xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision 60982c759db49b4f4579f16e3b24df0725ba4b94)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  *   Copyright (c) 2022 Dell Inc, or its subsidiaries. All rights reserved.
6  */
7 
8 #include "spdk/stdinc.h"
9 
10 #include "bdev_nvme.h"
11 
12 #include "spdk/accel.h"
13 #include "spdk/config.h"
14 #include "spdk/endian.h"
15 #include "spdk/bdev.h"
16 #include "spdk/json.h"
17 #include "spdk/likely.h"
18 #include "spdk/nvme.h"
19 #include "spdk/nvme_ocssd.h"
20 #include "spdk/nvme_zns.h"
21 #include "spdk/opal.h"
22 #include "spdk/thread.h"
23 #include "spdk/trace.h"
24 #include "spdk/string.h"
25 #include "spdk/util.h"
26 #include "spdk/uuid.h"
27 
28 #include "spdk/bdev_module.h"
29 #include "spdk/log.h"
30 
31 #include "spdk_internal/usdt.h"
32 #include "spdk_internal/trace_defs.h"
33 
34 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
35 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
36 
37 #define NSID_STR_LEN 10
38 
39 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
40 
41 struct nvme_bdev_io {
42 	/** array of iovecs to transfer. */
43 	struct iovec *iovs;
44 
45 	/** Number of iovecs in iovs array. */
46 	int iovcnt;
47 
48 	/** Current iovec position. */
49 	int iovpos;
50 
51 	/** Offset in current iovec. */
52 	uint32_t iov_offset;
53 
54 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
55 	 *  being reset in a reset I/O.
56 	 */
57 	struct nvme_io_path *io_path;
58 
59 	/** array of iovecs to transfer. */
60 	struct iovec *fused_iovs;
61 
62 	/** Number of iovecs in iovs array. */
63 	int fused_iovcnt;
64 
65 	/** Current iovec position. */
66 	int fused_iovpos;
67 
68 	/** Offset in current iovec. */
69 	uint32_t fused_iov_offset;
70 
71 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
72 	struct spdk_nvme_cpl cpl;
73 
74 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
75 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
76 
77 	/** Keeps track if first of fused commands was submitted */
78 	bool first_fused_submitted;
79 
80 	/** Keeps track if first of fused commands was completed */
81 	bool first_fused_completed;
82 
83 	/** Temporary pointer to zone report buffer */
84 	struct spdk_nvme_zns_zone_report *zone_report_buf;
85 
86 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
87 	uint64_t handled_zones;
88 
89 	/** Expiration value in ticks to retry the current I/O. */
90 	uint64_t retry_ticks;
91 
92 	/* How many times the current I/O was retried. */
93 	int32_t retry_count;
94 
95 	/* Current tsc at submit time. */
96 	uint64_t submit_tsc;
97 };
98 
99 struct nvme_probe_skip_entry {
100 	struct spdk_nvme_transport_id		trid;
101 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
102 };
103 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
104 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
105 			g_skipped_nvme_ctrlrs);
106 
107 static struct spdk_bdev_nvme_opts g_opts = {
108 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
109 	.timeout_us = 0,
110 	.timeout_admin_us = 0,
111 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
112 	.transport_retry_count = 4,
113 	.arbitration_burst = 0,
114 	.low_priority_weight = 0,
115 	.medium_priority_weight = 0,
116 	.high_priority_weight = 0,
117 	.nvme_adminq_poll_period_us = 10000ULL,
118 	.nvme_ioq_poll_period_us = 0,
119 	.io_queue_requests = 0,
120 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
121 	.bdev_retry_count = 3,
122 	.transport_ack_timeout = 0,
123 	.ctrlr_loss_timeout_sec = 0,
124 	.reconnect_delay_sec = 0,
125 	.fast_io_fail_timeout_sec = 0,
126 	.disable_auto_failback = false,
127 	.generate_uuids = false,
128 	.transport_tos = 0,
129 	.nvme_error_stat = false,
130 	.io_path_stat = false,
131 };
132 
133 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
134 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
135 
136 static int g_hot_insert_nvme_controller_index = 0;
137 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
138 static bool g_nvme_hotplug_enabled = false;
139 struct spdk_thread *g_bdev_nvme_init_thread;
140 static struct spdk_poller *g_hotplug_poller;
141 static struct spdk_poller *g_hotplug_probe_poller;
142 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
143 
144 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
145 		struct nvme_async_probe_ctx *ctx);
146 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
147 		struct nvme_async_probe_ctx *ctx);
148 static int bdev_nvme_library_init(void);
149 static void bdev_nvme_library_fini(void);
150 static void _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch,
151 				      struct spdk_bdev_io *bdev_io);
152 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
153 				     struct spdk_bdev_io *bdev_io);
154 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
155 			   void *md, uint64_t lba_count, uint64_t lba,
156 			   uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx);
157 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
158 				 void *md, uint64_t lba_count, uint64_t lba);
159 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
160 			    void *md, uint64_t lba_count, uint64_t lba,
161 			    uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx);
162 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
163 				  void *md, uint64_t lba_count,
164 				  uint64_t zslba, uint32_t flags);
165 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
166 			      void *md, uint64_t lba_count, uint64_t lba,
167 			      uint32_t flags);
168 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
169 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
170 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
171 		uint32_t flags);
172 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
173 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
174 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
175 				     enum spdk_bdev_zone_action action);
176 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
177 				     struct nvme_bdev_io *bio,
178 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
179 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
180 				 void *buf, size_t nbytes);
181 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
182 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
183 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
184 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
185 static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio);
186 static int bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
187 static int bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool remove);
188 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
189 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
190 
191 static struct nvme_ns *nvme_ns_alloc(void);
192 static void nvme_ns_free(struct nvme_ns *ns);
193 
194 static int
195 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
196 {
197 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
198 }
199 
200 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
201 
202 struct spdk_nvme_qpair *
203 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
204 {
205 	struct nvme_ctrlr_channel *ctrlr_ch;
206 
207 	assert(ctrlr_io_ch != NULL);
208 
209 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
210 
211 	return ctrlr_ch->qpair->qpair;
212 }
213 
214 static int
215 bdev_nvme_get_ctx_size(void)
216 {
217 	return sizeof(struct nvme_bdev_io);
218 }
219 
220 static struct spdk_bdev_module nvme_if = {
221 	.name = "nvme",
222 	.async_fini = true,
223 	.module_init = bdev_nvme_library_init,
224 	.module_fini = bdev_nvme_library_fini,
225 	.config_json = bdev_nvme_config_json,
226 	.get_ctx_size = bdev_nvme_get_ctx_size,
227 
228 };
229 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
230 
231 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
232 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
233 bool g_bdev_nvme_module_finish;
234 
235 struct nvme_bdev_ctrlr *
236 nvme_bdev_ctrlr_get_by_name(const char *name)
237 {
238 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
239 
240 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
241 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
242 			break;
243 		}
244 	}
245 
246 	return nbdev_ctrlr;
247 }
248 
249 static struct nvme_ctrlr *
250 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
251 			  const struct spdk_nvme_transport_id *trid)
252 {
253 	struct nvme_ctrlr *nvme_ctrlr;
254 
255 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
256 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0) {
257 			break;
258 		}
259 	}
260 
261 	return nvme_ctrlr;
262 }
263 
264 struct nvme_ctrlr *
265 nvme_bdev_ctrlr_get_ctrlr_by_id(struct nvme_bdev_ctrlr *nbdev_ctrlr,
266 				uint16_t cntlid)
267 {
268 	struct nvme_ctrlr *nvme_ctrlr;
269 	const struct spdk_nvme_ctrlr_data *cdata;
270 
271 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
272 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
273 		if (cdata->cntlid == cntlid) {
274 			break;
275 		}
276 	}
277 
278 	return nvme_ctrlr;
279 }
280 
281 static struct nvme_bdev *
282 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
283 {
284 	struct nvme_bdev *bdev;
285 
286 	pthread_mutex_lock(&g_bdev_nvme_mutex);
287 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
288 		if (bdev->nsid == nsid) {
289 			break;
290 		}
291 	}
292 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
293 
294 	return bdev;
295 }
296 
297 struct nvme_ns *
298 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
299 {
300 	struct nvme_ns ns;
301 
302 	assert(nsid > 0);
303 
304 	ns.id = nsid;
305 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
306 }
307 
308 struct nvme_ns *
309 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
310 {
311 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
312 }
313 
314 struct nvme_ns *
315 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
316 {
317 	if (ns == NULL) {
318 		return NULL;
319 	}
320 
321 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
322 }
323 
324 static struct nvme_ctrlr *
325 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid)
326 {
327 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
328 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
329 
330 	pthread_mutex_lock(&g_bdev_nvme_mutex);
331 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
332 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid);
333 		if (nvme_ctrlr != NULL) {
334 			break;
335 		}
336 	}
337 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
338 
339 	return nvme_ctrlr;
340 }
341 
342 struct nvme_ctrlr *
343 nvme_ctrlr_get_by_name(const char *name)
344 {
345 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
346 	struct nvme_ctrlr *nvme_ctrlr = NULL;
347 
348 	if (name == NULL) {
349 		return NULL;
350 	}
351 
352 	pthread_mutex_lock(&g_bdev_nvme_mutex);
353 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
354 	if (nbdev_ctrlr != NULL) {
355 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
356 	}
357 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
358 
359 	return nvme_ctrlr;
360 }
361 
362 void
363 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
364 {
365 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
366 
367 	pthread_mutex_lock(&g_bdev_nvme_mutex);
368 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
369 		fn(nbdev_ctrlr, ctx);
370 	}
371 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
372 }
373 
374 void
375 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
376 {
377 	const char *trtype_str;
378 	const char *adrfam_str;
379 
380 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
381 	if (trtype_str) {
382 		spdk_json_write_named_string(w, "trtype", trtype_str);
383 	}
384 
385 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
386 	if (adrfam_str) {
387 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
388 	}
389 
390 	if (trid->traddr[0] != '\0') {
391 		spdk_json_write_named_string(w, "traddr", trid->traddr);
392 	}
393 
394 	if (trid->trsvcid[0] != '\0') {
395 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
396 	}
397 
398 	if (trid->subnqn[0] != '\0') {
399 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
400 	}
401 }
402 
403 static void
404 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
405 		       struct nvme_ctrlr *nvme_ctrlr)
406 {
407 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
408 	pthread_mutex_lock(&g_bdev_nvme_mutex);
409 
410 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
411 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
412 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
413 
414 		return;
415 	}
416 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
417 
418 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
419 
420 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
421 
422 	free(nbdev_ctrlr->name);
423 	free(nbdev_ctrlr);
424 }
425 
426 static void
427 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
428 {
429 	struct nvme_path_id *path_id, *tmp_path;
430 	struct nvme_ns *ns, *tmp_ns;
431 
432 	free(nvme_ctrlr->copied_ana_desc);
433 	spdk_free(nvme_ctrlr->ana_log_page);
434 
435 	if (nvme_ctrlr->opal_dev) {
436 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
437 		nvme_ctrlr->opal_dev = NULL;
438 	}
439 
440 	if (nvme_ctrlr->nbdev_ctrlr) {
441 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
442 	}
443 
444 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
445 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
446 		nvme_ns_free(ns);
447 	}
448 
449 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
450 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
451 		free(path_id);
452 	}
453 
454 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
455 
456 	free(nvme_ctrlr);
457 
458 	pthread_mutex_lock(&g_bdev_nvme_mutex);
459 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
460 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
461 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
462 		spdk_bdev_module_fini_done();
463 		return;
464 	}
465 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
466 }
467 
468 static int
469 nvme_detach_poller(void *arg)
470 {
471 	struct nvme_ctrlr *nvme_ctrlr = arg;
472 	int rc;
473 
474 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
475 	if (rc != -EAGAIN) {
476 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
477 		_nvme_ctrlr_delete(nvme_ctrlr);
478 	}
479 
480 	return SPDK_POLLER_BUSY;
481 }
482 
483 static void
484 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
485 {
486 	int rc;
487 
488 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
489 
490 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
491 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
492 
493 	/* If we got here, the reset/detach poller cannot be active */
494 	assert(nvme_ctrlr->reset_detach_poller == NULL);
495 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
496 					  nvme_ctrlr, 1000);
497 	if (nvme_ctrlr->reset_detach_poller == NULL) {
498 		SPDK_ERRLOG("Failed to register detach poller\n");
499 		goto error;
500 	}
501 
502 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
503 	if (rc != 0) {
504 		SPDK_ERRLOG("Failed to detach the NVMe controller\n");
505 		goto error;
506 	}
507 
508 	return;
509 error:
510 	/* We don't have a good way to handle errors here, so just do what we can and delete the
511 	 * controller without detaching the underlying NVMe device.
512 	 */
513 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
514 	_nvme_ctrlr_delete(nvme_ctrlr);
515 }
516 
517 static void
518 nvme_ctrlr_unregister_cb(void *io_device)
519 {
520 	struct nvme_ctrlr *nvme_ctrlr = io_device;
521 
522 	nvme_ctrlr_delete(nvme_ctrlr);
523 }
524 
525 static void
526 nvme_ctrlr_unregister(void *ctx)
527 {
528 	struct nvme_ctrlr *nvme_ctrlr = ctx;
529 
530 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
531 }
532 
533 static bool
534 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
535 {
536 	if (!nvme_ctrlr->destruct) {
537 		return false;
538 	}
539 
540 	if (nvme_ctrlr->ref > 0) {
541 		return false;
542 	}
543 
544 	if (nvme_ctrlr->resetting) {
545 		return false;
546 	}
547 
548 	if (nvme_ctrlr->ana_log_page_updating) {
549 		return false;
550 	}
551 
552 	if (nvme_ctrlr->io_path_cache_clearing) {
553 		return false;
554 	}
555 
556 	return true;
557 }
558 
559 static void
560 nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
561 {
562 	pthread_mutex_lock(&nvme_ctrlr->mutex);
563 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
564 
565 	assert(nvme_ctrlr->ref > 0);
566 	nvme_ctrlr->ref--;
567 
568 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
569 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
570 		return;
571 	}
572 
573 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
574 
575 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
576 }
577 
578 static void
579 bdev_nvme_clear_current_io_path(struct nvme_bdev_channel *nbdev_ch)
580 {
581 	nbdev_ch->current_io_path = NULL;
582 	nbdev_ch->rr_counter = 0;
583 }
584 
585 static struct nvme_io_path *
586 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
587 {
588 	struct nvme_io_path *io_path;
589 
590 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
591 		if (io_path->nvme_ns == nvme_ns) {
592 			break;
593 		}
594 	}
595 
596 	return io_path;
597 }
598 
599 static struct nvme_io_path *
600 nvme_io_path_alloc(void)
601 {
602 	struct nvme_io_path *io_path;
603 
604 	io_path = calloc(1, sizeof(*io_path));
605 	if (io_path == NULL) {
606 		SPDK_ERRLOG("Failed to alloc io_path.\n");
607 		return NULL;
608 	}
609 
610 	if (g_opts.io_path_stat) {
611 		io_path->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
612 		if (io_path->stat == NULL) {
613 			free(io_path);
614 			SPDK_ERRLOG("Failed to alloc io_path stat.\n");
615 			return NULL;
616 		}
617 		spdk_bdev_reset_io_stat(io_path->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
618 	}
619 
620 	return io_path;
621 }
622 
623 static void
624 nvme_io_path_free(struct nvme_io_path *io_path)
625 {
626 	free(io_path->stat);
627 	free(io_path);
628 }
629 
630 static int
631 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
632 {
633 	struct nvme_io_path *io_path;
634 	struct spdk_io_channel *ch;
635 	struct nvme_ctrlr_channel *ctrlr_ch;
636 	struct nvme_qpair *nvme_qpair;
637 
638 	io_path = nvme_io_path_alloc();
639 	if (io_path == NULL) {
640 		return -ENOMEM;
641 	}
642 
643 	io_path->nvme_ns = nvme_ns;
644 
645 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
646 	if (ch == NULL) {
647 		nvme_io_path_free(io_path);
648 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
649 		return -ENOMEM;
650 	}
651 
652 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
653 
654 	nvme_qpair = ctrlr_ch->qpair;
655 	assert(nvme_qpair != NULL);
656 
657 	io_path->qpair = nvme_qpair;
658 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
659 
660 	io_path->nbdev_ch = nbdev_ch;
661 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
662 
663 	bdev_nvme_clear_current_io_path(nbdev_ch);
664 
665 	return 0;
666 }
667 
668 static void
669 bdev_nvme_clear_retry_io_path(struct nvme_bdev_channel *nbdev_ch,
670 			      struct nvme_io_path *io_path)
671 {
672 	struct spdk_bdev_io *bdev_io;
673 	struct nvme_bdev_io *bio;
674 
675 	TAILQ_FOREACH(bdev_io, &nbdev_ch->retry_io_list, module_link) {
676 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
677 		if (bio->io_path == io_path) {
678 			bio->io_path = NULL;
679 		}
680 	}
681 }
682 
683 static void
684 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
685 {
686 	struct spdk_io_channel *ch;
687 	struct nvme_qpair *nvme_qpair;
688 	struct nvme_ctrlr_channel *ctrlr_ch;
689 	struct nvme_bdev *nbdev;
690 
691 	nbdev = spdk_io_channel_get_io_device(spdk_io_channel_from_ctx(nbdev_ch));
692 
693 	/* Add the statistics to nvme_ns before this path is destroyed. */
694 	pthread_mutex_lock(&nbdev->mutex);
695 	if (nbdev->ref != 0 && io_path->nvme_ns->stat != NULL && io_path->stat != NULL) {
696 		spdk_bdev_add_io_stat(io_path->nvme_ns->stat, io_path->stat);
697 	}
698 	pthread_mutex_unlock(&nbdev->mutex);
699 
700 	bdev_nvme_clear_current_io_path(nbdev_ch);
701 	bdev_nvme_clear_retry_io_path(nbdev_ch, io_path);
702 
703 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
704 	io_path->nbdev_ch = NULL;
705 
706 	nvme_qpair = io_path->qpair;
707 	assert(nvme_qpair != NULL);
708 
709 	ctrlr_ch = nvme_qpair->ctrlr_ch;
710 	assert(ctrlr_ch != NULL);
711 
712 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
713 	spdk_put_io_channel(ch);
714 
715 	/* After an io_path is removed, I/Os submitted to it may complete and update statistics
716 	 * of the io_path. To avoid heap-use-after-free error from this case, do not free the
717 	 * io_path here but free the io_path when the associated qpair is freed. It is ensured
718 	 * that all I/Os submitted to the io_path are completed when the associated qpair is freed.
719 	 */
720 }
721 
722 static void
723 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
724 {
725 	struct nvme_io_path *io_path, *tmp_io_path;
726 
727 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
728 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
729 	}
730 }
731 
732 static int
733 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
734 {
735 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
736 	struct nvme_bdev *nbdev = io_device;
737 	struct nvme_ns *nvme_ns;
738 	int rc;
739 
740 	STAILQ_INIT(&nbdev_ch->io_path_list);
741 	TAILQ_INIT(&nbdev_ch->retry_io_list);
742 
743 	pthread_mutex_lock(&nbdev->mutex);
744 
745 	nbdev_ch->mp_policy = nbdev->mp_policy;
746 	nbdev_ch->mp_selector = nbdev->mp_selector;
747 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
748 
749 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
750 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
751 		if (rc != 0) {
752 			pthread_mutex_unlock(&nbdev->mutex);
753 
754 			_bdev_nvme_delete_io_paths(nbdev_ch);
755 			return rc;
756 		}
757 	}
758 	pthread_mutex_unlock(&nbdev->mutex);
759 
760 	return 0;
761 }
762 
763 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
764  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
765  */
766 static inline void
767 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
768 			const struct spdk_nvme_cpl *cpl)
769 {
770 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
771 			  (uintptr_t)bdev_io);
772 	if (cpl) {
773 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
774 	} else {
775 		spdk_bdev_io_complete(bdev_io, status);
776 	}
777 }
778 
779 static void bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch);
780 
781 static void
782 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
783 {
784 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
785 
786 	bdev_nvme_abort_retry_ios(nbdev_ch);
787 	_bdev_nvme_delete_io_paths(nbdev_ch);
788 }
789 
790 static inline bool
791 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
792 {
793 	switch (io_type) {
794 	case SPDK_BDEV_IO_TYPE_RESET:
795 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
796 	case SPDK_BDEV_IO_TYPE_ABORT:
797 		return true;
798 	default:
799 		break;
800 	}
801 
802 	return false;
803 }
804 
805 static inline bool
806 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
807 {
808 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
809 		return false;
810 	}
811 
812 	switch (nvme_ns->ana_state) {
813 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
814 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
815 		return true;
816 	default:
817 		break;
818 	}
819 
820 	return false;
821 }
822 
823 static inline bool
824 nvme_qpair_is_connected(struct nvme_qpair *nvme_qpair)
825 {
826 	if (spdk_unlikely(nvme_qpair->qpair == NULL)) {
827 		return false;
828 	}
829 
830 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
831 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
832 		return false;
833 	}
834 
835 	if (spdk_unlikely(nvme_qpair->ctrlr_ch->reset_iter != NULL)) {
836 		return false;
837 	}
838 
839 	if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_qpair->ctrlr->ctrlr) !=
840 	    SPDK_NVME_QPAIR_FAILURE_NONE) {
841 		return false;
842 	}
843 
844 	return true;
845 }
846 
847 static inline bool
848 nvme_io_path_is_available(struct nvme_io_path *io_path)
849 {
850 	if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
851 		return false;
852 	}
853 
854 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
855 		return false;
856 	}
857 
858 	return true;
859 }
860 
861 static inline bool
862 nvme_ctrlr_is_failed(struct nvme_ctrlr *nvme_ctrlr)
863 {
864 	if (nvme_ctrlr->destruct) {
865 		return true;
866 	}
867 
868 	if (nvme_ctrlr->fast_io_fail_timedout) {
869 		return true;
870 	}
871 
872 	if (nvme_ctrlr->resetting) {
873 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
874 			return false;
875 		} else {
876 			return true;
877 		}
878 	}
879 
880 	if (nvme_ctrlr->reconnect_is_delayed) {
881 		return false;
882 	}
883 
884 	if (nvme_ctrlr->disabled) {
885 		return true;
886 	}
887 
888 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
889 		return true;
890 	} else {
891 		return false;
892 	}
893 }
894 
895 static bool
896 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
897 {
898 	if (nvme_ctrlr->destruct) {
899 		return false;
900 	}
901 
902 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
903 		return false;
904 	}
905 
906 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
907 		return false;
908 	}
909 
910 	if (nvme_ctrlr->disabled) {
911 		return false;
912 	}
913 
914 	return true;
915 }
916 
917 /* Simulate circular linked list. */
918 static inline struct nvme_io_path *
919 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
920 {
921 	struct nvme_io_path *next_path;
922 
923 	if (prev_path != NULL) {
924 		next_path = STAILQ_NEXT(prev_path, stailq);
925 		if (next_path != NULL) {
926 			return next_path;
927 		}
928 	}
929 
930 	return STAILQ_FIRST(&nbdev_ch->io_path_list);
931 }
932 
933 static struct nvme_io_path *
934 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
935 {
936 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
937 
938 	start = nvme_io_path_get_next(nbdev_ch, nbdev_ch->current_io_path);
939 
940 	io_path = start;
941 	do {
942 		if (spdk_likely(nvme_qpair_is_connected(io_path->qpair) &&
943 				!io_path->nvme_ns->ana_state_updating)) {
944 			switch (io_path->nvme_ns->ana_state) {
945 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
946 				nbdev_ch->current_io_path = io_path;
947 				return io_path;
948 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
949 				if (non_optimized == NULL) {
950 					non_optimized = io_path;
951 				}
952 				break;
953 			default:
954 				break;
955 			}
956 		}
957 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
958 	} while (io_path != start);
959 
960 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
961 		/* We come here only if there is no optimized path. Cache even non_optimized
962 		 * path for load balance across multiple non_optimized paths.
963 		 */
964 		nbdev_ch->current_io_path = non_optimized;
965 	}
966 
967 	return non_optimized;
968 }
969 
970 static struct nvme_io_path *
971 _bdev_nvme_find_io_path_min_qd(struct nvme_bdev_channel *nbdev_ch)
972 {
973 	struct nvme_io_path *io_path;
974 	struct nvme_io_path *optimized = NULL, *non_optimized = NULL;
975 	uint32_t opt_min_qd = UINT32_MAX, non_opt_min_qd = UINT32_MAX;
976 	uint32_t num_outstanding_reqs;
977 
978 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
979 		if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
980 			/* The device is currently resetting. */
981 			continue;
982 		}
983 
984 		if (spdk_unlikely(io_path->nvme_ns->ana_state_updating)) {
985 			continue;
986 		}
987 
988 		num_outstanding_reqs = spdk_nvme_qpair_get_num_outstanding_reqs(io_path->qpair->qpair);
989 		switch (io_path->nvme_ns->ana_state) {
990 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
991 			if (num_outstanding_reqs < opt_min_qd) {
992 				opt_min_qd = num_outstanding_reqs;
993 				optimized = io_path;
994 			}
995 			break;
996 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
997 			if (num_outstanding_reqs < non_opt_min_qd) {
998 				non_opt_min_qd = num_outstanding_reqs;
999 				non_optimized = io_path;
1000 			}
1001 			break;
1002 		default:
1003 			break;
1004 		}
1005 	}
1006 
1007 	/* don't cache io path for BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH selector */
1008 	if (optimized != NULL) {
1009 		return optimized;
1010 	}
1011 
1012 	return non_optimized;
1013 }
1014 
1015 static inline struct nvme_io_path *
1016 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1017 {
1018 	if (spdk_likely(nbdev_ch->current_io_path != NULL)) {
1019 		if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE) {
1020 			return nbdev_ch->current_io_path;
1021 		} else if (nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1022 			if (++nbdev_ch->rr_counter < nbdev_ch->rr_min_io) {
1023 				return nbdev_ch->current_io_path;
1024 			}
1025 			nbdev_ch->rr_counter = 0;
1026 		}
1027 	}
1028 
1029 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE ||
1030 	    nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1031 		return _bdev_nvme_find_io_path(nbdev_ch);
1032 	} else {
1033 		return _bdev_nvme_find_io_path_min_qd(nbdev_ch);
1034 	}
1035 }
1036 
1037 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
1038  * or false otherwise.
1039  *
1040  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
1041  * is likely to be non-accessible now but may become accessible.
