xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision 6007401f83afbc600cae4908aa1e29a3ebb7940b)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  *   Copyright (c) 2022 Dell Inc, or its subsidiaries. All rights reserved.
6  */
7 
8 #include "spdk/stdinc.h"
9 
10 #include "bdev_nvme.h"
11 
12 #include "spdk/accel.h"
13 #include "spdk/config.h"
14 #include "spdk/endian.h"
15 #include "spdk/bdev.h"
16 #include "spdk/json.h"
17 #include "spdk/keyring.h"
18 #include "spdk/likely.h"
19 #include "spdk/nvme.h"
20 #include "spdk/nvme_ocssd.h"
21 #include "spdk/nvme_zns.h"
22 #include "spdk/opal.h"
23 #include "spdk/thread.h"
24 #include "spdk/trace.h"
25 #include "spdk/string.h"
26 #include "spdk/util.h"
27 #include "spdk/uuid.h"
28 
29 #include "spdk/bdev_module.h"
30 #include "spdk/log.h"
31 
32 #include "spdk_internal/usdt.h"
33 #include "spdk_internal/trace_defs.h"
34 
35 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
36 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
37 
38 #define NSID_STR_LEN 10
39 
40 #define SPDK_CONTROLLER_NAME_MAX 512
41 
42 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
43 
44 struct nvme_bdev_io {
45 	/** array of iovecs to transfer. */
46 	struct iovec *iovs;
47 
48 	/** Number of iovecs in iovs array. */
49 	int iovcnt;
50 
51 	/** Current iovec position. */
52 	int iovpos;
53 
54 	/** Offset in current iovec. */
55 	uint32_t iov_offset;
56 
57 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
58 	 *  being reset in a reset I/O.
59 	 */
60 	struct nvme_io_path *io_path;
61 
62 	/** array of iovecs to transfer. */
63 	struct iovec *fused_iovs;
64 
65 	/** Number of iovecs in iovs array. */
66 	int fused_iovcnt;
67 
68 	/** Current iovec position. */
69 	int fused_iovpos;
70 
71 	/** Offset in current iovec. */
72 	uint32_t fused_iov_offset;
73 
74 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
75 	struct spdk_nvme_cpl cpl;
76 
77 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
78 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
79 
80 	/** Keeps track if first of fused commands was submitted */
81 	bool first_fused_submitted;
82 
83 	/** Keeps track if first of fused commands was completed */
84 	bool first_fused_completed;
85 
86 	/** Temporary pointer to zone report buffer */
87 	struct spdk_nvme_zns_zone_report *zone_report_buf;
88 
89 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
90 	uint64_t handled_zones;
91 
92 	/** Expiration value in ticks to retry the current I/O. */
93 	uint64_t retry_ticks;
94 
95 	/* How many times the current I/O was retried. */
96 	int32_t retry_count;
97 
98 	/* Current tsc at submit time. */
99 	uint64_t submit_tsc;
100 
101 	/* Used to put nvme_bdev_io into the list */
102 	TAILQ_ENTRY(nvme_bdev_io) retry_link;
103 };
104 
105 struct nvme_probe_skip_entry {
106 	struct spdk_nvme_transport_id		trid;
107 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
108 };
109 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
110 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
111 			g_skipped_nvme_ctrlrs);
112 
113 #define BDEV_NVME_DEFAULT_DIGESTS (SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA256) | \
114 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA384) | \
115 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA512))
116 
117 #define BDEV_NVME_DEFAULT_DHGROUPS (SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_NULL) | \
118 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_2048) | \
119 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_3072) | \
120 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_4096) | \
121 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_6144) | \
122 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_8192))
123 
124 static struct spdk_bdev_nvme_opts g_opts = {
125 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
126 	.timeout_us = 0,
127 	.timeout_admin_us = 0,
128 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
129 	.transport_retry_count = 4,
130 	.arbitration_burst = 0,
131 	.low_priority_weight = 0,
132 	.medium_priority_weight = 0,
133 	.high_priority_weight = 0,
134 	.nvme_adminq_poll_period_us = 10000ULL,
135 	.nvme_ioq_poll_period_us = 0,
136 	.io_queue_requests = 0,
137 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
138 	.bdev_retry_count = 3,
139 	.transport_ack_timeout = 0,
140 	.ctrlr_loss_timeout_sec = 0,
141 	.reconnect_delay_sec = 0,
142 	.fast_io_fail_timeout_sec = 0,
143 	.disable_auto_failback = false,
144 	.generate_uuids = false,
145 	.transport_tos = 0,
146 	.nvme_error_stat = false,
147 	.io_path_stat = false,
148 	.allow_accel_sequence = false,
149 	.dhchap_digests = BDEV_NVME_DEFAULT_DIGESTS,
150 	.dhchap_dhgroups = BDEV_NVME_DEFAULT_DHGROUPS,
151 };
152 
153 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
154 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
155 
156 static int g_hot_insert_nvme_controller_index = 0;
157 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
158 static bool g_nvme_hotplug_enabled = false;
159 struct spdk_thread *g_bdev_nvme_init_thread;
160 static struct spdk_poller *g_hotplug_poller;
161 static struct spdk_poller *g_hotplug_probe_poller;
162 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
163 
164 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
165 		struct nvme_async_probe_ctx *ctx);
166 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
167 		struct nvme_async_probe_ctx *ctx);
168 static int bdev_nvme_library_init(void);
169 static void bdev_nvme_library_fini(void);
170 static void _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch,
171 				      struct spdk_bdev_io *bdev_io);
172 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
173 				     struct spdk_bdev_io *bdev_io);
174 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
175 			   void *md, uint64_t lba_count, uint64_t lba,
176 			   uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
177 			   struct spdk_accel_sequence *seq);
178 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
179 				 void *md, uint64_t lba_count, uint64_t lba);
180 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
181 			    void *md, uint64_t lba_count, uint64_t lba,
182 			    uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
183 			    struct spdk_accel_sequence *seq,
184 			    union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13);
185 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
186 				  void *md, uint64_t lba_count,
187 				  uint64_t zslba, uint32_t flags);
188 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
189 			      void *md, uint64_t lba_count, uint64_t lba,
190 			      uint32_t flags);
191 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
192 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
193 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
194 		uint32_t flags);
195 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
196 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
197 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
198 				     enum spdk_bdev_zone_action action);
199 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
200 				     struct nvme_bdev_io *bio,
201 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
202 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
203 				 void *buf, size_t nbytes);
204 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
205 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
206 static int bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
207 				     struct iovec *iov, int iovcnt, size_t nbytes,
208 				     void *md_buf, size_t md_len);
209 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
210 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
211 static void bdev_nvme_reset_io(struct nvme_bdev *nbdev, struct nvme_bdev_io *bio);
212 static int bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
213 static int bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
214 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
215 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
216 
217 static struct nvme_ns *nvme_ns_alloc(void);
218 static void nvme_ns_free(struct nvme_ns *ns);
219 
220 static int
221 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
222 {
223 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
224 }
225 
226 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
227 
228 struct spdk_nvme_qpair *
229 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
230 {
231 	struct nvme_ctrlr_channel *ctrlr_ch;
232 
233 	assert(ctrlr_io_ch != NULL);
234 
235 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
236 
237 	return ctrlr_ch->qpair->qpair;
238 }
239 
240 static int
241 bdev_nvme_get_ctx_size(void)
242 {
243 	return sizeof(struct nvme_bdev_io);
244 }
245 
246 static struct spdk_bdev_module nvme_if = {
247 	.name = "nvme",
248 	.async_fini = true,
249 	.module_init = bdev_nvme_library_init,
250 	.module_fini = bdev_nvme_library_fini,
251 	.config_json = bdev_nvme_config_json,
252 	.get_ctx_size = bdev_nvme_get_ctx_size,
253 
254 };
255 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
256 
257 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
258 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
259 bool g_bdev_nvme_module_finish;
260 
261 struct nvme_bdev_ctrlr *
262 nvme_bdev_ctrlr_get_by_name(const char *name)
263 {
264 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
265 
266 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
267 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
268 			break;
269 		}
270 	}
271 
272 	return nbdev_ctrlr;
273 }
274 
275 static struct nvme_ctrlr *
276 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
277 			  const struct spdk_nvme_transport_id *trid, const char *hostnqn)
278 {
279 	const struct spdk_nvme_ctrlr_opts *opts;
280 	struct nvme_ctrlr *nvme_ctrlr;
281 
282 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
283 		opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
284 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0 &&
285 		    strcmp(hostnqn, opts->hostnqn) == 0) {
286 			break;
287 		}
288 	}
289 
290 	return nvme_ctrlr;
291 }
292 
293 struct nvme_ctrlr *
294 nvme_bdev_ctrlr_get_ctrlr_by_id(struct nvme_bdev_ctrlr *nbdev_ctrlr,
295 				uint16_t cntlid)
296 {
297 	struct nvme_ctrlr *nvme_ctrlr;
298 	const struct spdk_nvme_ctrlr_data *cdata;
299 
300 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
301 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
302 		if (cdata->cntlid == cntlid) {
303 			break;
304 		}
305 	}
306 
307 	return nvme_ctrlr;
308 }
309 
310 static struct nvme_bdev *
311 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
312 {
313 	struct nvme_bdev *bdev;
314 
315 	pthread_mutex_lock(&g_bdev_nvme_mutex);
316 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
317 		if (bdev->nsid == nsid) {
318 			break;
319 		}
320 	}
321 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
322 
323 	return bdev;
324 }
325 
326 struct nvme_ns *
327 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
328 {
329 	struct nvme_ns ns;
330 
331 	assert(nsid > 0);
332 
333 	ns.id = nsid;
334 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
335 }
336 
337 struct nvme_ns *
338 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
339 {
340 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
341 }
342 
343 struct nvme_ns *
344 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
345 {
346 	if (ns == NULL) {
347 		return NULL;
348 	}
349 
350 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
351 }
352 
353 static struct nvme_ctrlr *
354 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid, const char *hostnqn)
355 {
356 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
357 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
358 
359 	pthread_mutex_lock(&g_bdev_nvme_mutex);
360 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
361 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid, hostnqn);
362 		if (nvme_ctrlr != NULL) {
363 			break;
364 		}
365 	}
366 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
367 
368 	return nvme_ctrlr;
369 }
370 
371 struct nvme_ctrlr *
372 nvme_ctrlr_get_by_name(const char *name)
373 {
374 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
375 	struct nvme_ctrlr *nvme_ctrlr = NULL;
376 
377 	if (name == NULL) {
378 		return NULL;
379 	}
380 
381 	pthread_mutex_lock(&g_bdev_nvme_mutex);
382 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
383 	if (nbdev_ctrlr != NULL) {
384 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
385 	}
386 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
387 
388 	return nvme_ctrlr;
389 }
390 
391 void
392 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
393 {
394 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
395 
396 	pthread_mutex_lock(&g_bdev_nvme_mutex);
397 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
398 		fn(nbdev_ctrlr, ctx);
399 	}
400 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
401 }
402 
403 struct nvme_ctrlr_channel_iter {
