xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision 7025ceb9c119a6da0b6ee2013b6ae94b51fac2df)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  *   Copyright (c) 2022 Dell Inc, or its subsidiaries. All rights reserved.
6  */
7 
8 #include "spdk/stdinc.h"
9 
10 #include "bdev_nvme.h"
11 
12 #include "spdk/accel.h"
13 #include "spdk/config.h"
14 #include "spdk/endian.h"
15 #include "spdk/bdev.h"
16 #include "spdk/json.h"
17 #include "spdk/keyring.h"
18 #include "spdk/likely.h"
19 #include "spdk/nvme.h"
20 #include "spdk/nvme_ocssd.h"
21 #include "spdk/nvme_zns.h"
22 #include "spdk/opal.h"
23 #include "spdk/thread.h"
24 #include "spdk/trace.h"
25 #include "spdk/string.h"
26 #include "spdk/util.h"
27 #include "spdk/uuid.h"
28 
29 #include "spdk/bdev_module.h"
30 #include "spdk/log.h"
31 
32 #include "spdk_internal/usdt.h"
33 #include "spdk_internal/trace_defs.h"
34 
35 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
36 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
37 
38 #define NSID_STR_LEN 10
39 
40 #define SPDK_CONTROLLER_NAME_MAX 512
41 
42 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
43 
44 struct nvme_bdev_io {
45 	/** array of iovecs to transfer. */
46 	struct iovec *iovs;
47 
48 	/** Number of iovecs in iovs array. */
49 	int iovcnt;
50 
51 	/** Current iovec position. */
52 	int iovpos;
53 
54 	/** Offset in current iovec. */
55 	uint32_t iov_offset;
56 
57 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
58 	 *  being reset in a reset I/O.
59 	 */
60 	struct nvme_io_path *io_path;
61 
62 	/** array of iovecs to transfer. */
63 	struct iovec *fused_iovs;
64 
65 	/** Number of iovecs in iovs array. */
66 	int fused_iovcnt;
67 
68 	/** Current iovec position. */
69 	int fused_iovpos;
70 
71 	/** Offset in current iovec. */
72 	uint32_t fused_iov_offset;
73 
74 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
75 	struct spdk_nvme_cpl cpl;
76 
77 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
78 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
79 
80 	/** Keeps track if first of fused commands was submitted */
81 	bool first_fused_submitted;
82 
83 	/** Keeps track if first of fused commands was completed */
84 	bool first_fused_completed;
85 
86 	/** Temporary pointer to zone report buffer */
87 	struct spdk_nvme_zns_zone_report *zone_report_buf;
88 
89 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
90 	uint64_t handled_zones;
91 
92 	/** Expiration value in ticks to retry the current I/O. */
93 	uint64_t retry_ticks;
94 
95 	/* How many times the current I/O was retried. */
96 	int32_t retry_count;
97 
98 	/* Current tsc at submit time. */
99 	uint64_t submit_tsc;
100 
101 	/* Used to put nvme_bdev_io into the list */
102 	TAILQ_ENTRY(nvme_bdev_io) retry_link;
103 };
104 
105 struct nvme_probe_skip_entry {
106 	struct spdk_nvme_transport_id		trid;
107 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
108 };
109 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
110 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
111 			g_skipped_nvme_ctrlrs);
112 
113 #define BDEV_NVME_DEFAULT_DIGESTS (SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA256) | \
114 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA384) | \
115 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA512))
116 
117 #define BDEV_NVME_DEFAULT_DHGROUPS (SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_NULL) | \
118 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_2048) | \
119 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_3072) | \
120 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_4096) | \
121 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_6144) | \
122 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_8192))
123 
124 static struct spdk_bdev_nvme_opts g_opts = {
125 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
126 	.timeout_us = 0,
127 	.timeout_admin_us = 0,
128 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
129 	.transport_retry_count = 4,
130 	.arbitration_burst = 0,
131 	.low_priority_weight = 0,
132 	.medium_priority_weight = 0,
133 	.high_priority_weight = 0,
134 	.nvme_adminq_poll_period_us = 10000ULL,
135 	.nvme_ioq_poll_period_us = 0,
136 	.io_queue_requests = 0,
137 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
138 	.bdev_retry_count = 3,
139 	.transport_ack_timeout = 0,
140 	.ctrlr_loss_timeout_sec = 0,
141 	.reconnect_delay_sec = 0,
142 	.fast_io_fail_timeout_sec = 0,
143 	.disable_auto_failback = false,
144 	.generate_uuids = false,
145 	.transport_tos = 0,
146 	.nvme_error_stat = false,
147 	.io_path_stat = false,
148 	.allow_accel_sequence = false,
149 	.dhchap_digests = BDEV_NVME_DEFAULT_DIGESTS,
150 	.dhchap_dhgroups = BDEV_NVME_DEFAULT_DHGROUPS,
151 };
152 
153 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
154 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
155 
156 static int g_hot_insert_nvme_controller_index = 0;
157 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
158 static bool g_nvme_hotplug_enabled = false;
159 struct spdk_thread *g_bdev_nvme_init_thread;
160 static struct spdk_poller *g_hotplug_poller;
161 static struct spdk_poller *g_hotplug_probe_poller;
162 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
163 
164 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
165 		struct nvme_async_probe_ctx *ctx);
166 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
167 		struct nvme_async_probe_ctx *ctx);
168 static int bdev_nvme_library_init(void);
169 static void bdev_nvme_library_fini(void);
170 static void _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch,
171 				      struct spdk_bdev_io *bdev_io);
172 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
173 				     struct spdk_bdev_io *bdev_io);
174 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
175 			   void *md, uint64_t lba_count, uint64_t lba,
176 			   uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
177 			   struct spdk_accel_sequence *seq);
178 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
179 				 void *md, uint64_t lba_count, uint64_t lba);
180 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
181 			    void *md, uint64_t lba_count, uint64_t lba,
182 			    uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
183 			    struct spdk_accel_sequence *seq);
184 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
185 				  void *md, uint64_t lba_count,
186 				  uint64_t zslba, uint32_t flags);
187 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
188 			      void *md, uint64_t lba_count, uint64_t lba,
189 			      uint32_t flags);
190 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
191 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
192 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
193 		uint32_t flags);
194 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
195 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
196 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
197 				     enum spdk_bdev_zone_action action);
198 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
199 				     struct nvme_bdev_io *bio,
200 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
201 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
202 				 void *buf, size_t nbytes);
203 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
204 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
205 static int bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
206 				     struct iovec *iov, int iovcnt, size_t nbytes,
207 				     void *md_buf, size_t md_len);
208 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
209 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
210 static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio);
211 static int bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
212 static int bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
213 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
214 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
215 
216 static struct nvme_ns *nvme_ns_alloc(void);
217 static void nvme_ns_free(struct nvme_ns *ns);
218 
219 static int
220 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
221 {
222 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
223 }
224 
225 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
226 
227 struct spdk_nvme_qpair *
228 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
229 {
230 	struct nvme_ctrlr_channel *ctrlr_ch;
231 
232 	assert(ctrlr_io_ch != NULL);
233 
234 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
235 
236 	return ctrlr_ch->qpair->qpair;
237 }
238 
239 static int
240 bdev_nvme_get_ctx_size(void)
241 {
242 	return sizeof(struct nvme_bdev_io);
243 }
244 
245 static struct spdk_bdev_module nvme_if = {
246 	.name = "nvme",
247 	.async_fini = true,
248 	.module_init = bdev_nvme_library_init,
249 	.module_fini = bdev_nvme_library_fini,
250 	.config_json = bdev_nvme_config_json,
251 	.get_ctx_size = bdev_nvme_get_ctx_size,
252 
253 };
254 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
255 
256 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
257 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
258 bool g_bdev_nvme_module_finish;
259 
260 struct nvme_bdev_ctrlr *
261 nvme_bdev_ctrlr_get_by_name(const char *name)
262 {
263 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
264 
265 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
266 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
267 			break;
268 		}
269 	}
270 
271 	return nbdev_ctrlr;
272 }
273 
274 static struct nvme_ctrlr *
275 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
276 			  const struct spdk_nvme_transport_id *trid)
277 {
278 	struct nvme_ctrlr *nvme_ctrlr;
279 
280 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
281 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0) {
282 			break;
283 		}
284 	}
285 
286 	return nvme_ctrlr;
287 }
288 
289 struct nvme_ctrlr *
290 nvme_bdev_ctrlr_get_ctrlr_by_id(struct nvme_bdev_ctrlr *nbdev_ctrlr,
291 				uint16_t cntlid)
292 {
293 	struct nvme_ctrlr *nvme_ctrlr;
294 	const struct spdk_nvme_ctrlr_data *cdata;
295 
296 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
297 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
298 		if (cdata->cntlid == cntlid) {
299 			break;
300 		}
301 	}
302 
303 	return nvme_ctrlr;
304 }
305 
306 static struct nvme_bdev *
307 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
308 {
309 	struct nvme_bdev *bdev;
310 
311 	pthread_mutex_lock(&g_bdev_nvme_mutex);
312 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
313 		if (bdev->nsid == nsid) {
314 			break;
315 		}
316 	}
317 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
318 
319 	return bdev;
320 }
321 
322 struct nvme_ns *
323 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
324 {
325 	struct nvme_ns ns;
326 
327 	assert(nsid > 0);
328 
329 	ns.id = nsid;
330 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
331 }
332 
333 struct nvme_ns *
334 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
335 {
336 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
337 }
338 
339 struct nvme_ns *
340 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
341 {
342 	if (ns == NULL) {
343 		return NULL;
344 	}
345 
346 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
347 }
348 
349 static struct nvme_ctrlr *
350 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid)
351 {
352 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
353 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
354 
355 	pthread_mutex_lock(&g_bdev_nvme_mutex);
356 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
357 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid);
358 		if (nvme_ctrlr != NULL) {
359 			break;
360 		}
361 	}
362 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
363 
364 	return nvme_ctrlr;
365 }
366 
367 struct nvme_ctrlr *
368 nvme_ctrlr_get_by_name(const char *name)
369 {
370 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
371 	struct nvme_ctrlr *nvme_ctrlr = NULL;
372 
373 	if (name == NULL) {
374 		return NULL;
375 	}
376 
377 	pthread_mutex_lock(&g_bdev_nvme_mutex);
378 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
379 	if (nbdev_ctrlr != NULL) {
380 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
381 	}
382 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
383 
384 	return nvme_ctrlr;
385 }
386 
387 void
388 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
389 {
390 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
391 
392 	pthread_mutex_lock(&g_bdev_nvme_mutex);
393 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
394 		fn(nbdev_ctrlr, ctx);
395 	}
396 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
397 }
398 
399 void
400 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
401 {
402 	const char *trtype_str;
403 	const char *adrfam_str;
404 
405 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
406 	if (trtype_str) {
407 		spdk_json_write_named_string(w, "trtype", trtype_str);
408 	}
409 
410 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
411 	if (adrfam_str) {
412 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
413 	}
414 
415 	if (trid->traddr[0] != '\0') {
416 		spdk_json_write_named_string(w, "traddr", trid->traddr);
417 	}
418 
419 	if (trid->trsvcid[0] != '\0') {
420 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
421 	}
422 
423 	if (trid->subnqn[0] != '\0') {
424 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
425 	}
426 }
427 
428 static void
429 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
430 		       struct nvme_ctrlr *nvme_ctrlr)
431 {
432 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
433 	pthread_mutex_lock(&g_bdev_nvme_mutex);
434 
435 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
436 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
437 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
438 
439 		return;
440 	}
441 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
442 
443 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
444 
445 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
446 
447 	free(nbdev_ctrlr->name);
448 	free(nbdev_ctrlr);
449 }
450 
451 static void
452 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
453 {
454 	struct nvme_path_id *path_id, *tmp_path;
455 	struct nvme_ns *ns, *tmp_ns;
456 
457 	free(nvme_ctrlr->copied_ana_desc);
458 	spdk_free(nvme_ctrlr->ana_log_page);
459 
460 	if (nvme_ctrlr->opal_dev) {
461 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
462 		nvme_ctrlr->opal_dev = NULL;
463 	}
464 
465 	if (nvme_ctrlr->nbdev_ctrlr) {
466 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
467 	}
468 
469 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
470 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
471 		nvme_ns_free(ns);
472 	}
473 
474 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
475 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
476 		free(path_id);
477 	}
478 
479 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
480 	spdk_keyring_put_key(nvme_ctrlr->psk);
481 	spdk_keyring_put_key(nvme_ctrlr->dhchap_key);
482 	free(nvme_ctrlr);
483 
484 	pthread_mutex_lock(&g_bdev_nvme_mutex);
485 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
486 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
487 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
488 		spdk_bdev_module_fini_done();
489 		return;
490 	}
491 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
492 }
493 
494 static int
495 nvme_detach_poller(void *arg)
496 {
497 	struct nvme_ctrlr *nvme_ctrlr = arg;
498 	int rc;
499 
500 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
501 	if (rc != -EAGAIN) {
502 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
503 		_nvme_ctrlr_delete(nvme_ctrlr);
504 	}
505 
506 	return SPDK_POLLER_BUSY;
507 }
508 
509 static void
510 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
511 {
512 	int rc;
513 
514 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
515 
516 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
517 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
518 
519 	/* If we got here, the reset/detach poller cannot be active */
520 	assert(nvme_ctrlr->reset_detach_poller == NULL);
521 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
522 					  nvme_ctrlr, 1000);
523 	if (nvme_ctrlr->reset_detach_poller == NULL) {
524 		SPDK_ERRLOG("Failed to register detach poller\n");
525 		goto error;
526 	}
527 
528 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
529 	if (rc != 0) {
530 		SPDK_ERRLOG("Failed to detach the NVMe controller\n");
531 		goto error;
532 	}
533 
534 	return;
535 error:
536 	/* We don't have a good way to handle errors here, so just do what we can and delete the
537 	 * controller without detaching the underlying NVMe device.
538 	 */
539 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
540 	_nvme_ctrlr_delete(nvme_ctrlr);
541 }
542 
543 static void
544 nvme_ctrlr_unregister_cb(void *io_device)
545 {
546 	struct nvme_ctrlr *nvme_ctrlr = io_device;
547 
548 	nvme_ctrlr_delete(nvme_ctrlr);
549 }
550 
551 static void
552 nvme_ctrlr_unregister(void *ctx)
553 {
554 	struct nvme_ctrlr *nvme_ctrlr = ctx;
555 
556 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
557 }
558 
559 static bool
560 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
561 {
562 	if (!nvme_ctrlr->destruct) {
563 		return false;
564 	}
565 
566 	if (nvme_ctrlr->ref > 0) {
567 		return false;
568 	}
569 
570 	if (nvme_ctrlr->resetting) {
571 		return false;
572 	}
573 
574 	if (nvme_ctrlr->ana_log_page_updating) {
575 		return false;
576 	}
577 
578 	if (nvme_ctrlr->io_path_cache_clearing) {
579 		return false;
580 	}
581 
582 	return true;
583 }
584 
585 static void
586 nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
587 {
588 	pthread_mutex_lock(&nvme_ctrlr->mutex);
589 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
590 
591 	assert(nvme_ctrlr->ref > 0);
592 	nvme_ctrlr->ref--;
593 
594 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
595 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
596 		return;
597 	}
598 
599 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
600 
601 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
602 }
603 
604 static void
605 bdev_nvme_clear_current_io_path(struct nvme_bdev_channel *nbdev_ch)
606 {
607 	nbdev_ch->current_io_path = NULL;
608 	nbdev_ch->rr_counter = 0;
609 }
610 
611 static struct nvme_io_path *
612 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
613 {
614 	struct nvme_io_path *io_path;
615 
616 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
617 		if (io_path->nvme_ns == nvme_ns) {
618 			break;
619 		}
620 	}
621 
622 	return io_path;
623 }
624 
625 static struct nvme_io_path *
626 nvme_io_path_alloc(void)
627 {
628 	struct nvme_io_path *io_path;
629 
630 	io_path = calloc(1, sizeof(*io_path));
631 	if (io_path == NULL) {
632 		SPDK_ERRLOG("Failed to alloc io_path.\n");
633 		return NULL;
634 	}
635 
636 	if (g_opts.io_path_stat) {
637 		io_path->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
638 		if (io_path->stat == NULL) {
639 			free(io_path);
640 			SPDK_ERRLOG("Failed to alloc io_path stat.\n");
641 			return NULL;
642 		}
643 		spdk_bdev_reset_io_stat(io_path->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
644 	}
645 
646 	return io_path;
647 }
648 
649 static void
650 nvme_io_path_free(struct nvme_io_path *io_path)
651 {
652 	free(io_path->stat);
653 	free(io_path);
654 }
655 
656 static int
657 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
658 {
659 	struct nvme_io_path *io_path;
660 	struct spdk_io_channel *ch;
661 	struct nvme_ctrlr_channel *ctrlr_ch;
662 	struct nvme_qpair *nvme_qpair;
663 
664 	io_path = nvme_io_path_alloc();
665 	if (io_path == NULL) {
666 		return -ENOMEM;
667 	}
668 
669 	io_path->nvme_ns = nvme_ns;
670 
671 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
672 	if (ch == NULL) {
673 		nvme_io_path_free(io_path);
674 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
675 		return -ENOMEM;
676 	}
677 
678 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
679 
680 	nvme_qpair = ctrlr_ch->qpair;
681 	assert(nvme_qpair != NULL);
682 
683 	io_path->qpair = nvme_qpair;
684 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
685 
686 	io_path->nbdev_ch = nbdev_ch;
687 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
688 
689 	bdev_nvme_clear_current_io_path(nbdev_ch);
690 
691 	return 0;
692 }
693 
694 static void
695 bdev_nvme_clear_retry_io_path(struct nvme_bdev_channel *nbdev_ch,
696 			      struct nvme_io_path *io_path)
697 {
698 	struct nvme_bdev_io *bio;
699 
700 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
701 		if (bio->io_path == io_path) {
702 			bio->io_path = NULL;
703 		}
704 	}
705 }
706 
707 static void
708 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
709 {
710 	struct spdk_io_channel *ch;
711 	struct nvme_qpair *nvme_qpair;
712 	struct nvme_ctrlr_channel *ctrlr_ch;
713 	struct nvme_bdev *nbdev;
714 
715 	nbdev = spdk_io_channel_get_io_device(spdk_io_channel_from_ctx(nbdev_ch));
716 
717 	/* Add the statistics to nvme_ns before this path is destroyed. */
718 	pthread_mutex_lock(&nbdev->mutex);
719 	if (nbdev->ref != 0 && io_path->nvme_ns->stat != NULL && io_path->stat != NULL) {
720 		spdk_bdev_add_io_stat(io_path->nvme_ns->stat, io_path->stat);
721 	}
722 	pthread_mutex_unlock(&nbdev->mutex);
723 
724 	bdev_nvme_clear_current_io_path(nbdev_ch);
725 	bdev_nvme_clear_retry_io_path(nbdev_ch, io_path);
726 
727 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
728 	io_path->nbdev_ch = NULL;
729 
730 	nvme_qpair = io_path->qpair;
731 	assert(nvme_qpair != NULL);
732 
733 	ctrlr_ch = nvme_qpair->ctrlr_ch;
734 	assert(ctrlr_ch != NULL);
735 
736 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
737 	spdk_put_io_channel(ch);
738 
739 	/* After an io_path is removed, I/Os submitted to it may complete and update statistics
740 	 * of the io_path. To avoid heap-use-after-free error from this case, do not free the
741 	 * io_path here but free the io_path when the associated qpair is freed. It is ensured
742 	 * that all I/Os submitted to the io_path are completed when the associated qpair is freed.
743 	 */
744 }
745 
746 static void
747 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
748 {
749 	struct nvme_io_path *io_path, *tmp_io_path;
750 
751 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
752 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
753 	}
754 }
755 
756 static int
757 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
758 {
759 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
760 	struct nvme_bdev *nbdev = io_device;
761 	struct nvme_ns *nvme_ns;
762 	int rc;
763 
764 	STAILQ_INIT(&nbdev_ch->io_path_list);
765 	TAILQ_INIT(&nbdev_ch->retry_io_list);
766 
767 	pthread_mutex_lock(&nbdev->mutex);
768 
769 	nbdev_ch->mp_policy = nbdev->mp_policy;
770 	nbdev_ch->mp_selector = nbdev->mp_selector;
771 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
772 
773 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
774 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
775 		if (rc != 0) {
776 			pthread_mutex_unlock(&nbdev->mutex);
777 
778 			_bdev_nvme_delete_io_paths(nbdev_ch);
779 			return rc;
780 		}
781 	}
782 	pthread_mutex_unlock(&nbdev->mutex);
783 
784 	return 0;
785 }
786 
787 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
788  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
789  */
790 static inline void
791 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
792 			const struct spdk_nvme_cpl *cpl)
793 {
794 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
795 			  (uintptr_t)bdev_io);
796 	if (cpl) {
797 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
798 	} else {
799 		spdk_bdev_io_complete(bdev_io, status);
800 	}
801 }
802 
803 static void bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch);
804 
805 static void
806 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
807 {
808 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
809 
810 	bdev_nvme_abort_retry_ios(nbdev_ch);
811 	_bdev_nvme_delete_io_paths(nbdev_ch);
812 }
813 
814 static inline bool
815 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
816 {
817 	switch (io_type) {
818 	case SPDK_BDEV_IO_TYPE_RESET:
819 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
820 	case SPDK_BDEV_IO_TYPE_ABORT:
821 		return true;
822 	default:
823 		break;
824 	}
825 
826 	return false;
827 }
828 
829 static inline bool
830 nvme_ns_is_active(struct nvme_ns *nvme_ns)
831 {
832 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
833 		return false;
834 	}
835 
836 	if (spdk_unlikely(nvme_ns->ns == NULL)) {
837 		return false;
838 	}
839 
840 	return true;
841 }
842 
843 static inline bool
844 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
845 {
846 	if (spdk_unlikely(!nvme_ns_is_active(nvme_ns))) {
847 		return false;
848 	}
849 
850 	switch (nvme_ns->ana_state) {
851 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
852 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
853 		return true;
854 	default:
855 		break;
856 	}
857 
858 	return false;
859 }
860 
861 static inline bool
862 nvme_qpair_is_connected(struct nvme_qpair *nvme_qpair)
863 {
864 	if (spdk_unlikely(nvme_qpair->qpair == NULL)) {
865 		return false;
866 	}
867 
868 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
869 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
870 		return false;
871 	}
872 
873 	if (spdk_unlikely(nvme_qpair->ctrlr_ch->reset_iter != NULL)) {
874 		return false;
875 	}
876 
877 	return true;
878 }
879 
880 static inline bool
881 nvme_io_path_is_available(struct nvme_io_path *io_path)
882 {
883 	if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
884 		return false;
885 	}
886 
887 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
888 		return false;
889 	}
890 
891 	return true;
892 }
893 
894 static inline bool
895 nvme_ctrlr_is_failed(struct nvme_ctrlr *nvme_ctrlr)
896 {
897 	if (nvme_ctrlr->destruct) {
898 		return true;
899 	}
900 
901 	if (nvme_ctrlr->fast_io_fail_timedout) {
902 		return true;
903 	}
904 
905 	if (nvme_ctrlr->resetting) {
906 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
907 			return false;
908 		} else {
909 			return true;
910 		}
911 	}
912 
913 	if (nvme_ctrlr->reconnect_is_delayed) {
914 		return false;
915 	}
916 
917 	if (nvme_ctrlr->disabled) {
918 		return true;
919 	}
920 
921 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
922 		return true;
923 	} else {
924 		return false;
925 	}
926 }
927 
928 static bool
929 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
930 {
931 	if (nvme_ctrlr->destruct) {
932 		return false;
933 	}
934 
935 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
936 		return false;
937 	}
938 
939 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
940 		return false;
941 	}
942 
943 	if (nvme_ctrlr->disabled) {
944 		return false;
945 	}
946 
947 	return true;
948 }
949 
950 /* Simulate circular linked list. */
951 static inline struct nvme_io_path *
952 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
953 {
954 	struct nvme_io_path *next_path;
955 
956 	if (prev_path != NULL) {
957 		next_path = STAILQ_NEXT(prev_path, stailq);
958 		if (next_path != NULL) {
959 			return next_path;
960 		}
961 	}
962 
963 	return STAILQ_FIRST(&nbdev_ch->io_path_list);
964 }
965 
966 static struct nvme_io_path *
967 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
968 {
969 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
970 
971 	start = nvme_io_path_get_next(nbdev_ch, nbdev_ch->current_io_path);
972 
973 	io_path = start;
974 	do {
975 		if (spdk_likely(nvme_qpair_is_connected(io_path->qpair) &&
976 				nvme_ns_is_active(io_path->nvme_ns))) {
977 			switch (io_path->nvme_ns->ana_state) {
978 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
979 				nbdev_ch->current_io_path = io_path;
980 				return io_path;
981 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
982 				if (non_optimized == NULL) {
983 					non_optimized = io_path;
984 				}
985 				break;
986 			default:
987 				break;
988 			}
989 		}
990 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
991 	} while (io_path != start);
992 
993 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
994 		/* We come here only if there is no optimized path. Cache even non_optimized
995 		 * path for load balance across multiple non_optimized paths.
996 		 */
997 		nbdev_ch->current_io_path = non_optimized;
998 	}
999 
1000 	return non_optimized;
1001 }
1002 
1003 static struct nvme_io_path *
1004 _bdev_nvme_find_io_path_min_qd(struct nvme_bdev_channel *nbdev_ch)
1005 {
1006 	struct nvme_io_path *io_path;
1007 	struct nvme_io_path *optimized = NULL, *non_optimized = NULL;
1008 	uint32_t opt_min_qd = UINT32_MAX, non_opt_min_qd = UINT32_MAX;
1009 	uint32_t num_outstanding_reqs;
1010 
1011 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1012 		if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
1013 			/* The device is currently resetting. */
1014 			continue;
1015 		}
1016 
1017 		if (spdk_unlikely(!nvme_ns_is_active(io_path->nvme_ns))) {
1018 			continue;
1019 		}
1020 
1021 		num_outstanding_reqs = spdk_nvme_qpair_get_num_outstanding_reqs(io_path->qpair->qpair);
1022 		switch (io_path->nvme_ns->ana_state) {
1023 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
1024 			if (num_outstanding_reqs < opt_min_qd) {
1025 				opt_min_qd = num_outstanding_reqs;
1026 				optimized = io_path;
1027 			}
1028 			break;
1029 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1030 			if (num_outstanding_reqs < non_opt_min_qd) {
1031 				non_opt_min_qd = num_outstanding_reqs;
1032 				non_optimized = io_path;
1033 			}
1034 			break;
1035 		default:
1036 			break;
1037 		}
1038 	}
1039 
1040 	/* don't cache io path for BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH selector */
1041 	if (optimized != NULL) {
1042 		return optimized;
1043 	}
1044 
1045 	return non_optimized;
1046 }
1047 
1048 static inline struct nvme_io_path *
1049 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1050 {
1051 	if (spdk_likely(nbdev_ch->current_io_path != NULL)) {
1052 		if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE) {
1053 			return nbdev_ch->current_io_path;
1054 		} else if (nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1055 			if (++nbdev_ch->rr_counter < nbdev_ch->rr_min_io) {
1056 				return nbdev_ch->current_io_path;
1057 			}
1058 			nbdev_ch->rr_counter = 0;
1059 		}
1060 	}
1061 
1062 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE ||
1063 	    nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1064 		return _bdev_nvme_find_io_path(nbdev_ch);
1065 	} else {
1066 		return _bdev_nvme_find_io_path_min_qd(nbdev_ch);
1067 	}
1068 }
1069 
1070 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
1071  * or false otherwise.
1072  *
1073  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
1074  * is likely to be non-accessible now but may become accessible.