1042  *
1043  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
1044  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
1045  * when starting to reset it but it is set to failed when the reset failed. Hence, if
1046  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
1047  */
1048 static bool
1049 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
1050 {
1051 	struct nvme_io_path *io_path;
1052 
1053 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1054 		if (io_path->nvme_ns->ana_transition_timedout) {
1055 			continue;
1056 		}
1057 
1058 		if (nvme_qpair_is_connected(io_path->qpair) ||
1059 		    !nvme_ctrlr_is_failed(io_path->qpair->ctrlr)) {
1060 			return true;
1061 		}
1062 	}
1063 
1064 	return false;
1065 }
1066 
1067 static void
1068 bdev_nvme_retry_io(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
1069 {
1070 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1071 	struct spdk_io_channel *ch;
1072 
1073 	if (nbdev_io->io_path != NULL && nvme_io_path_is_available(nbdev_io->io_path)) {
1074 		_bdev_nvme_submit_request(nbdev_ch, bdev_io);
1075 	} else {
1076 		ch = spdk_io_channel_from_ctx(nbdev_ch);
1077 		bdev_nvme_submit_request(ch, bdev_io);
1078 	}
1079 }
1080 
1081 static int
1082 bdev_nvme_retry_ios(void *arg)
1083 {
1084 	struct nvme_bdev_channel *nbdev_ch = arg;
1085 	struct spdk_bdev_io *bdev_io, *tmp_bdev_io;
1086 	struct nvme_bdev_io *bio;
1087 	uint64_t now, delay_us;
1088 
1089 	now = spdk_get_ticks();
1090 
1091 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_bdev_io) {
1092 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1093 		if (bio->retry_ticks > now) {
1094 			break;
1095 		}
1096 
1097 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
1098 
1099 		bdev_nvme_retry_io(nbdev_ch, bdev_io);
1100 	}
1101 
1102 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1103 
1104 	bdev_io = TAILQ_FIRST(&nbdev_ch->retry_io_list);
1105 	if (bdev_io != NULL) {
1106 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1107 
1108 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
1109 
1110 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1111 					    delay_us);
1112 	}
1113 
1114 	return SPDK_POLLER_BUSY;
1115 }
1116 
1117 static void
1118 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
1119 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
1120 {
1121 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1122 	struct spdk_bdev_io *tmp_bdev_io;
1123 	struct nvme_bdev_io *tmp_bio;
1124 
1125 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
1126 
1127 	TAILQ_FOREACH_REVERSE(tmp_bdev_io, &nbdev_ch->retry_io_list, retry_io_head, module_link) {
1128 		tmp_bio = (struct nvme_bdev_io *)tmp_bdev_io->driver_ctx;
1129 
1130 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1131 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bdev_io, bdev_io,
1132 					   module_link);
1133 			return;
1134 		}
1135 	}
1136 
1137 	/* No earlier I/Os were found. This I/O must be the new head. */
1138 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bdev_io, module_link);
1139 
1140 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1141 
1142 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1143 				    delay_ms * 1000ULL);
1144 }
1145 
1146 static void
1147 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
1148 {
1149 	struct spdk_bdev_io *bdev_io, *tmp_io;
1150 
1151 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_io) {
1152 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
1153 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1154 	}
1155 
1156 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1157 }
1158 
1159 static int
1160 bdev_nvme_abort_retry_io(struct nvme_bdev_channel *nbdev_ch,
1161 			 struct nvme_bdev_io *bio_to_abort)
1162 {
1163 	struct spdk_bdev_io *bdev_io_to_abort;
1164 
1165 	TAILQ_FOREACH(bdev_io_to_abort, &nbdev_ch->retry_io_list, module_link) {
1166 		if ((struct nvme_bdev_io *)bdev_io_to_abort->driver_ctx == bio_to_abort) {
1167 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io_to_abort, module_link);
1168 			__bdev_nvme_io_complete(bdev_io_to_abort, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1169 			return 0;
1170 		}
1171 	}
1172 
1173 	return -ENOENT;
1174 }
1175 
1176 static void
1177 bdev_nvme_update_nvme_error_stat(struct spdk_bdev_io *bdev_io, const struct spdk_nvme_cpl *cpl)
1178 {
1179 	struct nvme_bdev *nbdev;
1180 	uint16_t sct, sc;
1181 
1182 	assert(spdk_nvme_cpl_is_error(cpl));
1183 
1184 	nbdev = bdev_io->bdev->ctxt;
1185 
1186 	if (nbdev->err_stat == NULL) {
1187 		return;
1188 	}
1189 
1190 	sct = cpl->status.sct;
1191 	sc = cpl->status.sc;
1192 
1193 	pthread_mutex_lock(&nbdev->mutex);
1194 
1195 	nbdev->err_stat->status_type[sct]++;
1196 	switch (sct) {
1197 	case SPDK_NVME_SCT_GENERIC:
1198 	case SPDK_NVME_SCT_COMMAND_SPECIFIC:
1199 	case SPDK_NVME_SCT_MEDIA_ERROR:
1200 	case SPDK_NVME_SCT_PATH:
1201 		nbdev->err_stat->status[sct][sc]++;
1202 		break;
1203 	default:
1204 		break;
1205 	}
1206 
1207 	pthread_mutex_unlock(&nbdev->mutex);
1208 }
1209 
1210 static inline void
1211 bdev_nvme_update_io_path_stat(struct nvme_bdev_io *bio)
1212 {
1213 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1214 	uint64_t num_blocks = bdev_io->u.bdev.num_blocks;
1215 	uint32_t blocklen = bdev_io->bdev->blocklen;
1216 	struct spdk_bdev_io_stat *stat;
1217 	uint64_t tsc_diff;
1218 
1219 	if (bio->io_path->stat == NULL) {
1220 		return;
1221 	}
1222 
1223 	tsc_diff = spdk_get_ticks() - bio->submit_tsc;
1224 	stat = bio->io_path->stat;
1225 
1226 	switch (bdev_io->type) {
1227 	case SPDK_BDEV_IO_TYPE_READ:
1228 		stat->bytes_read += num_blocks * blocklen;
1229 		stat->num_read_ops++;
1230 		stat->read_latency_ticks += tsc_diff;
1231 		if (stat->max_read_latency_ticks < tsc_diff) {
1232 			stat->max_read_latency_ticks = tsc_diff;
1233 		}
1234 		if (stat->min_read_latency_ticks > tsc_diff) {
1235 			stat->min_read_latency_ticks = tsc_diff;
1236 		}
1237 		break;
1238 	case SPDK_BDEV_IO_TYPE_WRITE:
1239 		stat->bytes_written += num_blocks * blocklen;
1240 		stat->num_write_ops++;
1241 		stat->write_latency_ticks += tsc_diff;
1242 		if (stat->max_write_latency_ticks < tsc_diff) {
1243 			stat->max_write_latency_ticks = tsc_diff;
1244 		}
1245 		if (stat->min_write_latency_ticks > tsc_diff) {
1246 			stat->min_write_latency_ticks = tsc_diff;
1247 		}
1248 		break;
1249 	case SPDK_BDEV_IO_TYPE_UNMAP:
1250 		stat->bytes_unmapped += num_blocks * blocklen;
1251 		stat->num_unmap_ops++;
1252 		stat->unmap_latency_ticks += tsc_diff;
1253 		if (stat->max_unmap_latency_ticks < tsc_diff) {
1254 			stat->max_unmap_latency_ticks = tsc_diff;
1255 		}
1256 		if (stat->min_unmap_latency_ticks > tsc_diff) {
1257 			stat->min_unmap_latency_ticks = tsc_diff;
1258 		}
1259 		break;
1260 	case SPDK_BDEV_IO_TYPE_ZCOPY:
1261 		/* Track the data in the start phase only */
1262 		if (!bdev_io->u.bdev.zcopy.start) {
1263 			break;
1264 		}
1265 		if (bdev_io->u.bdev.zcopy.populate) {
1266 			stat->bytes_read += num_blocks * blocklen;
1267 			stat->num_read_ops++;
1268 			stat->read_latency_ticks += tsc_diff;
1269 			if (stat->max_read_latency_ticks < tsc_diff) {
1270 				stat->max_read_latency_ticks = tsc_diff;
1271 			}
1272 			if (stat->min_read_latency_ticks > tsc_diff) {
1273 				stat->min_read_latency_ticks = tsc_diff;
1274 			}
1275 		} else {
1276 			stat->bytes_written += num_blocks * blocklen;
1277 			stat->num_write_ops++;
1278 			stat->write_latency_ticks += tsc_diff;
1279 			if (stat->max_write_latency_ticks < tsc_diff) {
1280 				stat->max_write_latency_ticks = tsc_diff;
1281 			}
1282 			if (stat->min_write_latency_ticks > tsc_diff) {
1283 				stat->min_write_latency_ticks = tsc_diff;
1284 			}
1285 		}
1286 		break;
1287 	case SPDK_BDEV_IO_TYPE_COPY:
1288 		stat->bytes_copied += num_blocks * blocklen;
1289 		stat->num_copy_ops++;
1290 		stat->copy_latency_ticks += tsc_diff;
1291 		if (stat->max_copy_latency_ticks < tsc_diff) {
1292 			stat->max_copy_latency_ticks = tsc_diff;
1293 		}
1294 		if (stat->min_copy_latency_ticks > tsc_diff) {
1295 			stat->min_copy_latency_ticks = tsc_diff;
1296 		}
1297 		break;
1298 	default:
1299 		break;
1300 	}
1301 }
1302 
1303 static bool
1304 bdev_nvme_check_retry_io(struct nvme_bdev_io *bio,
1305 			 const struct spdk_nvme_cpl *cpl,
1306 			 struct nvme_bdev_channel *nbdev_ch,
1307 			 uint64_t *_delay_ms)
1308 {
1309 	struct nvme_io_path *io_path = bio->io_path;
1310 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1311 	const struct spdk_nvme_ctrlr_data *cdata;
1312 
1313 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1314 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1315 	    !nvme_io_path_is_available(io_path) ||
1316 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1317 		bdev_nvme_clear_current_io_path(nbdev_ch);
1318 		bio->io_path = NULL;
1319 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1320 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1321 				io_path->nvme_ns->ana_state_updating = true;
1322 			}
1323 		}
1324 		if (!any_io_path_may_become_available(nbdev_ch)) {
1325 			return false;
1326 		}
1327 		*_delay_ms = 0;
1328 	} else {
1329 		bio->retry_count++;
1330 
1331 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1332 
1333 		if (cpl->status.crd != 0) {
1334 			*_delay_ms = cdata->crdt[cpl->status.crd] * 100;
1335 		} else {
1336 			*_delay_ms = 0;
1337 		}
1338 	}
1339 
1340 	return true;
1341 }
1342 
1343 static inline void
1344 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1345 				  const struct spdk_nvme_cpl *cpl)
1346 {
1347 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1348 	struct nvme_bdev_channel *nbdev_ch;
1349 	uint64_t delay_ms;
1350 
1351 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1352 
1353 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1354 		bdev_nvme_update_io_path_stat(bio);
1355 		goto complete;
1356 	}
1357 
1358 	/* Update error counts before deciding if retry is needed.
1359 	 * Hence, error counts may be more than the number of I/O errors.
1360 	 */
1361 	bdev_nvme_update_nvme_error_stat(bdev_io, cpl);
1362 
1363 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1364 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1365 		goto complete;
1366 	}
1367 
1368 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1369 
1370 	if (bdev_nvme_check_retry_io(bio, cpl, nbdev_ch, &delay_ms)) {
1371 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1372 		return;
1373 	}
1374 
1375 complete:
1376 	bio->retry_count = 0;
1377 	bio->submit_tsc = 0;
1378 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1379 }
1380 
1381 static inline void
1382 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1383 {
1384 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1385 	struct nvme_bdev_channel *nbdev_ch;
1386 	enum spdk_bdev_io_status io_status;
1387 
1388 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1389 
1390 	switch (rc) {
1391 	case 0:
1392 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1393 		break;
1394 	case -ENOMEM:
1395 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1396 		break;
1397 	case -ENXIO:
1398 		nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1399 
1400 		bdev_nvme_clear_current_io_path(nbdev_ch);
1401 		bio->io_path = NULL;
1402 
1403 		if (any_io_path_may_become_available(nbdev_ch)) {
1404 			bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1405 			return;
1406 		}
1407 
1408 	/* fallthrough */
1409 	default:
1410 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1411 		break;
1412 	}
1413 
1414 	bio->retry_count = 0;
1415 	bio->submit_tsc = 0;
1416 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1417 }
1418 
1419 static inline void
1420 bdev_nvme_admin_complete(struct nvme_bdev_io *bio, int rc)
1421 {
1422 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1423 	enum spdk_bdev_io_status io_status;
1424 
1425 	switch (rc) {
1426 	case 0:
1427 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1428 		break;
1429 	case -ENOMEM:
1430 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1431 		break;
1432 	case -ENXIO:
1433 	/* fallthrough */
1434 	default:
1435 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1436 		break;
1437 	}
1438 
1439 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1440 }
1441 
1442 static void
1443 bdev_nvme_clear_io_path_caches_done(struct spdk_io_channel_iter *i, int status)
1444 {
1445 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1446 
1447 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1448 
1449 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1450 	nvme_ctrlr->io_path_cache_clearing = false;
1451 
1452 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1453 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1454 		return;
1455 	}
1456 
1457 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1458 
1459 	nvme_ctrlr_unregister(nvme_ctrlr);
1460 }
1461 
1462 static void
1463 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1464 {
1465 	struct nvme_io_path *io_path;
1466 
1467 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1468 		if (io_path->nbdev_ch == NULL) {
1469 			continue;
1470 		}
1471 		bdev_nvme_clear_current_io_path(io_path->nbdev_ch);
1472 	}
1473 }
1474 
1475 static void
1476 bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i)
1477 {
1478 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1479 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1480 
1481 	assert(ctrlr_ch->qpair != NULL);
1482 
1483 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1484 
1485 	spdk_for_each_channel_continue(i, 0);
1486 }
1487 
1488 static void
1489 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1490 {
1491 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1492 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1493 	    nvme_ctrlr->io_path_cache_clearing) {
1494 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1495 		return;
1496 	}
1497 
1498 	nvme_ctrlr->io_path_cache_clearing = true;
1499 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1500 
1501 	spdk_for_each_channel(nvme_ctrlr,
1502 			      bdev_nvme_clear_io_path_cache,
1503 			      NULL,
1504 			      bdev_nvme_clear_io_path_caches_done);
1505 }
1506 
1507 static struct nvme_qpair *
1508 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1509 {
1510 	struct nvme_qpair *nvme_qpair;
1511 
1512 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1513 		if (nvme_qpair->qpair == qpair) {
1514 			break;
1515 		}
1516 	}
1517 
1518 	return nvme_qpair;
1519 }
1520 
1521 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1522 
1523 static void
1524 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1525 {
1526 	struct nvme_poll_group *group = poll_group_ctx;
1527 	struct nvme_qpair *nvme_qpair;
1528 	struct nvme_ctrlr_channel *ctrlr_ch;
1529 	int status;
1530 
1531 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1532 	if (nvme_qpair == NULL) {
1533 		return;
1534 	}
1535 
1536 	if (nvme_qpair->qpair != NULL) {
1537 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1538 		nvme_qpair->qpair = NULL;
1539 	}
1540 
1541 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1542 
1543 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1544 
1545 	if (ctrlr_ch != NULL) {
1546 		if (ctrlr_ch->reset_iter != NULL) {
1547 			/* We are in a full reset sequence. */
1548 			if (ctrlr_ch->connect_poller != NULL) {
1549 				/* qpair was failed to connect. Abort the reset sequence. */
1550 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was failed to connect. abort the reset ctrlr sequence.\n",
1551 					      qpair);
1552 				spdk_poller_unregister(&ctrlr_ch->connect_poller);
1553 				status = -1;
1554 			} else {
1555 				/* qpair was completed to disconnect. Just move to the next ctrlr_channel. */
1556 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1557 					      qpair);
1558 				status = 0;
1559 			}
1560 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, status);
1561 			ctrlr_ch->reset_iter = NULL;
1562 		} else {
1563 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1564 			SPDK_NOTICELOG("qpair %p was disconnected and freed. reset controller.\n", qpair);
1565 			bdev_nvme_failover_ctrlr(nvme_qpair->ctrlr, false);
1566 		}
1567 	} else {
1568 		/* In this case, ctrlr_channel is already deleted. */
1569 		SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed. delete nvme_qpair.\n", qpair);
1570 		nvme_qpair_delete(nvme_qpair);
1571 	}
1572 }
1573 
1574 static void
1575 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1576 {
1577 	struct nvme_qpair *nvme_qpair;
1578 
1579 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1580 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1581 			continue;
1582 		}
1583 
1584 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1585 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1586 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1587 		}
1588 	}
1589 }
1590 
1591 static int
1592 bdev_nvme_poll(void *arg)
1593 {
1594 	struct nvme_poll_group *group = arg;
1595 	int64_t num_completions;
1596 
1597 	if (group->collect_spin_stat && group->start_ticks == 0) {
1598 		group->start_ticks = spdk_get_ticks();
1599 	}
1600 
1601 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1602 			  bdev_nvme_disconnected_qpair_cb);
1603 	if (group->collect_spin_stat) {
1604 		if (num_completions > 0) {
1605 			if (group->end_ticks != 0) {
1606 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1607 				group->end_ticks = 0;
1608 			}
1609 			group->start_ticks = 0;
1610 		} else {
1611 			group->end_ticks = spdk_get_ticks();
1612 		}
1613 	}
1614 
1615 	if (spdk_unlikely(num_completions < 0)) {
1616 		bdev_nvme_check_io_qpairs(group);
1617 	}
1618 
1619 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1620 }
1621 
1622 static int bdev_nvme_poll_adminq(void *arg);
1623 
1624 static void
1625 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1626 {
1627 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1628 
1629 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1630 					  nvme_ctrlr, new_period_us);
1631 }
1632 
1633 static int
1634 bdev_nvme_poll_adminq(void *arg)
1635 {
1636 	int32_t rc;
1637 	struct nvme_ctrlr *nvme_ctrlr = arg;
1638 	nvme_ctrlr_disconnected_cb disconnected_cb;
1639 
1640 	assert(nvme_ctrlr != NULL);
1641 
1642 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1643 	if (rc < 0) {
1644 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1645 		nvme_ctrlr->disconnected_cb = NULL;
1646 
1647 		if (disconnected_cb != NULL) {
1648 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1649 							    g_opts.nvme_adminq_poll_period_us);
1650 			disconnected_cb(nvme_ctrlr);
1651 		} else {
1652 			bdev_nvme_failover_ctrlr(nvme_ctrlr, false);
1653 		}
1654 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1655 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1656 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1657 	}
1658 
1659 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1660 }
1661 
1662 static void
1663 nvme_bdev_free(void *io_device)
1664 {
1665 	struct nvme_bdev *nvme_disk = io_device;
1666 
1667 	pthread_mutex_destroy(&nvme_disk->mutex);
1668 	free(nvme_disk->disk.name);
1669 	free(nvme_disk->err_stat);
1670 	free(nvme_disk);
1671 }
1672 
1673 static int
1674 bdev_nvme_destruct(void *ctx)
1675 {
1676 	struct nvme_bdev *nvme_disk = ctx;
1677 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1678 
1679 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1680 
1681 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1682 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1683 
1684 		nvme_ns->bdev = NULL;
1685 
1686 		assert(nvme_ns->id > 0);
1687 
1688 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1689 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1690 
1691 			nvme_ctrlr_release(nvme_ns->ctrlr);
1692 			nvme_ns_free(nvme_ns);
1693 		} else {
1694 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1695 		}
1696 	}
1697 
1698 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1699 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1700 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1701 
1702 	spdk_io_device_unregister(nvme_disk, nvme_bdev_free);
1703 
1704 	return 0;
1705 }
1706 
1707 static int
1708 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1709 {
1710 	struct nvme_ctrlr *nvme_ctrlr;
1711 	struct spdk_nvme_io_qpair_opts opts;
1712 	struct spdk_nvme_qpair *qpair;
1713 	int rc;
1714 
1715 	nvme_ctrlr = nvme_qpair->ctrlr;
1716 
1717 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1718 	opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1719 	opts.create_only = true;
1720 	opts.async_mode = true;
1721 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1722 	g_opts.io_queue_requests = opts.io_queue_requests;
1723 
1724 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1725 	if (qpair == NULL) {
1726 		return -1;
1727 	}
1728 
1729 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1730 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1731 
1732 	assert(nvme_qpair->group != NULL);
1733 
1734 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1735 	if (rc != 0) {
1736 		SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
1737 		goto err;
1738 	}
1739 
1740 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1741 	if (rc != 0) {
1742 		SPDK_ERRLOG("Unable to connect I/O qpair.\n");
1743 		goto err;
1744 	}
1745 
1746 	nvme_qpair->qpair = qpair;
1747 
1748 	if (!g_opts.disable_auto_failback) {
1749 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1750 	}
1751 
1752 	return 0;
1753 
1754 err:
1755 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1756 
1757 	return rc;
1758 }
1759 
1760 static void
1761 bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
1762 {
1763 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1764 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1765 	enum spdk_bdev_io_status status = SPDK_BDEV_IO_STATUS_SUCCESS;
1766 	struct spdk_bdev_io *bdev_io;
1767 
1768 	if (spdk_io_channel_iter_get_ctx(i) != NULL) {
1769 		status = SPDK_BDEV_IO_STATUS_FAILED;
1770 	}
1771 
1772 	while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
1773 		bdev_io = TAILQ_FIRST(&ctrlr_ch->pending_resets);
1774 		TAILQ_REMOVE(&ctrlr_ch->pending_resets, bdev_io, module_link);
1775 		__bdev_nvme_io_complete(bdev_io, status, NULL);
1776 	}
1777 
1778 	spdk_for_each_channel_continue(i, 0);
1779 }
1780 
1781 /* This function marks the current trid as failed by storing the current ticks
1782  * and then sets the next trid to the active trid within a controller if exists.
1783  *
1784  * The purpose of the boolean return value is to request the caller to disconnect
1785  * the current trid now to try connecting the next trid.
1786  */
1787 static bool
1788 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove, bool start)
1789 {
1790 	struct nvme_path_id *path_id, *next_path;
1791 	int rc __attribute__((unused));
1792 
1793 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1794 	assert(path_id);
1795 	assert(path_id == nvme_ctrlr->active_path_id);
1796 	next_path = TAILQ_NEXT(path_id, link);
1797 
1798 	/* Update the last failed time. It means the trid is failed if its last
1799 	 * failed time is non-zero.
1800 	 */
1801 	path_id->last_failed_tsc = spdk_get_ticks();
1802 
1803 	if (next_path == NULL) {
1804 		/* There is no alternate trid within a controller. */
1805 		return false;
1806 	}
1807 
1808 	if (!start && nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1809 		/* Connect is not retried in a controller reset sequence. Connecting
1810 		 * the next trid will be done by the next bdev_nvme_failover_ctrlr() call.
1811 		 */
1812 		return false;
1813 	}
1814 
1815 	assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
1816 
1817 	SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr,
1818 		       path_id->trid.trsvcid,	next_path->trid.traddr, next_path->trid.trsvcid);
1819 
1820 	spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
1821 	nvme_ctrlr->active_path_id = next_path;
1822 	rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
1823 	assert(rc == 0);
1824 	TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
1825 	if (!remove) {
1826 		/** Shuffle the old trid to the end of the list and use the new one.
1827 		 * Allows for round robin through multiple connections.
1828 		 */
1829 		TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
1830 	} else {
1831 		free(path_id);
1832 	}
1833 
1834 	if (start || next_path->last_failed_tsc == 0) {
1835 		/* bdev_nvme_failover_ctrlr() is just called or the next trid is not failed
1836 		 * or used yet. Try the next trid now.
1837 		 */
1838 		return true;
1839 	}
1840 
1841 	if (spdk_get_ticks() > next_path->last_failed_tsc + spdk_get_ticks_hz() *
1842 	    nvme_ctrlr->opts.reconnect_delay_sec) {
1843 		/* Enough backoff passed since the next trid failed. Try the next trid now. */
1844 		return true;
1845 	}
1846 
1847 	/* The next trid will be tried after reconnect_delay_sec seconds. */
1848 	return false;
1849 }
1850 
1851 static bool
1852 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
1853 {
1854 	int32_t elapsed;
1855 
1856 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
1857 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
1858 		return false;
1859 	}
1860 
1861 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1862 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
1863 		return true;
1864 	} else {
1865 		return false;
1866 	}
1867 }
1868 
1869 static bool
1870 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
1871 {
1872 	uint32_t elapsed;
1873 
1874 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
1875 		return false;
1876 	}
1877 
1878 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1879 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
1880 		return true;
1881 	} else {
1882 		return false;
1883 	}
1884 }
1885 
1886 static void bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
1887 
1888 static void
1889 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
1890 {
1891 	int rc;
1892 
1893 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
1894 	if (rc != 0) {
1895 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
1896 		 * fail the reset sequence immediately.
1897 		 */
1898 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
1899 		return;
1900 	}
1901 
1902 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
1903 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
1904 	 */
1905 	assert(nvme_ctrlr->disconnected_cb == NULL);
1906 	nvme_ctrlr->disconnected_cb = cb_fn;
1907 
1908 	/* During disconnection, reduce the period to poll adminq more often. */
1909 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
1910 }
1911 
1912 enum bdev_nvme_op_after_reset {
1913 	OP_NONE,
1914 	OP_COMPLETE_PENDING_DESTRUCT,
1915 	OP_DESTRUCT,
1916 	OP_DELAYED_RECONNECT,
1917 	OP_FAILOVER,
1918 };
1919 
1920 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
1921 
1922 static _bdev_nvme_op_after_reset
1923 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
1924 {
1925 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1926 		/* Complete pending destruct after reset completes. */
1927 		return OP_COMPLETE_PENDING_DESTRUCT;
1928 	} else if (nvme_ctrlr->pending_failover) {
1929 		nvme_ctrlr->pending_failover = false;
1930 		nvme_ctrlr->reset_start_tsc = 0;
1931 		return OP_FAILOVER;
1932 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1933 		nvme_ctrlr->reset_start_tsc = 0;
1934 		return OP_NONE;
1935 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1936 		return OP_DESTRUCT;
1937 	} else {
1938 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
1939 			nvme_ctrlr->fast_io_fail_timedout = true;
1940 		}
1941 		return OP_DELAYED_RECONNECT;
1942 	}
1943 }
1944 
1945 static int bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
1946 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
1947 
1948 static int
1949 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
1950 {
1951 	struct nvme_ctrlr *nvme_ctrlr = ctx;
1952 
1953 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
1954 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1955 
1956 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
1957 
1958 	if (!nvme_ctrlr->reconnect_is_delayed) {
1959 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1960 		return SPDK_POLLER_BUSY;
1961 	}
1962 
1963 	nvme_ctrlr->reconnect_is_delayed = false;
1964 
1965 	if (nvme_ctrlr->destruct) {
1966 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1967 		return SPDK_POLLER_BUSY;
1968 	}
1969 
1970 	assert(nvme_ctrlr->resetting == false);
1971 	nvme_ctrlr->resetting = true;
1972 
1973 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1974 
1975 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
1976 
1977 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
1978 	return SPDK_POLLER_BUSY;
1979 }
1980 
1981 static void
1982 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
1983 {
1984 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
1985 
1986 	assert(nvme_ctrlr->reconnect_is_delayed == false);
1987 	nvme_ctrlr->reconnect_is_delayed = true;
1988 
1989 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
1990 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
1991 					    nvme_ctrlr,
1992 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
1993 }
1994 
1995 static void remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr);
1996 
1997 static void
1998 _bdev_nvme_reset_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
1999 {
2000 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2001 	bool success = spdk_io_channel_iter_get_ctx(i) == NULL;
2002 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2003 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2004 	enum bdev_nvme_op_after_reset op_after_reset;
2005 
2006 	assert(nvme_ctrlr->thread == spdk_get_thread());
2007 
2008 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2009 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2010 
2011 	if (!success) {
2012 		SPDK_ERRLOG("Resetting controller failed.\n");
2013 	} else {
2014 		SPDK_NOTICELOG("Resetting controller successful.\n");
2015 	}
2016 
2017 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2018 	nvme_ctrlr->resetting = false;
2019 	nvme_ctrlr->dont_retry = false;
2020 	nvme_ctrlr->in_failover = false;
2021 
2022 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
2023 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2024 
2025 	if (ctrlr_op_cb_fn) {
2026 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, success ? 0 : -1);
2027 	}
2028 
2029 	switch (op_after_reset) {
2030 	case OP_COMPLETE_PENDING_DESTRUCT:
2031 		nvme_ctrlr_unregister(nvme_ctrlr);
2032 		break;
2033 	case OP_DESTRUCT:
2034 		bdev_nvme_delete_ctrlr(nvme_ctrlr, false);
2035 		remove_discovery_entry(nvme_ctrlr);
2036 		break;
2037 	case OP_DELAYED_RECONNECT:
2038 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
2039 		break;
2040 	case OP_FAILOVER:
2041 		bdev_nvme_failover_ctrlr(nvme_ctrlr, false);
2042 		break;
2043 	default:
2044 		break;
2045 	}
2046 }
2047 
2048 static void
2049 bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
2050 {
2051 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2052 	if (!success) {
2053 		/* Connecting the active trid failed. Set the next alternate trid to the
2054 		 * active trid if it exists.
2055 		 */
2056 		if (bdev_nvme_failover_trid(nvme_ctrlr, false, false)) {
2057 			/* The next alternate trid exists and is ready to try. Try it now. */
2058 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
2059 
2060 			nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2061 			return;
2062 		}
2063 
2064 		/* We came here if there is no alternate trid or if the next trid exists but
2065 		 * is not ready to try. We will try the active trid after reconnect_delay_sec
2066 		 * seconds if it is non-zero or at the next reset call otherwise.
2067 		 */
2068 	} else {
2069 		/* Connecting the active trid succeeded. Clear the last failed time because it
2070 		 * means the trid is failed if its last failed time is non-zero.