404 	nvme_ctrlr_for_each_channel_msg fn;
405 	nvme_ctrlr_for_each_channel_done cpl;
406 	struct spdk_io_channel_iter *i;
407 	void *ctx;
408 };
409 
410 void
411 nvme_ctrlr_for_each_channel_continue(struct nvme_ctrlr_channel_iter *iter, int status)
412 {
413 	spdk_for_each_channel_continue(iter->i, status);
414 }
415 
416 static void
417 nvme_ctrlr_each_channel_msg(struct spdk_io_channel_iter *i)
418 {
419 	struct nvme_ctrlr_channel_iter *iter = spdk_io_channel_iter_get_ctx(i);
420 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
421 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
422 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
423 
424 	iter->i = i;
425 	iter->fn(iter, nvme_ctrlr, ctrlr_ch, iter->ctx);
426 }
427 
428 static void
429 nvme_ctrlr_each_channel_cpl(struct spdk_io_channel_iter *i, int status)
430 {
431 	struct nvme_ctrlr_channel_iter *iter = spdk_io_channel_iter_get_ctx(i);
432 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
433 
434 	iter->i = i;
435 	iter->cpl(nvme_ctrlr, iter->ctx, status);
436 
437 	free(iter);
438 }
439 
440 void
441 nvme_ctrlr_for_each_channel(struct nvme_ctrlr *nvme_ctrlr,
442 			    nvme_ctrlr_for_each_channel_msg fn, void *ctx,
443 			    nvme_ctrlr_for_each_channel_done cpl)
444 {
445 	struct nvme_ctrlr_channel_iter *iter;
446 
447 	assert(nvme_ctrlr != NULL && fn != NULL);
448 
449 	iter = calloc(1, sizeof(struct nvme_ctrlr_channel_iter));
450 	if (iter == NULL) {
451 		SPDK_ERRLOG("Unable to allocate iterator\n");
452 		assert(false);
453 		return;
454 	}
455 
456 	iter->fn = fn;
457 	iter->cpl = cpl;
458 	iter->ctx = ctx;
459 
460 	spdk_for_each_channel(nvme_ctrlr, nvme_ctrlr_each_channel_msg,
461 			      iter, nvme_ctrlr_each_channel_cpl);
462 }
463 
464 struct nvme_bdev_channel_iter {
465 	nvme_bdev_for_each_channel_msg fn;
466 	nvme_bdev_for_each_channel_done cpl;
467 	struct spdk_io_channel_iter *i;
468 	void *ctx;
469 };
470 
471 void
472 nvme_bdev_for_each_channel_continue(struct nvme_bdev_channel_iter *iter, int status)
473 {
474 	spdk_for_each_channel_continue(iter->i, status);
475 }
476 
477 static void
478 nvme_bdev_each_channel_msg(struct spdk_io_channel_iter *i)
479 {
480 	struct nvme_bdev_channel_iter *iter = spdk_io_channel_iter_get_ctx(i);
481 	struct nvme_bdev *nbdev = spdk_io_channel_iter_get_io_device(i);
482 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
483 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
484 
485 	iter->i = i;
486 	iter->fn(iter, nbdev, nbdev_ch, iter->ctx);
487 }
488 
489 static void
490 nvme_bdev_each_channel_cpl(struct spdk_io_channel_iter *i, int status)
491 {
492 	struct nvme_bdev_channel_iter *iter = spdk_io_channel_iter_get_ctx(i);
493 	struct nvme_bdev *nbdev = spdk_io_channel_iter_get_io_device(i);
494 
495 	iter->i = i;
496 	iter->cpl(nbdev, iter->ctx, status);
497 
498 	free(iter);
499 }
500 
501 void
502 nvme_bdev_for_each_channel(struct nvme_bdev *nbdev,
503 			   nvme_bdev_for_each_channel_msg fn, void *ctx,
504 			   nvme_bdev_for_each_channel_done cpl)
505 {
506 	struct nvme_bdev_channel_iter *iter;
507 
508 	assert(nbdev != NULL && fn != NULL);
509 
510 	iter = calloc(1, sizeof(struct nvme_bdev_channel_iter));
511 	if (iter == NULL) {
512 		SPDK_ERRLOG("Unable to allocate iterator\n");
513 		assert(false);
514 		return;
515 	}
516 
517 	iter->fn = fn;
518 	iter->cpl = cpl;
519 	iter->ctx = ctx;
520 
521 	spdk_for_each_channel(nbdev, nvme_bdev_each_channel_msg, iter,
522 			      nvme_bdev_each_channel_cpl);
523 }
524 
525 void
526 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
527 {
528 	const char *trtype_str;
529 	const char *adrfam_str;
530 
531 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
532 	if (trtype_str) {
533 		spdk_json_write_named_string(w, "trtype", trtype_str);
534 	}
535 
536 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
537 	if (adrfam_str) {
538 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
539 	}
540 
541 	if (trid->traddr[0] != '\0') {
542 		spdk_json_write_named_string(w, "traddr", trid->traddr);
543 	}
544 
545 	if (trid->trsvcid[0] != '\0') {
546 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
547 	}
548 
549 	if (trid->subnqn[0] != '\0') {
550 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
551 	}
552 }
553 
554 static void
555 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
556 		       struct nvme_ctrlr *nvme_ctrlr)
557 {
558 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
559 	pthread_mutex_lock(&g_bdev_nvme_mutex);
560 
561 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
562 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
563 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
564 
565 		return;
566 	}
567 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
568 
569 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
570 
571 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
572 
573 	free(nbdev_ctrlr->name);
574 	free(nbdev_ctrlr);
575 }
576 
577 static void
578 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
579 {
580 	struct nvme_path_id *path_id, *tmp_path;
581 	struct nvme_ns *ns, *tmp_ns;
582 
583 	free(nvme_ctrlr->copied_ana_desc);
584 	spdk_free(nvme_ctrlr->ana_log_page);
585 
586 	if (nvme_ctrlr->opal_dev) {
587 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
588 		nvme_ctrlr->opal_dev = NULL;
589 	}
590 
591 	if (nvme_ctrlr->nbdev_ctrlr) {
592 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
593 	}
594 
595 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
596 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
597 		nvme_ns_free(ns);
598 	}
599 
600 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
601 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
602 		free(path_id);
603 	}
604 
605 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
606 	spdk_keyring_put_key(nvme_ctrlr->psk);
607 	spdk_keyring_put_key(nvme_ctrlr->dhchap_key);
608 	spdk_keyring_put_key(nvme_ctrlr->dhchap_ctrlr_key);
609 	free(nvme_ctrlr);
610 
611 	pthread_mutex_lock(&g_bdev_nvme_mutex);
612 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
613 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
614 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
615 		spdk_bdev_module_fini_done();
616 		return;
617 	}
618 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
619 }
620 
621 static int
622 nvme_detach_poller(void *arg)
623 {
624 	struct nvme_ctrlr *nvme_ctrlr = arg;
625 	int rc;
626 
627 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
628 	if (rc != -EAGAIN) {
629 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
630 		_nvme_ctrlr_delete(nvme_ctrlr);
631 	}
632 
633 	return SPDK_POLLER_BUSY;
634 }
635 
636 static void
637 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
638 {
639 	int rc;
640 
641 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
642 
643 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
644 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
645 
646 	/* If we got here, the reset/detach poller cannot be active */
647 	assert(nvme_ctrlr->reset_detach_poller == NULL);
648 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
649 					  nvme_ctrlr, 1000);
650 	if (nvme_ctrlr->reset_detach_poller == NULL) {
651 		SPDK_ERRLOG("Failed to register detach poller\n");
652 		goto error;
653 	}
654 
655 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
656 	if (rc != 0) {
657 		SPDK_ERRLOG("Failed to detach the NVMe controller\n");
658 		goto error;
659 	}
660 
661 	return;
662 error:
663 	/* We don't have a good way to handle errors here, so just do what we can and delete the
664 	 * controller without detaching the underlying NVMe device.
665 	 */
666 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
667 	_nvme_ctrlr_delete(nvme_ctrlr);
668 }
669 
670 static void
671 nvme_ctrlr_unregister_cb(void *io_device)
672 {
673 	struct nvme_ctrlr *nvme_ctrlr = io_device;
674 
675 	nvme_ctrlr_delete(nvme_ctrlr);
676 }
677 
678 static void
679 nvme_ctrlr_unregister(void *ctx)
680 {
681 	struct nvme_ctrlr *nvme_ctrlr = ctx;
682 
683 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
684 }
685 
686 static bool
687 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
688 {
689 	if (!nvme_ctrlr->destruct) {
690 		return false;
691 	}
692 
693 	if (nvme_ctrlr->ref > 0) {
694 		return false;
695 	}
696 
697 	if (nvme_ctrlr->resetting) {
698 		return false;
699 	}
700 
701 	if (nvme_ctrlr->ana_log_page_updating) {
702 		return false;
703 	}
704 
705 	if (nvme_ctrlr->io_path_cache_clearing) {
706 		return false;
707 	}
708 
709 	return true;
710 }
711 
712 static void
713 nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
714 {
715 	pthread_mutex_lock(&nvme_ctrlr->mutex);
716 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
717 
718 	assert(nvme_ctrlr->ref > 0);
719 	nvme_ctrlr->ref--;
720 
721 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
722 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
723 		return;
724 	}
725 
726 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
727 
728 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
729 }
730 
731 static void
732 bdev_nvme_clear_current_io_path(struct nvme_bdev_channel *nbdev_ch)
733 {
734 	nbdev_ch->current_io_path = NULL;
735 	nbdev_ch->rr_counter = 0;
736 }
737 
738 static struct nvme_io_path *
739 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
740 {
741 	struct nvme_io_path *io_path;
742 
743 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
744 		if (io_path->nvme_ns == nvme_ns) {
745 			break;
746 		}
747 	}
748 
749 	return io_path;
750 }
751 
752 static struct nvme_io_path *
753 nvme_io_path_alloc(void)
754 {
755 	struct nvme_io_path *io_path;
756 
757 	io_path = calloc(1, sizeof(*io_path));
758 	if (io_path == NULL) {
759 		SPDK_ERRLOG("Failed to alloc io_path.\n");
760 		return NULL;
761 	}
762 
763 	if (g_opts.io_path_stat) {
764 		io_path->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
765 		if (io_path->stat == NULL) {
766 			free(io_path);
767 			SPDK_ERRLOG("Failed to alloc io_path stat.\n");
768 			return NULL;
769 		}
770 		spdk_bdev_reset_io_stat(io_path->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
771 	}
772 
773 	return io_path;
774 }
775 
776 static void
777 nvme_io_path_free(struct nvme_io_path *io_path)
778 {
779 	free(io_path->stat);
780 	free(io_path);
781 }
782 
783 static int
784 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
785 {
786 	struct nvme_io_path *io_path;
787 	struct spdk_io_channel *ch;
788 	struct nvme_ctrlr_channel *ctrlr_ch;
789 	struct nvme_qpair *nvme_qpair;
790 
791 	io_path = nvme_io_path_alloc();
792 	if (io_path == NULL) {
793 		return -ENOMEM;
794 	}
795 
796 	io_path->nvme_ns = nvme_ns;
797 
798 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
799 	if (ch == NULL) {
800 		nvme_io_path_free(io_path);
801 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
802 		return -ENOMEM;
803 	}
804 
805 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
806 
807 	nvme_qpair = ctrlr_ch->qpair;
808 	assert(nvme_qpair != NULL);
809 
810 	io_path->qpair = nvme_qpair;
811 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
812 
813 	io_path->nbdev_ch = nbdev_ch;
814 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
815 
816 	bdev_nvme_clear_current_io_path(nbdev_ch);
817 
818 	return 0;
819 }
820 
821 static void
822 bdev_nvme_clear_retry_io_path(struct nvme_bdev_channel *nbdev_ch,
823 			      struct nvme_io_path *io_path)
824 {
825 	struct nvme_bdev_io *bio;
826 
827 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
828 		if (bio->io_path == io_path) {
829 			bio->io_path = NULL;
830 		}
831 	}
832 }
833 
834 static void
835 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
836 {
837 	struct spdk_io_channel *ch;
838 	struct nvme_qpair *nvme_qpair;
839 	struct nvme_ctrlr_channel *ctrlr_ch;
840 	struct nvme_bdev *nbdev;
841 
842 	nbdev = spdk_io_channel_get_io_device(spdk_io_channel_from_ctx(nbdev_ch));
843 
844 	/* Add the statistics to nvme_ns before this path is destroyed. */
845 	pthread_mutex_lock(&nbdev->mutex);
846 	if (nbdev->ref != 0 && io_path->nvme_ns->stat != NULL && io_path->stat != NULL) {
847 		spdk_bdev_add_io_stat(io_path->nvme_ns->stat, io_path->stat);
848 	}
849 	pthread_mutex_unlock(&nbdev->mutex);
850 
851 	bdev_nvme_clear_current_io_path(nbdev_ch);
852 	bdev_nvme_clear_retry_io_path(nbdev_ch, io_path);
853 
854 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
855 	io_path->nbdev_ch = NULL;
856 
857 	nvme_qpair = io_path->qpair;
858 	assert(nvme_qpair != NULL);
859 
860 	ctrlr_ch = nvme_qpair->ctrlr_ch;
861 	assert(ctrlr_ch != NULL);
862 
863 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
864 	spdk_put_io_channel(ch);
865 
866 	/* After an io_path is removed, I/Os submitted to it may complete and update statistics
867 	 * of the io_path. To avoid heap-use-after-free error from this case, do not free the
868 	 * io_path here but free the io_path when the associated qpair is freed. It is ensured
869 	 * that all I/Os submitted to the io_path are completed when the associated qpair is freed.