1075  *
1076  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
1077  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
1078  * when starting to reset it but it is set to failed when the reset failed. Hence, if
1079  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
1080  */
1081 static bool
1082 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
1083 {
1084 	struct nvme_io_path *io_path;
1085 
1086 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1087 		if (io_path->nvme_ns->ana_transition_timedout) {
1088 			continue;
1089 		}
1090 
1091 		if (nvme_qpair_is_connected(io_path->qpair) ||
1092 		    !nvme_ctrlr_is_failed(io_path->qpair->ctrlr)) {
1093 			return true;
1094 		}
1095 	}
1096 
1097 	return false;
1098 }
1099 
1100 static void
1101 bdev_nvme_retry_io(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
1102 {
1103 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1104 	struct spdk_io_channel *ch;
1105 
1106 	if (nbdev_io->io_path != NULL && nvme_io_path_is_available(nbdev_io->io_path)) {
1107 		_bdev_nvme_submit_request(nbdev_ch, bdev_io);
1108 	} else {
1109 		ch = spdk_io_channel_from_ctx(nbdev_ch);
1110 		bdev_nvme_submit_request(ch, bdev_io);
1111 	}
1112 }
1113 
1114 static int
1115 bdev_nvme_retry_ios(void *arg)
1116 {
1117 	struct nvme_bdev_channel *nbdev_ch = arg;
1118 	struct nvme_bdev_io *bio, *tmp_bio;
1119 	uint64_t now, delay_us;
1120 
1121 	now = spdk_get_ticks();
1122 
1123 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1124 		if (bio->retry_ticks > now) {
1125 			break;
1126 		}
1127 
1128 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1129 
1130 		bdev_nvme_retry_io(nbdev_ch, spdk_bdev_io_from_ctx(bio));
1131 	}
1132 
1133 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1134 
1135 	bio = TAILQ_FIRST(&nbdev_ch->retry_io_list);
1136 	if (bio != NULL) {
1137 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
1138 
1139 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1140 					    delay_us);
1141 	}
1142 
1143 	return SPDK_POLLER_BUSY;
1144 }
1145 
1146 static void
1147 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
1148 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
1149 {
1150 	struct nvme_bdev_io *tmp_bio;
1151 
1152 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
1153 
1154 	TAILQ_FOREACH_REVERSE(tmp_bio, &nbdev_ch->retry_io_list, retry_io_head, retry_link) {
1155 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1156 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bio, bio,
1157 					   retry_link);
1158 			return;
1159 		}
1160 	}
1161 
1162 	/* No earlier I/Os were found. This I/O must be the new head. */
1163 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bio, retry_link);
1164 
1165 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1166 
1167 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1168 				    delay_ms * 1000ULL);
1169 }
1170 
1171 static void
1172 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
1173 {
1174 	struct nvme_bdev_io *bio, *tmp_bio;
1175 
1176 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1177 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1178 		__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1179 	}
1180 
1181 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1182 }
1183 
1184 static int
1185 bdev_nvme_abort_retry_io(struct nvme_bdev_channel *nbdev_ch,
1186 			 struct nvme_bdev_io *bio_to_abort)
1187 {
1188 	struct nvme_bdev_io *bio;
1189 
1190 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
1191 		if (bio == bio_to_abort) {
1192 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1193 			__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1194 			return 0;
1195 		}
1196 	}
1197 
1198 	return -ENOENT;
1199 }
1200 
1201 static void
1202 bdev_nvme_update_nvme_error_stat(struct spdk_bdev_io *bdev_io, const struct spdk_nvme_cpl *cpl)
1203 {
1204 	struct nvme_bdev *nbdev;
1205 	uint16_t sct, sc;
1206 
1207 	assert(spdk_nvme_cpl_is_error(cpl));
1208 
1209 	nbdev = bdev_io->bdev->ctxt;
1210 
1211 	if (nbdev->err_stat == NULL) {
1212 		return;
1213 	}
1214 
1215 	sct = cpl->status.sct;
1216 	sc = cpl->status.sc;
1217 
1218 	pthread_mutex_lock(&nbdev->mutex);
1219 
1220 	nbdev->err_stat->status_type[sct]++;
1221 	switch (sct) {
1222 	case SPDK_NVME_SCT_GENERIC:
1223 	case SPDK_NVME_SCT_COMMAND_SPECIFIC:
1224 	case SPDK_NVME_SCT_MEDIA_ERROR:
1225 	case SPDK_NVME_SCT_PATH:
1226 		nbdev->err_stat->status[sct][sc]++;
1227 		break;
1228 	default:
1229 		break;
1230 	}
1231 
1232 	pthread_mutex_unlock(&nbdev->mutex);
1233 }
1234 
1235 static inline void
1236 bdev_nvme_update_io_path_stat(struct nvme_bdev_io *bio)
1237 {
1238 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1239 	uint64_t num_blocks = bdev_io->u.bdev.num_blocks;
1240 	uint32_t blocklen = bdev_io->bdev->blocklen;
1241 	struct spdk_bdev_io_stat *stat;
1242 	uint64_t tsc_diff;
1243 
1244 	if (bio->io_path->stat == NULL) {
1245 		return;
1246 	}
1247 
1248 	tsc_diff = spdk_get_ticks() - bio->submit_tsc;
1249 	stat = bio->io_path->stat;
1250 
1251 	switch (bdev_io->type) {
1252 	case SPDK_BDEV_IO_TYPE_READ:
1253 		stat->bytes_read += num_blocks * blocklen;
1254 		stat->num_read_ops++;
1255 		stat->read_latency_ticks += tsc_diff;
1256 		if (stat->max_read_latency_ticks < tsc_diff) {
1257 			stat->max_read_latency_ticks = tsc_diff;
1258 		}
1259 		if (stat->min_read_latency_ticks > tsc_diff) {
1260 			stat->min_read_latency_ticks = tsc_diff;
1261 		}
1262 		break;
1263 	case SPDK_BDEV_IO_TYPE_WRITE:
1264 		stat->bytes_written += num_blocks * blocklen;
1265 		stat->num_write_ops++;
1266 		stat->write_latency_ticks += tsc_diff;
1267 		if (stat->max_write_latency_ticks < tsc_diff) {
1268 			stat->max_write_latency_ticks = tsc_diff;
1269 		}
1270 		if (stat->min_write_latency_ticks > tsc_diff) {
1271 			stat->min_write_latency_ticks = tsc_diff;
1272 		}
1273 		break;
1274 	case SPDK_BDEV_IO_TYPE_UNMAP:
1275 		stat->bytes_unmapped += num_blocks * blocklen;
1276 		stat->num_unmap_ops++;
1277 		stat->unmap_latency_ticks += tsc_diff;
1278 		if (stat->max_unmap_latency_ticks < tsc_diff) {
1279 			stat->max_unmap_latency_ticks = tsc_diff;
1280 		}
1281 		if (stat->min_unmap_latency_ticks > tsc_diff) {
1282 			stat->min_unmap_latency_ticks = tsc_diff;
1283 		}
1284 		break;
1285 	case SPDK_BDEV_IO_TYPE_ZCOPY:
1286 		/* Track the data in the start phase only */
1287 		if (!bdev_io->u.bdev.zcopy.start) {
1288 			break;
1289 		}
1290 		if (bdev_io->u.bdev.zcopy.populate) {
1291 			stat->bytes_read += num_blocks * blocklen;
1292 			stat->num_read_ops++;
1293 			stat->read_latency_ticks += tsc_diff;
1294 			if (stat->max_read_latency_ticks < tsc_diff) {
1295 				stat->max_read_latency_ticks = tsc_diff;
1296 			}
1297 			if (stat->min_read_latency_ticks > tsc_diff) {
1298 				stat->min_read_latency_ticks = tsc_diff;
1299 			}
1300 		} else {
1301 			stat->bytes_written += num_blocks * blocklen;
1302 			stat->num_write_ops++;
1303 			stat->write_latency_ticks += tsc_diff;
1304 			if (stat->max_write_latency_ticks < tsc_diff) {
1305 				stat->max_write_latency_ticks = tsc_diff;
1306 			}
1307 			if (stat->min_write_latency_ticks > tsc_diff) {
1308 				stat->min_write_latency_ticks = tsc_diff;
1309 			}
1310 		}
1311 		break;
1312 	case SPDK_BDEV_IO_TYPE_COPY:
1313 		stat->bytes_copied += num_blocks * blocklen;
1314 		stat->num_copy_ops++;
1315 		stat->copy_latency_ticks += tsc_diff;
1316 		if (stat->max_copy_latency_ticks < tsc_diff) {
1317 			stat->max_copy_latency_ticks = tsc_diff;
1318 		}
1319 		if (stat->min_copy_latency_ticks > tsc_diff) {
1320 			stat->min_copy_latency_ticks = tsc_diff;
1321 		}
1322 		break;
1323 	default:
1324 		break;
1325 	}
1326 }
1327 
1328 static bool
1329 bdev_nvme_check_retry_io(struct nvme_bdev_io *bio,
1330 			 const struct spdk_nvme_cpl *cpl,
1331 			 struct nvme_bdev_channel *nbdev_ch,
1332 			 uint64_t *_delay_ms)
1333 {
1334 	struct nvme_io_path *io_path = bio->io_path;
1335 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1336 	const struct spdk_nvme_ctrlr_data *cdata;
1337 
1338 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1339 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1340 	    !nvme_io_path_is_available(io_path) ||
1341 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1342 		bdev_nvme_clear_current_io_path(nbdev_ch);
1343 		bio->io_path = NULL;
1344 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1345 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1346 				io_path->nvme_ns->ana_state_updating = true;
1347 			}
1348 		}
1349 		if (!any_io_path_may_become_available(nbdev_ch)) {
1350 			return false;
1351 		}
1352 		*_delay_ms = 0;
1353 	} else {
1354 		bio->retry_count++;
1355 
1356 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1357 
1358 		if (cpl->status.crd != 0) {
1359 			*_delay_ms = cdata->crdt[cpl->status.crd] * 100;
1360 		} else {
1361 			*_delay_ms = 0;
1362 		}
1363 	}
1364 
1365 	return true;
1366 }
1367 
1368 static inline void
1369 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1370 				  const struct spdk_nvme_cpl *cpl)
1371 {
1372 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1373 	struct nvme_bdev_channel *nbdev_ch;
1374 	uint64_t delay_ms;
1375 
1376 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1377 
1378 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1379 		bdev_nvme_update_io_path_stat(bio);
1380 		goto complete;
1381 	}
1382 
1383 	/* Update error counts before deciding if retry is needed.
1384 	 * Hence, error counts may be more than the number of I/O errors.
1385 	 */
1386 	bdev_nvme_update_nvme_error_stat(bdev_io, cpl);
1387 
1388 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1389 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1390 		goto complete;
1391 	}
1392 
1393 	/* At this point we don't know whether the sequence was successfully executed or not, so we
1394 	 * cannot retry the IO */
1395 	if (bdev_io->u.bdev.accel_sequence != NULL) {
1396 		goto complete;
1397 	}
1398 
1399 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1400 
1401 	if (bdev_nvme_check_retry_io(bio, cpl, nbdev_ch, &delay_ms)) {
1402 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1403 		return;
1404 	}
1405 
1406 complete:
1407 	bio->retry_count = 0;
1408 	bio->submit_tsc = 0;
1409 	bdev_io->u.bdev.accel_sequence = NULL;
1410 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1411 }
1412 
1413 static inline void
1414 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1415 {
1416 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1417 	struct nvme_bdev_channel *nbdev_ch;
1418 	enum spdk_bdev_io_status io_status;
1419 
1420 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1421 
1422 	switch (rc) {
1423 	case 0:
1424 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1425 		break;
1426 	case -ENOMEM:
1427 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1428 		break;
1429 	case -ENXIO:
1430 		if (g_opts.bdev_retry_count == -1 || bio->retry_count < g_opts.bdev_retry_count) {
1431 			nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1432 
1433 			bdev_nvme_clear_current_io_path(nbdev_ch);
1434 			bio->io_path = NULL;
1435 
1436 			if (any_io_path_may_become_available(nbdev_ch)) {
1437 				bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1438 				return;
1439 			}
1440 		}
1441 
1442 	/* fallthrough */
1443 	default:
1444 		spdk_accel_sequence_abort(bdev_io->u.bdev.accel_sequence);
1445 		bdev_io->u.bdev.accel_sequence = NULL;
1446 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1447 		break;
1448 	}
1449 
1450 	bio->retry_count = 0;
1451 	bio->submit_tsc = 0;
1452 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1453 }
1454 
1455 static inline void
1456 bdev_nvme_admin_complete(struct nvme_bdev_io *bio, int rc)
1457 {
1458 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1459 	enum spdk_bdev_io_status io_status;
1460 
1461 	switch (rc) {
1462 	case 0:
1463 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1464 		break;
1465 	case -ENOMEM:
1466 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1467 		break;
1468 	case -ENXIO:
1469 	/* fallthrough */
1470 	default:
1471 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1472 		break;
1473 	}
1474 
1475 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1476 }
1477 
1478 static void
1479 bdev_nvme_clear_io_path_caches_done(struct spdk_io_channel_iter *i, int status)
1480 {
1481 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1482 
1483 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1484 
1485 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1486 	nvme_ctrlr->io_path_cache_clearing = false;
1487 
1488 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1489 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1490 		return;
1491 	}
1492 
1493 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1494 
1495 	nvme_ctrlr_unregister(nvme_ctrlr);
1496 }
1497 
1498 static void
1499 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1500 {
1501 	struct nvme_io_path *io_path;
1502 
1503 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1504 		if (io_path->nbdev_ch == NULL) {
1505 			continue;
1506 		}
1507 		bdev_nvme_clear_current_io_path(io_path->nbdev_ch);
1508 	}
1509 }
1510 
1511 static void
1512 bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i)
1513 {
1514 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1515 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1516 
1517 	assert(ctrlr_ch->qpair != NULL);
1518 
1519 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1520 
1521 	spdk_for_each_channel_continue(i, 0);
1522 }
1523 
1524 static void
1525 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1526 {
1527 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1528 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1529 	    nvme_ctrlr->io_path_cache_clearing) {
1530 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1531 		return;
1532 	}
1533 
1534 	nvme_ctrlr->io_path_cache_clearing = true;
1535 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1536 
1537 	spdk_for_each_channel(nvme_ctrlr,
1538 			      bdev_nvme_clear_io_path_cache,
1539 			      NULL,
1540 			      bdev_nvme_clear_io_path_caches_done);
1541 }
1542 
1543 static struct nvme_qpair *
1544 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1545 {
1546 	struct nvme_qpair *nvme_qpair;
1547 
1548 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1549 		if (nvme_qpair->qpair == qpair) {
1550 			break;
1551 		}
1552 	}
1553 
1554 	return nvme_qpair;
1555 }
1556 
1557 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1558 
1559 static void
1560 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1561 {
1562 	struct nvme_poll_group *group = poll_group_ctx;
1563 	struct nvme_qpair *nvme_qpair;
1564 	struct nvme_ctrlr_channel *ctrlr_ch;
1565 	int status;
1566 
1567 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1568 	if (nvme_qpair == NULL) {
1569 		return;
1570 	}
1571 
1572 	if (nvme_qpair->qpair != NULL) {
1573 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1574 		nvme_qpair->qpair = NULL;
1575 	}
1576 
1577 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1578 
1579 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1580 
1581 	if (ctrlr_ch != NULL) {
1582 		if (ctrlr_ch->reset_iter != NULL) {
1583 			/* We are in a full reset sequence. */
1584 			if (ctrlr_ch->connect_poller != NULL) {
1585 				/* qpair was failed to connect. Abort the reset sequence. */
1586 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was failed to connect. abort the reset ctrlr sequence.\n",
1587 					      qpair);
1588 				spdk_poller_unregister(&ctrlr_ch->connect_poller);
1589 				status = -1;
1590 			} else {
1591 				/* qpair was completed to disconnect. Just move to the next ctrlr_channel. */
1592 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1593 					      qpair);
1594 				status = 0;
1595 			}
1596 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, status);
1597 			ctrlr_ch->reset_iter = NULL;
1598 		} else {
1599 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1600 			SPDK_NOTICELOG("qpair %p was disconnected and freed. reset controller.\n", qpair);
1601 			bdev_nvme_failover_ctrlr(nvme_qpair->ctrlr);
1602 		}
1603 	} else {
1604 		/* In this case, ctrlr_channel is already deleted. */
1605 		SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed. delete nvme_qpair.\n", qpair);
1606 		nvme_qpair_delete(nvme_qpair);
1607 	}
1608 }
1609 
1610 static void
1611 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1612 {
1613 	struct nvme_qpair *nvme_qpair;
1614 
1615 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1616 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1617 			continue;
1618 		}
1619 
1620 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1621 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1622 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1623 		}
1624 	}
1625 }
1626 
1627 static int
1628 bdev_nvme_poll(void *arg)
1629 {
1630 	struct nvme_poll_group *group = arg;
1631 	int64_t num_completions;
1632 
1633 	if (group->collect_spin_stat && group->start_ticks == 0) {
1634 		group->start_ticks = spdk_get_ticks();
1635 	}
1636 
1637 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1638 			  bdev_nvme_disconnected_qpair_cb);
1639 	if (group->collect_spin_stat) {
1640 		if (num_completions > 0) {
1641 			if (group->end_ticks != 0) {
1642 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1643 				group->end_ticks = 0;
1644 			}
1645 			group->start_ticks = 0;
1646 		} else {
1647 			group->end_ticks = spdk_get_ticks();
1648 		}
1649 	}
1650 
1651 	if (spdk_unlikely(num_completions < 0)) {
1652 		bdev_nvme_check_io_qpairs(group);
1653 	}
1654 
1655 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1656 }
1657 
1658 static int bdev_nvme_poll_adminq(void *arg);
1659 
1660 static void
1661 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1662 {
1663 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1664 
1665 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1666 					  nvme_ctrlr, new_period_us);
1667 }
1668 
1669 static int
1670 bdev_nvme_poll_adminq(void *arg)
1671 {
1672 	int32_t rc;
1673 	struct nvme_ctrlr *nvme_ctrlr = arg;
1674 	nvme_ctrlr_disconnected_cb disconnected_cb;
1675 
1676 	assert(nvme_ctrlr != NULL);
1677 
1678 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1679 	if (rc < 0) {
1680 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1681 		nvme_ctrlr->disconnected_cb = NULL;
1682 
1683 		if (disconnected_cb != NULL) {
1684 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1685 							    g_opts.nvme_adminq_poll_period_us);
1686 			disconnected_cb(nvme_ctrlr);
1687 		} else {
1688 			bdev_nvme_failover_ctrlr(nvme_ctrlr);
1689 		}
1690 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1691 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1692 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1693 	}
1694 
1695 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1696 }
1697 
1698 static void
1699 nvme_bdev_free(void *io_device)
1700 {
1701 	struct nvme_bdev *nvme_disk = io_device;
1702 
1703 	pthread_mutex_destroy(&nvme_disk->mutex);
1704 	free(nvme_disk->disk.name);
1705 	free(nvme_disk->err_stat);
1706 	free(nvme_disk);
1707 }
1708 
1709 static int
1710 bdev_nvme_destruct(void *ctx)
1711 {
1712 	struct nvme_bdev *nvme_disk = ctx;
1713 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1714 
1715 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1716 
1717 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1718 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1719 
1720 		nvme_ns->bdev = NULL;
1721 
1722 		assert(nvme_ns->id > 0);
1723 
1724 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1725 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1726 
1727 			nvme_ctrlr_release(nvme_ns->ctrlr);
1728 			nvme_ns_free(nvme_ns);
1729 		} else {
1730 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1731 		}
1732 	}
1733 
1734 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1735 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1736 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1737 
1738 	spdk_io_device_unregister(nvme_disk, nvme_bdev_free);
1739 
1740 	return 0;
1741 }
1742 
1743 static int
1744 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1745 {
1746 	struct nvme_ctrlr *nvme_ctrlr;
1747 	struct spdk_nvme_io_qpair_opts opts;
1748 	struct spdk_nvme_qpair *qpair;
1749 	int rc;
1750 
1751 	nvme_ctrlr = nvme_qpair->ctrlr;
1752 
1753 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1754 	opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1755 	opts.create_only = true;
1756 	opts.async_mode = true;
1757 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1758 	g_opts.io_queue_requests = opts.io_queue_requests;
1759 
1760 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1761 	if (qpair == NULL) {
1762 		return -1;
1763 	}
1764 
1765 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1766 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1767 
1768 	assert(nvme_qpair->group != NULL);
1769 
1770 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1771 	if (rc != 0) {
1772 		SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
1773 		goto err;
1774 	}
1775 
1776 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1777 	if (rc != 0) {
1778 		SPDK_ERRLOG("Unable to connect I/O qpair.\n");
1779 		goto err;
1780 	}
1781 
1782 	nvme_qpair->qpair = qpair;
1783 
1784 	if (!g_opts.disable_auto_failback) {
1785 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1786 	}
1787 
1788 	return 0;
1789 
1790 err:
1791 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1792 
1793 	return rc;
1794 }
1795 
1796 static void
1797 bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
1798 {
1799 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1800 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1801 	enum spdk_bdev_io_status status = SPDK_BDEV_IO_STATUS_SUCCESS;
1802 	struct nvme_bdev_io *bio;
1803 
1804 	if (spdk_io_channel_iter_get_ctx(i) != NULL) {
1805 		status = SPDK_BDEV_IO_STATUS_FAILED;
1806 	}
1807 
1808 	while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
1809 		bio = TAILQ_FIRST(&ctrlr_ch->pending_resets);
1810 		TAILQ_REMOVE(&ctrlr_ch->pending_resets, bio, retry_link);
1811 		__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), status, NULL);
1812 	}
1813 
1814 	spdk_for_each_channel_continue(i, 0);
1815 }
1816 
1817 /* This function marks the current trid as failed by storing the current ticks
1818  * and then sets the next trid to the active trid within a controller if exists.
1819  *
1820  * The purpose of the boolean return value is to request the caller to disconnect
1821  * the current trid now to try connecting the next trid.
1822  */
1823 static bool
1824 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove, bool start)
1825 {
1826 	struct nvme_path_id *path_id, *next_path;
1827 	int rc __attribute__((unused));
1828 
1829 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1830 	assert(path_id);
1831 	assert(path_id == nvme_ctrlr->active_path_id);
1832 	next_path = TAILQ_NEXT(path_id, link);
1833 
1834 	/* Update the last failed time. It means the trid is failed if its last
1835 	 * failed time is non-zero.
1836 	 */
1837 	path_id->last_failed_tsc = spdk_get_ticks();
1838 
1839 	if (next_path == NULL) {
1840 		/* There is no alternate trid within a controller. */
1841 		return false;
1842 	}
1843 
1844 	if (!start && nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1845 		/* Connect is not retried in a controller reset sequence. Connecting
1846 		 * the next trid will be done by the next bdev_nvme_failover_ctrlr() call.
1847 		 */
1848 		return false;
1849 	}
1850 
1851 	assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
1852 
1853 	SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr,
1854 		       path_id->trid.trsvcid,	next_path->trid.traddr, next_path->trid.trsvcid);
1855 
1856 	spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
1857 	nvme_ctrlr->active_path_id = next_path;
1858 	rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
1859 	assert(rc == 0);
1860 	TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
1861 	if (!remove) {
1862 		/** Shuffle the old trid to the end of the list and use the new one.
1863 		 * Allows for round robin through multiple connections.
1864 		 */
1865 		TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
1866 	} else {
1867 		free(path_id);
1868 	}
1869 
1870 	if (start || next_path->last_failed_tsc == 0) {
1871 		/* bdev_nvme_failover_ctrlr() is just called or the next trid is not failed
1872 		 * or used yet. Try the next trid now.
1873 		 */
1874 		return true;
1875 	}
1876 
1877 	if (spdk_get_ticks() > next_path->last_failed_tsc + spdk_get_ticks_hz() *
1878 	    nvme_ctrlr->opts.reconnect_delay_sec) {
1879 		/* Enough backoff passed since the next trid failed. Try the next trid now. */
1880 		return true;
1881 	}
1882 
1883 	/* The next trid will be tried after reconnect_delay_sec seconds. */
1884 	return false;
1885 }
1886 
1887 static bool
1888 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
1889 {
1890 	int32_t elapsed;
1891 
1892 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
1893 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
1894 		return false;
1895 	}
1896 
1897 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1898 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
1899 		return true;
1900 	} else {
1901 		return false;
1902 	}
1903 }
1904 
1905 static bool
1906 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
1907 {
1908 	uint32_t elapsed;
1909 
1910 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
1911 		return false;
1912 	}
1913 
1914 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1915 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
1916 		return true;
1917 	} else {
1918 		return false;
1919 	}
1920 }
1921 
1922 static void bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
1923 
1924 static void
1925 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
1926 {
1927 	int rc;
1928 
1929 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
1930 	if (rc != 0) {
1931 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
1932 		 * fail the reset sequence immediately.
1933 		 */
1934 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
1935 		return;
1936 	}
1937 
1938 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
1939 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
1940 	 */
1941 	assert(nvme_ctrlr->disconnected_cb == NULL);
1942 	nvme_ctrlr->disconnected_cb = cb_fn;
1943 
1944 	/* During disconnection, reduce the period to poll adminq more often. */
1945 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
1946 }
1947 
1948 enum bdev_nvme_op_after_reset {
1949 	OP_NONE,
1950 	OP_COMPLETE_PENDING_DESTRUCT,
1951 	OP_DESTRUCT,
1952 	OP_DELAYED_RECONNECT,
1953 	OP_FAILOVER,
1954 };
1955 
1956 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
1957 
1958 static _bdev_nvme_op_after_reset
1959 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
1960 {
1961 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1962 		/* Complete pending destruct after reset completes. */
1963 		return OP_COMPLETE_PENDING_DESTRUCT;
1964 	} else if (nvme_ctrlr->pending_failover) {
1965 		nvme_ctrlr->pending_failover = false;
1966 		nvme_ctrlr->reset_start_tsc = 0;
1967 		return OP_FAILOVER;
1968 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1969 		nvme_ctrlr->reset_start_tsc = 0;
1970 		return OP_NONE;
1971 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1972 		return OP_DESTRUCT;
1973 	} else {
1974 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
1975 			nvme_ctrlr->fast_io_fail_timedout = true;
1976 		}
1977 		return OP_DELAYED_RECONNECT;
1978 	}
1979 }
1980 
1981 static int bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
1982 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
1983 
1984 static int
1985 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
1986 {
1987 	struct nvme_ctrlr *nvme_ctrlr = ctx;
1988 
1989 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
1990 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1991 
1992 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
1993 
1994 	if (!nvme_ctrlr->reconnect_is_delayed) {
1995 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1996 		return SPDK_POLLER_BUSY;
1997 	}
1998 
1999 	nvme_ctrlr->reconnect_is_delayed = false;
2000 
2001 	if (nvme_ctrlr->destruct) {
2002 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2003 		return SPDK_POLLER_BUSY;
2004 	}
2005 
2006 	assert(nvme_ctrlr->resetting == false);
2007 	nvme_ctrlr->resetting = true;
2008 
2009 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2010 
2011 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2012 
2013 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2014 	return SPDK_POLLER_BUSY;
2015 }
2016 
2017 static void
2018 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
2019 {
2020 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2021 
2022 	assert(nvme_ctrlr->reconnect_is_delayed == false);
2023 	nvme_ctrlr->reconnect_is_delayed = true;
2024 
2025 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
2026 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
2027 					    nvme_ctrlr,
2028 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
2029 }
2030 
2031 static void remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr);
2032 
2033 static void
2034 _bdev_nvme_reset_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2035 {
2036 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2037 	bool success = spdk_io_channel_iter_get_ctx(i) == NULL;
2038 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2039 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2040 	enum bdev_nvme_op_after_reset op_after_reset;
2041 
2042 	assert(nvme_ctrlr->thread == spdk_get_thread());
2043 
2044 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2045 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2046 
2047 	if (!success) {
2048 		SPDK_ERRLOG("Resetting controller failed.\n");
2049 	} else {
2050 		SPDK_NOTICELOG("Resetting controller successful.\n");
2051 	}
2052 
2053 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2054 	nvme_ctrlr->resetting = false;
2055 	nvme_ctrlr->dont_retry = false;
2056 	nvme_ctrlr->in_failover = false;
2057 
2058 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
2059 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2060 
2061 	/* Delay callbacks when the next operation is a failover. */
2062 	if (ctrlr_op_cb_fn && op_after_reset != OP_FAILOVER) {
2063 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, success ? 0 : -1);
2064 	}
2065 
2066 	switch (op_after_reset) {
2067 	case OP_COMPLETE_PENDING_DESTRUCT:
2068 		nvme_ctrlr_unregister(nvme_ctrlr);
2069 		break;
2070 	case OP_DESTRUCT:
2071 		bdev_nvme_delete_ctrlr(nvme_ctrlr, false);
2072 		remove_discovery_entry(nvme_ctrlr);
2073 		break;
2074 	case OP_DELAYED_RECONNECT:
2075 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
2076 		break;
2077 	case OP_FAILOVER:
2078 		nvme_ctrlr->ctrlr_op_cb_fn = ctrlr_op_cb_fn;
2079 		nvme_ctrlr->ctrlr_op_cb_arg = ctrlr_op_cb_arg;
2080 		bdev_nvme_failover_ctrlr(nvme_ctrlr);
2081 		break;
2082 	default:
2083 		break;
2084 	}
2085 }
2086 
2087 static void
2088 bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
2089 {
2090 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2091 	if (!success) {
2092 		/* Connecting the active trid failed. Set the next alternate trid to the
2093 		 * active trid if it exists.
2094 		 */
2095 		if (bdev_nvme_failover_trid(nvme_ctrlr, false, false)) {
2096 			/* The next alternate trid exists and is ready to try. Try it now. */
2097 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
2098 
2099 			nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2100 			return;
2101 		}
2102 
2103 		/* We came here if there is no alternate trid or if the next trid exists but
2104 		 * is not ready to try. We will try the active trid after reconnect_delay_sec
2105 		 * seconds if it is non-zero or at the next reset call otherwise.
2106 		 */
2107 	} else {
2108 		/* Connecting the active trid succeeded. Clear the last failed time because it
2109 		 * means the trid is failed if its last failed time is non-zero.
2110 		 */
2111 		nvme_ctrlr->active_path_id->last_failed_tsc = 0;
2112 	}
2113 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2114 
2115 	/* Make sure we clear any pending resets before returning. */
2116 	spdk_for_each_channel(nvme_ctrlr,
2117 			      bdev_nvme_complete_pending_resets,
2118 			      success ? NULL : (void *)0x1,
2119 			      _bdev_nvme_reset_ctrlr_complete);
2120 }
2121 
2122 static void
2123 bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status)
2124 {
2125 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2126 
2127 	bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2128 }
2129 
2130 static void
2131 bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
2132 {
2133 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
2134 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
2135 	struct nvme_qpair *nvme_qpair;
2136 
2137 	nvme_qpair = ctrlr_ch->qpair;
2138 	assert(nvme_qpair != NULL);
2139 
2140 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2141 
2142 	if (nvme_qpair->qpair != NULL) {
2143 		if (nvme_qpair->ctrlr->dont_retry) {
2144 			spdk_nvme_qpair_set_abort_dnr(nvme_qpair->qpair, true);
2145 		}
2146 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
2147 
2148 		/* The current full reset sequence will move to the next
2149 		 * ctrlr_channel after the qpair is actually disconnected.
2150 		 */
2151 		assert(ctrlr_ch->reset_iter == NULL);
2152 		ctrlr_ch->reset_iter = i;
2153 	} else {
2154 		spdk_for_each_channel_continue(i, 0);
2155 	}
2156 }
2157 
2158 static void
2159 bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
2160 {
2161 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2162 
2163 	if (status == 0) {
2164 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, true);
2165 	} else {
2166 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
2167 		spdk_for_each_channel(nvme_ctrlr,
2168 				      bdev_nvme_reset_destroy_qpair,
2169 				      NULL,
2170 				      bdev_nvme_reset_create_qpairs_failed);
2171 	}
2172 }
2173 
2174 static int
2175 bdev_nvme_reset_check_qpair_connected(void *ctx)
2176 {
2177 	struct nvme_ctrlr_channel *ctrlr_ch = ctx;
2178 
2179 	if (ctrlr_ch->reset_iter == NULL) {
2180 		/* qpair was already failed to connect and the reset sequence is being aborted. */
2181 		assert(ctrlr_ch->connect_poller == NULL);
2182 		assert(ctrlr_ch->qpair->qpair == NULL);
2183 		return SPDK_POLLER_BUSY;
2184 	}
2185 
2186 	assert(ctrlr_ch->qpair->qpair != NULL);
2187 
2188 	if (!spdk_nvme_qpair_is_connected(ctrlr_ch->qpair->qpair)) {
2189 		return SPDK_POLLER_BUSY;
2190 	}
2191 
2192 	spdk_poller_unregister(&ctrlr_ch->connect_poller);
2193 
2194 	/* qpair was completed to connect. Move to the next ctrlr_channel */
2195 	spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2196 	ctrlr_ch->reset_iter = NULL;
2197 
2198 	if (!g_opts.disable_auto_failback) {
2199 		_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
2200 	}
2201 
2202 	return SPDK_POLLER_BUSY;
2203 }
2204 
2205 static void
2206 bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
2207 {
2208 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2209 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
2210 	int rc;
2211 
2212 	rc = bdev_nvme_create_qpair(ctrlr_ch->qpair);
2213 	if (rc == 0) {
2214 		ctrlr_ch->connect_poller = SPDK_POLLER_REGISTER(bdev_nvme_reset_check_qpair_connected,
2215 					   ctrlr_ch, 0);
2216 
2217 		/* The current full reset sequence will move to the next
2218 		 * ctrlr_channel after the qpair is actually connected.
