
2108 		 */
2109 		if (bdev_nvme_failover_trid(nvme_ctrlr, false, false)) {
2110 			/* The next alternate trid exists and is ready to try. Try it now. */
2111 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
2112 
2113 			nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2114 			return;
2115 		}
2116 
2117 		/* We came here if there is no alternate trid or if the next trid exists but
2118 		 * is not ready to try. We will try the active trid after reconnect_delay_sec
2119 		 * seconds if it is non-zero or at the next reset call otherwise.
2120 		 */
2121 	} else {
2122 		/* Connecting the active trid succeeded. Clear the last failed time because it
2123 		 * means the trid is failed if its last failed time is non-zero.
2124 		 */
2125 		nvme_ctrlr->active_path_id->last_failed_tsc = 0;
2126 	}
2127 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2128 
2129 	/* Make sure we clear any pending resets before returning. */
2130 	spdk_for_each_channel(nvme_ctrlr,
2131 			      bdev_nvme_complete_pending_resets,
2132 			      success ? NULL : (void *)0x1,
2133 			      _bdev_nvme_reset_ctrlr_complete);
2134 }
2135 
2136 static void
2137 bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status)
2138 {
2139 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2140 
2141 	bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2142 }
2143 
2144 static void
2145 bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
2146 {
2147 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
2148 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
2149 	struct nvme_qpair *nvme_qpair;
2150 
2151 	nvme_qpair = ctrlr_ch->qpair;
2152 	assert(nvme_qpair != NULL);
2153 
2154 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2155 
2156 	if (nvme_qpair->qpair != NULL) {
2157 		if (nvme_qpair->ctrlr->dont_retry) {
2158 			spdk_nvme_qpair_set_abort_dnr(nvme_qpair->qpair, true);
2159 		}
2160 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
2161 
2162 		/* The current full reset sequence will move to the next
2163 		 * ctrlr_channel after the qpair is actually disconnected.
2164 		 */
2165 		assert(ctrlr_ch->reset_iter == NULL);
2166 		ctrlr_ch->reset_iter = i;
2167 	} else {
2168 		spdk_for_each_channel_continue(i, 0);
2169 	}
2170 }
2171 
2172 static void
2173 bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
2174 {
2175 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2176 
2177 	if (status == 0) {
2178 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, true);
2179 	} else {
2180 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
2181 		spdk_for_each_channel(nvme_ctrlr,
2182 				      bdev_nvme_reset_destroy_qpair,
2183 				      NULL,
2184 				      bdev_nvme_reset_create_qpairs_failed);
2185 	}
2186 }
2187 
2188 static int
2189 bdev_nvme_reset_check_qpair_connected(void *ctx)
2190 {
2191 	struct nvme_ctrlr_channel *ctrlr_ch = ctx;
2192 
2193 	if (ctrlr_ch->reset_iter == NULL) {
2194 		/* qpair was already failed to connect and the reset sequence is being aborted. */
2195 		assert(ctrlr_ch->connect_poller == NULL);
2196 		assert(ctrlr_ch->qpair->qpair == NULL);
2197 		return SPDK_POLLER_BUSY;
2198 	}
2199 
2200 	assert(ctrlr_ch->qpair->qpair != NULL);
2201 
2202 	if (!spdk_nvme_qpair_is_connected(ctrlr_ch->qpair->qpair)) {
2203 		return SPDK_POLLER_BUSY;
2204 	}
2205 
2206 	spdk_poller_unregister(&ctrlr_ch->connect_poller);
2207 
2208 	/* qpair was completed to connect. Move to the next ctrlr_channel */
2209 	spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2210 	ctrlr_ch->reset_iter = NULL;
2211 
2212 	if (!g_opts.disable_auto_failback) {
2213 		_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
2214 	}
2215 
2216 	return SPDK_POLLER_BUSY;
2217 }
2218 
2219 static void
2220 bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
2221 {
2222 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2223 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
2224 	int rc;
2225 
2226 	rc = bdev_nvme_create_qpair(ctrlr_ch->qpair);
2227 	if (rc == 0) {
2228 		ctrlr_ch->connect_poller = SPDK_POLLER_REGISTER(bdev_nvme_reset_check_qpair_connected,
2229 					   ctrlr_ch, 0);
2230 
2231 		/* The current full reset sequence will move to the next
2232 		 * ctrlr_channel after the qpair is actually connected.
2233 		 */
2234 		assert(ctrlr_ch->reset_iter == NULL);
2235 		ctrlr_ch->reset_iter = i;
2236 	} else {
2237 		spdk_for_each_channel_continue(i, rc);
2238 	}
2239 }
2240 
2241 static void
2242 nvme_ctrlr_check_namespaces(struct nvme_ctrlr *nvme_ctrlr)
2243 {
2244 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
2245 	struct nvme_ns *nvme_ns;
2246 
2247 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
2248 	     nvme_ns != NULL;
2249 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
2250 		if (!spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
2251 			SPDK_DEBUGLOG(bdev_nvme, "NSID %u was removed during reset.\n", nvme_ns->id);
2252 			/* NS can be added again. Just nullify nvme_ns->ns. */
2253 			nvme_ns->ns = NULL;
2254 		}
2255 	}
2256 }
2257 
2258 
2259 static int
2260 bdev_nvme_reconnect_ctrlr_poll(void *arg)
2261 {
2262 	struct nvme_ctrlr *nvme_ctrlr = arg;
2263 	int rc = -ETIMEDOUT;
2264 
2265 	if (!bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2266 		rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
2267 		if (rc == -EAGAIN) {
2268 			return SPDK_POLLER_BUSY;
2269 		}
2270 	}
2271 
2272 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
2273 	if (rc == 0) {
2274 		nvme_ctrlr_check_namespaces(nvme_ctrlr);
2275 
2276 		/* Recreate all of the I/O queue pairs */
2277 		spdk_for_each_channel(nvme_ctrlr,
2278 				      bdev_nvme_reset_create_qpair,
2279 				      NULL,
2280 				      bdev_nvme_reset_create_qpairs_done);
2281 	} else {
2282 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2283 	}
2284 	return SPDK_POLLER_BUSY;
2285 }
2286 
2287 static void
2288 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2289 {
2290 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
2291 
2292 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
2293 	assert(nvme_ctrlr->reset_detach_poller == NULL);
2294 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
2295 					  nvme_ctrlr, 0);
2296 }
2297 
2298 static void
2299 bdev_nvme_reset_destroy_qpair_done(struct spdk_io_channel_iter *i, int status)
2300 {
2301 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2302 
2303 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
2304 	assert(status == 0);
2305 
2306 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2307 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2308 	} else {
2309 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2310 	}
2311 }
2312 
2313 static void
2314 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2315 {
2316 	spdk_for_each_channel(nvme_ctrlr,
2317 			      bdev_nvme_reset_destroy_qpair,
2318 			      NULL,
2319 			      bdev_nvme_reset_destroy_qpair_done);
2320 }
2321 
2322 static void
2323 bdev_nvme_reconnect_ctrlr_now(void *ctx)
2324 {
2325 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2326 
2327 	assert(nvme_ctrlr->resetting == true);
2328 	assert(nvme_ctrlr->thread == spdk_get_thread());
2329 
2330 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2331 
2332 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2333 
2334 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2335 }
2336 
2337 static void
2338 _bdev_nvme_reset_ctrlr(void *ctx)
2339 {
2340 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2341 
2342 	assert(nvme_ctrlr->resetting == true);
2343 	assert(nvme_ctrlr->thread == spdk_get_thread());
2344 
2345 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2346 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
2347 	} else {
2348 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
2349 	}
2350 }
2351 
2352 static int
2353 bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2354 {
2355 	spdk_msg_fn msg_fn;
2356 
2357 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2358 	if (nvme_ctrlr->destruct) {
2359 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2360 		return -ENXIO;
2361 	}
2362 
2363 	if (nvme_ctrlr->resetting) {
2364 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2365 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
2366 		return -EBUSY;
2367 	}
2368 
2369 	if (nvme_ctrlr->disabled) {
2370 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2371 		SPDK_NOTICELOG("Unable to perform reset. Controller is disabled.\n");
2372 		return -EALREADY;
2373 	}
2374 
2375 	nvme_ctrlr->resetting = true;
2376 	nvme_ctrlr->dont_retry = true;
2377 
2378 	if (nvme_ctrlr->reconnect_is_delayed) {
2379 		SPDK_DEBUGLOG(bdev_nvme, "Reconnect is already scheduled.\n");
2380 		msg_fn = bdev_nvme_reconnect_ctrlr_now;
2381 		nvme_ctrlr->reconnect_is_delayed = false;
2382 	} else {
2383 		msg_fn = _bdev_nvme_reset_ctrlr;
2384 		assert(nvme_ctrlr->reset_start_tsc == 0);
2385 	}
2386 
2387 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2388 
2389 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2390 
2391 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2392 	return 0;
2393 }
2394 
2395 static int
2396 bdev_nvme_enable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2397 {
2398 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2399 	if (nvme_ctrlr->destruct) {
2400 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2401 		return -ENXIO;
2402 	}
2403 
2404 	if (nvme_ctrlr->resetting) {
2405 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2406 		return -EBUSY;
2407 	}
2408 
2409 	if (!nvme_ctrlr->disabled) {
2410 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2411 		return -EALREADY;
2412 	}
2413 
2414 	nvme_ctrlr->disabled = false;
2415 	nvme_ctrlr->resetting = true;
2416 
2417 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2418 
2419 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2420 
2421 	spdk_thread_send_msg(nvme_ctrlr->thread, bdev_nvme_reconnect_ctrlr_now, nvme_ctrlr);
2422 	return 0;
2423 }
2424 
2425 static void
2426 _bdev_nvme_disable_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2427 {
2428 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2429 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2430 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2431 	enum bdev_nvme_op_after_reset op_after_disable;
2432 
2433 	assert(nvme_ctrlr->thread == spdk_get_thread());
2434 
2435 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2436 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2437 
2438 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2439 
2440 	nvme_ctrlr->resetting = false;
2441 	nvme_ctrlr->dont_retry = false;
2442 
2443 	op_after_disable = bdev_nvme_check_op_after_reset(nvme_ctrlr, true);
2444 
2445 	nvme_ctrlr->disabled = true;
2446 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2447 
2448 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2449 
2450 	if (ctrlr_op_cb_fn) {
2451 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, 0);
2452 	}
2453 
2454 	switch (op_after_disable) {
2455 	case OP_COMPLETE_PENDING_DESTRUCT:
2456 		nvme_ctrlr_unregister(nvme_ctrlr);
2457 		break;
2458 	default:
2459 		break;
2460 	}
2461 
2462 }
2463 
2464 static void
2465 bdev_nvme_disable_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr)
2466 {
2467 	/* Make sure we clear any pending resets before returning. */
2468 	spdk_for_each_channel(nvme_ctrlr,
2469 			      bdev_nvme_complete_pending_resets,
2470 			      NULL,
2471 			      _bdev_nvme_disable_ctrlr_complete);
2472 }
2473 
2474 static void
2475 bdev_nvme_disable_destroy_qpairs_done(struct spdk_io_channel_iter *i, int status)
2476 {
2477 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2478 
2479 	assert(status == 0);
2480 
2481 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2482 		bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2483 	} else {
2484 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_ctrlr_complete);
2485 	}
2486 }
2487 
2488 static void
2489 bdev_nvme_disable_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2490 {
2491 	spdk_for_each_channel(nvme_ctrlr,
2492 			      bdev_nvme_reset_destroy_qpair,
2493 			      NULL,
2494 			      bdev_nvme_disable_destroy_qpairs_done);
2495 }
2496 
2497 static void
2498 _bdev_nvme_cancel_reconnect_and_disable_ctrlr(void *ctx)
2499 {
2500 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2501 
2502 	assert(nvme_ctrlr->resetting == true);
2503 	assert(nvme_ctrlr->thread == spdk_get_thread());
2504 
2505 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2506 
2507 	bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2508 }
2509 
2510 static void
2511 _bdev_nvme_disconnect_and_disable_ctrlr(void *ctx)
2512 {
2513 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2514 
2515 	assert(nvme_ctrlr->resetting == true);
2516 	assert(nvme_ctrlr->thread == spdk_get_thread());
2517 
2518 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2519 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_destroy_qpairs);
2520 	} else {
2521 		bdev_nvme_disable_destroy_qpairs(nvme_ctrlr);
2522 	}
2523 }
2524 
2525 static int
2526 bdev_nvme_disable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2527 {
2528 	spdk_msg_fn msg_fn;
2529 
2530 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2531 	if (nvme_ctrlr->destruct) {
2532 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2533 		return -ENXIO;
2534 	}
2535 
2536 	if (nvme_ctrlr->resetting) {
2537 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2538 		return -EBUSY;
2539 	}
2540 
2541 	if (nvme_ctrlr->disabled) {
2542 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2543 		return -EALREADY;
2544 	}
2545 
2546 	nvme_ctrlr->resetting = true;
2547 	nvme_ctrlr->dont_retry = true;
2548 
2549 	if (nvme_ctrlr->reconnect_is_delayed) {
2550 		msg_fn = _bdev_nvme_cancel_reconnect_and_disable_ctrlr;
2551 		nvme_ctrlr->reconnect_is_delayed = false;
2552 	} else {
2553 		msg_fn = _bdev_nvme_disconnect_and_disable_ctrlr;
2554 	}
2555 
2556 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2557 
2558 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2559 
2560 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2561 	return 0;
2562 }
2563 
2564 static int
2565 nvme_ctrlr_op(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2566 	      bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2567 {
2568 	int rc;
2569 
2570 	switch (op) {
2571 	case NVME_CTRLR_OP_RESET:
2572 		rc = bdev_nvme_reset_ctrlr(nvme_ctrlr);
2573 		break;
2574 	case NVME_CTRLR_OP_ENABLE:
2575 		rc = bdev_nvme_enable_ctrlr(nvme_ctrlr);
2576 		break;
2577 	case NVME_CTRLR_OP_DISABLE:
2578 		rc = bdev_nvme_disable_ctrlr(nvme_ctrlr);
2579 		break;
2580 	default:
2581 		rc = -EINVAL;
2582 		break;
2583 	}
2584 
2585 	if (rc == 0) {
2586 		assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL);
2587 		assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL);
2588 		nvme_ctrlr->ctrlr_op_cb_fn = cb_fn;
2589 		nvme_ctrlr->ctrlr_op_cb_arg = cb_arg;
2590 	}
2591 	return rc;
2592 }
2593 
2594 struct nvme_ctrlr_op_rpc_ctx {
2595 	struct nvme_ctrlr *nvme_ctrlr;
2596 	struct spdk_thread *orig_thread;
2597 	enum nvme_ctrlr_op op;
2598 	int rc;
2599 	bdev_nvme_ctrlr_op_cb cb_fn;
2600 	void *cb_arg;
2601 };
2602 
2603 static void
2604 _nvme_ctrlr_op_rpc_complete(void *_ctx)
2605 {
2606 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2607 
2608 	assert(ctx != NULL);
2609 	assert(ctx->cb_fn != NULL);
2610 
2611 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2612 
2613 	free(ctx);
2614 }
2615 
2616 static void
2617 nvme_ctrlr_op_rpc_complete(void *cb_arg, int rc)
2618 {
2619 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2620 
2621 	ctx->rc = rc;
2622 
2623 	spdk_thread_send_msg(ctx->orig_thread, _nvme_ctrlr_op_rpc_complete, ctx);
2624 }
2625 
2626 void
2627 nvme_ctrlr_op_rpc(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2628 		  bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2629 {
2630 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2631 	int rc;
2632 
2633 	assert(cb_fn != NULL);
2634 
2635 	ctx = calloc(1, sizeof(*ctx));
2636 	if (ctx == NULL) {
2637 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2638 		cb_fn(cb_arg, -ENOMEM);
2639 		return;
2640 	}
2641 
2642 	ctx->orig_thread = spdk_get_thread();
2643 	ctx->cb_fn = cb_fn;
2644 	ctx->cb_arg = cb_arg;
2645 
2646 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_ctrlr_op_rpc_complete, ctx);
2647 	if (rc == 0) {
2648 		return;
2649 	} else if (rc == -EALREADY) {
2650 		rc = 0;
2651 	}
2652 
2653 	nvme_ctrlr_op_rpc_complete(ctx, rc);
2654 }
2655 
2656 static void nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc);
2657 
2658 static void
2659 _nvme_bdev_ctrlr_op_rpc_continue(void *_ctx)
2660 {
2661 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2662 	struct nvme_ctrlr *prev_nvme_ctrlr, *next_nvme_ctrlr;
2663 	int rc;
2664 
2665 	prev_nvme_ctrlr = ctx->nvme_ctrlr;
2666 	ctx->nvme_ctrlr = NULL;
2667 
2668 	if (ctx->rc != 0) {
2669 		goto complete;
2670 	}
2671 
2672 	next_nvme_ctrlr = TAILQ_NEXT(prev_nvme_ctrlr, tailq);
2673 	if (next_nvme_ctrlr == NULL) {
2674 		goto complete;
2675 	}
2676 
2677 	rc = nvme_ctrlr_op(next_nvme_ctrlr, ctx->op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2678 	if (rc == 0) {
2679 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2680 		return;
2681 	} else if (rc == -EALREADY) {
2682 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2683 		rc = 0;
2684 	}
2685 
2686 	ctx->rc = rc;
2687 
2688 complete:
2689 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2690 	free(ctx);
2691 }
2692 
2693 static void
2694 nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc)
2695 {
2696 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2697 
2698 	ctx->rc = rc;
2699 
2700 	spdk_thread_send_msg(ctx->orig_thread, _nvme_bdev_ctrlr_op_rpc_continue, ctx);
2701 }
2702 
2703 void
2704 nvme_bdev_ctrlr_op_rpc(struct nvme_bdev_ctrlr *nbdev_ctrlr, enum nvme_ctrlr_op op,
2705 		       bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2706 {
2707 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2708 	struct nvme_ctrlr *nvme_ctrlr;
2709 	int rc;
2710 
2711 	assert(cb_fn != NULL);
2712 
2713 	ctx = calloc(1, sizeof(*ctx));
2714 	if (ctx == NULL) {
2715 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2716 		cb_fn(cb_arg, -ENOMEM);
2717 		return;
2718 	}
2719 
2720 	ctx->orig_thread = spdk_get_thread();
2721 	ctx->op = op;
2722 	ctx->cb_fn = cb_fn;
2723 	ctx->cb_arg = cb_arg;
2724 
2725 	nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
2726 	assert(nvme_ctrlr != NULL);
2727 
2728 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2729 	if (rc == 0) {
2730 		ctx->nvme_ctrlr = nvme_ctrlr;
2731 		return;
2732 	} else if (rc == -EALREADY) {
2733 		ctx->nvme_ctrlr = nvme_ctrlr;
2734 		rc = 0;
2735 	}
2736 
2737 	nvme_bdev_ctrlr_op_rpc_continue(ctx, rc);
2738 }
2739 
2740 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
2741 
2742 static void
2743 _bdev_nvme_reset_io_complete(struct spdk_io_channel_iter *i, int status)
2744 {
2745 	struct nvme_bdev_io *bio = spdk_io_channel_iter_get_ctx(i);
2746 	enum spdk_bdev_io_status io_status;
2747 
2748 	if (bio->cpl.cdw0 == 0) {
2749 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2750 	} else {
2751 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
2752 	}
2753 
2754 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
2755 }
2756 
2757 static void
2758 bdev_nvme_abort_bdev_channel(struct spdk_io_channel_iter *i)
2759 {
2760 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2761 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
2762 
2763 	bdev_nvme_abort_retry_ios(nbdev_ch);
2764 
2765 	spdk_for_each_channel_continue(i, 0);
2766 }
2767 
2768 static void
2769 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
2770 {
2771 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2772 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
2773 
2774 	/* Abort all queued I/Os for retry. */
2775 	spdk_for_each_channel(nbdev,
2776 			      bdev_nvme_abort_bdev_channel,
2777 			      bio,
2778 			      _bdev_nvme_reset_io_complete);
2779 }
2780 
2781 static void
2782 _bdev_nvme_reset_io_continue(void *ctx)
2783 {
2784 	struct nvme_bdev_io *bio = ctx;
2785 	struct nvme_io_path *prev_io_path, *next_io_path;
2786 	int rc;
2787 
2788 	prev_io_path = bio->io_path;
2789 	bio->io_path = NULL;
2790 
2791 	if (bio->cpl.cdw0 != 0) {
2792 		goto complete;
2793 	}
2794 
2795 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
2796 	if (next_io_path == NULL) {
2797 		goto complete;
2798 	}
2799 
2800 	rc = _bdev_nvme_reset_io(next_io_path, bio);
2801 	if (rc == 0) {
2802 		return;
2803 	}
2804 
2805 	bio->cpl.cdw0 = 1;
2806 
2807 complete:
2808 	bdev_nvme_reset_io_complete(bio);
2809 }
2810 
2811 static void
2812 bdev_nvme_reset_io_continue(void *cb_arg, int rc)
2813 {
2814 	struct nvme_bdev_io *bio = cb_arg;
2815 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2816 
2817 	bio->cpl.cdw0 = (rc == 0) ? 0 : 1;
2818 
2819 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), _bdev_nvme_reset_io_continue, bio);
2820 }
2821 
2822 static int
2823 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
2824 {
2825 	struct nvme_ctrlr_channel *ctrlr_ch;
2826 	struct spdk_bdev_io *bdev_io;
2827 	int rc;
2828 
2829 	rc = nvme_ctrlr_op(io_path->qpair->ctrlr, NVME_CTRLR_OP_RESET,
2830 			   bdev_nvme_reset_io_continue, bio);
2831 	if (rc != 0 && rc != -EBUSY) {
2832 		return rc;
2833 	}
2834 
2835 	assert(bio->io_path == NULL);
2836 	bio->io_path = io_path;
2837 
2838 	if (rc == -EBUSY) {
2839 		ctrlr_ch = io_path->qpair->ctrlr_ch;
2840 		assert(ctrlr_ch != NULL);
2841 		/*
2842 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
2843 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
2844 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
2845 		 */
2846 		bdev_io = spdk_bdev_io_from_ctx(bio);
2847 		TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bdev_io, module_link);
2848 	}
2849 
2850 	return 0;
2851 }
2852 
2853 static void
2854 bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio)
2855 {
2856 	struct nvme_io_path *io_path;
2857 	int rc;
2858 
2859 	bio->cpl.cdw0 = 0;
2860 
2861 	/* Reset all nvme_ctrlrs of a bdev controller sequentially. */
2862 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
2863 	assert(io_path != NULL);
2864 
2865 	rc = _bdev_nvme_reset_io(io_path, bio);
2866 	if (rc != 0) {
2867 		/* If the current nvme_ctrlr is disabled, skip it and move to the next nvme_ctrlr. */
2868 		rc = (rc == -EALREADY) ? 0 : rc;
2869 
2870 		bdev_nvme_reset_io_continue(bio, rc);
2871 	}
2872 }
2873 
2874 static int
2875 bdev_nvme_failover_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool remove)
2876 {
2877 	if (nvme_ctrlr->destruct) {
2878 		/* Don't bother resetting if the controller is in the process of being destructed. */
2879 		return -ENXIO;
2880 	}
2881 
2882 	if (nvme_ctrlr->resetting) {
2883 		if (!nvme_ctrlr->in_failover) {
2884 			SPDK_NOTICELOG("Reset is already in progress. Defer failover until reset completes.\n");
2885 
2886 			/* Defer failover until reset completes. */
2887 			nvme_ctrlr->pending_failover = true;
2888 			return -EINPROGRESS;
2889 		} else {
2890 			SPDK_NOTICELOG("Unable to perform failover, already in progress.\n");
2891 			return -EBUSY;
2892 		}
2893 	}
2894 