870 	 */
871 }
872 
873 static void
874 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
875 {
876 	struct nvme_io_path *io_path, *tmp_io_path;
877 
878 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
879 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
880 	}
881 }
882 
883 static int
884 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
885 {
886 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
887 	struct nvme_bdev *nbdev = io_device;
888 	struct nvme_ns *nvme_ns;
889 	int rc;
890 
891 	STAILQ_INIT(&nbdev_ch->io_path_list);
892 	TAILQ_INIT(&nbdev_ch->retry_io_list);
893 
894 	pthread_mutex_lock(&nbdev->mutex);
895 
896 	nbdev_ch->mp_policy = nbdev->mp_policy;
897 	nbdev_ch->mp_selector = nbdev->mp_selector;
898 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
899 
900 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
901 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
902 		if (rc != 0) {
903 			pthread_mutex_unlock(&nbdev->mutex);
904 
905 			_bdev_nvme_delete_io_paths(nbdev_ch);
906 			return rc;
907 		}
908 	}
909 	pthread_mutex_unlock(&nbdev->mutex);
910 
911 	return 0;
912 }
913 
914 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
915  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
916  */
917 static inline void
918 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
919 			const struct spdk_nvme_cpl *cpl)
920 {
921 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
922 			  (uintptr_t)bdev_io);
923 	if (cpl) {
924 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
925 	} else {
926 		spdk_bdev_io_complete(bdev_io, status);
927 	}
928 }
929 
930 static void bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch);
931 
932 static void
933 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
934 {
935 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
936 
937 	bdev_nvme_abort_retry_ios(nbdev_ch);
938 	_bdev_nvme_delete_io_paths(nbdev_ch);
939 }
940 
941 static inline bool
942 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
943 {
944 	switch (io_type) {
945 	case SPDK_BDEV_IO_TYPE_RESET:
946 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
947 	case SPDK_BDEV_IO_TYPE_ABORT:
948 		return true;
949 	default:
950 		break;
951 	}
952 
953 	return false;
954 }
955 
956 static inline bool
957 nvme_ns_is_active(struct nvme_ns *nvme_ns)
958 {
959 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
960 		return false;
961 	}
962 
963 	if (spdk_unlikely(nvme_ns->ns == NULL)) {
964 		return false;
965 	}
966 
967 	return true;
968 }
969 
970 static inline bool
971 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
972 {
973 	if (spdk_unlikely(!nvme_ns_is_active(nvme_ns))) {
974 		return false;
975 	}
976 
977 	switch (nvme_ns->ana_state) {
978 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
979 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
980 		return true;
981 	default:
982 		break;
983 	}
984 
985 	return false;
986 }
987 
988 static inline bool
989 nvme_qpair_is_connected(struct nvme_qpair *nvme_qpair)
990 {
991 	if (spdk_unlikely(nvme_qpair->qpair == NULL)) {
992 		return false;
993 	}
994 
995 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
996 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
997 		return false;
998 	}
999 
1000 	if (spdk_unlikely(nvme_qpair->ctrlr_ch->reset_iter != NULL)) {
1001 		return false;
1002 	}
1003 
1004 	return true;
1005 }
1006 
1007 static inline bool
1008 nvme_io_path_is_available(struct nvme_io_path *io_path)
1009 {
1010 	if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
1011 		return false;
1012 	}
1013 
1014 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
1015 		return false;
1016 	}
1017 
1018 	return true;
1019 }
1020 
1021 static inline bool
1022 nvme_ctrlr_is_failed(struct nvme_ctrlr *nvme_ctrlr)
1023 {
1024 	if (nvme_ctrlr->destruct) {
1025 		return true;
1026 	}
1027 
1028 	if (nvme_ctrlr->fast_io_fail_timedout) {
1029 		return true;
1030 	}
1031 
1032 	if (nvme_ctrlr->resetting) {
1033 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
1034 			return false;
1035 		} else {
1036 			return true;
1037 		}
1038 	}
1039 
1040 	if (nvme_ctrlr->reconnect_is_delayed) {
1041 		return false;
1042 	}
1043 
1044 	if (nvme_ctrlr->disabled) {
1045 		return true;
1046 	}
1047 
1048 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
1049 		return true;
1050 	} else {
1051 		return false;
1052 	}
1053 }
1054 
1055 static bool
1056 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
1057 {
1058 	if (nvme_ctrlr->destruct) {
1059 		return false;
1060 	}
1061 
1062 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
1063 		return false;
1064 	}
1065 
1066 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
1067 		return false;
1068 	}
1069 
1070 	if (nvme_ctrlr->disabled) {
1071 		return false;
1072 	}
1073 
1074 	return true;
1075 }
1076 
1077 /* Simulate circular linked list. */
1078 static inline struct nvme_io_path *
1079 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
1080 {
1081 	struct nvme_io_path *next_path;
1082 
1083 	if (prev_path != NULL) {
1084 		next_path = STAILQ_NEXT(prev_path, stailq);
1085 		if (next_path != NULL) {
1086 			return next_path;
1087 		}
1088 	}
1089 
1090 	return STAILQ_FIRST(&nbdev_ch->io_path_list);
1091 }
1092 
1093 static struct nvme_io_path *
1094 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1095 {
1096 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
1097 
1098 	start = nvme_io_path_get_next(nbdev_ch, nbdev_ch->current_io_path);
1099 
1100 	io_path = start;
1101 	do {
1102 		if (spdk_likely(nvme_io_path_is_available(io_path))) {
1103 			switch (io_path->nvme_ns->ana_state) {
1104 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
1105 				nbdev_ch->current_io_path = io_path;
1106 				return io_path;
1107 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1108 				if (non_optimized == NULL) {
1109 					non_optimized = io_path;
1110 				}
1111 				break;
1112 			default:
1113 				assert(false);
1114 				break;
1115 			}
1116 		}
1117 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
1118 	} while (io_path != start);
1119 
1120 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
1121 		/* We come here only if there is no optimized path. Cache even non_optimized
1122 		 * path for load balance across multiple non_optimized paths.
1123 		 */
1124 		nbdev_ch->current_io_path = non_optimized;
1125 	}
1126 
1127 	return non_optimized;
1128 }
1129 
1130 static struct nvme_io_path *
1131 _bdev_nvme_find_io_path_min_qd(struct nvme_bdev_channel *nbdev_ch)
1132 {
1133 	struct nvme_io_path *io_path;
1134 	struct nvme_io_path *optimized = NULL, *non_optimized = NULL;
1135 	uint32_t opt_min_qd = UINT32_MAX, non_opt_min_qd = UINT32_MAX;
1136 	uint32_t num_outstanding_reqs;
1137 
1138 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1139 		if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
1140 			/* The device is currently resetting. */
1141 			continue;
1142 		}
1143 
1144 		if (spdk_unlikely(!nvme_ns_is_active(io_path->nvme_ns))) {
1145 			continue;
1146 		}
1147 
1148 		num_outstanding_reqs = spdk_nvme_qpair_get_num_outstanding_reqs(io_path->qpair->qpair);
1149 		switch (io_path->nvme_ns->ana_state) {
1150 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
1151 			if (num_outstanding_reqs < opt_min_qd) {
1152 				opt_min_qd = num_outstanding_reqs;
1153 				optimized = io_path;
1154 			}
1155 			break;
1156 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1157 			if (num_outstanding_reqs < non_opt_min_qd) {
1158 				non_opt_min_qd = num_outstanding_reqs;
1159 				non_optimized = io_path;
1160 			}
1161 			break;
1162 		default:
1163 			break;
1164 		}
1165 	}
1166 
1167 	/* don't cache io path for BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH selector */
1168 	if (optimized != NULL) {
1169 		return optimized;
1170 	}
1171 
1172 	return non_optimized;
1173 }
1174 
1175 static inline struct nvme_io_path *
1176 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1177 {
1178 	if (spdk_likely(nbdev_ch->current_io_path != NULL)) {
1179 		if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE) {
1180 			return nbdev_ch->current_io_path;
1181 		} else if (nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1182 			if (++nbdev_ch->rr_counter < nbdev_ch->rr_min_io) {
1183 				return nbdev_ch->current_io_path;
1184 			}
1185 			nbdev_ch->rr_counter = 0;
1186 		}
1187 	}
1188 
1189 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE ||
1190 	    nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1191 		return _bdev_nvme_find_io_path(nbdev_ch);
1192 	} else {
1193 		return _bdev_nvme_find_io_path_min_qd(nbdev_ch);
1194 	}
1195 }
1196 
1197 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
1198  * or false otherwise.
1199  *
1200  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
1201  * is likely to be non-accessible now but may become accessible.