2071 		 */
2072 		nvme_ctrlr->active_path_id->last_failed_tsc = 0;
2073 	}
2074 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2075 
2076 	/* Make sure we clear any pending resets before returning. */
2077 	spdk_for_each_channel(nvme_ctrlr,
2078 			      bdev_nvme_complete_pending_resets,
2079 			      success ? NULL : (void *)0x1,
2080 			      _bdev_nvme_reset_ctrlr_complete);
2081 }
2082 
2083 static void
2084 bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status)
2085 {
2086 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2087 
2088 	bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2089 }
2090 
2091 static void
2092 bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
2093 {
2094 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
2095 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
2096 	struct nvme_qpair *nvme_qpair;
2097 
2098 	nvme_qpair = ctrlr_ch->qpair;
2099 	assert(nvme_qpair != NULL);
2100 
2101 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2102 
2103 	if (nvme_qpair->qpair != NULL) {
2104 		if (nvme_qpair->ctrlr->dont_retry) {
2105 			spdk_nvme_qpair_set_abort_dnr(nvme_qpair->qpair, true);
2106 		}
2107 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
2108 
2109 		/* The current full reset sequence will move to the next
2110 		 * ctrlr_channel after the qpair is actually disconnected.
2111 		 */
2112 		assert(ctrlr_ch->reset_iter == NULL);
2113 		ctrlr_ch->reset_iter = i;
2114 	} else {
2115 		spdk_for_each_channel_continue(i, 0);
2116 	}
2117 }
2118 
2119 static void
2120 bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
2121 {
2122 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2123 
2124 	if (status == 0) {
2125 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, true);
2126 	} else {
2127 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
2128 		spdk_for_each_channel(nvme_ctrlr,
2129 				      bdev_nvme_reset_destroy_qpair,
2130 				      NULL,
2131 				      bdev_nvme_reset_create_qpairs_failed);
2132 	}
2133 }
2134 
2135 static int
2136 bdev_nvme_reset_check_qpair_connected(void *ctx)
2137 {
2138 	struct nvme_ctrlr_channel *ctrlr_ch = ctx;
2139 
2140 	if (ctrlr_ch->reset_iter == NULL) {
2141 		/* qpair was already failed to connect and the reset sequence is being aborted. */
2142 		assert(ctrlr_ch->connect_poller == NULL);
2143 		assert(ctrlr_ch->qpair->qpair == NULL);
2144 		return SPDK_POLLER_BUSY;
2145 	}
2146 
2147 	assert(ctrlr_ch->qpair->qpair != NULL);
2148 
2149 	if (!spdk_nvme_qpair_is_connected(ctrlr_ch->qpair->qpair)) {
2150 		return SPDK_POLLER_BUSY;
2151 	}
2152 
2153 	spdk_poller_unregister(&ctrlr_ch->connect_poller);
2154 
2155 	/* qpair was completed to connect. Move to the next ctrlr_channel */
2156 	spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2157 	ctrlr_ch->reset_iter = NULL;
2158 
2159 	return SPDK_POLLER_BUSY;
2160 }
2161 
2162 static void
2163 bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
2164 {
2165 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2166 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
2167 	int rc;
2168 
2169 	rc = bdev_nvme_create_qpair(ctrlr_ch->qpair);
2170 	if (rc == 0) {
2171 		ctrlr_ch->connect_poller = SPDK_POLLER_REGISTER(bdev_nvme_reset_check_qpair_connected,
2172 					   ctrlr_ch, 0);
2173 
2174 		/* The current full reset sequence will move to the next
2175 		 * ctrlr_channel after the qpair is actually connected.
2176 		 */
2177 		assert(ctrlr_ch->reset_iter == NULL);
2178 		ctrlr_ch->reset_iter = i;
2179 	} else {
2180 		spdk_for_each_channel_continue(i, rc);
2181 	}
2182 }
2183 
2184 static int
2185 bdev_nvme_reconnect_ctrlr_poll(void *arg)
2186 {
2187 	struct nvme_ctrlr *nvme_ctrlr = arg;
2188 	int rc = -ETIMEDOUT;
2189 
2190 	if (!bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2191 		rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
2192 		if (rc == -EAGAIN) {
2193 			return SPDK_POLLER_BUSY;
2194 		}
2195 	}
2196 
2197 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
2198 	if (rc == 0) {
2199 		/* Recreate all of the I/O queue pairs */
2200 		spdk_for_each_channel(nvme_ctrlr,
2201 				      bdev_nvme_reset_create_qpair,
2202 				      NULL,
2203 				      bdev_nvme_reset_create_qpairs_done);
2204 	} else {
2205 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2206 	}
2207 	return SPDK_POLLER_BUSY;
2208 }
2209 
2210 static void
2211 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2212 {
2213 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
2214 
2215 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
2216 	assert(nvme_ctrlr->reset_detach_poller == NULL);
2217 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
2218 					  nvme_ctrlr, 0);
2219 }
2220 
2221 static void
2222 bdev_nvme_reset_destroy_qpair_done(struct spdk_io_channel_iter *i, int status)
2223 {
2224 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2225 
2226 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
2227 	assert(status == 0);
2228 
2229 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2230 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2231 	} else {
2232 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2233 	}
2234 }
2235 
2236 static void
2237 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2238 {
2239 	spdk_for_each_channel(nvme_ctrlr,
2240 			      bdev_nvme_reset_destroy_qpair,
2241 			      NULL,
2242 			      bdev_nvme_reset_destroy_qpair_done);
2243 }
2244 
2245 static void
2246 bdev_nvme_reconnect_ctrlr_now(void *ctx)
2247 {
2248 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2249 
2250 	assert(nvme_ctrlr->resetting == true);
2251 	assert(nvme_ctrlr->thread == spdk_get_thread());
2252 
2253 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2254 
2255 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2256 
2257 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2258 }
2259 
2260 static void
2261 _bdev_nvme_reset_ctrlr(void *ctx)
2262 {
2263 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2264 
2265 	assert(nvme_ctrlr->resetting == true);
2266 	assert(nvme_ctrlr->thread == spdk_get_thread());
2267 
2268 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2269 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
2270 	} else {
2271 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
2272 	}
2273 }
2274 
2275 static int
2276 bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2277 {
2278 	spdk_msg_fn msg_fn;
2279 
2280 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2281 	if (nvme_ctrlr->destruct) {
2282 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2283 		return -ENXIO;
2284 	}
2285 
2286 	if (nvme_ctrlr->resetting) {
2287 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2288 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
2289 		return -EBUSY;
2290 	}
2291 
2292 	if (nvme_ctrlr->disabled) {
2293 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2294 		SPDK_NOTICELOG("Unable to perform reset. Controller is disabled.\n");
2295 		return -EALREADY;
2296 	}
2297 
2298 	nvme_ctrlr->resetting = true;
2299 	nvme_ctrlr->dont_retry = true;
2300 
2301 	if (nvme_ctrlr->reconnect_is_delayed) {
2302 		SPDK_DEBUGLOG(bdev_nvme, "Reconnect is already scheduled.\n");
2303 		msg_fn = bdev_nvme_reconnect_ctrlr_now;
2304 		nvme_ctrlr->reconnect_is_delayed = false;
2305 	} else {
2306 		msg_fn = _bdev_nvme_reset_ctrlr;
2307 		assert(nvme_ctrlr->reset_start_tsc == 0);
2308 	}
2309 
2310 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2311 
2312 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2313 
2314 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2315 	return 0;
2316 }
2317 
2318 static int
2319 bdev_nvme_enable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2320 {
2321 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2322 	if (nvme_ctrlr->destruct) {
2323 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2324 		return -ENXIO;
2325 	}
2326 
2327 	if (nvme_ctrlr->resetting) {
2328 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2329 		return -EBUSY;
2330 	}
2331 
2332 	if (!nvme_ctrlr->disabled) {
2333 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2334 		return -EALREADY;
2335 	}
2336 
2337 	nvme_ctrlr->disabled = false;
2338 	nvme_ctrlr->resetting = true;
2339 
2340 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2341 
2342 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2343 
2344 	spdk_thread_send_msg(nvme_ctrlr->thread, bdev_nvme_reconnect_ctrlr_now, nvme_ctrlr);
2345 	return 0;
2346 }
2347 
2348 static void
2349 _bdev_nvme_disable_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2350 {
2351 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2352 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2353 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2354 	enum bdev_nvme_op_after_reset op_after_disable;
2355 
2356 	assert(nvme_ctrlr->thread == spdk_get_thread());
2357 
2358 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2359 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2360 
2361 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2362 
2363 	nvme_ctrlr->resetting = false;
2364 	nvme_ctrlr->dont_retry = false;
2365 
2366 	op_after_disable = bdev_nvme_check_op_after_reset(nvme_ctrlr, true);
2367 
2368 	nvme_ctrlr->disabled = true;
2369 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2370 
2371 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2372 
2373 	if (ctrlr_op_cb_fn) {
2374 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, 0);
2375 	}
2376 
2377 	switch (op_after_disable) {
2378 	case OP_COMPLETE_PENDING_DESTRUCT:
2379 		nvme_ctrlr_unregister(nvme_ctrlr);
2380 		break;
2381 	default:
2382 		break;
2383 	}
2384 
2385 }
2386 
2387 static void
2388 bdev_nvme_disable_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr)
2389 {
2390 	/* Make sure we clear any pending resets before returning. */
2391 	spdk_for_each_channel(nvme_ctrlr,
2392 			      bdev_nvme_complete_pending_resets,
2393 			      NULL,
2394 			      _bdev_nvme_disable_ctrlr_complete);
2395 }
2396 
2397 static void
2398 bdev_nvme_disable_destroy_qpairs_done(struct spdk_io_channel_iter *i, int status)
2399 {
2400 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2401 
2402 	assert(status == 0);
2403 
2404 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2405 		bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2406 	} else {
2407 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_ctrlr_complete);
2408 	}
2409 }
2410 
2411 static void
2412 bdev_nvme_disable_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2413 {
2414 	spdk_for_each_channel(nvme_ctrlr,
2415 			      bdev_nvme_reset_destroy_qpair,
2416 			      NULL,
2417 			      bdev_nvme_disable_destroy_qpairs_done);
2418 }
2419 
2420 static void
2421 _bdev_nvme_cancel_reconnect_and_disable_ctrlr(void *ctx)
2422 {
2423 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2424 
2425 	assert(nvme_ctrlr->resetting == true);
2426 	assert(nvme_ctrlr->thread == spdk_get_thread());
2427 
2428 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2429 
2430 	bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2431 }
2432 
2433 static void
2434 _bdev_nvme_disconnect_and_disable_ctrlr(void *ctx)
2435 {
2436 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2437 
2438 	assert(nvme_ctrlr->resetting == true);
2439 	assert(nvme_ctrlr->thread == spdk_get_thread());
2440 
2441 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2442 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_destroy_qpairs);
2443 	} else {
2444 		bdev_nvme_disable_destroy_qpairs(nvme_ctrlr);
2445 	}
2446 }
2447 
2448 static int
2449 bdev_nvme_disable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2450 {
2451 	spdk_msg_fn msg_fn;
2452 
2453 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2454 	if (nvme_ctrlr->destruct) {
2455 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2456 		return -ENXIO;
2457 	}
2458 
2459 	if (nvme_ctrlr->resetting) {
2460 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2461 		return -EBUSY;
2462 	}
2463 
2464 	if (nvme_ctrlr->disabled) {
2465 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2466 		return -EALREADY;
2467 	}
2468 
2469 	nvme_ctrlr->resetting = true;
2470 	nvme_ctrlr->dont_retry = true;
2471 
2472 	if (nvme_ctrlr->reconnect_is_delayed) {
2473 		msg_fn = _bdev_nvme_cancel_reconnect_and_disable_ctrlr;
2474 		nvme_ctrlr->reconnect_is_delayed = false;
2475 	} else {
2476 		msg_fn = _bdev_nvme_disconnect_and_disable_ctrlr;
2477 	}
2478 
2479 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2480 
2481 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2482 
2483 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2484 	return 0;
2485 }
2486 
2487 static int
2488 nvme_ctrlr_op(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2489 	      bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2490 {
2491 	int rc;
2492 
2493 	switch (op) {
2494 	case NVME_CTRLR_OP_RESET:
2495 		rc = bdev_nvme_reset_ctrlr(nvme_ctrlr);
2496 		break;
2497 	case NVME_CTRLR_OP_ENABLE:
2498 		rc = bdev_nvme_enable_ctrlr(nvme_ctrlr);
2499 		break;
2500 	case NVME_CTRLR_OP_DISABLE:
2501 		rc = bdev_nvme_disable_ctrlr(nvme_ctrlr);
2502 		break;
2503 	default:
2504 		rc = -EINVAL;
2505 		break;
2506 	}
2507 
2508 	if (rc == 0) {
2509 		assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL);
2510 		assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL);
2511 		nvme_ctrlr->ctrlr_op_cb_fn = cb_fn;
2512 		nvme_ctrlr->ctrlr_op_cb_arg = cb_arg;
2513 	}
2514 	return rc;
2515 }
2516 
2517 struct nvme_ctrlr_op_rpc_ctx {
2518 	struct nvme_ctrlr *nvme_ctrlr;
2519 	struct spdk_thread *orig_thread;
2520 	enum nvme_ctrlr_op op;
2521 	int rc;
2522 	bdev_nvme_ctrlr_op_cb cb_fn;
2523 	void *cb_arg;
2524 };
2525 
2526 static void
2527 _nvme_ctrlr_op_rpc_complete(void *_ctx)
2528 {
2529 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2530 
2531 	assert(ctx != NULL);
2532 	assert(ctx->cb_fn != NULL);
2533 
2534 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2535 
2536 	free(ctx);
2537 }
2538 
2539 static void
2540 nvme_ctrlr_op_rpc_complete(void *cb_arg, int rc)
2541 {
2542 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2543 
2544 	ctx->rc = rc;
2545 
2546 	spdk_thread_send_msg(ctx->orig_thread, _nvme_ctrlr_op_rpc_complete, ctx);
2547 }
2548 
2549 void
2550 nvme_ctrlr_op_rpc(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2551 		  bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2552 {
2553 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2554 	int rc;
2555 
2556 	assert(cb_fn != NULL);
2557 
2558 	ctx = calloc(1, sizeof(*ctx));
2559 	if (ctx == NULL) {
2560 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2561 		cb_fn(cb_arg, -ENOMEM);
2562 		return;
2563 	}
2564 
2565 	ctx->orig_thread = spdk_get_thread();
2566 	ctx->cb_fn = cb_fn;
2567 	ctx->cb_arg = cb_arg;
2568 
2569 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_ctrlr_op_rpc_complete, ctx);
2570 	if (rc == 0) {
2571 		return;
2572 	} else if (rc == -EALREADY) {
2573 		rc = 0;
2574 	}
2575 
2576 	nvme_ctrlr_op_rpc_complete(ctx, rc);
2577 }
2578 
2579 static void nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc);
2580 
2581 static void
2582 _nvme_bdev_ctrlr_op_rpc_continue(void *_ctx)
2583 {
2584 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2585 	struct nvme_ctrlr *prev_nvme_ctrlr, *next_nvme_ctrlr;
2586 	int rc;
2587 
2588 	prev_nvme_ctrlr = ctx->nvme_ctrlr;
2589 	ctx->nvme_ctrlr = NULL;
2590 
2591 	if (ctx->rc != 0) {
2592 		goto complete;
2593 	}
2594 
2595 	next_nvme_ctrlr = TAILQ_NEXT(prev_nvme_ctrlr, tailq);
2596 	if (next_nvme_ctrlr == NULL) {
2597 		goto complete;
2598 	}
2599 
2600 	rc = nvme_ctrlr_op(next_nvme_ctrlr, ctx->op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2601 	if (rc == 0) {
2602 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2603 		return;
2604 	} else if (rc == -EALREADY) {
2605 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2606 		rc = 0;
2607 	}
2608 
2609 	ctx->rc = rc;
2610 
2611 complete:
2612 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2613 	free(ctx);
2614 }
2615 
2616 static void
2617 nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc)
2618 {
2619 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2620 
2621 	ctx->rc = rc;
2622 
2623 	spdk_thread_send_msg(ctx->orig_thread, _nvme_bdev_ctrlr_op_rpc_continue, ctx);
2624 }
2625 
2626 void
2627 nvme_bdev_ctrlr_op_rpc(struct nvme_bdev_ctrlr *nbdev_ctrlr, enum nvme_ctrlr_op op,
2628 		       bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2629 {
2630 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2631 	struct nvme_ctrlr *nvme_ctrlr;
2632 	int rc;
2633 
2634 	assert(cb_fn != NULL);
2635 
2636 	ctx = calloc(1, sizeof(*ctx));
2637 	if (ctx == NULL) {
2638 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2639 		cb_fn(cb_arg, -ENOMEM);
2640 		return;
2641 	}
2642 
2643 	ctx->orig_thread = spdk_get_thread();
2644 	ctx->op = op;
2645 	ctx->cb_fn = cb_fn;
2646 	ctx->cb_arg = cb_arg;
2647 
2648 	nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
2649 	assert(nvme_ctrlr != NULL);
2650 
2651 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2652 	if (rc == 0) {
2653 		ctx->nvme_ctrlr = nvme_ctrlr;
2654 		return;
2655 	} else if (rc == -EALREADY) {
2656 		ctx->nvme_ctrlr = nvme_ctrlr;
2657 		rc = 0;
2658 	}
2659 
2660 	nvme_bdev_ctrlr_op_rpc_continue(ctx, rc);
2661 }
2662 
2663 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
2664 
2665 static void
2666 _bdev_nvme_reset_io_complete(struct spdk_io_channel_iter *i, int status)
2667 {
2668 	struct nvme_bdev_io *bio = spdk_io_channel_iter_get_ctx(i);
2669 	enum spdk_bdev_io_status io_status;
2670 
2671 	if (bio->cpl.cdw0 == 0) {
2672 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2673 	} else {
2674 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
2675 	}
2676 
2677 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
2678 }
2679 
2680 static void
2681 bdev_nvme_abort_bdev_channel(struct spdk_io_channel_iter *i)
2682 {
2683 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2684 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
2685 
2686 	bdev_nvme_abort_retry_ios(nbdev_ch);
2687 
2688 	spdk_for_each_channel_continue(i, 0);
2689 }
2690 
2691 static void
2692 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
2693 {
2694 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2695 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
2696 
2697 	/* Abort all queued I/Os for retry. */
2698 	spdk_for_each_channel(nbdev,
2699 			      bdev_nvme_abort_bdev_channel,
2700 			      bio,
2701 			      _bdev_nvme_reset_io_complete);
2702 }
2703 
2704 static void
2705 _bdev_nvme_reset_io_continue(void *ctx)
2706 {
2707 	struct nvme_bdev_io *bio = ctx;
2708 	struct nvme_io_path *prev_io_path, *next_io_path;
2709 	int rc;
2710 
2711 	prev_io_path = bio->io_path;
2712 	bio->io_path = NULL;
2713 
2714 	if (bio->cpl.cdw0 != 0) {
2715 		goto complete;
2716 	}
2717 
2718 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
2719 	if (next_io_path == NULL) {
2720 		goto complete;
2721 	}
2722 
2723 	rc = _bdev_nvme_reset_io(next_io_path, bio);
2724 	if (rc == 0) {
2725 		return;
2726 	}
2727 
2728 	bio->cpl.cdw0 = 1;
2729 
2730 complete:
2731 	bdev_nvme_reset_io_complete(bio);
2732 }
2733 
2734 static void
2735 bdev_nvme_reset_io_continue(void *cb_arg, int rc)
2736 {
2737 	struct nvme_bdev_io *bio = cb_arg;
2738 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2739 
2740 	bio->cpl.cdw0 = (rc == 0) ? 0 : 1;
2741 
2742 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), _bdev_nvme_reset_io_continue, bio);
2743 }
2744 
2745 static int
2746 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
2747 {
2748 	struct nvme_ctrlr_channel *ctrlr_ch;
2749 	struct spdk_bdev_io *bdev_io;
2750 	int rc;
2751 
2752 	rc = nvme_ctrlr_op(io_path->qpair->ctrlr, NVME_CTRLR_OP_RESET,
2753 			   bdev_nvme_reset_io_continue, bio);
2754 	if (rc == 0) {
2755 		assert(bio->io_path == NULL);
2756 		bio->io_path = io_path;
2757 	} else if (rc == -EBUSY) {
2758 		ctrlr_ch = io_path->qpair->ctrlr_ch;
2759 		assert(ctrlr_ch != NULL);
2760 		/*
2761 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
2762 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
2763 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
2764 		 */
2765 		bdev_io = spdk_bdev_io_from_ctx(bio);
2766 		TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bdev_io, module_link);
2767 		rc = 0;
2768 	}
2769 
2770 	return rc;
2771 }
2772 
2773 static void
2774 bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio)
2775 {
2776 	struct nvme_io_path *io_path;
2777 	int rc;
2778 
2779 	bio->cpl.cdw0 = 0;
2780 
2781 	/* Reset all nvme_ctrlrs of a bdev controller sequentially. */
2782 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
2783 	assert(io_path != NULL);
2784 
2785 	rc = _bdev_nvme_reset_io(io_path, bio);
2786 	if (rc != 0) {
2787 		/* If the current nvme_ctrlr is disabled, skip it and move to the next nvme_ctrlr. */
2788 		bdev_nvme_reset_io_continue(bio, rc == -EALREADY);
2789 	}
2790 }
2791 
2792 static int
2793 bdev_nvme_failover_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool remove)
2794 {
2795 	if (nvme_ctrlr->destruct) {
2796 		/* Don't bother resetting if the controller is in the process of being destructed. */
2797 		return -ENXIO;
2798 	}
2799 
2800 	if (nvme_ctrlr->resetting) {
2801 		if (!nvme_ctrlr->in_failover) {
2802 			SPDK_NOTICELOG("Reset is already in progress. Defer failover until reset completes.\n");
2803 
2804 			/* Defer failover until reset completes. */
2805 			nvme_ctrlr->pending_failover = true;
2806 			return -EINPROGRESS;
2807 		} else {
2808 			SPDK_NOTICELOG("Unable to perform failover, already in progress.\n");
2809 			return -EBUSY;
2810 		}
2811 	}
2812 
2813 	bdev_nvme_failover_trid(nvme_ctrlr, remove, true);
2814 
2815 	if (nvme_ctrlr->reconnect_is_delayed) {
2816 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
2817 
2818 		/* We rely on the next reconnect for the failover. */
2819 		return -EALREADY;
2820 	}
2821 
2822 	if (nvme_ctrlr->disabled) {
2823 		SPDK_NOTICELOG("Controller is disabled.\n");
2824 
2825 		/* We rely on the enablement for the failover. */
2826 		return -EALREADY;
2827 	}
2828 
2829 	nvme_ctrlr->resetting = true;
2830 	nvme_ctrlr->in_failover = true;
2831 
2832 	assert(nvme_ctrlr->reset_start_tsc == 0);
2833 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2834 
2835 	return 0;
2836 }
2837 
2838 static int
2839 bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool remove)
2840 {
2841 	int rc;
2842 
2843 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2844 	rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, remove);
2845 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2846 
2847 	if (rc == 0) {
2848 		spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset_ctrlr, nvme_ctrlr);
2849 	} else if (rc == -EALREADY) {
2850 		rc = 0;
2851 	}
2852 
2853 	return rc;
2854 }
2855 
2856 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2857 			   uint64_t num_blocks);
2858 
2859 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2860 				  uint64_t num_blocks);
2861 
2862 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks,
2863 			  uint64_t src_offset_blocks,
2864 			  uint64_t num_blocks);
2865 
2866 static void
2867 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
2868 		     bool success)
2869 {
2870 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2871 	struct spdk_bdev *bdev = bdev_io->bdev;
2872 	int ret;
2873 
2874 	if (!success) {
2875 		ret = -EINVAL;
2876 		goto exit;
2877 	}
2878 
2879 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
2880 		ret = -ENXIO;
2881 		goto exit;
2882 	}
2883 
2884 	ret = bdev_nvme_readv(bio,
2885 			      bdev_io->u.bdev.iovs,
2886 			      bdev_io->u.bdev.iovcnt,
2887 			      bdev_io->u.bdev.md_buf,
2888 			      bdev_io->u.bdev.num_blocks,
2889 			      bdev_io->u.bdev.offset_blocks,
2890 			      bdev->dif_check_flags,
2891 			      bdev_io->u.bdev.memory_domain,
2892 			      bdev_io->u.bdev.memory_domain_ctx);
2893 
2894 exit:
2895 	if (spdk_unlikely(ret != 0)) {
2896 		bdev_nvme_io_complete(bio, ret);
2897 	}
2898 }
2899 
2900 static inline void
2901 _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
2902 {
2903 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2904 	struct spdk_bdev *bdev = bdev_io->bdev;
2905 	struct nvme_bdev_io *nbdev_io_to_abort;
2906 	int rc = 0;
2907 
2908 	switch (bdev_io->type) {
2909 	case SPDK_BDEV_IO_TYPE_READ:
2910 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
2911 			rc = bdev_nvme_readv(nbdev_io,
2912 					     bdev_io->u.bdev.iovs,
2913 					     bdev_io->u.bdev.iovcnt,
2914 					     bdev_io->u.bdev.md_buf,
2915 					     bdev_io->u.bdev.num_blocks,
2916 					     bdev_io->u.bdev.offset_blocks,
2917 					     bdev->dif_check_flags,
2918 					     bdev_io->u.bdev.memory_domain,
2919 					     bdev_io->u.bdev.memory_domain_ctx);
2920 		} else {
2921 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
2922 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
2923 			rc = 0;
2924 		}
2925 		break;
2926 	case SPDK_BDEV_IO_TYPE_WRITE:
2927 		rc = bdev_nvme_writev(nbdev_io,
2928 				      bdev_io->u.bdev.iovs,
2929 				      bdev_io->u.bdev.iovcnt,
2930 				      bdev_io->u.bdev.md_buf,
2931 				      bdev_io->u.bdev.num_blocks,
2932 				      bdev_io->u.bdev.offset_blocks,
2933 				      bdev->dif_check_flags,
2934 				      bdev_io->u.bdev.memory_domain,
2935 				      bdev_io->u.bdev.memory_domain_ctx);
2936 		break;
2937 	case SPDK_BDEV_IO_TYPE_COMPARE:
2938 		rc = bdev_nvme_comparev(nbdev_io,
2939 					bdev_io->u.bdev.iovs,
2940 					bdev_io->u.bdev.iovcnt,
2941 					bdev_io->u.bdev.md_buf,
2942 					bdev_io->u.bdev.num_blocks,
2943 					bdev_io->u.bdev.offset_blocks,
2944 					bdev->dif_check_flags);
2945 		break;
2946 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
2947 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
2948 						   bdev_io->u.bdev.iovs,
2949 						   bdev_io->u.bdev.iovcnt,
2950 						   bdev_io->u.bdev.fused_iovs,
2951 						   bdev_io->u.bdev.fused_iovcnt,
2952 						   bdev_io->u.bdev.md_buf,
2953 						   bdev_io->u.bdev.num_blocks,
2954 						   bdev_io->u.bdev.offset_blocks,
2955 						   bdev->dif_check_flags);
2956 		break;
2957 	case SPDK_BDEV_IO_TYPE_UNMAP:
2958 		rc = bdev_nvme_unmap(nbdev_io,
2959 				     bdev_io->u.bdev.offset_blocks,
2960 				     bdev_io->u.bdev.num_blocks);
2961 		break;
2962 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
2963 		rc =  bdev_nvme_write_zeroes(nbdev_io,
2964 					     bdev_io->u.bdev.offset_blocks,
2965 					     bdev_io->u.bdev.num_blocks);
2966 		break;
2967 	case SPDK_BDEV_IO_TYPE_RESET:
2968 		nbdev_io->io_path = NULL;
2969 		bdev_nvme_reset_io(nbdev_ch, nbdev_io);
2970 		return;
2971 
2972 	case SPDK_BDEV_IO_TYPE_FLUSH:
2973 		bdev_nvme_io_complete(nbdev_io, 0);
2974 		return;
2975 
2976 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
2977 		rc = bdev_nvme_zone_appendv(nbdev_io,
2978 					    bdev_io->u.bdev.iovs,
2979 					    bdev_io->u.bdev.iovcnt,
2980 					    bdev_io->u.bdev.md_buf,
2981 					    bdev_io->u.bdev.num_blocks,
2982 					    bdev_io->u.bdev.offset_blocks,
2983 					    bdev->dif_check_flags);
2984 		break;
2985 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
2986 		rc = bdev_nvme_get_zone_info(nbdev_io,
2987 					     bdev_io->u.zone_mgmt.zone_id,
2988 					     bdev_io->u.zone_mgmt.num_zones,
2989 					     bdev_io->u.zone_mgmt.buf);
2990 		break;
2991 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
2992 		rc = bdev_nvme_zone_management(nbdev_io,
2993 					       bdev_io->u.zone_mgmt.zone_id,
2994 					       bdev_io->u.zone_mgmt.zone_action);
2995 		break;
2996 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
2997 		nbdev_io->io_path = NULL;
2998 		bdev_nvme_admin_passthru(nbdev_ch,
2999 					 nbdev_io,
3000 					 &bdev_io->u.nvme_passthru.cmd,
3001 					 bdev_io->u.nvme_passthru.buf,
3002 					 bdev_io->u.nvme_passthru.nbytes);
3003 		return;
3004 
3005 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3006 		rc = bdev_nvme_io_passthru(nbdev_io,
3007 					   &bdev_io->u.nvme_passthru.cmd,
3008 					   bdev_io->u.nvme_passthru.buf,
3009 					   bdev_io->u.nvme_passthru.nbytes);
3010 		break;
3011 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3012 		rc = bdev_nvme_io_passthru_md(nbdev_io,
3013 					      &bdev_io->u.nvme_passthru.cmd,
3014 					      bdev_io->u.nvme_passthru.buf,
3015 					      bdev_io->u.nvme_passthru.nbytes,
3016 					      bdev_io->u.nvme_passthru.md_buf,
3017 					      bdev_io->u.nvme_passthru.md_len);
3018 		break;
3019 	case SPDK_BDEV_IO_TYPE_ABORT:
3020 		nbdev_io->io_path = NULL;
3021 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
3022 		bdev_nvme_abort(nbdev_ch,
3023 				nbdev_io,
3024 				nbdev_io_to_abort);
3025 		return;
3026 
3027 	case SPDK_BDEV_IO_TYPE_COPY:
3028 		rc = bdev_nvme_copy(nbdev_io,
3029 				    bdev_io->u.bdev.offset_blocks,
3030 				    bdev_io->u.bdev.copy.src_offset_blocks,
3031 				    bdev_io->u.bdev.num_blocks);
3032 		break;
3033 	default:
3034 		rc = -EINVAL;
3035 		break;
3036 	}
3037 
3038 	if (spdk_unlikely(rc != 0)) {
3039 		bdev_nvme_io_complete(nbdev_io, rc);
3040 	}
3041 }
3042 
3043 static void
3044 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
3045 {
3046 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3047 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3048 
3049 	if (spdk_likely(nbdev_io->submit_tsc == 0)) {
3050 		nbdev_io->submit_tsc = spdk_bdev_io_get_submit_tsc(bdev_io);
3051 	} else {
3052 		/* There are cases where submit_tsc != 0, i.e. retry I/O.