2895 	bdev_nvme_failover_trid(nvme_ctrlr, remove, true);
2896 
2897 	if (nvme_ctrlr->reconnect_is_delayed) {
2898 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
2899 
2900 		/* We rely on the next reconnect for the failover. */
2901 		return -EALREADY;
2902 	}
2903 
2904 	if (nvme_ctrlr->disabled) {
2905 		SPDK_NOTICELOG("Controller is disabled.\n");
2906 
2907 		/* We rely on the enablement for the failover. */
2908 		return -EALREADY;
2909 	}
2910 
2911 	nvme_ctrlr->resetting = true;
2912 	nvme_ctrlr->in_failover = true;
2913 
2914 	assert(nvme_ctrlr->reset_start_tsc == 0);
2915 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2916 
2917 	return 0;
2918 }
2919 
2920 static int
2921 bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2922 {
2923 	int rc;
2924 
2925 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2926 	rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, false);
2927 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2928 
2929 	if (rc == 0) {
2930 		spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset_ctrlr, nvme_ctrlr);
2931 	} else if (rc == -EALREADY) {
2932 		rc = 0;
2933 	}
2934 
2935 	return rc;
2936 }
2937 
2938 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2939 			   uint64_t num_blocks);
2940 
2941 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2942 				  uint64_t num_blocks);
2943 
2944 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks,
2945 			  uint64_t src_offset_blocks,
2946 			  uint64_t num_blocks);
2947 
2948 static void
2949 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
2950 		     bool success)
2951 {
2952 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2953 	int ret;
2954 
2955 	if (!success) {
2956 		ret = -EINVAL;
2957 		goto exit;
2958 	}
2959 
2960 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
2961 		ret = -ENXIO;
2962 		goto exit;
2963 	}
2964 
2965 	ret = bdev_nvme_readv(bio,
2966 			      bdev_io->u.bdev.iovs,
2967 			      bdev_io->u.bdev.iovcnt,
2968 			      bdev_io->u.bdev.md_buf,
2969 			      bdev_io->u.bdev.num_blocks,
2970 			      bdev_io->u.bdev.offset_blocks,
2971 			      bdev_io->u.bdev.dif_check_flags,
2972 			      bdev_io->u.bdev.memory_domain,
2973 			      bdev_io->u.bdev.memory_domain_ctx,
2974 			      bdev_io->u.bdev.accel_sequence);
2975 
2976 exit:
2977 	if (spdk_unlikely(ret != 0)) {
2978 		bdev_nvme_io_complete(bio, ret);
2979 	}
2980 }
2981 
2982 static inline void
2983 _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
2984 {
2985 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2986 	struct spdk_bdev *bdev = bdev_io->bdev;
2987 	struct nvme_bdev_io *nbdev_io_to_abort;
2988 	int rc = 0;
2989 
2990 	switch (bdev_io->type) {
2991 	case SPDK_BDEV_IO_TYPE_READ:
2992 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
2993 
2994 			rc = bdev_nvme_readv(nbdev_io,
2995 					     bdev_io->u.bdev.iovs,
2996 					     bdev_io->u.bdev.iovcnt,
2997 					     bdev_io->u.bdev.md_buf,
2998 					     bdev_io->u.bdev.num_blocks,
2999 					     bdev_io->u.bdev.offset_blocks,
3000 					     bdev_io->u.bdev.dif_check_flags,
3001 					     bdev_io->u.bdev.memory_domain,
3002 					     bdev_io->u.bdev.memory_domain_ctx,
3003 					     bdev_io->u.bdev.accel_sequence);
3004 		} else {
3005 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
3006 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
3007 			rc = 0;
3008 		}
3009 		break;
3010 	case SPDK_BDEV_IO_TYPE_WRITE:
3011 		rc = bdev_nvme_writev(nbdev_io,
3012 				      bdev_io->u.bdev.iovs,
3013 				      bdev_io->u.bdev.iovcnt,
3014 				      bdev_io->u.bdev.md_buf,
3015 				      bdev_io->u.bdev.num_blocks,
3016 				      bdev_io->u.bdev.offset_blocks,
3017 				      bdev_io->u.bdev.dif_check_flags,
3018 				      bdev_io->u.bdev.memory_domain,
3019 				      bdev_io->u.bdev.memory_domain_ctx,
3020 				      bdev_io->u.bdev.accel_sequence,
3021 				      bdev_io->u.bdev.nvme_cdw12,
3022 				      bdev_io->u.bdev.nvme_cdw13);
3023 		break;
3024 	case SPDK_BDEV_IO_TYPE_COMPARE:
3025 		rc = bdev_nvme_comparev(nbdev_io,
3026 					bdev_io->u.bdev.iovs,
3027 					bdev_io->u.bdev.iovcnt,
3028 					bdev_io->u.bdev.md_buf,
3029 					bdev_io->u.bdev.num_blocks,
3030 					bdev_io->u.bdev.offset_blocks,
3031 					bdev_io->u.bdev.dif_check_flags);
3032 		break;
3033 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3034 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
3035 						   bdev_io->u.bdev.iovs,
3036 						   bdev_io->u.bdev.iovcnt,
3037 						   bdev_io->u.bdev.fused_iovs,
3038 						   bdev_io->u.bdev.fused_iovcnt,
3039 						   bdev_io->u.bdev.md_buf,
3040 						   bdev_io->u.bdev.num_blocks,
3041 						   bdev_io->u.bdev.offset_blocks,
3042 						   bdev_io->u.bdev.dif_check_flags);
3043 		break;
3044 	case SPDK_BDEV_IO_TYPE_UNMAP:
3045 		rc = bdev_nvme_unmap(nbdev_io,
3046 				     bdev_io->u.bdev.offset_blocks,
3047 				     bdev_io->u.bdev.num_blocks);
3048 		break;
3049 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3050 		rc =  bdev_nvme_write_zeroes(nbdev_io,
3051 					     bdev_io->u.bdev.offset_blocks,
3052 					     bdev_io->u.bdev.num_blocks);
3053 		break;
3054 	case SPDK_BDEV_IO_TYPE_RESET:
3055 		nbdev_io->io_path = NULL;
3056 		bdev_nvme_reset_io(nbdev_ch, nbdev_io);
3057 		return;
3058 
3059 	case SPDK_BDEV_IO_TYPE_FLUSH:
3060 		bdev_nvme_io_complete(nbdev_io, 0);
3061 		return;
3062 
3063 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3064 		rc = bdev_nvme_zone_appendv(nbdev_io,
3065 					    bdev_io->u.bdev.iovs,
3066 					    bdev_io->u.bdev.iovcnt,
3067 					    bdev_io->u.bdev.md_buf,
3068 					    bdev_io->u.bdev.num_blocks,
3069 					    bdev_io->u.bdev.offset_blocks,
3070 					    bdev_io->u.bdev.dif_check_flags);
3071 		break;
3072 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3073 		rc = bdev_nvme_get_zone_info(nbdev_io,
3074 					     bdev_io->u.zone_mgmt.zone_id,
3075 					     bdev_io->u.zone_mgmt.num_zones,
3076 					     bdev_io->u.zone_mgmt.buf);
3077 		break;
3078 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3079 		rc = bdev_nvme_zone_management(nbdev_io,
3080 					       bdev_io->u.zone_mgmt.zone_id,
3081 					       bdev_io->u.zone_mgmt.zone_action);
3082 		break;
3083 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3084 		nbdev_io->io_path = NULL;
3085 		bdev_nvme_admin_passthru(nbdev_ch,
3086 					 nbdev_io,
3087 					 &bdev_io->u.nvme_passthru.cmd,
3088 					 bdev_io->u.nvme_passthru.buf,
3089 					 bdev_io->u.nvme_passthru.nbytes);
3090 		return;
3091 
3092 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3093 		rc = bdev_nvme_io_passthru(nbdev_io,
3094 					   &bdev_io->u.nvme_passthru.cmd,
3095 					   bdev_io->u.nvme_passthru.buf,
3096 					   bdev_io->u.nvme_passthru.nbytes);
3097 		break;
3098 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3099 		rc = bdev_nvme_io_passthru_md(nbdev_io,
3100 					      &bdev_io->u.nvme_passthru.cmd,
3101 					      bdev_io->u.nvme_passthru.buf,
3102 					      bdev_io->u.nvme_passthru.nbytes,
3103 					      bdev_io->u.nvme_passthru.md_buf,
3104 					      bdev_io->u.nvme_passthru.md_len);
3105 		break;
3106 	case SPDK_BDEV_IO_TYPE_NVME_IOV_MD:
3107 		rc = bdev_nvme_iov_passthru_md(nbdev_io,
3108 					       &bdev_io->u.nvme_passthru.cmd,
3109 					       bdev_io->u.nvme_passthru.iovs,
3110 					       bdev_io->u.nvme_passthru.iovcnt,
3111 					       bdev_io->u.nvme_passthru.nbytes,
3112 					       bdev_io->u.nvme_passthru.md_buf,
3113 					       bdev_io->u.nvme_passthru.md_len);
3114 		break;
3115 	case SPDK_BDEV_IO_TYPE_ABORT:
3116 		nbdev_io->io_path = NULL;
3117 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
3118 		bdev_nvme_abort(nbdev_ch,
3119 				nbdev_io,
3120 				nbdev_io_to_abort);
3121 		return;
3122 
3123 	case SPDK_BDEV_IO_TYPE_COPY:
3124 		rc = bdev_nvme_copy(nbdev_io,
3125 				    bdev_io->u.bdev.offset_blocks,
3126 				    bdev_io->u.bdev.copy.src_offset_blocks,
3127 				    bdev_io->u.bdev.num_blocks);
3128 		break;
3129 	default:
3130 		rc = -EINVAL;
3131 		break;
3132 	}
3133 
3134 	if (spdk_unlikely(rc != 0)) {
3135 		bdev_nvme_io_complete(nbdev_io, rc);
3136 	}
3137 }
3138 
3139 static void
3140 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
3141 {
3142 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3143 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3144 
3145 	if (spdk_likely(nbdev_io->submit_tsc == 0)) {
3146 		nbdev_io->submit_tsc = spdk_bdev_io_get_submit_tsc(bdev_io);
3147 	} else {
3148 		/* There are cases where submit_tsc != 0, i.e. retry I/O.
3149 		 * We need to update submit_tsc here.
3150 		 */
3151 		nbdev_io->submit_tsc = spdk_get_ticks();
3152 	}
3153 
3154 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
3155 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
3156 	if (spdk_unlikely(!nbdev_io->io_path)) {
3157 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
3158 			bdev_nvme_io_complete(nbdev_io, -ENXIO);
3159 			return;
3160 		}
3161 
3162 		/* Admin commands do not use the optimal I/O path.
3163 		 * Simply fall through even if it is not found.
3164 		 */
3165 	}
3166 
3167 	_bdev_nvme_submit_request(nbdev_ch, bdev_io);
3168 }
3169 
3170 static bool
3171 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
3172 {
3173 	struct nvme_bdev *nbdev = ctx;
3174 	struct nvme_ns *nvme_ns;
3175 	struct spdk_nvme_ns *ns;
3176 	struct spdk_nvme_ctrlr *ctrlr;
3177 	const struct spdk_nvme_ctrlr_data *cdata;
3178 
3179 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
3180 	assert(nvme_ns != NULL);
3181 	ns = nvme_ns->ns;
3182 	if (ns == NULL) {
3183 		return false;
3184 	}
3185 
3186 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3187 
3188 	switch (io_type) {
3189 	case SPDK_BDEV_IO_TYPE_READ:
3190 	case SPDK_BDEV_IO_TYPE_WRITE:
3191 	case SPDK_BDEV_IO_TYPE_RESET:
3192 	case SPDK_BDEV_IO_TYPE_FLUSH:
3193 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3194 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3195 	case SPDK_BDEV_IO_TYPE_ABORT:
3196 		return true;
3197 
3198 	case SPDK_BDEV_IO_TYPE_COMPARE:
3199 		return spdk_nvme_ns_supports_compare(ns);
3200 
3201 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3202 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
3203 
3204 	case SPDK_BDEV_IO_TYPE_UNMAP:
3205 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3206 		return cdata->oncs.dsm;
3207 
3208 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3209 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3210 		return cdata->oncs.write_zeroes;
3211 
3212 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3213 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
3214 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
3215 			return true;
3216 		}
3217 		return false;
3218 
3219 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3220 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3221 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
3222 
3223 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3224 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
3225 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
3226 
3227 	case SPDK_BDEV_IO_TYPE_COPY:
3228 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3229 		return cdata->oncs.copy;
3230 
3231 	default:
3232 		return false;
3233 	}
3234 }
3235 
3236 static int
3237 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
3238 {
3239 	struct nvme_qpair *nvme_qpair;
3240 	struct spdk_io_channel *pg_ch;
3241 	int rc;
3242 
3243 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
3244 	if (!nvme_qpair) {
3245 		SPDK_ERRLOG("Failed to alloc nvme_qpair.\n");
3246 		return -1;
3247 	}
3248 
3249 	TAILQ_INIT(&nvme_qpair->io_path_list);
3250 
3251 	nvme_qpair->ctrlr = nvme_ctrlr;
3252 	nvme_qpair->ctrlr_ch = ctrlr_ch;
3253 
3254 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
3255 	if (!pg_ch) {
3256 		free(nvme_qpair);
3257 		return -1;
3258 	}
3259 
3260 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
3261 
3262 #ifdef SPDK_CONFIG_VTUNE
3263 	nvme_qpair->group->collect_spin_stat = true;
3264 #else
3265 	nvme_qpair->group->collect_spin_stat = false;
3266 #endif
3267 
3268 	if (!nvme_ctrlr->disabled) {
3269 		/* If a nvme_ctrlr is disabled, don't try to create qpair for it. Qpair will
3270 		 * be created when it's enabled.
3271 		 */
3272 		rc = bdev_nvme_create_qpair(nvme_qpair);
3273 		if (rc != 0) {
3274 			/* nvme_ctrlr can't create IO qpair if connection is down.
3275 			 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
3276 			 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
3277 			 * submitted IO will be queued until IO qpair is successfully created.
3278 			 *
3279 			 * Hence, if both are satisfied, ignore the failure.
3280 			 */
3281 			if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
3282 				spdk_put_io_channel(pg_ch);
3283 				free(nvme_qpair);
3284 				return rc;
3285 			}
3286 		}
3287 	}
3288 
3289 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3290 
3291 	ctrlr_ch->qpair = nvme_qpair;
3292 
3293 	pthread_mutex_lock(&nvme_qpair->ctrlr->mutex);
3294 	nvme_qpair->ctrlr->ref++;
3295 	pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex);
3296 
3297 	return 0;
3298 }
3299 
3300 static int
3301 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3302 {
3303 	struct nvme_ctrlr *nvme_ctrlr = io_device;
3304 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3305 
3306 	TAILQ_INIT(&ctrlr_ch->pending_resets);
3307 
3308 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
3309 }
3310 
3311 static void
3312 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
3313 {
3314 	struct nvme_io_path *io_path, *next;
3315 
3316 	assert(nvme_qpair->group != NULL);
3317 
3318 	TAILQ_FOREACH_SAFE(io_path, &nvme_qpair->io_path_list, tailq, next) {
3319 		TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
3320 		nvme_io_path_free(io_path);
3321 	}
3322 
3323 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3324 
3325 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
3326 
3327 	nvme_ctrlr_release(nvme_qpair->ctrlr);
3328 
3329 	free(nvme_qpair);
3330 }
3331 
3332 static void
3333 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3334 {
3335 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3336 	struct nvme_qpair *nvme_qpair;
3337 
3338 	nvme_qpair = ctrlr_ch->qpair;
3339 	assert(nvme_qpair != NULL);
3340 
3341 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
3342 
3343 	if (nvme_qpair->qpair != NULL) {
3344 		if (ctrlr_ch->reset_iter == NULL) {
3345 			spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
3346 		} else {
3347 			/* Skip current ctrlr_channel in a full reset sequence because
3348 			 * it is being deleted now. The qpair is already being disconnected.
3349 			 * We do not have to restart disconnecting it.
3350 			 */
3351 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
3352 		}
3353 
3354 		/* We cannot release a reference to the poll group now.
3355 		 * The qpair may be disconnected asynchronously later.
3356 		 * We need to poll it until it is actually disconnected.
3357 		 * Just detach the qpair from the deleting ctrlr_channel.
3358 		 */
3359 		nvme_qpair->ctrlr_ch = NULL;
3360 	} else {
3361 		assert(ctrlr_ch->reset_iter == NULL);
3362 
3363 		nvme_qpair_delete(nvme_qpair);
3364 	}
3365 }
3366 
3367 static inline struct spdk_io_channel *
3368 bdev_nvme_get_accel_channel(struct nvme_poll_group *group)
3369 {
3370 	if (spdk_unlikely(!group->accel_channel)) {
3371 		group->accel_channel = spdk_accel_get_io_channel();
3372 		if (!group->accel_channel) {
3373 			SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
3374 				    group);
3375 			return NULL;
3376 		}
3377 	}
3378 
3379 	return group->accel_channel;
3380 }
3381 
3382 static void
3383 bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
3384 			      uint32_t iov_cnt, uint32_t seed,
3385 			      spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3386 {
3387 	struct spdk_io_channel *accel_ch;
3388 	struct nvme_poll_group *group = ctx;
3389 	int rc;
3390 
3391 	assert(cb_fn != NULL);
3392 
3393 	accel_ch = bdev_nvme_get_accel_channel(group);
3394 	if (spdk_unlikely(accel_ch == NULL)) {
3395 		cb_fn(cb_arg, -ENOMEM);
3396 		return;
3397 	}
3398 
3399 	rc = spdk_accel_submit_crc32cv(accel_ch, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
3400 	if (rc) {
3401 		/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
3402 		if (rc == -ENOMEM || rc == -EINVAL) {
3403 			cb_fn(cb_arg, rc);
3404 		}
3405 		SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
3406 	}
3407 }
3408 
3409 static void
3410 bdev_nvme_finish_sequence(void *seq, spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3411 {
3412 	spdk_accel_sequence_finish(seq, cb_fn, cb_arg);
3413 }
3414 
3415 static void
3416 bdev_nvme_abort_sequence(void *seq)
3417 {
3418 	spdk_accel_sequence_abort(seq);
3419 }
3420 
3421 static void
3422 bdev_nvme_reverse_sequence(void *seq)
3423 {
3424 	spdk_accel_sequence_reverse(seq);
3425 }
3426 
3427 static int
3428 bdev_nvme_append_crc32c(void *ctx, void **seq, uint32_t *dst, struct iovec *iovs, uint32_t iovcnt,
3429 			struct spdk_memory_domain *domain, void *domain_ctx, uint32_t seed,
3430 			spdk_nvme_accel_step_cb cb_fn, void *cb_arg)
3431 {
3432 	struct spdk_io_channel *ch;
3433 	struct nvme_poll_group *group = ctx;
3434 
3435 	ch = bdev_nvme_get_accel_channel(group);
3436 	if (spdk_unlikely(ch == NULL)) {
3437 		return -ENOMEM;
3438 	}
3439 
3440 	return spdk_accel_append_crc32c((struct spdk_accel_sequence **)seq, ch, dst, iovs, iovcnt,
3441 					domain, domain_ctx, seed, cb_fn, cb_arg);
3442 }
3443 
3444 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
3445 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
3446 	.submit_accel_crc32c	= bdev_nvme_submit_accel_crc32c,
3447 	.append_crc32c		= bdev_nvme_append_crc32c,
3448 	.finish_sequence	= bdev_nvme_finish_sequence,
3449 	.reverse_sequence	= bdev_nvme_reverse_sequence,
3450 	.abort_sequence		= bdev_nvme_abort_sequence,
3451 };
3452 
3453 static int
3454 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
3455 {
3456 	struct nvme_poll_group *group = ctx_buf;
3457 
3458 	TAILQ_INIT(&group->qpair_list);
3459 
3460 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
3461 	if (group->group == NULL) {
3462 		return -1;
3463 	}
3464 
3465 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
3466 
3467 	if (group->poller == NULL) {
3468 		spdk_nvme_poll_group_destroy(group->group);
3469 		return -1;
3470 	}
3471 
3472 	return 0;
3473 }
3474 
3475 static void
3476 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
3477 {
3478 	struct nvme_poll_group *group = ctx_buf;
3479 
3480 	assert(TAILQ_EMPTY(&group->qpair_list));
3481 
3482 	if (group->accel_channel) {
3483 		spdk_put_io_channel(group->accel_channel);
3484 	}
3485 
3486 	spdk_poller_unregister(&group->poller);
3487 	if (spdk_nvme_poll_group_destroy(group->group)) {
3488 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
3489 		assert(false);
3490 	}
3491 }
3492 
3493 static struct spdk_io_channel *
3494 bdev_nvme_get_io_channel(void *ctx)
3495 {
3496 	struct nvme_bdev *nvme_bdev = ctx;
3497 
3498 	return spdk_get_io_channel(nvme_bdev);
3499 }
3500 
3501 static void *
3502 bdev_nvme_get_module_ctx(void *ctx)
3503 {
3504 	struct nvme_bdev *nvme_bdev = ctx;
3505 	struct nvme_ns *nvme_ns;
3506 
3507 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
3508 		return NULL;
3509 	}
3510 
3511 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
3512 	if (!nvme_ns) {
3513 		return NULL;
3514 	}
3515 
3516 	return nvme_ns->ns;
3517 }
3518 
3519 static const char *
3520 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
3521 {
3522 	switch (ana_state) {
3523 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3524 		return "optimized";
3525 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3526 		return "non_optimized";
3527 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3528 		return "inaccessible";
3529 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
3530 		return "persistent_loss";
3531 	case SPDK_NVME_ANA_CHANGE_STATE:
3532 		return "change";
3533 	default:
3534 		return NULL;
3535 	}
3536 }
3537 
3538 static int
3539 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
3540 {
3541 	struct spdk_memory_domain **_domains = NULL;
3542 	struct nvme_bdev *nbdev = ctx;
3543 	struct nvme_ns *nvme_ns;
3544 	int i = 0, _array_size = array_size;
3545 	int rc = 0;
3546 
3547 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3548 		if (domains && array_size >= i) {
3549 			_domains = &domains[i];
3550 		} else {
3551 			_domains = NULL;
3552 		}
3553 		rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size);
3554 		if (rc > 0) {
3555 			i += rc;
3556 			if (_array_size >= rc) {
3557 				_array_size -= rc;
3558 			} else {
3559 				_array_size = 0;
3560 			}
3561 		} else if (rc < 0) {
3562 			return rc;
3563 		}
3564 	}
3565 
3566 	return i;
3567 }
3568 
3569 static const char *
3570 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
3571 {
3572 	if (nvme_ctrlr->destruct) {
3573 		return "deleting";
3574 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
3575 		return "failed";
3576 	} else if (nvme_ctrlr->resetting) {
3577 		return "resetting";
3578 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
3579 		return "reconnect_is_delayed";
3580 	} else if (nvme_ctrlr->disabled) {
3581 		return "disabled";
3582 	} else {
3583 		return "enabled";
3584 	}
3585 }
3586 
3587 void
3588 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
3589 {
3590 	struct spdk_nvme_transport_id *trid;
3591 	const struct spdk_nvme_ctrlr_opts *opts;
3592 	const struct spdk_nvme_ctrlr_data *cdata;
3593 	struct nvme_path_id *path_id;
3594 
3595 	spdk_json_write_object_begin(w);
3596 
3597 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
3598 
3599 #ifdef SPDK_CONFIG_NVME_CUSE
3600 	size_t cuse_name_size = 128;
3601 	char cuse_name[cuse_name_size];
3602 
3603 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
3604 	if (rc == 0) {
3605 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3606 	}
3607 #endif
3608 	trid = &nvme_ctrlr->active_path_id->trid;
3609 	spdk_json_write_named_object_begin(w, "trid");
3610 	nvme_bdev_dump_trid_json(trid, w);
3611 	spdk_json_write_object_end(w);
3612 
3613 	path_id = TAILQ_NEXT(nvme_ctrlr->active_path_id, link);
3614 	if (path_id != NULL) {
3615 		spdk_json_write_named_array_begin(w, "alternate_trids");
3616 		do {
3617 			trid = &path_id->trid;
3618 			spdk_json_write_object_begin(w);
3619 			nvme_bdev_dump_trid_json(trid, w);
3620 			spdk_json_write_object_end(w);
3621 
3622 			path_id = TAILQ_NEXT(path_id, link);
3623 		} while (path_id != NULL);
3624 		spdk_json_write_array_end(w);
3625 	}
3626 
3627 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
3628 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3629 
3630 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
3631 	spdk_json_write_named_object_begin(w, "host");
3632 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
3633 	spdk_json_write_named_string(w, "addr", opts->src_addr);
3634 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
3635 	spdk_json_write_object_end(w);
3636 
3637 	spdk_json_write_object_end(w);
3638 }
3639 
3640 static void
3641 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
3642 			 struct nvme_ns *nvme_ns)
3643 {
3644 	struct spdk_nvme_ns *ns;
3645 	struct spdk_nvme_ctrlr *ctrlr;
3646 	const struct spdk_nvme_ctrlr_data *cdata;