2219 		 */
2220 		assert(ctrlr_ch->reset_iter == NULL);
2221 		ctrlr_ch->reset_iter = i;
2222 	} else {
2223 		spdk_for_each_channel_continue(i, rc);
2224 	}
2225 }
2226 
2227 static void
2228 nvme_ctrlr_check_namespaces(struct nvme_ctrlr *nvme_ctrlr)
2229 {
2230 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
2231 	struct nvme_ns *nvme_ns;
2232 
2233 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
2234 	     nvme_ns != NULL;
2235 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
2236 		if (!spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
2237 			SPDK_DEBUGLOG(bdev_nvme, "NSID %u was removed during reset.\n", nvme_ns->id);
2238 			/* NS can be added again. Just nullify nvme_ns->ns. */
2239 			nvme_ns->ns = NULL;
2240 		}
2241 	}
2242 }
2243 
2244 
2245 static int
2246 bdev_nvme_reconnect_ctrlr_poll(void *arg)
2247 {
2248 	struct nvme_ctrlr *nvme_ctrlr = arg;
2249 	int rc = -ETIMEDOUT;
2250 
2251 	if (!bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2252 		rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
2253 		if (rc == -EAGAIN) {
2254 			return SPDK_POLLER_BUSY;
2255 		}
2256 	}
2257 
2258 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
2259 	if (rc == 0) {
2260 		nvme_ctrlr_check_namespaces(nvme_ctrlr);
2261 
2262 		/* Recreate all of the I/O queue pairs */
2263 		spdk_for_each_channel(nvme_ctrlr,
2264 				      bdev_nvme_reset_create_qpair,
2265 				      NULL,
2266 				      bdev_nvme_reset_create_qpairs_done);
2267 	} else {
2268 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2269 	}
2270 	return SPDK_POLLER_BUSY;
2271 }
2272 
2273 static void
2274 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2275 {
2276 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
2277 
2278 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
2279 	assert(nvme_ctrlr->reset_detach_poller == NULL);
2280 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
2281 					  nvme_ctrlr, 0);
2282 }
2283 
2284 static void
2285 bdev_nvme_reset_destroy_qpair_done(struct spdk_io_channel_iter *i, int status)
2286 {
2287 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2288 
2289 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
2290 	assert(status == 0);
2291 
2292 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2293 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2294 	} else {
2295 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2296 	}
2297 }
2298 
2299 static void
2300 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2301 {
2302 	spdk_for_each_channel(nvme_ctrlr,
2303 			      bdev_nvme_reset_destroy_qpair,
2304 			      NULL,
2305 			      bdev_nvme_reset_destroy_qpair_done);
2306 }
2307 
2308 static void
2309 bdev_nvme_reconnect_ctrlr_now(void *ctx)
2310 {
2311 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2312 
2313 	assert(nvme_ctrlr->resetting == true);
2314 	assert(nvme_ctrlr->thread == spdk_get_thread());
2315 
2316 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2317 
2318 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2319 
2320 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2321 }
2322 
2323 static void
2324 _bdev_nvme_reset_ctrlr(void *ctx)
2325 {
2326 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2327 
2328 	assert(nvme_ctrlr->resetting == true);
2329 	assert(nvme_ctrlr->thread == spdk_get_thread());
2330 
2331 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2332 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
2333 	} else {
2334 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
2335 	}
2336 }
2337 
2338 static int
2339 bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2340 {
2341 	spdk_msg_fn msg_fn;
2342 
2343 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2344 	if (nvme_ctrlr->destruct) {
2345 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2346 		return -ENXIO;
2347 	}
2348 
2349 	if (nvme_ctrlr->resetting) {
2350 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2351 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
2352 		return -EBUSY;
2353 	}
2354 
2355 	if (nvme_ctrlr->disabled) {
2356 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2357 		SPDK_NOTICELOG("Unable to perform reset. Controller is disabled.\n");
2358 		return -EALREADY;
2359 	}
2360 
2361 	nvme_ctrlr->resetting = true;
2362 	nvme_ctrlr->dont_retry = true;
2363 
2364 	if (nvme_ctrlr->reconnect_is_delayed) {
2365 		SPDK_DEBUGLOG(bdev_nvme, "Reconnect is already scheduled.\n");
2366 		msg_fn = bdev_nvme_reconnect_ctrlr_now;
2367 		nvme_ctrlr->reconnect_is_delayed = false;
2368 	} else {
2369 		msg_fn = _bdev_nvme_reset_ctrlr;
2370 		assert(nvme_ctrlr->reset_start_tsc == 0);
2371 	}
2372 
2373 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2374 
2375 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2376 
2377 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2378 	return 0;
2379 }
2380 
2381 static int
2382 bdev_nvme_enable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2383 {
2384 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2385 	if (nvme_ctrlr->destruct) {
2386 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2387 		return -ENXIO;
2388 	}
2389 
2390 	if (nvme_ctrlr->resetting) {
2391 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2392 		return -EBUSY;
2393 	}
2394 
2395 	if (!nvme_ctrlr->disabled) {
2396 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2397 		return -EALREADY;
2398 	}
2399 
2400 	nvme_ctrlr->disabled = false;
2401 	nvme_ctrlr->resetting = true;
2402 
2403 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2404 
2405 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2406 
2407 	spdk_thread_send_msg(nvme_ctrlr->thread, bdev_nvme_reconnect_ctrlr_now, nvme_ctrlr);
2408 	return 0;
2409 }
2410 
2411 static void
2412 _bdev_nvme_disable_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2413 {
2414 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2415 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2416 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2417 	enum bdev_nvme_op_after_reset op_after_disable;
2418 
2419 	assert(nvme_ctrlr->thread == spdk_get_thread());
2420 
2421 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2422 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2423 
2424 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2425 
2426 	nvme_ctrlr->resetting = false;
2427 	nvme_ctrlr->dont_retry = false;
2428 
2429 	op_after_disable = bdev_nvme_check_op_after_reset(nvme_ctrlr, true);
2430 
2431 	nvme_ctrlr->disabled = true;
2432 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2433 
2434 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2435 
2436 	if (ctrlr_op_cb_fn) {
2437 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, 0);
2438 	}
2439 
2440 	switch (op_after_disable) {
2441 	case OP_COMPLETE_PENDING_DESTRUCT:
2442 		nvme_ctrlr_unregister(nvme_ctrlr);
2443 		break;
2444 	default:
2445 		break;
2446 	}
2447 
2448 }
2449 
2450 static void
2451 bdev_nvme_disable_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr)
2452 {
2453 	/* Make sure we clear any pending resets before returning. */
2454 	spdk_for_each_channel(nvme_ctrlr,
2455 			      bdev_nvme_complete_pending_resets,
2456 			      NULL,
2457 			      _bdev_nvme_disable_ctrlr_complete);
2458 }
2459 
2460 static void
2461 bdev_nvme_disable_destroy_qpairs_done(struct spdk_io_channel_iter *i, int status)
2462 {
2463 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2464 
2465 	assert(status == 0);
2466 
2467 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2468 		bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2469 	} else {
2470 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_ctrlr_complete);
2471 	}
2472 }
2473 
2474 static void
2475 bdev_nvme_disable_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2476 {
2477 	spdk_for_each_channel(nvme_ctrlr,
2478 			      bdev_nvme_reset_destroy_qpair,
2479 			      NULL,
2480 			      bdev_nvme_disable_destroy_qpairs_done);
2481 }
2482 
2483 static void
2484 _bdev_nvme_cancel_reconnect_and_disable_ctrlr(void *ctx)
2485 {
2486 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2487 
2488 	assert(nvme_ctrlr->resetting == true);
2489 	assert(nvme_ctrlr->thread == spdk_get_thread());
2490 
2491 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2492 
2493 	bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2494 }
2495 
2496 static void
2497 _bdev_nvme_disconnect_and_disable_ctrlr(void *ctx)
2498 {
2499 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2500 
2501 	assert(nvme_ctrlr->resetting == true);
2502 	assert(nvme_ctrlr->thread == spdk_get_thread());
2503 
2504 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2505 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_destroy_qpairs);
2506 	} else {
2507 		bdev_nvme_disable_destroy_qpairs(nvme_ctrlr);
2508 	}
2509 }
2510 
2511 static int
2512 bdev_nvme_disable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2513 {
2514 	spdk_msg_fn msg_fn;
2515 
2516 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2517 	if (nvme_ctrlr->destruct) {
2518 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2519 		return -ENXIO;
2520 	}
2521 
2522 	if (nvme_ctrlr->resetting) {
2523 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2524 		return -EBUSY;
2525 	}
2526 
2527 	if (nvme_ctrlr->disabled) {
2528 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2529 		return -EALREADY;
2530 	}
2531 
2532 	nvme_ctrlr->resetting = true;
2533 	nvme_ctrlr->dont_retry = true;
2534 
2535 	if (nvme_ctrlr->reconnect_is_delayed) {
2536 		msg_fn = _bdev_nvme_cancel_reconnect_and_disable_ctrlr;
2537 		nvme_ctrlr->reconnect_is_delayed = false;
2538 	} else {
2539 		msg_fn = _bdev_nvme_disconnect_and_disable_ctrlr;
2540 	}
2541 
2542 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2543 
2544 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2545 
2546 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2547 	return 0;
2548 }
2549 
2550 static int
2551 nvme_ctrlr_op(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2552 	      bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2553 {
2554 	int rc;
2555 
2556 	switch (op) {
2557 	case NVME_CTRLR_OP_RESET:
2558 		rc = bdev_nvme_reset_ctrlr(nvme_ctrlr);
2559 		break;
2560 	case NVME_CTRLR_OP_ENABLE:
2561 		rc = bdev_nvme_enable_ctrlr(nvme_ctrlr);
2562 		break;
2563 	case NVME_CTRLR_OP_DISABLE:
2564 		rc = bdev_nvme_disable_ctrlr(nvme_ctrlr);
2565 		break;
2566 	default:
2567 		rc = -EINVAL;
2568 		break;
2569 	}
2570 
2571 	if (rc == 0) {
2572 		assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL);
2573 		assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL);
2574 		nvme_ctrlr->ctrlr_op_cb_fn = cb_fn;
2575 		nvme_ctrlr->ctrlr_op_cb_arg = cb_arg;
2576 	}
2577 	return rc;
2578 }
2579 
2580 struct nvme_ctrlr_op_rpc_ctx {
2581 	struct nvme_ctrlr *nvme_ctrlr;
2582 	struct spdk_thread *orig_thread;
2583 	enum nvme_ctrlr_op op;
2584 	int rc;
2585 	bdev_nvme_ctrlr_op_cb cb_fn;
2586 	void *cb_arg;
2587 };
2588 
2589 static void
2590 _nvme_ctrlr_op_rpc_complete(void *_ctx)
2591 {
2592 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2593 
2594 	assert(ctx != NULL);
2595 	assert(ctx->cb_fn != NULL);
2596 
2597 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2598 
2599 	free(ctx);
2600 }
2601 
2602 static void
2603 nvme_ctrlr_op_rpc_complete(void *cb_arg, int rc)
2604 {
2605 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2606 
2607 	ctx->rc = rc;
2608 
2609 	spdk_thread_send_msg(ctx->orig_thread, _nvme_ctrlr_op_rpc_complete, ctx);
2610 }
2611 
2612 void
2613 nvme_ctrlr_op_rpc(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2614 		  bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2615 {
2616 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2617 	int rc;
2618 
2619 	assert(cb_fn != NULL);
2620 
2621 	ctx = calloc(1, sizeof(*ctx));
2622 	if (ctx == NULL) {
2623 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2624 		cb_fn(cb_arg, -ENOMEM);
2625 		return;
2626 	}
2627 
2628 	ctx->orig_thread = spdk_get_thread();
2629 	ctx->cb_fn = cb_fn;
2630 	ctx->cb_arg = cb_arg;
2631 
2632 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_ctrlr_op_rpc_complete, ctx);
2633 	if (rc == 0) {
2634 		return;
2635 	} else if (rc == -EALREADY) {
2636 		rc = 0;
2637 	}
2638 
2639 	nvme_ctrlr_op_rpc_complete(ctx, rc);
2640 }
2641 
2642 static void nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc);
2643 
2644 static void
2645 _nvme_bdev_ctrlr_op_rpc_continue(void *_ctx)
2646 {
2647 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2648 	struct nvme_ctrlr *prev_nvme_ctrlr, *next_nvme_ctrlr;
2649 	int rc;
2650 
2651 	prev_nvme_ctrlr = ctx->nvme_ctrlr;
2652 	ctx->nvme_ctrlr = NULL;
2653 
2654 	if (ctx->rc != 0) {
2655 		goto complete;
2656 	}
2657 
2658 	next_nvme_ctrlr = TAILQ_NEXT(prev_nvme_ctrlr, tailq);
2659 	if (next_nvme_ctrlr == NULL) {
2660 		goto complete;
2661 	}
2662 
2663 	rc = nvme_ctrlr_op(next_nvme_ctrlr, ctx->op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2664 	if (rc == 0) {
2665 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2666 		return;
2667 	} else if (rc == -EALREADY) {
2668 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2669 		rc = 0;
2670 	}
2671 
2672 	ctx->rc = rc;
2673 
2674 complete:
2675 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2676 	free(ctx);
2677 }
2678 
2679 static void
2680 nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc)
2681 {
2682 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2683 
2684 	ctx->rc = rc;
2685 
2686 	spdk_thread_send_msg(ctx->orig_thread, _nvme_bdev_ctrlr_op_rpc_continue, ctx);
2687 }
2688 
2689 void
2690 nvme_bdev_ctrlr_op_rpc(struct nvme_bdev_ctrlr *nbdev_ctrlr, enum nvme_ctrlr_op op,
2691 		       bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2692 {
2693 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2694 	struct nvme_ctrlr *nvme_ctrlr;
2695 	int rc;
2696 
2697 	assert(cb_fn != NULL);
2698 
2699 	ctx = calloc(1, sizeof(*ctx));
2700 	if (ctx == NULL) {
2701 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2702 		cb_fn(cb_arg, -ENOMEM);
2703 		return;
2704 	}
2705 
2706 	ctx->orig_thread = spdk_get_thread();
2707 	ctx->op = op;
2708 	ctx->cb_fn = cb_fn;
2709 	ctx->cb_arg = cb_arg;
2710 
2711 	nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
2712 	assert(nvme_ctrlr != NULL);
2713 
2714 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2715 	if (rc == 0) {
2716 		ctx->nvme_ctrlr = nvme_ctrlr;
2717 		return;
2718 	} else if (rc == -EALREADY) {
2719 		ctx->nvme_ctrlr = nvme_ctrlr;
2720 		rc = 0;
2721 	}
2722 
2723 	nvme_bdev_ctrlr_op_rpc_continue(ctx, rc);
2724 }
2725 
2726 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
2727 
2728 static void
2729 _bdev_nvme_reset_io_complete(struct spdk_io_channel_iter *i, int status)
2730 {
2731 	struct nvme_bdev_io *bio = spdk_io_channel_iter_get_ctx(i);
2732 	enum spdk_bdev_io_status io_status;
2733 
2734 	if (bio->cpl.cdw0 == 0) {
2735 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2736 	} else {
2737 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
2738 	}
2739 
2740 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
2741 }
2742 
2743 static void
2744 bdev_nvme_abort_bdev_channel(struct spdk_io_channel_iter *i)
2745 {
2746 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2747 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
2748 
2749 	bdev_nvme_abort_retry_ios(nbdev_ch);
2750 
2751 	spdk_for_each_channel_continue(i, 0);
2752 }
2753 
2754 static void
2755 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
2756 {
2757 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2758 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
2759 
2760 	/* Abort all queued I/Os for retry. */
2761 	spdk_for_each_channel(nbdev,
2762 			      bdev_nvme_abort_bdev_channel,
2763 			      bio,
2764 			      _bdev_nvme_reset_io_complete);
2765 }
2766 
2767 static void
2768 _bdev_nvme_reset_io_continue(void *ctx)
2769 {
2770 	struct nvme_bdev_io *bio = ctx;
2771 	struct nvme_io_path *prev_io_path, *next_io_path;
2772 	int rc;
2773 
2774 	prev_io_path = bio->io_path;
2775 	bio->io_path = NULL;
2776 
2777 	if (bio->cpl.cdw0 != 0) {
2778 		goto complete;
2779 	}
2780 
2781 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
2782 	if (next_io_path == NULL) {
2783 		goto complete;
2784 	}
2785 
2786 	rc = _bdev_nvme_reset_io(next_io_path, bio);
2787 	if (rc == 0) {
2788 		return;
2789 	}
2790 
2791 	bio->cpl.cdw0 = 1;
2792 
2793 complete:
2794 	bdev_nvme_reset_io_complete(bio);
2795 }
2796 
2797 static void
2798 bdev_nvme_reset_io_continue(void *cb_arg, int rc)
2799 {
2800 	struct nvme_bdev_io *bio = cb_arg;
2801 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2802 
2803 	bio->cpl.cdw0 = (rc == 0) ? 0 : 1;
2804 
2805 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), _bdev_nvme_reset_io_continue, bio);
2806 }
2807 
2808 static int
2809 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
2810 {
2811 	struct nvme_ctrlr_channel *ctrlr_ch;
2812 	int rc;
2813 
2814 	rc = nvme_ctrlr_op(io_path->qpair->ctrlr, NVME_CTRLR_OP_RESET,
2815 			   bdev_nvme_reset_io_continue, bio);
2816 	if (rc == 0) {
2817 		assert(bio->io_path == NULL);
2818 		bio->io_path = io_path;
2819 	} else if (rc == -EBUSY) {
2820 		ctrlr_ch = io_path->qpair->ctrlr_ch;
2821 		assert(ctrlr_ch != NULL);
2822 		/*
2823 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
2824 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
2825 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
2826 		 */
2827 		TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bio, retry_link);
2828 		rc = 0;
2829 	}
2830 
2831 	return rc;
2832 }
2833 
2834 static void
2835 bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio)
2836 {
2837 	struct nvme_io_path *io_path;
2838 	int rc;
2839 
2840 	bio->cpl.cdw0 = 0;
2841 
2842 	/* Reset all nvme_ctrlrs of a bdev controller sequentially. */
2843 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
2844 	assert(io_path != NULL);
2845 
2846 	rc = _bdev_nvme_reset_io(io_path, bio);
2847 	if (rc != 0) {
2848 		/* If the current nvme_ctrlr is disabled, skip it and move to the next nvme_ctrlr. */
2849 		bdev_nvme_reset_io_continue(bio, rc == -EALREADY);
2850 	}
2851 }
2852 
2853 static int
2854 bdev_nvme_failover_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool remove)
2855 {
2856 	if (nvme_ctrlr->destruct) {
2857 		/* Don't bother resetting if the controller is in the process of being destructed. */
2858 		return -ENXIO;
2859 	}
2860 
2861 	if (nvme_ctrlr->resetting) {
2862 		if (!nvme_ctrlr->in_failover) {
2863 			SPDK_NOTICELOG("Reset is already in progress. Defer failover until reset completes.\n");
2864 
2865 			/* Defer failover until reset completes. */
2866 			nvme_ctrlr->pending_failover = true;
2867 			return -EINPROGRESS;
2868 		} else {
2869 			SPDK_NOTICELOG("Unable to perform failover, already in progress.\n");
2870 			return -EBUSY;
2871 		}
2872 	}
2873 
2874 	bdev_nvme_failover_trid(nvme_ctrlr, remove, true);
2875 
2876 	if (nvme_ctrlr->reconnect_is_delayed) {
2877 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
2878 
2879 		/* We rely on the next reconnect for the failover. */
2880 		return -EALREADY;
2881 	}
2882 
2883 	if (nvme_ctrlr->disabled) {
2884 		SPDK_NOTICELOG("Controller is disabled.\n");
2885 
2886 		/* We rely on the enablement for the failover. */
2887 		return -EALREADY;
2888 	}
2889 
2890 	nvme_ctrlr->resetting = true;
2891 	nvme_ctrlr->in_failover = true;
2892 
2893 	assert(nvme_ctrlr->reset_start_tsc == 0);
2894 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2895 
2896 	return 0;
2897 }
2898 
2899 static int
2900 bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2901 {
2902 	int rc;
2903 
2904 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2905 	rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, false);
2906 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2907 
2908 	if (rc == 0) {
2909 		spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset_ctrlr, nvme_ctrlr);
2910 	} else if (rc == -EALREADY) {
2911 		rc = 0;
2912 	}
2913 
2914 	return rc;
2915 }
2916 
2917 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2918 			   uint64_t num_blocks);
2919 
2920 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2921 				  uint64_t num_blocks);
2922 
2923 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks,
2924 			  uint64_t src_offset_blocks,
2925 			  uint64_t num_blocks);
2926 
2927 static void
2928 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
2929 		     bool success)
2930 {
2931 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2932 	int ret;
2933 
2934 	if (!success) {
2935 		ret = -EINVAL;
2936 		goto exit;
2937 	}
2938 
2939 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
2940 		ret = -ENXIO;
2941 		goto exit;
2942 	}
2943 
2944 	ret = bdev_nvme_readv(bio,
2945 			      bdev_io->u.bdev.iovs,
2946 			      bdev_io->u.bdev.iovcnt,
2947 			      bdev_io->u.bdev.md_buf,
2948 			      bdev_io->u.bdev.num_blocks,
2949 			      bdev_io->u.bdev.offset_blocks,
2950 			      bdev_io->u.bdev.dif_check_flags,
2951 			      bdev_io->u.bdev.memory_domain,
2952 			      bdev_io->u.bdev.memory_domain_ctx,
2953 			      bdev_io->u.bdev.accel_sequence);
2954 
2955 exit:
2956 	if (spdk_unlikely(ret != 0)) {
2957 		bdev_nvme_io_complete(bio, ret);
2958 	}
2959 }
2960 
2961 static inline void
2962 _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
2963 {
2964 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2965 	struct spdk_bdev *bdev = bdev_io->bdev;
2966 	struct nvme_bdev_io *nbdev_io_to_abort;
2967 	int rc = 0;
2968 
2969 	switch (bdev_io->type) {
2970 	case SPDK_BDEV_IO_TYPE_READ:
2971 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
2972 
2973 			rc = bdev_nvme_readv(nbdev_io,
2974 					     bdev_io->u.bdev.iovs,
2975 					     bdev_io->u.bdev.iovcnt,
2976 					     bdev_io->u.bdev.md_buf,
2977 					     bdev_io->u.bdev.num_blocks,
2978 					     bdev_io->u.bdev.offset_blocks,
2979 					     bdev_io->u.bdev.dif_check_flags,
2980 					     bdev_io->u.bdev.memory_domain,
2981 					     bdev_io->u.bdev.memory_domain_ctx,
2982 					     bdev_io->u.bdev.accel_sequence);
2983 		} else {
2984 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
2985 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
2986 			rc = 0;
2987 		}
2988 		break;
2989 	case SPDK_BDEV_IO_TYPE_WRITE:
2990 		rc = bdev_nvme_writev(nbdev_io,
2991 				      bdev_io->u.bdev.iovs,
2992 				      bdev_io->u.bdev.iovcnt,
2993 				      bdev_io->u.bdev.md_buf,
2994 				      bdev_io->u.bdev.num_blocks,
2995 				      bdev_io->u.bdev.offset_blocks,
2996 				      bdev_io->u.bdev.dif_check_flags,
2997 				      bdev_io->u.bdev.memory_domain,
2998 				      bdev_io->u.bdev.memory_domain_ctx,
2999 				      bdev_io->u.bdev.accel_sequence);
3000 		break;
3001 	case SPDK_BDEV_IO_TYPE_COMPARE:
3002 		rc = bdev_nvme_comparev(nbdev_io,
3003 					bdev_io->u.bdev.iovs,
3004 					bdev_io->u.bdev.iovcnt,
3005 					bdev_io->u.bdev.md_buf,
3006 					bdev_io->u.bdev.num_blocks,
3007 					bdev_io->u.bdev.offset_blocks,
3008 					bdev_io->u.bdev.dif_check_flags);
3009 		break;
3010 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3011 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
3012 						   bdev_io->u.bdev.iovs,
3013 						   bdev_io->u.bdev.iovcnt,
3014 						   bdev_io->u.bdev.fused_iovs,
3015 						   bdev_io->u.bdev.fused_iovcnt,
3016 						   bdev_io->u.bdev.md_buf,
3017 						   bdev_io->u.bdev.num_blocks,
3018 						   bdev_io->u.bdev.offset_blocks,
3019 						   bdev_io->u.bdev.dif_check_flags);
3020 		break;
3021 	case SPDK_BDEV_IO_TYPE_UNMAP:
3022 		rc = bdev_nvme_unmap(nbdev_io,
3023 				     bdev_io->u.bdev.offset_blocks,
3024 				     bdev_io->u.bdev.num_blocks);
3025 		break;
3026 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3027 		rc =  bdev_nvme_write_zeroes(nbdev_io,
3028 					     bdev_io->u.bdev.offset_blocks,
3029 					     bdev_io->u.bdev.num_blocks);
3030 		break;
3031 	case SPDK_BDEV_IO_TYPE_RESET:
3032 		nbdev_io->io_path = NULL;
3033 		bdev_nvme_reset_io(nbdev_ch, nbdev_io);
3034 		return;
3035 
3036 	case SPDK_BDEV_IO_TYPE_FLUSH:
3037 		bdev_nvme_io_complete(nbdev_io, 0);
3038 		return;
3039 
3040 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3041 		rc = bdev_nvme_zone_appendv(nbdev_io,
3042 					    bdev_io->u.bdev.iovs,
3043 					    bdev_io->u.bdev.iovcnt,
3044 					    bdev_io->u.bdev.md_buf,
3045 					    bdev_io->u.bdev.num_blocks,
3046 					    bdev_io->u.bdev.offset_blocks,
3047 					    bdev_io->u.bdev.dif_check_flags);
3048 		break;
3049 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3050 		rc = bdev_nvme_get_zone_info(nbdev_io,
3051 					     bdev_io->u.zone_mgmt.zone_id,
3052 					     bdev_io->u.zone_mgmt.num_zones,
3053 					     bdev_io->u.zone_mgmt.buf);
3054 		break;
3055 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3056 		rc = bdev_nvme_zone_management(nbdev_io,
3057 					       bdev_io->u.zone_mgmt.zone_id,
3058 					       bdev_io->u.zone_mgmt.zone_action);
3059 		break;
3060 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3061 		nbdev_io->io_path = NULL;
3062 		bdev_nvme_admin_passthru(nbdev_ch,
3063 					 nbdev_io,
3064 					 &bdev_io->u.nvme_passthru.cmd,
3065 					 bdev_io->u.nvme_passthru.buf,
3066 					 bdev_io->u.nvme_passthru.nbytes);
3067 		return;
3068 
3069 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3070 		rc = bdev_nvme_io_passthru(nbdev_io,
3071 					   &bdev_io->u.nvme_passthru.cmd,
3072 					   bdev_io->u.nvme_passthru.buf,
3073 					   bdev_io->u.nvme_passthru.nbytes);
3074 		break;
3075 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3076 		rc = bdev_nvme_io_passthru_md(nbdev_io,
3077 					      &bdev_io->u.nvme_passthru.cmd,
3078 					      bdev_io->u.nvme_passthru.buf,
3079 					      bdev_io->u.nvme_passthru.nbytes,
3080 					      bdev_io->u.nvme_passthru.md_buf,
3081 					      bdev_io->u.nvme_passthru.md_len);
3082 		break;
3083 	case SPDK_BDEV_IO_TYPE_NVME_IOV_MD:
3084 		rc = bdev_nvme_iov_passthru_md(nbdev_io,
3085 					       &bdev_io->u.nvme_passthru.cmd,
3086 					       bdev_io->u.nvme_passthru.iovs,
3087 					       bdev_io->u.nvme_passthru.iovcnt,
3088 					       bdev_io->u.nvme_passthru.nbytes,
3089 					       bdev_io->u.nvme_passthru.md_buf,
3090 					       bdev_io->u.nvme_passthru.md_len);
3091 		break;
3092 	case SPDK_BDEV_IO_TYPE_ABORT:
3093 		nbdev_io->io_path = NULL;
3094 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
3095 		bdev_nvme_abort(nbdev_ch,
3096 				nbdev_io,
3097 				nbdev_io_to_abort);
3098 		return;
3099 
3100 	case SPDK_BDEV_IO_TYPE_COPY:
3101 		rc = bdev_nvme_copy(nbdev_io,
3102 				    bdev_io->u.bdev.offset_blocks,
3103 				    bdev_io->u.bdev.copy.src_offset_blocks,
3104 				    bdev_io->u.bdev.num_blocks);
3105 		break;
3106 	default:
3107 		rc = -EINVAL;
3108 		break;
3109 	}
3110 
3111 	if (spdk_unlikely(rc != 0)) {
3112 		bdev_nvme_io_complete(nbdev_io, rc);
3113 	}
3114 }
3115 
3116 static void
3117 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
3118 {
3119 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3120 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3121 
3122 	if (spdk_likely(nbdev_io->submit_tsc == 0)) {
3123 		nbdev_io->submit_tsc = spdk_bdev_io_get_submit_tsc(bdev_io);
3124 	} else {
3125 		/* There are cases where submit_tsc != 0, i.e. retry I/O.
3126 		 * We need to update submit_tsc here.
3127 		 */
3128 		nbdev_io->submit_tsc = spdk_get_ticks();
3129 	}
3130 
3131 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
3132 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
3133 	if (spdk_unlikely(!nbdev_io->io_path)) {
3134 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
3135 			bdev_nvme_io_complete(nbdev_io, -ENXIO);
3136 			return;
3137 		}
3138 
3139 		/* Admin commands do not use the optimal I/O path.
3140 		 * Simply fall through even if it is not found.
3141 		 */
3142 	}
3143 
3144 	_bdev_nvme_submit_request(nbdev_ch, bdev_io);
3145 }
3146 
3147 static bool
3148 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
3149 {
3150 	struct nvme_bdev *nbdev = ctx;
3151 	struct nvme_ns *nvme_ns;
3152 	struct spdk_nvme_ns *ns;
3153 	struct spdk_nvme_ctrlr *ctrlr;
3154 	const struct spdk_nvme_ctrlr_data *cdata;
3155 
3156 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
3157 	assert(nvme_ns != NULL);
3158 	ns = nvme_ns->ns;
3159 	if (ns == NULL) {
3160 		return false;
3161 	}
3162 
3163 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3164 
3165 	switch (io_type) {
3166 	case SPDK_BDEV_IO_TYPE_READ:
3167 	case SPDK_BDEV_IO_TYPE_WRITE:
3168 	case SPDK_BDEV_IO_TYPE_RESET:
3169 	case SPDK_BDEV_IO_TYPE_FLUSH:
3170 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3171 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3172 	case SPDK_BDEV_IO_TYPE_ABORT:
3173 		return true;
3174 
3175 	case SPDK_BDEV_IO_TYPE_COMPARE:
3176 		return spdk_nvme_ns_supports_compare(ns);
3177 
3178 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3179 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
3180 
3181 	case SPDK_BDEV_IO_TYPE_UNMAP:
3182 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3183 		return cdata->oncs.dsm;
3184 
3185 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3186 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3187 		return cdata->oncs.write_zeroes;
3188 
3189 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3190 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
3191 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
3192 			return true;
3193 		}
3194 		return false;
3195 
3196 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3197 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3198 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
3199 
3200 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3201 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
3202 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
3203 
3204 	case SPDK_BDEV_IO_TYPE_COPY:
3205 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3206 		return cdata->oncs.copy;
3207 
3208 	default:
3209 		return false;
3210 	}
3211 }
3212 
3213 static int
3214 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
3215 {
3216 	struct nvme_qpair *nvme_qpair;
3217 	struct spdk_io_channel *pg_ch;
3218 	int rc;
3219 
3220 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
3221 	if (!nvme_qpair) {
3222 		SPDK_ERRLOG("Failed to alloc nvme_qpair.\n");
3223 		return -1;
3224 	}
3225 
3226 	TAILQ_INIT(&nvme_qpair->io_path_list);
3227 
3228 	nvme_qpair->ctrlr = nvme_ctrlr;
3229 	nvme_qpair->ctrlr_ch = ctrlr_ch;
3230 
3231 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
3232 	if (!pg_ch) {
3233 		free(nvme_qpair);
3234 		return -1;
3235 	}
3236 
3237 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
3238 
3239 #ifdef SPDK_CONFIG_VTUNE
3240 	nvme_qpair->group->collect_spin_stat = true;
3241 #else
3242 	nvme_qpair->group->collect_spin_stat = false;
3243 #endif
3244 
3245 	if (!nvme_ctrlr->disabled) {
3246 		/* If a nvme_ctrlr is disabled, don't try to create qpair for it. Qpair will
3247 		 * be created when it's enabled.