3053 		 * We need to update submit_tsc here.
3054 		 */
3055 		nbdev_io->submit_tsc = spdk_get_ticks();
3056 	}
3057 
3058 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
3059 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
3060 	if (spdk_unlikely(!nbdev_io->io_path)) {
3061 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
3062 			bdev_nvme_io_complete(nbdev_io, -ENXIO);
3063 			return;
3064 		}
3065 
3066 		/* Admin commands do not use the optimal I/O path.
3067 		 * Simply fall through even if it is not found.
3068 		 */
3069 	}
3070 
3071 	_bdev_nvme_submit_request(nbdev_ch, bdev_io);
3072 }
3073 
3074 static bool
3075 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
3076 {
3077 	struct nvme_bdev *nbdev = ctx;
3078 	struct nvme_ns *nvme_ns;
3079 	struct spdk_nvme_ns *ns;
3080 	struct spdk_nvme_ctrlr *ctrlr;
3081 	const struct spdk_nvme_ctrlr_data *cdata;
3082 
3083 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
3084 	assert(nvme_ns != NULL);
3085 	ns = nvme_ns->ns;
3086 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3087 
3088 	switch (io_type) {
3089 	case SPDK_BDEV_IO_TYPE_READ:
3090 	case SPDK_BDEV_IO_TYPE_WRITE:
3091 	case SPDK_BDEV_IO_TYPE_RESET:
3092 	case SPDK_BDEV_IO_TYPE_FLUSH:
3093 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3094 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3095 	case SPDK_BDEV_IO_TYPE_ABORT:
3096 		return true;
3097 
3098 	case SPDK_BDEV_IO_TYPE_COMPARE:
3099 		return spdk_nvme_ns_supports_compare(ns);
3100 
3101 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3102 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
3103 
3104 	case SPDK_BDEV_IO_TYPE_UNMAP:
3105 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3106 		return cdata->oncs.dsm;
3107 
3108 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3109 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3110 		return cdata->oncs.write_zeroes;
3111 
3112 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3113 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
3114 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
3115 			return true;
3116 		}
3117 		return false;
3118 
3119 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3120 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3121 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
3122 
3123 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3124 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
3125 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
3126 
3127 	case SPDK_BDEV_IO_TYPE_COPY:
3128 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3129 		return cdata->oncs.copy;
3130 
3131 	default:
3132 		return false;
3133 	}
3134 }
3135 
3136 static int
3137 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
3138 {
3139 	struct nvme_qpair *nvme_qpair;
3140 	struct spdk_io_channel *pg_ch;
3141 	int rc;
3142 
3143 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
3144 	if (!nvme_qpair) {
3145 		SPDK_ERRLOG("Failed to alloc nvme_qpair.\n");
3146 		return -1;
3147 	}
3148 
3149 	TAILQ_INIT(&nvme_qpair->io_path_list);
3150 
3151 	nvme_qpair->ctrlr = nvme_ctrlr;
3152 	nvme_qpair->ctrlr_ch = ctrlr_ch;
3153 
3154 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
3155 	if (!pg_ch) {
3156 		free(nvme_qpair);
3157 		return -1;
3158 	}
3159 
3160 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
3161 
3162 #ifdef SPDK_CONFIG_VTUNE
3163 	nvme_qpair->group->collect_spin_stat = true;
3164 #else
3165 	nvme_qpair->group->collect_spin_stat = false;
3166 #endif
3167 
3168 	rc = bdev_nvme_create_qpair(nvme_qpair);
3169 	if (rc != 0) {
3170 		/* nvme_ctrlr can't create IO qpair if connection is down.
3171 		 *
3172 		 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
3173 		 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
3174 		 * submitted IO will be queued until IO qpair is successfully created.
3175 		 *
3176 		 * Hence, if both are satisfied, ignore the failure.
3177 		 */
3178 		if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
3179 			spdk_put_io_channel(pg_ch);
3180 			free(nvme_qpair);
3181 			return rc;
3182 		}
3183 	}
3184 
3185 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3186 
3187 	ctrlr_ch->qpair = nvme_qpair;
3188 
3189 	pthread_mutex_lock(&nvme_qpair->ctrlr->mutex);
3190 	nvme_qpair->ctrlr->ref++;
3191 	pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex);
3192 
3193 	return 0;
3194 }
3195 
3196 static int
3197 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3198 {
3199 	struct nvme_ctrlr *nvme_ctrlr = io_device;
3200 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3201 
3202 	TAILQ_INIT(&ctrlr_ch->pending_resets);
3203 
3204 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
3205 }
3206 
3207 static void
3208 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
3209 {
3210 	struct nvme_io_path *io_path, *next;
3211 
3212 	assert(nvme_qpair->group != NULL);
3213 
3214 	TAILQ_FOREACH_SAFE(io_path, &nvme_qpair->io_path_list, tailq, next) {
3215 		TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
3216 		nvme_io_path_free(io_path);
3217 	}
3218 
3219 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3220 
3221 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
3222 
3223 	nvme_ctrlr_release(nvme_qpair->ctrlr);
3224 
3225 	free(nvme_qpair);
3226 }
3227 
3228 static void
3229 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3230 {
3231 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3232 	struct nvme_qpair *nvme_qpair;
3233 
3234 	nvme_qpair = ctrlr_ch->qpair;
3235 	assert(nvme_qpair != NULL);
3236 
3237 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
3238 
3239 	if (nvme_qpair->qpair != NULL) {
3240 		if (ctrlr_ch->reset_iter == NULL) {
3241 			spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
3242 		} else {
3243 			/* Skip current ctrlr_channel in a full reset sequence because
3244 			 * it is being deleted now. The qpair is already being disconnected.
3245 			 * We do not have to restart disconnecting it.
3246 			 */
3247 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
3248 		}
3249 
3250 		/* We cannot release a reference to the poll group now.
3251 		 * The qpair may be disconnected asynchronously later.
3252 		 * We need to poll it until it is actually disconnected.
3253 		 * Just detach the qpair from the deleting ctrlr_channel.
3254 		 */
3255 		nvme_qpair->ctrlr_ch = NULL;
3256 	} else {
3257 		assert(ctrlr_ch->reset_iter == NULL);
3258 
3259 		nvme_qpair_delete(nvme_qpair);
3260 	}
3261 }
3262 
3263 static void
3264 bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
3265 			      uint32_t iov_cnt, uint32_t seed,
3266 			      spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3267 {
3268 	struct nvme_poll_group *group = ctx;
3269 	int rc;
3270 
3271 	assert(cb_fn != NULL);
3272 
3273 	if (spdk_unlikely(!group->accel_channel)) {
3274 		group->accel_channel = spdk_accel_get_io_channel();
3275 		if (!group->accel_channel) {
3276 			cb_fn(cb_arg, -ENOMEM);
3277 			SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
3278 				    group);
3279 			return;
3280 		}
3281 	}
3282 
3283 	rc = spdk_accel_submit_crc32cv(group->accel_channel, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
3284 	if (rc) {
3285 		/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
3286 		if (rc == -ENOMEM || rc == -EINVAL) {
3287 			cb_fn(cb_arg, rc);
3288 		}
3289 		SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
3290 	}
3291 }
3292 
3293 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
3294 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
3295 	.submit_accel_crc32c	= bdev_nvme_submit_accel_crc32c,
3296 };
3297 
3298 static int
3299 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
3300 {
3301 	struct nvme_poll_group *group = ctx_buf;
3302 
3303 	TAILQ_INIT(&group->qpair_list);
3304 
3305 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
3306 	if (group->group == NULL) {
3307 		return -1;
3308 	}
3309 
3310 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
3311 
3312 	if (group->poller == NULL) {
3313 		spdk_nvme_poll_group_destroy(group->group);
3314 		return -1;
3315 	}
3316 
3317 	return 0;
3318 }
3319 
3320 static void
3321 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
3322 {
3323 	struct nvme_poll_group *group = ctx_buf;
3324 
3325 	assert(TAILQ_EMPTY(&group->qpair_list));
3326 
3327 	if (group->accel_channel) {
3328 		spdk_put_io_channel(group->accel_channel);
3329 	}
3330 
3331 	spdk_poller_unregister(&group->poller);
3332 	if (spdk_nvme_poll_group_destroy(group->group)) {
3333 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
3334 		assert(false);
3335 	}
3336 }
3337 
3338 static struct spdk_io_channel *
3339 bdev_nvme_get_io_channel(void *ctx)
3340 {
3341 	struct nvme_bdev *nvme_bdev = ctx;
3342 
3343 	return spdk_get_io_channel(nvme_bdev);
3344 }
3345 
3346 static void *
3347 bdev_nvme_get_module_ctx(void *ctx)
3348 {
3349 	struct nvme_bdev *nvme_bdev = ctx;
3350 	struct nvme_ns *nvme_ns;
3351 
3352 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
3353 		return NULL;
3354 	}
3355 
3356 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
3357 	if (!nvme_ns) {
3358 		return NULL;
3359 	}
3360 
3361 	return nvme_ns->ns;
3362 }
3363 
3364 static const char *
3365 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
3366 {
3367 	switch (ana_state) {
3368 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3369 		return "optimized";
3370 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3371 		return "non_optimized";
3372 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3373 		return "inaccessible";
3374 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
3375 		return "persistent_loss";
3376 	case SPDK_NVME_ANA_CHANGE_STATE:
3377 		return "change";
3378 	default:
3379 		return NULL;
3380 	}
3381 }
3382 
3383 static int
3384 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
3385 {
3386 	struct spdk_memory_domain **_domains = NULL;
3387 	struct nvme_bdev *nbdev = ctx;
3388 	struct nvme_ns *nvme_ns;
3389 	int i = 0, _array_size = array_size;
3390 	int rc = 0;
3391 
3392 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3393 		if (domains && array_size >= i) {
3394 			_domains = &domains[i];
3395 		} else {
3396 			_domains = NULL;
3397 		}
3398 		rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size);
3399 		if (rc > 0) {
3400 			i += rc;
3401 			if (_array_size >= rc) {
3402 				_array_size -= rc;
3403 			} else {
3404 				_array_size = 0;
3405 			}
3406 		} else if (rc < 0) {
3407 			return rc;
3408 		}
3409 	}
3410 
3411 	return i;
3412 }
3413 
3414 static const char *
3415 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
3416 {
3417 	if (nvme_ctrlr->destruct) {
3418 		return "deleting";
3419 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
3420 		return "failed";
3421 	} else if (nvme_ctrlr->resetting) {
3422 		return "resetting";
3423 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
3424 		return "reconnect_is_delayed";
3425 	} else if (nvme_ctrlr->disabled) {
3426 		return "disabled";
3427 	} else {
3428 		return "enabled";
3429 	}
3430 }
3431 
3432 void
3433 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
3434 {
3435 	struct spdk_nvme_transport_id *trid;
3436 	const struct spdk_nvme_ctrlr_opts *opts;
3437 	const struct spdk_nvme_ctrlr_data *cdata;
3438 	struct nvme_path_id *path_id;
3439 
3440 	spdk_json_write_object_begin(w);
3441 
3442 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
3443 
3444 #ifdef SPDK_CONFIG_NVME_CUSE
3445 	size_t cuse_name_size = 128;
3446 	char cuse_name[cuse_name_size];
3447 
3448 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
3449 	if (rc == 0) {
3450 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3451 	}
3452 #endif
3453 	trid = &nvme_ctrlr->active_path_id->trid;
3454 	spdk_json_write_named_object_begin(w, "trid");
3455 	nvme_bdev_dump_trid_json(trid, w);
3456 	spdk_json_write_object_end(w);
3457 
3458 	path_id = TAILQ_NEXT(nvme_ctrlr->active_path_id, link);
3459 	if (path_id != NULL) {
3460 		spdk_json_write_named_array_begin(w, "alternate_trids");
3461 		do {
3462 			trid = &path_id->trid;
3463 			spdk_json_write_object_begin(w);
3464 			nvme_bdev_dump_trid_json(trid, w);
3465 			spdk_json_write_object_end(w);
3466 
3467 			path_id = TAILQ_NEXT(path_id, link);
3468 		} while (path_id != NULL);
3469 		spdk_json_write_array_end(w);
3470 	}
3471 
3472 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
3473 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3474 
3475 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
3476 	spdk_json_write_named_object_begin(w, "host");
3477 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
3478 	spdk_json_write_named_string(w, "addr", opts->src_addr);
3479 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
3480 	spdk_json_write_object_end(w);
3481 
3482 	spdk_json_write_object_end(w);
3483 }
3484 
3485 static void
3486 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
3487 			 struct nvme_ns *nvme_ns)
3488 {
3489 	struct spdk_nvme_ns *ns;
3490 	struct spdk_nvme_ctrlr *ctrlr;
3491 	const struct spdk_nvme_ctrlr_data *cdata;
3492 	const struct spdk_nvme_transport_id *trid;
3493 	union spdk_nvme_vs_register vs;
3494 	const struct spdk_nvme_ns_data *nsdata;
3495 	char buf[128];
3496 
3497 	ns = nvme_ns->ns;
3498 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3499 
3500 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3501 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
3502 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
3503 
3504 	spdk_json_write_object_begin(w);
3505 
3506 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
3507 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
3508 	}
3509 
3510 	spdk_json_write_named_object_begin(w, "trid");
3511 
3512 	nvme_bdev_dump_trid_json(trid, w);
3513 
3514 	spdk_json_write_object_end(w);
3515 
3516 #ifdef SPDK_CONFIG_NVME_CUSE
3517 	size_t cuse_name_size = 128;
3518 	char cuse_name[cuse_name_size];
3519 
3520 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
3521 					    cuse_name, &cuse_name_size);
3522 	if (rc == 0) {
3523 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3524 	}
3525 #endif
3526 
3527 	spdk_json_write_named_object_begin(w, "ctrlr_data");
3528 
3529 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3530 
3531 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
3532 
3533 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
3534 	spdk_str_trim(buf);
3535 	spdk_json_write_named_string(w, "model_number", buf);
3536 
3537 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
3538 	spdk_str_trim(buf);
3539 	spdk_json_write_named_string(w, "serial_number", buf);
3540 
3541 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
3542 	spdk_str_trim(buf);
3543 	spdk_json_write_named_string(w, "firmware_revision", buf);
3544 
3545 	if (cdata->subnqn[0] != '\0') {
3546 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
3547 	}
3548 
3549 	spdk_json_write_named_object_begin(w, "oacs");
3550 
3551 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
3552 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
3553 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
3554 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
3555 
3556 	spdk_json_write_object_end(w);
3557 
3558 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
3559 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
3560 
3561 	spdk_json_write_object_end(w);
3562 
3563 	spdk_json_write_named_object_begin(w, "vs");
3564 
3565 	spdk_json_write_name(w, "nvme_version");
3566 	if (vs.bits.ter) {
3567 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
3568 	} else {
3569 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
3570 	}
3571 
3572 	spdk_json_write_object_end(w);
3573 
3574 	nsdata = spdk_nvme_ns_get_data(ns);
3575 
3576 	spdk_json_write_named_object_begin(w, "ns_data");
3577 
3578 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
3579 
3580 	if (cdata->cmic.ana_reporting) {
3581 		spdk_json_write_named_string(w, "ana_state",
3582 					     _nvme_ana_state_str(nvme_ns->ana_state));
3583 	}
3584 
3585 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
3586 
3587 	spdk_json_write_object_end(w);
3588 
3589 	if (cdata->oacs.security) {
3590 		spdk_json_write_named_object_begin(w, "security");
3591 
3592 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
3593 
3594 		spdk_json_write_object_end(w);
3595 	}
3596 
3597 	spdk_json_write_object_end(w);
3598 }
3599 
3600 static const char *
3601 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
3602 {
3603 	switch (nbdev->mp_policy) {
3604 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
3605 		return "active_passive";
3606 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
3607 		return "active_active";
3608 	default:
3609 		assert(false);
3610 		return "invalid";
3611 	}
3612 }
3613 
3614 static int
3615 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
3616 {
3617 	struct nvme_bdev *nvme_bdev = ctx;
3618 	struct nvme_ns *nvme_ns;
3619 
3620 	pthread_mutex_lock(&nvme_bdev->mutex);
3621 	spdk_json_write_named_array_begin(w, "nvme");
3622 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
3623 		nvme_namespace_info_json(w, nvme_ns);
3624 	}
3625 	spdk_json_write_array_end(w);
3626 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
3627 	pthread_mutex_unlock(&nvme_bdev->mutex);
3628 
3629 	return 0;
3630 }
3631 
3632 static void
3633 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
3634 {
3635 	/* No config per bdev needed */
3636 }
3637 
3638 static uint64_t
3639 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
3640 {
3641 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3642 	struct nvme_io_path *io_path;
3643 	struct nvme_poll_group *group;
3644 	uint64_t spin_time = 0;
3645 
3646 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
3647 		group = io_path->qpair->group;
3648 
3649 		if (!group || !group->collect_spin_stat) {
3650 			continue;
3651 		}
3652 
3653 		if (group->end_ticks != 0) {
3654 			group->spin_ticks += (group->end_ticks - group->start_ticks);
3655 			group->end_ticks = 0;
3656 		}
3657 
3658 		spin_time += group->spin_ticks;
3659 		group->start_ticks = 0;
3660 		group->spin_ticks = 0;
3661 	}
3662 
3663 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
3664 }
3665 
3666 static void
3667 bdev_nvme_reset_device_stat(void *ctx)
3668 {
3669 	struct nvme_bdev *nbdev = ctx;
3670 
3671 	if (nbdev->err_stat != NULL) {
3672 		memset(nbdev->err_stat, 0, sizeof(struct nvme_error_stat));
3673 	}
3674 }
3675 
3676 /* JSON string should be lowercases and underscore delimited string. */
3677 static void
3678 bdev_nvme_format_nvme_status(char *dst, const char *src)
3679 {
3680 	char tmp[256];
3681 
3682 	spdk_strcpy_replace(dst, 256, src, " - ", "_");
3683 	spdk_strcpy_replace(tmp, 256, dst, "-", "_");
3684 	spdk_strcpy_replace(dst, 256, tmp, " ", "_");
3685 	spdk_strlwr(dst);
3686 }
3687 
3688 static void
3689 bdev_nvme_dump_device_stat_json(void *ctx, struct spdk_json_write_ctx *w)
3690 {
3691 	struct nvme_bdev *nbdev = ctx;
3692 	struct spdk_nvme_status status = {};
3693 	uint16_t sct, sc;
3694 	char status_json[256];
3695 	const char *status_str;
3696 
3697 	if (nbdev->err_stat == NULL) {
3698 		return;
3699 	}
3700 
3701 	spdk_json_write_named_object_begin(w, "nvme_error");
3702 
3703 	spdk_json_write_named_object_begin(w, "status_type");
3704 	for (sct = 0; sct < 8; sct++) {
3705 		if (nbdev->err_stat->status_type[sct] == 0) {
3706 			continue;
3707 		}
3708 		status.sct = sct;
3709 
3710 		status_str = spdk_nvme_cpl_get_status_type_string(&status);
3711 		assert(status_str != NULL);
3712 		bdev_nvme_format_nvme_status(status_json, status_str);
3713 
3714 		spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status_type[sct]);
3715 	}
3716 	spdk_json_write_object_end(w);
3717 
3718 	spdk_json_write_named_object_begin(w, "status_code");
3719 	for (sct = 0; sct < 4; sct++) {
3720 		status.sct = sct;
3721 		for (sc = 0; sc < 256; sc++) {
3722 			if (nbdev->err_stat->status[sct][sc] == 0) {
3723 				continue;
3724 			}
3725 			status.sc = sc;
3726 
3727 			status_str = spdk_nvme_cpl_get_status_string(&status);
3728 			assert(status_str != NULL);
3729 			bdev_nvme_format_nvme_status(status_json, status_str);
3730 
3731 			spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status[sct][sc]);
3732 		}
3733 	}
3734 	spdk_json_write_object_end(w);
3735 
3736 	spdk_json_write_object_end(w);
3737 }
3738 
3739 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
3740 	.destruct		= bdev_nvme_destruct,
3741 	.submit_request		= bdev_nvme_submit_request,
3742 	.io_type_supported	= bdev_nvme_io_type_supported,
3743 	.get_io_channel		= bdev_nvme_get_io_channel,
3744 	.dump_info_json		= bdev_nvme_dump_info_json,
3745 	.write_config_json	= bdev_nvme_write_config_json,
3746 	.get_spin_time		= bdev_nvme_get_spin_time,
3747 	.get_module_ctx		= bdev_nvme_get_module_ctx,
3748 	.get_memory_domains	= bdev_nvme_get_memory_domains,
3749 	.reset_device_stat	= bdev_nvme_reset_device_stat,
3750 	.dump_device_stat_json	= bdev_nvme_dump_device_stat_json,
3751 };
3752 
3753 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
3754 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
3755 
3756 static int
3757 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
3758 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
3759 {
3760 	struct spdk_nvme_ana_group_descriptor *copied_desc;
3761 	uint8_t *orig_desc;
3762 	uint32_t i, desc_size, copy_len;
3763 	int rc = 0;
3764 
3765 	if (nvme_ctrlr->ana_log_page == NULL) {
3766 		return -EINVAL;
3767 	}
3768 
3769 	copied_desc = nvme_ctrlr->copied_ana_desc;
3770 
3771 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
3772 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
3773 
3774 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
3775 		memcpy(copied_desc, orig_desc, copy_len);
3776 
3777 		rc = cb_fn(copied_desc, cb_arg);
3778 		if (rc != 0) {
3779 			break;
3780 		}
3781 
3782 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
3783 			    copied_desc->num_of_nsid * sizeof(uint32_t);
3784 		orig_desc += desc_size;
3785 		copy_len -= desc_size;
3786 	}
3787 
3788 	return rc;
3789 }
3790 
3791 static int
3792 nvme_ns_ana_transition_timedout(void *ctx)
3793 {
3794 	struct nvme_ns *nvme_ns = ctx;
3795 
3796 	spdk_poller_unregister(&nvme_ns->anatt_timer);
3797 	nvme_ns->ana_transition_timedout = true;
3798 
3799 	return SPDK_POLLER_BUSY;
3800 }
3801 
3802 static void
3803 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
3804 		       const struct spdk_nvme_ana_group_descriptor *desc)
3805 {
3806 	const struct spdk_nvme_ctrlr_data *cdata;
3807 
3808 	nvme_ns->ana_group_id = desc->ana_group_id;
3809 	nvme_ns->ana_state = desc->ana_state;
3810 	nvme_ns->ana_state_updating = false;
3811 
3812 	switch (nvme_ns->ana_state) {
3813 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3814 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3815 		nvme_ns->ana_transition_timedout = false;
3816 		spdk_poller_unregister(&nvme_ns->anatt_timer);
3817 		break;
3818 
3819 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3820 	case SPDK_NVME_ANA_CHANGE_STATE:
3821 		if (nvme_ns->anatt_timer != NULL) {
3822 			break;
3823 		}
3824 
3825 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
3826 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
3827 				       nvme_ns,
3828 				       cdata->anatt * SPDK_SEC_TO_USEC);
3829 		break;
3830 	default:
3831 		break;
3832 	}
3833 }
3834 
3835 static int
3836 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
3837 {
3838 	struct nvme_ns *nvme_ns = cb_arg;
3839 	uint32_t i;
3840 
3841 	for (i = 0; i < desc->num_of_nsid; i++) {
3842 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
3843 			continue;
3844 		}
3845 
3846 		_nvme_ns_set_ana_state(nvme_ns, desc);
3847 		return 1;
3848 	}
3849 
3850 	return 0;
3851 }
3852 
3853 static struct spdk_uuid
3854 nvme_generate_uuid(const char *sn, uint32_t nsid)
3855 {
3856 	struct spdk_uuid new_uuid, namespace_uuid;
3857 	char merged_str[SPDK_NVME_CTRLR_SN_LEN + NSID_STR_LEN + 1] = {'\0'};
3858 	/* This namespace UUID was generated using uuid_generate() method. */
3859 	const char *namespace_str = {"edaed2de-24bc-4b07-b559-f47ecbe730fd"};
3860 	int size;
3861 
3862 	assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN);
3863 
3864 	spdk_uuid_set_null(&new_uuid);
3865 	spdk_uuid_set_null(&namespace_uuid);
3866 
3867 	size = snprintf(merged_str, sizeof(merged_str), "%s%"PRIu32, sn, nsid);
3868 	assert(size > 0 && (unsigned long)size < sizeof(merged_str));
3869 
3870 	spdk_uuid_parse(&namespace_uuid, namespace_str);
3871 
3872 	spdk_uuid_generate_sha1(&new_uuid, &namespace_uuid, merged_str, size);
3873 
3874 	return new_uuid;
3875 }
3876 
3877 static int
3878 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
3879 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
3880 		 uint32_t prchk_flags, void *ctx)
3881 {
3882 	const struct spdk_uuid		*uuid;
3883 	const uint8_t *nguid;
3884 	const struct spdk_nvme_ctrlr_data *cdata;
3885 	const struct spdk_nvme_ns_data	*nsdata;
3886 	const struct spdk_nvme_ctrlr_opts *opts;
3887 	enum spdk_nvme_csi		csi;
3888 	uint32_t atomic_bs, phys_bs, bs;
3889 	char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'};
3890 
3891 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3892 	csi = spdk_nvme_ns_get_csi(ns);
3893 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
3894 
3895 	switch (csi) {
3896 	case SPDK_NVME_CSI_NVM:
3897 		disk->product_name = "NVMe disk";
3898 		break;
3899 	case SPDK_NVME_CSI_ZNS:
3900 		disk->product_name = "NVMe ZNS disk";
3901 		disk->zoned = true;
3902 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
3903 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
3904 					     spdk_nvme_ns_get_extended_sector_size(ns);
3905 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
3906 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
3907 		break;
3908 	default:
3909 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
3910 		return -ENOTSUP;
3911 	}
3912 
3913 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
3914 	if (!disk->name) {
3915 		return -ENOMEM;
3916 	}
3917 
3918 	disk->write_cache = 0;
3919 	if (cdata->vwc.present) {
3920 		/* Enable if the Volatile Write Cache exists */
3921 		disk->write_cache = 1;
3922 	}
3923 	if (cdata->oncs.write_zeroes) {
3924 		disk->max_write_zeroes = UINT16_MAX + 1;
3925 	}
3926 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
3927 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
3928 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
3929 	/* NVMe driver will split one request into multiple requests
3930 	 * based on MDTS and stripe boundary, the bdev layer will use
3931 	 * max_segment_size and max_num_segments to split one big IO
3932 	 * into multiple requests, then small request can't run out
3933 	 * of NVMe internal requests data structure.