3647 	const struct spdk_nvme_transport_id *trid;
3648 	union spdk_nvme_vs_register vs;
3649 	const struct spdk_nvme_ns_data *nsdata;
3650 	char buf[128];
3651 
3652 	ns = nvme_ns->ns;
3653 	if (ns == NULL) {
3654 		return;
3655 	}
3656 
3657 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3658 
3659 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3660 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
3661 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
3662 
3663 	spdk_json_write_object_begin(w);
3664 
3665 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
3666 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
3667 	}
3668 
3669 	spdk_json_write_named_object_begin(w, "trid");
3670 
3671 	nvme_bdev_dump_trid_json(trid, w);
3672 
3673 	spdk_json_write_object_end(w);
3674 
3675 #ifdef SPDK_CONFIG_NVME_CUSE
3676 	size_t cuse_name_size = 128;
3677 	char cuse_name[cuse_name_size];
3678 
3679 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
3680 					    cuse_name, &cuse_name_size);
3681 	if (rc == 0) {
3682 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3683 	}
3684 #endif
3685 
3686 	spdk_json_write_named_object_begin(w, "ctrlr_data");
3687 
3688 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3689 
3690 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
3691 
3692 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
3693 	spdk_str_trim(buf);
3694 	spdk_json_write_named_string(w, "model_number", buf);
3695 
3696 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
3697 	spdk_str_trim(buf);
3698 	spdk_json_write_named_string(w, "serial_number", buf);
3699 
3700 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
3701 	spdk_str_trim(buf);
3702 	spdk_json_write_named_string(w, "firmware_revision", buf);
3703 
3704 	if (cdata->subnqn[0] != '\0') {
3705 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
3706 	}
3707 
3708 	spdk_json_write_named_object_begin(w, "oacs");
3709 
3710 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
3711 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
3712 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
3713 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
3714 
3715 	spdk_json_write_object_end(w);
3716 
3717 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
3718 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
3719 
3720 	spdk_json_write_object_end(w);
3721 
3722 	spdk_json_write_named_object_begin(w, "vs");
3723 
3724 	spdk_json_write_name(w, "nvme_version");
3725 	if (vs.bits.ter) {
3726 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
3727 	} else {
3728 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
3729 	}
3730 
3731 	spdk_json_write_object_end(w);
3732 
3733 	nsdata = spdk_nvme_ns_get_data(ns);
3734 
3735 	spdk_json_write_named_object_begin(w, "ns_data");
3736 
3737 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
3738 
3739 	if (cdata->cmic.ana_reporting) {
3740 		spdk_json_write_named_string(w, "ana_state",
3741 					     _nvme_ana_state_str(nvme_ns->ana_state));
3742 	}
3743 
3744 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
3745 
3746 	spdk_json_write_object_end(w);
3747 
3748 	if (cdata->oacs.security) {
3749 		spdk_json_write_named_object_begin(w, "security");
3750 
3751 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
3752 
3753 		spdk_json_write_object_end(w);
3754 	}
3755 
3756 	spdk_json_write_object_end(w);
3757 }
3758 
3759 static const char *
3760 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
3761 {
3762 	switch (nbdev->mp_policy) {
3763 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
3764 		return "active_passive";
3765 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
3766 		return "active_active";
3767 	default:
3768 		assert(false);
3769 		return "invalid";
3770 	}
3771 }
3772 
3773 static const char *
3774 nvme_bdev_get_mp_selector_str(struct nvme_bdev *nbdev)
3775 {
3776 	switch (nbdev->mp_selector) {
3777 	case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN:
3778 		return "round_robin";
3779 	case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH:
3780 		return "queue_depth";
3781 	default:
3782 		assert(false);
3783 		return "invalid";
3784 	}
3785 }
3786 
3787 static int
3788 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
3789 {
3790 	struct nvme_bdev *nvme_bdev = ctx;
3791 	struct nvme_ns *nvme_ns;
3792 
3793 	pthread_mutex_lock(&nvme_bdev->mutex);
3794 	spdk_json_write_named_array_begin(w, "nvme");
3795 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
3796 		nvme_namespace_info_json(w, nvme_ns);
3797 	}
3798 	spdk_json_write_array_end(w);
3799 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
3800 	if (nvme_bdev->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
3801 		spdk_json_write_named_string(w, "selector", nvme_bdev_get_mp_selector_str(nvme_bdev));
3802 		if (nvme_bdev->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
3803 			spdk_json_write_named_uint32(w, "rr_min_io", nvme_bdev->rr_min_io);
3804 		}
3805 	}
3806 	pthread_mutex_unlock(&nvme_bdev->mutex);
3807 
3808 	return 0;
3809 }
3810 
3811 static void
3812 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
3813 {
3814 	/* No config per bdev needed */
3815 }
3816 
3817 static uint64_t
3818 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
3819 {
3820 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3821 	struct nvme_io_path *io_path;
3822 	struct nvme_poll_group *group;
3823 	uint64_t spin_time = 0;
3824 
3825 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
3826 		group = io_path->qpair->group;
3827 
3828 		if (!group || !group->collect_spin_stat) {
3829 			continue;
3830 		}
3831 
3832 		if (group->end_ticks != 0) {
3833 			group->spin_ticks += (group->end_ticks - group->start_ticks);
3834 			group->end_ticks = 0;
3835 		}
3836 
3837 		spin_time += group->spin_ticks;
3838 		group->start_ticks = 0;
3839 		group->spin_ticks = 0;
3840 	}
3841 
3842 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
3843 }
3844 
3845 static void
3846 bdev_nvme_reset_device_stat(void *ctx)
3847 {
3848 	struct nvme_bdev *nbdev = ctx;
3849 
3850 	if (nbdev->err_stat != NULL) {
3851 		memset(nbdev->err_stat, 0, sizeof(struct nvme_error_stat));
3852 	}
3853 }
3854 
3855 /* JSON string should be lowercases and underscore delimited string. */
3856 static void
3857 bdev_nvme_format_nvme_status(char *dst, const char *src)
3858 {
3859 	char tmp[256];
3860 
3861 	spdk_strcpy_replace(dst, 256, src, " - ", "_");
3862 	spdk_strcpy_replace(tmp, 256, dst, "-", "_");
3863 	spdk_strcpy_replace(dst, 256, tmp, " ", "_");
3864 	spdk_strlwr(dst);
3865 }
3866 
3867 static void
3868 bdev_nvme_dump_device_stat_json(void *ctx, struct spdk_json_write_ctx *w)
3869 {
3870 	struct nvme_bdev *nbdev = ctx;
3871 	struct spdk_nvme_status status = {};
3872 	uint16_t sct, sc;
3873 	char status_json[256];
3874 	const char *status_str;
3875 
3876 	if (nbdev->err_stat == NULL) {
3877 		return;
3878 	}
3879 
3880 	spdk_json_write_named_object_begin(w, "nvme_error");
3881 
3882 	spdk_json_write_named_object_begin(w, "status_type");
3883 	for (sct = 0; sct < 8; sct++) {
3884 		if (nbdev->err_stat->status_type[sct] == 0) {
3885 			continue;
3886 		}
3887 		status.sct = sct;
3888 
3889 		status_str = spdk_nvme_cpl_get_status_type_string(&status);
3890 		assert(status_str != NULL);
3891 		bdev_nvme_format_nvme_status(status_json, status_str);
3892 
3893 		spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status_type[sct]);
3894 	}
3895 	spdk_json_write_object_end(w);
3896 
3897 	spdk_json_write_named_object_begin(w, "status_code");
3898 	for (sct = 0; sct < 4; sct++) {
3899 		status.sct = sct;
3900 		for (sc = 0; sc < 256; sc++) {
3901 			if (nbdev->err_stat->status[sct][sc] == 0) {
3902 				continue;
3903 			}
3904 			status.sc = sc;
3905 
3906 			status_str = spdk_nvme_cpl_get_status_string(&status);
3907 			assert(status_str != NULL);
3908 			bdev_nvme_format_nvme_status(status_json, status_str);
3909 
3910 			spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status[sct][sc]);
3911 		}
3912 	}
3913 	spdk_json_write_object_end(w);
3914 
3915 	spdk_json_write_object_end(w);
3916 }
3917 
3918 static bool
3919 bdev_nvme_accel_sequence_supported(void *ctx, enum spdk_bdev_io_type type)
3920 {
3921 	struct nvme_bdev *nbdev = ctx;
3922 	struct spdk_nvme_ctrlr *ctrlr;
3923 
3924 	if (!g_opts.allow_accel_sequence) {
3925 		return false;
3926 	}
3927 
3928 	switch (type) {
3929 	case SPDK_BDEV_IO_TYPE_WRITE:
3930 	case SPDK_BDEV_IO_TYPE_READ:
3931 		break;
3932 	default:
3933 		return false;
3934 	}
3935 
3936 	ctrlr = bdev_nvme_get_ctrlr(&nbdev->disk);
3937 	assert(ctrlr != NULL);
3938 
3939 	return spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ACCEL_SEQUENCE_SUPPORTED;
3940 }
3941 
3942 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
3943 	.destruct			= bdev_nvme_destruct,
3944 	.submit_request			= bdev_nvme_submit_request,
3945 	.io_type_supported		= bdev_nvme_io_type_supported,
3946 	.get_io_channel			= bdev_nvme_get_io_channel,
3947 	.dump_info_json			= bdev_nvme_dump_info_json,
3948 	.write_config_json		= bdev_nvme_write_config_json,
3949 	.get_spin_time			= bdev_nvme_get_spin_time,
3950 	.get_module_ctx			= bdev_nvme_get_module_ctx,
3951 	.get_memory_domains		= bdev_nvme_get_memory_domains,
3952 	.accel_sequence_supported	= bdev_nvme_accel_sequence_supported,
3953 	.reset_device_stat		= bdev_nvme_reset_device_stat,
3954 	.dump_device_stat_json		= bdev_nvme_dump_device_stat_json,
3955 };
3956 
3957 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
3958 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
3959 
3960 static int
3961 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
3962 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
3963 {
3964 	struct spdk_nvme_ana_group_descriptor *copied_desc;
3965 	uint8_t *orig_desc;
3966 	uint32_t i, desc_size, copy_len;
3967 	int rc = 0;
3968 
3969 	if (nvme_ctrlr->ana_log_page == NULL) {
3970 		return -EINVAL;
3971 	}
3972 
3973 	copied_desc = nvme_ctrlr->copied_ana_desc;
3974 
3975 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
3976 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
3977 
3978 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
3979 		memcpy(copied_desc, orig_desc, copy_len);
3980 
3981 		rc = cb_fn(copied_desc, cb_arg);
3982 		if (rc != 0) {
3983 			break;
3984 		}
3985 
3986 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
3987 			    copied_desc->num_of_nsid * sizeof(uint32_t);
3988 		orig_desc += desc_size;
3989 		copy_len -= desc_size;
3990 	}
3991 
3992 	return rc;
3993 }
3994 
3995 static int
3996 nvme_ns_ana_transition_timedout(void *ctx)
3997 {
3998 	struct nvme_ns *nvme_ns = ctx;
3999 
4000 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4001 	nvme_ns->ana_transition_timedout = true;
4002 
4003 	return SPDK_POLLER_BUSY;
4004 }
4005 
4006 static void
4007 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
4008 		       const struct spdk_nvme_ana_group_descriptor *desc)
4009 {
4010 	const struct spdk_nvme_ctrlr_data *cdata;
4011 
4012 	nvme_ns->ana_group_id = desc->ana_group_id;
4013 	nvme_ns->ana_state = desc->ana_state;
4014 	nvme_ns->ana_state_updating = false;
4015 
4016 	switch (nvme_ns->ana_state) {
4017 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
4018 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
4019 		nvme_ns->ana_transition_timedout = false;
4020 		spdk_poller_unregister(&nvme_ns->anatt_timer);
4021 		break;
4022 
4023 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
4024 	case SPDK_NVME_ANA_CHANGE_STATE:
4025 		if (nvme_ns->anatt_timer != NULL) {
4026 			break;
4027 		}
4028 
4029 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
4030 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
4031 				       nvme_ns,
4032 				       cdata->anatt * SPDK_SEC_TO_USEC);
4033 		break;
4034 	default:
4035 		break;
4036 	}
4037 }
4038 
4039 static int
4040 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
4041 {
4042 	struct nvme_ns *nvme_ns = cb_arg;
4043 	uint32_t i;
4044 
4045 	assert(nvme_ns->ns != NULL);
4046 
4047 	for (i = 0; i < desc->num_of_nsid; i++) {
4048 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
4049 			continue;
4050 		}
4051 
4052 		_nvme_ns_set_ana_state(nvme_ns, desc);
4053 		return 1;
4054 	}
4055 
4056 	return 0;
4057 }
4058 
4059 static int
4060 nvme_generate_uuid(const char *sn, uint32_t nsid, struct spdk_uuid *uuid)
4061 {
4062 	int rc = 0;
4063 	struct spdk_uuid new_uuid, namespace_uuid;
4064 	char merged_str[SPDK_NVME_CTRLR_SN_LEN + NSID_STR_LEN + 1] = {'\0'};
4065 	/* This namespace UUID was generated using uuid_generate() method. */
4066 	const char *namespace_str = {"edaed2de-24bc-4b07-b559-f47ecbe730fd"};
4067 	int size;
4068 
4069 	assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN);
4070 
4071 	spdk_uuid_set_null(&new_uuid);
4072 	spdk_uuid_set_null(&namespace_uuid);
4073 
4074 	size = snprintf(merged_str, sizeof(merged_str), "%s%"PRIu32, sn, nsid);
4075 	if (size <= 0 || (unsigned long)size >= sizeof(merged_str)) {
4076 		return -EINVAL;
4077 	}
4078 
4079 	spdk_uuid_parse(&namespace_uuid, namespace_str);
4080 
4081 	rc = spdk_uuid_generate_sha1(&new_uuid, &namespace_uuid, merged_str, size);
4082 	if (rc == 0) {
4083 		memcpy(uuid, &new_uuid, sizeof(struct spdk_uuid));
4084 	}
4085 
4086 	return rc;
4087 }
4088 
4089 static int
4090 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
4091 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
4092 		 uint32_t prchk_flags, void *ctx)
4093 {
4094 	const struct spdk_uuid		*uuid;
4095 	const uint8_t *nguid;
4096 	const struct spdk_nvme_ctrlr_data *cdata;
4097 	const struct spdk_nvme_ns_data	*nsdata;
4098 	const struct spdk_nvme_ctrlr_opts *opts;
4099 	enum spdk_nvme_csi		csi;
4100 	uint32_t atomic_bs, phys_bs, bs;
4101 	char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'};
4102 	int rc;
4103 
4104 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4105 	csi = spdk_nvme_ns_get_csi(ns);
4106 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
4107 
4108 	switch (csi) {
4109 	case SPDK_NVME_CSI_NVM:
4110 		disk->product_name = "NVMe disk";
4111 		break;
4112 	case SPDK_NVME_CSI_ZNS:
4113 		disk->product_name = "NVMe ZNS disk";
4114 		disk->zoned = true;
4115 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
4116 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
4117 					     spdk_nvme_ns_get_extended_sector_size(ns);
4118 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
4119 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
4120 		break;
4121 	default:
4122 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
4123 		return -ENOTSUP;
4124 	}
4125 
4126 	nguid = spdk_nvme_ns_get_nguid(ns);
4127 	if (!nguid) {
4128 		uuid = spdk_nvme_ns_get_uuid(ns);
4129 		if (uuid) {
4130 			disk->uuid = *uuid;
4131 		} else if (g_opts.generate_uuids) {
4132 			spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0');
4133 			rc = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns), &disk->uuid);
4134 			if (rc < 0) {
4135 				SPDK_ERRLOG("UUID generation failed (%s)\n", spdk_strerror(-rc));
4136 				return rc;
4137 			}
4138 		}
4139 	} else {
4140 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
4141 	}
4142 
4143 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
4144 	if (!disk->name) {
4145 		return -ENOMEM;
4146 	}
4147 
4148 	disk->write_cache = 0;
4149 	if (cdata->vwc.present) {
4150 		/* Enable if the Volatile Write Cache exists */
4151 		disk->write_cache = 1;
4152 	}
4153 	if (cdata->oncs.write_zeroes) {
4154 		disk->max_write_zeroes = UINT16_MAX + 1;
4155 	}
4156 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
4157 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
4158 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
4159 	disk->ctratt.raw = cdata->ctratt.raw;
4160 	/* NVMe driver will split one request into multiple requests
4161 	 * based on MDTS and stripe boundary, the bdev layer will use
4162 	 * max_segment_size and max_num_segments to split one big IO
4163 	 * into multiple requests, then small request can't run out
4164 	 * of NVMe internal requests data structure.
4165 	 */
4166 	if (opts && opts->io_queue_requests) {
4167 		disk->max_num_segments = opts->io_queue_requests / 2;
4168 	}
4169 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
4170 		/* The nvme driver will try to split I/O that have too many
4171 		 * SGEs, but it doesn't work if that last SGE doesn't end on
4172 		 * an aggregate total that is block aligned. The bdev layer has
4173 		 * a more robust splitting framework, so use that instead for
4174 		 * this case. (See issue #3269.)
4175 		 */
4176 		uint16_t max_sges = spdk_nvme_ctrlr_get_max_sges(ctrlr);
4177 
4178 		if (disk->max_num_segments == 0) {
4179 			disk->max_num_segments = max_sges;
4180 		} else {
4181 			disk->max_num_segments = spdk_min(disk->max_num_segments, max_sges);
4182 		}
4183 	}
4184 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
4185 
4186 	nsdata = spdk_nvme_ns_get_data(ns);
4187 	bs = spdk_nvme_ns_get_sector_size(ns);
4188 	atomic_bs = bs;
4189 	phys_bs = bs;
4190 	if (nsdata->nabo == 0) {
4191 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
4192 			atomic_bs = bs * (1 + nsdata->nawupf);
4193 		} else {
4194 			atomic_bs = bs * (1 + cdata->awupf);
4195 		}
4196 	}
4197 	if (nsdata->nsfeat.optperf) {
4198 		phys_bs = bs * (1 + nsdata->npwg);
4199 	}
4200 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
4201 
4202 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
4203 	if (disk->md_len != 0) {
4204 		disk->md_interleave = nsdata->flbas.extended;
4205 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
4206 		if (disk->dif_type != SPDK_DIF_DISABLE) {
4207 			disk->dif_is_head_of_md = nsdata->dps.md_start;
4208 			disk->dif_check_flags = prchk_flags;
4209 		}
4210 	}
4211 
4212 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
4213 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
4214 		disk->acwu = 0;
4215 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
4216 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
4217 	} else {
4218 		disk->acwu = cdata->acwu + 1; /* 0-based */
4219 	}
4220 
4221 	if (cdata->oncs.copy) {
4222 		/* For now bdev interface allows only single segment copy */
4223 		disk->max_copy = nsdata->mssrl;
4224 	}
4225 
4226 	disk->ctxt = ctx;
4227 	disk->fn_table = &nvmelib_fn_table;
4228 	disk->module = &nvme_if;
4229 
4230 	return 0;
4231 }
4232 
4233 static struct nvme_bdev *
4234 nvme_bdev_alloc(void)
4235 {
4236 	struct nvme_bdev *bdev;
4237 	int rc;
4238 
4239 	bdev = calloc(1, sizeof(*bdev));
4240 	if (!bdev) {
4241 		SPDK_ERRLOG("bdev calloc() failed\n");
4242 		return NULL;
4243 	}
4244 
4245 	if (g_opts.nvme_error_stat) {
4246 		bdev->err_stat = calloc(1, sizeof(struct nvme_error_stat));
4247 		if (!bdev->err_stat) {
4248 			SPDK_ERRLOG("err_stat calloc() failed\n");
4249 			free(bdev);
4250 			return NULL;
4251 		}
4252 	}
4253 
4254 	rc = pthread_mutex_init(&bdev->mutex, NULL);
4255 	if (rc != 0) {
4256 		free(bdev->err_stat);
4257 		free(bdev);
4258 		return NULL;
4259 	}
4260 
4261 	bdev->ref = 1;
4262 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
4263 	bdev->mp_selector = BDEV_NVME_MP_SELECTOR_ROUND_ROBIN;
4264 	bdev->rr_min_io = UINT32_MAX;
4265 	TAILQ_INIT(&bdev->nvme_ns_list);
4266 
4267 	return bdev;
4268 }
4269 
4270 static int
4271 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4272 {
4273 	struct nvme_bdev *bdev;
4274 	struct nvme_bdev_ctrlr *nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
4275 	int rc;
4276 
4277 	bdev = nvme_bdev_alloc();
4278 	if (bdev == NULL) {
4279 		SPDK_ERRLOG("Failed to allocate NVMe bdev\n");
4280 		return -ENOMEM;
4281 	}
4282 
4283 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
4284 
4285 	rc = nvme_disk_create(&bdev->disk, nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
4286 			      nvme_ns->ns, nvme_ctrlr->opts.prchk_flags, bdev);
4287 	if (rc != 0) {
4288 		SPDK_ERRLOG("Failed to create NVMe disk\n");
4289 		nvme_bdev_free(bdev);
4290 		return rc;
4291 	}
4292 
4293 	spdk_io_device_register(bdev,
4294 				bdev_nvme_create_bdev_channel_cb,
4295 				bdev_nvme_destroy_bdev_channel_cb,
4296 				sizeof(struct nvme_bdev_channel),
4297 				bdev->disk.name);
4298 
4299 	nvme_ns->bdev = bdev;
4300 	bdev->nsid = nvme_ns->id;
4301 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4302 
4303 	bdev->nbdev_ctrlr = nbdev_ctrlr;
4304 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->bdevs, bdev, tailq);
4305 
4306 	rc = spdk_bdev_register(&bdev->disk);
4307 	if (rc != 0) {
4308 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
4309 		spdk_io_device_unregister(bdev, NULL);
4310 		nvme_ns->bdev = NULL;
4311 		TAILQ_REMOVE(&nbdev_ctrlr->bdevs, bdev, tailq);
4312 		nvme_bdev_free(bdev);
4313 		return rc;
4314 	}
4315 
4316 	return 0;
4317 }
4318 
4319 static bool
4320 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
4321 {
4322 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
4323 	const struct spdk_uuid *uuid1, *uuid2;
4324 
4325 	nsdata1 = spdk_nvme_ns_get_data(ns1);
4326 	nsdata2 = spdk_nvme_ns_get_data(ns2);
4327 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
4328 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
4329 
4330 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
4331 	       nsdata1->eui64 == nsdata2->eui64 &&
4332 	       ((uuid1 == NULL && uuid2 == NULL) ||
4333 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
4334 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
4335 }
4336 
4337 static bool
4338 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4339 		 struct spdk_nvme_ctrlr_opts *opts)
4340 {
4341 	struct nvme_probe_skip_entry *entry;
4342 
4343 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
4344 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4345 			return false;
4346 		}
4347 	}
4348 
4349 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
4350 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
4351 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
4352 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
4353 	opts->disable_read_ana_log_page = true;
4354 
4355 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
4356 
4357 	return true;
4358 }
4359 
4360 static void
4361 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
4362 {
4363 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4364 
4365 	if (spdk_nvme_cpl_is_error(cpl)) {
4366 		SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
4367 			     cpl->status.sct);
4368 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4369 	} else if (cpl->cdw0 & 0x1) {
4370 		SPDK_WARNLOG("Specified command could not be aborted.\n");
4371 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4372 	}
4373 }
4374 
4375 static void
4376 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
4377 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
4378 {
4379 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4380 	union spdk_nvme_csts_register csts;
4381 	int rc;
4382 
4383 	assert(nvme_ctrlr->ctrlr == ctrlr);
4384 
4385 	SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
4386 
4387 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
4388 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
4389 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
4390 	 * completion recursively.