3248 		 */
3249 		rc = bdev_nvme_create_qpair(nvme_qpair);
3250 		if (rc != 0) {
3251 			/* nvme_ctrlr can't create IO qpair if connection is down.
3252 			 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
3253 			 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
3254 			 * submitted IO will be queued until IO qpair is successfully created.
3255 			 *
3256 			 * Hence, if both are satisfied, ignore the failure.
3257 			 */
3258 			if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
3259 				spdk_put_io_channel(pg_ch);
3260 				free(nvme_qpair);
3261 				return rc;
3262 			}
3263 		}
3264 	}
3265 
3266 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3267 
3268 	ctrlr_ch->qpair = nvme_qpair;
3269 
3270 	pthread_mutex_lock(&nvme_qpair->ctrlr->mutex);
3271 	nvme_qpair->ctrlr->ref++;
3272 	pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex);
3273 
3274 	return 0;
3275 }
3276 
3277 static int
3278 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3279 {
3280 	struct nvme_ctrlr *nvme_ctrlr = io_device;
3281 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3282 
3283 	TAILQ_INIT(&ctrlr_ch->pending_resets);
3284 
3285 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
3286 }
3287 
3288 static void
3289 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
3290 {
3291 	struct nvme_io_path *io_path, *next;
3292 
3293 	assert(nvme_qpair->group != NULL);
3294 
3295 	TAILQ_FOREACH_SAFE(io_path, &nvme_qpair->io_path_list, tailq, next) {
3296 		TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
3297 		nvme_io_path_free(io_path);
3298 	}
3299 
3300 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3301 
3302 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
3303 
3304 	nvme_ctrlr_release(nvme_qpair->ctrlr);
3305 
3306 	free(nvme_qpair);
3307 }
3308 
3309 static void
3310 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3311 {
3312 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3313 	struct nvme_qpair *nvme_qpair;
3314 
3315 	nvme_qpair = ctrlr_ch->qpair;
3316 	assert(nvme_qpair != NULL);
3317 
3318 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
3319 
3320 	if (nvme_qpair->qpair != NULL) {
3321 		if (ctrlr_ch->reset_iter == NULL) {
3322 			spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
3323 		} else {
3324 			/* Skip current ctrlr_channel in a full reset sequence because
3325 			 * it is being deleted now. The qpair is already being disconnected.
3326 			 * We do not have to restart disconnecting it.
3327 			 */
3328 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
3329 		}
3330 
3331 		/* We cannot release a reference to the poll group now.
3332 		 * The qpair may be disconnected asynchronously later.
3333 		 * We need to poll it until it is actually disconnected.
3334 		 * Just detach the qpair from the deleting ctrlr_channel.
3335 		 */
3336 		nvme_qpair->ctrlr_ch = NULL;
3337 	} else {
3338 		assert(ctrlr_ch->reset_iter == NULL);
3339 
3340 		nvme_qpair_delete(nvme_qpair);
3341 	}
3342 }
3343 
3344 static inline struct spdk_io_channel *
3345 bdev_nvme_get_accel_channel(struct nvme_poll_group *group)
3346 {
3347 	if (spdk_unlikely(!group->accel_channel)) {
3348 		group->accel_channel = spdk_accel_get_io_channel();
3349 		if (!group->accel_channel) {
3350 			SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
3351 				    group);
3352 			return NULL;
3353 		}
3354 	}
3355 
3356 	return group->accel_channel;
3357 }
3358 
3359 static void
3360 bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
3361 			      uint32_t iov_cnt, uint32_t seed,
3362 			      spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3363 {
3364 	struct spdk_io_channel *accel_ch;
3365 	struct nvme_poll_group *group = ctx;
3366 	int rc;
3367 
3368 	assert(cb_fn != NULL);
3369 
3370 	accel_ch = bdev_nvme_get_accel_channel(group);
3371 	if (spdk_unlikely(accel_ch == NULL)) {
3372 		cb_fn(cb_arg, -ENOMEM);
3373 		return;
3374 	}
3375 
3376 	rc = spdk_accel_submit_crc32cv(accel_ch, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
3377 	if (rc) {
3378 		/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
3379 		if (rc == -ENOMEM || rc == -EINVAL) {
3380 			cb_fn(cb_arg, rc);
3381 		}
3382 		SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
3383 	}
3384 }
3385 
3386 static void
3387 bdev_nvme_finish_sequence(void *seq, spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3388 {
3389 	spdk_accel_sequence_finish(seq, cb_fn, cb_arg);
3390 }
3391 
3392 static void
3393 bdev_nvme_abort_sequence(void *seq)
3394 {
3395 	spdk_accel_sequence_abort(seq);
3396 }
3397 
3398 static void
3399 bdev_nvme_reverse_sequence(void *seq)
3400 {
3401 	spdk_accel_sequence_reverse(seq);
3402 }
3403 
3404 static int
3405 bdev_nvme_append_crc32c(void *ctx, void **seq, uint32_t *dst, struct iovec *iovs, uint32_t iovcnt,
3406 			struct spdk_memory_domain *domain, void *domain_ctx, uint32_t seed,
3407 			spdk_nvme_accel_step_cb cb_fn, void *cb_arg)
3408 {
3409 	struct spdk_io_channel *ch;
3410 	struct nvme_poll_group *group = ctx;
3411 
3412 	ch = bdev_nvme_get_accel_channel(group);
3413 	if (spdk_unlikely(ch == NULL)) {
3414 		return -ENOMEM;
3415 	}
3416 
3417 	return spdk_accel_append_crc32c((struct spdk_accel_sequence **)seq, ch, dst, iovs, iovcnt,
3418 					domain, domain_ctx, seed, cb_fn, cb_arg);
3419 }
3420 
3421 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
3422 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
3423 	.submit_accel_crc32c	= bdev_nvme_submit_accel_crc32c,
3424 	.append_crc32c		= bdev_nvme_append_crc32c,
3425 	.finish_sequence	= bdev_nvme_finish_sequence,
3426 	.reverse_sequence	= bdev_nvme_reverse_sequence,
3427 	.abort_sequence		= bdev_nvme_abort_sequence,
3428 };
3429 
3430 static int
3431 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
3432 {
3433 	struct nvme_poll_group *group = ctx_buf;
3434 
3435 	TAILQ_INIT(&group->qpair_list);
3436 
3437 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
3438 	if (group->group == NULL) {
3439 		return -1;
3440 	}
3441 
3442 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
3443 
3444 	if (group->poller == NULL) {
3445 		spdk_nvme_poll_group_destroy(group->group);
3446 		return -1;
3447 	}
3448 
3449 	return 0;
3450 }
3451 
3452 static void
3453 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
3454 {
3455 	struct nvme_poll_group *group = ctx_buf;
3456 
3457 	assert(TAILQ_EMPTY(&group->qpair_list));
3458 
3459 	if (group->accel_channel) {
3460 		spdk_put_io_channel(group->accel_channel);
3461 	}
3462 
3463 	spdk_poller_unregister(&group->poller);
3464 	if (spdk_nvme_poll_group_destroy(group->group)) {
3465 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
3466 		assert(false);
3467 	}
3468 }
3469 
3470 static struct spdk_io_channel *
3471 bdev_nvme_get_io_channel(void *ctx)
3472 {
3473 	struct nvme_bdev *nvme_bdev = ctx;
3474 
3475 	return spdk_get_io_channel(nvme_bdev);
3476 }
3477 
3478 static void *
3479 bdev_nvme_get_module_ctx(void *ctx)
3480 {
3481 	struct nvme_bdev *nvme_bdev = ctx;
3482 	struct nvme_ns *nvme_ns;
3483 
3484 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
3485 		return NULL;
3486 	}
3487 
3488 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
3489 	if (!nvme_ns) {
3490 		return NULL;
3491 	}
3492 
3493 	return nvme_ns->ns;
3494 }
3495 
3496 static const char *
3497 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
3498 {
3499 	switch (ana_state) {
3500 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3501 		return "optimized";
3502 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3503 		return "non_optimized";
3504 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3505 		return "inaccessible";
3506 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
3507 		return "persistent_loss";
3508 	case SPDK_NVME_ANA_CHANGE_STATE:
3509 		return "change";
3510 	default:
3511 		return NULL;
3512 	}
3513 }
3514 
3515 static int
3516 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
3517 {
3518 	struct spdk_memory_domain **_domains = NULL;
3519 	struct nvme_bdev *nbdev = ctx;
3520 	struct nvme_ns *nvme_ns;
3521 	int i = 0, _array_size = array_size;
3522 	int rc = 0;
3523 
3524 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3525 		if (domains && array_size >= i) {
3526 			_domains = &domains[i];
3527 		} else {
3528 			_domains = NULL;
3529 		}
3530 		rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size);
3531 		if (rc > 0) {
3532 			i += rc;
3533 			if (_array_size >= rc) {
3534 				_array_size -= rc;
3535 			} else {
3536 				_array_size = 0;
3537 			}
3538 		} else if (rc < 0) {
3539 			return rc;
3540 		}
3541 	}
3542 
3543 	return i;
3544 }
3545 
3546 static const char *
3547 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
3548 {
3549 	if (nvme_ctrlr->destruct) {
3550 		return "deleting";
3551 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
3552 		return "failed";
3553 	} else if (nvme_ctrlr->resetting) {
3554 		return "resetting";
3555 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
3556 		return "reconnect_is_delayed";
3557 	} else if (nvme_ctrlr->disabled) {
3558 		return "disabled";
3559 	} else {
3560 		return "enabled";
3561 	}
3562 }
3563 
3564 void
3565 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
3566 {
3567 	struct spdk_nvme_transport_id *trid;
3568 	const struct spdk_nvme_ctrlr_opts *opts;
3569 	const struct spdk_nvme_ctrlr_data *cdata;
3570 	struct nvme_path_id *path_id;
3571 
3572 	spdk_json_write_object_begin(w);
3573 
3574 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
3575 
3576 #ifdef SPDK_CONFIG_NVME_CUSE
3577 	size_t cuse_name_size = 128;
3578 	char cuse_name[cuse_name_size];
3579 
3580 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
3581 	if (rc == 0) {
3582 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3583 	}
3584 #endif
3585 	trid = &nvme_ctrlr->active_path_id->trid;
3586 	spdk_json_write_named_object_begin(w, "trid");
3587 	nvme_bdev_dump_trid_json(trid, w);
3588 	spdk_json_write_object_end(w);
3589 
3590 	path_id = TAILQ_NEXT(nvme_ctrlr->active_path_id, link);
3591 	if (path_id != NULL) {
3592 		spdk_json_write_named_array_begin(w, "alternate_trids");
3593 		do {
3594 			trid = &path_id->trid;
3595 			spdk_json_write_object_begin(w);
3596 			nvme_bdev_dump_trid_json(trid, w);
3597 			spdk_json_write_object_end(w);
3598 
3599 			path_id = TAILQ_NEXT(path_id, link);
3600 		} while (path_id != NULL);
3601 		spdk_json_write_array_end(w);
3602 	}
3603 
3604 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
3605 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3606 
3607 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
3608 	spdk_json_write_named_object_begin(w, "host");
3609 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
3610 	spdk_json_write_named_string(w, "addr", opts->src_addr);
3611 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
3612 	spdk_json_write_object_end(w);
3613 
3614 	spdk_json_write_object_end(w);
3615 }
3616 
3617 static void
3618 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
3619 			 struct nvme_ns *nvme_ns)
3620 {
3621 	struct spdk_nvme_ns *ns;
3622 	struct spdk_nvme_ctrlr *ctrlr;
3623 	const struct spdk_nvme_ctrlr_data *cdata;
3624 	const struct spdk_nvme_transport_id *trid;
3625 	union spdk_nvme_vs_register vs;
3626 	const struct spdk_nvme_ns_data *nsdata;
3627 	char buf[128];
3628 
3629 	ns = nvme_ns->ns;
3630 	if (ns == NULL) {
3631 		return;
3632 	}
3633 
3634 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3635 
3636 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3637 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
3638 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
3639 
3640 	spdk_json_write_object_begin(w);
3641 
3642 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
3643 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
3644 	}
3645 
3646 	spdk_json_write_named_object_begin(w, "trid");
3647 
3648 	nvme_bdev_dump_trid_json(trid, w);
3649 
3650 	spdk_json_write_object_end(w);
3651 
3652 #ifdef SPDK_CONFIG_NVME_CUSE
3653 	size_t cuse_name_size = 128;
3654 	char cuse_name[cuse_name_size];
3655 
3656 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
3657 					    cuse_name, &cuse_name_size);
3658 	if (rc == 0) {
3659 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3660 	}
3661 #endif
3662 
3663 	spdk_json_write_named_object_begin(w, "ctrlr_data");
3664 
3665 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3666 
3667 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
3668 
3669 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
3670 	spdk_str_trim(buf);
3671 	spdk_json_write_named_string(w, "model_number", buf);
3672 
3673 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
3674 	spdk_str_trim(buf);
3675 	spdk_json_write_named_string(w, "serial_number", buf);
3676 
3677 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
3678 	spdk_str_trim(buf);
3679 	spdk_json_write_named_string(w, "firmware_revision", buf);
3680 
3681 	if (cdata->subnqn[0] != '\0') {
3682 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
3683 	}
3684 
3685 	spdk_json_write_named_object_begin(w, "oacs");
3686 
3687 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
3688 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
3689 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
3690 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
3691 
3692 	spdk_json_write_object_end(w);
3693 
3694 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
3695 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
3696 
3697 	spdk_json_write_object_end(w);
3698 
3699 	spdk_json_write_named_object_begin(w, "vs");
3700 
3701 	spdk_json_write_name(w, "nvme_version");
3702 	if (vs.bits.ter) {
3703 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
3704 	} else {
3705 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
3706 	}
3707 
3708 	spdk_json_write_object_end(w);
3709 
3710 	nsdata = spdk_nvme_ns_get_data(ns);
3711 
3712 	spdk_json_write_named_object_begin(w, "ns_data");
3713 
3714 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
3715 
3716 	if (cdata->cmic.ana_reporting) {
3717 		spdk_json_write_named_string(w, "ana_state",
3718 					     _nvme_ana_state_str(nvme_ns->ana_state));
3719 	}
3720 
3721 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
3722 
3723 	spdk_json_write_object_end(w);
3724 
3725 	if (cdata->oacs.security) {
3726 		spdk_json_write_named_object_begin(w, "security");
3727 
3728 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
3729 
3730 		spdk_json_write_object_end(w);
3731 	}
3732 
3733 	spdk_json_write_object_end(w);
3734 }
3735 
3736 static const char *
3737 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
3738 {
3739 	switch (nbdev->mp_policy) {
3740 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
3741 		return "active_passive";
3742 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
3743 		return "active_active";
3744 	default:
3745 		assert(false);
3746 		return "invalid";
3747 	}
3748 }
3749 
3750 static int
3751 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
3752 {
3753 	struct nvme_bdev *nvme_bdev = ctx;
3754 	struct nvme_ns *nvme_ns;
3755 
3756 	pthread_mutex_lock(&nvme_bdev->mutex);
3757 	spdk_json_write_named_array_begin(w, "nvme");
3758 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
3759 		nvme_namespace_info_json(w, nvme_ns);
3760 	}
3761 	spdk_json_write_array_end(w);
3762 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
3763 	pthread_mutex_unlock(&nvme_bdev->mutex);
3764 
3765 	return 0;
3766 }
3767 
3768 static void
3769 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
3770 {
3771 	/* No config per bdev needed */
3772 }
3773 
3774 static uint64_t
3775 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
3776 {
3777 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3778 	struct nvme_io_path *io_path;
3779 	struct nvme_poll_group *group;
3780 	uint64_t spin_time = 0;
3781 
3782 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
3783 		group = io_path->qpair->group;
3784 
3785 		if (!group || !group->collect_spin_stat) {
3786 			continue;
3787 		}
3788 
3789 		if (group->end_ticks != 0) {
3790 			group->spin_ticks += (group->end_ticks - group->start_ticks);
3791 			group->end_ticks = 0;
3792 		}
3793 
3794 		spin_time += group->spin_ticks;
3795 		group->start_ticks = 0;
3796 		group->spin_ticks = 0;
3797 	}
3798 
3799 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
3800 }
3801 
3802 static void
3803 bdev_nvme_reset_device_stat(void *ctx)
3804 {
3805 	struct nvme_bdev *nbdev = ctx;
3806 
3807 	if (nbdev->err_stat != NULL) {
3808 		memset(nbdev->err_stat, 0, sizeof(struct nvme_error_stat));
3809 	}
3810 }
3811 
3812 /* JSON string should be lowercases and underscore delimited string. */
3813 static void
3814 bdev_nvme_format_nvme_status(char *dst, const char *src)
3815 {
3816 	char tmp[256];
3817 
3818 	spdk_strcpy_replace(dst, 256, src, " - ", "_");
3819 	spdk_strcpy_replace(tmp, 256, dst, "-", "_");
3820 	spdk_strcpy_replace(dst, 256, tmp, " ", "_");
3821 	spdk_strlwr(dst);
3822 }
3823 
3824 static void
3825 bdev_nvme_dump_device_stat_json(void *ctx, struct spdk_json_write_ctx *w)
3826 {
3827 	struct nvme_bdev *nbdev = ctx;
3828 	struct spdk_nvme_status status = {};
3829 	uint16_t sct, sc;
3830 	char status_json[256];
3831 	const char *status_str;
3832 
3833 	if (nbdev->err_stat == NULL) {
3834 		return;
3835 	}
3836 
3837 	spdk_json_write_named_object_begin(w, "nvme_error");
3838 
3839 	spdk_json_write_named_object_begin(w, "status_type");
3840 	for (sct = 0; sct < 8; sct++) {
3841 		if (nbdev->err_stat->status_type[sct] == 0) {
3842 			continue;
3843 		}
3844 		status.sct = sct;
3845 
3846 		status_str = spdk_nvme_cpl_get_status_type_string(&status);
3847 		assert(status_str != NULL);
3848 		bdev_nvme_format_nvme_status(status_json, status_str);
3849 
3850 		spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status_type[sct]);
3851 	}
3852 	spdk_json_write_object_end(w);
3853 
3854 	spdk_json_write_named_object_begin(w, "status_code");
3855 	for (sct = 0; sct < 4; sct++) {
3856 		status.sct = sct;
3857 		for (sc = 0; sc < 256; sc++) {
3858 			if (nbdev->err_stat->status[sct][sc] == 0) {
3859 				continue;
3860 			}
3861 			status.sc = sc;
3862 
3863 			status_str = spdk_nvme_cpl_get_status_string(&status);
3864 			assert(status_str != NULL);
3865 			bdev_nvme_format_nvme_status(status_json, status_str);
3866 
3867 			spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status[sct][sc]);
3868 		}
3869 	}
3870 	spdk_json_write_object_end(w);
3871 
3872 	spdk_json_write_object_end(w);
3873 }
3874 
3875 static bool
3876 bdev_nvme_accel_sequence_supported(void *ctx, enum spdk_bdev_io_type type)
3877 {
3878 	struct nvme_bdev *nbdev = ctx;
3879 	struct spdk_nvme_ctrlr *ctrlr;
3880 
3881 	if (!g_opts.allow_accel_sequence) {
3882 		return false;
3883 	}
3884 
3885 	switch (type) {
3886 	case SPDK_BDEV_IO_TYPE_WRITE:
3887 	case SPDK_BDEV_IO_TYPE_READ:
3888 		break;
3889 	default:
3890 		return false;
3891 	}
3892 
3893 	ctrlr = bdev_nvme_get_ctrlr(&nbdev->disk);
3894 	assert(ctrlr != NULL);
3895 
3896 	return spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ACCEL_SEQUENCE_SUPPORTED;
3897 }
3898 
3899 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
3900 	.destruct			= bdev_nvme_destruct,
3901 	.submit_request			= bdev_nvme_submit_request,
3902 	.io_type_supported		= bdev_nvme_io_type_supported,
3903 	.get_io_channel			= bdev_nvme_get_io_channel,
3904 	.dump_info_json			= bdev_nvme_dump_info_json,
3905 	.write_config_json		= bdev_nvme_write_config_json,
3906 	.get_spin_time			= bdev_nvme_get_spin_time,
3907 	.get_module_ctx			= bdev_nvme_get_module_ctx,
3908 	.get_memory_domains		= bdev_nvme_get_memory_domains,
3909 	.accel_sequence_supported	= bdev_nvme_accel_sequence_supported,
3910 	.reset_device_stat		= bdev_nvme_reset_device_stat,
3911 	.dump_device_stat_json		= bdev_nvme_dump_device_stat_json,
3912 };
3913 
3914 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
3915 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
3916 
3917 static int
3918 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
3919 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
3920 {
3921 	struct spdk_nvme_ana_group_descriptor *copied_desc;
3922 	uint8_t *orig_desc;
3923 	uint32_t i, desc_size, copy_len;
3924 	int rc = 0;
3925 
3926 	if (nvme_ctrlr->ana_log_page == NULL) {
3927 		return -EINVAL;
3928 	}
3929 
3930 	copied_desc = nvme_ctrlr->copied_ana_desc;
3931 
3932 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
3933 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
3934 
3935 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
3936 		memcpy(copied_desc, orig_desc, copy_len);
3937 
3938 		rc = cb_fn(copied_desc, cb_arg);
3939 		if (rc != 0) {
3940 			break;
3941 		}
3942 
3943 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
3944 			    copied_desc->num_of_nsid * sizeof(uint32_t);
3945 		orig_desc += desc_size;
3946 		copy_len -= desc_size;
3947 	}
3948 
3949 	return rc;
3950 }
3951 
3952 static int
3953 nvme_ns_ana_transition_timedout(void *ctx)
3954 {
3955 	struct nvme_ns *nvme_ns = ctx;
3956 
3957 	spdk_poller_unregister(&nvme_ns->anatt_timer);
3958 	nvme_ns->ana_transition_timedout = true;
3959 
3960 	return SPDK_POLLER_BUSY;
3961 }
3962 
3963 static void
3964 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
3965 		       const struct spdk_nvme_ana_group_descriptor *desc)
3966 {
3967 	const struct spdk_nvme_ctrlr_data *cdata;
3968 
3969 	nvme_ns->ana_group_id = desc->ana_group_id;
3970 	nvme_ns->ana_state = desc->ana_state;
3971 	nvme_ns->ana_state_updating = false;
3972 
3973 	switch (nvme_ns->ana_state) {
3974 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3975 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3976 		nvme_ns->ana_transition_timedout = false;
3977 		spdk_poller_unregister(&nvme_ns->anatt_timer);
3978 		break;
3979 
3980 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3981 	case SPDK_NVME_ANA_CHANGE_STATE:
3982 		if (nvme_ns->anatt_timer != NULL) {
3983 			break;
3984 		}
3985 
3986 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
3987 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
3988 				       nvme_ns,
3989 				       cdata->anatt * SPDK_SEC_TO_USEC);
3990 		break;
3991 	default:
3992 		break;
3993 	}
3994 }
3995 
3996 static int
3997 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
3998 {
3999 	struct nvme_ns *nvme_ns = cb_arg;
4000 	uint32_t i;
4001 
4002 	assert(nvme_ns->ns != NULL);
4003 
4004 	for (i = 0; i < desc->num_of_nsid; i++) {
4005 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
4006 			continue;
4007 		}
4008 
4009 		_nvme_ns_set_ana_state(nvme_ns, desc);
4010 		return 1;
4011 	}
4012 
4013 	return 0;
4014 }
4015 
4016 static int
4017 nvme_generate_uuid(const char *sn, uint32_t nsid, struct spdk_uuid *uuid)
4018 {
4019 	int rc = 0;
4020 	struct spdk_uuid new_uuid, namespace_uuid;
4021 	char merged_str[SPDK_NVME_CTRLR_SN_LEN + NSID_STR_LEN + 1] = {'\0'};
4022 	/* This namespace UUID was generated using uuid_generate() method. */
4023 	const char *namespace_str = {"edaed2de-24bc-4b07-b559-f47ecbe730fd"};
4024 	int size;
4025 
4026 	assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN);
4027 
4028 	spdk_uuid_set_null(&new_uuid);
4029 	spdk_uuid_set_null(&namespace_uuid);
4030 
4031 	size = snprintf(merged_str, sizeof(merged_str), "%s%"PRIu32, sn, nsid);
4032 	if (size <= 0 || (unsigned long)size >= sizeof(merged_str)) {
4033 		return -EINVAL;
4034 	}
4035 
4036 	spdk_uuid_parse(&namespace_uuid, namespace_str);
4037 
4038 	rc = spdk_uuid_generate_sha1(&new_uuid, &namespace_uuid, merged_str, size);
4039 	if (rc == 0) {
4040 		memcpy(uuid, &new_uuid, sizeof(struct spdk_uuid));
4041 	}
4042 
4043 	return rc;
4044 }
4045 
4046 static int
4047 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
4048 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
4049 		 uint32_t prchk_flags, void *ctx)
4050 {
4051 	const struct spdk_uuid		*uuid;
4052 	const uint8_t *nguid;
4053 	const struct spdk_nvme_ctrlr_data *cdata;
4054 	const struct spdk_nvme_ns_data	*nsdata;
4055 	const struct spdk_nvme_ctrlr_opts *opts;
4056 	enum spdk_nvme_csi		csi;
4057 	uint32_t atomic_bs, phys_bs, bs;
4058 	char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'};
4059 	int rc;
4060 
4061 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4062 	csi = spdk_nvme_ns_get_csi(ns);
4063 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
4064 
4065 	switch (csi) {
4066 	case SPDK_NVME_CSI_NVM:
4067 		disk->product_name = "NVMe disk";
4068 		break;
4069 	case SPDK_NVME_CSI_ZNS:
4070 		disk->product_name = "NVMe ZNS disk";
4071 		disk->zoned = true;
4072 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
4073 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
4074 					     spdk_nvme_ns_get_extended_sector_size(ns);
4075 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
4076 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
4077 		break;
4078 	default:
4079 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
4080 		return -ENOTSUP;
4081 	}
4082 
4083 	nguid = spdk_nvme_ns_get_nguid(ns);
4084 	if (!nguid) {
4085 		uuid = spdk_nvme_ns_get_uuid(ns);
4086 		if (uuid) {
4087 			disk->uuid = *uuid;
4088 		} else if (g_opts.generate_uuids) {
4089 			spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0');
4090 			rc = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns), &disk->uuid);
4091 			if (rc != 0) {
4092 				SPDK_ERRLOG("UUID generation failed (%s)\n", strerror(rc));
4093 				return rc;
4094 			}
4095 		}
4096 	} else {
4097 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
4098 	}
4099 
4100 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
4101 	if (!disk->name) {
4102 		return -ENOMEM;
4103 	}
4104 
4105 	disk->write_cache = 0;
4106 	if (cdata->vwc.present) {
4107 		/* Enable if the Volatile Write Cache exists */
4108 		disk->write_cache = 1;
4109 	}
4110 	if (cdata->oncs.write_zeroes) {
4111 		disk->max_write_zeroes = UINT16_MAX + 1;
4112 	}
4113 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
4114 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
4115 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
4116 	/* NVMe driver will split one request into multiple requests
4117 	 * based on MDTS and stripe boundary, the bdev layer will use
4118 	 * max_segment_size and max_num_segments to split one big IO
4119 	 * into multiple requests, then small request can't run out
4120 	 * of NVMe internal requests data structure.
4121 	 */
4122 	if (opts && opts->io_queue_requests) {
4123 		disk->max_num_segments = opts->io_queue_requests / 2;
4124 	}
4125 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
4126 		/* The nvme driver will try to split I/O that have too many
4127 		 * SGEs, but it doesn't work if that last SGE doesn't end on
4128 		 * an aggregate total that is block aligned. The bdev layer has
4129 		 * a more robust splitting framework, so use that instead for
4130 		 * this case. (See issue #3269.)