3934 	 */
3935 	if (opts && opts->io_queue_requests) {
3936 		disk->max_num_segments = opts->io_queue_requests / 2;
3937 	}
3938 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
3939 
3940 	nguid = spdk_nvme_ns_get_nguid(ns);
3941 	if (!nguid) {
3942 		uuid = spdk_nvme_ns_get_uuid(ns);
3943 		if (uuid) {
3944 			disk->uuid = *uuid;
3945 		} else if (g_opts.generate_uuids) {
3946 			spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0');
3947 			disk->uuid = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns));
3948 		}
3949 	} else {
3950 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
3951 	}
3952 
3953 	nsdata = spdk_nvme_ns_get_data(ns);
3954 	bs = spdk_nvme_ns_get_sector_size(ns);
3955 	atomic_bs = bs;
3956 	phys_bs = bs;
3957 	if (nsdata->nabo == 0) {
3958 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
3959 			atomic_bs = bs * (1 + nsdata->nawupf);
3960 		} else {
3961 			atomic_bs = bs * (1 + cdata->awupf);
3962 		}
3963 	}
3964 	if (nsdata->nsfeat.optperf) {
3965 		phys_bs = bs * (1 + nsdata->npwg);
3966 	}
3967 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
3968 
3969 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
3970 	if (disk->md_len != 0) {
3971 		disk->md_interleave = nsdata->flbas.extended;
3972 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
3973 		if (disk->dif_type != SPDK_DIF_DISABLE) {
3974 			disk->dif_is_head_of_md = nsdata->dps.md_start;
3975 			disk->dif_check_flags = prchk_flags;
3976 		}
3977 	}
3978 
3979 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
3980 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
3981 		disk->acwu = 0;
3982 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
3983 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
3984 	} else {
3985 		disk->acwu = cdata->acwu + 1; /* 0-based */
3986 	}
3987 
3988 	if (cdata->oncs.copy) {
3989 		/* For now bdev interface allows only single segment copy */
3990 		disk->max_copy = nsdata->mssrl;
3991 	}
3992 
3993 	disk->ctxt = ctx;
3994 	disk->fn_table = &nvmelib_fn_table;
3995 	disk->module = &nvme_if;
3996 
3997 	return 0;
3998 }
3999 
4000 static struct nvme_bdev *
4001 nvme_bdev_alloc(void)
4002 {
4003 	struct nvme_bdev *bdev;
4004 	int rc;
4005 
4006 	bdev = calloc(1, sizeof(*bdev));
4007 	if (!bdev) {
4008 		SPDK_ERRLOG("bdev calloc() failed\n");
4009 		return NULL;
4010 	}
4011 
4012 	if (g_opts.nvme_error_stat) {
4013 		bdev->err_stat = calloc(1, sizeof(struct nvme_error_stat));
4014 		if (!bdev->err_stat) {
4015 			SPDK_ERRLOG("err_stat calloc() failed\n");
4016 			free(bdev);
4017 			return NULL;
4018 		}
4019 	}
4020 
4021 	rc = pthread_mutex_init(&bdev->mutex, NULL);
4022 	if (rc != 0) {
4023 		free(bdev->err_stat);
4024 		free(bdev);
4025 		return NULL;
4026 	}
4027 
4028 	bdev->ref = 1;
4029 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
4030 	bdev->mp_selector = BDEV_NVME_MP_SELECTOR_ROUND_ROBIN;
4031 	bdev->rr_min_io = UINT32_MAX;
4032 	TAILQ_INIT(&bdev->nvme_ns_list);
4033 
4034 	return bdev;
4035 }
4036 
4037 static int
4038 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4039 {
4040 	struct nvme_bdev *bdev;
4041 	struct nvme_bdev_ctrlr *nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
4042 	int rc;
4043 
4044 	bdev = nvme_bdev_alloc();
4045 	if (bdev == NULL) {
4046 		SPDK_ERRLOG("Failed to allocate NVMe bdev\n");
4047 		return -ENOMEM;
4048 	}
4049 
4050 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
4051 
4052 	rc = nvme_disk_create(&bdev->disk, nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
4053 			      nvme_ns->ns, nvme_ctrlr->opts.prchk_flags, bdev);
4054 	if (rc != 0) {
4055 		SPDK_ERRLOG("Failed to create NVMe disk\n");
4056 		nvme_bdev_free(bdev);
4057 		return rc;
4058 	}
4059 
4060 	spdk_io_device_register(bdev,
4061 				bdev_nvme_create_bdev_channel_cb,
4062 				bdev_nvme_destroy_bdev_channel_cb,
4063 				sizeof(struct nvme_bdev_channel),
4064 				bdev->disk.name);
4065 
4066 	nvme_ns->bdev = bdev;
4067 	bdev->nsid = nvme_ns->id;
4068 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4069 
4070 	bdev->nbdev_ctrlr = nbdev_ctrlr;
4071 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->bdevs, bdev, tailq);
4072 
4073 	rc = spdk_bdev_register(&bdev->disk);
4074 	if (rc != 0) {
4075 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
4076 		spdk_io_device_unregister(bdev, NULL);
4077 		nvme_ns->bdev = NULL;
4078 		TAILQ_REMOVE(&nbdev_ctrlr->bdevs, bdev, tailq);
4079 		nvme_bdev_free(bdev);
4080 		return rc;
4081 	}
4082 
4083 	return 0;
4084 }
4085 
4086 static bool
4087 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
4088 {
4089 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
4090 	const struct spdk_uuid *uuid1, *uuid2;
4091 
4092 	nsdata1 = spdk_nvme_ns_get_data(ns1);
4093 	nsdata2 = spdk_nvme_ns_get_data(ns2);
4094 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
4095 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
4096 
4097 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
4098 	       nsdata1->eui64 == nsdata2->eui64 &&
4099 	       ((uuid1 == NULL && uuid2 == NULL) ||
4100 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
4101 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
4102 }
4103 
4104 static bool
4105 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4106 		 struct spdk_nvme_ctrlr_opts *opts)
4107 {
4108 	struct nvme_probe_skip_entry *entry;
4109 
4110 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
4111 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4112 			return false;
4113 		}
4114 	}
4115 
4116 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
4117 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
4118 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
4119 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
4120 	opts->disable_read_ana_log_page = true;
4121 
4122 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
4123 
4124 	return true;
4125 }
4126 
4127 static void
4128 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
4129 {
4130 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4131 
4132 	if (spdk_nvme_cpl_is_error(cpl)) {
4133 		SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
4134 			     cpl->status.sct);
4135 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4136 	} else if (cpl->cdw0 & 0x1) {
4137 		SPDK_WARNLOG("Specified command could not be aborted.\n");
4138 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4139 	}
4140 }
4141 
4142 static void
4143 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
4144 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
4145 {
4146 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4147 	union spdk_nvme_csts_register csts;
4148 	int rc;
4149 
4150 	assert(nvme_ctrlr->ctrlr == ctrlr);
4151 
4152 	SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
4153 
4154 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
4155 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
4156 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
4157 	 * completion recursively.
4158 	 */
4159 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
4160 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
4161 		if (csts.bits.cfs) {
4162 			SPDK_ERRLOG("Controller Fatal Status, reset required\n");
4163 			bdev_nvme_reset_ctrlr(nvme_ctrlr);
4164 			return;
4165 		}
4166 	}
4167 
4168 	switch (g_opts.action_on_timeout) {
4169 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
4170 		if (qpair) {
4171 			/* Don't send abort to ctrlr when ctrlr is not available. */
4172 			pthread_mutex_lock(&nvme_ctrlr->mutex);
4173 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
4174 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
4175 				SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n");
4176 				return;
4177 			}
4178 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4179 
4180 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
4181 						       nvme_abort_cpl, nvme_ctrlr);
4182 			if (rc == 0) {
4183 				return;
4184 			}
4185 
4186 			SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
4187 		}
4188 
4189 	/* FALLTHROUGH */
4190 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
4191 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4192 		break;
4193 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
4194 		SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
4195 		break;
4196 	default:
4197 		SPDK_ERRLOG("An invalid timeout action value is found.\n");
4198 		break;
4199 	}
4200 }
4201 
4202 static struct nvme_ns *
4203 nvme_ns_alloc(void)
4204 {
4205 	struct nvme_ns *nvme_ns;
4206 
4207 	nvme_ns = calloc(1, sizeof(struct nvme_ns));
4208 	if (nvme_ns == NULL) {
4209 		return NULL;
4210 	}
4211 
4212 	if (g_opts.io_path_stat) {
4213 		nvme_ns->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
4214 		if (nvme_ns->stat == NULL) {
4215 			free(nvme_ns);
4216 			return NULL;
4217 		}
4218 		spdk_bdev_reset_io_stat(nvme_ns->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
4219 	}
4220 
4221 	return nvme_ns;
4222 }
4223 
4224 static void
4225 nvme_ns_free(struct nvme_ns *nvme_ns)
4226 {
4227 	free(nvme_ns->stat);
4228 	free(nvme_ns);
4229 }
4230 
4231 static void
4232 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
4233 {
4234 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4235 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
4236 
4237 	if (rc == 0) {
4238 		nvme_ns->probe_ctx = NULL;
4239 		pthread_mutex_lock(&nvme_ctrlr->mutex);
4240 		nvme_ctrlr->ref++;
4241 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4242 	} else {
4243 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4244 		nvme_ns_free(nvme_ns);
4245 	}
4246 
4247 	if (ctx) {
4248 		ctx->populates_in_progress--;
4249 		if (ctx->populates_in_progress == 0) {
4250 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4251 		}
4252 	}
4253 }
4254 
4255 static void
4256 bdev_nvme_add_io_path(struct spdk_io_channel_iter *i)
4257 {
4258 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4259 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4260 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4261 	int rc;
4262 
4263 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
4264 	if (rc != 0) {
4265 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
4266 	}
4267 
4268 	spdk_for_each_channel_continue(i, rc);
4269 }
4270 
4271 static void
4272 bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i)
4273 {
4274 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4275 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4276 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4277 	struct nvme_io_path *io_path;
4278 
4279 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
4280 	if (io_path != NULL) {
4281 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
4282 	}
4283 
4284 	spdk_for_each_channel_continue(i, 0);
4285 }
4286 
4287 static void
4288 bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status)
4289 {
4290 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4291 
4292 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
4293 }
4294 
4295 static void
4296 bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status)
4297 {
4298 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4299 	struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i);
4300 
4301 	if (status == 0) {
4302 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
4303 	} else {
4304 		/* Delete the added io_paths and fail populating the namespace. */
4305 		spdk_for_each_channel(bdev,
4306 				      bdev_nvme_delete_io_path,
4307 				      nvme_ns,
4308 				      bdev_nvme_add_io_path_failed);
4309 	}
4310 }
4311 
4312 static int
4313 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
4314 {
4315 	struct nvme_ns *tmp_ns;
4316 	const struct spdk_nvme_ns_data *nsdata;
4317 
4318 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
4319 	if (!nsdata->nmic.can_share) {
4320 		SPDK_ERRLOG("Namespace cannot be shared.\n");
4321 		return -EINVAL;
4322 	}
4323 
4324 	pthread_mutex_lock(&bdev->mutex);
4325 
4326 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
4327 	assert(tmp_ns != NULL);
4328 
4329 	if (!bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
4330 		pthread_mutex_unlock(&bdev->mutex);
4331 		SPDK_ERRLOG("Namespaces are not identical.\n");
4332 		return -EINVAL;
4333 	}
4334 
4335 	bdev->ref++;
4336 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4337 	nvme_ns->bdev = bdev;
4338 
4339 	pthread_mutex_unlock(&bdev->mutex);
4340 
4341 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
4342 	spdk_for_each_channel(bdev,
4343 			      bdev_nvme_add_io_path,
4344 			      nvme_ns,
4345 			      bdev_nvme_add_io_path_done);
4346 
4347 	return 0;
4348 }
4349 
4350 static void
4351 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4352 {
4353 	struct spdk_nvme_ns	*ns;
4354 	struct nvme_bdev	*bdev;
4355 	int			rc = 0;
4356 
4357 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
4358 	if (!ns) {
4359 		SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
4360 		rc = -EINVAL;
4361 		goto done;
4362 	}
4363 
4364 	nvme_ns->ns = ns;
4365 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4366 
4367 	if (nvme_ctrlr->ana_log_page != NULL) {
4368 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
4369 	}
4370 
4371 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
4372 	if (bdev == NULL) {
4373 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
4374 	} else {
4375 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
4376 		if (rc == 0) {
4377 			return;
4378 		}
4379 	}
4380 done:
4381 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
4382 }
4383 
4384 static void
4385 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
4386 {
4387 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4388 
4389 	assert(nvme_ctrlr != NULL);
4390 
4391 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4392 
4393 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4394 
4395 	if (nvme_ns->bdev != NULL) {
4396 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4397 		return;
4398 	}
4399 
4400 	nvme_ns_free(nvme_ns);
4401 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4402 
4403 	nvme_ctrlr_release(nvme_ctrlr);
4404 }
4405 
4406 static void
4407 bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status)
4408 {
4409 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4410 
4411 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4412 }
4413 
4414 static void
4415 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4416 {
4417 	struct nvme_bdev *bdev;
4418 
4419 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4420 
4421 	bdev = nvme_ns->bdev;
4422 	if (bdev != NULL) {
4423 		pthread_mutex_lock(&bdev->mutex);
4424 
4425 		assert(bdev->ref > 0);
4426 		bdev->ref--;
4427 		if (bdev->ref == 0) {
4428 			pthread_mutex_unlock(&bdev->mutex);
4429 
4430 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
4431 		} else {
4432 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
4433 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
4434 			 * and clear nvme_ns->bdev here.
4435 			 */
4436 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
4437 			nvme_ns->bdev = NULL;
4438 
4439 			pthread_mutex_unlock(&bdev->mutex);
4440 
4441 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
4442 			 * we call depopulate_namespace_done() to avoid use-after-free.
4443 			 */
4444 			spdk_for_each_channel(bdev,
4445 					      bdev_nvme_delete_io_path,
4446 					      nvme_ns,
4447 					      bdev_nvme_delete_io_path_done);
4448 			return;
4449 		}
4450 	}
4451 
4452 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4453 }
4454 
4455 static void
4456 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
4457 			       struct nvme_async_probe_ctx *ctx)
4458 {
4459 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
4460 	struct nvme_ns	*nvme_ns, *next;
4461 	struct spdk_nvme_ns	*ns;
4462 	struct nvme_bdev	*bdev;
4463 	uint32_t		nsid;
4464 	int			rc;
4465 	uint64_t		num_sectors;
4466 
4467 	if (ctx) {
4468 		/* Initialize this count to 1 to handle the populate functions
4469 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
4470 		 */
4471 		ctx->populates_in_progress = 1;
4472 	}
4473 
4474 	/* First loop over our existing namespaces and see if they have been
4475 	 * removed. */
4476 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4477 	while (nvme_ns != NULL) {
4478 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4479 
4480 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
4481 			/* NS is still there but attributes may have changed */
4482 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
4483 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
4484 			bdev = nvme_ns->bdev;
4485 			assert(bdev != NULL);
4486 			if (bdev->disk.blockcnt != num_sectors) {
4487 				SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
4488 					       nvme_ns->id,
4489 					       bdev->disk.name,
4490 					       bdev->disk.blockcnt,
4491 					       num_sectors);
4492 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
4493 				if (rc != 0) {
4494 					SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
4495 						    bdev->disk.name, rc);
4496 				}
4497 			}
4498 		} else {
4499 			/* Namespace was removed */
4500 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4501 		}
4502 
4503 		nvme_ns = next;
4504 	}
4505 
4506 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
4507 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4508 	while (nsid != 0) {
4509 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4510 
4511 		if (nvme_ns == NULL) {
4512 			/* Found a new one */
4513 			nvme_ns = nvme_ns_alloc();
4514 			if (nvme_ns == NULL) {
4515 				SPDK_ERRLOG("Failed to allocate namespace\n");
4516 				/* This just fails to attach the namespace. It may work on a future attempt. */
4517 				continue;
4518 			}
4519 
4520 			nvme_ns->id = nsid;
4521 			nvme_ns->ctrlr = nvme_ctrlr;
4522 
4523 			nvme_ns->bdev = NULL;
4524 
4525 			if (ctx) {
4526 				ctx->populates_in_progress++;
4527 			}
4528 			nvme_ns->probe_ctx = ctx;
4529 
4530 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4531 
4532 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
4533 		}
4534 
4535 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
4536 	}
4537 
4538 	if (ctx) {
4539 		/* Decrement this count now that the loop is over to account
4540 		 * for the one we started with.  If the count is then 0, we
4541 		 * know any populate_namespace functions completed immediately,
4542 		 * so we'll kick the callback here.
4543 		 */
4544 		ctx->populates_in_progress--;
4545 		if (ctx->populates_in_progress == 0) {
4546 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4547 		}
4548 	}
4549 
4550 }
4551 
4552 static void
4553 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
4554 {
4555 	struct nvme_ns *nvme_ns, *tmp;
4556 
4557 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
4558 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4559 	}
4560 }
4561 
4562 static uint32_t
4563 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
4564 {
4565 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
4566 	const struct spdk_nvme_ctrlr_data *cdata;
4567 	uint32_t nsid, ns_count = 0;
4568 
4569 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4570 
4571 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4572 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
4573 		ns_count++;
4574 	}
4575 
4576 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
4577 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
4578 	       sizeof(uint32_t);
4579 }
4580 
4581 static int
4582 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
4583 			  void *cb_arg)
4584 {
4585 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4586 	struct nvme_ns *nvme_ns;
4587 	uint32_t i, nsid;
4588 
4589 	for (i = 0; i < desc->num_of_nsid; i++) {
4590 		nsid = desc->nsid[i];
4591 		if (nsid == 0) {
4592 			continue;
4593 		}
4594 
4595 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4596 
4597 		assert(nvme_ns != NULL);
4598 		if (nvme_ns == NULL) {
4599 			/* Target told us that an inactive namespace had an ANA change */
4600 			continue;
4601 		}
4602 
4603 		_nvme_ns_set_ana_state(nvme_ns, desc);
4604 	}
4605 
4606 	return 0;
4607 }
4608 
4609 static void
4610 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4611 {
4612 	struct nvme_ns *nvme_ns;
4613 
4614 	spdk_free(nvme_ctrlr->ana_log_page);
4615 	nvme_ctrlr->ana_log_page = NULL;
4616 
4617 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4618 	     nvme_ns != NULL;
4619 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
4620 		nvme_ns->ana_state_updating = false;
4621 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4622 	}
4623 }
4624 
4625 static void
4626 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
4627 {
4628 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4629 
4630 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
4631 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
4632 					     nvme_ctrlr);
4633 	} else {
4634 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
4635 	}
4636 
4637 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4638 
4639 	assert(nvme_ctrlr->ana_log_page_updating == true);
4640 	nvme_ctrlr->ana_log_page_updating = false;
4641 
4642 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
4643 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4644 
4645 		nvme_ctrlr_unregister(nvme_ctrlr);
4646 	} else {
4647 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4648 
4649 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
4650 	}
4651 }
4652 
4653 static int
4654 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4655 {
4656 	uint32_t ana_log_page_size;
4657 	int rc;
4658 
4659 	if (nvme_ctrlr->ana_log_page == NULL) {
4660 		return -EINVAL;
4661 	}
4662 
4663 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
4664 
4665 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
4666 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
4667 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
4668 		return -EINVAL;
4669 	}
4670 
4671 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4672 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
4673 	    nvme_ctrlr->ana_log_page_updating) {
4674 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4675 		return -EBUSY;
4676 	}
4677 
4678 	nvme_ctrlr->ana_log_page_updating = true;
4679 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4680 
4681 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
4682 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
4683 					      SPDK_NVME_GLOBAL_NS_TAG,
4684 					      nvme_ctrlr->ana_log_page,
4685 					      ana_log_page_size, 0,
4686 					      nvme_ctrlr_read_ana_log_page_done,
4687 					      nvme_ctrlr);
4688 	if (rc != 0) {
4689 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
4690 	}
4691 
4692 	return rc;
4693 }
4694 
4695 static void
4696 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
4697 {
4698 }
4699 
4700 struct bdev_nvme_set_preferred_path_ctx {
4701 	struct spdk_bdev_desc *desc;
4702 	struct nvme_ns *nvme_ns;
4703 	bdev_nvme_set_preferred_path_cb cb_fn;
4704 	void *cb_arg;
4705 };
4706 
4707 static void
4708 bdev_nvme_set_preferred_path_done(struct spdk_io_channel_iter *i, int status)
4709 {
4710 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4711 
4712 	assert(ctx != NULL);
4713 	assert(ctx->desc != NULL);
4714 	assert(ctx->cb_fn != NULL);
4715 
4716 	spdk_bdev_close(ctx->desc);
4717 
4718 	ctx->cb_fn(ctx->cb_arg, status);
4719 
4720 	free(ctx);
4721 }
4722 
4723 static void
4724 _bdev_nvme_set_preferred_path(struct spdk_io_channel_iter *i)
4725 {
4726 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4727 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4728 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4729 	struct nvme_io_path *io_path, *prev;
4730 
4731 	prev = NULL;
4732 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
4733 		if (io_path->nvme_ns == ctx->nvme_ns) {
4734 			break;
4735 		}
4736 		prev = io_path;
4737 	}
4738 
4739 	if (io_path != NULL) {
4740 		if (prev != NULL) {
4741 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
4742 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
4743 		}
4744 
4745 		/* We can set io_path to nbdev_ch->current_io_path directly here.
4746 		 * However, it needs to be conditional. To simplify the code,
4747 		 * just clear nbdev_ch->current_io_path and let find_io_path()
4748 		 * fill it.
4749 		 *
4750 		 * Automatic failback may be disabled. Hence even if the io_path is
4751 		 * already at the head, clear nbdev_ch->current_io_path.
4752 		 */
4753 		bdev_nvme_clear_current_io_path(nbdev_ch);
4754 	}
4755 
4756 	spdk_for_each_channel_continue(i, 0);
4757 }
4758 
4759 static struct nvme_ns *
4760 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
4761 {
4762 	struct nvme_ns *nvme_ns, *prev;
4763 	const struct spdk_nvme_ctrlr_data *cdata;
4764 
4765 	prev = NULL;
4766 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
4767 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
4768 
4769 		if (cdata->cntlid == cntlid) {
4770 			break;
4771 		}
4772 		prev = nvme_ns;
4773 	}
4774 
4775 	if (nvme_ns != NULL && prev != NULL) {
4776 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
4777 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
4778 	}
4779 
4780 	return nvme_ns;
4781 }
4782 
4783 /* This function supports only multipath mode. There is only a single I/O path
4784  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
4785  * head of the I/O path list for each NVMe bdev channel.
4786  *
4787  * NVMe bdev channel may be acquired after completing this function. move the
4788  * matched namespace to the head of the namespace list for the NVMe bdev too.
4789  */
4790 void
4791 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
4792 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
4793 {
4794 	struct bdev_nvme_set_preferred_path_ctx *ctx;
4795 	struct spdk_bdev *bdev;
4796 	struct nvme_bdev *nbdev;
4797 	int rc = 0;
4798 
4799 	assert(cb_fn != NULL);
4800 
4801 	ctx = calloc(1, sizeof(*ctx));
4802 	if (ctx == NULL) {
4803 		SPDK_ERRLOG("Failed to alloc context.\n");
4804 		rc = -ENOMEM;
4805 		goto err_alloc;
4806 	}
4807 
4808 	ctx->cb_fn = cb_fn;
4809 	ctx->cb_arg = cb_arg;
4810 
4811 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
4812 	if (rc != 0) {
4813 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
4814 		goto err_open;
4815 	}
4816 
4817 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
4818 
4819 	if (bdev->module != &nvme_if) {
4820 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
4821 		rc = -ENODEV;
4822 		goto err_bdev;
4823 	}
4824 
4825 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
4826 
4827 	pthread_mutex_lock(&nbdev->mutex);
4828 
4829 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
4830 	if (ctx->nvme_ns == NULL) {
4831 		pthread_mutex_unlock(&nbdev->mutex);
4832 
4833 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
4834 		rc = -ENODEV;
4835 		goto err_bdev;
4836 	}
4837 
4838 	pthread_mutex_unlock(&nbdev->mutex);
4839 
4840 	spdk_for_each_channel(nbdev,
4841 			      _bdev_nvme_set_preferred_path,
4842 			      ctx,
4843 			      bdev_nvme_set_preferred_path_done);
4844 	return;
4845 
4846 err_bdev:
4847 	spdk_bdev_close(ctx->desc);
4848 err_open:
4849 	free(ctx);
4850 err_alloc:
4851 	cb_fn(cb_arg, rc);
4852 }
4853 
4854 struct bdev_nvme_set_multipath_policy_ctx {
4855 	struct spdk_bdev_desc *desc;
4856 	bdev_nvme_set_multipath_policy_cb cb_fn;
4857 	void *cb_arg;
4858 };
4859 
4860 static void
4861 bdev_nvme_set_multipath_policy_done(struct spdk_io_channel_iter *i, int status)
4862 {
4863 	struct bdev_nvme_set_multipath_policy_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4864 
4865 	assert(ctx != NULL);
4866 	assert(ctx->desc != NULL);
4867 	assert(ctx->cb_fn != NULL);
4868 
4869 	spdk_bdev_close(ctx->desc);
4870 
4871 	ctx->cb_fn(ctx->cb_arg, status);
4872 
4873 	free(ctx);
4874 }
4875 
4876 static void
4877 _bdev_nvme_set_multipath_policy(struct spdk_io_channel_iter *i)
4878 {
4879 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4880 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4881 	struct nvme_bdev *nbdev = spdk_io_channel_get_io_device(_ch);
4882 
4883 	nbdev_ch->mp_policy = nbdev->mp_policy;
4884 	nbdev_ch->mp_selector = nbdev->mp_selector;
4885 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
4886 	bdev_nvme_clear_current_io_path(nbdev_ch);
4887 
4888 	spdk_for_each_channel_continue(i, 0);
4889 }
4890 
4891 void
4892 bdev_nvme_set_multipath_policy(const char *name, enum bdev_nvme_multipath_policy policy,
4893 			       enum bdev_nvme_multipath_selector selector, uint32_t rr_min_io,
4894 			       bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
4895 {
4896 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
4897 	struct spdk_bdev *bdev;
4898 	struct nvme_bdev *nbdev;
4899 	int rc;
4900 
4901 	assert(cb_fn != NULL);
4902 
4903 	if (policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE && selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
4904 		if (rr_min_io == UINT32_MAX) {
4905 			rr_min_io = 1;
4906 		} else if (rr_min_io == 0) {
4907 			rc = -EINVAL;
4908 			goto exit;
4909 		}
4910 	} else if (rr_min_io != UINT32_MAX) {
4911 		rc = -EINVAL;
4912 		goto exit;
4913 	}
4914 
4915 	ctx = calloc(1, sizeof(*ctx));
4916 	if (ctx == NULL) {
4917 		SPDK_ERRLOG("Failed to alloc context.\n");
4918 		rc = -ENOMEM;
4919 		goto exit;
4920 	}
4921 
4922 	ctx->cb_fn = cb_fn;
4923 	ctx->cb_arg = cb_arg;
4924 
4925 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
4926 	if (rc != 0) {
4927 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
4928 		rc = -ENODEV;
4929 		goto err_open;
4930 	}
4931 
4932 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
4933 	if (bdev->module != &nvme_if) {
4934 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
4935 		rc = -ENODEV;
4936 		goto err_module;
4937 	}
4938 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
4939 
4940 	pthread_mutex_lock(&nbdev->mutex);
4941 	nbdev->mp_policy = policy;
4942 	nbdev->mp_selector = selector;
4943 	nbdev->rr_min_io = rr_min_io;
4944 	pthread_mutex_unlock(&nbdev->mutex);
4945 
4946 	spdk_for_each_channel(nbdev,
4947 			      _bdev_nvme_set_multipath_policy,
4948 			      ctx,
4949 			      bdev_nvme_set_multipath_policy_done);
4950 	return;
4951 
4952 err_module:
4953 	spdk_bdev_close(ctx->desc);
4954 err_open:
4955 	free(ctx);
4956 exit:
4957 	cb_fn(cb_arg, rc);
4958 }
4959 
4960 static void
4961 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
4962 {
4963 	struct nvme_ctrlr *nvme_ctrlr		= arg;
4964 	union spdk_nvme_async_event_completion	event;
4965 
4966 	if (spdk_nvme_cpl_is_error(cpl)) {
4967 		SPDK_WARNLOG("AER request execute failed\n");
4968 		return;
4969 	}
4970 
4971 	event.raw = cpl->cdw0;
4972 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
4973 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
4974 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
4975 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
4976 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
4977 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
4978 	}
4979 }
4980 
4981 static void
4982 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, size_t count, int rc)
4983 {
4984 	if (ctx->cb_fn) {
4985 		ctx->cb_fn(ctx->cb_ctx, count, rc);
4986 	}
4987 
4988 	ctx->namespaces_populated = true;
4989 	if (ctx->probe_done) {
4990 		/* The probe was already completed, so we need to free the context
4991 		 * here.  This can happen for cases like OCSSD, where we need to
4992 		 * send additional commands to the SSD after attach.