1202  *
1203  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
1204  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
1205  * when starting to reset it but it is set to failed when the reset failed. Hence, if
1206  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
1207  */
1208 static bool
1209 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
1210 {
1211 	struct nvme_io_path *io_path;
1212 
1213 	if (nbdev_ch->resetting) {
1214 		return false;
1215 	}
1216 
1217 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1218 		if (io_path->nvme_ns->ana_transition_timedout) {
1219 			continue;
1220 		}
1221 
1222 		if (nvme_qpair_is_connected(io_path->qpair) ||
1223 		    !nvme_ctrlr_is_failed(io_path->qpair->ctrlr)) {
1224 			return true;
1225 		}
1226 	}
1227 
1228 	return false;
1229 }
1230 
1231 static void
1232 bdev_nvme_retry_io(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
1233 {
1234 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1235 	struct spdk_io_channel *ch;
1236 
1237 	if (nbdev_io->io_path != NULL && nvme_io_path_is_available(nbdev_io->io_path)) {
1238 		_bdev_nvme_submit_request(nbdev_ch, bdev_io);
1239 	} else {
1240 		ch = spdk_io_channel_from_ctx(nbdev_ch);
1241 		bdev_nvme_submit_request(ch, bdev_io);
1242 	}
1243 }
1244 
1245 static int
1246 bdev_nvme_retry_ios(void *arg)
1247 {
1248 	struct nvme_bdev_channel *nbdev_ch = arg;
1249 	struct nvme_bdev_io *bio, *tmp_bio;
1250 	uint64_t now, delay_us;
1251 
1252 	now = spdk_get_ticks();
1253 
1254 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1255 		if (bio->retry_ticks > now) {
1256 			break;
1257 		}
1258 
1259 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1260 
1261 		bdev_nvme_retry_io(nbdev_ch, spdk_bdev_io_from_ctx(bio));
1262 	}
1263 
1264 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1265 
1266 	bio = TAILQ_FIRST(&nbdev_ch->retry_io_list);
1267 	if (bio != NULL) {
1268 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
1269 
1270 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1271 					    delay_us);
1272 	}
1273 
1274 	return SPDK_POLLER_BUSY;
1275 }
1276 
1277 static void
1278 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
1279 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
1280 {
1281 	struct nvme_bdev_io *tmp_bio;
1282 
1283 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
1284 
1285 	TAILQ_FOREACH_REVERSE(tmp_bio, &nbdev_ch->retry_io_list, retry_io_head, retry_link) {
1286 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1287 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bio, bio,
1288 					   retry_link);
1289 			return;
1290 		}
1291 	}
1292 
1293 	/* No earlier I/Os were found. This I/O must be the new head. */
1294 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bio, retry_link);
1295 
1296 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1297 
1298 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1299 				    delay_ms * 1000ULL);
1300 }
1301 
1302 static void
1303 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
1304 {
1305 	struct nvme_bdev_io *bio, *tmp_bio;
1306 
1307 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1308 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1309 		__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1310 	}
1311 
1312 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1313 }
1314 
1315 static int
1316 bdev_nvme_abort_retry_io(struct nvme_bdev_channel *nbdev_ch,
1317 			 struct nvme_bdev_io *bio_to_abort)
1318 {
1319 	struct nvme_bdev_io *bio;
1320 
1321 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
1322 		if (bio == bio_to_abort) {
1323 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1324 			__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1325 			return 0;
1326 		}
1327 	}
1328 
1329 	return -ENOENT;
1330 }
1331 
1332 static void
1333 bdev_nvme_update_nvme_error_stat(struct spdk_bdev_io *bdev_io, const struct spdk_nvme_cpl *cpl)
1334 {
1335 	struct nvme_bdev *nbdev;
1336 	uint16_t sct, sc;
1337 
1338 	assert(spdk_nvme_cpl_is_error(cpl));
1339 
1340 	nbdev = bdev_io->bdev->ctxt;
1341 
1342 	if (nbdev->err_stat == NULL) {
1343 		return;
1344 	}
1345 
1346 	sct = cpl->status.sct;
1347 	sc = cpl->status.sc;
1348 
1349 	pthread_mutex_lock(&nbdev->mutex);
1350 
1351 	nbdev->err_stat->status_type[sct]++;
1352 	switch (sct) {
1353 	case SPDK_NVME_SCT_GENERIC:
1354 	case SPDK_NVME_SCT_COMMAND_SPECIFIC:
1355 	case SPDK_NVME_SCT_MEDIA_ERROR:
1356 	case SPDK_NVME_SCT_PATH:
1357 		nbdev->err_stat->status[sct][sc]++;
1358 		break;
1359 	default:
1360 		break;
1361 	}
1362 
1363 	pthread_mutex_unlock(&nbdev->mutex);
1364 }
1365 
1366 static inline void
1367 bdev_nvme_update_io_path_stat(struct nvme_bdev_io *bio)
1368 {
1369 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1370 	uint64_t num_blocks = bdev_io->u.bdev.num_blocks;
1371 	uint32_t blocklen = bdev_io->bdev->blocklen;
1372 	struct spdk_bdev_io_stat *stat;
1373 	uint64_t tsc_diff;
1374 
1375 	if (bio->io_path->stat == NULL) {
1376 		return;
1377 	}
1378 
1379 	tsc_diff = spdk_get_ticks() - bio->submit_tsc;
1380 	stat = bio->io_path->stat;
1381 
1382 	switch (bdev_io->type) {
1383 	case SPDK_BDEV_IO_TYPE_READ:
1384 		stat->bytes_read += num_blocks * blocklen;
1385 		stat->num_read_ops++;
1386 		stat->read_latency_ticks += tsc_diff;
1387 		if (stat->max_read_latency_ticks < tsc_diff) {
1388 			stat->max_read_latency_ticks = tsc_diff;
1389 		}
1390 		if (stat->min_read_latency_ticks > tsc_diff) {
1391 			stat->min_read_latency_ticks = tsc_diff;
1392 		}
1393 		break;
1394 	case SPDK_BDEV_IO_TYPE_WRITE:
1395 		stat->bytes_written += num_blocks * blocklen;
1396 		stat->num_write_ops++;
1397 		stat->write_latency_ticks += tsc_diff;
1398 		if (stat->max_write_latency_ticks < tsc_diff) {
1399 			stat->max_write_latency_ticks = tsc_diff;
1400 		}
1401 		if (stat->min_write_latency_ticks > tsc_diff) {
1402 			stat->min_write_latency_ticks = tsc_diff;
1403 		}
1404 		break;
1405 	case SPDK_BDEV_IO_TYPE_UNMAP:
1406 		stat->bytes_unmapped += num_blocks * blocklen;
1407 		stat->num_unmap_ops++;
1408 		stat->unmap_latency_ticks += tsc_diff;
1409 		if (stat->max_unmap_latency_ticks < tsc_diff) {
1410 			stat->max_unmap_latency_ticks = tsc_diff;
1411 		}
1412 		if (stat->min_unmap_latency_ticks > tsc_diff) {
1413 			stat->min_unmap_latency_ticks = tsc_diff;
1414 		}
1415 		break;
1416 	case SPDK_BDEV_IO_TYPE_ZCOPY:
1417 		/* Track the data in the start phase only */
1418 		if (!bdev_io->u.bdev.zcopy.start) {
1419 			break;
1420 		}
1421 		if (bdev_io->u.bdev.zcopy.populate) {
1422 			stat->bytes_read += num_blocks * blocklen;
1423 			stat->num_read_ops++;
1424 			stat->read_latency_ticks += tsc_diff;
1425 			if (stat->max_read_latency_ticks < tsc_diff) {
1426 				stat->max_read_latency_ticks = tsc_diff;
1427 			}
1428 			if (stat->min_read_latency_ticks > tsc_diff) {
1429 				stat->min_read_latency_ticks = tsc_diff;
1430 			}
1431 		} else {
1432 			stat->bytes_written += num_blocks * blocklen;
1433 			stat->num_write_ops++;
1434 			stat->write_latency_ticks += tsc_diff;
1435 			if (stat->max_write_latency_ticks < tsc_diff) {
1436 				stat->max_write_latency_ticks = tsc_diff;
1437 			}
1438 			if (stat->min_write_latency_ticks > tsc_diff) {
1439 				stat->min_write_latency_ticks = tsc_diff;
1440 			}
1441 		}
1442 		break;
1443 	case SPDK_BDEV_IO_TYPE_COPY:
1444 		stat->bytes_copied += num_blocks * blocklen;
1445 		stat->num_copy_ops++;
1446 		stat->copy_latency_ticks += tsc_diff;
1447 		if (stat->max_copy_latency_ticks < tsc_diff) {
1448 			stat->max_copy_latency_ticks = tsc_diff;
1449 		}
1450 		if (stat->min_copy_latency_ticks > tsc_diff) {
1451 			stat->min_copy_latency_ticks = tsc_diff;
1452 		}
1453 		break;
1454 	default:
1455 		break;
1456 	}
1457 }
1458 
1459 static bool
1460 bdev_nvme_check_retry_io(struct nvme_bdev_io *bio,
1461 			 const struct spdk_nvme_cpl *cpl,
1462 			 struct nvme_bdev_channel *nbdev_ch,
1463 			 uint64_t *_delay_ms)
1464 {
1465 	struct nvme_io_path *io_path = bio->io_path;
1466 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1467 	const struct spdk_nvme_ctrlr_data *cdata;
1468 
1469 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1470 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1471 	    !nvme_io_path_is_available(io_path) ||
1472 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1473 		bdev_nvme_clear_current_io_path(nbdev_ch);
1474 		bio->io_path = NULL;
1475 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1476 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1477 				io_path->nvme_ns->ana_state_updating = true;
1478 			}
1479 		}
1480 		if (!any_io_path_may_become_available(nbdev_ch)) {
1481 			return false;
1482 		}
1483 		*_delay_ms = 0;
1484 	} else {
1485 		bio->retry_count++;
1486 
1487 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1488 
1489 		if (cpl->status.crd != 0) {
1490 			*_delay_ms = cdata->crdt[cpl->status.crd] * 100;
1491 		} else {
1492 			*_delay_ms = 0;
1493 		}
1494 	}
1495 
1496 	return true;
1497 }
1498 
1499 static inline void
1500 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1501 				  const struct spdk_nvme_cpl *cpl)
1502 {
1503 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1504 	struct nvme_bdev_channel *nbdev_ch;
1505 	uint64_t delay_ms;
1506 
1507 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1508 
1509 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1510 		bdev_nvme_update_io_path_stat(bio);
1511 		goto complete;
1512 	}
1513 
1514 	/* Update error counts before deciding if retry is needed.
1515 	 * Hence, error counts may be more than the number of I/O errors.