4131 		 */
4132 		uint16_t max_sges = spdk_nvme_ctrlr_get_max_sges(ctrlr);
4133 
4134 		if (disk->max_num_segments == 0) {
4135 			disk->max_num_segments = max_sges;
4136 		} else {
4137 			disk->max_num_segments = spdk_min(disk->max_num_segments, max_sges);
4138 		}
4139 	}
4140 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
4141 
4142 	nsdata = spdk_nvme_ns_get_data(ns);
4143 	bs = spdk_nvme_ns_get_sector_size(ns);
4144 	atomic_bs = bs;
4145 	phys_bs = bs;
4146 	if (nsdata->nabo == 0) {
4147 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
4148 			atomic_bs = bs * (1 + nsdata->nawupf);
4149 		} else {
4150 			atomic_bs = bs * (1 + cdata->awupf);
4151 		}
4152 	}
4153 	if (nsdata->nsfeat.optperf) {
4154 		phys_bs = bs * (1 + nsdata->npwg);
4155 	}
4156 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
4157 
4158 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
4159 	if (disk->md_len != 0) {
4160 		disk->md_interleave = nsdata->flbas.extended;
4161 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
4162 		if (disk->dif_type != SPDK_DIF_DISABLE) {
4163 			disk->dif_is_head_of_md = nsdata->dps.md_start;
4164 			disk->dif_check_flags = prchk_flags;
4165 		}
4166 	}
4167 
4168 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
4169 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
4170 		disk->acwu = 0;
4171 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
4172 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
4173 	} else {
4174 		disk->acwu = cdata->acwu + 1; /* 0-based */
4175 	}
4176 
4177 	if (cdata->oncs.copy) {
4178 		/* For now bdev interface allows only single segment copy */
4179 		disk->max_copy = nsdata->mssrl;
4180 	}
4181 
4182 	disk->ctxt = ctx;
4183 	disk->fn_table = &nvmelib_fn_table;
4184 	disk->module = &nvme_if;
4185 
4186 	return 0;
4187 }
4188 
4189 static struct nvme_bdev *
4190 nvme_bdev_alloc(void)
4191 {
4192 	struct nvme_bdev *bdev;
4193 	int rc;
4194 
4195 	bdev = calloc(1, sizeof(*bdev));
4196 	if (!bdev) {
4197 		SPDK_ERRLOG("bdev calloc() failed\n");
4198 		return NULL;
4199 	}
4200 
4201 	if (g_opts.nvme_error_stat) {
4202 		bdev->err_stat = calloc(1, sizeof(struct nvme_error_stat));
4203 		if (!bdev->err_stat) {
4204 			SPDK_ERRLOG("err_stat calloc() failed\n");
4205 			free(bdev);
4206 			return NULL;
4207 		}
4208 	}
4209 
4210 	rc = pthread_mutex_init(&bdev->mutex, NULL);
4211 	if (rc != 0) {
4212 		free(bdev->err_stat);
4213 		free(bdev);
4214 		return NULL;
4215 	}
4216 
4217 	bdev->ref = 1;
4218 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
4219 	bdev->mp_selector = BDEV_NVME_MP_SELECTOR_ROUND_ROBIN;
4220 	bdev->rr_min_io = UINT32_MAX;
4221 	TAILQ_INIT(&bdev->nvme_ns_list);
4222 
4223 	return bdev;
4224 }
4225 
4226 static int
4227 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4228 {
4229 	struct nvme_bdev *bdev;
4230 	struct nvme_bdev_ctrlr *nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
4231 	int rc;
4232 
4233 	bdev = nvme_bdev_alloc();
4234 	if (bdev == NULL) {
4235 		SPDK_ERRLOG("Failed to allocate NVMe bdev\n");
4236 		return -ENOMEM;
4237 	}
4238 
4239 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
4240 
4241 	rc = nvme_disk_create(&bdev->disk, nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
4242 			      nvme_ns->ns, nvme_ctrlr->opts.prchk_flags, bdev);
4243 	if (rc != 0) {
4244 		SPDK_ERRLOG("Failed to create NVMe disk\n");
4245 		nvme_bdev_free(bdev);
4246 		return rc;
4247 	}
4248 
4249 	spdk_io_device_register(bdev,
4250 				bdev_nvme_create_bdev_channel_cb,
4251 				bdev_nvme_destroy_bdev_channel_cb,
4252 				sizeof(struct nvme_bdev_channel),
4253 				bdev->disk.name);
4254 
4255 	nvme_ns->bdev = bdev;
4256 	bdev->nsid = nvme_ns->id;
4257 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4258 
4259 	bdev->nbdev_ctrlr = nbdev_ctrlr;
4260 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->bdevs, bdev, tailq);
4261 
4262 	rc = spdk_bdev_register(&bdev->disk);
4263 	if (rc != 0) {
4264 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
4265 		spdk_io_device_unregister(bdev, NULL);
4266 		nvme_ns->bdev = NULL;
4267 		TAILQ_REMOVE(&nbdev_ctrlr->bdevs, bdev, tailq);
4268 		nvme_bdev_free(bdev);
4269 		return rc;
4270 	}
4271 
4272 	return 0;
4273 }
4274 
4275 static bool
4276 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
4277 {
4278 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
4279 	const struct spdk_uuid *uuid1, *uuid2;
4280 
4281 	nsdata1 = spdk_nvme_ns_get_data(ns1);
4282 	nsdata2 = spdk_nvme_ns_get_data(ns2);
4283 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
4284 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
4285 
4286 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
4287 	       nsdata1->eui64 == nsdata2->eui64 &&
4288 	       ((uuid1 == NULL && uuid2 == NULL) ||
4289 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
4290 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
4291 }
4292 
4293 static bool
4294 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4295 		 struct spdk_nvme_ctrlr_opts *opts)
4296 {
4297 	struct nvme_probe_skip_entry *entry;
4298 
4299 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
4300 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4301 			return false;
4302 		}
4303 	}
4304 
4305 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
4306 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
4307 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
4308 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
4309 	opts->disable_read_ana_log_page = true;
4310 
4311 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
4312 
4313 	return true;
4314 }
4315 
4316 static void
4317 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
4318 {
4319 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4320 
4321 	if (spdk_nvme_cpl_is_error(cpl)) {
4322 		SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
4323 			     cpl->status.sct);
4324 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4325 	} else if (cpl->cdw0 & 0x1) {
4326 		SPDK_WARNLOG("Specified command could not be aborted.\n");
4327 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4328 	}
4329 }
4330 
4331 static void
4332 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
4333 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
4334 {
4335 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4336 	union spdk_nvme_csts_register csts;
4337 	int rc;
4338 
4339 	assert(nvme_ctrlr->ctrlr == ctrlr);
4340 
4341 	SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
4342 
4343 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
4344 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
4345 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
4346 	 * completion recursively.
4347 	 */
4348 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
4349 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
4350 		if (csts.bits.cfs) {
4351 			SPDK_ERRLOG("Controller Fatal Status, reset required\n");
4352 			bdev_nvme_reset_ctrlr(nvme_ctrlr);
4353 			return;
4354 		}
4355 	}
4356 
4357 	switch (g_opts.action_on_timeout) {
4358 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
4359 		if (qpair) {
4360 			/* Don't send abort to ctrlr when ctrlr is not available. */
4361 			pthread_mutex_lock(&nvme_ctrlr->mutex);
4362 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
4363 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
4364 				SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n");
4365 				return;
4366 			}
4367 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4368 
4369 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
4370 						       nvme_abort_cpl, nvme_ctrlr);
4371 			if (rc == 0) {
4372 				return;
4373 			}
4374 
4375 			SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
4376 		}
4377 
4378 	/* FALLTHROUGH */
4379 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
4380 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4381 		break;
4382 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
4383 		SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
4384 		break;
4385 	default:
4386 		SPDK_ERRLOG("An invalid timeout action value is found.\n");
4387 		break;
4388 	}
4389 }
4390 
4391 static struct nvme_ns *
4392 nvme_ns_alloc(void)
4393 {
4394 	struct nvme_ns *nvme_ns;
4395 
4396 	nvme_ns = calloc(1, sizeof(struct nvme_ns));
4397 	if (nvme_ns == NULL) {
4398 		return NULL;
4399 	}
4400 
4401 	if (g_opts.io_path_stat) {
4402 		nvme_ns->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
4403 		if (nvme_ns->stat == NULL) {
4404 			free(nvme_ns);
4405 			return NULL;
4406 		}
4407 		spdk_bdev_reset_io_stat(nvme_ns->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
4408 	}
4409 
4410 	return nvme_ns;
4411 }
4412 
4413 static void
4414 nvme_ns_free(struct nvme_ns *nvme_ns)
4415 {
4416 	free(nvme_ns->stat);
4417 	free(nvme_ns);
4418 }
4419 
4420 static void
4421 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
4422 {
4423 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4424 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
4425 
4426 	if (rc == 0) {
4427 		nvme_ns->probe_ctx = NULL;
4428 		pthread_mutex_lock(&nvme_ctrlr->mutex);
4429 		nvme_ctrlr->ref++;
4430 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4431 	} else {
4432 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4433 		nvme_ns_free(nvme_ns);
4434 	}
4435 
4436 	if (ctx) {
4437 		ctx->populates_in_progress--;
4438 		if (ctx->populates_in_progress == 0) {
4439 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4440 		}
4441 	}
4442 }
4443 
4444 static void
4445 bdev_nvme_add_io_path(struct spdk_io_channel_iter *i)
4446 {
4447 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4448 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4449 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4450 	int rc;
4451 
4452 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
4453 	if (rc != 0) {
4454 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
4455 	}
4456 
4457 	spdk_for_each_channel_continue(i, rc);
4458 }
4459 
4460 static void
4461 bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i)
4462 {
4463 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4464 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4465 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4466 	struct nvme_io_path *io_path;
4467 
4468 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
4469 	if (io_path != NULL) {
4470 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
4471 	}
4472 
4473 	spdk_for_each_channel_continue(i, 0);
4474 }
4475 
4476 static void
4477 bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status)
4478 {
4479 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4480 
4481 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
4482 }
4483 
4484 static void
4485 bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status)
4486 {
4487 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4488 	struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i);
4489 
4490 	if (status == 0) {
4491 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
4492 	} else {
4493 		/* Delete the added io_paths and fail populating the namespace. */
4494 		spdk_for_each_channel(bdev,
4495 				      bdev_nvme_delete_io_path,
4496 				      nvme_ns,
4497 				      bdev_nvme_add_io_path_failed);
4498 	}
4499 }
4500 
4501 static int
4502 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
4503 {
4504 	struct nvme_ns *tmp_ns;
4505 	const struct spdk_nvme_ns_data *nsdata;
4506 
4507 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
4508 	if (!nsdata->nmic.can_share) {
4509 		SPDK_ERRLOG("Namespace cannot be shared.\n");
4510 		return -EINVAL;
4511 	}
4512 
4513 	pthread_mutex_lock(&bdev->mutex);
4514 
4515 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
4516 	assert(tmp_ns != NULL);
4517 
4518 	if (tmp_ns->ns != NULL && !bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
4519 		pthread_mutex_unlock(&bdev->mutex);
4520 		SPDK_ERRLOG("Namespaces are not identical.\n");
4521 		return -EINVAL;
4522 	}
4523 
4524 	bdev->ref++;
4525 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4526 	nvme_ns->bdev = bdev;
4527 
4528 	pthread_mutex_unlock(&bdev->mutex);
4529 
4530 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
4531 	spdk_for_each_channel(bdev,
4532 			      bdev_nvme_add_io_path,
4533 			      nvme_ns,
4534 			      bdev_nvme_add_io_path_done);
4535 
4536 	return 0;
4537 }
4538 
4539 static void
4540 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4541 {
4542 	struct spdk_nvme_ns	*ns;
4543 	struct nvme_bdev	*bdev;
4544 	int			rc = 0;
4545 
4546 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
4547 	if (!ns) {
4548 		SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
4549 		rc = -EINVAL;
4550 		goto done;
4551 	}
4552 
4553 	nvme_ns->ns = ns;
4554 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4555 
4556 	if (nvme_ctrlr->ana_log_page != NULL) {
4557 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
4558 	}
4559 
4560 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
4561 	if (bdev == NULL) {
4562 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
4563 	} else {
4564 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
4565 		if (rc == 0) {
4566 			return;
4567 		}
4568 	}
4569 done:
4570 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
4571 }
4572 
4573 static void
4574 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
4575 {
4576 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4577 
4578 	assert(nvme_ctrlr != NULL);
4579 
4580 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4581 
4582 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4583 
4584 	if (nvme_ns->bdev != NULL) {
4585 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4586 		return;
4587 	}
4588 
4589 	nvme_ns_free(nvme_ns);
4590 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4591 
4592 	nvme_ctrlr_release(nvme_ctrlr);
4593 }
4594 
4595 static void
4596 bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status)
4597 {
4598 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4599 
4600 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4601 }
4602 
4603 static void
4604 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4605 {
4606 	struct nvme_bdev *bdev;
4607 
4608 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4609 
4610 	bdev = nvme_ns->bdev;
4611 	if (bdev != NULL) {
4612 		pthread_mutex_lock(&bdev->mutex);
4613 
4614 		assert(bdev->ref > 0);
4615 		bdev->ref--;
4616 		if (bdev->ref == 0) {
4617 			pthread_mutex_unlock(&bdev->mutex);
4618 
4619 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
4620 		} else {
4621 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
4622 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
4623 			 * and clear nvme_ns->bdev here.
4624 			 */
4625 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
4626 			nvme_ns->bdev = NULL;
4627 
4628 			pthread_mutex_unlock(&bdev->mutex);
4629 
4630 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
4631 			 * we call depopulate_namespace_done() to avoid use-after-free.
4632 			 */
4633 			spdk_for_each_channel(bdev,
4634 					      bdev_nvme_delete_io_path,
4635 					      nvme_ns,
4636 					      bdev_nvme_delete_io_path_done);
4637 			return;
4638 		}
4639 	}
4640 
4641 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4642 }
4643 
4644 static void
4645 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
4646 			       struct nvme_async_probe_ctx *ctx)
4647 {
4648 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
4649 	struct nvme_ns	*nvme_ns, *next;
4650 	struct spdk_nvme_ns	*ns;
4651 	struct nvme_bdev	*bdev;
4652 	uint32_t		nsid;
4653 	int			rc;
4654 	uint64_t		num_sectors;
4655 
4656 	if (ctx) {
4657 		/* Initialize this count to 1 to handle the populate functions
4658 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
4659 		 */
4660 		ctx->populates_in_progress = 1;
4661 	}
4662 
4663 	/* First loop over our existing namespaces and see if they have been
4664 	 * removed. */
4665 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4666 	while (nvme_ns != NULL) {
4667 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4668 
4669 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
4670 			/* NS is still there or added again. Its attributes may have changed. */
4671 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
4672 			if (nvme_ns->ns != ns) {
4673 				assert(nvme_ns->ns == NULL);
4674 				nvme_ns->ns = ns;
4675 				SPDK_DEBUGLOG(bdev_nvme, "NSID %u was added\n", nvme_ns->id);
4676 			}
4677 
4678 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
4679 			bdev = nvme_ns->bdev;
4680 			assert(bdev != NULL);
4681 			if (bdev->disk.blockcnt != num_sectors) {
4682 				SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
4683 					       nvme_ns->id,
4684 					       bdev->disk.name,
4685 					       bdev->disk.blockcnt,
4686 					       num_sectors);
4687 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
4688 				if (rc != 0) {
4689 					SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
4690 						    bdev->disk.name, rc);
4691 				}
4692 			}
4693 		} else {
4694 			/* Namespace was removed */
4695 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4696 		}
4697 
4698 		nvme_ns = next;
4699 	}
4700 
4701 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
4702 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4703 	while (nsid != 0) {
4704 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4705 
4706 		if (nvme_ns == NULL) {
4707 			/* Found a new one */
4708 			nvme_ns = nvme_ns_alloc();
4709 			if (nvme_ns == NULL) {
4710 				SPDK_ERRLOG("Failed to allocate namespace\n");
4711 				/* This just fails to attach the namespace. It may work on a future attempt. */
4712 				continue;
4713 			}
4714 
4715 			nvme_ns->id = nsid;
4716 			nvme_ns->ctrlr = nvme_ctrlr;
4717 
4718 			nvme_ns->bdev = NULL;
4719 
4720 			if (ctx) {
4721 				ctx->populates_in_progress++;
4722 			}
4723 			nvme_ns->probe_ctx = ctx;
4724 
4725 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4726 
4727 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
4728 		}
4729 
4730 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
4731 	}
4732 
4733 	if (ctx) {
4734 		/* Decrement this count now that the loop is over to account
4735 		 * for the one we started with.  If the count is then 0, we
4736 		 * know any populate_namespace functions completed immediately,
4737 		 * so we'll kick the callback here.
4738 		 */
4739 		ctx->populates_in_progress--;
4740 		if (ctx->populates_in_progress == 0) {
4741 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4742 		}
4743 	}
4744 
4745 }
4746 
4747 static void
4748 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
4749 {
4750 	struct nvme_ns *nvme_ns, *tmp;
4751 
4752 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
4753 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4754 	}
4755 }
4756 
4757 static uint32_t
4758 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
4759 {
4760 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
4761 	const struct spdk_nvme_ctrlr_data *cdata;
4762 	uint32_t nsid, ns_count = 0;
4763 
4764 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4765 
4766 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4767 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
4768 		ns_count++;
4769 	}
4770 
4771 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
4772 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
4773 	       sizeof(uint32_t);
4774 }
4775 
4776 static int
4777 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
4778 			  void *cb_arg)
4779 {
4780 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4781 	struct nvme_ns *nvme_ns;
4782 	uint32_t i, nsid;
4783 
4784 	for (i = 0; i < desc->num_of_nsid; i++) {
4785 		nsid = desc->nsid[i];
4786 		if (nsid == 0) {
4787 			continue;
4788 		}
4789 
4790 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4791 
4792 		assert(nvme_ns != NULL);
4793 		if (nvme_ns == NULL) {
4794 			/* Target told us that an inactive namespace had an ANA change */
4795 			continue;
4796 		}
4797 
4798 		_nvme_ns_set_ana_state(nvme_ns, desc);
4799 	}
4800 
4801 	return 0;
4802 }
4803 
4804 static void
4805 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4806 {
4807 	struct nvme_ns *nvme_ns;
4808 
4809 	spdk_free(nvme_ctrlr->ana_log_page);
4810 	nvme_ctrlr->ana_log_page = NULL;
4811 
4812 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4813 	     nvme_ns != NULL;
4814 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
4815 		nvme_ns->ana_state_updating = false;
4816 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4817 	}
4818 }
4819 
4820 static void
4821 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
4822 {
4823 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4824 
4825 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
4826 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
4827 					     nvme_ctrlr);
4828 	} else {
4829 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
4830 	}
4831 
4832 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4833 
4834 	assert(nvme_ctrlr->ana_log_page_updating == true);
4835 	nvme_ctrlr->ana_log_page_updating = false;
4836 
4837 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
4838 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4839 
4840 		nvme_ctrlr_unregister(nvme_ctrlr);
4841 	} else {
4842 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4843 
4844 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
4845 	}
4846 }
4847 
4848 static int
4849 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4850 {
4851 	uint32_t ana_log_page_size;
4852 	int rc;
4853 
4854 	if (nvme_ctrlr->ana_log_page == NULL) {
4855 		return -EINVAL;
4856 	}
4857 
4858 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
4859 
4860 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
4861 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
4862 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
4863 		return -EINVAL;
4864 	}
4865 
4866 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4867 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
4868 	    nvme_ctrlr->ana_log_page_updating) {
4869 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4870 		return -EBUSY;
4871 	}
4872 
4873 	nvme_ctrlr->ana_log_page_updating = true;
4874 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4875 
4876 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
4877 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
4878 					      SPDK_NVME_GLOBAL_NS_TAG,
4879 					      nvme_ctrlr->ana_log_page,
4880 					      ana_log_page_size, 0,
4881 					      nvme_ctrlr_read_ana_log_page_done,
4882 					      nvme_ctrlr);
4883 	if (rc != 0) {
4884 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
4885 	}
4886 
4887 	return rc;
4888 }
4889 
4890 static void
4891 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
4892 {
4893 }
4894 
4895 struct bdev_nvme_set_preferred_path_ctx {
4896 	struct spdk_bdev_desc *desc;
4897 	struct nvme_ns *nvme_ns;
4898 	bdev_nvme_set_preferred_path_cb cb_fn;
4899 	void *cb_arg;
4900 };
4901 
4902 static void
4903 bdev_nvme_set_preferred_path_done(struct spdk_io_channel_iter *i, int status)
4904 {
4905 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4906 
4907 	assert(ctx != NULL);
4908 	assert(ctx->desc != NULL);
4909 	assert(ctx->cb_fn != NULL);
4910 
4911 	spdk_bdev_close(ctx->desc);
4912 
4913 	ctx->cb_fn(ctx->cb_arg, status);
4914 
4915 	free(ctx);
4916 }
4917 
4918 static void
4919 _bdev_nvme_set_preferred_path(struct spdk_io_channel_iter *i)
4920 {
4921 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4922 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4923 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4924 	struct nvme_io_path *io_path, *prev;
4925 
4926 	prev = NULL;
4927 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
4928 		if (io_path->nvme_ns == ctx->nvme_ns) {
4929 			break;
4930 		}
4931 		prev = io_path;
4932 	}
4933 
4934 	if (io_path != NULL) {
4935 		if (prev != NULL) {
4936 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
4937 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
4938 		}
4939 
4940 		/* We can set io_path to nbdev_ch->current_io_path directly here.
4941 		 * However, it needs to be conditional. To simplify the code,
4942 		 * just clear nbdev_ch->current_io_path and let find_io_path()
4943 		 * fill it.
4944 		 *
4945 		 * Automatic failback may be disabled. Hence even if the io_path is
4946 		 * already at the head, clear nbdev_ch->current_io_path.
4947 		 */
4948 		bdev_nvme_clear_current_io_path(nbdev_ch);
4949 	}
4950 
4951 	spdk_for_each_channel_continue(i, 0);
4952 }
4953 
4954 static struct nvme_ns *
4955 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
4956 {
4957 	struct nvme_ns *nvme_ns, *prev;
4958 	const struct spdk_nvme_ctrlr_data *cdata;
4959 
4960 	prev = NULL;
4961 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
4962 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
4963 
4964 		if (cdata->cntlid == cntlid) {
4965 			break;
4966 		}
4967 		prev = nvme_ns;
4968 	}
4969 
4970 	if (nvme_ns != NULL && prev != NULL) {
4971 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
4972 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
4973 	}
4974 
4975 	return nvme_ns;
4976 }
4977 
4978 /* This function supports only multipath mode. There is only a single I/O path
4979  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
4980  * head of the I/O path list for each NVMe bdev channel.
4981  *
4982  * NVMe bdev channel may be acquired after completing this function. move the
4983  * matched namespace to the head of the namespace list for the NVMe bdev too.
4984  */
4985 void
4986 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
4987 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
4988 {
4989 	struct bdev_nvme_set_preferred_path_ctx *ctx;
4990 	struct spdk_bdev *bdev;
4991 	struct nvme_bdev *nbdev;
4992 	int rc = 0;
4993 
4994 	assert(cb_fn != NULL);
4995 
4996 	ctx = calloc(1, sizeof(*ctx));
4997 	if (ctx == NULL) {
4998 		SPDK_ERRLOG("Failed to alloc context.\n");
4999 		rc = -ENOMEM;
5000 		goto err_alloc;
5001 	}
5002 
5003 	ctx->cb_fn = cb_fn;
5004 	ctx->cb_arg = cb_arg;
5005 
5006 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5007 	if (rc != 0) {
5008 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5009 		goto err_open;
5010 	}
5011 
5012 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5013 
5014 	if (bdev->module != &nvme_if) {
5015 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5016 		rc = -ENODEV;
5017 		goto err_bdev;
5018 	}
5019 
5020 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5021 
5022 	pthread_mutex_lock(&nbdev->mutex);
5023 
5024 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
5025 	if (ctx->nvme_ns == NULL) {
5026 		pthread_mutex_unlock(&nbdev->mutex);
5027 
5028 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
5029 		rc = -ENODEV;
5030 		goto err_bdev;
5031 	}
5032 
5033 	pthread_mutex_unlock(&nbdev->mutex);
5034 
5035 	spdk_for_each_channel(nbdev,
5036 			      _bdev_nvme_set_preferred_path,
5037 			      ctx,
5038 			      bdev_nvme_set_preferred_path_done);
5039 	return;
5040 
5041 err_bdev:
5042 	spdk_bdev_close(ctx->desc);
5043 err_open:
5044 	free(ctx);
5045 err_alloc:
5046 	cb_fn(cb_arg, rc);
5047 }
5048 
5049 struct bdev_nvme_set_multipath_policy_ctx {
5050 	struct spdk_bdev_desc *desc;
5051 	bdev_nvme_set_multipath_policy_cb cb_fn;
5052 	void *cb_arg;
5053 };
5054 
5055 static void
5056 bdev_nvme_set_multipath_policy_done(struct spdk_io_channel_iter *i, int status)
5057 {
5058 	struct bdev_nvme_set_multipath_policy_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
5059 
5060 	assert(ctx != NULL);
5061 	assert(ctx->desc != NULL);
5062 	assert(ctx->cb_fn != NULL);
5063 
5064 	spdk_bdev_close(ctx->desc);
5065 
5066 	ctx->cb_fn(ctx->cb_arg, status);
5067 
5068 	free(ctx);
5069 }
5070 
5071 static void
5072 _bdev_nvme_set_multipath_policy(struct spdk_io_channel_iter *i)
5073 {
5074 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
5075 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
5076 	struct nvme_bdev *nbdev = spdk_io_channel_get_io_device(_ch);
5077 
5078 	nbdev_ch->mp_policy = nbdev->mp_policy;
5079 	nbdev_ch->mp_selector = nbdev->mp_selector;
5080 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
5081 	bdev_nvme_clear_current_io_path(nbdev_ch);
5082 
5083 	spdk_for_each_channel_continue(i, 0);
5084 }
5085 
5086 void
5087 bdev_nvme_set_multipath_policy(const char *name, enum bdev_nvme_multipath_policy policy,
5088 			       enum bdev_nvme_multipath_selector selector, uint32_t rr_min_io,
5089 			       bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
5090 {
5091 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
5092 	struct spdk_bdev *bdev;
5093 	struct nvme_bdev *nbdev;
5094 	int rc;
5095 
5096 	assert(cb_fn != NULL);
5097 
5098 	if (policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE && selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
5099 		if (rr_min_io == UINT32_MAX) {
5100 			rr_min_io = 1;
5101 		} else if (rr_min_io == 0) {
5102 			rc = -EINVAL;
5103 			goto exit;
5104 		}
5105 	} else if (rr_min_io != UINT32_MAX) {
5106 		rc = -EINVAL;
5107 		goto exit;
5108 	}
5109 
5110 	ctx = calloc(1, sizeof(*ctx));
5111 	if (ctx == NULL) {
5112 		SPDK_ERRLOG("Failed to alloc context.\n");
5113 		rc = -ENOMEM;
5114 		goto exit;
5115 	}
5116 
5117 	ctx->cb_fn = cb_fn;
5118 	ctx->cb_arg = cb_arg;
5119 
5120 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5121 	if (rc != 0) {
5122 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5123 		rc = -ENODEV;
5124 		goto err_open;
5125 	}
5126 
5127 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5128 	if (bdev->module != &nvme_if) {
5129 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5130 		rc = -ENODEV;
5131 		goto err_module;
5132 	}
5133 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5134 
5135 	pthread_mutex_lock(&nbdev->mutex);
5136 	nbdev->mp_policy = policy;
5137 	nbdev->mp_selector = selector;
5138 	nbdev->rr_min_io = rr_min_io;
5139 	pthread_mutex_unlock(&nbdev->mutex);
5140 
5141 	spdk_for_each_channel(nbdev,
5142 			      _bdev_nvme_set_multipath_policy,
5143 			      ctx,
5144 			      bdev_nvme_set_multipath_policy_done);
5145 	return;
5146 
5147 err_module:
5148 	spdk_bdev_close(ctx->desc);
5149 err_open:
5150 	free(ctx);
5151 exit:
5152 	cb_fn(cb_arg, rc);
5153 }
5154 
5155 static void
5156 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5157 {
5158 	struct nvme_ctrlr *nvme_ctrlr		= arg;
5159 	union spdk_nvme_async_event_completion	event;
5160 
5161 	if (spdk_nvme_cpl_is_error(cpl)) {
5162 		SPDK_WARNLOG("AER request execute failed\n");
5163 		return;
5164 	}
5165 
5166 	event.raw = cpl->cdw0;
5167 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5168 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
5169 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
5170 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5171 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
5172 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
5173 	}
5174 }
5175 
5176 static void
5177 free_nvme_async_probe_ctx(struct nvme_async_probe_ctx *ctx)
5178 {
5179 	spdk_keyring_put_key(ctx->drv_opts.tls_psk);
5180 	spdk_keyring_put_key(ctx->drv_opts.dhchap_key);
5181 	free(ctx);
5182 }
5183 
5184 static void
5185 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, int rc)
5186 {
5187 	if (ctx->cb_fn) {
5188 		ctx->cb_fn(ctx->cb_ctx, ctx->reported_bdevs, rc);
5189 	}
5190 
5191 	ctx->namespaces_populated = true;
5192 	if (ctx->probe_done) {
5193 		/* The probe was already completed, so we need to free the context
5194 		 * here.  This can happen for cases like OCSSD, where we need to
5195 		 * send additional commands to the SSD after attach.
5196 		 */
5197 		free_nvme_async_probe_ctx(ctx);
5198 	}
5199 }
5200 
5201 static void
5202 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
5203 		       struct nvme_async_probe_ctx *ctx)
5204 {
5205 	spdk_io_device_register(nvme_ctrlr,
5206 				bdev_nvme_create_ctrlr_channel_cb,
5207 				bdev_nvme_destroy_ctrlr_channel_cb,
5208 				sizeof(struct nvme_ctrlr_channel),
5209 				nvme_ctrlr->nbdev_ctrlr->name);
5210 
5211 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
5212 }
5213 
5214 static void
5215 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
5216 {
5217 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
5218 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
5219 
5220 	nvme_ctrlr->probe_ctx = NULL;
5221 
5222 	if (spdk_nvme_cpl_is_error(cpl)) {
5223 		nvme_ctrlr_delete(nvme_ctrlr);
5224 
5225 		if (ctx != NULL) {
5226 			ctx->reported_bdevs = 0;
5227 			populate_namespaces_cb(ctx, -1);
5228 		}
5229 		return;
5230 	}
5231 
5232 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5233 }
5234 
5235 static int
5236 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
5237 			     struct nvme_async_probe_ctx *ctx)
5238 {
5239 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5240 	const struct spdk_nvme_ctrlr_data *cdata;
5241 	uint32_t ana_log_page_size;
5242 
5243 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5244 
5245 	/* Set buffer size enough to include maximum number of allowed namespaces. */
5246 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5247 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
5248 			    sizeof(uint32_t);
5249 
5250 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
5251 						SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
5252 	if (nvme_ctrlr->ana_log_page == NULL) {
5253 		SPDK_ERRLOG("could not allocate ANA log page buffer\n");
5254 		return -ENXIO;
5255 	}
5256 
5257 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
5258 	 * Hence copy each descriptor to a temporary area when parsing it.
5259 	 *
5260 	 * Allocate a buffer whose size is as large as ANA log page buffer because
5261 	 * we do not know the size of a descriptor until actually reading it.
5262 	 */
5263 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
5264 	if (nvme_ctrlr->copied_ana_desc == NULL) {
5265 		SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
5266 		return -ENOMEM;
5267 	}
5268 
5269 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
5270 
5271 	nvme_ctrlr->probe_ctx = ctx;
5272 
5273 	/* Then, set the read size only to include the current active namespaces. */
5274 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5275 
5276 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5277 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5278 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5279 		return -EINVAL;
5280 	}
5281 
5282 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
5283 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5284 						SPDK_NVME_GLOBAL_NS_TAG,
5285 						nvme_ctrlr->ana_log_page,
5286 						ana_log_page_size, 0,
5287 						nvme_ctrlr_init_ana_log_page_done,
5288 						nvme_ctrlr);
5289 }
5290 
5291 /* hostnqn and subnqn were already verified before attaching a controller.
5292  * Hence check only the multipath capability and cntlid here.