4993 		 */
4994 		free(ctx);
4995 	}
4996 }
4997 
4998 static void
4999 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
5000 		       struct nvme_async_probe_ctx *ctx)
5001 {
5002 	spdk_io_device_register(nvme_ctrlr,
5003 				bdev_nvme_create_ctrlr_channel_cb,
5004 				bdev_nvme_destroy_ctrlr_channel_cb,
5005 				sizeof(struct nvme_ctrlr_channel),
5006 				nvme_ctrlr->nbdev_ctrlr->name);
5007 
5008 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
5009 }
5010 
5011 static void
5012 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
5013 {
5014 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
5015 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
5016 
5017 	nvme_ctrlr->probe_ctx = NULL;
5018 
5019 	if (spdk_nvme_cpl_is_error(cpl)) {
5020 		nvme_ctrlr_delete(nvme_ctrlr);
5021 
5022 		if (ctx != NULL) {
5023 			populate_namespaces_cb(ctx, 0, -1);
5024 		}
5025 		return;
5026 	}
5027 
5028 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5029 }
5030 
5031 static int
5032 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
5033 			     struct nvme_async_probe_ctx *ctx)
5034 {
5035 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5036 	const struct spdk_nvme_ctrlr_data *cdata;
5037 	uint32_t ana_log_page_size;
5038 
5039 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5040 
5041 	/* Set buffer size enough to include maximum number of allowed namespaces. */
5042 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5043 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
5044 			    sizeof(uint32_t);
5045 
5046 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
5047 						SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
5048 	if (nvme_ctrlr->ana_log_page == NULL) {
5049 		SPDK_ERRLOG("could not allocate ANA log page buffer\n");
5050 		return -ENXIO;
5051 	}
5052 
5053 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
5054 	 * Hence copy each descriptor to a temporary area when parsing it.
5055 	 *
5056 	 * Allocate a buffer whose size is as large as ANA log page buffer because
5057 	 * we do not know the size of a descriptor until actually reading it.
5058 	 */
5059 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
5060 	if (nvme_ctrlr->copied_ana_desc == NULL) {
5061 		SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
5062 		return -ENOMEM;
5063 	}
5064 
5065 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
5066 
5067 	nvme_ctrlr->probe_ctx = ctx;
5068 
5069 	/* Then, set the read size only to include the current active namespaces. */
5070 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5071 
5072 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5073 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5074 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5075 		return -EINVAL;
5076 	}
5077 
5078 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
5079 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5080 						SPDK_NVME_GLOBAL_NS_TAG,
5081 						nvme_ctrlr->ana_log_page,
5082 						ana_log_page_size, 0,
5083 						nvme_ctrlr_init_ana_log_page_done,
5084 						nvme_ctrlr);
5085 }
5086 
5087 /* hostnqn and subnqn were already verified before attaching a controller.
5088  * Hence check only the multipath capability and cntlid here.
5089  */
5090 static bool
5091 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
5092 {
5093 	struct nvme_ctrlr *tmp;
5094 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
5095 
5096 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5097 
5098 	if (!cdata->cmic.multi_ctrlr) {
5099 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5100 		return false;
5101 	}
5102 
5103 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
5104 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
5105 
5106 		if (!tmp_cdata->cmic.multi_ctrlr) {
5107 			SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5108 			return false;
5109 		}
5110 		if (cdata->cntlid == tmp_cdata->cntlid) {
5111 			SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid);
5112 			return false;
5113 		}
5114 	}
5115 
5116 	return true;
5117 }
5118 
5119 static int
5120 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
5121 {
5122 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5123 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5124 	int rc = 0;
5125 
5126 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5127 
5128 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
5129 	if (nbdev_ctrlr != NULL) {
5130 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
5131 			rc = -EINVAL;
5132 			goto exit;
5133 		}
5134 	} else {
5135 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
5136 		if (nbdev_ctrlr == NULL) {
5137 			SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n");
5138 			rc = -ENOMEM;
5139 			goto exit;
5140 		}
5141 		nbdev_ctrlr->name = strdup(name);
5142 		if (nbdev_ctrlr->name == NULL) {
5143 			SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n");
5144 			free(nbdev_ctrlr);
5145 			goto exit;
5146 		}
5147 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
5148 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
5149 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
5150 	}
5151 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
5152 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
5153 exit:
5154 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5155 	return rc;
5156 }
5157 
5158 static int
5159 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
5160 		  const char *name,
5161 		  const struct spdk_nvme_transport_id *trid,
5162 		  struct nvme_async_probe_ctx *ctx)
5163 {
5164 	struct nvme_ctrlr *nvme_ctrlr;
5165 	struct nvme_path_id *path_id;
5166 	const struct spdk_nvme_ctrlr_data *cdata;
5167 	int rc;
5168 
5169 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
5170 	if (nvme_ctrlr == NULL) {
5171 		SPDK_ERRLOG("Failed to allocate device struct\n");
5172 		return -ENOMEM;
5173 	}
5174 
5175 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
5176 	if (rc != 0) {
5177 		free(nvme_ctrlr);
5178 		return rc;
5179 	}
5180 
5181 	TAILQ_INIT(&nvme_ctrlr->trids);
5182 
5183 	RB_INIT(&nvme_ctrlr->namespaces);
5184 
5185 	path_id = calloc(1, sizeof(*path_id));
5186 	if (path_id == NULL) {
5187 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
5188 		rc = -ENOMEM;
5189 		goto err;
5190 	}
5191 
5192 	path_id->trid = *trid;
5193 	if (ctx != NULL) {
5194 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
5195 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
5196 	}
5197 	nvme_ctrlr->active_path_id = path_id;
5198 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
5199 
5200 	nvme_ctrlr->thread = spdk_get_thread();
5201 	nvme_ctrlr->ctrlr = ctrlr;
5202 	nvme_ctrlr->ref = 1;
5203 
5204 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
5205 		SPDK_ERRLOG("OCSSDs are not supported");
5206 		rc = -ENOTSUP;
5207 		goto err;
5208 	}
5209 
5210 	if (ctx != NULL) {
5211 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
5212 	} else {
5213 		bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
5214 	}
5215 
5216 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
5217 					  g_opts.nvme_adminq_poll_period_us);
5218 
5219 	if (g_opts.timeout_us > 0) {
5220 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
5221 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
5222 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
5223 					  g_opts.timeout_us : g_opts.timeout_admin_us;
5224 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
5225 				adm_timeout_us, timeout_cb, nvme_ctrlr);
5226 	}
5227 
5228 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
5229 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
5230 
5231 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
5232 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
5233 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
5234 	}
5235 
5236 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
5237 	if (rc != 0) {
5238 		goto err;
5239 	}
5240 
5241 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5242 
5243 	if (cdata->cmic.ana_reporting) {
5244 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
5245 		if (rc == 0) {
5246 			return 0;
5247 		}
5248 	} else {
5249 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5250 		return 0;
5251 	}
5252 
5253 err:
5254 	nvme_ctrlr_delete(nvme_ctrlr);
5255 	return rc;
5256 }
5257 
5258 void
5259 bdev_nvme_get_default_ctrlr_opts(struct nvme_ctrlr_opts *opts)
5260 {
5261 	opts->prchk_flags = 0;
5262 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
5263 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
5264 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
5265 }
5266 
5267 static void
5268 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5269 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
5270 {
5271 	char *name;
5272 
5273 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
5274 	if (!name) {
5275 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
5276 		return;
5277 	}
5278 
5279 	if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) {
5280 		SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
5281 	} else {
5282 		SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name);
5283 	}
5284 
5285 	free(name);
5286 }
5287 
5288 static void
5289 _nvme_ctrlr_destruct(void *ctx)
5290 {
5291 	struct nvme_ctrlr *nvme_ctrlr = ctx;
5292 
5293 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
5294 	nvme_ctrlr_release(nvme_ctrlr);
5295 }
5296 
5297 static int
5298 bdev_nvme_delete_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5299 {
5300 	struct nvme_probe_skip_entry *entry;
5301 
5302 	/* The controller's destruction was already started */
5303 	if (nvme_ctrlr->destruct) {
5304 		return -EALREADY;
5305 	}
5306 
5307 	if (!hotplug &&
5308 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
5309 		entry = calloc(1, sizeof(*entry));
5310 		if (!entry) {
5311 			return -ENOMEM;
5312 		}
5313 		entry->trid = nvme_ctrlr->active_path_id->trid;
5314 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
5315 	}
5316 
5317 	nvme_ctrlr->destruct = true;
5318 	return 0;
5319 }
5320 
5321 static int
5322 bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5323 {
5324 	int rc;
5325 
5326 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5327 	rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, hotplug);
5328 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5329 
5330 	if (rc == 0) {
5331 		_nvme_ctrlr_destruct(nvme_ctrlr);
5332 	} else if (rc == -EALREADY) {
5333 		rc = 0;
5334 	}
5335 
5336 	return rc;
5337 }
5338 
5339 static void
5340 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
5341 {
5342 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
5343 
5344 	bdev_nvme_delete_ctrlr(nvme_ctrlr, true);
5345 }
5346 
5347 static int
5348 bdev_nvme_hotplug_probe(void *arg)
5349 {
5350 	if (g_hotplug_probe_ctx == NULL) {
5351 		spdk_poller_unregister(&g_hotplug_probe_poller);
5352 		return SPDK_POLLER_IDLE;
5353 	}
5354 
5355 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
5356 		g_hotplug_probe_ctx = NULL;
5357 		spdk_poller_unregister(&g_hotplug_probe_poller);
5358 	}
5359 
5360 	return SPDK_POLLER_BUSY;
5361 }
5362 
5363 static int
5364 bdev_nvme_hotplug(void *arg)
5365 {
5366 	struct spdk_nvme_transport_id trid_pcie;
5367 
5368 	if (g_hotplug_probe_ctx) {
5369 		return SPDK_POLLER_BUSY;
5370 	}
5371 
5372 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5373 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5374 
5375 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
5376 			      hotplug_probe_cb, attach_cb, NULL);
5377 
5378 	if (g_hotplug_probe_ctx) {
5379 		assert(g_hotplug_probe_poller == NULL);
5380 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
5381 	}
5382 
5383 	return SPDK_POLLER_BUSY;
5384 }
5385 
5386 void
5387 bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
5388 {
5389 	*opts = g_opts;
5390 }
5391 
5392 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5393 		uint32_t reconnect_delay_sec,
5394 		uint32_t fast_io_fail_timeout_sec);
5395 
5396 static int
5397 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
5398 {
5399 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
5400 		/* Can't set timeout_admin_us without also setting timeout_us */
5401 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
5402 		return -EINVAL;
5403 	}
5404 
5405 	if (opts->bdev_retry_count < -1) {
5406 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
5407 		return -EINVAL;
5408 	}
5409 
5410 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
5411 			opts->reconnect_delay_sec,
5412 			opts->fast_io_fail_timeout_sec)) {
5413 		return -EINVAL;
5414 	}
5415 
5416 	return 0;
5417 }
5418 
5419 int
5420 bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
5421 {
5422 	int ret;
5423 
5424 	ret = bdev_nvme_validate_opts(opts);
5425 	if (ret) {
5426 		SPDK_WARNLOG("Failed to set nvme opts.\n");
5427 		return ret;
5428 	}
5429 
5430 	if (g_bdev_nvme_init_thread != NULL) {
5431 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5432 			return -EPERM;
5433 		}
5434 	}
5435 
5436 	if (opts->rdma_srq_size != 0) {
5437 		struct spdk_nvme_transport_opts drv_opts;
5438 
5439 		spdk_nvme_transport_get_opts(&drv_opts, sizeof(drv_opts));
5440 		drv_opts.rdma_srq_size = opts->rdma_srq_size;
5441 
5442 		ret = spdk_nvme_transport_set_opts(&drv_opts, sizeof(drv_opts));
5443 		if (ret) {
5444 			SPDK_ERRLOG("Failed to set NVMe transport opts.\n");
5445 			return ret;
5446 		}
5447 	}
5448 
5449 	g_opts = *opts;
5450 
5451 	return 0;
5452 }
5453 
5454 struct set_nvme_hotplug_ctx {
5455 	uint64_t period_us;
5456 	bool enabled;
5457 	spdk_msg_fn fn;
5458 	void *fn_ctx;
5459 };
5460 
5461 static void
5462 set_nvme_hotplug_period_cb(void *_ctx)
5463 {
5464 	struct set_nvme_hotplug_ctx *ctx = _ctx;
5465 
5466 	spdk_poller_unregister(&g_hotplug_poller);
5467 	if (ctx->enabled) {
5468 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
5469 	}
5470 
5471 	g_nvme_hotplug_poll_period_us = ctx->period_us;
5472 	g_nvme_hotplug_enabled = ctx->enabled;
5473 	if (ctx->fn) {
5474 		ctx->fn(ctx->fn_ctx);
5475 	}
5476 
5477 	free(ctx);
5478 }
5479 
5480 int
5481 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
5482 {
5483 	struct set_nvme_hotplug_ctx *ctx;
5484 
5485 	if (enabled == true && !spdk_process_is_primary()) {
5486 		return -EPERM;
5487 	}
5488 
5489 	ctx = calloc(1, sizeof(*ctx));
5490 	if (ctx == NULL) {
5491 		return -ENOMEM;
5492 	}
5493 
5494 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
5495 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
5496 	ctx->enabled = enabled;
5497 	ctx->fn = cb;
5498 	ctx->fn_ctx = cb_ctx;
5499 
5500 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
5501 	return 0;
5502 }
5503 
5504 static void
5505 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
5506 				    struct nvme_async_probe_ctx *ctx)
5507 {
5508 	struct nvme_ns	*nvme_ns;
5509 	struct nvme_bdev	*nvme_bdev;
5510 	size_t			j;
5511 
5512 	assert(nvme_ctrlr != NULL);
5513 
5514 	if (ctx->names == NULL) {
5515 		populate_namespaces_cb(ctx, 0, 0);
5516 		return;
5517 	}
5518 
5519 	/*
5520 	 * Report the new bdevs that were created in this call.
5521 	 * There can be more than one bdev per NVMe controller.
5522 	 */
5523 	j = 0;
5524 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5525 	while (nvme_ns != NULL) {
5526 		nvme_bdev = nvme_ns->bdev;
5527 		if (j < ctx->count) {
5528 			ctx->names[j] = nvme_bdev->disk.name;
5529 			j++;
5530 		} else {
5531 			SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
5532 				    ctx->count);
5533 			populate_namespaces_cb(ctx, 0, -ERANGE);
5534 			return;
5535 		}
5536 
5537 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5538 	}
5539 
5540 	populate_namespaces_cb(ctx, j, 0);
5541 }
5542 
5543 static int
5544 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5545 			       struct spdk_nvme_ctrlr *new_ctrlr,
5546 			       struct spdk_nvme_transport_id *trid)
5547 {
5548 	struct nvme_path_id *tmp_trid;
5549 
5550 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
5551 		SPDK_ERRLOG("PCIe failover is not supported.\n");
5552 		return -ENOTSUP;
5553 	}
5554 
5555 	/* Currently we only support failover to the same transport type. */
5556 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
5557 		SPDK_WARNLOG("Failover from trtype: %s to a different trtype: %s is not supported currently\n",
5558 			     spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
5559 			     spdk_nvme_transport_id_trtype_str(trid->trtype));
5560 		return -EINVAL;
5561 	}
5562 
5563 
5564 	/* Currently we only support failover to the same NQN. */
5565 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
5566 		SPDK_WARNLOG("Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
5567 			     nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
5568 		return -EINVAL;
5569 	}
5570 
5571 	/* Skip all the other checks if we've already registered this path. */
5572 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
5573 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
5574 			SPDK_WARNLOG("This path (traddr: %s subnqn: %s) is already registered\n", trid->traddr,
5575 				     trid->subnqn);
5576 			return -EEXIST;
5577 		}
5578 	}
5579 
5580 	return 0;
5581 }
5582 
5583 static int
5584 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
5585 				    struct spdk_nvme_ctrlr *new_ctrlr)
5586 {
5587 	struct nvme_ns *nvme_ns;
5588 	struct spdk_nvme_ns *new_ns;
5589 
5590 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5591 	while (nvme_ns != NULL) {
5592 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
5593 		assert(new_ns != NULL);
5594 
5595 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
5596 			return -EINVAL;
5597 		}
5598 
5599 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5600 	}
5601 
5602 	return 0;
5603 }
5604 
5605 static int
5606 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5607 			      struct spdk_nvme_transport_id *trid)
5608 {
5609 	struct nvme_path_id *active_id, *new_trid, *tmp_trid;
5610 
5611 	new_trid = calloc(1, sizeof(*new_trid));
5612 	if (new_trid == NULL) {
5613 		return -ENOMEM;
5614 	}
5615 	new_trid->trid = *trid;
5616 
5617 	active_id = nvme_ctrlr->active_path_id;
5618 	assert(active_id != NULL);
5619 	assert(active_id == TAILQ_FIRST(&nvme_ctrlr->trids));
5620 
5621 	/* Skip the active trid not to replace it until it is failed. */
5622 	tmp_trid = TAILQ_NEXT(active_id, link);
5623 	if (tmp_trid == NULL) {
5624 		goto add_tail;
5625 	}
5626 
5627 	/* It means the trid is faled if its last failed time is non-zero.
5628 	 * Insert the new alternate trid before any failed trid.
5629 	 */
5630 	TAILQ_FOREACH_FROM(tmp_trid, &nvme_ctrlr->trids, link) {
5631 		if (tmp_trid->last_failed_tsc != 0) {
5632 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
5633 			return 0;
5634 		}
5635 	}
5636 
5637 add_tail:
5638 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
5639 	return 0;
5640 }
5641 
5642 /* This is the case that a secondary path is added to an existing
5643  * nvme_ctrlr for failover. After checking if it can access the same
5644  * namespaces as the primary path, it is disconnected until failover occurs.
5645  */
5646 static int
5647 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5648 			     struct spdk_nvme_ctrlr *new_ctrlr,
5649 			     struct spdk_nvme_transport_id *trid)
5650 {
5651 	int rc;
5652 
5653 	assert(nvme_ctrlr != NULL);
5654 
5655 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5656 
5657 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
5658 	if (rc != 0) {
5659 		goto exit;
5660 	}
5661 
5662 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
5663 	if (rc != 0) {
5664 		goto exit;
5665 	}
5666 
5667 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
5668 
5669 exit:
5670 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5671 
5672 	spdk_nvme_detach(new_ctrlr);
5673 
5674 	return rc;
5675 }
5676 
5677 static void
5678 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5679 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
5680 {
5681 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5682 	struct nvme_async_probe_ctx *ctx;
5683 	int rc;
5684 
5685 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
5686 	ctx->ctrlr_attached = true;
5687 
5688 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
5689 	if (rc != 0) {
5690 		populate_namespaces_cb(ctx, 0, rc);
5691 	}
5692 }
5693 
5694 static void
5695 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5696 			struct spdk_nvme_ctrlr *ctrlr,
5697 			const struct spdk_nvme_ctrlr_opts *opts)
5698 {
5699 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5700 	struct nvme_ctrlr *nvme_ctrlr;
5701 	struct nvme_async_probe_ctx *ctx;
5702 	int rc;
5703 
5704 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
5705 	ctx->ctrlr_attached = true;
5706 
5707 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
5708 	if (nvme_ctrlr) {
5709 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
5710 	} else {
5711 		rc = -ENODEV;
5712 	}
5713 
5714 	populate_namespaces_cb(ctx, 0, rc);
5715 }
5716 
5717 static int
5718 bdev_nvme_async_poll(void *arg)
5719 {
5720 	struct nvme_async_probe_ctx	*ctx = arg;
5721 	int				rc;
5722 
5723 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
5724 	if (spdk_unlikely(rc != -EAGAIN)) {
5725 		ctx->probe_done = true;
5726 		spdk_poller_unregister(&ctx->poller);
5727 		if (!ctx->ctrlr_attached) {
5728 			/* The probe is done, but no controller was attached.
5729 			 * That means we had a failure, so report -EIO back to
5730 			 * the caller (usually the RPC). populate_namespaces_cb()
5731 			 * will take care of freeing the nvme_async_probe_ctx.
5732 			 */
5733 			populate_namespaces_cb(ctx, 0, -EIO);
5734 		} else if (ctx->namespaces_populated) {
5735 			/* The namespaces for the attached controller were all
5736 			 * populated and the response was already sent to the
5737 			 * caller (usually the RPC).  So free the context here.
5738 			 */
5739 			free(ctx);
5740 		}
5741 	}
5742 
5743 	return SPDK_POLLER_BUSY;
5744 }
5745 
5746 static bool
5747 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5748 		uint32_t reconnect_delay_sec,
5749 		uint32_t fast_io_fail_timeout_sec)
5750 {
5751 	if (ctrlr_loss_timeout_sec < -1) {
5752 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
5753 		return false;
5754 	} else if (ctrlr_loss_timeout_sec == -1) {
5755 		if (reconnect_delay_sec == 0) {
5756 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
5757 			return false;
5758 		} else if (fast_io_fail_timeout_sec != 0 &&
5759 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
5760 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
5761 			return false;
5762 		}
5763 	} else if (ctrlr_loss_timeout_sec != 0) {
5764 		if (reconnect_delay_sec == 0) {
5765 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
5766 			return false;
5767 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
5768 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
5769 			return false;
5770 		} else if (fast_io_fail_timeout_sec != 0) {
5771 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
5772 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
5773 				return false;
5774 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
5775 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
5776 				return false;
5777 			}
5778 		}
5779 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
5780 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
5781 		return false;
5782 	}
5783 
5784 	return true;
5785 }
5786 
5787 int
5788 bdev_nvme_create(struct spdk_nvme_transport_id *trid,
5789 		 const char *base_name,
5790 		 const char **names,
5791 		 uint32_t count,
5792 		 spdk_bdev_create_nvme_fn cb_fn,
5793 		 void *cb_ctx,
5794 		 struct spdk_nvme_ctrlr_opts *drv_opts,
5795 		 struct nvme_ctrlr_opts *bdev_opts,
5796 		 bool multipath)
5797 {
5798 	struct nvme_probe_skip_entry	*entry, *tmp;
5799 	struct nvme_async_probe_ctx	*ctx;
5800 	spdk_nvme_attach_cb attach_cb;
5801 
5802 	/* TODO expand this check to include both the host and target TRIDs.
5803 	 * Only if both are the same should we fail.
5804 	 */
5805 	if (nvme_ctrlr_get(trid) != NULL) {
5806 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr);
5807 		return -EEXIST;
5808 	}
5809 
5810 	if (bdev_opts != NULL &&
5811 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
5812 			    bdev_opts->reconnect_delay_sec,
5813 			    bdev_opts->fast_io_fail_timeout_sec)) {
5814 		return -EINVAL;
5815 	}
5816 
5817 	ctx = calloc(1, sizeof(*ctx));
5818 	if (!ctx) {
5819 		return -ENOMEM;
5820 	}
5821 	ctx->base_name = base_name;
5822 	ctx->names = names;
5823 	ctx->count = count;
5824 	ctx->cb_fn = cb_fn;
5825 	ctx->cb_ctx = cb_ctx;
5826 	ctx->trid = *trid;
5827 
5828 	if (bdev_opts) {
5829 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
5830 	} else {
5831 		bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
5832 	}
5833 
5834 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
5835 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
5836 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
5837 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
5838 				free(entry);
5839 				break;
5840 			}
5841 		}
5842 	}
5843 
5844 	if (drv_opts) {
5845 		memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
5846 	} else {
5847 		spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->drv_opts, sizeof(ctx->drv_opts));
5848 	}
5849 
5850 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
5851 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
5852 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
5853 	ctx->drv_opts.disable_read_ana_log_page = true;
5854 	ctx->drv_opts.transport_tos = g_opts.transport_tos;
5855 
5856 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) {
5857 		attach_cb = connect_attach_cb;
5858 	} else {
5859 		attach_cb = connect_set_failover_cb;
5860 	}
5861 
5862 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
5863 	if (ctx->probe_ctx == NULL) {
5864 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
5865 		free(ctx);
5866 		return -ENODEV;
5867 	}
5868 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
5869 
5870 	return 0;
5871 }
5872 
5873 static bool
5874 nvme_path_should_delete(struct nvme_path_id *p, const struct nvme_path_id *path_id)
5875 {
5876 	if (path_id->trid.trtype != 0) {
5877 		if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
5878 			if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
5879 				return false;
5880 			}
5881 		} else {
5882 			if (path_id->trid.trtype != p->trid.trtype) {
5883 				return false;
5884 			}
5885 		}
5886 	}
5887 
5888 	if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
5889 		if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
5890 			return false;
5891 		}
5892 	}
5893 
5894 	if (path_id->trid.adrfam != 0) {
5895 		if (path_id->trid.adrfam != p->trid.adrfam) {
5896 			return false;
5897 		}
5898 	}
5899 
5900 	if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
5901 		if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
5902 			return false;
5903 		}
5904 	}
5905 
5906 	if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
5907 		if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
5908 			return false;
5909 		}
5910 	}
5911 
5912 	if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
5913 		if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
5914 			return false;
5915 		}
5916 	}
5917 
5918 	if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
5919 		if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
5920 			return false;
5921 		}
5922 	}
5923 
5924 	return true;
5925 }
5926 
5927 static int
5928 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, const struct nvme_path_id *path_id)
5929 {
5930 	struct nvme_path_id	*p, *t;
5931 	spdk_msg_fn		msg_fn;
5932 	int			rc = -ENXIO;
5933 
5934 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5935 
5936 	TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
5937 		if (p == TAILQ_FIRST(&nvme_ctrlr->trids)) {
5938 			break;
5939 		}
5940 
5941 		if (!nvme_path_should_delete(p, path_id)) {
5942 			continue;
5943 		}
5944 
5945 		/* We are not using the specified path. */
5946 		TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
5947 		free(p);
5948 		rc = 0;
5949 	}
5950 
5951 	if (p == NULL || !nvme_path_should_delete(p, path_id)) {
5952 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
5953 		return rc;
5954 	}
5955 
5956 	/* If we made it here, then this path is a match! Now we need to remove it. */
5957 
5958 	/* This is the active path in use right now. The active path is always the first in the list. */
5959 	assert(p == nvme_ctrlr->active_path_id);
5960 
5961 	if (!TAILQ_NEXT(p, link)) {
5962 		/* The current path is the only path. */
5963 		msg_fn = _nvme_ctrlr_destruct;
5964 		rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, false);
5965 	} else {
5966 		/* There is an alternative path. */
5967 		msg_fn = _bdev_nvme_reset_ctrlr;
5968 		rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, true);
5969 	}
5970 
5971 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5972 
5973 	if (rc == 0) {
5974 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
5975 	} else if (rc == -EALREADY) {
5976 		rc = 0;
5977 	}
5978 
5979 	return rc;
5980 }
5981 
5982 int
5983 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id)
5984 {
5985 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
5986 	struct nvme_ctrlr	*nvme_ctrlr, *tmp_nvme_ctrlr;
5987 	int			rc = -ENXIO, _rc;
5988 
5989 	if (name == NULL || path_id == NULL) {
5990 		return -EINVAL;
5991 	}
5992 
5993 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5994 
5995 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
5996 	if (nbdev_ctrlr == NULL) {
5997 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
5998 
5999 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
6000 		return -ENODEV;
6001 	}
6002 
6003 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
6004 		_rc = _bdev_nvme_delete(nvme_ctrlr, path_id);
6005 		if (_rc < 0 && _rc != -ENXIO) {
6006 			pthread_mutex_unlock(&g_bdev_nvme_mutex);
6007 
6008 			return _rc;
6009 		} else if (_rc == 0) {
6010 			/* We traverse all remaining nvme_ctrlrs even if one nvme_ctrlr
6011 			 * was deleted successfully. To remember the successful deletion,
6012 			 * overwrite rc only if _rc is zero.