1516 	 */
1517 	bdev_nvme_update_nvme_error_stat(bdev_io, cpl);
1518 
1519 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1520 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1521 		goto complete;
1522 	}
1523 
1524 	/* At this point we don't know whether the sequence was successfully executed or not, so we
1525 	 * cannot retry the IO */
1526 	if (bdev_io->u.bdev.accel_sequence != NULL) {
1527 		goto complete;
1528 	}
1529 
1530 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1531 
1532 	if (bdev_nvme_check_retry_io(bio, cpl, nbdev_ch, &delay_ms)) {
1533 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1534 		return;
1535 	}
1536 
1537 complete:
1538 	bio->retry_count = 0;
1539 	bio->submit_tsc = 0;
1540 	bdev_io->u.bdev.accel_sequence = NULL;
1541 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1542 }
1543 
1544 static inline void
1545 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1546 {
1547 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1548 	struct nvme_bdev_channel *nbdev_ch;
1549 	enum spdk_bdev_io_status io_status;
1550 
1551 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1552 
1553 	switch (rc) {
1554 	case 0:
1555 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1556 		break;
1557 	case -ENOMEM:
1558 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1559 		break;
1560 	case -ENXIO:
1561 		if (g_opts.bdev_retry_count == -1 || bio->retry_count < g_opts.bdev_retry_count) {
1562 			nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1563 
1564 			bdev_nvme_clear_current_io_path(nbdev_ch);
1565 			bio->io_path = NULL;
1566 
1567 			if (any_io_path_may_become_available(nbdev_ch)) {
1568 				bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1569 				return;
1570 			}
1571 		}
1572 
1573 	/* fallthrough */
1574 	default:
1575 		spdk_accel_sequence_abort(bdev_io->u.bdev.accel_sequence);
1576 		bdev_io->u.bdev.accel_sequence = NULL;
1577 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1578 		break;
1579 	}
1580 
1581 	bio->retry_count = 0;
1582 	bio->submit_tsc = 0;
1583 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1584 }
1585 
1586 static inline void
1587 bdev_nvme_admin_complete(struct nvme_bdev_io *bio, int rc)
1588 {
1589 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1590 	enum spdk_bdev_io_status io_status;
1591 
1592 	switch (rc) {
1593 	case 0:
1594 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1595 		break;
1596 	case -ENOMEM:
1597 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1598 		break;
1599 	case -ENXIO:
1600 	/* fallthrough */
1601 	default:
1602 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1603 		break;
1604 	}
1605 
1606 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1607 }
1608 
1609 static void
1610 bdev_nvme_clear_io_path_caches_done(struct nvme_ctrlr *nvme_ctrlr,
1611 				    void *ctx, int status)
1612 {
1613 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1614 
1615 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1616 	nvme_ctrlr->io_path_cache_clearing = false;
1617 
1618 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1619 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1620 		return;
1621 	}
1622 
1623 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1624 
1625 	nvme_ctrlr_unregister(nvme_ctrlr);
1626 }
1627 
1628 static void
1629 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1630 {
1631 	struct nvme_io_path *io_path;
1632 
1633 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1634 		if (io_path->nbdev_ch == NULL) {
1635 			continue;
1636 		}
1637 		bdev_nvme_clear_current_io_path(io_path->nbdev_ch);
1638 	}
1639 }
1640 
1641 static void
1642 bdev_nvme_clear_io_path_cache(struct nvme_ctrlr_channel_iter *i,
1643 			      struct nvme_ctrlr *nvme_ctrlr,
1644 			      struct nvme_ctrlr_channel *ctrlr_ch,
1645 			      void *ctx)
1646 {
1647 	assert(ctrlr_ch->qpair != NULL);
1648 
1649 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1650 
1651 	nvme_ctrlr_for_each_channel_continue(i, 0);
1652 }
1653 
1654 static void
1655 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1656 {
1657 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1658 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1659 	    nvme_ctrlr->io_path_cache_clearing) {
1660 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1661 		return;
1662 	}
1663 
1664 	nvme_ctrlr->io_path_cache_clearing = true;
1665 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1666 
1667 	nvme_ctrlr_for_each_channel(nvme_ctrlr,
1668 				    bdev_nvme_clear_io_path_cache,
1669 				    NULL,
1670 				    bdev_nvme_clear_io_path_caches_done);
1671 }
1672 
1673 static struct nvme_qpair *
1674 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1675 {
1676 	struct nvme_qpair *nvme_qpair;
1677 
1678 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1679 		if (nvme_qpair->qpair == qpair) {
1680 			break;
1681 		}
1682 	}
1683 
1684 	return nvme_qpair;
1685 }
1686 
1687 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1688 
1689 static void
1690 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1691 {
1692 	struct nvme_poll_group *group = poll_group_ctx;
1693 	struct nvme_qpair *nvme_qpair;
1694 	struct nvme_ctrlr_channel *ctrlr_ch;
1695 	int status;
1696 
1697 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1698 	if (nvme_qpair == NULL) {
1699 		return;
1700 	}
1701 
1702 	if (nvme_qpair->qpair != NULL) {
1703 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1704 		nvme_qpair->qpair = NULL;
1705 	}
1706 
1707 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1708 
1709 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1710 
1711 	if (ctrlr_ch != NULL) {
1712 		if (ctrlr_ch->reset_iter != NULL) {
1713 			/* We are in a full reset sequence. */
1714 			if (ctrlr_ch->connect_poller != NULL) {
1715 				/* qpair was failed to connect. Abort the reset sequence. */
1716 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was failed to connect. abort the reset ctrlr sequence.\n",
1717 					      qpair);
1718 				spdk_poller_unregister(&ctrlr_ch->connect_poller);
1719 				status = -1;
1720 			} else {
1721 				/* qpair was completed to disconnect. Just move to the next ctrlr_channel. */
1722 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1723 					      qpair);
1724 				status = 0;
1725 			}
1726 			nvme_ctrlr_for_each_channel_continue(ctrlr_ch->reset_iter, status);
1727 			ctrlr_ch->reset_iter = NULL;
1728 		} else {
1729 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1730 			SPDK_NOTICELOG("qpair %p was disconnected and freed. reset controller.\n", qpair);
1731 			bdev_nvme_failover_ctrlr(nvme_qpair->ctrlr);
1732 		}
1733 	} else {
1734 		/* In this case, ctrlr_channel is already deleted. */
1735 		SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed. delete nvme_qpair.\n", qpair);
1736 		nvme_qpair_delete(nvme_qpair);
1737 	}
1738 }
1739 
1740 static void
1741 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1742 {
1743 	struct nvme_qpair *nvme_qpair;
1744 
1745 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1746 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1747 			continue;
1748 		}
1749 
1750 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1751 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1752 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1753 		}
1754 	}
1755 }
1756 
1757 static int
1758 bdev_nvme_poll(void *arg)
1759 {
1760 	struct nvme_poll_group *group = arg;
1761 	int64_t num_completions;
1762 
1763 	if (group->collect_spin_stat && group->start_ticks == 0) {
1764 		group->start_ticks = spdk_get_ticks();
1765 	}
1766 
1767 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1768 			  bdev_nvme_disconnected_qpair_cb);
1769 	if (group->collect_spin_stat) {
1770 		if (num_completions > 0) {
1771 			if (group->end_ticks != 0) {
1772 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1773 				group->end_ticks = 0;
1774 			}
1775 			group->start_ticks = 0;
1776 		} else {
1777 			group->end_ticks = spdk_get_ticks();
1778 		}
1779 	}
1780 
1781 	if (spdk_unlikely(num_completions < 0)) {
1782 		bdev_nvme_check_io_qpairs(group);
1783 	}
1784 
1785 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1786 }
1787 
1788 static int bdev_nvme_poll_adminq(void *arg);
1789 
1790 static void
1791 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1792 {
1793 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1794 
1795 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1796 					  nvme_ctrlr, new_period_us);
1797 }
1798 
1799 static int
1800 bdev_nvme_poll_adminq(void *arg)
1801 {
1802 	int32_t rc;
1803 	struct nvme_ctrlr *nvme_ctrlr = arg;
1804 	nvme_ctrlr_disconnected_cb disconnected_cb;
1805 
1806 	assert(nvme_ctrlr != NULL);
1807 
1808 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1809 	if (rc < 0) {
1810 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1811 		nvme_ctrlr->disconnected_cb = NULL;
1812 
1813 		if (disconnected_cb != NULL) {
1814 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1815 							    g_opts.nvme_adminq_poll_period_us);
1816 			disconnected_cb(nvme_ctrlr);
1817 		} else {
1818 			bdev_nvme_failover_ctrlr(nvme_ctrlr);
1819 		}
1820 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1821 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1822 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1823 	}
1824 
1825 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1826 }
1827 
1828 static void
1829 nvme_bdev_free(void *io_device)
1830 {
1831 	struct nvme_bdev *nvme_disk = io_device;
1832 
1833 	pthread_mutex_destroy(&nvme_disk->mutex);
1834 	free(nvme_disk->disk.name);
1835 	free(nvme_disk->err_stat);
1836 	free(nvme_disk);
1837 }
1838 
1839 static int
1840 bdev_nvme_destruct(void *ctx)
1841 {
1842 	struct nvme_bdev *nvme_disk = ctx;
1843 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1844 
1845 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1846 
1847 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1848 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1849 
1850 		nvme_ns->bdev = NULL;
1851 
1852 		assert(nvme_ns->id > 0);
1853 
1854 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1855 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1856 
1857 			nvme_ctrlr_release(nvme_ns->ctrlr);
1858 			nvme_ns_free(nvme_ns);
1859 		} else {
1860 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1861 		}
1862 	}
1863 
1864 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1865 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1866 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1867 
1868 	spdk_io_device_unregister(nvme_disk, nvme_bdev_free);
1869 
1870 	return 0;
1871 }
1872 
1873 static int
1874 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1875 {
1876 	struct nvme_ctrlr *nvme_ctrlr;
1877 	struct spdk_nvme_io_qpair_opts opts;
1878 	struct spdk_nvme_qpair *qpair;
1879 	int rc;
1880 
1881 	nvme_ctrlr = nvme_qpair->ctrlr;
1882 
1883 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1884 	opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1885 	opts.create_only = true;
1886 	opts.async_mode = true;
1887 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1888 	g_opts.io_queue_requests = opts.io_queue_requests;
1889 
1890 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1891 	if (qpair == NULL) {
1892 		return -1;
1893 	}
1894 
1895 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1896 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1897 
1898 	assert(nvme_qpair->group != NULL);
1899 
1900 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1901 	if (rc != 0) {
1902 		SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
1903 		goto err;
1904 	}
1905 
1906 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1907 	if (rc != 0) {
1908 		SPDK_ERRLOG("Unable to connect I/O qpair.\n");
1909 		goto err;
1910 	}
1911 
1912 	nvme_qpair->qpair = qpair;
1913 
1914 	if (!g_opts.disable_auto_failback) {
1915 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1916 	}
1917 
1918 	return 0;
1919 
1920 err:
1921 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1922 
1923 	return rc;
1924 }
1925 
1926 static void bdev_nvme_reset_io_continue(void *cb_arg, int rc);
1927 
1928 static void
1929 bdev_nvme_complete_pending_resets(struct nvme_ctrlr_channel_iter *i,
1930 				  struct nvme_ctrlr *nvme_ctrlr,
1931 				  struct nvme_ctrlr_channel *ctrlr_ch,
1932 				  void *ctx)
1933 {
1934 	int rc = 0;
1935 	struct nvme_bdev_io *bio;
1936 
1937 	if (ctx != NULL) {
1938 		rc = -1;
1939 	}
1940 
1941 	while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
1942 		bio = TAILQ_FIRST(&ctrlr_ch->pending_resets);
1943 		TAILQ_REMOVE(&ctrlr_ch->pending_resets, bio, retry_link);
1944 
1945 		bdev_nvme_reset_io_continue(bio, rc);
1946 	}
1947 
1948 	nvme_ctrlr_for_each_channel_continue(i, 0);
1949 }
1950 
1951 /* This function marks the current trid as failed by storing the current ticks
1952  * and then sets the next trid to the active trid within a controller if exists.
1953  *
1954  * The purpose of the boolean return value is to request the caller to disconnect
1955  * the current trid now to try connecting the next trid.
1956  */
1957 static bool
1958 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove, bool start)
1959 {
1960 	struct nvme_path_id *path_id, *next_path;
1961 	int rc __attribute__((unused));
1962 
1963 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1964 	assert(path_id);
1965 	assert(path_id == nvme_ctrlr->active_path_id);
1966 	next_path = TAILQ_NEXT(path_id, link);
1967 
1968 	/* Update the last failed time. It means the trid is failed if its last
1969 	 * failed time is non-zero.
1970 	 */
1971 	path_id->last_failed_tsc = spdk_get_ticks();
1972 
1973 	if (next_path == NULL) {
1974 		/* There is no alternate trid within a controller. */
1975 		return false;
1976 	}
1977 
1978 	if (!start && nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1979 		/* Connect is not retried in a controller reset sequence. Connecting
1980 		 * the next trid will be done by the next bdev_nvme_failover_ctrlr() call.
1981 		 */
1982 		return false;
1983 	}
1984 
1985 	assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
1986 
1987 	SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr,
1988 		       path_id->trid.trsvcid,	next_path->trid.traddr, next_path->trid.trsvcid);
1989 
1990 	spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
1991 	nvme_ctrlr->active_path_id = next_path;
1992 	rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
1993 	assert(rc == 0);
1994 	TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
1995 	if (!remove) {
1996 		/** Shuffle the old trid to the end of the list and use the new one.
1997 		 * Allows for round robin through multiple connections.
1998 		 */
1999 		TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
2000 	} else {
2001 		free(path_id);
2002 	}
2003 
2004 	if (start || next_path->last_failed_tsc == 0) {
2005 		/* bdev_nvme_failover_ctrlr() is just called or the next trid is not failed
2006 		 * or used yet. Try the next trid now.
2007 		 */
2008 		return true;
2009 	}
2010 
2011 	if (spdk_get_ticks() > next_path->last_failed_tsc + spdk_get_ticks_hz() *
2012 	    nvme_ctrlr->opts.reconnect_delay_sec) {
2013 		/* Enough backoff passed since the next trid failed. Try the next trid now. */
2014 		return true;
2015 	}
2016 
2017 	/* The next trid will be tried after reconnect_delay_sec seconds. */
2018 	return false;
2019 }
2020 
2021 static bool
2022 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
2023 {
2024 	int32_t elapsed;
2025 
2026 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
2027 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
2028 		return false;
2029 	}
2030 
2031 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
2032 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
2033 		return true;
2034 	} else {
2035 		return false;
2036 	}
2037 }
2038 
2039 static bool
2040 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
2041 {
2042 	uint32_t elapsed;
2043 
2044 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
2045 		return false;
2046 	}
2047 
2048 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
2049 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
2050 		return true;
2051 	} else {
2052 		return false;
2053 	}
2054 }
2055 
2056 static void bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
2057 
2058 static void
2059 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
2060 {
2061 	int rc;
2062 
2063 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
2064 	if (rc != 0) {
2065 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
2066 		 * fail the reset sequence immediately.