5293  */
5294 static bool
5295 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
5296 {
5297 	struct nvme_ctrlr *tmp;
5298 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
5299 
5300 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5301 
5302 	if (!cdata->cmic.multi_ctrlr) {
5303 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5304 		return false;
5305 	}
5306 
5307 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
5308 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
5309 
5310 		if (!tmp_cdata->cmic.multi_ctrlr) {
5311 			SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5312 			return false;
5313 		}
5314 		if (cdata->cntlid == tmp_cdata->cntlid) {
5315 			SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid);
5316 			return false;
5317 		}
5318 	}
5319 
5320 	return true;
5321 }
5322 
5323 static int
5324 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
5325 {
5326 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5327 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5328 	int rc = 0;
5329 
5330 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5331 
5332 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
5333 	if (nbdev_ctrlr != NULL) {
5334 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
5335 			rc = -EINVAL;
5336 			goto exit;
5337 		}
5338 	} else {
5339 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
5340 		if (nbdev_ctrlr == NULL) {
5341 			SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n");
5342 			rc = -ENOMEM;
5343 			goto exit;
5344 		}
5345 		nbdev_ctrlr->name = strdup(name);
5346 		if (nbdev_ctrlr->name == NULL) {
5347 			SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n");
5348 			free(nbdev_ctrlr);
5349 			goto exit;
5350 		}
5351 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
5352 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
5353 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
5354 	}
5355 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
5356 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
5357 exit:
5358 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5359 	return rc;
5360 }
5361 
5362 static int
5363 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
5364 		  const char *name,
5365 		  const struct spdk_nvme_transport_id *trid,
5366 		  struct nvme_async_probe_ctx *ctx)
5367 {
5368 	struct nvme_ctrlr *nvme_ctrlr;
5369 	struct nvme_path_id *path_id;
5370 	const struct spdk_nvme_ctrlr_data *cdata;
5371 	int rc;
5372 
5373 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
5374 	if (nvme_ctrlr == NULL) {
5375 		SPDK_ERRLOG("Failed to allocate device struct\n");
5376 		return -ENOMEM;
5377 	}
5378 
5379 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
5380 	if (rc != 0) {
5381 		free(nvme_ctrlr);
5382 		return rc;
5383 	}
5384 
5385 	TAILQ_INIT(&nvme_ctrlr->trids);
5386 	RB_INIT(&nvme_ctrlr->namespaces);
5387 
5388 	/* Get another reference to the key, so the first one can be released from probe_ctx */
5389 	if (ctx != NULL) {
5390 		if (ctx->drv_opts.tls_psk != NULL) {
5391 			nvme_ctrlr->psk = spdk_keyring_get_key(
5392 						  spdk_key_get_name(ctx->drv_opts.tls_psk));
5393 			if (nvme_ctrlr->psk == NULL) {
5394 				/* Could only happen if the key was removed in the meantime */
5395 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5396 					    spdk_key_get_name(ctx->drv_opts.tls_psk));
5397 				rc = -ENOKEY;
5398 				goto err;
5399 			}
5400 		}
5401 
5402 		if (ctx->drv_opts.dhchap_key != NULL) {
5403 			nvme_ctrlr->dhchap_key = spdk_keyring_get_key(
5404 							 spdk_key_get_name(ctx->drv_opts.dhchap_key));
5405 			if (nvme_ctrlr->dhchap_key == NULL) {
5406 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5407 					    spdk_key_get_name(ctx->drv_opts.dhchap_key));
5408 				rc = -ENOKEY;
5409 				goto err;
5410 			}
5411 		}
5412 	}
5413 
5414 	path_id = calloc(1, sizeof(*path_id));
5415 	if (path_id == NULL) {
5416 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
5417 		rc = -ENOMEM;
5418 		goto err;
5419 	}
5420 
5421 	path_id->trid = *trid;
5422 	if (ctx != NULL) {
5423 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
5424 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
5425 	}
5426 	nvme_ctrlr->active_path_id = path_id;
5427 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
5428 
5429 	nvme_ctrlr->thread = spdk_get_thread();
5430 	nvme_ctrlr->ctrlr = ctrlr;
5431 	nvme_ctrlr->ref = 1;
5432 
5433 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
5434 		SPDK_ERRLOG("OCSSDs are not supported");
5435 		rc = -ENOTSUP;
5436 		goto err;
5437 	}
5438 
5439 	if (ctx != NULL) {
5440 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
5441 	} else {
5442 		bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
5443 	}
5444 
5445 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
5446 					  g_opts.nvme_adminq_poll_period_us);
5447 
5448 	if (g_opts.timeout_us > 0) {
5449 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
5450 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
5451 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
5452 					  g_opts.timeout_us : g_opts.timeout_admin_us;
5453 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
5454 				adm_timeout_us, timeout_cb, nvme_ctrlr);
5455 	}
5456 
5457 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
5458 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
5459 
5460 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
5461 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
5462 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
5463 	}
5464 
5465 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
5466 	if (rc != 0) {
5467 		goto err;
5468 	}
5469 
5470 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5471 
5472 	if (cdata->cmic.ana_reporting) {
5473 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
5474 		if (rc == 0) {
5475 			return 0;
5476 		}
5477 	} else {
5478 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5479 		return 0;
5480 	}
5481 
5482 err:
5483 	nvme_ctrlr_delete(nvme_ctrlr);
5484 	return rc;
5485 }
5486 
5487 void
5488 bdev_nvme_get_default_ctrlr_opts(struct nvme_ctrlr_opts *opts)
5489 {
5490 	opts->prchk_flags = 0;
5491 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
5492 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
5493 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
5494 }
5495 
5496 static void
5497 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5498 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
5499 {
5500 	char *name;
5501 
5502 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
5503 	if (!name) {
5504 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
5505 		return;
5506 	}
5507 
5508 	if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) {
5509 		SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
5510 	} else {
5511 		SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name);
5512 	}
5513 
5514 	free(name);
5515 }
5516 
5517 static void
5518 _nvme_ctrlr_destruct(void *ctx)
5519 {
5520 	struct nvme_ctrlr *nvme_ctrlr = ctx;
5521 
5522 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
5523 	nvme_ctrlr_release(nvme_ctrlr);
5524 }
5525 
5526 static int
5527 bdev_nvme_delete_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5528 {
5529 	struct nvme_probe_skip_entry *entry;
5530 
5531 	/* The controller's destruction was already started */
5532 	if (nvme_ctrlr->destruct) {
5533 		return -EALREADY;
5534 	}
5535 
5536 	if (!hotplug &&
5537 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
5538 		entry = calloc(1, sizeof(*entry));
5539 		if (!entry) {
5540 			return -ENOMEM;
5541 		}
5542 		entry->trid = nvme_ctrlr->active_path_id->trid;
5543 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
5544 	}
5545 
5546 	nvme_ctrlr->destruct = true;
5547 	return 0;
5548 }
5549 
5550 static int
5551 bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5552 {
5553 	int rc;
5554 
5555 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5556 	rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, hotplug);
5557 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5558 
5559 	if (rc == 0) {
5560 		_nvme_ctrlr_destruct(nvme_ctrlr);
5561 	} else if (rc == -EALREADY) {
5562 		rc = 0;
5563 	}
5564 
5565 	return rc;
5566 }
5567 
5568 static void
5569 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
5570 {
5571 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
5572 
5573 	bdev_nvme_delete_ctrlr(nvme_ctrlr, true);
5574 }
5575 
5576 static int
5577 bdev_nvme_hotplug_probe(void *arg)
5578 {
5579 	if (g_hotplug_probe_ctx == NULL) {
5580 		spdk_poller_unregister(&g_hotplug_probe_poller);
5581 		return SPDK_POLLER_IDLE;
5582 	}
5583 
5584 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
5585 		g_hotplug_probe_ctx = NULL;
5586 		spdk_poller_unregister(&g_hotplug_probe_poller);
5587 	}
5588 
5589 	return SPDK_POLLER_BUSY;
5590 }
5591 
5592 static int
5593 bdev_nvme_hotplug(void *arg)
5594 {
5595 	struct spdk_nvme_transport_id trid_pcie;
5596 
5597 	if (g_hotplug_probe_ctx) {
5598 		return SPDK_POLLER_BUSY;
5599 	}
5600 
5601 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5602 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5603 
5604 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
5605 			      hotplug_probe_cb, attach_cb, NULL);
5606 
5607 	if (g_hotplug_probe_ctx) {
5608 		assert(g_hotplug_probe_poller == NULL);
5609 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
5610 	}
5611 
5612 	return SPDK_POLLER_BUSY;
5613 }
5614 
5615 void
5616 bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
5617 {
5618 	*opts = g_opts;
5619 }
5620 
5621 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5622 		uint32_t reconnect_delay_sec,
5623 		uint32_t fast_io_fail_timeout_sec);
5624 
5625 static int
5626 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
5627 {
5628 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
5629 		/* Can't set timeout_admin_us without also setting timeout_us */
5630 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
5631 		return -EINVAL;
5632 	}
5633 
5634 	if (opts->bdev_retry_count < -1) {
5635 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
5636 		return -EINVAL;
5637 	}
5638 
5639 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
5640 			opts->reconnect_delay_sec,
5641 			opts->fast_io_fail_timeout_sec)) {
5642 		return -EINVAL;
5643 	}
5644 
5645 	return 0;
5646 }
5647 
5648 int
5649 bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
5650 {
5651 	int ret;
5652 
5653 	ret = bdev_nvme_validate_opts(opts);
5654 	if (ret) {
5655 		SPDK_WARNLOG("Failed to set nvme opts.\n");
5656 		return ret;
5657 	}
5658 
5659 	if (g_bdev_nvme_init_thread != NULL) {
5660 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5661 			return -EPERM;
5662 		}
5663 	}
5664 
5665 	if (opts->rdma_srq_size != 0 ||
5666 	    opts->rdma_max_cq_size != 0 ||
5667 	    opts->rdma_cm_event_timeout_ms != 0) {
5668 		struct spdk_nvme_transport_opts drv_opts;
5669 
5670 		spdk_nvme_transport_get_opts(&drv_opts, sizeof(drv_opts));
5671 		if (opts->rdma_srq_size != 0) {
5672 			drv_opts.rdma_srq_size = opts->rdma_srq_size;
5673 		}
5674 		if (opts->rdma_max_cq_size != 0) {
5675 			drv_opts.rdma_max_cq_size = opts->rdma_max_cq_size;
5676 		}
5677 		if (opts->rdma_cm_event_timeout_ms != 0) {
5678 			drv_opts.rdma_cm_event_timeout_ms = opts->rdma_cm_event_timeout_ms;
5679 		}
5680 
5681 		ret = spdk_nvme_transport_set_opts(&drv_opts, sizeof(drv_opts));
5682 		if (ret) {
5683 			SPDK_ERRLOG("Failed to set NVMe transport opts.\n");
5684 			return ret;
5685 		}
5686 	}
5687 
5688 	g_opts = *opts;
5689 
5690 	return 0;
5691 }
5692 
5693 struct set_nvme_hotplug_ctx {
5694 	uint64_t period_us;
5695 	bool enabled;
5696 	spdk_msg_fn fn;
5697 	void *fn_ctx;
5698 };
5699 
5700 static void
5701 set_nvme_hotplug_period_cb(void *_ctx)
5702 {
5703 	struct set_nvme_hotplug_ctx *ctx = _ctx;
5704 
5705 	spdk_poller_unregister(&g_hotplug_poller);
5706 	if (ctx->enabled) {
5707 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
5708 	}
5709 
5710 	g_nvme_hotplug_poll_period_us = ctx->period_us;
5711 	g_nvme_hotplug_enabled = ctx->enabled;
5712 	if (ctx->fn) {
5713 		ctx->fn(ctx->fn_ctx);
5714 	}
5715 
5716 	free(ctx);
5717 }
5718 
5719 int
5720 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
5721 {
5722 	struct set_nvme_hotplug_ctx *ctx;
5723 
5724 	if (enabled == true && !spdk_process_is_primary()) {
5725 		return -EPERM;
5726 	}
5727 
5728 	ctx = calloc(1, sizeof(*ctx));
5729 	if (ctx == NULL) {
5730 		return -ENOMEM;
5731 	}
5732 
5733 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
5734 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
5735 	ctx->enabled = enabled;
5736 	ctx->fn = cb;
5737 	ctx->fn_ctx = cb_ctx;
5738 
5739 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
5740 	return 0;
5741 }
5742 
5743 static void
5744 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
5745 				    struct nvme_async_probe_ctx *ctx)
5746 {
5747 	struct nvme_ns	*nvme_ns;
5748 	struct nvme_bdev	*nvme_bdev;
5749 	size_t			j;
5750 
5751 	assert(nvme_ctrlr != NULL);
5752 
5753 	if (ctx->names == NULL) {
5754 		ctx->reported_bdevs = 0;
5755 		populate_namespaces_cb(ctx, 0);
5756 		return;
5757 	}
5758 
5759 	/*
5760 	 * Report the new bdevs that were created in this call.
5761 	 * There can be more than one bdev per NVMe controller.
5762 	 */
5763 	j = 0;
5764 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5765 	while (nvme_ns != NULL) {
5766 		nvme_bdev = nvme_ns->bdev;
5767 		if (j < ctx->max_bdevs) {
5768 			ctx->names[j] = nvme_bdev->disk.name;
5769 			j++;
5770 		} else {
5771 			SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
5772 				    ctx->max_bdevs);
5773 			ctx->reported_bdevs = 0;
5774 			populate_namespaces_cb(ctx, -ERANGE);
5775 			return;
5776 		}
5777 
5778 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5779 	}
5780 
5781 	ctx->reported_bdevs = j;
5782 	populate_namespaces_cb(ctx, 0);
5783 }
5784 
5785 static int
5786 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5787 			       struct spdk_nvme_ctrlr *new_ctrlr,
5788 			       struct spdk_nvme_transport_id *trid)
5789 {
5790 	struct nvme_path_id *tmp_trid;
5791 
5792 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
5793 		SPDK_ERRLOG("PCIe failover is not supported.\n");
5794 		return -ENOTSUP;
5795 	}
5796 
5797 	/* Currently we only support failover to the same transport type. */
5798 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
5799 		SPDK_WARNLOG("Failover from trtype: %s to a different trtype: %s is not supported currently\n",
5800 			     spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
5801 			     spdk_nvme_transport_id_trtype_str(trid->trtype));
5802 		return -EINVAL;
5803 	}
5804 
5805 
5806 	/* Currently we only support failover to the same NQN. */
5807 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
5808 		SPDK_WARNLOG("Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
5809 			     nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
5810 		return -EINVAL;
5811 	}
5812 
5813 	/* Skip all the other checks if we've already registered this path. */
5814 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
5815 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
5816 			SPDK_WARNLOG("This path (traddr: %s subnqn: %s) is already registered\n", trid->traddr,
5817 				     trid->subnqn);
5818 			return -EEXIST;
5819 		}
5820 	}
5821 
5822 	return 0;
5823 }
5824 
5825 static int
5826 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
5827 				    struct spdk_nvme_ctrlr *new_ctrlr)
5828 {
5829 	struct nvme_ns *nvme_ns;
5830 	struct spdk_nvme_ns *new_ns;
5831 
5832 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5833 	while (nvme_ns != NULL) {
5834 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
5835 		assert(new_ns != NULL);
5836 
5837 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
5838 			return -EINVAL;
5839 		}
5840 
5841 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5842 	}
5843 
5844 	return 0;
5845 }
5846 
5847 static int
5848 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5849 			      struct spdk_nvme_transport_id *trid)
5850 {
5851 	struct nvme_path_id *active_id, *new_trid, *tmp_trid;
5852 
5853 	new_trid = calloc(1, sizeof(*new_trid));
5854 	if (new_trid == NULL) {
5855 		return -ENOMEM;
5856 	}
5857 	new_trid->trid = *trid;
5858 
5859 	active_id = nvme_ctrlr->active_path_id;
5860 	assert(active_id != NULL);
5861 	assert(active_id == TAILQ_FIRST(&nvme_ctrlr->trids));
5862 
5863 	/* Skip the active trid not to replace it until it is failed. */
5864 	tmp_trid = TAILQ_NEXT(active_id, link);
5865 	if (tmp_trid == NULL) {
5866 		goto add_tail;
5867 	}
5868 
5869 	/* It means the trid is faled if its last failed time is non-zero.
5870 	 * Insert the new alternate trid before any failed trid.
5871 	 */
5872 	TAILQ_FOREACH_FROM(tmp_trid, &nvme_ctrlr->trids, link) {
5873 		if (tmp_trid->last_failed_tsc != 0) {
5874 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
5875 			return 0;
5876 		}
5877 	}
5878 
5879 add_tail:
5880 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
5881 	return 0;
5882 }
5883 
5884 /* This is the case that a secondary path is added to an existing
5885  * nvme_ctrlr for failover. After checking if it can access the same
5886  * namespaces as the primary path, it is disconnected until failover occurs.
5887  */
5888 static int
5889 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5890 			     struct spdk_nvme_ctrlr *new_ctrlr,
5891 			     struct spdk_nvme_transport_id *trid)
5892 {
5893 	int rc;
5894 
5895 	assert(nvme_ctrlr != NULL);
5896 
5897 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5898 
5899 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
5900 	if (rc != 0) {
5901 		goto exit;
5902 	}
5903 
5904 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
5905 	if (rc != 0) {
5906 		goto exit;
5907 	}
5908 
5909 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
5910 
5911 exit:
5912 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5913 
5914 	spdk_nvme_detach(new_ctrlr);
5915 
5916 	return rc;
5917 }
5918 
5919 static void
5920 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5921 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
5922 {
5923 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5924 	struct nvme_async_probe_ctx *ctx;
5925 	int rc;
5926 
5927 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
5928 	ctx->ctrlr_attached = true;
5929 
5930 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
5931 	if (rc != 0) {
5932 		ctx->reported_bdevs = 0;
5933 		populate_namespaces_cb(ctx, rc);
5934 	}
5935 }
5936 
5937 static void
5938 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5939 			struct spdk_nvme_ctrlr *ctrlr,
5940 			const struct spdk_nvme_ctrlr_opts *opts)
5941 {
5942 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5943 	struct nvme_ctrlr *nvme_ctrlr;
5944 	struct nvme_async_probe_ctx *ctx;
5945 	int rc;
5946 
5947 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
5948 	ctx->ctrlr_attached = true;
5949 
5950 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
5951 	if (nvme_ctrlr) {
5952 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
5953 	} else {
5954 		rc = -ENODEV;
5955 	}
5956 
5957 	ctx->reported_bdevs = 0;
5958 	populate_namespaces_cb(ctx, rc);
5959 }
5960 
5961 static int
5962 bdev_nvme_async_poll(void *arg)
5963 {
5964 	struct nvme_async_probe_ctx	*ctx = arg;
5965 	int				rc;
5966 
5967 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
5968 	if (spdk_unlikely(rc != -EAGAIN)) {
5969 		ctx->probe_done = true;
5970 		spdk_poller_unregister(&ctx->poller);
5971 		if (!ctx->ctrlr_attached) {
5972 			/* The probe is done, but no controller was attached.
5973 			 * That means we had a failure, so report -EIO back to
5974 			 * the caller (usually the RPC). populate_namespaces_cb()
5975 			 * will take care of freeing the nvme_async_probe_ctx.
5976 			 */
5977 			ctx->reported_bdevs = 0;
5978 			populate_namespaces_cb(ctx, -EIO);
5979 		} else if (ctx->namespaces_populated) {
5980 			/* The namespaces for the attached controller were all
5981 			 * populated and the response was already sent to the
5982 			 * caller (usually the RPC).  So free the context here.
5983 			 */
5984 			free_nvme_async_probe_ctx(ctx);
5985 		}
5986 	}
5987 
5988 	return SPDK_POLLER_BUSY;
5989 }
5990 
5991 static bool
5992 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5993 		uint32_t reconnect_delay_sec,
5994 		uint32_t fast_io_fail_timeout_sec)
5995 {
5996 	if (ctrlr_loss_timeout_sec < -1) {
5997 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
5998 		return false;
5999 	} else if (ctrlr_loss_timeout_sec == -1) {
6000 		if (reconnect_delay_sec == 0) {
6001 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6002 			return false;
6003 		} else if (fast_io_fail_timeout_sec != 0 &&
6004 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
6005 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
6006 			return false;
6007 		}
6008 	} else if (ctrlr_loss_timeout_sec != 0) {
6009 		if (reconnect_delay_sec == 0) {
6010 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6011 			return false;
6012 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6013 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
6014 			return false;
6015 		} else if (fast_io_fail_timeout_sec != 0) {
6016 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
6017 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
6018 				return false;
6019 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6020 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
6021 				return false;
6022 			}
6023 		}
6024 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
6025 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
6026 		return false;
6027 	}
6028 
6029 	return true;
6030 }
6031 
6032 static int
6033 bdev_nvme_load_psk(const char *fname, char *buf, size_t bufsz)
6034 {
6035 	FILE *psk_file;
6036 	struct stat statbuf;
6037 	int rc;
6038 #define TCP_PSK_INVALID_PERMISSIONS 0177
6039 
6040 	if (stat(fname, &statbuf) != 0) {
6041 		SPDK_ERRLOG("Could not read permissions for PSK file\n");
6042 		return -EACCES;
6043 	}
6044 
6045 	if ((statbuf.st_mode & TCP_PSK_INVALID_PERMISSIONS) != 0) {
6046 		SPDK_ERRLOG("Incorrect permissions for PSK file\n");
6047 		return -EPERM;
6048 	}
6049 	if ((size_t)statbuf.st_size >= bufsz) {
6050 		SPDK_ERRLOG("Invalid PSK: too long\n");
6051 		return -EINVAL;
6052 	}
6053 	psk_file = fopen(fname, "r");
6054 	if (psk_file == NULL) {
6055 		SPDK_ERRLOG("Could not open PSK file\n");
6056 		return -EINVAL;
6057 	}
6058 
6059 	memset(buf, 0, bufsz);
6060 	rc = fread(buf, 1, statbuf.st_size, psk_file);
6061 	if (rc != statbuf.st_size) {
6062 		SPDK_ERRLOG("Failed to read PSK\n");
6063 		fclose(psk_file);
6064 		return -EINVAL;
6065 	}
6066 
6067 	fclose(psk_file);
6068 	return 0;
6069 }
6070 
6071 int
6072 bdev_nvme_create(struct spdk_nvme_transport_id *trid,
6073 		 const char *base_name,
6074 		 const char **names,
6075 		 uint32_t count,
6076 		 spdk_bdev_create_nvme_fn cb_fn,
6077 		 void *cb_ctx,
6078 		 struct spdk_nvme_ctrlr_opts *drv_opts,
6079 		 struct nvme_ctrlr_opts *bdev_opts,
6080 		 bool multipath)
6081 {
6082 	struct nvme_probe_skip_entry *entry, *tmp;
6083 	struct nvme_async_probe_ctx *ctx;
6084 	spdk_nvme_attach_cb attach_cb;
6085 	int rc, len;
6086 
6087 	/* TODO expand this check to include both the host and target TRIDs.
6088 	 * Only if both are the same should we fail.
6089 	 */
6090 	if (nvme_ctrlr_get(trid) != NULL) {
6091 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr);
6092 		return -EEXIST;
6093 	}
6094 
6095 	len = strnlen(base_name, SPDK_CONTROLLER_NAME_MAX);
6096 
6097 	if (len == 0 || len == SPDK_CONTROLLER_NAME_MAX) {
6098 		SPDK_ERRLOG("controller name must be between 1 and %d characters\n", SPDK_CONTROLLER_NAME_MAX - 1);
6099 		return -EINVAL;
6100 	}
6101 
6102 	if (bdev_opts != NULL &&
6103 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
6104 			    bdev_opts->reconnect_delay_sec,
6105 			    bdev_opts->fast_io_fail_timeout_sec)) {
6106 		return -EINVAL;
6107 	}
6108 
6109 	ctx = calloc(1, sizeof(*ctx));
6110 	if (!ctx) {
6111 		return -ENOMEM;
6112 	}
6113 	ctx->base_name = base_name;
6114 	ctx->names = names;
6115 	ctx->max_bdevs = count;
6116 	ctx->cb_fn = cb_fn;
6117 	ctx->cb_ctx = cb_ctx;
6118 	ctx->trid = *trid;
6119 
6120 	if (bdev_opts) {
6121 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
6122 	} else {
6123 		bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
6124 	}
6125 
6126 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
6127 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
6128 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
6129 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
6130 				free(entry);
6131 				break;
6132 			}
6133 		}
6134 	}
6135 
6136 	if (drv_opts) {
6137 		memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
6138 	} else {
6139 		spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->drv_opts, sizeof(ctx->drv_opts));
6140 	}
6141 
6142 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
6143 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
6144 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
6145 	ctx->drv_opts.disable_read_ana_log_page = true;
6146 	ctx->drv_opts.transport_tos = g_opts.transport_tos;
6147 
6148 	if (ctx->bdev_opts.psk[0] != '\0') {
6149 		/* Try to use the keyring first */
6150 		ctx->drv_opts.tls_psk = spdk_keyring_get_key(ctx->bdev_opts.psk);
6151 		if (ctx->drv_opts.tls_psk == NULL) {
6152 			rc = bdev_nvme_load_psk(ctx->bdev_opts.psk,
6153 						ctx->drv_opts.psk, sizeof(ctx->drv_opts.psk));
6154 			if (rc != 0) {
6155 				SPDK_ERRLOG("Could not load PSK from %s\n", ctx->bdev_opts.psk);
6156 				free_nvme_async_probe_ctx(ctx);
6157 				return rc;
6158 			}
6159 		}
6160 	}
6161 
6162 	if (ctx->bdev_opts.dhchap_key != NULL) {
6163 		ctx->drv_opts.dhchap_key = spdk_keyring_get_key(ctx->bdev_opts.dhchap_key);
6164 		if (ctx->drv_opts.dhchap_key == NULL) {
6165 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP key: %s\n",
6166 				    ctx->bdev_opts.dhchap_key);
6167 			free_nvme_async_probe_ctx(ctx);
6168 			return -ENOKEY;
6169 		}
6170 
6171 		ctx->drv_opts.dhchap_digests = g_opts.dhchap_digests;
6172 		ctx->drv_opts.dhchap_dhgroups = g_opts.dhchap_dhgroups;
6173 	}
6174 
6175 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) {
6176 		attach_cb = connect_attach_cb;
6177 	} else {
6178 		attach_cb = connect_set_failover_cb;
6179 	}
6180 
6181 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
6182 	if (ctx->probe_ctx == NULL) {
6183 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
6184 		free_nvme_async_probe_ctx(ctx);
6185 		return -ENODEV;
6186 	}
6187 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
6188 
6189 	return 0;
6190 }
6191 
6192 struct bdev_nvme_delete_ctx {
6193 	char                        *name;
6194 	struct nvme_path_id         path_id;
6195 	bdev_nvme_delete_done_fn    delete_done;
6196 	void                        *delete_done_ctx;
6197 	uint64_t                    timeout_ticks;
6198 	struct spdk_poller          *poller;
6199 };
6200 
6201 static void
6202 free_bdev_nvme_delete_ctx(struct bdev_nvme_delete_ctx *ctx)
6203 {
6204 	if (ctx != NULL) {
6205 		free(ctx->name);
6206 		free(ctx);
6207 	}
6208 }
6209 
6210 static bool
6211 nvme_path_id_compare(struct nvme_path_id *p, const struct nvme_path_id *path_id)
6212 {
6213 	if (path_id->trid.trtype != 0) {
6214 		if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
6215 			if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
6216 				return false;
6217 			}
6218 		} else {
6219 			if (path_id->trid.trtype != p->trid.trtype) {
6220 				return false;
6221 			}
6222 		}
6223 	}
6224 
6225 	if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
6226 		if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
6227 			return false;
6228 		}
6229 	}
6230 
6231 	if (path_id->trid.adrfam != 0) {
6232 		if (path_id->trid.adrfam != p->trid.adrfam) {
6233 			return false;
6234 		}
6235 	}
6236 
6237 	if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
6238 		if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
6239 			return false;
6240 		}
6241 	}
6242 
6243 	if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
6244 		if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
6245 			return false;
6246 		}
6247 	}
6248 
6249 	if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
6250 		if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
6251 			return false;
6252 		}
6253 	}
6254 
6255 	if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
6256 		if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
6257 			return false;
6258 		}
6259 	}
6260 
6261 	return true;
6262 }
6263 
6264 static bool
6265 nvme_path_id_exists(const char *name, const struct nvme_path_id *path_id)
6266 {
6267 	struct nvme_bdev_ctrlr  *nbdev_ctrlr;
6268 	struct nvme_ctrlr       *ctrlr;
6269 	struct nvme_path_id     *p;
6270 
6271 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6272 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6273 	if (!nbdev_ctrlr) {
6274 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6275 		return false;
6276 	}
6277 
6278 	TAILQ_FOREACH(ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6279 		pthread_mutex_lock(&ctrlr->mutex);
6280 		TAILQ_FOREACH(p, &ctrlr->trids, link) {
6281 			if (nvme_path_id_compare(p, path_id)) {
6282 				pthread_mutex_unlock(&ctrlr->mutex);
6283 				pthread_mutex_unlock(&g_bdev_nvme_mutex);
6284 				return true;
6285 			}
6286 		}
6287 		pthread_mutex_unlock(&ctrlr->mutex);
6288 	}
6289 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6290 
6291 	return false;
6292 }
6293 
6294 static int
6295 bdev_nvme_delete_complete_poll(void *arg)
6296 {
6297 	struct bdev_nvme_delete_ctx     *ctx = arg;
6298 	int                             rc = 0;
6299 
6300 	if (nvme_path_id_exists(ctx->name, &ctx->path_id)) {
6301 		if (ctx->timeout_ticks > spdk_get_ticks()) {
6302 			return SPDK_POLLER_BUSY;
6303 		}
6304 
6305 		SPDK_ERRLOG("NVMe path '%s' still exists after delete\n", ctx->name);
6306 		rc = -ETIMEDOUT;
6307 	}
6308 
6309 	spdk_poller_unregister(&ctx->poller);
6310 
6311 	ctx->delete_done(ctx->delete_done_ctx, rc);
6312 	free_bdev_nvme_delete_ctx(ctx);
6313 
6314 	return SPDK_POLLER_BUSY;
6315 }
6316 
6317 static int
6318 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, const struct nvme_path_id *path_id)
6319 {
6320 	struct nvme_path_id	*p, *t;
6321 	spdk_msg_fn		msg_fn;
6322 	int			rc = -ENXIO;
6323 
6324 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6325 
6326 	TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
6327 		if (p == TAILQ_FIRST(&nvme_ctrlr->trids)) {
6328 			break;
6329 		}
6330 
6331 		if (!nvme_path_id_compare(p, path_id)) {
6332 			continue;
6333 		}
6334 
6335 		/* We are not using the specified path. */
6336 		TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
6337 		free(p);
6338 		rc = 0;
6339 	}
6340 
6341 	if (p == NULL || !nvme_path_id_compare(p, path_id)) {
6342 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
6343 		return rc;
6344 	}
6345 
6346 	/* If we made it here, then this path is a match! Now we need to remove it. */
6347 
6348 	/* This is the active path in use right now. The active path is always the first in the list. */
6349 	assert(p == nvme_ctrlr->active_path_id);
6350 
6351 	if (!TAILQ_NEXT(p, link)) {
6352 		/* The current path is the only path. */
6353 		msg_fn = _nvme_ctrlr_destruct;
6354 		rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, false);
6355 	} else {
6356 		/* There is an alternative path. */
6357 		msg_fn = _bdev_nvme_reset_ctrlr;
6358 		rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, true);
6359 	}
6360 
6361 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6362 
6363 	if (rc == 0) {
6364 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
6365 	} else if (rc == -EALREADY) {
6366 		rc = 0;
6367 	}
6368 
6369 	return rc;
6370 }
6371 
6372 int
6373 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id,
6374 		 bdev_nvme_delete_done_fn delete_done, void *delete_done_ctx)
6375 {
6376 	struct nvme_bdev_ctrlr		*nbdev_ctrlr;
6377 	struct nvme_ctrlr		*nvme_ctrlr, *tmp_nvme_ctrlr;
6378 	struct bdev_nvme_delete_ctx     *ctx = NULL;
6379 	int				rc = -ENXIO, _rc;
6380 
6381 	if (name == NULL || path_id == NULL) {
6382 		rc = -EINVAL;
6383 		goto exit;
6384 	}
6385 
6386 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6387 
6388 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6389 	if (nbdev_ctrlr == NULL) {
6390 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6391 
6392 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
6393 		rc = -ENODEV;
6394 		goto exit;
6395 	}
6396 
6397 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
6398 		_rc = _bdev_nvme_delete(nvme_ctrlr, path_id);
6399 		if (_rc < 0 && _rc != -ENXIO) {
6400 			pthread_mutex_unlock(&g_bdev_nvme_mutex);
6401 			rc = _rc;
6402 			goto exit;
6403 		} else if (_rc == 0) {
6404 			/* We traverse all remaining nvme_ctrlrs even if one nvme_ctrlr
6405 			 * was deleted successfully. To remember the successful deletion,
6406 			 * overwrite rc only if _rc is zero.