6013 			 */
6014 			rc = 0;
6015 		}
6016 	}
6017 
6018 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6019 
6020 	/* All nvme_ctrlrs were deleted or no nvme_ctrlr which had the trid was found. */
6021 	return rc;
6022 }
6023 
6024 #define DISCOVERY_INFOLOG(ctx, format, ...) \
6025 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6026 
6027 #define DISCOVERY_ERRLOG(ctx, format, ...) \
6028 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6029 
6030 struct discovery_entry_ctx {
6031 	char						name[128];
6032 	struct spdk_nvme_transport_id			trid;
6033 	struct spdk_nvme_ctrlr_opts			drv_opts;
6034 	struct spdk_nvmf_discovery_log_page_entry	entry;
6035 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
6036 	struct discovery_ctx				*ctx;
6037 };
6038 
6039 struct discovery_ctx {
6040 	char					*name;
6041 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
6042 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
6043 	void					*cb_ctx;
6044 	struct spdk_nvme_probe_ctx		*probe_ctx;
6045 	struct spdk_nvme_detach_ctx		*detach_ctx;
6046 	struct spdk_nvme_ctrlr			*ctrlr;
6047 	struct spdk_nvme_transport_id		trid;
6048 	struct discovery_entry_ctx		*entry_ctx_in_use;
6049 	struct spdk_poller			*poller;
6050 	struct spdk_nvme_ctrlr_opts		drv_opts;
6051 	struct nvme_ctrlr_opts			bdev_opts;
6052 	struct spdk_nvmf_discovery_log_page	*log_page;
6053 	TAILQ_ENTRY(discovery_ctx)		tailq;
6054 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
6055 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
6056 	int					rc;
6057 	bool					wait_for_attach;
6058 	uint64_t				timeout_ticks;
6059 	/* Denotes that the discovery service is being started. We're waiting
6060 	 * for the initial connection to the discovery controller to be
6061 	 * established and attach discovered NVM ctrlrs.
6062 	 */
6063 	bool					initializing;
6064 	/* Denotes if a discovery is currently in progress for this context.
6065 	 * That includes connecting to newly discovered subsystems.  Used to
6066 	 * ensure we do not start a new discovery until an existing one is
6067 	 * complete.
6068 	 */
6069 	bool					in_progress;
6070 
6071 	/* Denotes if another discovery is needed after the one in progress
6072 	 * completes.  Set when we receive an AER completion while a discovery
6073 	 * is already in progress.
6074 	 */
6075 	bool					pending;
6076 
6077 	/* Signal to the discovery context poller that it should stop the
6078 	 * discovery service, including detaching from the current discovery
6079 	 * controller.
6080 	 */
6081 	bool					stop;
6082 
6083 	struct spdk_thread			*calling_thread;
6084 	uint32_t				index;
6085 	uint32_t				attach_in_progress;
6086 	char					*hostnqn;
6087 
6088 	/* Denotes if the discovery service was started by the mdns discovery.
6089 	 */
6090 	bool					from_mdns_discovery_service;
6091 };
6092 
6093 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
6094 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
6095 
6096 static void get_discovery_log_page(struct discovery_ctx *ctx);
6097 
6098 static void
6099 free_discovery_ctx(struct discovery_ctx *ctx)
6100 {
6101 	free(ctx->log_page);
6102 	free(ctx->hostnqn);
6103 	free(ctx->name);
6104 	free(ctx);
6105 }
6106 
6107 static void
6108 discovery_complete(struct discovery_ctx *ctx)
6109 {
6110 	ctx->initializing = false;
6111 	ctx->in_progress = false;
6112 	if (ctx->pending) {
6113 		ctx->pending = false;
6114 		get_discovery_log_page(ctx);
6115 	}
6116 }
6117 
6118 static void
6119 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
6120 			       struct spdk_nvmf_discovery_log_page_entry *entry)
6121 {
6122 	char *space;
6123 
6124 	trid->trtype = entry->trtype;
6125 	trid->adrfam = entry->adrfam;
6126 	memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr));
6127 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid));
6128 	/* Because the source buffer (entry->subnqn) is longer than trid->subnqn, and
6129 	 * before call to this function trid->subnqn is zeroed out, we need
6130 	 * to copy sizeof(trid->subnqn) minus one byte to make sure the last character
6131 	 * remains 0. Then we can shorten the string (replace ' ' with 0) if required
6132 	 */
6133 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn) - 1);
6134 
6135 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
6136 	 * But the log page entries typically pad them with spaces, not zeroes.
6137 	 * So add a NULL terminator to each of these fields at the appropriate
6138 	 * location.
6139 	 */
6140 	space = strchr(trid->traddr, ' ');
6141 	if (space) {
6142 		*space = 0;
6143 	}
6144 	space = strchr(trid->trsvcid, ' ');
6145 	if (space) {
6146 		*space = 0;
6147 	}
6148 	space = strchr(trid->subnqn, ' ');
6149 	if (space) {
6150 		*space = 0;
6151 	}
6152 }
6153 
6154 static void
6155 _stop_discovery(void *_ctx)
6156 {
6157 	struct discovery_ctx *ctx = _ctx;
6158 
6159 	if (ctx->attach_in_progress > 0) {
6160 		spdk_thread_send_msg(spdk_get_thread(), _stop_discovery, ctx);
6161 		return;
6162 	}
6163 
6164 	ctx->stop = true;
6165 
6166 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
6167 		struct discovery_entry_ctx *entry_ctx;
6168 		struct nvme_path_id path = {};
6169 
6170 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
6171 		path.trid = entry_ctx->trid;
6172 		bdev_nvme_delete(entry_ctx->name, &path);
6173 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6174 		free(entry_ctx);
6175 	}
6176 
6177 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
6178 		struct discovery_entry_ctx *entry_ctx;
6179 
6180 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6181 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6182 		free(entry_ctx);
6183 	}
6184 
6185 	free(ctx->entry_ctx_in_use);
6186 	ctx->entry_ctx_in_use = NULL;
6187 }
6188 
6189 static void
6190 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
6191 {
6192 	ctx->stop_cb_fn = cb_fn;
6193 	ctx->cb_ctx = cb_ctx;
6194 
6195 	if (ctx->attach_in_progress > 0) {
6196 		DISCOVERY_INFOLOG(ctx, "stopping discovery with attach_in_progress: %"PRIu32"\n",
6197 				  ctx->attach_in_progress);
6198 	}
6199 
6200 	_stop_discovery(ctx);
6201 }
6202 
6203 static void
6204 remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr)
6205 {
6206 	struct discovery_ctx *d_ctx;
6207 	struct nvme_path_id *path_id;
6208 	struct spdk_nvme_transport_id trid = {};
6209 	struct discovery_entry_ctx *entry_ctx, *tmp;
6210 
6211 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
6212 
6213 	TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6214 		TAILQ_FOREACH_SAFE(entry_ctx, &d_ctx->nvm_entry_ctxs, tailq, tmp) {
6215 			build_trid_from_log_page_entry(&trid, &entry_ctx->entry);
6216 			if (spdk_nvme_transport_id_compare(&trid, &path_id->trid) != 0) {
6217 				continue;
6218 			}
6219 
6220 			TAILQ_REMOVE(&d_ctx->nvm_entry_ctxs, entry_ctx, tailq);
6221 			free(entry_ctx);
6222 			DISCOVERY_INFOLOG(d_ctx, "Remove discovery entry: %s:%s:%s\n",
6223 					  trid.subnqn, trid.traddr, trid.trsvcid);
6224 
6225 			/* Fail discovery ctrlr to force reattach attempt */
6226 			spdk_nvme_ctrlr_fail(d_ctx->ctrlr);
6227 		}
6228 	}
6229 }
6230 
6231 static void
6232 discovery_remove_controllers(struct discovery_ctx *ctx)
6233 {
6234 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
6235 	struct discovery_entry_ctx *entry_ctx, *tmp;
6236 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6237 	struct spdk_nvme_transport_id old_trid = {};
6238 	uint64_t numrec, i;
6239 	bool found;
6240 
6241 	numrec = from_le64(&log_page->numrec);
6242 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
6243 		found = false;
6244 		old_entry = &entry_ctx->entry;
6245 		build_trid_from_log_page_entry(&old_trid, old_entry);
6246 		for (i = 0; i < numrec; i++) {
6247 			new_entry = &log_page->entries[i];
6248 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
6249 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
6250 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6251 				found = true;
6252 				break;
6253 			}
6254 		}
6255 		if (!found) {
6256 			struct nvme_path_id path = {};
6257 
6258 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
6259 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6260 
6261 			path.trid = entry_ctx->trid;
6262 			bdev_nvme_delete(entry_ctx->name, &path);
6263 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6264 			free(entry_ctx);
6265 		}
6266 	}
6267 	free(log_page);
6268 	ctx->log_page = NULL;
6269 	discovery_complete(ctx);
6270 }
6271 
6272 static void
6273 complete_discovery_start(struct discovery_ctx *ctx, int status)
6274 {
6275 	ctx->timeout_ticks = 0;
6276 	ctx->rc = status;
6277 	if (ctx->start_cb_fn) {
6278 		ctx->start_cb_fn(ctx->cb_ctx, status);
6279 		ctx->start_cb_fn = NULL;
6280 		ctx->cb_ctx = NULL;
6281 	}
6282 }
6283 
6284 static void
6285 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
6286 {
6287 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
6288 	struct discovery_ctx *ctx = entry_ctx->ctx;
6289 
6290 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
6291 	ctx->attach_in_progress--;
6292 	if (ctx->attach_in_progress == 0) {
6293 		complete_discovery_start(ctx, ctx->rc);
6294 		if (ctx->initializing && ctx->rc != 0) {
6295 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
6296 			stop_discovery(ctx, NULL, ctx->cb_ctx);
6297 		} else {
6298 			discovery_remove_controllers(ctx);
6299 		}
6300 	}
6301 }
6302 
6303 static struct discovery_entry_ctx *
6304 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
6305 {
6306 	struct discovery_entry_ctx *new_ctx;
6307 
6308 	new_ctx = calloc(1, sizeof(*new_ctx));
6309 	if (new_ctx == NULL) {
6310 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6311 		return NULL;
6312 	}
6313 
6314 	new_ctx->ctx = ctx;
6315 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
6316 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6317 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6318 	return new_ctx;
6319 }
6320 
6321 static void
6322 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
6323 		      struct spdk_nvmf_discovery_log_page *log_page)
6324 {
6325 	struct discovery_ctx *ctx = cb_arg;
6326 	struct discovery_entry_ctx *entry_ctx, *tmp;
6327 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6328 	uint64_t numrec, i;
6329 	bool found;
6330 
6331 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
6332 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6333 		return;
6334 	}
6335 
6336 	ctx->log_page = log_page;
6337 	assert(ctx->attach_in_progress == 0);
6338 	numrec = from_le64(&log_page->numrec);
6339 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
6340 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6341 		free(entry_ctx);
6342 	}
6343 	for (i = 0; i < numrec; i++) {
6344 		found = false;
6345 		new_entry = &log_page->entries[i];
6346 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
6347 			struct discovery_entry_ctx *new_ctx;
6348 			struct spdk_nvme_transport_id trid = {};
6349 
6350 			build_trid_from_log_page_entry(&trid, new_entry);
6351 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
6352 			if (new_ctx == NULL) {
6353 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6354 				break;
6355 			}
6356 
6357 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
6358 			continue;
6359 		}
6360 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
6361 			old_entry = &entry_ctx->entry;
6362 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
6363 				found = true;
6364 				break;
6365 			}
6366 		}
6367 		if (!found) {
6368 			struct discovery_entry_ctx *subnqn_ctx = NULL, *new_ctx;
6369 			struct discovery_ctx *d_ctx;
6370 
6371 			TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6372 				TAILQ_FOREACH(subnqn_ctx, &d_ctx->nvm_entry_ctxs, tailq) {
6373 					if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
6374 						    sizeof(new_entry->subnqn))) {
6375 						break;
6376 					}
6377 				}
6378 				if (subnqn_ctx) {
6379 					break;
6380 				}
6381 			}
6382 
6383 			new_ctx = calloc(1, sizeof(*new_ctx));
6384 			if (new_ctx == NULL) {
6385 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6386 				break;
6387 			}
6388 
6389 			new_ctx->ctx = ctx;
6390 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
6391 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
6392 			if (subnqn_ctx) {
6393 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
6394 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
6395 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6396 						  new_ctx->name);
6397 			} else {
6398 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
6399 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
6400 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6401 						  new_ctx->name);
6402 			}
6403 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6404 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6405 			rc = bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
6406 					      discovery_attach_controller_done, new_ctx,
6407 					      &new_ctx->drv_opts, &ctx->bdev_opts, true);
6408 			if (rc == 0) {
6409 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
6410 				ctx->attach_in_progress++;
6411 			} else {
6412 				DISCOVERY_ERRLOG(ctx, "bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
6413 			}
6414 		}
6415 	}
6416 
6417 	if (ctx->attach_in_progress == 0) {
6418 		discovery_remove_controllers(ctx);
6419 	}
6420 }
6421 
6422 static void
6423 get_discovery_log_page(struct discovery_ctx *ctx)
6424 {
6425 	int rc;
6426 
6427 	assert(ctx->in_progress == false);
6428 	ctx->in_progress = true;
6429 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
6430 	if (rc != 0) {
6431 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6432 	}
6433 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
6434 }
6435 
6436 static void
6437 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
6438 {
6439 	struct discovery_ctx *ctx = arg;
6440 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
6441 
6442 	if (spdk_nvme_cpl_is_error(cpl)) {
6443 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
6444 		return;
6445 	}
6446 
6447 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
6448 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
6449 		return;
6450 	}
6451 
6452 	DISCOVERY_INFOLOG(ctx, "got aer\n");
6453 	if (ctx->in_progress) {
6454 		ctx->pending = true;
6455 		return;
6456 	}
6457 
6458 	get_discovery_log_page(ctx);
6459 }
6460 
6461 static void
6462 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6463 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
6464 {
6465 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6466 	struct discovery_ctx *ctx;
6467 
6468 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
6469 
6470 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
6471 	ctx->probe_ctx = NULL;
6472 	ctx->ctrlr = ctrlr;
6473 
6474 	if (ctx->rc != 0) {
6475 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
6476 				 ctx->rc);
6477 		return;
6478 	}
6479 
6480 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
6481 }
6482 
6483 static int
6484 discovery_poller(void *arg)
6485 {
6486 	struct discovery_ctx *ctx = arg;
6487 	struct spdk_nvme_transport_id *trid;
6488 	int rc;
6489 
6490 	if (ctx->detach_ctx) {
6491 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
6492 		if (rc != -EAGAIN) {
6493 			ctx->detach_ctx = NULL;
6494 			ctx->ctrlr = NULL;
6495 		}
6496 	} else if (ctx->stop) {
6497 		if (ctx->ctrlr != NULL) {
6498 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
6499 			if (rc == 0) {
6500 				return SPDK_POLLER_BUSY;
6501 			}
6502 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
6503 		}
6504 		spdk_poller_unregister(&ctx->poller);
6505 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
6506 		assert(ctx->start_cb_fn == NULL);
6507 		if (ctx->stop_cb_fn != NULL) {
6508 			ctx->stop_cb_fn(ctx->cb_ctx);
6509 		}
6510 		free_discovery_ctx(ctx);
6511 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
6512 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6513 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
6514 			assert(ctx->initializing);
6515 			spdk_poller_unregister(&ctx->poller);
6516 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
6517 			complete_discovery_start(ctx, -ETIMEDOUT);
6518 			stop_discovery(ctx, NULL, NULL);
6519 			free_discovery_ctx(ctx);
6520 			return SPDK_POLLER_BUSY;
6521 		}
6522 
6523 		assert(ctx->entry_ctx_in_use == NULL);
6524 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6525 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6526 		trid = &ctx->entry_ctx_in_use->trid;
6527 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
6528 		if (ctx->probe_ctx) {
6529 			spdk_poller_unregister(&ctx->poller);
6530 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
6531 		} else {
6532 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
6533 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6534 			ctx->entry_ctx_in_use = NULL;
6535 		}
6536 	} else if (ctx->probe_ctx) {
6537 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6538 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
6539 			complete_discovery_start(ctx, -ETIMEDOUT);
6540 			return SPDK_POLLER_BUSY;
6541 		}
6542 
6543 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
6544 		if (rc != -EAGAIN) {
6545 			if (ctx->rc != 0) {
6546 				assert(ctx->initializing);
6547 				stop_discovery(ctx, NULL, ctx->cb_ctx);
6548 			} else {
6549 				assert(rc == 0);
6550 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
6551 				ctx->rc = rc;
6552 				get_discovery_log_page(ctx);
6553 			}
6554 		}
6555 	} else {
6556 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6557 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
6558 			complete_discovery_start(ctx, -ETIMEDOUT);
6559 			/* We need to wait until all NVM ctrlrs are attached before we stop the
6560 			 * discovery service to make sure we don't detach a ctrlr that is still
6561 			 * being attached.
6562 			 */
6563 			if (ctx->attach_in_progress == 0) {
6564 				stop_discovery(ctx, NULL, ctx->cb_ctx);
6565 				return SPDK_POLLER_BUSY;
6566 			}
6567 		}
6568 
6569 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
6570 		if (rc < 0) {
6571 			spdk_poller_unregister(&ctx->poller);
6572 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
6573 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6574 			ctx->entry_ctx_in_use = NULL;
6575 
6576 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
6577 			if (rc != 0) {
6578 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
6579 				ctx->ctrlr = NULL;
6580 			}
6581 		}
6582 	}
6583 
6584 	return SPDK_POLLER_BUSY;
6585 }
6586 
6587 static void
6588 start_discovery_poller(void *arg)
6589 {
6590 	struct discovery_ctx *ctx = arg;
6591 
6592 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
6593 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
6594 }
6595 
6596 int
6597 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
6598 			  const char *base_name,
6599 			  struct spdk_nvme_ctrlr_opts *drv_opts,
6600 			  struct nvme_ctrlr_opts *bdev_opts,
6601 			  uint64_t attach_timeout,
6602 			  bool from_mdns,
6603 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
6604 {
6605 	struct discovery_ctx *ctx;
6606 	struct discovery_entry_ctx *discovery_entry_ctx;
6607 
6608 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
6609 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6610 		if (strcmp(ctx->name, base_name) == 0) {
6611 			return -EEXIST;
6612 		}
6613 
6614 		if (ctx->entry_ctx_in_use != NULL) {
6615 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
6616 				return -EEXIST;
6617 			}
6618 		}
6619 
6620 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
6621 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
6622 				return -EEXIST;
6623 			}
6624 		}
6625 	}
6626 
6627 	ctx = calloc(1, sizeof(*ctx));
6628 	if (ctx == NULL) {
6629 		return -ENOMEM;
6630 	}
6631 
6632 	ctx->name = strdup(base_name);
6633 	if (ctx->name == NULL) {
6634 		free_discovery_ctx(ctx);
6635 		return -ENOMEM;
6636 	}
6637 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
6638 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
6639 	ctx->from_mdns_discovery_service = from_mdns;
6640 	ctx->bdev_opts.from_discovery_service = true;
6641 	ctx->calling_thread = spdk_get_thread();
6642 	ctx->start_cb_fn = cb_fn;
6643 	ctx->cb_ctx = cb_ctx;
6644 	ctx->initializing = true;
6645 	if (ctx->start_cb_fn) {
6646 		/* We can use this when dumping json to denote if this RPC parameter
6647 		 * was specified or not.
6648 		 */
6649 		ctx->wait_for_attach = true;
6650 	}
6651 	if (attach_timeout != 0) {
6652 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
6653 				     spdk_get_ticks_hz() / 1000ull;
6654 	}
6655 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
6656 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
6657 	memcpy(&ctx->trid, trid, sizeof(*trid));
6658 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
6659 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
6660 	if (ctx->hostnqn == NULL) {
6661 		free_discovery_ctx(ctx);
6662 		return -ENOMEM;
6663 	}
6664 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
6665 	if (discovery_entry_ctx == NULL) {
6666 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6667 		free_discovery_ctx(ctx);
6668 		return -ENOMEM;
6669 	}
6670 
6671 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
6672 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
6673 	return 0;
6674 }
6675 
6676 int
6677 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
6678 {
6679 	struct discovery_ctx *ctx;
6680 
6681 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6682 		if (strcmp(name, ctx->name) == 0) {
6683 			if (ctx->stop) {
6684 				return -EALREADY;
6685 			}
6686 			/* If we're still starting the discovery service and ->rc is non-zero, we're
6687 			 * going to stop it as soon as we can
6688 			 */
6689 			if (ctx->initializing && ctx->rc != 0) {
6690 				return -EALREADY;
6691 			}
6692 			stop_discovery(ctx, cb_fn, cb_ctx);
6693 			return 0;
6694 		}
6695 	}
6696 
6697 	return -ENOENT;
6698 }
6699 
6700 static int
6701 bdev_nvme_library_init(void)
6702 {
6703 	g_bdev_nvme_init_thread = spdk_get_thread();
6704 
6705 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
6706 				bdev_nvme_destroy_poll_group_cb,
6707 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
6708 
6709 	return 0;
6710 }
6711 
6712 static void
6713 bdev_nvme_fini_destruct_ctrlrs(void)
6714 {
6715 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
6716 	struct nvme_ctrlr *nvme_ctrlr;
6717 
6718 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6719 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
6720 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6721 			pthread_mutex_lock(&nvme_ctrlr->mutex);
6722 			if (nvme_ctrlr->destruct) {
6723 				/* This controller's destruction was already started
6724 				 * before the application started shutting down
6725 				 */
6726 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
6727 				continue;
6728 			}
6729 			nvme_ctrlr->destruct = true;
6730 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
6731 
6732 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
6733 					     nvme_ctrlr);
6734 		}
6735 	}
6736 
6737 	g_bdev_nvme_module_finish = true;
6738 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
6739 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6740 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
6741 		spdk_bdev_module_fini_done();
6742 		return;
6743 	}
6744 
6745 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6746 }
6747 
6748 static void
6749 check_discovery_fini(void *arg)
6750 {
6751 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
6752 		bdev_nvme_fini_destruct_ctrlrs();
6753 	}
6754 }
6755 
6756 static void
6757 bdev_nvme_library_fini(void)
6758 {
6759 	struct nvme_probe_skip_entry *entry, *entry_tmp;
6760 	struct discovery_ctx *ctx;
6761 
6762 	spdk_poller_unregister(&g_hotplug_poller);
6763 	free(g_hotplug_probe_ctx);
6764 	g_hotplug_probe_ctx = NULL;
6765 
6766 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
6767 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
6768 		free(entry);
6769 	}
6770 
6771 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
6772 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
6773 		bdev_nvme_fini_destruct_ctrlrs();
6774 	} else {
6775 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6776 			stop_discovery(ctx, check_discovery_fini, NULL);
6777 		}
6778 	}
6779 }
6780 
6781 static void
6782 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
6783 {
6784 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6785 	struct spdk_bdev *bdev = bdev_io->bdev;
6786 	struct spdk_dif_ctx dif_ctx;
6787 	struct spdk_dif_error err_blk = {};
6788 	int rc;
6789 	struct spdk_dif_ctx_init_ext_opts dif_opts;
6790 
6791 	dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format);
6792 	dif_opts.dif_pi_format = SPDK_DIF_PI_FORMAT_16;
6793 	rc = spdk_dif_ctx_init(&dif_ctx,
6794 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
6795 			       bdev->dif_is_head_of_md, bdev->dif_type, bdev->dif_check_flags,
6796 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0, &dif_opts);
6797 	if (rc != 0) {
6798 		SPDK_ERRLOG("Initialization of DIF context failed\n");
6799 		return;
6800 	}
6801 
6802 	if (bdev->md_interleave) {
6803 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
6804 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
6805 	} else {
6806 		struct iovec md_iov = {
6807 			.iov_base	= bdev_io->u.bdev.md_buf,
6808 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
6809 		};
6810 
6811 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
6812 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
6813 	}
6814 
6815 	if (rc != 0) {
6816 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
6817 			    err_blk.err_type, err_blk.err_offset);
6818 	} else {
6819 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
6820 	}
6821 }
6822 
6823 static void
6824 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
6825 {
6826 	struct nvme_bdev_io *bio = ref;
6827 
6828 	if (spdk_nvme_cpl_is_success(cpl)) {
6829 		/* Run PI verification for read data buffer. */
6830 		bdev_nvme_verify_pi_error(bio);
6831 	}
6832 
6833 	/* Return original completion status */
6834 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
6835 }
6836 
6837 static void
6838 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
6839 {
6840 	struct nvme_bdev_io *bio = ref;
6841 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6842 	int ret;
6843 
6844 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
6845 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
6846 			    cpl->status.sct, cpl->status.sc);
6847 
6848 		/* Save completion status to use after verifying PI error. */
6849 		bio->cpl = *cpl;
6850 
6851 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
6852 			/* Read without PI checking to verify PI error. */
6853 			ret = bdev_nvme_no_pi_readv(bio,
6854 						    bdev_io->u.bdev.iovs,
6855 						    bdev_io->u.bdev.iovcnt,
6856 						    bdev_io->u.bdev.md_buf,
6857 						    bdev_io->u.bdev.num_blocks,
6858 						    bdev_io->u.bdev.offset_blocks);
6859 			if (ret == 0) {
6860 				return;
6861 			}
6862 		}
6863 	}
6864 
6865 	bdev_nvme_io_complete_nvme_status(bio, cpl);
6866 }
6867 
6868 static void
6869 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
6870 {
6871 	struct nvme_bdev_io *bio = ref;
6872 
6873 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
6874 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
6875 			    cpl->status.sct, cpl->status.sc);
6876 		/* Run PI verification for write data buffer if PI error is detected. */
6877 		bdev_nvme_verify_pi_error(bio);
6878 	}
6879 
6880 	bdev_nvme_io_complete_nvme_status(bio, cpl);
6881 }
6882 
6883 static void
6884 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
6885 {
6886 	struct nvme_bdev_io *bio = ref;
6887 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6888 
6889 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
6890 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
6891 	 */
6892 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
6893 
6894 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
6895 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
6896 			    cpl->status.sct, cpl->status.sc);
6897 		/* Run PI verification for zone append data buffer if PI error is detected. */
6898 		bdev_nvme_verify_pi_error(bio);
6899 	}
6900 
6901 	bdev_nvme_io_complete_nvme_status(bio, cpl);
6902 }
6903 
6904 static void
6905 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
6906 {
6907 	struct nvme_bdev_io *bio = ref;
6908 
6909 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
6910 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
6911 			    cpl->status.sct, cpl->status.sc);
6912 		/* Run PI verification for compare data buffer if PI error is detected. */
6913 		bdev_nvme_verify_pi_error(bio);
6914 	}
6915 
6916 	bdev_nvme_io_complete_nvme_status(bio, cpl);
6917 }
6918 
6919 static void
6920 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
6921 {
6922 	struct nvme_bdev_io *bio = ref;
6923 
6924 	/* Compare operation completion */
6925 	if (!bio->first_fused_completed) {
6926 		/* Save compare result for write callback */
6927 		bio->cpl = *cpl;
6928 		bio->first_fused_completed = true;
6929 		return;
6930 	}
6931 
6932 	/* Write operation completion */
6933 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
6934 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
6935 		 * complete the IO with the compare operation's status.