4391 	 */
4392 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
4393 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
4394 		if (csts.bits.cfs) {
4395 			SPDK_ERRLOG("Controller Fatal Status, reset required\n");
4396 			bdev_nvme_reset_ctrlr(nvme_ctrlr);
4397 			return;
4398 		}
4399 	}
4400 
4401 	switch (g_opts.action_on_timeout) {
4402 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
4403 		if (qpair) {
4404 			/* Don't send abort to ctrlr when ctrlr is not available. */
4405 			pthread_mutex_lock(&nvme_ctrlr->mutex);
4406 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
4407 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
4408 				SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n");
4409 				return;
4410 			}
4411 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4412 
4413 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
4414 						       nvme_abort_cpl, nvme_ctrlr);
4415 			if (rc == 0) {
4416 				return;
4417 			}
4418 
4419 			SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
4420 		}
4421 
4422 	/* FALLTHROUGH */
4423 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
4424 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4425 		break;
4426 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
4427 		SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
4428 		break;
4429 	default:
4430 		SPDK_ERRLOG("An invalid timeout action value is found.\n");
4431 		break;
4432 	}
4433 }
4434 
4435 static struct nvme_ns *
4436 nvme_ns_alloc(void)
4437 {
4438 	struct nvme_ns *nvme_ns;
4439 
4440 	nvme_ns = calloc(1, sizeof(struct nvme_ns));
4441 	if (nvme_ns == NULL) {
4442 		return NULL;
4443 	}
4444 
4445 	if (g_opts.io_path_stat) {
4446 		nvme_ns->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
4447 		if (nvme_ns->stat == NULL) {
4448 			free(nvme_ns);
4449 			return NULL;
4450 		}
4451 		spdk_bdev_reset_io_stat(nvme_ns->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
4452 	}
4453 
4454 	return nvme_ns;
4455 }
4456 
4457 static void
4458 nvme_ns_free(struct nvme_ns *nvme_ns)
4459 {
4460 	free(nvme_ns->stat);
4461 	free(nvme_ns);
4462 }
4463 
4464 static void
4465 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
4466 {
4467 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4468 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
4469 
4470 	if (rc == 0) {
4471 		nvme_ns->probe_ctx = NULL;
4472 		pthread_mutex_lock(&nvme_ctrlr->mutex);
4473 		nvme_ctrlr->ref++;
4474 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4475 	} else {
4476 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4477 		nvme_ns_free(nvme_ns);
4478 	}
4479 
4480 	if (ctx) {
4481 		ctx->populates_in_progress--;
4482 		if (ctx->populates_in_progress == 0) {
4483 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4484 		}
4485 	}
4486 }
4487 
4488 static void
4489 bdev_nvme_add_io_path(struct spdk_io_channel_iter *i)
4490 {
4491 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4492 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4493 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4494 	int rc;
4495 
4496 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
4497 	if (rc != 0) {
4498 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
4499 	}
4500 
4501 	spdk_for_each_channel_continue(i, rc);
4502 }
4503 
4504 static void
4505 bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i)
4506 {
4507 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4508 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4509 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4510 	struct nvme_io_path *io_path;
4511 
4512 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
4513 	if (io_path != NULL) {
4514 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
4515 	}
4516 
4517 	spdk_for_each_channel_continue(i, 0);
4518 }
4519 
4520 static void
4521 bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status)
4522 {
4523 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4524 
4525 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
4526 }
4527 
4528 static void
4529 bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status)
4530 {
4531 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4532 	struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i);
4533 
4534 	if (status == 0) {
4535 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
4536 	} else {
4537 		/* Delete the added io_paths and fail populating the namespace. */
4538 		spdk_for_each_channel(bdev,
4539 				      bdev_nvme_delete_io_path,
4540 				      nvme_ns,
4541 				      bdev_nvme_add_io_path_failed);
4542 	}
4543 }
4544 
4545 static int
4546 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
4547 {
4548 	struct nvme_ns *tmp_ns;
4549 	const struct spdk_nvme_ns_data *nsdata;
4550 
4551 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
4552 	if (!nsdata->nmic.can_share) {
4553 		SPDK_ERRLOG("Namespace cannot be shared.\n");
4554 		return -EINVAL;
4555 	}
4556 
4557 	pthread_mutex_lock(&bdev->mutex);
4558 
4559 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
4560 	assert(tmp_ns != NULL);
4561 
4562 	if (tmp_ns->ns != NULL && !bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
4563 		pthread_mutex_unlock(&bdev->mutex);
4564 		SPDK_ERRLOG("Namespaces are not identical.\n");
4565 		return -EINVAL;
4566 	}
4567 
4568 	bdev->ref++;
4569 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4570 	nvme_ns->bdev = bdev;
4571 
4572 	pthread_mutex_unlock(&bdev->mutex);
4573 
4574 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
4575 	spdk_for_each_channel(bdev,
4576 			      bdev_nvme_add_io_path,
4577 			      nvme_ns,
4578 			      bdev_nvme_add_io_path_done);
4579 
4580 	return 0;
4581 }
4582 
4583 static void
4584 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4585 {
4586 	struct spdk_nvme_ns	*ns;
4587 	struct nvme_bdev	*bdev;
4588 	int			rc = 0;
4589 
4590 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
4591 	if (!ns) {
4592 		SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
4593 		rc = -EINVAL;
4594 		goto done;
4595 	}
4596 
4597 	nvme_ns->ns = ns;
4598 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4599 
4600 	if (nvme_ctrlr->ana_log_page != NULL) {
4601 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
4602 	}
4603 
4604 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
4605 	if (bdev == NULL) {
4606 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
4607 	} else {
4608 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
4609 		if (rc == 0) {
4610 			return;
4611 		}
4612 	}
4613 done:
4614 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
4615 }
4616 
4617 static void
4618 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
4619 {
4620 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4621 
4622 	assert(nvme_ctrlr != NULL);
4623 
4624 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4625 
4626 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4627 
4628 	if (nvme_ns->bdev != NULL) {
4629 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4630 		return;
4631 	}
4632 
4633 	nvme_ns_free(nvme_ns);
4634 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4635 
4636 	nvme_ctrlr_release(nvme_ctrlr);
4637 }
4638 
4639 static void
4640 bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status)
4641 {
4642 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4643 
4644 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4645 }
4646 
4647 static void
4648 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4649 {
4650 	struct nvme_bdev *bdev;
4651 
4652 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4653 
4654 	bdev = nvme_ns->bdev;
4655 	if (bdev != NULL) {
4656 		pthread_mutex_lock(&bdev->mutex);
4657 
4658 		assert(bdev->ref > 0);
4659 		bdev->ref--;
4660 		if (bdev->ref == 0) {
4661 			pthread_mutex_unlock(&bdev->mutex);
4662 
4663 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
4664 		} else {
4665 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
4666 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
4667 			 * and clear nvme_ns->bdev here.
4668 			 */
4669 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
4670 			nvme_ns->bdev = NULL;
4671 
4672 			pthread_mutex_unlock(&bdev->mutex);
4673 
4674 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
4675 			 * we call depopulate_namespace_done() to avoid use-after-free.
4676 			 */
4677 			spdk_for_each_channel(bdev,
4678 					      bdev_nvme_delete_io_path,
4679 					      nvme_ns,
4680 					      bdev_nvme_delete_io_path_done);
4681 			return;
4682 		}
4683 	}
4684 
4685 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4686 }
4687 
4688 static void
4689 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
4690 			       struct nvme_async_probe_ctx *ctx)
4691 {
4692 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
4693 	struct nvme_ns	*nvme_ns, *next;
4694 	struct spdk_nvme_ns	*ns;
4695 	struct nvme_bdev	*bdev;
4696 	uint32_t		nsid;
4697 	int			rc;
4698 	uint64_t		num_sectors;
4699 
4700 	if (ctx) {
4701 		/* Initialize this count to 1 to handle the populate functions
4702 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
4703 		 */
4704 		ctx->populates_in_progress = 1;
4705 	}
4706 
4707 	/* First loop over our existing namespaces and see if they have been
4708 	 * removed. */
4709 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4710 	while (nvme_ns != NULL) {
4711 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4712 
4713 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
4714 			/* NS is still there or added again. Its attributes may have changed. */
4715 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
4716 			if (nvme_ns->ns != ns) {
4717 				assert(nvme_ns->ns == NULL);
4718 				nvme_ns->ns = ns;
4719 				SPDK_DEBUGLOG(bdev_nvme, "NSID %u was added\n", nvme_ns->id);
4720 			}
4721 
4722 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
4723 			bdev = nvme_ns->bdev;
4724 			assert(bdev != NULL);
4725 			if (bdev->disk.blockcnt != num_sectors) {
4726 				SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
4727 					       nvme_ns->id,
4728 					       bdev->disk.name,
4729 					       bdev->disk.blockcnt,
4730 					       num_sectors);
4731 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
4732 				if (rc != 0) {
4733 					SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
4734 						    bdev->disk.name, rc);
4735 				}
4736 			}
4737 		} else {
4738 			/* Namespace was removed */
4739 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4740 		}
4741 
4742 		nvme_ns = next;
4743 	}
4744 
4745 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
4746 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4747 	while (nsid != 0) {
4748 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4749 
4750 		if (nvme_ns == NULL) {
4751 			/* Found a new one */
4752 			nvme_ns = nvme_ns_alloc();
4753 			if (nvme_ns == NULL) {
4754 				SPDK_ERRLOG("Failed to allocate namespace\n");
4755 				/* This just fails to attach the namespace. It may work on a future attempt. */
4756 				continue;
4757 			}
4758 
4759 			nvme_ns->id = nsid;
4760 			nvme_ns->ctrlr = nvme_ctrlr;
4761 
4762 			nvme_ns->bdev = NULL;
4763 
4764 			if (ctx) {
4765 				ctx->populates_in_progress++;
4766 			}
4767 			nvme_ns->probe_ctx = ctx;
4768 
4769 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4770 
4771 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
4772 		}
4773 
4774 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
4775 	}
4776 
4777 	if (ctx) {
4778 		/* Decrement this count now that the loop is over to account
4779 		 * for the one we started with.  If the count is then 0, we
4780 		 * know any populate_namespace functions completed immediately,
4781 		 * so we'll kick the callback here.
4782 		 */
4783 		ctx->populates_in_progress--;
4784 		if (ctx->populates_in_progress == 0) {
4785 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4786 		}
4787 	}
4788 
4789 }
4790 
4791 static void
4792 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
4793 {
4794 	struct nvme_ns *nvme_ns, *tmp;
4795 
4796 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
4797 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4798 	}
4799 }
4800 
4801 static uint32_t
4802 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
4803 {
4804 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
4805 	const struct spdk_nvme_ctrlr_data *cdata;
4806 	uint32_t nsid, ns_count = 0;
4807 
4808 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4809 
4810 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4811 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
4812 		ns_count++;
4813 	}
4814 
4815 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
4816 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
4817 	       sizeof(uint32_t);
4818 }
4819 
4820 static int
4821 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
4822 			  void *cb_arg)
4823 {
4824 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4825 	struct nvme_ns *nvme_ns;
4826 	uint32_t i, nsid;
4827 
4828 	for (i = 0; i < desc->num_of_nsid; i++) {
4829 		nsid = desc->nsid[i];
4830 		if (nsid == 0) {
4831 			continue;
4832 		}
4833 
4834 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4835 
4836 		assert(nvme_ns != NULL);
4837 		if (nvme_ns == NULL) {
4838 			/* Target told us that an inactive namespace had an ANA change */
4839 			continue;
4840 		}
4841 
4842 		_nvme_ns_set_ana_state(nvme_ns, desc);
4843 	}
4844 
4845 	return 0;
4846 }
4847 
4848 static void
4849 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4850 {
4851 	struct nvme_ns *nvme_ns;
4852 
4853 	spdk_free(nvme_ctrlr->ana_log_page);
4854 	nvme_ctrlr->ana_log_page = NULL;
4855 
4856 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4857 	     nvme_ns != NULL;
4858 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
4859 		nvme_ns->ana_state_updating = false;
4860 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4861 	}
4862 }
4863 
4864 static void
4865 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
4866 {
4867 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4868 
4869 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
4870 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
4871 					     nvme_ctrlr);
4872 	} else {
4873 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
4874 	}
4875 
4876 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4877 
4878 	assert(nvme_ctrlr->ana_log_page_updating == true);
4879 	nvme_ctrlr->ana_log_page_updating = false;
4880 
4881 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
4882 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4883 
4884 		nvme_ctrlr_unregister(nvme_ctrlr);
4885 	} else {
4886 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4887 
4888 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
4889 	}
4890 }
4891 
4892 static int
4893 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4894 {
4895 	uint32_t ana_log_page_size;
4896 	int rc;
4897 
4898 	if (nvme_ctrlr->ana_log_page == NULL) {
4899 		return -EINVAL;
4900 	}
4901 
4902 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
4903 
4904 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
4905 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
4906 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
4907 		return -EINVAL;
4908 	}
4909 
4910 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4911 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
4912 	    nvme_ctrlr->ana_log_page_updating) {
4913 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4914 		return -EBUSY;
4915 	}
4916 
4917 	nvme_ctrlr->ana_log_page_updating = true;
4918 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4919 
4920 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
4921 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
4922 					      SPDK_NVME_GLOBAL_NS_TAG,
4923 					      nvme_ctrlr->ana_log_page,
4924 					      ana_log_page_size, 0,
4925 					      nvme_ctrlr_read_ana_log_page_done,
4926 					      nvme_ctrlr);
4927 	if (rc != 0) {
4928 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
4929 	}
4930 
4931 	return rc;
4932 }
4933 
4934 static void
4935 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
4936 {
4937 }
4938 
4939 struct bdev_nvme_set_preferred_path_ctx {
4940 	struct spdk_bdev_desc *desc;
4941 	struct nvme_ns *nvme_ns;
4942 	bdev_nvme_set_preferred_path_cb cb_fn;
4943 	void *cb_arg;
4944 };
4945 
4946 static void
4947 bdev_nvme_set_preferred_path_done(struct spdk_io_channel_iter *i, int status)
4948 {
4949 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4950 
4951 	assert(ctx != NULL);
4952 	assert(ctx->desc != NULL);
4953 	assert(ctx->cb_fn != NULL);
4954 
4955 	spdk_bdev_close(ctx->desc);
4956 
4957 	ctx->cb_fn(ctx->cb_arg, status);
4958 
4959 	free(ctx);
4960 }
4961 
4962 static void
4963 _bdev_nvme_set_preferred_path(struct spdk_io_channel_iter *i)
4964 {
4965 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4966 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4967 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4968 	struct nvme_io_path *io_path, *prev;
4969 
4970 	prev = NULL;
4971 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
4972 		if (io_path->nvme_ns == ctx->nvme_ns) {
4973 			break;
4974 		}
4975 		prev = io_path;
4976 	}
4977 
4978 	if (io_path != NULL) {
4979 		if (prev != NULL) {
4980 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
4981 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
4982 		}
4983 
4984 		/* We can set io_path to nbdev_ch->current_io_path directly here.
4985 		 * However, it needs to be conditional. To simplify the code,
4986 		 * just clear nbdev_ch->current_io_path and let find_io_path()
4987 		 * fill it.
4988 		 *
4989 		 * Automatic failback may be disabled. Hence even if the io_path is
4990 		 * already at the head, clear nbdev_ch->current_io_path.
4991 		 */
4992 		bdev_nvme_clear_current_io_path(nbdev_ch);
4993 	}
4994 
4995 	spdk_for_each_channel_continue(i, 0);
4996 }
4997 
4998 static struct nvme_ns *
4999 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
5000 {
5001 	struct nvme_ns *nvme_ns, *prev;
5002 	const struct spdk_nvme_ctrlr_data *cdata;
5003 
5004 	prev = NULL;
5005 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
5006 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
5007 
5008 		if (cdata->cntlid == cntlid) {
5009 			break;
5010 		}
5011 		prev = nvme_ns;
5012 	}
5013 
5014 	if (nvme_ns != NULL && prev != NULL) {
5015 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
5016 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
5017 	}
5018 
5019 	return nvme_ns;
5020 }
5021 
5022 /* This function supports only multipath mode. There is only a single I/O path
5023  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
5024  * head of the I/O path list for each NVMe bdev channel.
5025  *
5026  * NVMe bdev channel may be acquired after completing this function. move the
5027  * matched namespace to the head of the namespace list for the NVMe bdev too.
5028  */
5029 void
5030 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
5031 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
5032 {
5033 	struct bdev_nvme_set_preferred_path_ctx *ctx;
5034 	struct spdk_bdev *bdev;
5035 	struct nvme_bdev *nbdev;
5036 	int rc = 0;
5037 
5038 	assert(cb_fn != NULL);
5039 
5040 	ctx = calloc(1, sizeof(*ctx));
5041 	if (ctx == NULL) {
5042 		SPDK_ERRLOG("Failed to alloc context.\n");
5043 		rc = -ENOMEM;
5044 		goto err_alloc;
5045 	}
5046 
5047 	ctx->cb_fn = cb_fn;
5048 	ctx->cb_arg = cb_arg;
5049 
5050 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5051 	if (rc != 0) {
5052 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5053 		goto err_open;
5054 	}
5055 
5056 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5057 
5058 	if (bdev->module != &nvme_if) {
5059 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5060 		rc = -ENODEV;
5061 		goto err_bdev;
5062 	}
5063 
5064 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5065 
5066 	pthread_mutex_lock(&nbdev->mutex);
5067 
5068 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
5069 	if (ctx->nvme_ns == NULL) {
5070 		pthread_mutex_unlock(&nbdev->mutex);
5071 
5072 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
5073 		rc = -ENODEV;
5074 		goto err_bdev;
5075 	}
5076 
5077 	pthread_mutex_unlock(&nbdev->mutex);
5078 
5079 	spdk_for_each_channel(nbdev,
5080 			      _bdev_nvme_set_preferred_path,
5081 			      ctx,
5082 			      bdev_nvme_set_preferred_path_done);
5083 	return;
5084 
5085 err_bdev:
5086 	spdk_bdev_close(ctx->desc);
5087 err_open:
5088 	free(ctx);
5089 err_alloc:
5090 	cb_fn(cb_arg, rc);
5091 }
5092 
5093 struct bdev_nvme_set_multipath_policy_ctx {
5094 	struct spdk_bdev_desc *desc;
5095 	bdev_nvme_set_multipath_policy_cb cb_fn;
5096 	void *cb_arg;
5097 };
5098 
5099 static void
5100 bdev_nvme_set_multipath_policy_done(struct spdk_io_channel_iter *i, int status)
5101 {
5102 	struct bdev_nvme_set_multipath_policy_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
5103 
5104 	assert(ctx != NULL);
5105 	assert(ctx->desc != NULL);
5106 	assert(ctx->cb_fn != NULL);
5107 
5108 	spdk_bdev_close(ctx->desc);
5109 
5110 	ctx->cb_fn(ctx->cb_arg, status);
5111 
5112 	free(ctx);
5113 }
5114 
5115 static void
5116 _bdev_nvme_set_multipath_policy(struct spdk_io_channel_iter *i)
5117 {
5118 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
5119 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
5120 	struct nvme_bdev *nbdev = spdk_io_channel_get_io_device(_ch);
5121 
5122 	nbdev_ch->mp_policy = nbdev->mp_policy;
5123 	nbdev_ch->mp_selector = nbdev->mp_selector;
5124 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
5125 	bdev_nvme_clear_current_io_path(nbdev_ch);
5126 
5127 	spdk_for_each_channel_continue(i, 0);
5128 }
5129 
5130 void
5131 bdev_nvme_set_multipath_policy(const char *name, enum bdev_nvme_multipath_policy policy,
5132 			       enum bdev_nvme_multipath_selector selector, uint32_t rr_min_io,
5133 			       bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
5134 {
5135 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
5136 	struct spdk_bdev *bdev;
5137 	struct nvme_bdev *nbdev;
5138 	int rc;
5139 
5140 	assert(cb_fn != NULL);
5141 
5142 	switch (policy) {
5143 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
5144 		break;
5145 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
5146 		switch (selector) {
5147 		case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN:
5148 			if (rr_min_io == UINT32_MAX) {
5149 				rr_min_io = 1;
5150 			} else if (rr_min_io == 0) {
5151 				rc = -EINVAL;
5152 				goto exit;
5153 			}
5154 			break;
5155 		case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH:
5156 			break;
5157 		default:
5158 			rc = -EINVAL;
5159 			goto exit;
5160 		}
5161 		break;
5162 	default:
5163 		rc = -EINVAL;
5164 		goto exit;
5165 	}
5166 
5167 	ctx = calloc(1, sizeof(*ctx));
5168 	if (ctx == NULL) {
5169 		SPDK_ERRLOG("Failed to alloc context.\n");
5170 		rc = -ENOMEM;
5171 		goto exit;
5172 	}
5173 
5174 	ctx->cb_fn = cb_fn;
5175 	ctx->cb_arg = cb_arg;
5176 
5177 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5178 	if (rc != 0) {
5179 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5180 		rc = -ENODEV;
5181 		goto err_open;
5182 	}
5183 
5184 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5185 	if (bdev->module != &nvme_if) {
5186 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5187 		rc = -ENODEV;
5188 		goto err_module;
5189 	}
5190 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5191 
5192 	pthread_mutex_lock(&nbdev->mutex);
5193 	nbdev->mp_policy = policy;
5194 	nbdev->mp_selector = selector;
5195 	nbdev->rr_min_io = rr_min_io;
5196 	pthread_mutex_unlock(&nbdev->mutex);
5197 
5198 	spdk_for_each_channel(nbdev,
5199 			      _bdev_nvme_set_multipath_policy,
5200 			      ctx,
5201 			      bdev_nvme_set_multipath_policy_done);
5202 	return;
5203 
5204 err_module:
5205 	spdk_bdev_close(ctx->desc);
5206 err_open:
5207 	free(ctx);
5208 exit:
5209 	cb_fn(cb_arg, rc);
5210 }
5211 
5212 static void
5213 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5214 {
5215 	struct nvme_ctrlr *nvme_ctrlr		= arg;
5216 	union spdk_nvme_async_event_completion	event;
5217 
5218 	if (spdk_nvme_cpl_is_error(cpl)) {
5219 		SPDK_WARNLOG("AER request execute failed\n");
5220 		return;
5221 	}
5222 
5223 	event.raw = cpl->cdw0;
5224 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5225 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
5226 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
5227 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5228 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
5229 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
5230 	}
5231 }
5232 
5233 static void
5234 free_nvme_async_probe_ctx(struct nvme_async_probe_ctx *ctx)
5235 {
5236 	spdk_keyring_put_key(ctx->drv_opts.tls_psk);
5237 	spdk_keyring_put_key(ctx->drv_opts.dhchap_key);
5238 	spdk_keyring_put_key(ctx->drv_opts.dhchap_ctrlr_key);
5239 	free(ctx);
5240 }
5241 
5242 static void
5243 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, int rc)
5244 {
5245 	if (ctx->cb_fn) {
5246 		ctx->cb_fn(ctx->cb_ctx, ctx->reported_bdevs, rc);
5247 	}
5248 
5249 	ctx->namespaces_populated = true;
5250 	if (ctx->probe_done) {
5251 		/* The probe was already completed, so we need to free the context
5252 		 * here.  This can happen for cases like OCSSD, where we need to
5253 		 * send additional commands to the SSD after attach.
5254 		 */
5255 		free_nvme_async_probe_ctx(ctx);
5256 	}
5257 }
5258 
5259 static void
5260 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
5261 		       struct nvme_async_probe_ctx *ctx)
5262 {
5263 	spdk_io_device_register(nvme_ctrlr,
5264 				bdev_nvme_create_ctrlr_channel_cb,
5265 				bdev_nvme_destroy_ctrlr_channel_cb,
5266 				sizeof(struct nvme_ctrlr_channel),
5267 				nvme_ctrlr->nbdev_ctrlr->name);
5268 
5269 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
5270 }
5271 
5272 static void
5273 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
5274 {
5275 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
5276 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
5277 
5278 	nvme_ctrlr->probe_ctx = NULL;
5279 
5280 	if (spdk_nvme_cpl_is_error(cpl)) {
5281 		nvme_ctrlr_delete(nvme_ctrlr);
5282 
5283 		if (ctx != NULL) {
5284 			ctx->reported_bdevs = 0;
5285 			populate_namespaces_cb(ctx, -1);
5286 		}
5287 		return;
5288 	}
5289 
5290 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5291 }
5292 
5293 static int
5294 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
5295 			     struct nvme_async_probe_ctx *ctx)
5296 {
5297 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5298 	const struct spdk_nvme_ctrlr_data *cdata;
5299 	uint32_t ana_log_page_size;
5300 
5301 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5302 
5303 	/* Set buffer size enough to include maximum number of allowed namespaces. */
5304 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5305 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
5306 			    sizeof(uint32_t);
5307 
5308 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
5309 						SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
5310 	if (nvme_ctrlr->ana_log_page == NULL) {
5311 		SPDK_ERRLOG("could not allocate ANA log page buffer\n");
5312 		return -ENXIO;
5313 	}
5314 
5315 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
5316 	 * Hence copy each descriptor to a temporary area when parsing it.
5317 	 *
5318 	 * Allocate a buffer whose size is as large as ANA log page buffer because
5319 	 * we do not know the size of a descriptor until actually reading it.