6407 			 */
6408 			rc = 0;
6409 		}
6410 	}
6411 
6412 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6413 
6414 	if (rc != 0 || delete_done == NULL) {
6415 		goto exit;
6416 	}
6417 
6418 	ctx = calloc(1, sizeof(*ctx));
6419 	if (ctx == NULL) {
6420 		SPDK_ERRLOG("Failed to allocate context for bdev_nvme_delete\n");
6421 		rc = -ENOMEM;
6422 		goto exit;
6423 	}
6424 
6425 	ctx->name = strdup(name);
6426 	if (ctx->name == NULL) {
6427 		SPDK_ERRLOG("Failed to copy controller name for deletion\n");
6428 		rc = -ENOMEM;
6429 		goto exit;
6430 	}
6431 
6432 	ctx->delete_done = delete_done;
6433 	ctx->delete_done_ctx = delete_done_ctx;
6434 	ctx->path_id = *path_id;
6435 	ctx->timeout_ticks = spdk_get_ticks() + 10 * spdk_get_ticks_hz();
6436 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_delete_complete_poll, ctx, 1000);
6437 	if (ctx->poller == NULL) {
6438 		SPDK_ERRLOG("Failed to register bdev_nvme_delete poller\n");
6439 		rc = -ENOMEM;
6440 		goto exit;
6441 	}
6442 
6443 exit:
6444 	if (rc != 0) {
6445 		free_bdev_nvme_delete_ctx(ctx);
6446 	}
6447 
6448 	return rc;
6449 }
6450 
6451 #define DISCOVERY_INFOLOG(ctx, format, ...) \
6452 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6453 
6454 #define DISCOVERY_ERRLOG(ctx, format, ...) \
6455 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6456 
6457 struct discovery_entry_ctx {
6458 	char						name[128];
6459 	struct spdk_nvme_transport_id			trid;
6460 	struct spdk_nvme_ctrlr_opts			drv_opts;
6461 	struct spdk_nvmf_discovery_log_page_entry	entry;
6462 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
6463 	struct discovery_ctx				*ctx;
6464 };
6465 
6466 struct discovery_ctx {
6467 	char					*name;
6468 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
6469 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
6470 	void					*cb_ctx;
6471 	struct spdk_nvme_probe_ctx		*probe_ctx;
6472 	struct spdk_nvme_detach_ctx		*detach_ctx;
6473 	struct spdk_nvme_ctrlr			*ctrlr;
6474 	struct spdk_nvme_transport_id		trid;
6475 	struct discovery_entry_ctx		*entry_ctx_in_use;
6476 	struct spdk_poller			*poller;
6477 	struct spdk_nvme_ctrlr_opts		drv_opts;
6478 	struct nvme_ctrlr_opts			bdev_opts;
6479 	struct spdk_nvmf_discovery_log_page	*log_page;
6480 	TAILQ_ENTRY(discovery_ctx)		tailq;
6481 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
6482 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
6483 	int					rc;
6484 	bool					wait_for_attach;
6485 	uint64_t				timeout_ticks;
6486 	/* Denotes that the discovery service is being started. We're waiting
6487 	 * for the initial connection to the discovery controller to be
6488 	 * established and attach discovered NVM ctrlrs.
6489 	 */
6490 	bool					initializing;
6491 	/* Denotes if a discovery is currently in progress for this context.
6492 	 * That includes connecting to newly discovered subsystems.  Used to
6493 	 * ensure we do not start a new discovery until an existing one is
6494 	 * complete.
6495 	 */
6496 	bool					in_progress;
6497 
6498 	/* Denotes if another discovery is needed after the one in progress
6499 	 * completes.  Set when we receive an AER completion while a discovery
6500 	 * is already in progress.
6501 	 */
6502 	bool					pending;
6503 
6504 	/* Signal to the discovery context poller that it should stop the
6505 	 * discovery service, including detaching from the current discovery
6506 	 * controller.
6507 	 */
6508 	bool					stop;
6509 
6510 	struct spdk_thread			*calling_thread;
6511 	uint32_t				index;
6512 	uint32_t				attach_in_progress;
6513 	char					*hostnqn;
6514 
6515 	/* Denotes if the discovery service was started by the mdns discovery.
6516 	 */
6517 	bool					from_mdns_discovery_service;
6518 };
6519 
6520 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
6521 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
6522 
6523 static void get_discovery_log_page(struct discovery_ctx *ctx);
6524 
6525 static void
6526 free_discovery_ctx(struct discovery_ctx *ctx)
6527 {
6528 	free(ctx->log_page);
6529 	free(ctx->hostnqn);
6530 	free(ctx->name);
6531 	free(ctx);
6532 }
6533 
6534 static void
6535 discovery_complete(struct discovery_ctx *ctx)
6536 {
6537 	ctx->initializing = false;
6538 	ctx->in_progress = false;
6539 	if (ctx->pending) {
6540 		ctx->pending = false;
6541 		get_discovery_log_page(ctx);
6542 	}
6543 }
6544 
6545 static void
6546 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
6547 			       struct spdk_nvmf_discovery_log_page_entry *entry)
6548 {
6549 	char *space;
6550 
6551 	trid->trtype = entry->trtype;
6552 	trid->adrfam = entry->adrfam;
6553 	memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr));
6554 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid));
6555 	/* Because the source buffer (entry->subnqn) is longer than trid->subnqn, and
6556 	 * before call to this function trid->subnqn is zeroed out, we need
6557 	 * to copy sizeof(trid->subnqn) minus one byte to make sure the last character
6558 	 * remains 0. Then we can shorten the string (replace ' ' with 0) if required
6559 	 */
6560 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn) - 1);
6561 
6562 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
6563 	 * But the log page entries typically pad them with spaces, not zeroes.
6564 	 * So add a NULL terminator to each of these fields at the appropriate
6565 	 * location.
6566 	 */
6567 	space = strchr(trid->traddr, ' ');
6568 	if (space) {
6569 		*space = 0;
6570 	}
6571 	space = strchr(trid->trsvcid, ' ');
6572 	if (space) {
6573 		*space = 0;
6574 	}
6575 	space = strchr(trid->subnqn, ' ');
6576 	if (space) {
6577 		*space = 0;
6578 	}
6579 }
6580 
6581 static void
6582 _stop_discovery(void *_ctx)
6583 {
6584 	struct discovery_ctx *ctx = _ctx;
6585 
6586 	if (ctx->attach_in_progress > 0) {
6587 		spdk_thread_send_msg(spdk_get_thread(), _stop_discovery, ctx);
6588 		return;
6589 	}
6590 
6591 	ctx->stop = true;
6592 
6593 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
6594 		struct discovery_entry_ctx *entry_ctx;
6595 		struct nvme_path_id path = {};
6596 
6597 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
6598 		path.trid = entry_ctx->trid;
6599 		bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6600 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6601 		free(entry_ctx);
6602 	}
6603 
6604 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
6605 		struct discovery_entry_ctx *entry_ctx;
6606 
6607 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6608 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6609 		free(entry_ctx);
6610 	}
6611 
6612 	free(ctx->entry_ctx_in_use);
6613 	ctx->entry_ctx_in_use = NULL;
6614 }
6615 
6616 static void
6617 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
6618 {
6619 	ctx->stop_cb_fn = cb_fn;
6620 	ctx->cb_ctx = cb_ctx;
6621 
6622 	if (ctx->attach_in_progress > 0) {
6623 		DISCOVERY_INFOLOG(ctx, "stopping discovery with attach_in_progress: %"PRIu32"\n",
6624 				  ctx->attach_in_progress);
6625 	}
6626 
6627 	_stop_discovery(ctx);
6628 }
6629 
6630 static void
6631 remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr)
6632 {
6633 	struct discovery_ctx *d_ctx;
6634 	struct nvme_path_id *path_id;
6635 	struct spdk_nvme_transport_id trid = {};
6636 	struct discovery_entry_ctx *entry_ctx, *tmp;
6637 
6638 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
6639 
6640 	TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6641 		TAILQ_FOREACH_SAFE(entry_ctx, &d_ctx->nvm_entry_ctxs, tailq, tmp) {
6642 			build_trid_from_log_page_entry(&trid, &entry_ctx->entry);
6643 			if (spdk_nvme_transport_id_compare(&trid, &path_id->trid) != 0) {
6644 				continue;
6645 			}
6646 
6647 			TAILQ_REMOVE(&d_ctx->nvm_entry_ctxs, entry_ctx, tailq);
6648 			free(entry_ctx);
6649 			DISCOVERY_INFOLOG(d_ctx, "Remove discovery entry: %s:%s:%s\n",
6650 					  trid.subnqn, trid.traddr, trid.trsvcid);
6651 
6652 			/* Fail discovery ctrlr to force reattach attempt */
6653 			spdk_nvme_ctrlr_fail(d_ctx->ctrlr);
6654 		}
6655 	}
6656 }
6657 
6658 static void
6659 discovery_remove_controllers(struct discovery_ctx *ctx)
6660 {
6661 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
6662 	struct discovery_entry_ctx *entry_ctx, *tmp;
6663 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6664 	struct spdk_nvme_transport_id old_trid = {};
6665 	uint64_t numrec, i;
6666 	bool found;
6667 
6668 	numrec = from_le64(&log_page->numrec);
6669 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
6670 		found = false;
6671 		old_entry = &entry_ctx->entry;
6672 		build_trid_from_log_page_entry(&old_trid, old_entry);
6673 		for (i = 0; i < numrec; i++) {
6674 			new_entry = &log_page->entries[i];
6675 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
6676 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
6677 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6678 				found = true;
6679 				break;
6680 			}
6681 		}
6682 		if (!found) {
6683 			struct nvme_path_id path = {};
6684 
6685 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
6686 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6687 
6688 			path.trid = entry_ctx->trid;
6689 			bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6690 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6691 			free(entry_ctx);
6692 		}
6693 	}
6694 	free(log_page);
6695 	ctx->log_page = NULL;
6696 	discovery_complete(ctx);
6697 }
6698 
6699 static void
6700 complete_discovery_start(struct discovery_ctx *ctx, int status)
6701 {
6702 	ctx->timeout_ticks = 0;
6703 	ctx->rc = status;
6704 	if (ctx->start_cb_fn) {
6705 		ctx->start_cb_fn(ctx->cb_ctx, status);
6706 		ctx->start_cb_fn = NULL;
6707 		ctx->cb_ctx = NULL;
6708 	}
6709 }
6710 
6711 static void
6712 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
6713 {
6714 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
6715 	struct discovery_ctx *ctx = entry_ctx->ctx;
6716 
6717 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
6718 	ctx->attach_in_progress--;
6719 	if (ctx->attach_in_progress == 0) {
6720 		complete_discovery_start(ctx, ctx->rc);
6721 		if (ctx->initializing && ctx->rc != 0) {
6722 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
6723 			stop_discovery(ctx, NULL, ctx->cb_ctx);
6724 		} else {
6725 			discovery_remove_controllers(ctx);
6726 		}
6727 	}
6728 }
6729 
6730 static struct discovery_entry_ctx *
6731 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
6732 {
6733 	struct discovery_entry_ctx *new_ctx;
6734 
6735 	new_ctx = calloc(1, sizeof(*new_ctx));
6736 	if (new_ctx == NULL) {
6737 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6738 		return NULL;
6739 	}
6740 
6741 	new_ctx->ctx = ctx;
6742 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
6743 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6744 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6745 	return new_ctx;
6746 }
6747 
6748 static void
6749 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
6750 		      struct spdk_nvmf_discovery_log_page *log_page)
6751 {
6752 	struct discovery_ctx *ctx = cb_arg;
6753 	struct discovery_entry_ctx *entry_ctx, *tmp;
6754 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6755 	uint64_t numrec, i;
6756 	bool found;
6757 
6758 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
6759 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6760 		return;
6761 	}
6762 
6763 	ctx->log_page = log_page;
6764 	assert(ctx->attach_in_progress == 0);
6765 	numrec = from_le64(&log_page->numrec);
6766 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
6767 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6768 		free(entry_ctx);
6769 	}
6770 	for (i = 0; i < numrec; i++) {
6771 		found = false;
6772 		new_entry = &log_page->entries[i];
6773 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY_CURRENT ||
6774 		    new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
6775 			struct discovery_entry_ctx *new_ctx;
6776 			struct spdk_nvme_transport_id trid = {};
6777 
6778 			build_trid_from_log_page_entry(&trid, new_entry);
6779 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
6780 			if (new_ctx == NULL) {
6781 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6782 				break;
6783 			}
6784 
6785 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
6786 			continue;
6787 		}
6788 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
6789 			old_entry = &entry_ctx->entry;
6790 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
6791 				found = true;
6792 				break;
6793 			}
6794 		}
6795 		if (!found) {
6796 			struct discovery_entry_ctx *subnqn_ctx = NULL, *new_ctx;
6797 			struct discovery_ctx *d_ctx;
6798 
6799 			TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6800 				TAILQ_FOREACH(subnqn_ctx, &d_ctx->nvm_entry_ctxs, tailq) {
6801 					if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
6802 						    sizeof(new_entry->subnqn))) {
6803 						break;
6804 					}
6805 				}
6806 				if (subnqn_ctx) {
6807 					break;
6808 				}
6809 			}
6810 
6811 			new_ctx = calloc(1, sizeof(*new_ctx));
6812 			if (new_ctx == NULL) {
6813 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6814 				break;
6815 			}
6816 
6817 			new_ctx->ctx = ctx;
6818 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
6819 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
6820 			if (subnqn_ctx) {
6821 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
6822 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
6823 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6824 						  new_ctx->name);
6825 			} else {
6826 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
6827 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
6828 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6829 						  new_ctx->name);
6830 			}
6831 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6832 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6833 			rc = bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
6834 					      discovery_attach_controller_done, new_ctx,
6835 					      &new_ctx->drv_opts, &ctx->bdev_opts, true);
6836 			if (rc == 0) {
6837 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
6838 				ctx->attach_in_progress++;
6839 			} else {
6840 				DISCOVERY_ERRLOG(ctx, "bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
6841 			}
6842 		}
6843 	}
6844 
6845 	if (ctx->attach_in_progress == 0) {
6846 		discovery_remove_controllers(ctx);
6847 	}
6848 }
6849 
6850 static void
6851 get_discovery_log_page(struct discovery_ctx *ctx)
6852 {
6853 	int rc;
6854 
6855 	assert(ctx->in_progress == false);
6856 	ctx->in_progress = true;
6857 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
6858 	if (rc != 0) {
6859 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6860 	}
6861 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
6862 }
6863 
6864 static void
6865 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
6866 {
6867 	struct discovery_ctx *ctx = arg;
6868 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
6869 
6870 	if (spdk_nvme_cpl_is_error(cpl)) {
6871 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
6872 		return;
6873 	}
6874 
6875 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
6876 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
6877 		return;
6878 	}
6879 
6880 	DISCOVERY_INFOLOG(ctx, "got aer\n");
6881 	if (ctx->in_progress) {
6882 		ctx->pending = true;
6883 		return;
6884 	}
6885 
6886 	get_discovery_log_page(ctx);
6887 }
6888 
6889 static void
6890 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6891 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
6892 {
6893 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6894 	struct discovery_ctx *ctx;
6895 
6896 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
6897 
6898 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
6899 	ctx->probe_ctx = NULL;
6900 	ctx->ctrlr = ctrlr;
6901 
6902 	if (ctx->rc != 0) {
6903 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
6904 				 ctx->rc);
6905 		return;
6906 	}
6907 
6908 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
6909 }
6910 
6911 static int
6912 discovery_poller(void *arg)
6913 {
6914 	struct discovery_ctx *ctx = arg;
6915 	struct spdk_nvme_transport_id *trid;
6916 	int rc;
6917 
6918 	if (ctx->detach_ctx) {
6919 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
6920 		if (rc != -EAGAIN) {
6921 			ctx->detach_ctx = NULL;
6922 			ctx->ctrlr = NULL;
6923 		}
6924 	} else if (ctx->stop) {
6925 		if (ctx->ctrlr != NULL) {
6926 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
6927 			if (rc == 0) {
6928 				return SPDK_POLLER_BUSY;
6929 			}
6930 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
6931 		}
6932 		spdk_poller_unregister(&ctx->poller);
6933 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
6934 		assert(ctx->start_cb_fn == NULL);
6935 		if (ctx->stop_cb_fn != NULL) {
6936 			ctx->stop_cb_fn(ctx->cb_ctx);
6937 		}
6938 		free_discovery_ctx(ctx);
6939 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
6940 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6941 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
6942 			assert(ctx->initializing);
6943 			spdk_poller_unregister(&ctx->poller);
6944 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
6945 			complete_discovery_start(ctx, -ETIMEDOUT);
6946 			stop_discovery(ctx, NULL, NULL);
6947 			free_discovery_ctx(ctx);
6948 			return SPDK_POLLER_BUSY;
6949 		}
6950 
6951 		assert(ctx->entry_ctx_in_use == NULL);
6952 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6953 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6954 		trid = &ctx->entry_ctx_in_use->trid;
6955 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
6956 		if (ctx->probe_ctx) {
6957 			spdk_poller_unregister(&ctx->poller);
6958 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
6959 		} else {
6960 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
6961 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6962 			ctx->entry_ctx_in_use = NULL;
6963 		}
6964 	} else if (ctx->probe_ctx) {
6965 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6966 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
6967 			complete_discovery_start(ctx, -ETIMEDOUT);
6968 			return SPDK_POLLER_BUSY;
6969 		}
6970 
6971 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
6972 		if (rc != -EAGAIN) {
6973 			if (ctx->rc != 0) {
6974 				assert(ctx->initializing);
6975 				stop_discovery(ctx, NULL, ctx->cb_ctx);
6976 			} else {
6977 				assert(rc == 0);
6978 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
6979 				ctx->rc = rc;
6980 				get_discovery_log_page(ctx);
6981 			}
6982 		}
6983 	} else {
6984 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6985 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
6986 			complete_discovery_start(ctx, -ETIMEDOUT);
6987 			/* We need to wait until all NVM ctrlrs are attached before we stop the
6988 			 * discovery service to make sure we don't detach a ctrlr that is still
6989 			 * being attached.
6990 			 */
6991 			if (ctx->attach_in_progress == 0) {
6992 				stop_discovery(ctx, NULL, ctx->cb_ctx);
6993 				return SPDK_POLLER_BUSY;
6994 			}
6995 		}
6996 
6997 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
6998 		if (rc < 0) {
6999 			spdk_poller_unregister(&ctx->poller);
7000 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7001 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7002 			ctx->entry_ctx_in_use = NULL;
7003 
7004 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
7005 			if (rc != 0) {
7006 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7007 				ctx->ctrlr = NULL;
7008 			}
7009 		}
7010 	}
7011 
7012 	return SPDK_POLLER_BUSY;
7013 }
7014 
7015 static void
7016 start_discovery_poller(void *arg)
7017 {
7018 	struct discovery_ctx *ctx = arg;
7019 
7020 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
7021 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7022 }
7023 
7024 int
7025 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
7026 			  const char *base_name,
7027 			  struct spdk_nvme_ctrlr_opts *drv_opts,
7028 			  struct nvme_ctrlr_opts *bdev_opts,
7029 			  uint64_t attach_timeout,
7030 			  bool from_mdns,
7031 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
7032 {
7033 	struct discovery_ctx *ctx;
7034 	struct discovery_entry_ctx *discovery_entry_ctx;
7035 
7036 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
7037 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7038 		if (strcmp(ctx->name, base_name) == 0) {
7039 			return -EEXIST;
7040 		}
7041 
7042 		if (ctx->entry_ctx_in_use != NULL) {
7043 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
7044 				return -EEXIST;
7045 			}
7046 		}
7047 
7048 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
7049 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
7050 				return -EEXIST;
7051 			}
7052 		}
7053 	}
7054 
7055 	ctx = calloc(1, sizeof(*ctx));
7056 	if (ctx == NULL) {
7057 		return -ENOMEM;
7058 	}
7059 
7060 	ctx->name = strdup(base_name);
7061 	if (ctx->name == NULL) {
7062 		free_discovery_ctx(ctx);
7063 		return -ENOMEM;
7064 	}
7065 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
7066 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
7067 	ctx->from_mdns_discovery_service = from_mdns;
7068 	ctx->bdev_opts.from_discovery_service = true;
7069 	ctx->calling_thread = spdk_get_thread();
7070 	ctx->start_cb_fn = cb_fn;
7071 	ctx->cb_ctx = cb_ctx;
7072 	ctx->initializing = true;
7073 	if (ctx->start_cb_fn) {
7074 		/* We can use this when dumping json to denote if this RPC parameter
7075 		 * was specified or not.
7076 		 */
7077 		ctx->wait_for_attach = true;
7078 	}
7079 	if (attach_timeout != 0) {
7080 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
7081 				     spdk_get_ticks_hz() / 1000ull;
7082 	}
7083 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
7084 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
7085 	memcpy(&ctx->trid, trid, sizeof(*trid));
7086 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
7087 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
7088 	if (ctx->hostnqn == NULL) {
7089 		free_discovery_ctx(ctx);
7090 		return -ENOMEM;
7091 	}
7092 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
7093 	if (discovery_entry_ctx == NULL) {
7094 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7095 		free_discovery_ctx(ctx);
7096 		return -ENOMEM;
7097 	}
7098 
7099 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
7100 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
7101 	return 0;
7102 }
7103 
7104 int
7105 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
7106 {
7107 	struct discovery_ctx *ctx;
7108 
7109 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7110 		if (strcmp(name, ctx->name) == 0) {
7111 			if (ctx->stop) {
7112 				return -EALREADY;
7113 			}
7114 			/* If we're still starting the discovery service and ->rc is non-zero, we're
7115 			 * going to stop it as soon as we can
7116 			 */
7117 			if (ctx->initializing && ctx->rc != 0) {
7118 				return -EALREADY;
7119 			}
7120 			stop_discovery(ctx, cb_fn, cb_ctx);
7121 			return 0;
7122 		}
7123 	}
7124 
7125 	return -ENOENT;
7126 }
7127 
7128 static int
7129 bdev_nvme_library_init(void)
7130 {
7131 	g_bdev_nvme_init_thread = spdk_get_thread();
7132 
7133 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
7134 				bdev_nvme_destroy_poll_group_cb,
7135 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
7136 
7137 	return 0;
7138 }
7139 
7140 static void
7141 bdev_nvme_fini_destruct_ctrlrs(void)
7142 {
7143 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
7144 	struct nvme_ctrlr *nvme_ctrlr;
7145 
7146 	pthread_mutex_lock(&g_bdev_nvme_mutex);
7147 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
7148 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
7149 			pthread_mutex_lock(&nvme_ctrlr->mutex);
7150 			if (nvme_ctrlr->destruct) {
7151 				/* This controller's destruction was already started
7152 				 * before the application started shutting down
7153 				 */
7154 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
7155 				continue;
7156 			}
7157 			nvme_ctrlr->destruct = true;
7158 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
7159 
7160 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
7161 					     nvme_ctrlr);
7162 		}
7163 	}
7164 
7165 	g_bdev_nvme_module_finish = true;
7166 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
7167 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
7168 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
7169 		spdk_bdev_module_fini_done();
7170 		return;
7171 	}
7172 
7173 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
7174 }
7175 
7176 static void
7177 check_discovery_fini(void *arg)
7178 {
7179 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7180 		bdev_nvme_fini_destruct_ctrlrs();
7181 	}
7182 }
7183 
7184 static void
7185 bdev_nvme_library_fini(void)
7186 {
7187 	struct nvme_probe_skip_entry *entry, *entry_tmp;
7188 	struct discovery_ctx *ctx;
7189 
7190 	spdk_poller_unregister(&g_hotplug_poller);
7191 	free(g_hotplug_probe_ctx);
7192 	g_hotplug_probe_ctx = NULL;
7193 
7194 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
7195 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
7196 		free(entry);
7197 	}
7198 
7199 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
7200 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7201 		bdev_nvme_fini_destruct_ctrlrs();
7202 	} else {
7203 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7204 			stop_discovery(ctx, check_discovery_fini, NULL);
7205 		}
7206 	}
7207 }
7208 
7209 static void
7210 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
7211 {
7212 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7213 	struct spdk_bdev *bdev = bdev_io->bdev;
7214 	struct spdk_dif_ctx dif_ctx;
7215 	struct spdk_dif_error err_blk = {};
7216 	int rc;
7217 	struct spdk_dif_ctx_init_ext_opts dif_opts;
7218 
7219 	dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format);
7220 	dif_opts.dif_pi_format = SPDK_DIF_PI_FORMAT_16;
7221 	rc = spdk_dif_ctx_init(&dif_ctx,
7222 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
7223 			       bdev->dif_is_head_of_md, bdev->dif_type,
7224 			       bdev_io->u.bdev.dif_check_flags,
7225 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0, &dif_opts);
7226 	if (rc != 0) {
7227 		SPDK_ERRLOG("Initialization of DIF context failed\n");
7228 		return;
7229 	}
7230 
7231 	if (bdev->md_interleave) {
7232 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7233 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7234 	} else {
7235 		struct iovec md_iov = {
7236 			.iov_base	= bdev_io->u.bdev.md_buf,
7237 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
7238 		};
7239 
7240 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7241 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7242 	}
7243 
7244 	if (rc != 0) {
7245 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
7246 			    err_blk.err_type, err_blk.err_offset);
7247 	} else {
7248 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
7249 	}
7250 }
7251 
7252 static void
7253 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7254 {
7255 	struct nvme_bdev_io *bio = ref;
7256 
7257 	if (spdk_nvme_cpl_is_success(cpl)) {
7258 		/* Run PI verification for read data buffer. */
7259 		bdev_nvme_verify_pi_error(bio);
7260 	}
7261 
7262 	/* Return original completion status */
7263 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7264 }
7265 
7266 static void
7267 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7268 {
7269 	struct nvme_bdev_io *bio = ref;
7270 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7271 	int ret;
7272 
7273 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7274 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
7275 			    cpl->status.sct, cpl->status.sc);
7276 
7277 		/* Save completion status to use after verifying PI error. */
7278 		bio->cpl = *cpl;
7279 
7280 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
7281 			/* Read without PI checking to verify PI error. */
7282 			ret = bdev_nvme_no_pi_readv(bio,
7283 						    bdev_io->u.bdev.iovs,
7284 						    bdev_io->u.bdev.iovcnt,
7285 						    bdev_io->u.bdev.md_buf,
7286 						    bdev_io->u.bdev.num_blocks,
7287 						    bdev_io->u.bdev.offset_blocks);
7288 			if (ret == 0) {
7289 				return;
7290 			}
7291 		}
7292 	}
7293 
7294 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7295 }
7296 
7297 static void
7298 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7299 {
7300 	struct nvme_bdev_io *bio = ref;
7301 
7302 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7303 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
7304 			    cpl->status.sct, cpl->status.sc);
7305 		/* Run PI verification for write data buffer if PI error is detected. */
7306 		bdev_nvme_verify_pi_error(bio);
7307 	}
7308 
7309 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7310 }
7311 
7312 static void
7313 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7314 {
7315 	struct nvme_bdev_io *bio = ref;
7316 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7317 
7318 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
7319 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
7320 	 */
7321 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
7322 
7323 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7324 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
7325 			    cpl->status.sct, cpl->status.sc);
7326 		/* Run PI verification for zone append data buffer if PI error is detected. */
7327 		bdev_nvme_verify_pi_error(bio);
7328 	}
7329 
7330 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7331 }
7332 
7333 static void
7334 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7335 {
7336 	struct nvme_bdev_io *bio = ref;
7337 
7338 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7339 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
7340 			    cpl->status.sct, cpl->status.sc);
7341 		/* Run PI verification for compare data buffer if PI error is detected. */
7342 		bdev_nvme_verify_pi_error(bio);
7343 	}
7344 
7345 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7346 }
7347 
7348 static void
7349 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7350 {
7351 	struct nvme_bdev_io *bio = ref;
7352 
7353 	/* Compare operation completion */
7354 	if (!bio->first_fused_completed) {
7355 		/* Save compare result for write callback */
7356 		bio->cpl = *cpl;
7357 		bio->first_fused_completed = true;
7358 		return;
7359 	}
7360 
7361 	/* Write operation completion */
7362 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
7363 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
7364 		 * complete the IO with the compare operation's status.