6936 		 */
6937 		if (!spdk_nvme_cpl_is_error(cpl)) {
6938 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
6939 		}
6940 
6941 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
6942 	} else {
6943 		bdev_nvme_io_complete_nvme_status(bio, cpl);
6944 	}
6945 }
6946 
6947 static void
6948 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
6949 {
6950 	struct nvme_bdev_io *bio = ref;
6951 
6952 	bdev_nvme_io_complete_nvme_status(bio, cpl);
6953 }
6954 
6955 static int
6956 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
6957 {
6958 	switch (desc->zt) {
6959 	case SPDK_NVME_ZONE_TYPE_SEQWR:
6960 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
6961 		break;
6962 	default:
6963 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
6964 		return -EIO;
6965 	}
6966 
6967 	switch (desc->zs) {
6968 	case SPDK_NVME_ZONE_STATE_EMPTY:
6969 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
6970 		break;
6971 	case SPDK_NVME_ZONE_STATE_IOPEN:
6972 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
6973 		break;
6974 	case SPDK_NVME_ZONE_STATE_EOPEN:
6975 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
6976 		break;
6977 	case SPDK_NVME_ZONE_STATE_CLOSED:
6978 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
6979 		break;
6980 	case SPDK_NVME_ZONE_STATE_RONLY:
6981 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
6982 		break;
6983 	case SPDK_NVME_ZONE_STATE_FULL:
6984 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
6985 		break;
6986 	case SPDK_NVME_ZONE_STATE_OFFLINE:
6987 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
6988 		break;
6989 	default:
6990 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
6991 		return -EIO;
6992 	}
6993 
6994 	info->zone_id = desc->zslba;
6995 	info->write_pointer = desc->wp;
6996 	info->capacity = desc->zcap;
6997 
6998 	return 0;
6999 }
7000 
7001 static void
7002 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
7003 {
7004 	struct nvme_bdev_io *bio = ref;
7005 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7006 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
7007 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
7008 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
7009 	uint64_t max_zones_per_buf, i;
7010 	uint32_t zone_report_bufsize;
7011 	struct spdk_nvme_ns *ns;
7012 	struct spdk_nvme_qpair *qpair;
7013 	int ret;
7014 
7015 	if (spdk_nvme_cpl_is_error(cpl)) {
7016 		goto out_complete_io_nvme_cpl;
7017 	}
7018 
7019 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
7020 		ret = -ENXIO;
7021 		goto out_complete_io_ret;
7022 	}
7023 
7024 	ns = bio->io_path->nvme_ns->ns;
7025 	qpair = bio->io_path->qpair->qpair;
7026 
7027 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7028 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
7029 			    sizeof(bio->zone_report_buf->descs[0]);
7030 
7031 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
7032 		ret = -EINVAL;
7033 		goto out_complete_io_ret;
7034 	}
7035 
7036 	if (!bio->zone_report_buf->nr_zones) {
7037 		ret = -EINVAL;
7038 		goto out_complete_io_ret;
7039 	}
7040 
7041 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
7042 		ret = fill_zone_from_report(&info[bio->handled_zones],
7043 					    &bio->zone_report_buf->descs[i]);
7044 		if (ret) {
7045 			goto out_complete_io_ret;
7046 		}
7047 		bio->handled_zones++;
7048 	}
7049 
7050 	if (bio->handled_zones < zones_to_copy) {
7051 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7052 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
7053 
7054 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
7055 		ret = spdk_nvme_zns_report_zones(ns, qpair,
7056 						 bio->zone_report_buf, zone_report_bufsize,
7057 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
7058 						 bdev_nvme_get_zone_info_done, bio);
7059 		if (!ret) {
7060 			return;
7061 		} else {
7062 			goto out_complete_io_ret;
7063 		}
7064 	}
7065 
7066 out_complete_io_nvme_cpl:
7067 	free(bio->zone_report_buf);
7068 	bio->zone_report_buf = NULL;
7069 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7070 	return;
7071 
7072 out_complete_io_ret:
7073 	free(bio->zone_report_buf);
7074 	bio->zone_report_buf = NULL;
7075 	bdev_nvme_io_complete(bio, ret);
7076 }
7077 
7078 static void
7079 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
7080 {
7081 	struct nvme_bdev_io *bio = ref;
7082 
7083 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7084 }
7085 
7086 static void
7087 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
7088 {
7089 	struct nvme_bdev_io *bio = ctx;
7090 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7091 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
7092 
7093 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
7094 
7095 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
7096 }
7097 
7098 static void
7099 bdev_nvme_abort_complete(void *ctx)
7100 {
7101 	struct nvme_bdev_io *bio = ctx;
7102 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7103 
7104 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
7105 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
7106 	} else {
7107 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
7108 	}
7109 }
7110 
7111 static void
7112 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
7113 {
7114 	struct nvme_bdev_io *bio = ref;
7115 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7116 
7117 	bio->cpl = *cpl;
7118 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), bdev_nvme_abort_complete, bio);
7119 }
7120 
7121 static void
7122 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
7123 {
7124 	struct nvme_bdev_io *bio = ref;
7125 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7126 
7127 	bio->cpl = *cpl;
7128 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io),
7129 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
7130 }
7131 
7132 static void
7133 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
7134 {
7135 	struct nvme_bdev_io *bio = ref;
7136 	struct iovec *iov;
7137 
7138 	bio->iov_offset = sgl_offset;
7139 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
7140 		iov = &bio->iovs[bio->iovpos];
7141 		if (bio->iov_offset < iov->iov_len) {
7142 			break;
7143 		}
7144 
7145 		bio->iov_offset -= iov->iov_len;
7146 	}
7147 }
7148 
7149 static int
7150 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
7151 {
7152 	struct nvme_bdev_io *bio = ref;
7153 	struct iovec *iov;
7154 
7155 	assert(bio->iovpos < bio->iovcnt);
7156 
7157 	iov = &bio->iovs[bio->iovpos];
7158 
7159 	*address = iov->iov_base;
7160 	*length = iov->iov_len;
7161 
7162 	if (bio->iov_offset) {
7163 		assert(bio->iov_offset <= iov->iov_len);
7164 		*address += bio->iov_offset;
7165 		*length -= bio->iov_offset;
7166 	}
7167 
7168 	bio->iov_offset += *length;
7169 	if (bio->iov_offset == iov->iov_len) {
7170 		bio->iovpos++;
7171 		bio->iov_offset = 0;
7172 	}
7173 
7174 	return 0;
7175 }
7176 
7177 static void
7178 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
7179 {
7180 	struct nvme_bdev_io *bio = ref;
7181 	struct iovec *iov;
7182 
7183 	bio->fused_iov_offset = sgl_offset;
7184 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
7185 		iov = &bio->fused_iovs[bio->fused_iovpos];
7186 		if (bio->fused_iov_offset < iov->iov_len) {
7187 			break;
7188 		}
7189 
7190 		bio->fused_iov_offset -= iov->iov_len;
7191 	}
7192 }
7193 
7194 static int
7195 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
7196 {
7197 	struct nvme_bdev_io *bio = ref;
7198 	struct iovec *iov;
7199 
7200 	assert(bio->fused_iovpos < bio->fused_iovcnt);
7201 
7202 	iov = &bio->fused_iovs[bio->fused_iovpos];
7203 
7204 	*address = iov->iov_base;
7205 	*length = iov->iov_len;
7206 
7207 	if (bio->fused_iov_offset) {
7208 		assert(bio->fused_iov_offset <= iov->iov_len);
7209 		*address += bio->fused_iov_offset;
7210 		*length -= bio->fused_iov_offset;
7211 	}
7212 
7213 	bio->fused_iov_offset += *length;
7214 	if (bio->fused_iov_offset == iov->iov_len) {
7215 		bio->fused_iovpos++;
7216 		bio->fused_iov_offset = 0;
7217 	}
7218 
7219 	return 0;
7220 }
7221 
7222 static int
7223 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7224 		      void *md, uint64_t lba_count, uint64_t lba)
7225 {
7226 	int rc;
7227 
7228 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
7229 		      lba_count, lba);
7230 
7231 	bio->iovs = iov;
7232 	bio->iovcnt = iovcnt;
7233 	bio->iovpos = 0;
7234 	bio->iov_offset = 0;
7235 
7236 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
7237 					    bio->io_path->qpair->qpair,
7238 					    lba, lba_count,
7239 					    bdev_nvme_no_pi_readv_done, bio, 0,
7240 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7241 					    md, 0, 0);
7242 
7243 	if (rc != 0 && rc != -ENOMEM) {
7244 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
7245 	}
7246 	return rc;
7247 }
7248 
7249 static int
7250 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7251 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7252 		struct spdk_memory_domain *domain, void *domain_ctx)
7253 {
7254 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7255 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7256 	int rc;
7257 
7258 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7259 		      lba_count, lba);
7260 
7261 	bio->iovs = iov;
7262 	bio->iovcnt = iovcnt;
7263 	bio->iovpos = 0;
7264 	bio->iov_offset = 0;
7265 
7266 	if (domain != NULL) {
7267 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, cdw13);
7268 		bio->ext_opts.memory_domain = domain;
7269 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7270 		bio->ext_opts.io_flags = flags;
7271 		bio->ext_opts.metadata = md;
7272 
7273 		rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
7274 						bdev_nvme_readv_done, bio,
7275 						bdev_nvme_queued_reset_sgl,
7276 						bdev_nvme_queued_next_sge,
7277 						&bio->ext_opts);
7278 	} else if (iovcnt == 1) {
7279 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base,
7280 						   md, lba, lba_count, bdev_nvme_readv_done,
7281 						   bio, flags, 0, 0);
7282 	} else {
7283 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
7284 						    bdev_nvme_readv_done, bio, flags,
7285 						    bdev_nvme_queued_reset_sgl,
7286 						    bdev_nvme_queued_next_sge, md, 0, 0);
7287 	}
7288 
7289 	if (rc != 0 && rc != -ENOMEM) {
7290 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
7291 	}
7292 	return rc;
7293 }
7294 
7295 static int
7296 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7297 		 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7298 		 struct spdk_memory_domain *domain, void *domain_ctx)
7299 {
7300 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7301 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7302 	int rc;
7303 
7304 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7305 		      lba_count, lba);
7306 
7307 	bio->iovs = iov;
7308 	bio->iovcnt = iovcnt;
7309 	bio->iovpos = 0;
7310 	bio->iov_offset = 0;
7311 
7312 	if (domain != NULL) {
7313 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, cdw13);
7314 		bio->ext_opts.memory_domain = domain;
7315 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7316 		bio->ext_opts.io_flags = flags;
7317 		bio->ext_opts.metadata = md;
7318 
7319 		rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
7320 						 bdev_nvme_writev_done, bio,
7321 						 bdev_nvme_queued_reset_sgl,
7322 						 bdev_nvme_queued_next_sge,
7323 						 &bio->ext_opts);
7324 	} else if (iovcnt == 1) {
7325 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base,
7326 						    md, lba, lba_count, bdev_nvme_writev_done,
7327 						    bio, flags, 0, 0);
7328 	} else {
7329 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7330 						     bdev_nvme_writev_done, bio, flags,
7331 						     bdev_nvme_queued_reset_sgl,
7332 						     bdev_nvme_queued_next_sge, md, 0, 0);
7333 	}
7334 
7335 	if (rc != 0 && rc != -ENOMEM) {
7336 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
7337 	}
7338 	return rc;
7339 }
7340 
7341 static int
7342 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7343 		       void *md, uint64_t lba_count, uint64_t zslba,
7344 		       uint32_t flags)
7345 {
7346 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7347 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7348 	int rc;
7349 
7350 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
7351 		      lba_count, zslba);
7352 
7353 	bio->iovs = iov;
7354 	bio->iovcnt = iovcnt;
7355 	bio->iovpos = 0;
7356 	bio->iov_offset = 0;
7357 
7358 	if (iovcnt == 1) {
7359 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
7360 						       lba_count,
7361 						       bdev_nvme_zone_appendv_done, bio,
7362 						       flags,
7363 						       0, 0);
7364 	} else {
7365 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
7366 							bdev_nvme_zone_appendv_done, bio, flags,
7367 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7368 							md, 0, 0);
7369 	}
7370 
7371 	if (rc != 0 && rc != -ENOMEM) {
7372 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
7373 	}
7374 	return rc;
7375 }
7376 
7377 static int
7378 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7379 		   void *md, uint64_t lba_count, uint64_t lba,
7380 		   uint32_t flags)
7381 {
7382 	int rc;
7383 
7384 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7385 		      lba_count, lba);
7386 
7387 	bio->iovs = iov;
7388 	bio->iovcnt = iovcnt;
7389 	bio->iovpos = 0;
7390 	bio->iov_offset = 0;
7391 
7392 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
7393 					       bio->io_path->qpair->qpair,
7394 					       lba, lba_count,
7395 					       bdev_nvme_comparev_done, bio, flags,
7396 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7397 					       md, 0, 0);
7398 
7399 	if (rc != 0 && rc != -ENOMEM) {
7400 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
7401 	}
7402 	return rc;
7403 }
7404 
7405 static int
7406 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
7407 			      struct iovec *write_iov, int write_iovcnt,
7408 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
7409 {
7410 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7411 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7412 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7413 	int rc;
7414 
7415 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7416 		      lba_count, lba);
7417 
7418 	bio->iovs = cmp_iov;
7419 	bio->iovcnt = cmp_iovcnt;
7420 	bio->iovpos = 0;
7421 	bio->iov_offset = 0;
7422 	bio->fused_iovs = write_iov;
7423 	bio->fused_iovcnt = write_iovcnt;
7424 	bio->fused_iovpos = 0;
7425 	bio->fused_iov_offset = 0;
7426 
7427 	if (bdev_io->num_retries == 0) {
7428 		bio->first_fused_submitted = false;
7429 		bio->first_fused_completed = false;
7430 	}
7431 
7432 	if (!bio->first_fused_submitted) {
7433 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7434 		memset(&bio->cpl, 0, sizeof(bio->cpl));
7435 
7436 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
7437 						       bdev_nvme_comparev_and_writev_done, bio, flags,
7438 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
7439 		if (rc == 0) {
7440 			bio->first_fused_submitted = true;
7441 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7442 		} else {
7443 			if (rc != -ENOMEM) {
7444 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
7445 			}
7446 			return rc;
7447 		}
7448 	}
7449 
7450 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
7451 
7452 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7453 					     bdev_nvme_comparev_and_writev_done, bio, flags,
7454 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
7455 	if (rc != 0 && rc != -ENOMEM) {
7456 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
7457 		rc = 0;
7458 	}
7459 
7460 	return rc;
7461 }
7462 
7463 static int
7464 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
7465 {
7466 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
7467 	struct spdk_nvme_dsm_range *range;
7468 	uint64_t offset, remaining;
7469 	uint64_t num_ranges_u64;
7470 	uint16_t num_ranges;
7471 	int rc;
7472 
7473 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
7474 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7475 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
7476 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
7477 		return -EINVAL;
7478 	}
7479 	num_ranges = (uint16_t)num_ranges_u64;
7480 
7481 	offset = offset_blocks;
7482 	remaining = num_blocks;
7483 	range = &dsm_ranges[0];
7484 
7485 	/* Fill max-size ranges until the remaining blocks fit into one range */
7486 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
7487 		range->attributes.raw = 0;
7488 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7489 		range->starting_lba = offset;
7490 
7491 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7492 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7493 		range++;
7494 	}
7495 
7496 	/* Final range describes the remaining blocks */
7497 	range->attributes.raw = 0;
7498 	range->length = remaining;
7499 	range->starting_lba = offset;
7500 
7501 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
7502 			bio->io_path->qpair->qpair,
7503 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
7504 			dsm_ranges, num_ranges,
7505 			bdev_nvme_queued_done, bio);
7506 
7507 	return rc;
7508 }
7509 
7510 static int
7511 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
7512 {
7513 	if (num_blocks > UINT16_MAX + 1) {
7514 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
7515 		return -EINVAL;
7516 	}
7517 
7518 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
7519 					     bio->io_path->qpair->qpair,
7520 					     offset_blocks, num_blocks,
7521 					     bdev_nvme_queued_done, bio,
7522 					     0);
7523 }
7524 
7525 static int
7526 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
7527 			struct spdk_bdev_zone_info *info)
7528 {
7529 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7530 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7531 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7532 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7533 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
7534 
7535 	if (zone_id % zone_size != 0) {
7536 		return -EINVAL;
7537 	}
7538 
7539 	if (num_zones > total_zones || !num_zones) {
7540 		return -EINVAL;
7541 	}
7542 
7543 	assert(!bio->zone_report_buf);
7544 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
7545 	if (!bio->zone_report_buf) {
7546 		return -ENOMEM;
7547 	}
7548 
7549 	bio->handled_zones = 0;
7550 
7551 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
7552 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
7553 					  bdev_nvme_get_zone_info_done, bio);
7554 }
7555 
7556 static int
7557 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
7558 			  enum spdk_bdev_zone_action action)
7559 {
7560 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7561 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7562 
7563 	switch (action) {
7564 	case SPDK_BDEV_ZONE_CLOSE:
7565 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
7566 						bdev_nvme_zone_management_done, bio);
7567 	case SPDK_BDEV_ZONE_FINISH:
7568 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
7569 						 bdev_nvme_zone_management_done, bio);
7570 	case SPDK_BDEV_ZONE_OPEN:
7571 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
7572 					       bdev_nvme_zone_management_done, bio);
7573 	case SPDK_BDEV_ZONE_RESET:
7574 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
7575 						bdev_nvme_zone_management_done, bio);
7576 	case SPDK_BDEV_ZONE_OFFLINE:
7577 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
7578 						  bdev_nvme_zone_management_done, bio);
7579 	default:
7580 		return -EINVAL;
7581 	}
7582 }
7583 
7584 static void
7585 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
7586 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
7587 {
7588 	struct nvme_io_path *io_path;
7589 	struct nvme_ctrlr *nvme_ctrlr;
7590 	uint32_t max_xfer_size;
7591 	int rc = -ENXIO;
7592 
7593 	/* Choose the first ctrlr which is not failed. */
7594 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
7595 		nvme_ctrlr = io_path->qpair->ctrlr;
7596 
7597 		/* We should skip any unavailable nvme_ctrlr rather than checking
7598 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
7599 		 */
7600 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
7601 			continue;
7602 		}
7603 
7604 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
7605 
7606 		if (nbytes > max_xfer_size) {
7607 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
7608 			rc = -EINVAL;
7609 			goto err;
7610 		}
7611 
7612 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
7613 						   bdev_nvme_admin_passthru_done, bio);
7614 		if (rc == 0) {
7615 			return;
7616 		}
7617 	}
7618 
7619 err:
7620 	bdev_nvme_admin_complete(bio, rc);
7621 }
7622 
7623 static int
7624 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
7625 		      void *buf, size_t nbytes)
7626 {
7627 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7628 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7629 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
7630 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
7631 
7632 	if (nbytes > max_xfer_size) {
7633 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
7634 		return -EINVAL;
7635 	}
7636 
7637 	/*
7638 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
7639 	 * so fill it out automatically.
7640 	 */
7641 	cmd->nsid = spdk_nvme_ns_get_id(ns);
7642 
7643 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
7644 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
7645 }
7646 
7647 static int
7648 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
7649 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
7650 {
7651 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7652 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7653 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
7654 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
7655 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
7656 
7657 	if (nbytes > max_xfer_size) {
7658 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
7659 		return -EINVAL;
7660 	}
7661 
7662 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
7663 		SPDK_ERRLOG("invalid meta data buffer size\n");
7664 		return -EINVAL;
7665 	}
7666 
7667 	/*
7668 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
7669 	 * so fill it out automatically.
7670 	 */
7671 	cmd->nsid = spdk_nvme_ns_get_id(ns);
7672 
7673 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
7674 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
7675 }
7676 
7677 static void
7678 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
7679 		struct nvme_bdev_io *bio_to_abort)
7680 {
7681 	struct nvme_io_path *io_path;
7682 	int rc = 0;
7683 
7684 	rc = bdev_nvme_abort_retry_io(nbdev_ch, bio_to_abort);
7685 	if (rc == 0) {
7686 		bdev_nvme_admin_complete(bio, 0);
7687 		return;
7688 	}
7689 
7690 	io_path = bio_to_abort->io_path;
7691 	if (io_path != NULL) {
7692 		rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
7693 						   io_path->qpair->qpair,
7694 						   bio_to_abort,
7695 						   bdev_nvme_abort_done, bio);
7696 	} else {
7697 		STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
7698 			rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
7699 							   NULL,
7700 							   bio_to_abort,
7701 							   bdev_nvme_abort_done, bio);
7702 
7703 			if (rc != -ENOENT) {
7704 				break;
7705 			}
7706 		}
7707 	}
7708 
7709 	if (rc != 0) {
7710 		/* If no command was found or there was any error, complete the abort
7711 		 * request with failure.
7712 		 */
7713 		bdev_nvme_admin_complete(bio, rc);
7714 	}
7715 }
7716 
7717 static int
7718 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks,
7719 	       uint64_t num_blocks)
7720 {
7721 	struct spdk_nvme_scc_source_range range = {
7722 		.slba = src_offset_blocks,
7723 		.nlb = num_blocks - 1
7724 	};
7725 
7726 	return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns,
7727 				     bio->io_path->qpair->qpair,
7728 				     &range, 1, dst_offset_blocks,
7729 				     bdev_nvme_queued_done, bio);
7730 }
7731 
7732 static void
7733 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
7734 {
7735 	const char	*action;
7736 
7737 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
7738 		action = "reset";
7739 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
7740 		action = "abort";
7741 	} else {
7742 		action = "none";
7743 	}
7744 
7745 	spdk_json_write_object_begin(w);
7746 
7747 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
7748 
7749 	spdk_json_write_named_object_begin(w, "params");
7750 	spdk_json_write_named_string(w, "action_on_timeout", action);
7751 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
7752 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
7753 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
7754 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
7755 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
7756 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
7757 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
7758 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
7759 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
7760 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
7761 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
7762 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
7763 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
7764 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
7765 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
7766 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
7767 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
7768 	spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids);
7769 	spdk_json_write_named_uint8(w, "transport_tos", g_opts.transport_tos);
7770 	spdk_json_write_named_bool(w, "io_path_stat", g_opts.io_path_stat);
7771 	spdk_json_write_object_end(w);
7772 
7773 	spdk_json_write_object_end(w);
7774 }
7775 
7776 static void
7777 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
7778 {
7779 	struct spdk_nvme_transport_id trid;
7780 
7781 	spdk_json_write_object_begin(w);
7782 
7783 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
7784 
7785 	spdk_json_write_named_object_begin(w, "params");
7786 	spdk_json_write_named_string(w, "name", ctx->name);
7787 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
7788 
7789 	trid = ctx->trid;
7790 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
7791 	nvme_bdev_dump_trid_json(&trid, w);
7792 
7793 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
7794 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
7795 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
7796 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
7797 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
7798 	spdk_json_write_object_end(w);
7799 
7800 	spdk_json_write_object_end(w);
7801 }
7802 
7803 static void
7804 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
7805 		       struct nvme_ctrlr *nvme_ctrlr)
7806 {
7807 	struct spdk_nvme_transport_id	*trid;
7808 	const struct spdk_nvme_ctrlr_opts *opts;
7809 
7810 	if (nvme_ctrlr->opts.from_discovery_service) {
7811 		/* Do not emit an RPC for this - it will be implicitly
7812 		 * covered by a separate bdev_nvme_start_discovery or
7813 		 * bdev_nvme_start_mdns_discovery RPC.
7814 		 */
7815 		return;
7816 	}
7817 
7818 	trid = &nvme_ctrlr->active_path_id->trid;
7819 
7820 	spdk_json_write_object_begin(w);
7821 
7822 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
7823 
7824 	spdk_json_write_named_object_begin(w, "params");
7825 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
7826 	nvme_bdev_dump_trid_json(trid, w);
7827 	spdk_json_write_named_bool(w, "prchk_reftag",
7828 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
7829 	spdk_json_write_named_bool(w, "prchk_guard",
7830 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
7831 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
7832 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
7833 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
7834 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
7835 
7836 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
7837 	spdk_json_write_named_bool(w, "hdgst", opts->header_digest);
7838 	spdk_json_write_named_bool(w, "ddgst", opts->data_digest);
7839 
7840 	spdk_json_write_object_end(w);
7841 
7842 	spdk_json_write_object_end(w);
7843 }
7844 
7845 static void
7846 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
7847 {
7848 	spdk_json_write_object_begin(w);
7849 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
7850 
7851 	spdk_json_write_named_object_begin(w, "params");
7852 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
7853 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
7854 	spdk_json_write_object_end(w);
7855 
7856 	spdk_json_write_object_end(w);
7857 }
7858 
7859 static int
7860 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
7861 {
7862 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
7863 	struct nvme_ctrlr	*nvme_ctrlr;
7864 	struct discovery_ctx	*ctx;
7865 
7866 	bdev_nvme_opts_config_json(w);
7867 
7868 	pthread_mutex_lock(&g_bdev_nvme_mutex);
7869 
7870 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
7871 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
7872 			nvme_ctrlr_config_json(w, nvme_ctrlr);
7873 		}
7874 	}
7875 
7876 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7877 		if (!ctx->from_mdns_discovery_service) {
7878 			bdev_nvme_discovery_config_json(w, ctx);
7879 		}
7880 	}
7881 
7882 	bdev_nvme_mdns_discovery_config_json(w);
7883 
7884 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
7885 	 * before enabling hotplug poller.
7886 	 */
7887 	bdev_nvme_hotplug_config_json(w);
7888 
7889 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
7890 	return 0;
7891 }
7892 
7893 struct spdk_nvme_ctrlr *
7894 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
7895 {
7896 	struct nvme_bdev *nbdev;
7897 	struct nvme_ns *nvme_ns;
7898 
7899 	if (!bdev || bdev->module != &nvme_if) {
7900 		return NULL;
7901 	}
7902 
7903 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
7904 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
7905 	assert(nvme_ns != NULL);
7906 
7907 	return nvme_ns->ctrlr->ctrlr;
7908 }
7909 
7910 void
7911 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
7912 {
7913 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
7914 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
7915 	const struct spdk_nvme_ctrlr_data *cdata;
7916 	const struct spdk_nvme_transport_id *trid;
7917 	const char *adrfam_str;
7918 
7919 	spdk_json_write_object_begin(w);
7920 
7921 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
7922 
7923 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
7924 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
7925 
7926 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
7927 	spdk_json_write_named_bool(w, "current", io_path->nbdev_ch != NULL &&
7928 				   io_path == io_path->nbdev_ch->current_io_path);
7929 	spdk_json_write_named_bool(w, "connected", nvme_qpair_is_connected(io_path->qpair));
7930 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
7931 
7932 	spdk_json_write_named_object_begin(w, "transport");
7933 	spdk_json_write_named_string(w, "trtype", trid->trstring);
7934 	spdk_json_write_named_string(w, "traddr", trid->traddr);
7935 	if (trid->trsvcid[0] != '\0') {
7936 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
7937 	}
7938 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
7939 	if (adrfam_str) {
7940 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
7941 	}
7942 	spdk_json_write_object_end(w);
7943 
7944 	spdk_json_write_object_end(w);
7945 }
7946 
7947 void
7948 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
7949 {
7950 	struct discovery_ctx *ctx;
7951 	struct discovery_entry_ctx *entry_ctx;
7952 
7953 	spdk_json_write_array_begin(w);
7954 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7955 		spdk_json_write_object_begin(w);
7956 		spdk_json_write_named_string(w, "name", ctx->name);
7957 
7958 		spdk_json_write_named_object_begin(w, "trid");
7959 		nvme_bdev_dump_trid_json(&ctx->trid, w);
7960 		spdk_json_write_object_end(w);
7961 
7962 		spdk_json_write_named_array_begin(w, "referrals");
7963 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
7964 			spdk_json_write_object_begin(w);
7965 			spdk_json_write_named_object_begin(w, "trid");
7966 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
7967 			spdk_json_write_object_end(w);
7968 			spdk_json_write_object_end(w);
7969 		}
7970 		spdk_json_write_array_end(w);
7971 
7972 		spdk_json_write_object_end(w);
7973 	}
7974 	spdk_json_write_array_end(w);
7975 }
7976 
7977 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
7978 
7979 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
7980 {
7981 	struct spdk_trace_tpoint_opts opts[] = {
7982 		{
7983 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
7984 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 1,
7985 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
7986 		},
7987 		{
7988 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
7989 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 0,
7990 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
7991 		}
7992 	};
7993 
7994 
7995 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
7996 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
7997 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
7998 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
7999 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8000 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8001 }
8002