5320 	 */
5321 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
5322 	if (nvme_ctrlr->copied_ana_desc == NULL) {
5323 		SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
5324 		return -ENOMEM;
5325 	}
5326 
5327 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
5328 
5329 	nvme_ctrlr->probe_ctx = ctx;
5330 
5331 	/* Then, set the read size only to include the current active namespaces. */
5332 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5333 
5334 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5335 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5336 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5337 		return -EINVAL;
5338 	}
5339 
5340 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
5341 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5342 						SPDK_NVME_GLOBAL_NS_TAG,
5343 						nvme_ctrlr->ana_log_page,
5344 						ana_log_page_size, 0,
5345 						nvme_ctrlr_init_ana_log_page_done,
5346 						nvme_ctrlr);
5347 }
5348 
5349 /* hostnqn and subnqn were already verified before attaching a controller.
5350  * Hence check only the multipath capability and cntlid here.
5351  */
5352 static bool
5353 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
5354 {
5355 	struct nvme_ctrlr *tmp;
5356 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
5357 
5358 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5359 
5360 	if (!cdata->cmic.multi_ctrlr) {
5361 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5362 		return false;
5363 	}
5364 
5365 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
5366 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
5367 
5368 		if (!tmp_cdata->cmic.multi_ctrlr) {
5369 			SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5370 			return false;
5371 		}
5372 		if (cdata->cntlid == tmp_cdata->cntlid) {
5373 			SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid);
5374 			return false;
5375 		}
5376 	}
5377 
5378 	return true;
5379 }
5380 
5381 static int
5382 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
5383 {
5384 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5385 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5386 	int rc = 0;
5387 
5388 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5389 
5390 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
5391 	if (nbdev_ctrlr != NULL) {
5392 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
5393 			rc = -EINVAL;
5394 			goto exit;
5395 		}
5396 	} else {
5397 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
5398 		if (nbdev_ctrlr == NULL) {
5399 			SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n");
5400 			rc = -ENOMEM;
5401 			goto exit;
5402 		}
5403 		nbdev_ctrlr->name = strdup(name);
5404 		if (nbdev_ctrlr->name == NULL) {
5405 			SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n");
5406 			free(nbdev_ctrlr);
5407 			goto exit;
5408 		}
5409 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
5410 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
5411 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
5412 	}
5413 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
5414 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
5415 exit:
5416 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5417 	return rc;
5418 }
5419 
5420 static int
5421 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
5422 		  const char *name,
5423 		  const struct spdk_nvme_transport_id *trid,
5424 		  struct nvme_async_probe_ctx *ctx)
5425 {
5426 	struct nvme_ctrlr *nvme_ctrlr;
5427 	struct nvme_path_id *path_id;
5428 	const struct spdk_nvme_ctrlr_data *cdata;
5429 	int rc;
5430 
5431 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
5432 	if (nvme_ctrlr == NULL) {
5433 		SPDK_ERRLOG("Failed to allocate device struct\n");
5434 		return -ENOMEM;
5435 	}
5436 
5437 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
5438 	if (rc != 0) {
5439 		free(nvme_ctrlr);
5440 		return rc;
5441 	}
5442 
5443 	TAILQ_INIT(&nvme_ctrlr->trids);
5444 	RB_INIT(&nvme_ctrlr->namespaces);
5445 
5446 	/* Get another reference to the key, so the first one can be released from probe_ctx */
5447 	if (ctx != NULL) {
5448 		if (ctx->drv_opts.tls_psk != NULL) {
5449 			nvme_ctrlr->psk = spdk_keyring_get_key(
5450 						  spdk_key_get_name(ctx->drv_opts.tls_psk));
5451 			if (nvme_ctrlr->psk == NULL) {
5452 				/* Could only happen if the key was removed in the meantime */
5453 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5454 					    spdk_key_get_name(ctx->drv_opts.tls_psk));
5455 				rc = -ENOKEY;
5456 				goto err;
5457 			}
5458 		}
5459 
5460 		if (ctx->drv_opts.dhchap_key != NULL) {
5461 			nvme_ctrlr->dhchap_key = spdk_keyring_get_key(
5462 							 spdk_key_get_name(ctx->drv_opts.dhchap_key));
5463 			if (nvme_ctrlr->dhchap_key == NULL) {
5464 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5465 					    spdk_key_get_name(ctx->drv_opts.dhchap_key));
5466 				rc = -ENOKEY;
5467 				goto err;
5468 			}
5469 		}
5470 
5471 		if (ctx->drv_opts.dhchap_ctrlr_key != NULL) {
5472 			nvme_ctrlr->dhchap_ctrlr_key =
5473 				spdk_keyring_get_key(
5474 					spdk_key_get_name(ctx->drv_opts.dhchap_ctrlr_key));
5475 			if (nvme_ctrlr->dhchap_ctrlr_key == NULL) {
5476 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5477 					    spdk_key_get_name(ctx->drv_opts.dhchap_ctrlr_key));
5478 				rc = -ENOKEY;
5479 				goto err;
5480 			}
5481 		}
5482 	}
5483 
5484 	path_id = calloc(1, sizeof(*path_id));
5485 	if (path_id == NULL) {
5486 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
5487 		rc = -ENOMEM;
5488 		goto err;
5489 	}
5490 
5491 	path_id->trid = *trid;
5492 	if (ctx != NULL) {
5493 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
5494 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
5495 	}
5496 	nvme_ctrlr->active_path_id = path_id;
5497 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
5498 
5499 	nvme_ctrlr->thread = spdk_get_thread();
5500 	nvme_ctrlr->ctrlr = ctrlr;
5501 	nvme_ctrlr->ref = 1;
5502 
5503 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
5504 		SPDK_ERRLOG("OCSSDs are not supported");
5505 		rc = -ENOTSUP;
5506 		goto err;
5507 	}
5508 
5509 	if (ctx != NULL) {
5510 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
5511 	} else {
5512 		bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
5513 	}
5514 
5515 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
5516 					  g_opts.nvme_adminq_poll_period_us);
5517 
5518 	if (g_opts.timeout_us > 0) {
5519 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
5520 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
5521 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
5522 					  g_opts.timeout_us : g_opts.timeout_admin_us;
5523 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
5524 				adm_timeout_us, timeout_cb, nvme_ctrlr);
5525 	}
5526 
5527 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
5528 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
5529 
5530 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
5531 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
5532 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
5533 	}
5534 
5535 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
5536 	if (rc != 0) {
5537 		goto err;
5538 	}
5539 
5540 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5541 
5542 	if (cdata->cmic.ana_reporting) {
5543 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
5544 		if (rc == 0) {
5545 			return 0;
5546 		}
5547 	} else {
5548 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5549 		return 0;
5550 	}
5551 
5552 err:
5553 	nvme_ctrlr_delete(nvme_ctrlr);
5554 	return rc;
5555 }
5556 
5557 void
5558 bdev_nvme_get_default_ctrlr_opts(struct nvme_ctrlr_opts *opts)
5559 {
5560 	opts->prchk_flags = 0;
5561 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
5562 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
5563 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
5564 }
5565 
5566 static void
5567 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5568 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
5569 {
5570 	char *name;
5571 
5572 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
5573 	if (!name) {
5574 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
5575 		return;
5576 	}
5577 
5578 	if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) {
5579 		SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
5580 	} else {
5581 		SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name);
5582 	}
5583 
5584 	free(name);
5585 }
5586 
5587 static void
5588 _nvme_ctrlr_destruct(void *ctx)
5589 {
5590 	struct nvme_ctrlr *nvme_ctrlr = ctx;
5591 
5592 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
5593 	nvme_ctrlr_release(nvme_ctrlr);
5594 }
5595 
5596 static int
5597 bdev_nvme_delete_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5598 {
5599 	struct nvme_probe_skip_entry *entry;
5600 
5601 	/* The controller's destruction was already started */
5602 	if (nvme_ctrlr->destruct) {
5603 		return -EALREADY;
5604 	}
5605 
5606 	if (!hotplug &&
5607 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
5608 		entry = calloc(1, sizeof(*entry));
5609 		if (!entry) {
5610 			return -ENOMEM;
5611 		}
5612 		entry->trid = nvme_ctrlr->active_path_id->trid;
5613 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
5614 	}
5615 
5616 	nvme_ctrlr->destruct = true;
5617 	return 0;
5618 }
5619 
5620 static int
5621 bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5622 {
5623 	int rc;
5624 
5625 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5626 	rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, hotplug);
5627 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5628 
5629 	if (rc == 0) {
5630 		_nvme_ctrlr_destruct(nvme_ctrlr);
5631 	} else if (rc == -EALREADY) {
5632 		rc = 0;
5633 	}
5634 
5635 	return rc;
5636 }
5637 
5638 static void
5639 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
5640 {
5641 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
5642 
5643 	bdev_nvme_delete_ctrlr(nvme_ctrlr, true);
5644 }
5645 
5646 static int
5647 bdev_nvme_hotplug_probe(void *arg)
5648 {
5649 	if (g_hotplug_probe_ctx == NULL) {
5650 		spdk_poller_unregister(&g_hotplug_probe_poller);
5651 		return SPDK_POLLER_IDLE;
5652 	}
5653 
5654 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
5655 		g_hotplug_probe_ctx = NULL;
5656 		spdk_poller_unregister(&g_hotplug_probe_poller);
5657 	}
5658 
5659 	return SPDK_POLLER_BUSY;
5660 }
5661 
5662 static int
5663 bdev_nvme_hotplug(void *arg)
5664 {
5665 	struct spdk_nvme_transport_id trid_pcie;
5666 
5667 	if (g_hotplug_probe_ctx) {
5668 		return SPDK_POLLER_BUSY;
5669 	}
5670 
5671 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5672 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5673 
5674 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
5675 			      hotplug_probe_cb, attach_cb, NULL);
5676 
5677 	if (g_hotplug_probe_ctx) {
5678 		assert(g_hotplug_probe_poller == NULL);
5679 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
5680 	}
5681 
5682 	return SPDK_POLLER_BUSY;
5683 }
5684 
5685 void
5686 bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
5687 {
5688 	*opts = g_opts;
5689 }
5690 
5691 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5692 		uint32_t reconnect_delay_sec,
5693 		uint32_t fast_io_fail_timeout_sec);
5694 
5695 static int
5696 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
5697 {
5698 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
5699 		/* Can't set timeout_admin_us without also setting timeout_us */
5700 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
5701 		return -EINVAL;
5702 	}
5703 
5704 	if (opts->bdev_retry_count < -1) {
5705 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
5706 		return -EINVAL;
5707 	}
5708 
5709 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
5710 			opts->reconnect_delay_sec,
5711 			opts->fast_io_fail_timeout_sec)) {
5712 		return -EINVAL;
5713 	}
5714 
5715 	return 0;
5716 }
5717 
5718 int
5719 bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
5720 {
5721 	int ret;
5722 
5723 	ret = bdev_nvme_validate_opts(opts);
5724 	if (ret) {
5725 		SPDK_WARNLOG("Failed to set nvme opts.\n");
5726 		return ret;
5727 	}
5728 
5729 	if (g_bdev_nvme_init_thread != NULL) {
5730 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5731 			return -EPERM;
5732 		}
5733 	}
5734 
5735 	if (opts->rdma_srq_size != 0 ||
5736 	    opts->rdma_max_cq_size != 0 ||
5737 	    opts->rdma_cm_event_timeout_ms != 0) {
5738 		struct spdk_nvme_transport_opts drv_opts;
5739 
5740 		spdk_nvme_transport_get_opts(&drv_opts, sizeof(drv_opts));
5741 		if (opts->rdma_srq_size != 0) {
5742 			drv_opts.rdma_srq_size = opts->rdma_srq_size;
5743 		}
5744 		if (opts->rdma_max_cq_size != 0) {
5745 			drv_opts.rdma_max_cq_size = opts->rdma_max_cq_size;
5746 		}
5747 		if (opts->rdma_cm_event_timeout_ms != 0) {
5748 			drv_opts.rdma_cm_event_timeout_ms = opts->rdma_cm_event_timeout_ms;
5749 		}
5750 
5751 		ret = spdk_nvme_transport_set_opts(&drv_opts, sizeof(drv_opts));
5752 		if (ret) {
5753 			SPDK_ERRLOG("Failed to set NVMe transport opts.\n");
5754 			return ret;
5755 		}
5756 	}
5757 
5758 	g_opts = *opts;
5759 
5760 	return 0;
5761 }
5762 
5763 struct set_nvme_hotplug_ctx {
5764 	uint64_t period_us;
5765 	bool enabled;
5766 	spdk_msg_fn fn;
5767 	void *fn_ctx;
5768 };
5769 
5770 static void
5771 set_nvme_hotplug_period_cb(void *_ctx)
5772 {
5773 	struct set_nvme_hotplug_ctx *ctx = _ctx;
5774 
5775 	spdk_poller_unregister(&g_hotplug_poller);
5776 	if (ctx->enabled) {
5777 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
5778 	}
5779 
5780 	g_nvme_hotplug_poll_period_us = ctx->period_us;
5781 	g_nvme_hotplug_enabled = ctx->enabled;
5782 	if (ctx->fn) {
5783 		ctx->fn(ctx->fn_ctx);
5784 	}
5785 
5786 	free(ctx);
5787 }
5788 
5789 int
5790 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
5791 {
5792 	struct set_nvme_hotplug_ctx *ctx;
5793 
5794 	if (enabled == true && !spdk_process_is_primary()) {
5795 		return -EPERM;
5796 	}
5797 
5798 	ctx = calloc(1, sizeof(*ctx));
5799 	if (ctx == NULL) {
5800 		return -ENOMEM;
5801 	}
5802 
5803 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
5804 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
5805 	ctx->enabled = enabled;
5806 	ctx->fn = cb;
5807 	ctx->fn_ctx = cb_ctx;
5808 
5809 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
5810 	return 0;
5811 }
5812 
5813 static void
5814 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
5815 				    struct nvme_async_probe_ctx *ctx)
5816 {
5817 	struct nvme_ns	*nvme_ns;
5818 	struct nvme_bdev	*nvme_bdev;
5819 	size_t			j;
5820 
5821 	assert(nvme_ctrlr != NULL);
5822 
5823 	if (ctx->names == NULL) {
5824 		ctx->reported_bdevs = 0;
5825 		populate_namespaces_cb(ctx, 0);
5826 		return;
5827 	}
5828 
5829 	/*
5830 	 * Report the new bdevs that were created in this call.
5831 	 * There can be more than one bdev per NVMe controller.
5832 	 */
5833 	j = 0;
5834 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5835 	while (nvme_ns != NULL) {
5836 		nvme_bdev = nvme_ns->bdev;
5837 		if (j < ctx->max_bdevs) {
5838 			ctx->names[j] = nvme_bdev->disk.name;
5839 			j++;
5840 		} else {
5841 			SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
5842 				    ctx->max_bdevs);
5843 			ctx->reported_bdevs = 0;
5844 			populate_namespaces_cb(ctx, -ERANGE);
5845 			return;
5846 		}
5847 
5848 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5849 	}
5850 
5851 	ctx->reported_bdevs = j;
5852 	populate_namespaces_cb(ctx, 0);
5853 }
5854 
5855 static int
5856 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5857 			       struct spdk_nvme_ctrlr *new_ctrlr,
5858 			       struct spdk_nvme_transport_id *trid)
5859 {
5860 	struct nvme_path_id *tmp_trid;
5861 
5862 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
5863 		SPDK_ERRLOG("PCIe failover is not supported.\n");
5864 		return -ENOTSUP;
5865 	}
5866 
5867 	/* Currently we only support failover to the same transport type. */
5868 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
5869 		SPDK_WARNLOG("Failover from trtype: %s to a different trtype: %s is not supported currently\n",
5870 			     spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
5871 			     spdk_nvme_transport_id_trtype_str(trid->trtype));
5872 		return -EINVAL;
5873 	}
5874 
5875 
5876 	/* Currently we only support failover to the same NQN. */
5877 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
5878 		SPDK_WARNLOG("Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
5879 			     nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
5880 		return -EINVAL;
5881 	}
5882 
5883 	/* Skip all the other checks if we've already registered this path. */
5884 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
5885 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
5886 			SPDK_WARNLOG("This path (traddr: %s subnqn: %s) is already registered\n", trid->traddr,
5887 				     trid->subnqn);
5888 			return -EALREADY;
5889 		}
5890 	}
5891 
5892 	return 0;
5893 }
5894 
5895 static int
5896 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
5897 				    struct spdk_nvme_ctrlr *new_ctrlr)
5898 {
5899 	struct nvme_ns *nvme_ns;
5900 	struct spdk_nvme_ns *new_ns;
5901 
5902 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5903 	while (nvme_ns != NULL) {
5904 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
5905 		assert(new_ns != NULL);
5906 
5907 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
5908 			return -EINVAL;
5909 		}
5910 
5911 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5912 	}
5913 
5914 	return 0;
5915 }
5916 
5917 static int
5918 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5919 			      struct spdk_nvme_transport_id *trid)
5920 {
5921 	struct nvme_path_id *active_id, *new_trid, *tmp_trid;
5922 
5923 	new_trid = calloc(1, sizeof(*new_trid));
5924 	if (new_trid == NULL) {
5925 		return -ENOMEM;
5926 	}
5927 	new_trid->trid = *trid;
5928 
5929 	active_id = nvme_ctrlr->active_path_id;
5930 	assert(active_id != NULL);
5931 	assert(active_id == TAILQ_FIRST(&nvme_ctrlr->trids));
5932 
5933 	/* Skip the active trid not to replace it until it is failed. */
5934 	tmp_trid = TAILQ_NEXT(active_id, link);
5935 	if (tmp_trid == NULL) {
5936 		goto add_tail;
5937 	}
5938 
5939 	/* It means the trid is faled if its last failed time is non-zero.
5940 	 * Insert the new alternate trid before any failed trid.
5941 	 */
5942 	TAILQ_FOREACH_FROM(tmp_trid, &nvme_ctrlr->trids, link) {
5943 		if (tmp_trid->last_failed_tsc != 0) {
5944 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
5945 			return 0;
5946 		}
5947 	}
5948 
5949 add_tail:
5950 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
5951 	return 0;
5952 }
5953 
5954 /* This is the case that a secondary path is added to an existing
5955  * nvme_ctrlr for failover. After checking if it can access the same
5956  * namespaces as the primary path, it is disconnected until failover occurs.
5957  */
5958 static int
5959 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5960 			     struct spdk_nvme_ctrlr *new_ctrlr,
5961 			     struct spdk_nvme_transport_id *trid)
5962 {
5963 	int rc;
5964 
5965 	assert(nvme_ctrlr != NULL);
5966 
5967 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5968 
5969 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
5970 	if (rc != 0) {
5971 		goto exit;
5972 	}
5973 
5974 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
5975 	if (rc != 0) {
5976 		goto exit;
5977 	}
5978 
5979 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
5980 
5981 exit:
5982 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5983 
5984 	spdk_nvme_detach(new_ctrlr);
5985 
5986 	return rc;
5987 }
5988 
5989 static void
5990 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5991 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
5992 {
5993 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5994 	struct nvme_async_probe_ctx *ctx;
5995 	int rc;
5996 
5997 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
5998 	ctx->ctrlr_attached = true;
5999 
6000 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
6001 	if (rc != 0) {
6002 		ctx->reported_bdevs = 0;
6003 		populate_namespaces_cb(ctx, rc);
6004 	}
6005 }
6006 
6007 static void
6008 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6009 			struct spdk_nvme_ctrlr *ctrlr,
6010 			const struct spdk_nvme_ctrlr_opts *opts)
6011 {
6012 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6013 	struct nvme_ctrlr *nvme_ctrlr;
6014 	struct nvme_async_probe_ctx *ctx;
6015 	int rc;
6016 
6017 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
6018 	ctx->ctrlr_attached = true;
6019 
6020 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
6021 	if (nvme_ctrlr) {
6022 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
6023 	} else {
6024 		rc = -ENODEV;
6025 	}
6026 
6027 	ctx->reported_bdevs = 0;
6028 	populate_namespaces_cb(ctx, rc);
6029 }
6030 
6031 static int
6032 bdev_nvme_async_poll(void *arg)
6033 {
6034 	struct nvme_async_probe_ctx	*ctx = arg;
6035 	int				rc;
6036 
6037 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
6038 	if (spdk_unlikely(rc != -EAGAIN)) {
6039 		ctx->probe_done = true;
6040 		spdk_poller_unregister(&ctx->poller);
6041 		if (!ctx->ctrlr_attached) {
6042 			/* The probe is done, but no controller was attached.
6043 			 * That means we had a failure, so report -EIO back to
6044 			 * the caller (usually the RPC). populate_namespaces_cb()
6045 			 * will take care of freeing the nvme_async_probe_ctx.
6046 			 */
6047 			ctx->reported_bdevs = 0;
6048 			populate_namespaces_cb(ctx, -EIO);
6049 		} else if (ctx->namespaces_populated) {
6050 			/* The namespaces for the attached controller were all
6051 			 * populated and the response was already sent to the
6052 			 * caller (usually the RPC).  So free the context here.
6053 			 */
6054 			free_nvme_async_probe_ctx(ctx);
6055 		}
6056 	}
6057 
6058 	return SPDK_POLLER_BUSY;
6059 }
6060 
6061 static bool
6062 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
6063 		uint32_t reconnect_delay_sec,
6064 		uint32_t fast_io_fail_timeout_sec)
6065 {
6066 	if (ctrlr_loss_timeout_sec < -1) {
6067 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
6068 		return false;
6069 	} else if (ctrlr_loss_timeout_sec == -1) {
6070 		if (reconnect_delay_sec == 0) {
6071 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6072 			return false;
6073 		} else if (fast_io_fail_timeout_sec != 0 &&
6074 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
6075 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
6076 			return false;
6077 		}
6078 	} else if (ctrlr_loss_timeout_sec != 0) {
6079 		if (reconnect_delay_sec == 0) {
6080 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6081 			return false;
6082 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6083 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
6084 			return false;
6085 		} else if (fast_io_fail_timeout_sec != 0) {
6086 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
6087 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
6088 				return false;
6089 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6090 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
6091 				return false;
6092 			}
6093 		}
6094 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
6095 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
6096 		return false;
6097 	}
6098 
6099 	return true;
6100 }
6101 
6102 static int
6103 bdev_nvme_load_psk(const char *fname, char *buf, size_t bufsz)
6104 {
6105 	FILE *psk_file;
6106 	struct stat statbuf;
6107 	int rc;
6108 #define TCP_PSK_INVALID_PERMISSIONS 0177
6109 
6110 	if (stat(fname, &statbuf) != 0) {
6111 		SPDK_ERRLOG("Could not read permissions for PSK file\n");
6112 		return -EACCES;
6113 	}
6114 
6115 	if ((statbuf.st_mode & TCP_PSK_INVALID_PERMISSIONS) != 0) {
6116 		SPDK_ERRLOG("Incorrect permissions for PSK file\n");
6117 		return -EPERM;
6118 	}
6119 	if ((size_t)statbuf.st_size >= bufsz) {
6120 		SPDK_ERRLOG("Invalid PSK: too long\n");
6121 		return -EINVAL;
6122 	}
6123 	psk_file = fopen(fname, "r");
6124 	if (psk_file == NULL) {
6125 		SPDK_ERRLOG("Could not open PSK file\n");
6126 		return -EINVAL;
6127 	}
6128 
6129 	memset(buf, 0, bufsz);
6130 	rc = fread(buf, 1, statbuf.st_size, psk_file);
6131 	if (rc != statbuf.st_size) {
6132 		SPDK_ERRLOG("Failed to read PSK\n");
6133 		fclose(psk_file);
6134 		return -EINVAL;
6135 	}
6136 
6137 	fclose(psk_file);
6138 	return 0;
6139 }
6140 
6141 int
6142 bdev_nvme_create(struct spdk_nvme_transport_id *trid,
6143 		 const char *base_name,
6144 		 const char **names,
6145 		 uint32_t count,
6146 		 spdk_bdev_create_nvme_fn cb_fn,
6147 		 void *cb_ctx,
6148 		 struct spdk_nvme_ctrlr_opts *drv_opts,
6149 		 struct nvme_ctrlr_opts *bdev_opts,
6150 		 bool multipath)
6151 {
6152 	struct nvme_probe_skip_entry *entry, *tmp;
6153 	struct nvme_async_probe_ctx *ctx;
6154 	spdk_nvme_attach_cb attach_cb;
6155 	int rc, len;
6156 
6157 	/* TODO expand this check to include both the host and target TRIDs.
6158 	 * Only if both are the same should we fail.