7365 		 */
7366 		if (!spdk_nvme_cpl_is_error(cpl)) {
7367 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
7368 		}
7369 
7370 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7371 	} else {
7372 		bdev_nvme_io_complete_nvme_status(bio, cpl);
7373 	}
7374 }
7375 
7376 static void
7377 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
7378 {
7379 	struct nvme_bdev_io *bio = ref;
7380 
7381 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7382 }
7383 
7384 static int
7385 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
7386 {
7387 	switch (desc->zt) {
7388 	case SPDK_NVME_ZONE_TYPE_SEQWR:
7389 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
7390 		break;
7391 	default:
7392 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
7393 		return -EIO;
7394 	}
7395 
7396 	switch (desc->zs) {
7397 	case SPDK_NVME_ZONE_STATE_EMPTY:
7398 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
7399 		break;
7400 	case SPDK_NVME_ZONE_STATE_IOPEN:
7401 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
7402 		break;
7403 	case SPDK_NVME_ZONE_STATE_EOPEN:
7404 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
7405 		break;
7406 	case SPDK_NVME_ZONE_STATE_CLOSED:
7407 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
7408 		break;
7409 	case SPDK_NVME_ZONE_STATE_RONLY:
7410 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
7411 		break;
7412 	case SPDK_NVME_ZONE_STATE_FULL:
7413 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
7414 		break;
7415 	case SPDK_NVME_ZONE_STATE_OFFLINE:
7416 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
7417 		break;
7418 	default:
7419 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
7420 		return -EIO;
7421 	}
7422 
7423 	info->zone_id = desc->zslba;
7424 	info->write_pointer = desc->wp;
7425 	info->capacity = desc->zcap;
7426 
7427 	return 0;
7428 }
7429 
7430 static void
7431 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
7432 {
7433 	struct nvme_bdev_io *bio = ref;
7434 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7435 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
7436 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
7437 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
7438 	uint64_t max_zones_per_buf, i;
7439 	uint32_t zone_report_bufsize;
7440 	struct spdk_nvme_ns *ns;
7441 	struct spdk_nvme_qpair *qpair;
7442 	int ret;
7443 
7444 	if (spdk_nvme_cpl_is_error(cpl)) {
7445 		goto out_complete_io_nvme_cpl;
7446 	}
7447 
7448 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
7449 		ret = -ENXIO;
7450 		goto out_complete_io_ret;
7451 	}
7452 
7453 	ns = bio->io_path->nvme_ns->ns;
7454 	qpair = bio->io_path->qpair->qpair;
7455 
7456 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7457 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
7458 			    sizeof(bio->zone_report_buf->descs[0]);
7459 
7460 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
7461 		ret = -EINVAL;
7462 		goto out_complete_io_ret;
7463 	}
7464 
7465 	if (!bio->zone_report_buf->nr_zones) {
7466 		ret = -EINVAL;
7467 		goto out_complete_io_ret;
7468 	}
7469 
7470 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
7471 		ret = fill_zone_from_report(&info[bio->handled_zones],
7472 					    &bio->zone_report_buf->descs[i]);
7473 		if (ret) {
7474 			goto out_complete_io_ret;
7475 		}
7476 		bio->handled_zones++;
7477 	}
7478 
7479 	if (bio->handled_zones < zones_to_copy) {
7480 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7481 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
7482 
7483 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
7484 		ret = spdk_nvme_zns_report_zones(ns, qpair,
7485 						 bio->zone_report_buf, zone_report_bufsize,
7486 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
7487 						 bdev_nvme_get_zone_info_done, bio);
7488 		if (!ret) {
7489 			return;
7490 		} else {
7491 			goto out_complete_io_ret;
7492 		}
7493 	}
7494 
7495 out_complete_io_nvme_cpl:
7496 	free(bio->zone_report_buf);
7497 	bio->zone_report_buf = NULL;
7498 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7499 	return;
7500 
7501 out_complete_io_ret:
7502 	free(bio->zone_report_buf);
7503 	bio->zone_report_buf = NULL;
7504 	bdev_nvme_io_complete(bio, ret);
7505 }
7506 
7507 static void
7508 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
7509 {
7510 	struct nvme_bdev_io *bio = ref;
7511 
7512 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7513 }
7514 
7515 static void
7516 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
7517 {
7518 	struct nvme_bdev_io *bio = ctx;
7519 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7520 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
7521 
7522 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
7523 
7524 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
7525 }
7526 
7527 static void
7528 bdev_nvme_abort_complete(void *ctx)
7529 {
7530 	struct nvme_bdev_io *bio = ctx;
7531 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7532 
7533 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
7534 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
7535 	} else {
7536 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
7537 	}
7538 }
7539 
7540 static void
7541 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
7542 {
7543 	struct nvme_bdev_io *bio = ref;
7544 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7545 
7546 	bio->cpl = *cpl;
7547 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), bdev_nvme_abort_complete, bio);
7548 }
7549 
7550 static void
7551 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
7552 {
7553 	struct nvme_bdev_io *bio = ref;
7554 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7555 
7556 	bio->cpl = *cpl;
7557 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io),
7558 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
7559 }
7560 
7561 static void
7562 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
7563 {
7564 	struct nvme_bdev_io *bio = ref;
7565 	struct iovec *iov;
7566 
7567 	bio->iov_offset = sgl_offset;
7568 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
7569 		iov = &bio->iovs[bio->iovpos];
7570 		if (bio->iov_offset < iov->iov_len) {
7571 			break;
7572 		}
7573 
7574 		bio->iov_offset -= iov->iov_len;
7575 	}
7576 }
7577 
7578 static int
7579 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
7580 {
7581 	struct nvme_bdev_io *bio = ref;
7582 	struct iovec *iov;
7583 
7584 	assert(bio->iovpos < bio->iovcnt);
7585 
7586 	iov = &bio->iovs[bio->iovpos];
7587 
7588 	*address = iov->iov_base;
7589 	*length = iov->iov_len;
7590 
7591 	if (bio->iov_offset) {
7592 		assert(bio->iov_offset <= iov->iov_len);
7593 		*address += bio->iov_offset;
7594 		*length -= bio->iov_offset;
7595 	}
7596 
7597 	bio->iov_offset += *length;
7598 	if (bio->iov_offset == iov->iov_len) {
7599 		bio->iovpos++;
7600 		bio->iov_offset = 0;
7601 	}
7602 
7603 	return 0;
7604 }
7605 
7606 static void
7607 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
7608 {
7609 	struct nvme_bdev_io *bio = ref;
7610 	struct iovec *iov;
7611 
7612 	bio->fused_iov_offset = sgl_offset;
7613 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
7614 		iov = &bio->fused_iovs[bio->fused_iovpos];
7615 		if (bio->fused_iov_offset < iov->iov_len) {
7616 			break;
7617 		}
7618 
7619 		bio->fused_iov_offset -= iov->iov_len;
7620 	}
7621 }
7622 
7623 static int
7624 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
7625 {
7626 	struct nvme_bdev_io *bio = ref;
7627 	struct iovec *iov;
7628 
7629 	assert(bio->fused_iovpos < bio->fused_iovcnt);
7630 
7631 	iov = &bio->fused_iovs[bio->fused_iovpos];
7632 
7633 	*address = iov->iov_base;
7634 	*length = iov->iov_len;
7635 
7636 	if (bio->fused_iov_offset) {
7637 		assert(bio->fused_iov_offset <= iov->iov_len);
7638 		*address += bio->fused_iov_offset;
7639 		*length -= bio->fused_iov_offset;
7640 	}
7641 
7642 	bio->fused_iov_offset += *length;
7643 	if (bio->fused_iov_offset == iov->iov_len) {
7644 		bio->fused_iovpos++;
7645 		bio->fused_iov_offset = 0;
7646 	}
7647 
7648 	return 0;
7649 }
7650 
7651 static int
7652 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7653 		      void *md, uint64_t lba_count, uint64_t lba)
7654 {
7655 	int rc;
7656 
7657 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
7658 		      lba_count, lba);
7659 
7660 	bio->iovs = iov;
7661 	bio->iovcnt = iovcnt;
7662 	bio->iovpos = 0;
7663 	bio->iov_offset = 0;
7664 
7665 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
7666 					    bio->io_path->qpair->qpair,
7667 					    lba, lba_count,
7668 					    bdev_nvme_no_pi_readv_done, bio, 0,
7669 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7670 					    md, 0, 0);
7671 
7672 	if (rc != 0 && rc != -ENOMEM) {
7673 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
7674 	}
7675 	return rc;
7676 }
7677 
7678 static int
7679 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7680 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7681 		struct spdk_memory_domain *domain, void *domain_ctx,
7682 		struct spdk_accel_sequence *seq)
7683 {
7684 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7685 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7686 	int rc;
7687 
7688 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7689 		      lba_count, lba);
7690 
7691 	bio->iovs = iov;
7692 	bio->iovcnt = iovcnt;
7693 	bio->iovpos = 0;
7694 	bio->iov_offset = 0;
7695 
7696 	if (domain != NULL || seq != NULL) {
7697 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7698 		bio->ext_opts.memory_domain = domain;
7699 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7700 		bio->ext_opts.io_flags = flags;
7701 		bio->ext_opts.metadata = md;
7702 		bio->ext_opts.accel_sequence = seq;
7703 
7704 		if (iovcnt == 1) {
7705 			rc = spdk_nvme_ns_cmd_read_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_readv_done,
7706 						       bio, &bio->ext_opts);
7707 		} else {
7708 			rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
7709 							bdev_nvme_readv_done, bio,
7710 							bdev_nvme_queued_reset_sgl,
7711 							bdev_nvme_queued_next_sge,
7712 							&bio->ext_opts);
7713 		}
7714 	} else if (iovcnt == 1) {
7715 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base,
7716 						   md, lba, lba_count, bdev_nvme_readv_done,
7717 						   bio, flags, 0, 0);
7718 	} else {
7719 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
7720 						    bdev_nvme_readv_done, bio, flags,
7721 						    bdev_nvme_queued_reset_sgl,
7722 						    bdev_nvme_queued_next_sge, md, 0, 0);
7723 	}
7724 
7725 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
7726 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
7727 	}
7728 	return rc;
7729 }
7730 
7731 static int
7732 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7733 		 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7734 		 struct spdk_memory_domain *domain, void *domain_ctx,
7735 		 struct spdk_accel_sequence *seq)
7736 {
7737 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7738 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7739 	int rc;
7740 
7741 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7742 		      lba_count, lba);
7743 
7744 	bio->iovs = iov;
7745 	bio->iovcnt = iovcnt;
7746 	bio->iovpos = 0;
7747 	bio->iov_offset = 0;
7748 
7749 	if (domain != NULL || seq != NULL) {
7750 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7751 		bio->ext_opts.memory_domain = domain;
7752 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7753 		bio->ext_opts.io_flags = flags;
7754 		bio->ext_opts.metadata = md;
7755 		bio->ext_opts.accel_sequence = seq;
7756 
7757 		if (iovcnt == 1) {
7758 			rc = spdk_nvme_ns_cmd_write_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_writev_done,
7759 							bio, &bio->ext_opts);
7760 		} else {
7761 			rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
7762 							 bdev_nvme_writev_done, bio,
7763 							 bdev_nvme_queued_reset_sgl,
7764 							 bdev_nvme_queued_next_sge,
7765 							 &bio->ext_opts);
7766 		}
7767 	} else if (iovcnt == 1) {
7768 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base,
7769 						    md, lba, lba_count, bdev_nvme_writev_done,
7770 						    bio, flags, 0, 0);
7771 	} else {
7772 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7773 						     bdev_nvme_writev_done, bio, flags,
7774 						     bdev_nvme_queued_reset_sgl,
7775 						     bdev_nvme_queued_next_sge, md, 0, 0);
7776 	}
7777 
7778 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
7779 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
7780 	}
7781 	return rc;
7782 }
7783 
7784 static int
7785 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7786 		       void *md, uint64_t lba_count, uint64_t zslba,
7787 		       uint32_t flags)
7788 {
7789 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7790 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7791 	int rc;
7792 
7793 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
7794 		      lba_count, zslba);
7795 
7796 	bio->iovs = iov;
7797 	bio->iovcnt = iovcnt;
7798 	bio->iovpos = 0;
7799 	bio->iov_offset = 0;
7800 
7801 	if (iovcnt == 1) {
7802 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
7803 						       lba_count,
7804 						       bdev_nvme_zone_appendv_done, bio,
7805 						       flags,
7806 						       0, 0);
7807 	} else {
7808 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
7809 							bdev_nvme_zone_appendv_done, bio, flags,
7810 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7811 							md, 0, 0);
7812 	}
7813 
7814 	if (rc != 0 && rc != -ENOMEM) {
7815 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
7816 	}
7817 	return rc;
7818 }
7819 
7820 static int
7821 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7822 		   void *md, uint64_t lba_count, uint64_t lba,
7823 		   uint32_t flags)
7824 {
7825 	int rc;
7826 
7827 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7828 		      lba_count, lba);
7829 
7830 	bio->iovs = iov;
7831 	bio->iovcnt = iovcnt;
7832 	bio->iovpos = 0;
7833 	bio->iov_offset = 0;
7834 
7835 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
7836 					       bio->io_path->qpair->qpair,
7837 					       lba, lba_count,
7838 					       bdev_nvme_comparev_done, bio, flags,
7839 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7840 					       md, 0, 0);
7841 
7842 	if (rc != 0 && rc != -ENOMEM) {
7843 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
7844 	}
7845 	return rc;
7846 }
7847 
7848 static int
7849 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
7850 			      struct iovec *write_iov, int write_iovcnt,
7851 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
7852 {
7853 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7854 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7855 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7856 	int rc;
7857 
7858 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7859 		      lba_count, lba);
7860 
7861 	bio->iovs = cmp_iov;
7862 	bio->iovcnt = cmp_iovcnt;
7863 	bio->iovpos = 0;
7864 	bio->iov_offset = 0;
7865 	bio->fused_iovs = write_iov;
7866 	bio->fused_iovcnt = write_iovcnt;
7867 	bio->fused_iovpos = 0;
7868 	bio->fused_iov_offset = 0;
7869 
7870 	if (bdev_io->num_retries == 0) {
7871 		bio->first_fused_submitted = false;
7872 		bio->first_fused_completed = false;
7873 	}
7874 
7875 	if (!bio->first_fused_submitted) {
7876 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7877 		memset(&bio->cpl, 0, sizeof(bio->cpl));
7878 
7879 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
7880 						       bdev_nvme_comparev_and_writev_done, bio, flags,
7881 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
7882 		if (rc == 0) {
7883 			bio->first_fused_submitted = true;
7884 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7885 		} else {
7886 			if (rc != -ENOMEM) {
7887 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
7888 			}
7889 			return rc;
7890 		}
7891 	}
7892 
7893 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
7894 
7895 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7896 					     bdev_nvme_comparev_and_writev_done, bio, flags,
7897 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
7898 	if (rc != 0 && rc != -ENOMEM) {
7899 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
7900 		rc = 0;
7901 	}
7902 
7903 	return rc;
7904 }
7905 
7906 static int
7907 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
7908 {
7909 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
7910 	struct spdk_nvme_dsm_range *range;
7911 	uint64_t offset, remaining;
7912 	uint64_t num_ranges_u64;
7913 	uint16_t num_ranges;
7914 	int rc;
7915 
7916 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
7917 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7918 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
7919 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
7920 		return -EINVAL;
7921 	}
7922 	num_ranges = (uint16_t)num_ranges_u64;
7923 
7924 	offset = offset_blocks;
7925 	remaining = num_blocks;
7926 	range = &dsm_ranges[0];
7927 
7928 	/* Fill max-size ranges until the remaining blocks fit into one range */
7929 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
7930 		range->attributes.raw = 0;
7931 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7932 		range->starting_lba = offset;
7933 
7934 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7935 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7936 		range++;
7937 	}
7938 
7939 	/* Final range describes the remaining blocks */
7940 	range->attributes.raw = 0;
7941 	range->length = remaining;
7942 	range->starting_lba = offset;
7943 
7944 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
7945 			bio->io_path->qpair->qpair,
7946 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
7947 			dsm_ranges, num_ranges,
7948 			bdev_nvme_queued_done, bio);
7949 
7950 	return rc;
7951 }
7952 
7953 static int
7954 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
7955 {
7956 	if (num_blocks > UINT16_MAX + 1) {
7957 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
7958 		return -EINVAL;
7959 	}
7960 
7961 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
7962 					     bio->io_path->qpair->qpair,
7963 					     offset_blocks, num_blocks,
7964 					     bdev_nvme_queued_done, bio,
7965 					     0);
7966 }
7967 
7968 static int
7969 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
7970 			struct spdk_bdev_zone_info *info)
7971 {
7972 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7973 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7974 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7975 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7976 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
7977 
7978 	if (zone_id % zone_size != 0) {
7979 		return -EINVAL;
7980 	}
7981 
7982 	if (num_zones > total_zones || !num_zones) {
7983 		return -EINVAL;
7984 	}
7985 
7986 	assert(!bio->zone_report_buf);
7987 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
7988 	if (!bio->zone_report_buf) {
7989 		return -ENOMEM;
7990 	}
7991 
7992 	bio->handled_zones = 0;
7993 
7994 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
7995 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
7996 					  bdev_nvme_get_zone_info_done, bio);
7997 }
7998 
7999 static int
8000 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
8001 			  enum spdk_bdev_zone_action action)
8002 {
8003 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8004 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8005 
8006 	switch (action) {
8007 	case SPDK_BDEV_ZONE_CLOSE:
8008 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
8009 						bdev_nvme_zone_management_done, bio);
8010 	case SPDK_BDEV_ZONE_FINISH:
8011 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
8012 						 bdev_nvme_zone_management_done, bio);
8013 	case SPDK_BDEV_ZONE_OPEN:
8014 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
8015 					       bdev_nvme_zone_management_done, bio);
8016 	case SPDK_BDEV_ZONE_RESET:
8017 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
8018 						bdev_nvme_zone_management_done, bio);
8019 	case SPDK_BDEV_ZONE_OFFLINE:
8020 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
8021 						  bdev_nvme_zone_management_done, bio);
8022 	default:
8023 		return -EINVAL;
8024 	}
8025 }
8026 
8027 static void
8028 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8029 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
8030 {
8031 	struct nvme_io_path *io_path;
8032 	struct nvme_ctrlr *nvme_ctrlr;
8033 	uint32_t max_xfer_size;
8034 	int rc = -ENXIO;
8035 
8036 	/* Choose the first ctrlr which is not failed. */
8037 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8038 		nvme_ctrlr = io_path->qpair->ctrlr;
8039 
8040 		/* We should skip any unavailable nvme_ctrlr rather than checking
8041 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
8042 		 */
8043 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
8044 			continue;
8045 		}
8046 
8047 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
8048 
8049 		if (nbytes > max_xfer_size) {
8050 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8051 			rc = -EINVAL;
8052 			goto err;
8053 		}
8054 
8055 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
8056 						   bdev_nvme_admin_passthru_done, bio);
8057 		if (rc == 0) {
8058 			return;
8059 		}
8060 	}
8061 
8062 err:
8063 	bdev_nvme_admin_complete(bio, rc);
8064 }
8065 
8066 static int
8067 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8068 		      void *buf, size_t nbytes)
8069 {
8070 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8071 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8072 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8073 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8074 
8075 	if (nbytes > max_xfer_size) {
8076 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8077 		return -EINVAL;
8078 	}
8079 
8080 	/*
8081 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8082 	 * so fill it out automatically.
8083 	 */
8084 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8085 
8086 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
8087 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
8088 }
8089 
8090 static int
8091 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8092 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
8093 {
8094 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8095 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8096 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8097 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8098 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8099 
8100 	if (nbytes > max_xfer_size) {
8101 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8102 		return -EINVAL;
8103 	}
8104 
8105 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8106 		SPDK_ERRLOG("invalid meta data buffer size\n");
8107 		return -EINVAL;
8108 	}
8109 
8110 	/*
8111 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8112 	 * so fill it out automatically.
8113 	 */
8114 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8115 
8116 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
8117 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
8118 }
8119 
8120 static int
8121 bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio,
8122 			  struct spdk_nvme_cmd *cmd, struct iovec *iov, int iovcnt,
8123 			  size_t nbytes, void *md_buf, size_t md_len)
8124 {
8125 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8126 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8127 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8128 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8129 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8130 
8131 	bio->iovs = iov;
8132 	bio->iovcnt = iovcnt;
8133 	bio->iovpos = 0;
8134 	bio->iov_offset = 0;
8135 
8136 	if (nbytes > max_xfer_size) {
8137 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8138 		return -EINVAL;
8139 	}
8140 
8141 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8142 		SPDK_ERRLOG("invalid meta data buffer size\n");
8143 		return -EINVAL;
8144 	}
8145 
8146 	/*
8147 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands
8148 	 * require a nsid, so fill it out automatically.
8149 	 */
8150 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8151 
8152 	return spdk_nvme_ctrlr_cmd_iov_raw_with_md(
8153 		       ctrlr, qpair, cmd, (uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio,
8154 		       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge);
8155 }
8156 
8157 static void
8158 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8159 		struct nvme_bdev_io *bio_to_abort)
8160 {
8161 	struct nvme_io_path *io_path;
8162 	int rc = 0;
8163 
8164 	rc = bdev_nvme_abort_retry_io(nbdev_ch, bio_to_abort);
8165 	if (rc == 0) {
8166 		bdev_nvme_admin_complete(bio, 0);
8167 		return;
8168 	}
8169 
8170 	io_path = bio_to_abort->io_path;
8171 	if (io_path != NULL) {
8172 		rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8173 						   io_path->qpair->qpair,
8174 						   bio_to_abort,
8175 						   bdev_nvme_abort_done, bio);
8176 	} else {
8177 		STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8178 			rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8179 							   NULL,
8180 							   bio_to_abort,
8181 							   bdev_nvme_abort_done, bio);
8182 
8183 			if (rc != -ENOENT) {
8184 				break;
8185 			}
8186 		}
8187 	}
8188 
8189 	if (rc != 0) {
8190 		/* If no command was found or there was any error, complete the abort
8191 		 * request with failure.
8192 		 */
8193 		bdev_nvme_admin_complete(bio, rc);
8194 	}
8195 }
8196 
8197 static int
8198 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks,
8199 	       uint64_t num_blocks)
8200 {
8201 	struct spdk_nvme_scc_source_range range = {
8202 		.slba = src_offset_blocks,
8203 		.nlb = num_blocks - 1
8204 	};
8205 
8206 	return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns,
8207 				     bio->io_path->qpair->qpair,
8208 				     &range, 1, dst_offset_blocks,
8209 				     bdev_nvme_queued_done, bio);
8210 }
8211 
8212 static void
8213 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
8214 {
8215 	const char *action;
8216 	uint32_t i;
8217 
8218 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
8219 		action = "reset";
8220 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
8221 		action = "abort";
8222 	} else {
8223 		action = "none";
8224 	}
8225 
8226 	spdk_json_write_object_begin(w);
8227 
8228 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
8229 
8230 	spdk_json_write_named_object_begin(w, "params");
8231 	spdk_json_write_named_string(w, "action_on_timeout", action);
8232 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
8233 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
8234 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
8235 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
8236 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
8237 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
8238 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
8239 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
8240 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
8241 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
8242 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
8243 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
8244 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
8245 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
8246 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
8247 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
8248 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
8249 	spdk_json_write_named_bool(w, "disable_auto_failback", g_opts.disable_auto_failback);
8250 	spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids);
8251 	spdk_json_write_named_uint8(w, "transport_tos", g_opts.transport_tos);
8252 	spdk_json_write_named_bool(w, "nvme_error_stat", g_opts.nvme_error_stat);
8253 	spdk_json_write_named_uint32(w, "rdma_srq_size", g_opts.rdma_srq_size);
8254 	spdk_json_write_named_bool(w, "io_path_stat", g_opts.io_path_stat);
8255 	spdk_json_write_named_bool(w, "allow_accel_sequence", g_opts.allow_accel_sequence);
8256 	spdk_json_write_named_uint32(w, "rdma_max_cq_size", g_opts.rdma_max_cq_size);
8257 	spdk_json_write_named_uint16(w, "rdma_cm_event_timeout_ms", g_opts.rdma_cm_event_timeout_ms);
8258 	spdk_json_write_named_array_begin(w, "dhchap_digests");
8259 	for (i = 0; i < 32; ++i) {
8260 		if (g_opts.dhchap_digests & SPDK_BIT(i)) {
8261 			spdk_json_write_string(w, spdk_nvme_dhchap_get_digest_name(i));
8262 		}
8263 	}
8264 	spdk_json_write_array_end(w);
8265 	spdk_json_write_named_array_begin(w, "dhchap_dhgroups");
8266 	for (i = 0; i < 32; ++i) {
8267 		if (g_opts.dhchap_dhgroups & SPDK_BIT(i)) {
8268 			spdk_json_write_string(w, spdk_nvme_dhchap_get_dhgroup_name(i));
8269 		}
8270 	}
8271 
8272 	spdk_json_write_array_end(w);
8273 	spdk_json_write_object_end(w);
8274 
8275 	spdk_json_write_object_end(w);
8276 }
8277 
8278 static void
8279 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
8280 {
8281 	struct spdk_nvme_transport_id trid;
8282 
8283 	spdk_json_write_object_begin(w);
8284 
8285 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
8286 
8287 	spdk_json_write_named_object_begin(w, "params");
8288 	spdk_json_write_named_string(w, "name", ctx->name);
8289 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
8290 
8291 	trid = ctx->trid;
8292 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
8293 	nvme_bdev_dump_trid_json(&trid, w);
8294 
8295 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
8296 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
8297 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
8298 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8299 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
8300 	spdk_json_write_object_end(w);
8301 
8302 	spdk_json_write_object_end(w);
8303 }
8304 
8305 #ifdef SPDK_CONFIG_NVME_CUSE
8306 static void
8307 nvme_ctrlr_cuse_config_json(struct spdk_json_write_ctx *w,
8308 			    struct nvme_ctrlr *nvme_ctrlr)
8309 {
8310 	size_t cuse_name_size = 128;
8311 	char cuse_name[cuse_name_size];
8312 
8313 	if (spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr,
8314 					  cuse_name, &cuse_name_size) != 0) {
8315 		return;
8316 	}
8317 
8318 	spdk_json_write_object_begin(w);
8319 
8320 	spdk_json_write_named_string(w, "method", "bdev_nvme_cuse_register");
8321 
8322 	spdk_json_write_named_object_begin(w, "params");
8323 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8324 	spdk_json_write_object_end(w);
8325 
8326 	spdk_json_write_object_end(w);
8327 }
8328 #endif
8329 
8330 static void
8331 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
8332 		       struct nvme_ctrlr *nvme_ctrlr)
8333 {
8334 	struct spdk_nvme_transport_id	*trid;
8335 	const struct spdk_nvme_ctrlr_opts *opts;
8336 
8337 	if (nvme_ctrlr->opts.from_discovery_service) {
8338 		/* Do not emit an RPC for this - it will be implicitly
8339 		 * covered by a separate bdev_nvme_start_discovery or
8340 		 * bdev_nvme_start_mdns_discovery RPC.
8341 		 */
8342 		return;
8343 	}
8344 
8345 	trid = &nvme_ctrlr->active_path_id->trid;
8346 
8347 	spdk_json_write_object_begin(w);
8348 
8349 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
8350 
8351 	spdk_json_write_named_object_begin(w, "params");
8352 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8353 	nvme_bdev_dump_trid_json(trid, w);
8354 	spdk_json_write_named_bool(w, "prchk_reftag",
8355 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
8356 	spdk_json_write_named_bool(w, "prchk_guard",
8357 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
8358 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
8359 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
8360 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8361 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
8362 	if (nvme_ctrlr->psk != NULL) {
8363 		spdk_json_write_named_string(w, "psk", spdk_key_get_name(nvme_ctrlr->psk));
8364 	} else if (nvme_ctrlr->opts.psk[0] != '\0') {
8365 		spdk_json_write_named_string(w, "psk", nvme_ctrlr->opts.psk);
8366 	}
8367 
8368 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
8369 	spdk_json_write_named_string(w, "hostnqn", opts->hostnqn);
8370 	spdk_json_write_named_bool(w, "hdgst", opts->header_digest);
8371 	spdk_json_write_named_bool(w, "ddgst", opts->data_digest);
8372 	if (opts->src_addr[0] != '\0') {
8373 		spdk_json_write_named_string(w, "hostaddr", opts->src_addr);
8374 	}
8375 	if (opts->src_svcid[0] != '\0') {
8376 		spdk_json_write_named_string(w, "hostsvcid", opts->src_svcid);
8377 	}
8378 
8379 	spdk_json_write_object_end(w);
8380 
8381 	spdk_json_write_object_end(w);
8382 }
8383 
8384 static void
8385 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
8386 {
8387 	spdk_json_write_object_begin(w);
8388 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
8389 
8390 	spdk_json_write_named_object_begin(w, "params");
8391 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
8392 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
8393 	spdk_json_write_object_end(w);
8394 
8395 	spdk_json_write_object_end(w);
8396 }
8397 
8398 static int
8399 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
8400 {
8401 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
8402 	struct nvme_ctrlr	*nvme_ctrlr;
8403 	struct discovery_ctx	*ctx;
8404 
8405 	bdev_nvme_opts_config_json(w);
8406 
8407 	pthread_mutex_lock(&g_bdev_nvme_mutex);
8408 
8409 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
8410 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
8411 			nvme_ctrlr_config_json(w, nvme_ctrlr);
8412 
8413 #ifdef SPDK_CONFIG_NVME_CUSE
8414 			nvme_ctrlr_cuse_config_json(w, nvme_ctrlr);
8415 #endif
8416 		}
8417 	}
8418 
8419 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8420 		if (!ctx->from_mdns_discovery_service) {
8421 			bdev_nvme_discovery_config_json(w, ctx);
8422 		}
8423 	}
8424 
8425 	bdev_nvme_mdns_discovery_config_json(w);
8426 
8427 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
8428 	 * before enabling hotplug poller.
8429 	 */
8430 	bdev_nvme_hotplug_config_json(w);
8431 
8432 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
8433 	return 0;
8434 }
8435 
8436 struct spdk_nvme_ctrlr *
8437 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
8438 {
8439 	struct nvme_bdev *nbdev;
8440 	struct nvme_ns *nvme_ns;
8441 
8442 	if (!bdev || bdev->module != &nvme_if) {
8443 		return NULL;
8444 	}
8445 
8446 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
8447 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
8448 	assert(nvme_ns != NULL);
8449 
8450 	return nvme_ns->ctrlr->ctrlr;
8451 }
8452 
8453 void
8454 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
8455 {
8456 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
8457 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
8458 	const struct spdk_nvme_ctrlr_data *cdata;
8459 	const struct spdk_nvme_transport_id *trid;
8460 	const char *adrfam_str;
8461 
8462 	spdk_json_write_object_begin(w);
8463 
8464 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
8465 
8466 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
8467 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
8468 
8469 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
8470 	spdk_json_write_named_bool(w, "current", io_path->nbdev_ch != NULL &&
8471 				   io_path == io_path->nbdev_ch->current_io_path);
8472 	spdk_json_write_named_bool(w, "connected", nvme_qpair_is_connected(io_path->qpair));
8473 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
8474 
8475 	spdk_json_write_named_object_begin(w, "transport");
8476 	spdk_json_write_named_string(w, "trtype", trid->trstring);
8477 	spdk_json_write_named_string(w, "traddr", trid->traddr);
8478 	if (trid->trsvcid[0] != '\0') {
8479 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
8480 	}
8481 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
8482 	if (adrfam_str) {
8483 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
8484 	}
8485 	spdk_json_write_object_end(w);
8486 
8487 	spdk_json_write_object_end(w);
8488 }
8489 
8490 void
8491 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
8492 {
8493 	struct discovery_ctx *ctx;
8494 	struct discovery_entry_ctx *entry_ctx;
8495 
8496 	spdk_json_write_array_begin(w);
8497 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8498 		spdk_json_write_object_begin(w);
8499 		spdk_json_write_named_string(w, "name", ctx->name);
8500 
8501 		spdk_json_write_named_object_begin(w, "trid");
8502 		nvme_bdev_dump_trid_json(&ctx->trid, w);
8503 		spdk_json_write_object_end(w);
8504 
8505 		spdk_json_write_named_array_begin(w, "referrals");
8506 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
8507 			spdk_json_write_object_begin(w);
8508 			spdk_json_write_named_object_begin(w, "trid");
8509 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
8510 			spdk_json_write_object_end(w);
8511 			spdk_json_write_object_end(w);
8512 		}
8513 		spdk_json_write_array_end(w);
8514 
8515 		spdk_json_write_object_end(w);
8516 	}
8517 	spdk_json_write_array_end(w);
8518 }
8519 
8520 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
8521 
8522 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
8523 {
8524 	struct spdk_trace_tpoint_opts opts[] = {
8525 		{
8526 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
8527 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 1,
8528 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8529 		},
8530 		{
8531 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
8532 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 0,
8533 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8534 		}
8535 	};
8536 
8537 
8538 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
8539 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
8540 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8541 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8542 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8543 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8544 }
8545