2067 		 */
2068 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2069 		return;
2070 	}
2071 
2072 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
2073 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
2074 	 */
2075 	assert(nvme_ctrlr->disconnected_cb == NULL);
2076 	nvme_ctrlr->disconnected_cb = cb_fn;
2077 
2078 	/* During disconnection, reduce the period to poll adminq more often. */
2079 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
2080 }
2081 
2082 enum bdev_nvme_op_after_reset {
2083 	OP_NONE,
2084 	OP_COMPLETE_PENDING_DESTRUCT,
2085 	OP_DESTRUCT,
2086 	OP_DELAYED_RECONNECT,
2087 	OP_FAILOVER,
2088 };
2089 
2090 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
2091 
2092 static _bdev_nvme_op_after_reset
2093 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
2094 {
2095 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
2096 		/* Complete pending destruct after reset completes. */
2097 		return OP_COMPLETE_PENDING_DESTRUCT;
2098 	} else if (nvme_ctrlr->pending_failover) {
2099 		nvme_ctrlr->pending_failover = false;
2100 		nvme_ctrlr->reset_start_tsc = 0;
2101 		return OP_FAILOVER;
2102 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
2103 		nvme_ctrlr->reset_start_tsc = 0;
2104 		return OP_NONE;
2105 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2106 		return OP_DESTRUCT;
2107 	} else {
2108 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
2109 			nvme_ctrlr->fast_io_fail_timedout = true;
2110 		}
2111 		return OP_DELAYED_RECONNECT;
2112 	}
2113 }
2114 
2115 static int bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
2116 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
2117 
2118 static int
2119 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
2120 {
2121 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2122 
2123 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
2124 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2125 
2126 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2127 
2128 	if (!nvme_ctrlr->reconnect_is_delayed) {
2129 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2130 		return SPDK_POLLER_BUSY;
2131 	}
2132 
2133 	nvme_ctrlr->reconnect_is_delayed = false;
2134 
2135 	if (nvme_ctrlr->destruct) {
2136 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2137 		return SPDK_POLLER_BUSY;
2138 	}
2139 
2140 	assert(nvme_ctrlr->resetting == false);
2141 	nvme_ctrlr->resetting = true;
2142 
2143 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2144 
2145 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2146 
2147 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2148 	return SPDK_POLLER_BUSY;
2149 }
2150 
2151 static void
2152 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
2153 {
2154 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2155 
2156 	assert(nvme_ctrlr->reconnect_is_delayed == false);
2157 	nvme_ctrlr->reconnect_is_delayed = true;
2158 
2159 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
2160 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
2161 					    nvme_ctrlr,
2162 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
2163 }
2164 
2165 static void remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr);
2166 
2167 static void
2168 _bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2169 {
2170 	bool success = (ctx == NULL);
2171 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2172 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2173 	enum bdev_nvme_op_after_reset op_after_reset;
2174 
2175 	assert(nvme_ctrlr->thread == spdk_get_thread());
2176 
2177 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2178 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2179 
2180 	if (!success) {
2181 		SPDK_ERRLOG("Resetting controller failed.\n");
2182 	} else {
2183 		SPDK_NOTICELOG("Resetting controller successful.\n");
2184 	}
2185 
2186 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2187 	nvme_ctrlr->resetting = false;
2188 	nvme_ctrlr->dont_retry = false;
2189 	nvme_ctrlr->in_failover = false;
2190 
2191 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
2192 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2193 
2194 	/* Delay callbacks when the next operation is a failover. */
2195 	if (ctrlr_op_cb_fn && op_after_reset != OP_FAILOVER) {
2196 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, success ? 0 : -1);
2197 	}
2198 
2199 	switch (op_after_reset) {
2200 	case OP_COMPLETE_PENDING_DESTRUCT:
2201 		nvme_ctrlr_unregister(nvme_ctrlr);
2202 		break;
2203 	case OP_DESTRUCT:
2204 		bdev_nvme_delete_ctrlr(nvme_ctrlr, false);
2205 		remove_discovery_entry(nvme_ctrlr);
2206 		break;
2207 	case OP_DELAYED_RECONNECT:
2208 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
2209 		break;
2210 	case OP_FAILOVER:
2211 		nvme_ctrlr->ctrlr_op_cb_fn = ctrlr_op_cb_fn;
2212 		nvme_ctrlr->ctrlr_op_cb_arg = ctrlr_op_cb_arg;
2213 		bdev_nvme_failover_ctrlr(nvme_ctrlr);
2214 		break;
2215 	default:
2216 		break;
2217 	}
2218 }
2219 
2220 static void
2221 bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
2222 {
2223 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2224 	if (!success) {
2225 		/* Connecting the active trid failed. Set the next alternate trid to the
2226 		 * active trid if it exists.
2227 		 */
2228 		if (bdev_nvme_failover_trid(nvme_ctrlr, false, false)) {
2229 			/* The next alternate trid exists and is ready to try. Try it now. */
2230 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
2231 
2232 			nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2233 			return;
2234 		}
2235 
2236 		/* We came here if there is no alternate trid or if the next trid exists but
2237 		 * is not ready to try. We will try the active trid after reconnect_delay_sec
2238 		 * seconds if it is non-zero or at the next reset call otherwise.
2239 		 */
2240 	} else {
2241 		/* Connecting the active trid succeeded. Clear the last failed time because it
2242 		 * means the trid is failed if its last failed time is non-zero.
2243 		 */
2244 		nvme_ctrlr->active_path_id->last_failed_tsc = 0;
2245 	}
2246 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2247 
2248 	/* Make sure we clear any pending resets before returning. */
2249 	nvme_ctrlr_for_each_channel(nvme_ctrlr,
2250 				    bdev_nvme_complete_pending_resets,
2251 				    success ? NULL : (void *)0x1,
2252 				    _bdev_nvme_reset_ctrlr_complete);
2253 }
2254 
2255 static void
2256 bdev_nvme_reset_create_qpairs_failed(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2257 {
2258 	bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2259 }
2260 
2261 static void
2262 bdev_nvme_reset_destroy_qpair(struct nvme_ctrlr_channel_iter *i,
2263 			      struct nvme_ctrlr *nvme_ctrlr,
2264 			      struct nvme_ctrlr_channel *ctrlr_ch, void *ctx)
2265 {
2266 	struct nvme_qpair *nvme_qpair;
2267 
2268 	nvme_qpair = ctrlr_ch->qpair;
2269 	assert(nvme_qpair != NULL);
2270 
2271 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2272 
2273 	if (nvme_qpair->qpair != NULL) {
2274 		if (nvme_qpair->ctrlr->dont_retry) {
2275 			spdk_nvme_qpair_set_abort_dnr(nvme_qpair->qpair, true);
2276 		}
2277 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
2278 
2279 		/* The current full reset sequence will move to the next
2280 		 * ctrlr_channel after the qpair is actually disconnected.
2281 		 */
2282 		assert(ctrlr_ch->reset_iter == NULL);
2283 		ctrlr_ch->reset_iter = i;
2284 	} else {
2285 		nvme_ctrlr_for_each_channel_continue(i, 0);
2286 	}
2287 }
2288 
2289 static void
2290 bdev_nvme_reset_create_qpairs_done(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2291 {
2292 	if (status == 0) {
2293 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, true);
2294 	} else {
2295 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
2296 		nvme_ctrlr_for_each_channel(nvme_ctrlr,
2297 					    bdev_nvme_reset_destroy_qpair,
2298 					    NULL,
2299 					    bdev_nvme_reset_create_qpairs_failed);
2300 	}
2301 }
2302 
2303 static int
2304 bdev_nvme_reset_check_qpair_connected(void *ctx)
2305 {
2306 	struct nvme_ctrlr_channel *ctrlr_ch = ctx;
2307 
2308 	if (ctrlr_ch->reset_iter == NULL) {
2309 		/* qpair was already failed to connect and the reset sequence is being aborted. */
2310 		assert(ctrlr_ch->connect_poller == NULL);
2311 		assert(ctrlr_ch->qpair->qpair == NULL);
2312 		return SPDK_POLLER_BUSY;
2313 	}
2314 
2315 	assert(ctrlr_ch->qpair->qpair != NULL);
2316 
2317 	if (!spdk_nvme_qpair_is_connected(ctrlr_ch->qpair->qpair)) {
2318 		return SPDK_POLLER_BUSY;
2319 	}
2320 
2321 	spdk_poller_unregister(&ctrlr_ch->connect_poller);
2322 
2323 	/* qpair was completed to connect. Move to the next ctrlr_channel */
2324 	nvme_ctrlr_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2325 	ctrlr_ch->reset_iter = NULL;
2326 
2327 	if (!g_opts.disable_auto_failback) {
2328 		_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
2329 	}
2330 
2331 	return SPDK_POLLER_BUSY;
2332 }
2333 
2334 static void
2335 bdev_nvme_reset_create_qpair(struct nvme_ctrlr_channel_iter *i,
2336 			     struct nvme_ctrlr *nvme_ctrlr,
2337 			     struct nvme_ctrlr_channel *ctrlr_ch,
2338 			     void *ctx)
2339 {
2340 	int rc;
2341 
2342 	rc = bdev_nvme_create_qpair(ctrlr_ch->qpair);
2343 	if (rc == 0) {
2344 		ctrlr_ch->connect_poller = SPDK_POLLER_REGISTER(bdev_nvme_reset_check_qpair_connected,
2345 					   ctrlr_ch, 0);
2346 
2347 		/* The current full reset sequence will move to the next
2348 		 * ctrlr_channel after the qpair is actually connected.
2349 		 */
2350 		assert(ctrlr_ch->reset_iter == NULL);
2351 		ctrlr_ch->reset_iter = i;
2352 	} else {
2353 		nvme_ctrlr_for_each_channel_continue(i, rc);
2354 	}
2355 }
2356 
2357 static void
2358 nvme_ctrlr_check_namespaces(struct nvme_ctrlr *nvme_ctrlr)
2359 {
2360 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
2361 	struct nvme_ns *nvme_ns;
2362 
2363 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
2364 	     nvme_ns != NULL;
2365 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
2366 		if (!spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
2367 			SPDK_DEBUGLOG(bdev_nvme, "NSID %u was removed during reset.\n", nvme_ns->id);
2368 			/* NS can be added again. Just nullify nvme_ns->ns. */
2369 			nvme_ns->ns = NULL;
2370 		}
2371 	}
2372 }
2373 
2374 
2375 static int
2376 bdev_nvme_reconnect_ctrlr_poll(void *arg)
2377 {
2378 	struct nvme_ctrlr *nvme_ctrlr = arg;
2379 	int rc = -ETIMEDOUT;
2380 
2381 	if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2382 		/* Mark the ctrlr as failed. The next call to
2383 		 * spdk_nvme_ctrlr_reconnect_poll_async() will then
2384 		 * do the necessary cleanup and return failure.