6159 	 */
6160 	if (nvme_ctrlr_get(trid) != NULL) {
6161 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr);
6162 		return -EEXIST;
6163 	}
6164 
6165 	len = strnlen(base_name, SPDK_CONTROLLER_NAME_MAX);
6166 
6167 	if (len == 0 || len == SPDK_CONTROLLER_NAME_MAX) {
6168 		SPDK_ERRLOG("controller name must be between 1 and %d characters\n", SPDK_CONTROLLER_NAME_MAX - 1);
6169 		return -EINVAL;
6170 	}
6171 
6172 	if (bdev_opts != NULL &&
6173 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
6174 			    bdev_opts->reconnect_delay_sec,
6175 			    bdev_opts->fast_io_fail_timeout_sec)) {
6176 		return -EINVAL;
6177 	}
6178 
6179 	ctx = calloc(1, sizeof(*ctx));
6180 	if (!ctx) {
6181 		return -ENOMEM;
6182 	}
6183 	ctx->base_name = base_name;
6184 	ctx->names = names;
6185 	ctx->max_bdevs = count;
6186 	ctx->cb_fn = cb_fn;
6187 	ctx->cb_ctx = cb_ctx;
6188 	ctx->trid = *trid;
6189 
6190 	if (bdev_opts) {
6191 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
6192 	} else {
6193 		bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
6194 	}
6195 
6196 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
6197 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
6198 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
6199 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
6200 				free(entry);
6201 				break;
6202 			}
6203 		}
6204 	}
6205 
6206 	if (drv_opts) {
6207 		memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
6208 	} else {
6209 		spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->drv_opts, sizeof(ctx->drv_opts));
6210 	}
6211 
6212 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
6213 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
6214 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
6215 	ctx->drv_opts.disable_read_ana_log_page = true;
6216 	ctx->drv_opts.transport_tos = g_opts.transport_tos;
6217 
6218 	if (ctx->bdev_opts.psk[0] != '\0') {
6219 		/* Try to use the keyring first */
6220 		ctx->drv_opts.tls_psk = spdk_keyring_get_key(ctx->bdev_opts.psk);
6221 		if (ctx->drv_opts.tls_psk == NULL) {
6222 			rc = bdev_nvme_load_psk(ctx->bdev_opts.psk,
6223 						ctx->drv_opts.psk, sizeof(ctx->drv_opts.psk));
6224 			if (rc != 0) {
6225 				SPDK_ERRLOG("Could not load PSK from %s\n", ctx->bdev_opts.psk);
6226 				free_nvme_async_probe_ctx(ctx);
6227 				return rc;
6228 			}
6229 		}
6230 	}
6231 
6232 	if (ctx->bdev_opts.dhchap_key != NULL) {
6233 		ctx->drv_opts.dhchap_key = spdk_keyring_get_key(ctx->bdev_opts.dhchap_key);
6234 		if (ctx->drv_opts.dhchap_key == NULL) {
6235 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP key: %s\n",
6236 				    ctx->bdev_opts.dhchap_key);
6237 			free_nvme_async_probe_ctx(ctx);
6238 			return -ENOKEY;
6239 		}
6240 
6241 		ctx->drv_opts.dhchap_digests = g_opts.dhchap_digests;
6242 		ctx->drv_opts.dhchap_dhgroups = g_opts.dhchap_dhgroups;
6243 	}
6244 	if (ctx->bdev_opts.dhchap_ctrlr_key != NULL) {
6245 		ctx->drv_opts.dhchap_ctrlr_key =
6246 			spdk_keyring_get_key(ctx->bdev_opts.dhchap_ctrlr_key);
6247 		if (ctx->drv_opts.dhchap_ctrlr_key == NULL) {
6248 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP controller key: %s\n",
6249 				    ctx->bdev_opts.dhchap_ctrlr_key);
6250 			free_nvme_async_probe_ctx(ctx);
6251 			return -ENOKEY;
6252 		}
6253 	}
6254 
6255 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) {
6256 		attach_cb = connect_attach_cb;
6257 	} else {
6258 		attach_cb = connect_set_failover_cb;
6259 	}
6260 
6261 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
6262 	if (ctx->probe_ctx == NULL) {
6263 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
6264 		free_nvme_async_probe_ctx(ctx);
6265 		return -ENODEV;
6266 	}
6267 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
6268 
6269 	return 0;
6270 }
6271 
6272 struct bdev_nvme_delete_ctx {
6273 	char                        *name;
6274 	struct nvme_path_id         path_id;
6275 	bdev_nvme_delete_done_fn    delete_done;
6276 	void                        *delete_done_ctx;
6277 	uint64_t                    timeout_ticks;
6278 	struct spdk_poller          *poller;
6279 };
6280 
6281 static void
6282 free_bdev_nvme_delete_ctx(struct bdev_nvme_delete_ctx *ctx)
6283 {
6284 	if (ctx != NULL) {
6285 		free(ctx->name);
6286 		free(ctx);
6287 	}
6288 }
6289 
6290 static bool
6291 nvme_path_id_compare(struct nvme_path_id *p, const struct nvme_path_id *path_id)
6292 {
6293 	if (path_id->trid.trtype != 0) {
6294 		if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
6295 			if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
6296 				return false;
6297 			}
6298 		} else {
6299 			if (path_id->trid.trtype != p->trid.trtype) {
6300 				return false;
6301 			}
6302 		}
6303 	}
6304 
6305 	if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
6306 		if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
6307 			return false;
6308 		}
6309 	}
6310 
6311 	if (path_id->trid.adrfam != 0) {
6312 		if (path_id->trid.adrfam != p->trid.adrfam) {
6313 			return false;
6314 		}
6315 	}
6316 
6317 	if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
6318 		if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
6319 			return false;
6320 		}
6321 	}
6322 
6323 	if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
6324 		if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
6325 			return false;
6326 		}
6327 	}
6328 
6329 	if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
6330 		if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
6331 			return false;
6332 		}
6333 	}
6334 
6335 	if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
6336 		if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
6337 			return false;
6338 		}
6339 	}
6340 
6341 	return true;
6342 }
6343 
6344 static bool
6345 nvme_path_id_exists(const char *name, const struct nvme_path_id *path_id)
6346 {
6347 	struct nvme_bdev_ctrlr  *nbdev_ctrlr;
6348 	struct nvme_ctrlr       *ctrlr;
6349 	struct nvme_path_id     *p;
6350 
6351 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6352 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6353 	if (!nbdev_ctrlr) {
6354 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6355 		return false;
6356 	}
6357 
6358 	TAILQ_FOREACH(ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6359 		pthread_mutex_lock(&ctrlr->mutex);
6360 		TAILQ_FOREACH(p, &ctrlr->trids, link) {
6361 			if (nvme_path_id_compare(p, path_id)) {
6362 				pthread_mutex_unlock(&ctrlr->mutex);
6363 				pthread_mutex_unlock(&g_bdev_nvme_mutex);
6364 				return true;
6365 			}
6366 		}
6367 		pthread_mutex_unlock(&ctrlr->mutex);
6368 	}
6369 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6370 
6371 	return false;
6372 }
6373 
6374 static int
6375 bdev_nvme_delete_complete_poll(void *arg)
6376 {
6377 	struct bdev_nvme_delete_ctx     *ctx = arg;
6378 	int                             rc = 0;
6379 
6380 	if (nvme_path_id_exists(ctx->name, &ctx->path_id)) {
6381 		if (ctx->timeout_ticks > spdk_get_ticks()) {
6382 			return SPDK_POLLER_BUSY;
6383 		}
6384 
6385 		SPDK_ERRLOG("NVMe path '%s' still exists after delete\n", ctx->name);
6386 		rc = -ETIMEDOUT;
6387 	}
6388 
6389 	spdk_poller_unregister(&ctx->poller);
6390 
6391 	ctx->delete_done(ctx->delete_done_ctx, rc);
6392 	free_bdev_nvme_delete_ctx(ctx);
6393 
6394 	return SPDK_POLLER_BUSY;
6395 }
6396 
6397 static int
6398 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, const struct nvme_path_id *path_id)
6399 {
6400 	struct nvme_path_id	*p, *t;
6401 	spdk_msg_fn		msg_fn;
6402 	int			rc = -ENXIO;
6403 
6404 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6405 
6406 	TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
6407 		if (p == TAILQ_FIRST(&nvme_ctrlr->trids)) {
6408 			break;
6409 		}
6410 
6411 		if (!nvme_path_id_compare(p, path_id)) {
6412 			continue;
6413 		}
6414 
6415 		/* We are not using the specified path. */
6416 		TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
6417 		free(p);
6418 		rc = 0;
6419 	}
6420 
6421 	if (p == NULL || !nvme_path_id_compare(p, path_id)) {
6422 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
6423 		return rc;
6424 	}
6425 
6426 	/* If we made it here, then this path is a match! Now we need to remove it. */
6427 
6428 	/* This is the active path in use right now. The active path is always the first in the list. */
6429 	assert(p == nvme_ctrlr->active_path_id);
6430 
6431 	if (!TAILQ_NEXT(p, link)) {
6432 		/* The current path is the only path. */
6433 		msg_fn = _nvme_ctrlr_destruct;
6434 		rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, false);
6435 	} else {
6436 		/* There is an alternative path. */
6437 		msg_fn = _bdev_nvme_reset_ctrlr;
6438 		rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, true);
6439 	}
6440 
6441 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6442 
6443 	if (rc == 0) {
6444 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
6445 	} else if (rc == -EALREADY) {
6446 		rc = 0;
6447 	}
6448 
6449 	return rc;
6450 }
6451 
6452 int
6453 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id,
6454 		 bdev_nvme_delete_done_fn delete_done, void *delete_done_ctx)
6455 {
6456 	struct nvme_bdev_ctrlr		*nbdev_ctrlr;
6457 	struct nvme_ctrlr		*nvme_ctrlr, *tmp_nvme_ctrlr;
6458 	struct bdev_nvme_delete_ctx     *ctx = NULL;
6459 	int				rc = -ENXIO, _rc;
6460 
6461 	if (name == NULL || path_id == NULL) {
6462 		rc = -EINVAL;
6463 		goto exit;
6464 	}
6465 
6466 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6467 
6468 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6469 	if (nbdev_ctrlr == NULL) {
6470 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6471 
6472 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
6473 		rc = -ENODEV;
6474 		goto exit;
6475 	}
6476 
6477 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
6478 		_rc = _bdev_nvme_delete(nvme_ctrlr, path_id);
6479 		if (_rc < 0 && _rc != -ENXIO) {
6480 			pthread_mutex_unlock(&g_bdev_nvme_mutex);
6481 			rc = _rc;
6482 			goto exit;
6483 		} else if (_rc == 0) {
6484 			/* We traverse all remaining nvme_ctrlrs even if one nvme_ctrlr
6485 			 * was deleted successfully. To remember the successful deletion,
6486 			 * overwrite rc only if _rc is zero.
6487 			 */
6488 			rc = 0;
6489 		}
6490 	}
6491 
6492 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6493 
6494 	if (rc != 0 || delete_done == NULL) {
6495 		goto exit;
6496 	}
6497 
6498 	ctx = calloc(1, sizeof(*ctx));
6499 	if (ctx == NULL) {
6500 		SPDK_ERRLOG("Failed to allocate context for bdev_nvme_delete\n");
6501 		rc = -ENOMEM;
6502 		goto exit;
6503 	}
6504 
6505 	ctx->name = strdup(name);
6506 	if (ctx->name == NULL) {
6507 		SPDK_ERRLOG("Failed to copy controller name for deletion\n");
6508 		rc = -ENOMEM;
6509 		goto exit;
6510 	}
6511 
6512 	ctx->delete_done = delete_done;
6513 	ctx->delete_done_ctx = delete_done_ctx;
6514 	ctx->path_id = *path_id;
6515 	ctx->timeout_ticks = spdk_get_ticks() + 10 * spdk_get_ticks_hz();
6516 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_delete_complete_poll, ctx, 1000);
6517 	if (ctx->poller == NULL) {
6518 		SPDK_ERRLOG("Failed to register bdev_nvme_delete poller\n");
6519 		rc = -ENOMEM;
6520 		goto exit;
6521 	}
6522 
6523 exit:
6524 	if (rc != 0) {
6525 		free_bdev_nvme_delete_ctx(ctx);
6526 	}
6527 
6528 	return rc;
6529 }
6530 
6531 #define DISCOVERY_INFOLOG(ctx, format, ...) \
6532 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6533 
6534 #define DISCOVERY_ERRLOG(ctx, format, ...) \
6535 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6536 
6537 struct discovery_entry_ctx {
6538 	char						name[128];
6539 	struct spdk_nvme_transport_id			trid;
6540 	struct spdk_nvme_ctrlr_opts			drv_opts;
6541 	struct spdk_nvmf_discovery_log_page_entry	entry;
6542 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
6543 	struct discovery_ctx				*ctx;
6544 };
6545 
6546 struct discovery_ctx {
6547 	char					*name;
6548 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
6549 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
6550 	void					*cb_ctx;
6551 	struct spdk_nvme_probe_ctx		*probe_ctx;
6552 	struct spdk_nvme_detach_ctx		*detach_ctx;
6553 	struct spdk_nvme_ctrlr			*ctrlr;
6554 	struct spdk_nvme_transport_id		trid;
6555 	struct discovery_entry_ctx		*entry_ctx_in_use;
6556 	struct spdk_poller			*poller;
6557 	struct spdk_nvme_ctrlr_opts		drv_opts;
6558 	struct nvme_ctrlr_opts			bdev_opts;
6559 	struct spdk_nvmf_discovery_log_page	*log_page;
6560 	TAILQ_ENTRY(discovery_ctx)		tailq;
6561 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
6562 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
6563 	int					rc;
6564 	bool					wait_for_attach;
6565 	uint64_t				timeout_ticks;
6566 	/* Denotes that the discovery service is being started. We're waiting
6567 	 * for the initial connection to the discovery controller to be
6568 	 * established and attach discovered NVM ctrlrs.
6569 	 */
6570 	bool					initializing;
6571 	/* Denotes if a discovery is currently in progress for this context.
6572 	 * That includes connecting to newly discovered subsystems.  Used to
6573 	 * ensure we do not start a new discovery until an existing one is
6574 	 * complete.
6575 	 */
6576 	bool					in_progress;
6577 
6578 	/* Denotes if another discovery is needed after the one in progress
6579 	 * completes.  Set when we receive an AER completion while a discovery
6580 	 * is already in progress.
6581 	 */
6582 	bool					pending;
6583 
6584 	/* Signal to the discovery context poller that it should stop the
6585 	 * discovery service, including detaching from the current discovery
6586 	 * controller.
6587 	 */
6588 	bool					stop;
6589 
6590 	struct spdk_thread			*calling_thread;
6591 	uint32_t				index;
6592 	uint32_t				attach_in_progress;
6593 	char					*hostnqn;
6594 
6595 	/* Denotes if the discovery service was started by the mdns discovery.
6596 	 */
6597 	bool					from_mdns_discovery_service;
6598 };
6599 
6600 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
6601 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
6602 
6603 static void get_discovery_log_page(struct discovery_ctx *ctx);
6604 
6605 static void
6606 free_discovery_ctx(struct discovery_ctx *ctx)
6607 {
6608 	free(ctx->log_page);
6609 	free(ctx->hostnqn);
6610 	free(ctx->name);
6611 	free(ctx);
6612 }
6613 
6614 static void
6615 discovery_complete(struct discovery_ctx *ctx)
6616 {
6617 	ctx->initializing = false;
6618 	ctx->in_progress = false;
6619 	if (ctx->pending) {
6620 		ctx->pending = false;
6621 		get_discovery_log_page(ctx);
6622 	}
6623 }
6624 
6625 static void
6626 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
6627 			       struct spdk_nvmf_discovery_log_page_entry *entry)
6628 {
6629 	char *space;
6630 
6631 	trid->trtype = entry->trtype;
6632 	trid->adrfam = entry->adrfam;
6633 	memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr));
6634 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid));
6635 	/* Because the source buffer (entry->subnqn) is longer than trid->subnqn, and
6636 	 * before call to this function trid->subnqn is zeroed out, we need
6637 	 * to copy sizeof(trid->subnqn) minus one byte to make sure the last character
6638 	 * remains 0. Then we can shorten the string (replace ' ' with 0) if required
6639 	 */
6640 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn) - 1);
6641 
6642 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
6643 	 * But the log page entries typically pad them with spaces, not zeroes.
6644 	 * So add a NULL terminator to each of these fields at the appropriate
6645 	 * location.
6646 	 */
6647 	space = strchr(trid->traddr, ' ');
6648 	if (space) {
6649 		*space = 0;
6650 	}
6651 	space = strchr(trid->trsvcid, ' ');
6652 	if (space) {
6653 		*space = 0;
6654 	}
6655 	space = strchr(trid->subnqn, ' ');
6656 	if (space) {
6657 		*space = 0;
6658 	}
6659 }
6660 
6661 static void
6662 _stop_discovery(void *_ctx)
6663 {
6664 	struct discovery_ctx *ctx = _ctx;
6665 
6666 	if (ctx->attach_in_progress > 0) {
6667 		spdk_thread_send_msg(spdk_get_thread(), _stop_discovery, ctx);
6668 		return;
6669 	}
6670 
6671 	ctx->stop = true;
6672 
6673 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
6674 		struct discovery_entry_ctx *entry_ctx;
6675 		struct nvme_path_id path = {};
6676 
6677 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
6678 		path.trid = entry_ctx->trid;
6679 		bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6680 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6681 		free(entry_ctx);
6682 	}
6683 
6684 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
6685 		struct discovery_entry_ctx *entry_ctx;
6686 
6687 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6688 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6689 		free(entry_ctx);
6690 	}
6691 
6692 	free(ctx->entry_ctx_in_use);
6693 	ctx->entry_ctx_in_use = NULL;
6694 }
6695 
6696 static void
6697 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
6698 {
6699 	ctx->stop_cb_fn = cb_fn;
6700 	ctx->cb_ctx = cb_ctx;
6701 
6702 	if (ctx->attach_in_progress > 0) {
6703 		DISCOVERY_INFOLOG(ctx, "stopping discovery with attach_in_progress: %"PRIu32"\n",
6704 				  ctx->attach_in_progress);
6705 	}
6706 
6707 	_stop_discovery(ctx);
6708 }
6709 
6710 static void
6711 remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr)
6712 {
6713 	struct discovery_ctx *d_ctx;
6714 	struct nvme_path_id *path_id;
6715 	struct spdk_nvme_transport_id trid = {};
6716 	struct discovery_entry_ctx *entry_ctx, *tmp;
6717 
6718 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
6719 
6720 	TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6721 		TAILQ_FOREACH_SAFE(entry_ctx, &d_ctx->nvm_entry_ctxs, tailq, tmp) {
6722 			build_trid_from_log_page_entry(&trid, &entry_ctx->entry);
6723 			if (spdk_nvme_transport_id_compare(&trid, &path_id->trid) != 0) {
6724 				continue;
6725 			}
6726 
6727 			TAILQ_REMOVE(&d_ctx->nvm_entry_ctxs, entry_ctx, tailq);
6728 			free(entry_ctx);
6729 			DISCOVERY_INFOLOG(d_ctx, "Remove discovery entry: %s:%s:%s\n",
6730 					  trid.subnqn, trid.traddr, trid.trsvcid);
6731 
6732 			/* Fail discovery ctrlr to force reattach attempt */
6733 			spdk_nvme_ctrlr_fail(d_ctx->ctrlr);
6734 		}
6735 	}
6736 }
6737 
6738 static void
6739 discovery_remove_controllers(struct discovery_ctx *ctx)
6740 {
6741 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
6742 	struct discovery_entry_ctx *entry_ctx, *tmp;
6743 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6744 	struct spdk_nvme_transport_id old_trid = {};
6745 	uint64_t numrec, i;
6746 	bool found;
6747 
6748 	numrec = from_le64(&log_page->numrec);
6749 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
6750 		found = false;
6751 		old_entry = &entry_ctx->entry;
6752 		build_trid_from_log_page_entry(&old_trid, old_entry);
6753 		for (i = 0; i < numrec; i++) {
6754 			new_entry = &log_page->entries[i];
6755 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
6756 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
6757 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6758 				found = true;
6759 				break;
6760 			}
6761 		}
6762 		if (!found) {
6763 			struct nvme_path_id path = {};
6764 
6765 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
6766 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6767 
6768 			path.trid = entry_ctx->trid;
6769 			bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6770 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6771 			free(entry_ctx);
6772 		}
6773 	}
6774 	free(log_page);
6775 	ctx->log_page = NULL;
6776 	discovery_complete(ctx);
6777 }
6778 
6779 static void
6780 complete_discovery_start(struct discovery_ctx *ctx, int status)
6781 {
6782 	ctx->timeout_ticks = 0;
6783 	ctx->rc = status;
6784 	if (ctx->start_cb_fn) {
6785 		ctx->start_cb_fn(ctx->cb_ctx, status);
6786 		ctx->start_cb_fn = NULL;
6787 		ctx->cb_ctx = NULL;
6788 	}
6789 }
6790 
6791 static void
6792 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
6793 {
6794 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
6795 	struct discovery_ctx *ctx = entry_ctx->ctx;
6796 
6797 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
6798 	ctx->attach_in_progress--;
6799 	if (ctx->attach_in_progress == 0) {
6800 		complete_discovery_start(ctx, ctx->rc);
6801 		if (ctx->initializing && ctx->rc != 0) {
6802 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
6803 			stop_discovery(ctx, NULL, ctx->cb_ctx);
6804 		} else {
6805 			discovery_remove_controllers(ctx);
6806 		}
6807 	}
6808 }
6809 
6810 static struct discovery_entry_ctx *
6811 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
6812 {
6813 	struct discovery_entry_ctx *new_ctx;
6814 
6815 	new_ctx = calloc(1, sizeof(*new_ctx));
6816 	if (new_ctx == NULL) {
6817 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6818 		return NULL;
6819 	}
6820 
6821 	new_ctx->ctx = ctx;
6822 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
6823 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6824 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6825 	return new_ctx;
6826 }
6827 
6828 static void
6829 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
6830 		      struct spdk_nvmf_discovery_log_page *log_page)
6831 {
6832 	struct discovery_ctx *ctx = cb_arg;
6833 	struct discovery_entry_ctx *entry_ctx, *tmp;
6834 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6835 	uint64_t numrec, i;
6836 	bool found;
6837 
6838 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
6839 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6840 		return;
6841 	}
6842 
6843 	ctx->log_page = log_page;
6844 	assert(ctx->attach_in_progress == 0);
6845 	numrec = from_le64(&log_page->numrec);
6846 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
6847 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6848 		free(entry_ctx);
6849 	}
6850 	for (i = 0; i < numrec; i++) {
6851 		found = false;
6852 		new_entry = &log_page->entries[i];
6853 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY_CURRENT ||
6854 		    new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
6855 			struct discovery_entry_ctx *new_ctx;
6856 			struct spdk_nvme_transport_id trid = {};
6857 
6858 			build_trid_from_log_page_entry(&trid, new_entry);
6859 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
6860 			if (new_ctx == NULL) {
6861 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6862 				break;
6863 			}
6864 
6865 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
6866 			continue;
6867 		}
6868 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
6869 			old_entry = &entry_ctx->entry;
6870 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
6871 				found = true;
6872 				break;
6873 			}
6874 		}
6875 		if (!found) {
6876 			struct discovery_entry_ctx *subnqn_ctx = NULL, *new_ctx;
6877 			struct discovery_ctx *d_ctx;
6878 
6879 			TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6880 				TAILQ_FOREACH(subnqn_ctx, &d_ctx->nvm_entry_ctxs, tailq) {
6881 					if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
6882 						    sizeof(new_entry->subnqn))) {
6883 						break;
6884 					}
6885 				}
6886 				if (subnqn_ctx) {
6887 					break;
6888 				}
6889 			}
6890 
6891 			new_ctx = calloc(1, sizeof(*new_ctx));
6892 			if (new_ctx == NULL) {
6893 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6894 				break;
6895 			}
6896 
6897 			new_ctx->ctx = ctx;
6898 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
6899 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
6900 			if (subnqn_ctx) {
6901 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
6902 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
6903 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6904 						  new_ctx->name);
6905 			} else {
6906 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
6907 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
6908 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6909 						  new_ctx->name);
6910 			}
6911 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6912 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6913 			rc = bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
6914 					      discovery_attach_controller_done, new_ctx,
6915 					      &new_ctx->drv_opts, &ctx->bdev_opts, true);
6916 			if (rc == 0) {
6917 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
6918 				ctx->attach_in_progress++;
6919 			} else {
6920 				DISCOVERY_ERRLOG(ctx, "bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
6921 			}
6922 		}
6923 	}
6924 
6925 	if (ctx->attach_in_progress == 0) {
6926 		discovery_remove_controllers(ctx);
6927 	}
6928 }
6929 
6930 static void
6931 get_discovery_log_page(struct discovery_ctx *ctx)
6932 {
6933 	int rc;
6934 
6935 	assert(ctx->in_progress == false);
6936 	ctx->in_progress = true;
6937 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
6938 	if (rc != 0) {
6939 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6940 	}
6941 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
6942 }
6943 
6944 static void
6945 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
6946 {
6947 	struct discovery_ctx *ctx = arg;
6948 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
6949 
6950 	if (spdk_nvme_cpl_is_error(cpl)) {
6951 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
6952 		return;
6953 	}
6954 
6955 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
6956 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
6957 		return;
6958 	}
6959 
6960 	DISCOVERY_INFOLOG(ctx, "got aer\n");
6961 	if (ctx->in_progress) {
6962 		ctx->pending = true;
6963 		return;
6964 	}
6965 
6966 	get_discovery_log_page(ctx);
6967 }
6968 
6969 static void
6970 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6971 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
6972 {
6973 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6974 	struct discovery_ctx *ctx;
6975 
6976 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
6977 
6978 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
6979 	ctx->probe_ctx = NULL;
6980 	ctx->ctrlr = ctrlr;
6981 
6982 	if (ctx->rc != 0) {
6983 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
6984 				 ctx->rc);
6985 		return;
6986 	}
6987 
6988 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
6989 }
6990 
6991 static int
6992 discovery_poller(void *arg)
6993 {
6994 	struct discovery_ctx *ctx = arg;
6995 	struct spdk_nvme_transport_id *trid;
6996 	int rc;
6997 
6998 	if (ctx->detach_ctx) {
6999 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
7000 		if (rc != -EAGAIN) {
7001 			ctx->detach_ctx = NULL;
7002 			ctx->ctrlr = NULL;
7003 		}
7004 	} else if (ctx->stop) {
7005 		if (ctx->ctrlr != NULL) {
7006 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
7007 			if (rc == 0) {
7008 				return SPDK_POLLER_BUSY;
7009 			}
7010 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7011 		}
7012 		spdk_poller_unregister(&ctx->poller);
7013 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
7014 		assert(ctx->start_cb_fn == NULL);
7015 		if (ctx->stop_cb_fn != NULL) {
7016 			ctx->stop_cb_fn(ctx->cb_ctx);
7017 		}
7018 		free_discovery_ctx(ctx);
7019 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
7020 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7021 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
7022 			assert(ctx->initializing);
7023 			spdk_poller_unregister(&ctx->poller);
7024 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
7025 			complete_discovery_start(ctx, -ETIMEDOUT);
7026 			stop_discovery(ctx, NULL, NULL);
7027 			free_discovery_ctx(ctx);
7028 			return SPDK_POLLER_BUSY;
7029 		}
7030 
7031 		assert(ctx->entry_ctx_in_use == NULL);
7032 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
7033 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7034 		trid = &ctx->entry_ctx_in_use->trid;
7035 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
7036 		if (ctx->probe_ctx) {
7037 			spdk_poller_unregister(&ctx->poller);
7038 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
7039 		} else {
7040 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
7041 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7042 			ctx->entry_ctx_in_use = NULL;
7043 		}
7044 	} else if (ctx->probe_ctx) {
7045 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7046 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
7047 			complete_discovery_start(ctx, -ETIMEDOUT);
7048 			return SPDK_POLLER_BUSY;
7049 		}
7050 
7051 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
7052 		if (rc != -EAGAIN) {
7053 			if (ctx->rc != 0) {
7054 				assert(ctx->initializing);
7055 				stop_discovery(ctx, NULL, ctx->cb_ctx);
7056 			} else {
7057 				assert(rc == 0);
7058 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
7059 				ctx->rc = rc;
7060 				get_discovery_log_page(ctx);
7061 			}
7062 		}
7063 	} else {
7064 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7065 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
7066 			complete_discovery_start(ctx, -ETIMEDOUT);
7067 			/* We need to wait until all NVM ctrlrs are attached before we stop the
7068 			 * discovery service to make sure we don't detach a ctrlr that is still
7069 			 * being attached.