2385 		 */
2386 		spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
2387 	}
2388 
2389 	rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
2390 	if (rc == -EAGAIN) {
2391 		return SPDK_POLLER_BUSY;
2392 	}
2393 
2394 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
2395 	if (rc == 0) {
2396 		nvme_ctrlr_check_namespaces(nvme_ctrlr);
2397 
2398 		/* Recreate all of the I/O queue pairs */
2399 		nvme_ctrlr_for_each_channel(nvme_ctrlr,
2400 					    bdev_nvme_reset_create_qpair,
2401 					    NULL,
2402 					    bdev_nvme_reset_create_qpairs_done);
2403 	} else {
2404 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2405 	}
2406 	return SPDK_POLLER_BUSY;
2407 }
2408 
2409 static void
2410 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2411 {
2412 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
2413 
2414 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
2415 	assert(nvme_ctrlr->reset_detach_poller == NULL);
2416 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
2417 					  nvme_ctrlr, 0);
2418 }
2419 
2420 static void
2421 bdev_nvme_reset_destroy_qpair_done(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2422 {
2423 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
2424 	assert(status == 0);
2425 
2426 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2427 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2428 	} else {
2429 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2430 	}
2431 }
2432 
2433 static void
2434 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2435 {
2436 	nvme_ctrlr_for_each_channel(nvme_ctrlr,
2437 				    bdev_nvme_reset_destroy_qpair,
2438 				    NULL,
2439 				    bdev_nvme_reset_destroy_qpair_done);
2440 }
2441 
2442 static void
2443 bdev_nvme_reconnect_ctrlr_now(void *ctx)
2444 {
2445 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2446 
2447 	assert(nvme_ctrlr->resetting == true);
2448 	assert(nvme_ctrlr->thread == spdk_get_thread());
2449 
2450 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2451 
2452 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2453 
2454 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2455 }
2456 
2457 static void
2458 _bdev_nvme_reset_ctrlr(void *ctx)
2459 {
2460 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2461 
2462 	assert(nvme_ctrlr->resetting == true);
2463 	assert(nvme_ctrlr->thread == spdk_get_thread());
2464 
2465 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2466 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
2467 	} else {
2468 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
2469 	}
2470 }
2471 
2472 static int
2473 bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2474 {
2475 	spdk_msg_fn msg_fn;
2476 
2477 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2478 	if (nvme_ctrlr->destruct) {
2479 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2480 		return -ENXIO;
2481 	}
2482 
2483 	if (nvme_ctrlr->resetting) {
2484 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2485 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
2486 		return -EBUSY;
2487 	}
2488 
2489 	if (nvme_ctrlr->disabled) {
2490 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2491 		SPDK_NOTICELOG("Unable to perform reset. Controller is disabled.\n");
2492 		return -EALREADY;
2493 	}
2494 
2495 	nvme_ctrlr->resetting = true;
2496 	nvme_ctrlr->dont_retry = true;
2497 
2498 	if (nvme_ctrlr->reconnect_is_delayed) {
2499 		SPDK_DEBUGLOG(bdev_nvme, "Reconnect is already scheduled.\n");
2500 		msg_fn = bdev_nvme_reconnect_ctrlr_now;
2501 		nvme_ctrlr->reconnect_is_delayed = false;
2502 	} else {
2503 		msg_fn = _bdev_nvme_reset_ctrlr;
2504 		assert(nvme_ctrlr->reset_start_tsc == 0);
2505 	}
2506 
2507 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2508 
2509 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2510 
2511 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2512 	return 0;
2513 }
2514 
2515 static int
2516 bdev_nvme_enable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2517 {
2518 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2519 	if (nvme_ctrlr->destruct) {
2520 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2521 		return -ENXIO;
2522 	}
2523 
2524 	if (nvme_ctrlr->resetting) {
2525 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2526 		return -EBUSY;
2527 	}
2528 
2529 	if (!nvme_ctrlr->disabled) {
2530 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2531 		return -EALREADY;
2532 	}
2533 
2534 	nvme_ctrlr->disabled = false;
2535 	nvme_ctrlr->resetting = true;
2536 
2537 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2538 
2539 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2540 
2541 	spdk_thread_send_msg(nvme_ctrlr->thread, bdev_nvme_reconnect_ctrlr_now, nvme_ctrlr);
2542 	return 0;
2543 }
2544 
2545 static void
2546 _bdev_nvme_disable_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2547 {
2548 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2549 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2550 	enum bdev_nvme_op_after_reset op_after_disable;
2551 
2552 	assert(nvme_ctrlr->thread == spdk_get_thread());
2553 
2554 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2555 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2556 
2557 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2558 
2559 	nvme_ctrlr->resetting = false;
2560 	nvme_ctrlr->dont_retry = false;
2561 
2562 	op_after_disable = bdev_nvme_check_op_after_reset(nvme_ctrlr, true);
2563 
2564 	nvme_ctrlr->disabled = true;
2565 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2566 
2567 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2568 
2569 	if (ctrlr_op_cb_fn) {
2570 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, 0);
2571 	}
2572 
2573 	switch (op_after_disable) {
2574 	case OP_COMPLETE_PENDING_DESTRUCT:
2575 		nvme_ctrlr_unregister(nvme_ctrlr);
2576 		break;
2577 	default:
2578 		break;
2579 	}
2580 
2581 }
2582 
2583 static void
2584 bdev_nvme_disable_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr)
2585 {
2586 	/* Make sure we clear any pending resets before returning. */
2587 	nvme_ctrlr_for_each_channel(nvme_ctrlr,
2588 				    bdev_nvme_complete_pending_resets,
2589 				    NULL,
2590 				    _bdev_nvme_disable_ctrlr_complete);
2591 }
2592 
2593 static void
2594 bdev_nvme_disable_destroy_qpairs_done(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2595 {
2596 	assert(status == 0);
2597 
2598 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2599 		bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2600 	} else {
2601 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_ctrlr_complete);
2602 	}
2603 }
2604 
2605 static void
2606 bdev_nvme_disable_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2607 {
2608 	nvme_ctrlr_for_each_channel(nvme_ctrlr,
2609 				    bdev_nvme_reset_destroy_qpair,
2610 				    NULL,
2611 				    bdev_nvme_disable_destroy_qpairs_done);
2612 }
2613 
2614 static void
2615 _bdev_nvme_cancel_reconnect_and_disable_ctrlr(void *ctx)
2616 {
2617 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2618 
2619 	assert(nvme_ctrlr->resetting == true);
2620 	assert(nvme_ctrlr->thread == spdk_get_thread());
2621 
2622 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2623 
2624 	bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2625 }
2626 
2627 static void
2628 _bdev_nvme_disconnect_and_disable_ctrlr(void *ctx)
2629 {
2630 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2631 
2632 	assert(nvme_ctrlr->resetting == true);
2633 	assert(nvme_ctrlr->thread == spdk_get_thread());
2634 
2635 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2636 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_destroy_qpairs);
2637 	} else {
2638 		bdev_nvme_disable_destroy_qpairs(nvme_ctrlr);
2639 	}
2640 }
2641 
2642 static int
2643 bdev_nvme_disable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2644 {
2645 	spdk_msg_fn msg_fn;
2646 
2647 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2648 	if (nvme_ctrlr->destruct) {
2649 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2650 		return -ENXIO;
2651 	}
2652 
2653 	if (nvme_ctrlr->resetting) {
2654 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2655 		return -EBUSY;
2656 	}
2657 
2658 	if (nvme_ctrlr->disabled) {
2659 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2660 		return -EALREADY;
2661 	}
2662 
2663 	nvme_ctrlr->resetting = true;
2664 	nvme_ctrlr->dont_retry = true;
2665 
2666 	if (nvme_ctrlr->reconnect_is_delayed) {
2667 		msg_fn = _bdev_nvme_cancel_reconnect_and_disable_ctrlr;
2668 		nvme_ctrlr->reconnect_is_delayed = false;
2669 	} else {
2670 		msg_fn = _bdev_nvme_disconnect_and_disable_ctrlr;
2671 	}
2672 
2673 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2674 
2675 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2676 
2677 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2678 	return 0;
2679 }
2680 
2681 static int
2682 nvme_ctrlr_op(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2683 	      bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2684 {
2685 	int rc;
2686 
2687 	switch (op) {
2688 	case NVME_CTRLR_OP_RESET:
2689 		rc = bdev_nvme_reset_ctrlr(nvme_ctrlr);
2690 		break;
2691 	case NVME_CTRLR_OP_ENABLE:
2692 		rc = bdev_nvme_enable_ctrlr(nvme_ctrlr);
2693 		break;
2694 	case NVME_CTRLR_OP_DISABLE:
2695 		rc = bdev_nvme_disable_ctrlr(nvme_ctrlr);
2696 		break;
2697 	default:
2698 		rc = -EINVAL;
2699 		break;
2700 	}
2701 
2702 	if (rc == 0) {
2703 		assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL);
2704 		assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL);
2705 		nvme_ctrlr->ctrlr_op_cb_fn = cb_fn;
2706 		nvme_ctrlr->ctrlr_op_cb_arg = cb_arg;
2707 	}
2708 	return rc;
2709 }
2710 
2711 struct nvme_ctrlr_op_rpc_ctx {
2712 	struct nvme_ctrlr *nvme_ctrlr;
2713 	struct spdk_thread *orig_thread;
2714 	enum nvme_ctrlr_op op;
2715 	int rc;
2716 	bdev_nvme_ctrlr_op_cb cb_fn;
2717 	void *cb_arg;
2718 };
2719 
2720 static void
2721 _nvme_ctrlr_op_rpc_complete(void *_ctx)
2722 {
2723 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2724 
2725 	assert(ctx != NULL);
2726 	assert(ctx->cb_fn != NULL);
2727 
2728 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2729 
2730 	free(ctx);
2731 }
2732 
2733 static void
2734 nvme_ctrlr_op_rpc_complete(void *cb_arg, int rc)
2735 {
2736 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2737 
2738 	ctx->rc = rc;
2739 
2740 	spdk_thread_send_msg(ctx->orig_thread, _nvme_ctrlr_op_rpc_complete, ctx);
2741 }
2742 
2743 void
2744 nvme_ctrlr_op_rpc(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2745 		  bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2746 {
2747 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2748 	int rc;
2749 
2750 	assert(cb_fn != NULL);
2751 
2752 	ctx = calloc(1, sizeof(*ctx));
2753 	if (ctx == NULL) {
2754 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2755 		cb_fn(cb_arg, -ENOMEM);
2756 		return;
2757 	}
2758 
2759 	ctx->orig_thread = spdk_get_thread();
2760 	ctx->cb_fn = cb_fn;
2761 	ctx->cb_arg = cb_arg;
2762 
2763 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_ctrlr_op_rpc_complete, ctx);
2764 	if (rc == 0) {
2765 		return;
2766 	} else if (rc == -EALREADY) {
2767 		rc = 0;
2768 	}
2769 
2770 	nvme_ctrlr_op_rpc_complete(ctx, rc);
2771 }
2772 
2773 static void nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc);
2774 
2775 static void
2776 _nvme_bdev_ctrlr_op_rpc_continue(void *_ctx)
2777 {
2778 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2779 	struct nvme_ctrlr *prev_nvme_ctrlr, *next_nvme_ctrlr;
2780 	int rc;
2781 
2782 	prev_nvme_ctrlr = ctx->nvme_ctrlr;
2783 	ctx->nvme_ctrlr = NULL;
2784 
2785 	if (ctx->rc != 0) {
2786 		goto complete;