7070 			 */
7071 			if (ctx->attach_in_progress == 0) {
7072 				stop_discovery(ctx, NULL, ctx->cb_ctx);
7073 				return SPDK_POLLER_BUSY;
7074 			}
7075 		}
7076 
7077 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
7078 		if (rc < 0) {
7079 			spdk_poller_unregister(&ctx->poller);
7080 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7081 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7082 			ctx->entry_ctx_in_use = NULL;
7083 
7084 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
7085 			if (rc != 0) {
7086 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7087 				ctx->ctrlr = NULL;
7088 			}
7089 		}
7090 	}
7091 
7092 	return SPDK_POLLER_BUSY;
7093 }
7094 
7095 static void
7096 start_discovery_poller(void *arg)
7097 {
7098 	struct discovery_ctx *ctx = arg;
7099 
7100 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
7101 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7102 }
7103 
7104 int
7105 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
7106 			  const char *base_name,
7107 			  struct spdk_nvme_ctrlr_opts *drv_opts,
7108 			  struct nvme_ctrlr_opts *bdev_opts,
7109 			  uint64_t attach_timeout,
7110 			  bool from_mdns,
7111 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
7112 {
7113 	struct discovery_ctx *ctx;
7114 	struct discovery_entry_ctx *discovery_entry_ctx;
7115 
7116 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
7117 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7118 		if (strcmp(ctx->name, base_name) == 0) {
7119 			return -EEXIST;
7120 		}
7121 
7122 		if (ctx->entry_ctx_in_use != NULL) {
7123 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
7124 				return -EEXIST;
7125 			}
7126 		}
7127 
7128 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
7129 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
7130 				return -EEXIST;
7131 			}
7132 		}
7133 	}
7134 
7135 	ctx = calloc(1, sizeof(*ctx));
7136 	if (ctx == NULL) {
7137 		return -ENOMEM;
7138 	}
7139 
7140 	ctx->name = strdup(base_name);
7141 	if (ctx->name == NULL) {
7142 		free_discovery_ctx(ctx);
7143 		return -ENOMEM;
7144 	}
7145 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
7146 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
7147 	ctx->from_mdns_discovery_service = from_mdns;
7148 	ctx->bdev_opts.from_discovery_service = true;
7149 	ctx->calling_thread = spdk_get_thread();
7150 	ctx->start_cb_fn = cb_fn;
7151 	ctx->cb_ctx = cb_ctx;
7152 	ctx->initializing = true;
7153 	if (ctx->start_cb_fn) {
7154 		/* We can use this when dumping json to denote if this RPC parameter
7155 		 * was specified or not.
7156 		 */
7157 		ctx->wait_for_attach = true;
7158 	}
7159 	if (attach_timeout != 0) {
7160 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
7161 				     spdk_get_ticks_hz() / 1000ull;
7162 	}
7163 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
7164 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
7165 	memcpy(&ctx->trid, trid, sizeof(*trid));
7166 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
7167 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
7168 	if (ctx->hostnqn == NULL) {
7169 		free_discovery_ctx(ctx);
7170 		return -ENOMEM;
7171 	}
7172 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
7173 	if (discovery_entry_ctx == NULL) {
7174 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7175 		free_discovery_ctx(ctx);
7176 		return -ENOMEM;
7177 	}
7178 
7179 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
7180 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
7181 	return 0;
7182 }
7183 
7184 int
7185 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
7186 {
7187 	struct discovery_ctx *ctx;
7188 
7189 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7190 		if (strcmp(name, ctx->name) == 0) {
7191 			if (ctx->stop) {
7192 				return -EALREADY;
7193 			}
7194 			/* If we're still starting the discovery service and ->rc is non-zero, we're
7195 			 * going to stop it as soon as we can
7196 			 */
7197 			if (ctx->initializing && ctx->rc != 0) {
7198 				return -EALREADY;
7199 			}
7200 			stop_discovery(ctx, cb_fn, cb_ctx);
7201 			return 0;
7202 		}
7203 	}
7204 
7205 	return -ENOENT;
7206 }
7207 
7208 static int
7209 bdev_nvme_library_init(void)
7210 {
7211 	g_bdev_nvme_init_thread = spdk_get_thread();
7212 
7213 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
7214 				bdev_nvme_destroy_poll_group_cb,
7215 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
7216 
7217 	return 0;
7218 }
7219 
7220 static void
7221 bdev_nvme_fini_destruct_ctrlrs(void)
7222 {
7223 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
7224 	struct nvme_ctrlr *nvme_ctrlr;
7225 
7226 	pthread_mutex_lock(&g_bdev_nvme_mutex);
7227 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
7228 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
7229 			pthread_mutex_lock(&nvme_ctrlr->mutex);
7230 			if (nvme_ctrlr->destruct) {
7231 				/* This controller's destruction was already started
7232 				 * before the application started shutting down
7233 				 */
7234 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
7235 				continue;
7236 			}
7237 			nvme_ctrlr->destruct = true;
7238 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
7239 
7240 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
7241 					     nvme_ctrlr);
7242 		}
7243 	}
7244 
7245 	g_bdev_nvme_module_finish = true;
7246 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
7247 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
7248 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
7249 		spdk_bdev_module_fini_done();
7250 		return;
7251 	}
7252 
7253 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
7254 }
7255 
7256 static void
7257 check_discovery_fini(void *arg)
7258 {
7259 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7260 		bdev_nvme_fini_destruct_ctrlrs();
7261 	}
7262 }
7263 
7264 static void
7265 bdev_nvme_library_fini(void)
7266 {
7267 	struct nvme_probe_skip_entry *entry, *entry_tmp;
7268 	struct discovery_ctx *ctx;
7269 
7270 	spdk_poller_unregister(&g_hotplug_poller);
7271 	free(g_hotplug_probe_ctx);
7272 	g_hotplug_probe_ctx = NULL;
7273 
7274 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
7275 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
7276 		free(entry);
7277 	}
7278 
7279 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
7280 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7281 		bdev_nvme_fini_destruct_ctrlrs();
7282 	} else {
7283 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7284 			stop_discovery(ctx, check_discovery_fini, NULL);
7285 		}
7286 	}
7287 }
7288 
7289 static void
7290 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
7291 {
7292 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7293 	struct spdk_bdev *bdev = bdev_io->bdev;
7294 	struct spdk_dif_ctx dif_ctx;
7295 	struct spdk_dif_error err_blk = {};
7296 	int rc;
7297 	struct spdk_dif_ctx_init_ext_opts dif_opts;
7298 
7299 	dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format);
7300 	dif_opts.dif_pi_format = SPDK_DIF_PI_FORMAT_16;
7301 	rc = spdk_dif_ctx_init(&dif_ctx,
7302 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
7303 			       bdev->dif_is_head_of_md, bdev->dif_type,
7304 			       bdev_io->u.bdev.dif_check_flags,
7305 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0, &dif_opts);
7306 	if (rc != 0) {
7307 		SPDK_ERRLOG("Initialization of DIF context failed\n");
7308 		return;
7309 	}
7310 
7311 	if (bdev->md_interleave) {
7312 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7313 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7314 	} else {
7315 		struct iovec md_iov = {
7316 			.iov_base	= bdev_io->u.bdev.md_buf,
7317 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
7318 		};
7319 
7320 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7321 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7322 	}
7323 
7324 	if (rc != 0) {
7325 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
7326 			    err_blk.err_type, err_blk.err_offset);
7327 	} else {
7328 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
7329 	}
7330 }
7331 
7332 static void
7333 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7334 {
7335 	struct nvme_bdev_io *bio = ref;
7336 
7337 	if (spdk_nvme_cpl_is_success(cpl)) {
7338 		/* Run PI verification for read data buffer. */
7339 		bdev_nvme_verify_pi_error(bio);
7340 	}
7341 
7342 	/* Return original completion status */
7343 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7344 }
7345 
7346 static void
7347 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7348 {
7349 	struct nvme_bdev_io *bio = ref;
7350 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7351 	int ret;
7352 
7353 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7354 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
7355 			    cpl->status.sct, cpl->status.sc);
7356 
7357 		/* Save completion status to use after verifying PI error. */
7358 		bio->cpl = *cpl;
7359 
7360 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
7361 			/* Read without PI checking to verify PI error. */
7362 			ret = bdev_nvme_no_pi_readv(bio,
7363 						    bdev_io->u.bdev.iovs,
7364 						    bdev_io->u.bdev.iovcnt,
7365 						    bdev_io->u.bdev.md_buf,
7366 						    bdev_io->u.bdev.num_blocks,
7367 						    bdev_io->u.bdev.offset_blocks);
7368 			if (ret == 0) {
7369 				return;
7370 			}
7371 		}
7372 	}
7373 
7374 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7375 }
7376 
7377 static void
7378 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7379 {
7380 	struct nvme_bdev_io *bio = ref;
7381 
7382 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7383 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
7384 			    cpl->status.sct, cpl->status.sc);
7385 		/* Run PI verification for write data buffer if PI error is detected. */
7386 		bdev_nvme_verify_pi_error(bio);
7387 	}
7388 
7389 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7390 }
7391 
7392 static void
7393 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7394 {
7395 	struct nvme_bdev_io *bio = ref;
7396 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7397 
7398 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
7399 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
7400 	 */
7401 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
7402 
7403 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7404 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
7405 			    cpl->status.sct, cpl->status.sc);
7406 		/* Run PI verification for zone append data buffer if PI error is detected. */
7407 		bdev_nvme_verify_pi_error(bio);
7408 	}
7409 
7410 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7411 }
7412 
7413 static void
7414 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7415 {
7416 	struct nvme_bdev_io *bio = ref;
7417 
7418 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7419 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
7420 			    cpl->status.sct, cpl->status.sc);
7421 		/* Run PI verification for compare data buffer if PI error is detected. */
7422 		bdev_nvme_verify_pi_error(bio);
7423 	}
7424 
7425 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7426 }
7427 
7428 static void
7429 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7430 {
7431 	struct nvme_bdev_io *bio = ref;
7432 
7433 	/* Compare operation completion */
7434 	if (!bio->first_fused_completed) {
7435 		/* Save compare result for write callback */
7436 		bio->cpl = *cpl;
7437 		bio->first_fused_completed = true;
7438 		return;
7439 	}
7440 
7441 	/* Write operation completion */
7442 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
7443 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
7444 		 * complete the IO with the compare operation's status.
7445 		 */
7446 		if (!spdk_nvme_cpl_is_error(cpl)) {
7447 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
7448 		}
7449 
7450 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7451 	} else {
7452 		bdev_nvme_io_complete_nvme_status(bio, cpl);
7453 	}
7454 }
7455 
7456 static void
7457 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
7458 {
7459 	struct nvme_bdev_io *bio = ref;
7460 
7461 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7462 }
7463 
7464 static int
7465 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
7466 {
7467 	switch (desc->zt) {
7468 	case SPDK_NVME_ZONE_TYPE_SEQWR:
7469 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
7470 		break;
7471 	default:
7472 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
7473 		return -EIO;
7474 	}
7475 
7476 	switch (desc->zs) {
7477 	case SPDK_NVME_ZONE_STATE_EMPTY:
7478 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
7479 		break;
7480 	case SPDK_NVME_ZONE_STATE_IOPEN:
7481 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
7482 		break;
7483 	case SPDK_NVME_ZONE_STATE_EOPEN:
7484 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
7485 		break;
7486 	case SPDK_NVME_ZONE_STATE_CLOSED:
7487 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
7488 		break;
7489 	case SPDK_NVME_ZONE_STATE_RONLY:
7490 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
7491 		break;
7492 	case SPDK_NVME_ZONE_STATE_FULL:
7493 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
7494 		break;
7495 	case SPDK_NVME_ZONE_STATE_OFFLINE:
7496 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
7497 		break;
7498 	default:
7499 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
7500 		return -EIO;
7501 	}
7502 
7503 	info->zone_id = desc->zslba;
7504 	info->write_pointer = desc->wp;
7505 	info->capacity = desc->zcap;
7506 
7507 	return 0;
7508 }
7509 
7510 static void
7511 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
7512 {
7513 	struct nvme_bdev_io *bio = ref;
7514 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7515 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
7516 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
7517 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
7518 	uint64_t max_zones_per_buf, i;
7519 	uint32_t zone_report_bufsize;
7520 	struct spdk_nvme_ns *ns;
7521 	struct spdk_nvme_qpair *qpair;
7522 	int ret;
7523 
7524 	if (spdk_nvme_cpl_is_error(cpl)) {
7525 		goto out_complete_io_nvme_cpl;
7526 	}
7527 
7528 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
7529 		ret = -ENXIO;
7530 		goto out_complete_io_ret;
7531 	}
7532 
7533 	ns = bio->io_path->nvme_ns->ns;
7534 	qpair = bio->io_path->qpair->qpair;
7535 
7536 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7537 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
7538 			    sizeof(bio->zone_report_buf->descs[0]);
7539 
7540 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
7541 		ret = -EINVAL;
7542 		goto out_complete_io_ret;
7543 	}
7544 
7545 	if (!bio->zone_report_buf->nr_zones) {
7546 		ret = -EINVAL;
7547 		goto out_complete_io_ret;
7548 	}
7549 
7550 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
7551 		ret = fill_zone_from_report(&info[bio->handled_zones],
7552 					    &bio->zone_report_buf->descs[i]);
7553 		if (ret) {
7554 			goto out_complete_io_ret;
7555 		}
7556 		bio->handled_zones++;
7557 	}
7558 
7559 	if (bio->handled_zones < zones_to_copy) {
7560 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7561 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
7562 
7563 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
7564 		ret = spdk_nvme_zns_report_zones(ns, qpair,
7565 						 bio->zone_report_buf, zone_report_bufsize,
7566 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
7567 						 bdev_nvme_get_zone_info_done, bio);
7568 		if (!ret) {
7569 			return;
7570 		} else {
7571 			goto out_complete_io_ret;
7572 		}
7573 	}
7574 
7575 out_complete_io_nvme_cpl:
7576 	free(bio->zone_report_buf);
7577 	bio->zone_report_buf = NULL;
7578 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7579 	return;
7580 
7581 out_complete_io_ret:
7582 	free(bio->zone_report_buf);
7583 	bio->zone_report_buf = NULL;
7584 	bdev_nvme_io_complete(bio, ret);
7585 }
7586 
7587 static void
7588 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
7589 {
7590 	struct nvme_bdev_io *bio = ref;
7591 
7592 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7593 }
7594 
7595 static void
7596 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
7597 {
7598 	struct nvme_bdev_io *bio = ctx;
7599 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7600 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
7601 
7602 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
7603 
7604 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
7605 }
7606 
7607 static void
7608 bdev_nvme_abort_complete(void *ctx)
7609 {
7610 	struct nvme_bdev_io *bio = ctx;
7611 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7612 
7613 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
7614 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
7615 	} else {
7616 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
7617 	}
7618 }
7619 
7620 static void
7621 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
7622 {
7623 	struct nvme_bdev_io *bio = ref;
7624 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7625 
7626 	bio->cpl = *cpl;
7627 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), bdev_nvme_abort_complete, bio);
7628 }
7629 
7630 static void
7631 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
7632 {
7633 	struct nvme_bdev_io *bio = ref;
7634 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7635 
7636 	bio->cpl = *cpl;
7637 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io),
7638 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
7639 }
7640 
7641 static void
7642 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
7643 {
7644 	struct nvme_bdev_io *bio = ref;
7645 	struct iovec *iov;
7646 
7647 	bio->iov_offset = sgl_offset;
7648 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
7649 		iov = &bio->iovs[bio->iovpos];
7650 		if (bio->iov_offset < iov->iov_len) {
7651 			break;
7652 		}
7653 
7654 		bio->iov_offset -= iov->iov_len;
7655 	}
7656 }
7657 
7658 static int
7659 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
7660 {
7661 	struct nvme_bdev_io *bio = ref;
7662 	struct iovec *iov;
7663 
7664 	assert(bio->iovpos < bio->iovcnt);
7665 
7666 	iov = &bio->iovs[bio->iovpos];
7667 
7668 	*address = iov->iov_base;
7669 	*length = iov->iov_len;
7670 
7671 	if (bio->iov_offset) {
7672 		assert(bio->iov_offset <= iov->iov_len);
7673 		*address += bio->iov_offset;
7674 		*length -= bio->iov_offset;
7675 	}
7676 
7677 	bio->iov_offset += *length;
7678 	if (bio->iov_offset == iov->iov_len) {
7679 		bio->iovpos++;
7680 		bio->iov_offset = 0;
7681 	}
7682 
7683 	return 0;
7684 }
7685 
7686 static void
7687 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
7688 {
7689 	struct nvme_bdev_io *bio = ref;
7690 	struct iovec *iov;
7691 
7692 	bio->fused_iov_offset = sgl_offset;
7693 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
7694 		iov = &bio->fused_iovs[bio->fused_iovpos];
7695 		if (bio->fused_iov_offset < iov->iov_len) {
7696 			break;
7697 		}
7698 
7699 		bio->fused_iov_offset -= iov->iov_len;
7700 	}
7701 }
7702 
7703 static int
7704 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
7705 {
7706 	struct nvme_bdev_io *bio = ref;
7707 	struct iovec *iov;
7708 
7709 	assert(bio->fused_iovpos < bio->fused_iovcnt);
7710 
7711 	iov = &bio->fused_iovs[bio->fused_iovpos];
7712 
7713 	*address = iov->iov_base;
7714 	*length = iov->iov_len;
7715 
7716 	if (bio->fused_iov_offset) {
7717 		assert(bio->fused_iov_offset <= iov->iov_len);
7718 		*address += bio->fused_iov_offset;
7719 		*length -= bio->fused_iov_offset;
7720 	}
7721 
7722 	bio->fused_iov_offset += *length;
7723 	if (bio->fused_iov_offset == iov->iov_len) {
7724 		bio->fused_iovpos++;
7725 		bio->fused_iov_offset = 0;
7726 	}
7727 
7728 	return 0;
7729 }
7730 
7731 static int
7732 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7733 		      void *md, uint64_t lba_count, uint64_t lba)
7734 {
7735 	int rc;
7736 
7737 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
7738 		      lba_count, lba);
7739 
7740 	bio->iovs = iov;
7741 	bio->iovcnt = iovcnt;
7742 	bio->iovpos = 0;
7743 	bio->iov_offset = 0;
7744 
7745 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
7746 					    bio->io_path->qpair->qpair,
7747 					    lba, lba_count,
7748 					    bdev_nvme_no_pi_readv_done, bio, 0,
7749 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7750 					    md, 0, 0);
7751 
7752 	if (rc != 0 && rc != -ENOMEM) {
7753 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
7754 	}
7755 	return rc;
7756 }
7757 
7758 static int
7759 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7760 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7761 		struct spdk_memory_domain *domain, void *domain_ctx,
7762 		struct spdk_accel_sequence *seq)
7763 {
7764 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7765 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7766 	int rc;
7767 
7768 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7769 		      lba_count, lba);
7770 
7771 	bio->iovs = iov;
7772 	bio->iovcnt = iovcnt;
7773 	bio->iovpos = 0;
7774 	bio->iov_offset = 0;
7775 
7776 	if (domain != NULL || seq != NULL) {
7777 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7778 		bio->ext_opts.memory_domain = domain;
7779 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7780 		bio->ext_opts.io_flags = flags;
7781 		bio->ext_opts.metadata = md;
7782 		bio->ext_opts.accel_sequence = seq;
7783 
7784 		if (iovcnt == 1) {
7785 			rc = spdk_nvme_ns_cmd_read_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_readv_done,
7786 						       bio, &bio->ext_opts);
7787 		} else {
7788 			rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
7789 							bdev_nvme_readv_done, bio,
7790 							bdev_nvme_queued_reset_sgl,
7791 							bdev_nvme_queued_next_sge,
7792 							&bio->ext_opts);
7793 		}
7794 	} else if (iovcnt == 1) {
7795 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base,
7796 						   md, lba, lba_count, bdev_nvme_readv_done,
7797 						   bio, flags, 0, 0);
7798 	} else {
7799 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
7800 						    bdev_nvme_readv_done, bio, flags,
7801 						    bdev_nvme_queued_reset_sgl,
7802 						    bdev_nvme_queued_next_sge, md, 0, 0);
7803 	}
7804 
7805 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
7806 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
7807 	}
7808 	return rc;
7809 }
7810 
7811 static int
7812 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7813 		 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7814 		 struct spdk_memory_domain *domain, void *domain_ctx,
7815 		 struct spdk_accel_sequence *seq,
7816 		 union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13)
7817 {
7818 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7819 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7820 	int rc;
7821 
7822 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7823 		      lba_count, lba);
7824 
7825 	bio->iovs = iov;
7826 	bio->iovcnt = iovcnt;
7827 	bio->iovpos = 0;
7828 	bio->iov_offset = 0;
7829 
7830 	if (domain != NULL || seq != NULL) {
7831 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7832 		bio->ext_opts.memory_domain = domain;
7833 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7834 		bio->ext_opts.io_flags = flags | SPDK_NVME_IO_FLAGS_DIRECTIVE(cdw12.write.dtype);
7835 		bio->ext_opts.cdw13 = cdw13.raw;
7836 		bio->ext_opts.metadata = md;
7837 		bio->ext_opts.accel_sequence = seq;
7838 
7839 		if (iovcnt == 1) {
7840 			rc = spdk_nvme_ns_cmd_write_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_writev_done,
7841 							bio, &bio->ext_opts);
7842 		} else {
7843 			rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
7844 							 bdev_nvme_writev_done, bio,
7845 							 bdev_nvme_queued_reset_sgl,
7846 							 bdev_nvme_queued_next_sge,
7847 							 &bio->ext_opts);
7848 		}
7849 	} else if (iovcnt == 1) {
7850 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base,
7851 						    md, lba, lba_count, bdev_nvme_writev_done,
7852 						    bio, flags, 0, 0);
7853 	} else {
7854 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7855 						     bdev_nvme_writev_done, bio, flags,
7856 						     bdev_nvme_queued_reset_sgl,
7857 						     bdev_nvme_queued_next_sge, md, 0, 0);
7858 	}
7859 
7860 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
7861 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
7862 	}
7863 	return rc;
7864 }
7865 
7866 static int
7867 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7868 		       void *md, uint64_t lba_count, uint64_t zslba,
7869 		       uint32_t flags)
7870 {
7871 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7872 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7873 	int rc;
7874 
7875 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
7876 		      lba_count, zslba);
7877 
7878 	bio->iovs = iov;
7879 	bio->iovcnt = iovcnt;
7880 	bio->iovpos = 0;
7881 	bio->iov_offset = 0;
7882 
7883 	if (iovcnt == 1) {
7884 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
7885 						       lba_count,
7886 						       bdev_nvme_zone_appendv_done, bio,
7887 						       flags,
7888 						       0, 0);
7889 	} else {
7890 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
7891 							bdev_nvme_zone_appendv_done, bio, flags,
7892 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7893 							md, 0, 0);
7894 	}
7895 
7896 	if (rc != 0 && rc != -ENOMEM) {
7897 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
7898 	}
7899 	return rc;
7900 }
7901 
7902 static int
7903 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7904 		   void *md, uint64_t lba_count, uint64_t lba,
7905 		   uint32_t flags)
7906 {
7907 	int rc;
7908 
7909 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7910 		      lba_count, lba);
7911 
7912 	bio->iovs = iov;
7913 	bio->iovcnt = iovcnt;
7914 	bio->iovpos = 0;
7915 	bio->iov_offset = 0;
7916 
7917 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
7918 					       bio->io_path->qpair->qpair,
7919 					       lba, lba_count,
7920 					       bdev_nvme_comparev_done, bio, flags,
7921 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7922 					       md, 0, 0);
7923 
7924 	if (rc != 0 && rc != -ENOMEM) {
7925 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
7926 	}
7927 	return rc;
7928 }
7929 
7930 static int
7931 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
7932 			      struct iovec *write_iov, int write_iovcnt,
7933 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
7934 {
7935 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7936 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7937 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7938 	int rc;
7939 
7940 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7941 		      lba_count, lba);
7942 
7943 	bio->iovs = cmp_iov;
7944 	bio->iovcnt = cmp_iovcnt;
7945 	bio->iovpos = 0;
7946 	bio->iov_offset = 0;
7947 	bio->fused_iovs = write_iov;
7948 	bio->fused_iovcnt = write_iovcnt;
7949 	bio->fused_iovpos = 0;
7950 	bio->fused_iov_offset = 0;
7951 
7952 	if (bdev_io->num_retries == 0) {
7953 		bio->first_fused_submitted = false;
7954 		bio->first_fused_completed = false;
7955 	}
7956 
7957 	if (!bio->first_fused_submitted) {
7958 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7959 		memset(&bio->cpl, 0, sizeof(bio->cpl));
7960 
7961 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
7962 						       bdev_nvme_comparev_and_writev_done, bio, flags,
7963 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
7964 		if (rc == 0) {
7965 			bio->first_fused_submitted = true;
7966 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7967 		} else {
7968 			if (rc != -ENOMEM) {
7969 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
7970 			}
7971 			return rc;
7972 		}
7973 	}
7974 
7975 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
7976 
7977 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7978 					     bdev_nvme_comparev_and_writev_done, bio, flags,
7979 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
7980 	if (rc != 0 && rc != -ENOMEM) {
7981 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
7982 		rc = 0;
7983 	}
7984 
7985 	return rc;
7986 }
7987 
7988 static int
7989 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
7990 {
7991 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
7992 	struct spdk_nvme_dsm_range *range;
7993 	uint64_t offset, remaining;
7994 	uint64_t num_ranges_u64;
7995 	uint16_t num_ranges;
7996 	int rc;
7997 
7998 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
7999 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8000 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
8001 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
8002 		return -EINVAL;
8003 	}
8004 	num_ranges = (uint16_t)num_ranges_u64;
8005 
8006 	offset = offset_blocks;
8007 	remaining = num_blocks;
8008 	range = &dsm_ranges[0];
8009 
8010 	/* Fill max-size ranges until the remaining blocks fit into one range */
8011 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
8012 		range->attributes.raw = 0;
8013 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8014 		range->starting_lba = offset;
8015 
8016 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8017 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8018 		range++;
8019 	}
8020 
8021 	/* Final range describes the remaining blocks */
8022 	range->attributes.raw = 0;
8023 	range->length = remaining;
8024 	range->starting_lba = offset;
8025 
8026 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
8027 			bio->io_path->qpair->qpair,
8028 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
8029 			dsm_ranges, num_ranges,
8030 			bdev_nvme_queued_done, bio);
8031 
8032 	return rc;
8033 }
8034 
8035 static int
8036 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
8037 {
8038 	if (num_blocks > UINT16_MAX + 1) {
8039 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
8040 		return -EINVAL;
8041 	}
8042 
8043 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
8044 					     bio->io_path->qpair->qpair,
8045 					     offset_blocks, num_blocks,
8046 					     bdev_nvme_queued_done, bio,
8047 					     0);
8048 }
8049 
8050 static int
8051 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
8052 			struct spdk_bdev_zone_info *info)
8053 {
8054 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8055 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8056 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
8057 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
8058 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
8059 
8060 	if (zone_id % zone_size != 0) {
8061 		return -EINVAL;
8062 	}
8063 
8064 	if (num_zones > total_zones || !num_zones) {
8065 		return -EINVAL;
8066 	}
8067 
8068 	assert(!bio->zone_report_buf);
8069 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
8070 	if (!bio->zone_report_buf) {
8071 		return -ENOMEM;
8072 	}
8073 
8074 	bio->handled_zones = 0;
8075 
8076 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
8077 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
8078 					  bdev_nvme_get_zone_info_done, bio);
8079 }
8080 
8081 static int
8082 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
8083 			  enum spdk_bdev_zone_action action)
8084 {
8085 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8086 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8087 
8088 	switch (action) {
8089 	case SPDK_BDEV_ZONE_CLOSE:
8090 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
8091 						bdev_nvme_zone_management_done, bio);
8092 	case SPDK_BDEV_ZONE_FINISH:
8093 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
8094 						 bdev_nvme_zone_management_done, bio);
8095 	case SPDK_BDEV_ZONE_OPEN:
8096 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
8097 					       bdev_nvme_zone_management_done, bio);
8098 	case SPDK_BDEV_ZONE_RESET:
8099 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
8100 						bdev_nvme_zone_management_done, bio);
8101 	case SPDK_BDEV_ZONE_OFFLINE:
8102 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
8103 						  bdev_nvme_zone_management_done, bio);
8104 	default:
8105 		return -EINVAL;
8106 	}
8107 }
8108 
8109 static void
8110 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8111 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
8112 {
8113 	struct nvme_io_path *io_path;
8114 	struct nvme_ctrlr *nvme_ctrlr;
8115 	uint32_t max_xfer_size;
8116 	int rc = -ENXIO;
8117 
8118 	/* Choose the first ctrlr which is not failed. */
8119 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8120 		nvme_ctrlr = io_path->qpair->ctrlr;
8121 
8122 		/* We should skip any unavailable nvme_ctrlr rather than checking
8123 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
8124 		 */
8125 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
8126 			continue;
8127 		}
8128 
8129 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
8130 
8131 		if (nbytes > max_xfer_size) {
8132 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8133 			rc = -EINVAL;
8134 			goto err;
8135 		}
8136 
8137 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
8138 						   bdev_nvme_admin_passthru_done, bio);
8139 		if (rc == 0) {
8140 			return;
8141 		}
8142 	}
8143 
8144 err:
8145 	bdev_nvme_admin_complete(bio, rc);
8146 }
8147 
8148 static int
8149 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8150 		      void *buf, size_t nbytes)
8151 {
8152 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8153 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8154 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8155 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8156 
8157 	if (nbytes > max_xfer_size) {
8158 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8159 		return -EINVAL;
8160 	}
8161 
8162 	/*
8163 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8164 	 * so fill it out automatically.
8165 	 */
8166 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8167 
8168 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
8169 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
8170 }
8171 
8172 static int
8173 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8174 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
8175 {
8176 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8177 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8178 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8179 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8180 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8181 
8182 	if (nbytes > max_xfer_size) {
8183 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8184 		return -EINVAL;
8185 	}
8186 
8187 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8188 		SPDK_ERRLOG("invalid meta data buffer size\n");
8189 		return -EINVAL;
8190 	}
8191 
8192 	/*
8193 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8194 	 * so fill it out automatically.
8195 	 */
8196 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8197 
8198 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
8199 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
8200 }
8201 
8202 static int
8203 bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio,
8204 			  struct spdk_nvme_cmd *cmd, struct iovec *iov, int iovcnt,
8205 			  size_t nbytes, void *md_buf, size_t md_len)
8206 {
8207 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8208 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8209 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8210 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8211 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8212 
8213 	bio->iovs = iov;
8214 	bio->iovcnt = iovcnt;
8215 	bio->iovpos = 0;
8216 	bio->iov_offset = 0;
8217 
8218 	if (nbytes > max_xfer_size) {
8219 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8220 		return -EINVAL;
8221 	}
8222 
8223 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8224 		SPDK_ERRLOG("invalid meta data buffer size\n");
8225 		return -EINVAL;
8226 	}
8227 
8228 	/*
8229 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands
8230 	 * require a nsid, so fill it out automatically.
8231 	 */
8232 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8233 
8234 	return spdk_nvme_ctrlr_cmd_iov_raw_with_md(
8235 		       ctrlr, qpair, cmd, (uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio,
8236 		       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge);
8237 }
8238 
8239 static void
8240 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8241 		struct nvme_bdev_io *bio_to_abort)
8242 {
8243 	struct nvme_io_path *io_path;
8244 	int rc = 0;
8245 
8246 	rc = bdev_nvme_abort_retry_io(nbdev_ch, bio_to_abort);
8247 	if (rc == 0) {
8248 		bdev_nvme_admin_complete(bio, 0);
8249 		return;
8250 	}
8251 
8252 	io_path = bio_to_abort->io_path;
8253 	if (io_path != NULL) {
8254 		rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8255 						   io_path->qpair->qpair,
8256 						   bio_to_abort,
8257 						   bdev_nvme_abort_done, bio);
8258 	} else {
8259 		STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8260 			rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8261 							   NULL,
8262 							   bio_to_abort,
8263 							   bdev_nvme_abort_done, bio);
8264 
8265 			if (rc != -ENOENT) {
8266 				break;
8267 			}
8268 		}
8269 	}
8270 
8271 	if (rc != 0) {
8272 		/* If no command was found or there was any error, complete the abort
8273 		 * request with failure.
8274 		 */
8275 		bdev_nvme_admin_complete(bio, rc);
8276 	}
8277 }
8278 
8279 static int
8280 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks,
8281 	       uint64_t num_blocks)
8282 {
8283 	struct spdk_nvme_scc_source_range range = {
8284 		.slba = src_offset_blocks,
8285 		.nlb = num_blocks - 1
8286 	};
8287 
8288 	return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns,
8289 				     bio->io_path->qpair->qpair,
8290 				     &range, 1, dst_offset_blocks,
8291 				     bdev_nvme_queued_done, bio);
8292 }
8293 
8294 static void
8295 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
8296 {
8297 	const char *action;
8298 	uint32_t i;
8299 
8300 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
8301 		action = "reset";
8302 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
8303 		action = "abort";
8304 	} else {
8305 		action = "none";
8306 	}
8307 
8308 	spdk_json_write_object_begin(w);
8309 
8310 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
8311 
8312 	spdk_json_write_named_object_begin(w, "params");
8313 	spdk_json_write_named_string(w, "action_on_timeout", action);
8314 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
8315 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
8316 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
8317 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
8318 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
8319 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
8320 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
8321 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
8322 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
8323 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
8324 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
8325 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
8326 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
8327 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
8328 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
8329 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
8330 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
8331 	spdk_json_write_named_bool(w, "disable_auto_failback", g_opts.disable_auto_failback);
8332 	spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids);
8333 	spdk_json_write_named_uint8(w, "transport_tos", g_opts.transport_tos);
8334 	spdk_json_write_named_bool(w, "nvme_error_stat", g_opts.nvme_error_stat);
8335 	spdk_json_write_named_uint32(w, "rdma_srq_size", g_opts.rdma_srq_size);
8336 	spdk_json_write_named_bool(w, "io_path_stat", g_opts.io_path_stat);
8337 	spdk_json_write_named_bool(w, "allow_accel_sequence", g_opts.allow_accel_sequence);
8338 	spdk_json_write_named_uint32(w, "rdma_max_cq_size", g_opts.rdma_max_cq_size);
8339 	spdk_json_write_named_uint16(w, "rdma_cm_event_timeout_ms", g_opts.rdma_cm_event_timeout_ms);
8340 	spdk_json_write_named_array_begin(w, "dhchap_digests");
8341 	for (i = 0; i < 32; ++i) {
8342 		if (g_opts.dhchap_digests & SPDK_BIT(i)) {
8343 			spdk_json_write_string(w, spdk_nvme_dhchap_get_digest_name(i));
8344 		}
8345 	}
8346 	spdk_json_write_array_end(w);
8347 	spdk_json_write_named_array_begin(w, "dhchap_dhgroups");
8348 	for (i = 0; i < 32; ++i) {
8349 		if (g_opts.dhchap_dhgroups & SPDK_BIT(i)) {
8350 			spdk_json_write_string(w, spdk_nvme_dhchap_get_dhgroup_name(i));
8351 		}
8352 	}
8353 
8354 	spdk_json_write_array_end(w);
8355 	spdk_json_write_object_end(w);
8356 
8357 	spdk_json_write_object_end(w);
8358 }
8359 
8360 static void
8361 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
8362 {
8363 	struct spdk_nvme_transport_id trid;
8364 
8365 	spdk_json_write_object_begin(w);
8366 
8367 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
8368 
8369 	spdk_json_write_named_object_begin(w, "params");
8370 	spdk_json_write_named_string(w, "name", ctx->name);
8371 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
8372 
8373 	trid = ctx->trid;
8374 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
8375 	nvme_bdev_dump_trid_json(&trid, w);
8376 
8377 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
8378 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
8379 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
8380 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8381 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
8382 	spdk_json_write_object_end(w);
8383 
8384 	spdk_json_write_object_end(w);
8385 }
8386 
8387 #ifdef SPDK_CONFIG_NVME_CUSE
8388 static void
8389 nvme_ctrlr_cuse_config_json(struct spdk_json_write_ctx *w,
8390 			    struct nvme_ctrlr *nvme_ctrlr)
8391 {
8392 	size_t cuse_name_size = 128;
8393 	char cuse_name[cuse_name_size];
8394 
8395 	if (spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr,
8396 					  cuse_name, &cuse_name_size) != 0) {
8397 		return;
8398 	}
8399 
8400 	spdk_json_write_object_begin(w);
8401 
8402 	spdk_json_write_named_string(w, "method", "bdev_nvme_cuse_register");
8403 
8404 	spdk_json_write_named_object_begin(w, "params");
8405 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8406 	spdk_json_write_object_end(w);
8407 
8408 	spdk_json_write_object_end(w);
8409 }
8410 #endif
8411 
8412 static void
8413 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
8414 		       struct nvme_ctrlr *nvme_ctrlr)
8415 {
8416 	struct spdk_nvme_transport_id	*trid;
8417 	const struct spdk_nvme_ctrlr_opts *opts;
8418 
8419 	if (nvme_ctrlr->opts.from_discovery_service) {
8420 		/* Do not emit an RPC for this - it will be implicitly
8421 		 * covered by a separate bdev_nvme_start_discovery or
8422 		 * bdev_nvme_start_mdns_discovery RPC.
8423 		 */
8424 		return;
8425 	}
8426 
8427 	trid = &nvme_ctrlr->active_path_id->trid;
8428 
8429 	spdk_json_write_object_begin(w);
8430 
8431 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
8432 
8433 	spdk_json_write_named_object_begin(w, "params");
8434 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8435 	nvme_bdev_dump_trid_json(trid, w);
8436 	spdk_json_write_named_bool(w, "prchk_reftag",
8437 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
8438 	spdk_json_write_named_bool(w, "prchk_guard",
8439 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
8440 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
8441 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
8442 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8443 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
8444 	if (nvme_ctrlr->psk != NULL) {
8445 		spdk_json_write_named_string(w, "psk", spdk_key_get_name(nvme_ctrlr->psk));
8446 	} else if (nvme_ctrlr->opts.psk[0] != '\0') {
8447 		spdk_json_write_named_string(w, "psk", nvme_ctrlr->opts.psk);
8448 	}
8449 
8450 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
8451 	spdk_json_write_named_string(w, "hostnqn", opts->hostnqn);
8452 	spdk_json_write_named_bool(w, "hdgst", opts->header_digest);
8453 	spdk_json_write_named_bool(w, "ddgst", opts->data_digest);
8454 	if (opts->src_addr[0] != '\0') {
8455 		spdk_json_write_named_string(w, "hostaddr", opts->src_addr);
8456 	}
8457 	if (opts->src_svcid[0] != '\0') {
8458 		spdk_json_write_named_string(w, "hostsvcid", opts->src_svcid);
8459 	}
8460 
8461 	spdk_json_write_object_end(w);
8462 
8463 	spdk_json_write_object_end(w);
8464 }
8465 
8466 static void
8467 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
8468 {
8469 	spdk_json_write_object_begin(w);
8470 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
8471 
8472 	spdk_json_write_named_object_begin(w, "params");
8473 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
8474 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
8475 	spdk_json_write_object_end(w);
8476 
8477 	spdk_json_write_object_end(w);
8478 }
8479 
8480 static int
8481 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
8482 {
8483 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
8484 	struct nvme_ctrlr	*nvme_ctrlr;
8485 	struct discovery_ctx	*ctx;
8486 
8487 	bdev_nvme_opts_config_json(w);
8488 
8489 	pthread_mutex_lock(&g_bdev_nvme_mutex);
8490 
8491 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
8492 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
8493 			nvme_ctrlr_config_json(w, nvme_ctrlr);
8494 
8495 #ifdef SPDK_CONFIG_NVME_CUSE
8496 			nvme_ctrlr_cuse_config_json(w, nvme_ctrlr);
8497 #endif
8498 		}
8499 	}
8500 
8501 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8502 		if (!ctx->from_mdns_discovery_service) {
8503 			bdev_nvme_discovery_config_json(w, ctx);
8504 		}
8505 	}
8506 
8507 	bdev_nvme_mdns_discovery_config_json(w);
8508 
8509 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
8510 	 * before enabling hotplug poller.
8511 	 */
8512 	bdev_nvme_hotplug_config_json(w);
8513 
8514 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
8515 	return 0;
8516 }
8517 
8518 struct spdk_nvme_ctrlr *
8519 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
8520 {
8521 	struct nvme_bdev *nbdev;
8522 	struct nvme_ns *nvme_ns;
8523 
8524 	if (!bdev || bdev->module != &nvme_if) {
8525 		return NULL;
8526 	}
8527 
8528 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
8529 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
8530 	assert(nvme_ns != NULL);
8531 
8532 	return nvme_ns->ctrlr->ctrlr;
8533 }
8534 
8535 void
8536 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
8537 {
8538 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
8539 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
8540 	const struct spdk_nvme_ctrlr_data *cdata;
8541 	const struct spdk_nvme_transport_id *trid;
8542 	const struct nvme_bdev_channel *nbdev_ch;
8543 	const char *adrfam_str;
8544 	bool current;
8545 
8546 	spdk_json_write_object_begin(w);
8547 
8548 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
8549 
8550 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
8551 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
8552 
8553 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
8554 	nbdev_ch = io_path->nbdev_ch;
8555 	if (nbdev_ch == NULL) {
8556 		current = false;
8557 	} else if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
8558 		struct nvme_io_path *optimized_io_path = NULL;
8559 
8560 		STAILQ_FOREACH(optimized_io_path, &nbdev_ch->io_path_list, stailq) {
8561 			if (optimized_io_path->nvme_ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE) {
8562 				break;
8563 			}
8564 		}
8565 
8566 		current = nvme_io_path_is_available(io_path);
8567 		if (io_path->nvme_ns->ana_state == SPDK_NVME_ANA_NON_OPTIMIZED_STATE) {
8568 			/* A non-optimized path is only current if there are no optimized paths. */
8569 			current = current && (optimized_io_path == NULL);
8570 		}
8571 	} else {
8572 		if (nbdev_ch->current_io_path) {
8573 			current = (io_path == nbdev_ch->current_io_path);
8574 		} else {
8575 			struct nvme_io_path *first_path;
8576 
8577 			/* We arrived here as there are no optimized paths for active-passive
8578 			 * mode. Check if this io_path is the first one available on the list.
8579 			 */
8580 			current = false;
8581 			STAILQ_FOREACH(first_path, &nbdev_ch->io_path_list, stailq) {
8582 				if (nvme_io_path_is_available(first_path)) {
8583 					current = (io_path == first_path);
8584 					break;
8585 				}
8586 			}
8587 		}
8588 	}
8589 	spdk_json_write_named_bool(w, "current", current);
8590 	spdk_json_write_named_bool(w, "connected", nvme_qpair_is_connected(io_path->qpair));
8591 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
8592 
8593 	spdk_json_write_named_object_begin(w, "transport");
8594 	spdk_json_write_named_string(w, "trtype", trid->trstring);
8595 	spdk_json_write_named_string(w, "traddr", trid->traddr);
8596 	if (trid->trsvcid[0] != '\0') {
8597 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
8598 	}
8599 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
8600 	if (adrfam_str) {
8601 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
8602 	}
8603 	spdk_json_write_object_end(w);
8604 
8605 	spdk_json_write_object_end(w);
8606 }
8607 
8608 void
8609 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
8610 {
8611 	struct discovery_ctx *ctx;
8612 	struct discovery_entry_ctx *entry_ctx;
8613 
8614 	spdk_json_write_array_begin(w);
8615 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8616 		spdk_json_write_object_begin(w);
8617 		spdk_json_write_named_string(w, "name", ctx->name);
8618 
8619 		spdk_json_write_named_object_begin(w, "trid");
8620 		nvme_bdev_dump_trid_json(&ctx->trid, w);
8621 		spdk_json_write_object_end(w);
8622 
8623 		spdk_json_write_named_array_begin(w, "referrals");
8624 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
8625 			spdk_json_write_object_begin(w);
8626 			spdk_json_write_named_object_begin(w, "trid");
8627 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
8628 			spdk_json_write_object_end(w);
8629 			spdk_json_write_object_end(w);
8630 		}
8631 		spdk_json_write_array_end(w);
8632 
8633 		spdk_json_write_object_end(w);
8634 	}
8635 	spdk_json_write_array_end(w);
8636 }
8637 
8638 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
8639 
8640 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
8641 {
8642 	struct spdk_trace_tpoint_opts opts[] = {
8643 		{
8644 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
8645 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 1,
8646 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8647 		},
8648 		{
8649 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
8650 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 0,
8651 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8652 		}
8653 	};
8654 
8655 
8656 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
8657 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
8658 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8659 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8660 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8661 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8662 }
8663