2787 	}
2788 
2789 	next_nvme_ctrlr = TAILQ_NEXT(prev_nvme_ctrlr, tailq);
2790 	if (next_nvme_ctrlr == NULL) {
2791 		goto complete;
2792 	}
2793 
2794 	rc = nvme_ctrlr_op(next_nvme_ctrlr, ctx->op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2795 	if (rc == 0) {
2796 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2797 		return;
2798 	} else if (rc == -EALREADY) {
2799 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2800 		rc = 0;
2801 	}
2802 
2803 	ctx->rc = rc;
2804 
2805 complete:
2806 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2807 	free(ctx);
2808 }
2809 
2810 static void
2811 nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc)
2812 {
2813 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2814 
2815 	ctx->rc = rc;
2816 
2817 	spdk_thread_send_msg(ctx->orig_thread, _nvme_bdev_ctrlr_op_rpc_continue, ctx);
2818 }
2819 
2820 void
2821 nvme_bdev_ctrlr_op_rpc(struct nvme_bdev_ctrlr *nbdev_ctrlr, enum nvme_ctrlr_op op,
2822 		       bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2823 {
2824 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2825 	struct nvme_ctrlr *nvme_ctrlr;
2826 	int rc;
2827 
2828 	assert(cb_fn != NULL);
2829 
2830 	ctx = calloc(1, sizeof(*ctx));
2831 	if (ctx == NULL) {
2832 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2833 		cb_fn(cb_arg, -ENOMEM);
2834 		return;
2835 	}
2836 
2837 	ctx->orig_thread = spdk_get_thread();
2838 	ctx->op = op;
2839 	ctx->cb_fn = cb_fn;
2840 	ctx->cb_arg = cb_arg;
2841 
2842 	nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
2843 	assert(nvme_ctrlr != NULL);
2844 
2845 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2846 	if (rc == 0) {
2847 		ctx->nvme_ctrlr = nvme_ctrlr;
2848 		return;
2849 	} else if (rc == -EALREADY) {
2850 		ctx->nvme_ctrlr = nvme_ctrlr;
2851 		rc = 0;
2852 	}
2853 
2854 	nvme_bdev_ctrlr_op_rpc_continue(ctx, rc);
2855 }
2856 
2857 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
2858 
2859 static void
2860 bdev_nvme_unfreeze_bdev_channel_done(struct nvme_bdev *nbdev, void *ctx, int status)
2861 {
2862 	struct nvme_bdev_io *bio = ctx;
2863 	enum spdk_bdev_io_status io_status;
2864 
2865 	if (bio->cpl.cdw0 == 0) {
2866 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2867 	} else {
2868 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
2869 	}
2870 
2871 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
2872 }
2873 
2874 static void
2875 bdev_nvme_unfreeze_bdev_channel(struct nvme_bdev_channel_iter *i,
2876 				struct nvme_bdev *nbdev,
2877 				struct nvme_bdev_channel *nbdev_ch, void *ctx)
2878 {
2879 	bdev_nvme_abort_retry_ios(nbdev_ch);
2880 	nbdev_ch->resetting = false;
2881 
2882 	nvme_bdev_for_each_channel_continue(i, 0);
2883 }
2884 
2885 static void
2886 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
2887 {
2888 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2889 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
2890 
2891 	/* Abort all queued I/Os for retry. */
2892 	nvme_bdev_for_each_channel(nbdev,
2893 				   bdev_nvme_unfreeze_bdev_channel,
2894 				   bio,
2895 				   bdev_nvme_unfreeze_bdev_channel_done);
2896 }
2897 
2898 static void
2899 _bdev_nvme_reset_io_continue(void *ctx)
2900 {
2901 	struct nvme_bdev_io *bio = ctx;
2902 	struct nvme_io_path *prev_io_path, *next_io_path;
2903 	int rc;
2904 
2905 	prev_io_path = bio->io_path;
2906 	bio->io_path = NULL;
2907 
2908 	if (bio->cpl.cdw0 != 0) {
2909 		goto complete;
2910 	}
2911 
2912 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
2913 	if (next_io_path == NULL) {
2914 		goto complete;
2915 	}
2916 
2917 	rc = _bdev_nvme_reset_io(next_io_path, bio);
2918 	if (rc == 0) {
2919 		return;
2920 	}
2921 
2922 	bio->cpl.cdw0 = 1;
2923 
2924 complete:
2925 	bdev_nvme_reset_io_complete(bio);
2926 }
2927 
2928 static void
2929 bdev_nvme_reset_io_continue(void *cb_arg, int rc)
2930 {
2931 	struct nvme_bdev_io *bio = cb_arg;
2932 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2933 
2934 	bio->cpl.cdw0 = (rc == 0) ? 0 : 1;
2935 
2936 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), _bdev_nvme_reset_io_continue, bio);
2937 }
2938 
2939 static int
2940 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
2941 {
2942 	struct nvme_ctrlr_channel *ctrlr_ch;
2943 	int rc;
2944 
2945 	rc = nvme_ctrlr_op(io_path->qpair->ctrlr, NVME_CTRLR_OP_RESET,
2946 			   bdev_nvme_reset_io_continue, bio);
2947 	if (rc != 0 && rc != -EBUSY) {
2948 		return rc;
2949 	}
2950 
2951 	assert(bio->io_path == NULL);
2952 	bio->io_path = io_path;
2953 
2954 	if (rc == -EBUSY) {
2955 		ctrlr_ch = io_path->qpair->ctrlr_ch;
2956 		assert(ctrlr_ch != NULL);
2957 		/*
2958 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
2959 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
2960 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
2961 		 */
2962 		TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bio, retry_link);
2963 	}
2964 
2965 	return 0;
2966 }
2967 
2968 static void
2969 bdev_nvme_freeze_bdev_channel_done(struct nvme_bdev *nbdev, void *ctx, int status)
2970 {
2971 	struct nvme_bdev_io *bio = ctx;
2972 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2973 	struct nvme_bdev_channel *nbdev_ch;
2974 	struct nvme_io_path *io_path;
2975 	int rc;
2976 
2977 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
2978 
2979 	bio->cpl.cdw0 = 0;
2980 
2981 	/* Reset all nvme_ctrlrs of a bdev controller sequentially. */
2982 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
2983 	assert(io_path != NULL);
2984 
2985 	rc = _bdev_nvme_reset_io(io_path, bio);
2986 	if (rc != 0) {
2987 		/* If the current nvme_ctrlr is disabled, skip it and move to the next nvme_ctrlr. */
2988 		rc = (rc == -EALREADY) ? 0 : rc;
2989 
2990 		bdev_nvme_reset_io_continue(bio, rc);
2991 	}
2992 }
2993 
2994 static void
2995 bdev_nvme_freeze_bdev_channel(struct nvme_bdev_channel_iter *i,
2996 			      struct nvme_bdev *nbdev,
2997 			      struct nvme_bdev_channel *nbdev_ch, void *ctx)
2998 {
2999 	nbdev_ch->resetting = true;
3000 
3001 	nvme_bdev_for_each_channel_continue(i, 0);
3002 }
3003 
3004 static void
3005 bdev_nvme_reset_io(struct nvme_bdev *nbdev, struct nvme_bdev_io *bio)
3006 {
3007 	nvme_bdev_for_each_channel(nbdev,
3008 				   bdev_nvme_freeze_bdev_channel,
3009 				   bio,
3010 				   bdev_nvme_freeze_bdev_channel_done);
3011 }
3012 
3013 static int
3014 bdev_nvme_failover_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool remove)
3015 {
3016 	if (nvme_ctrlr->destruct) {
3017 		/* Don't bother resetting if the controller is in the process of being destructed. */
3018 		return -ENXIO;
3019 	}
3020 
3021 	if (nvme_ctrlr->resetting) {
3022 		if (!nvme_ctrlr->in_failover) {
3023 			SPDK_NOTICELOG("Reset is already in progress. Defer failover until reset completes.\n");
3024 
3025 			/* Defer failover until reset completes. */
3026 			nvme_ctrlr->pending_failover = true;
3027 			return -EINPROGRESS;
3028 		} else {
3029 			SPDK_NOTICELOG("Unable to perform failover, already in progress.\n");
3030 			return -EBUSY;
3031 		}
3032 	}
3033 
3034 	bdev_nvme_failover_trid(nvme_ctrlr, remove, true);
3035 
3036 	if (nvme_ctrlr->reconnect_is_delayed) {
3037 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
3038 
3039 		/* We rely on the next reconnect for the failover. */
3040 		return -EALREADY;
3041 	}
3042 
3043 	if (nvme_ctrlr->disabled) {
3044 		SPDK_NOTICELOG("Controller is disabled.\n");
3045 
3046 		/* We rely on the enablement for the failover. */
3047 		return -EALREADY;
3048 	}
3049 
3050 	nvme_ctrlr->resetting = true;
3051 	nvme_ctrlr->in_failover = true;
3052 
3053 	assert(nvme_ctrlr->reset_start_tsc == 0);
3054 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
3055 
3056 	return 0;
3057 }
3058 
3059 static int
3060 bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
3061 {
3062 	int rc;
3063 
3064 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3065 	rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, false);
3066 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
3067 
3068 	if (rc == 0) {
3069 		spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset_ctrlr, nvme_ctrlr);
3070 	} else if (rc == -EALREADY) {
3071 		rc = 0;
3072 	}
3073 
3074 	return rc;
3075 }
3076 
3077 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
3078 			   uint64_t num_blocks);
3079 
3080 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
3081 				  uint64_t num_blocks);
3082 
3083 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks,
3084 			  uint64_t src_offset_blocks,
3085 			  uint64_t num_blocks);
3086 
3087 static void
3088 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
3089 		     bool success)
3090 {
3091 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3092 	int ret;
3093 
3094 	if (!success) {
3095 		ret = -EINVAL;
3096 		goto exit;
3097 	}
3098 
3099 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
3100 		ret = -ENXIO;
3101 		goto exit;
3102 	}
3103 
3104 	ret = bdev_nvme_readv(bio,
3105 			      bdev_io->u.bdev.iovs,
3106 			      bdev_io->u.bdev.iovcnt,
3107 			      bdev_io->u.bdev.md_buf,
3108 			      bdev_io->u.bdev.num_blocks,
3109 			      bdev_io->u.bdev.offset_blocks,
3110 			      bdev_io->u.bdev.dif_check_flags,
3111 			      bdev_io->u.bdev.memory_domain,
3112 			      bdev_io->u.bdev.memory_domain_ctx,
3113 			      bdev_io->u.bdev.accel_sequence);
3114 
3115 exit:
3116 	if (spdk_unlikely(ret != 0)) {
3117 		bdev_nvme_io_complete(bio, ret);
3118 	}
3119 }
3120 
3121 static inline void
3122 _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
3123 {
3124 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3125 	struct spdk_bdev *bdev = bdev_io->bdev;
3126 	struct nvme_bdev_io *nbdev_io_to_abort;
3127 	int rc = 0;
3128 
3129 	switch (bdev_io->type) {
3130 	case SPDK_BDEV_IO_TYPE_READ:
3131 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
3132 
3133 			rc = bdev_nvme_readv(nbdev_io,
3134 					     bdev_io->u.bdev.iovs,
3135 					     bdev_io->u.bdev.iovcnt,
3136 					     bdev_io->u.bdev.md_buf,
3137 					     bdev_io->u.bdev.num_blocks,
3138 					     bdev_io->u.bdev.offset_blocks,
3139 					     bdev_io->u.bdev.dif_check_flags,
3140 					     bdev_io->u.bdev.memory_domain,
3141 					     bdev_io->u.bdev.memory_domain_ctx,
3142 					     bdev_io->u.bdev.accel_sequence);
3143 		} else {
3144 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
3145 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
3146 			rc = 0;
3147 		}
3148 		break;
3149 	case SPDK_BDEV_IO_TYPE_WRITE:
3150 		rc = bdev_nvme_writev(nbdev_io,
3151 				      bdev_io->u.bdev.iovs,
3152 				      bdev_io->u.bdev.iovcnt,
3153 				      bdev_io->u.bdev.md_buf,
3154 				      bdev_io->u.bdev.num_blocks,
3155 				      bdev_io->u.bdev.offset_blocks,
3156 				      bdev_io->u.bdev.dif_check_flags,
3157 				      bdev_io->u.bdev.memory_domain,
3158 				      bdev_io->u.bdev.memory_domain_ctx,
3159 				      bdev_io->u.bdev.accel_sequence,
3160 				      bdev_io->u.bdev.nvme_cdw12,
3161 				      bdev_io->u.bdev.nvme_cdw13);
3162 		break;
3163 	case SPDK_BDEV_IO_TYPE_COMPARE:
3164 		rc = bdev_nvme_comparev(nbdev_io,
3165 					bdev_io->u.bdev.iovs,
3166 					bdev_io->u.bdev.iovcnt,
3167 					bdev_io->u.bdev.md_buf,
3168 					bdev_io->u.bdev.num_blocks,
3169 					bdev_io->u.bdev.offset_blocks,
3170 					bdev_io->u.bdev.dif_check_flags);
3171 		break;
3172 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3173 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
3174 						   bdev_io->u.bdev.iovs,
3175 						   bdev_io->u.bdev.iovcnt,
3176 						   bdev_io->u.bdev.fused_iovs,
3177 						   bdev_io->u.bdev.fused_iovcnt,
3178 						   bdev_io->u.bdev.md_buf,
3179 						   bdev_io->u.bdev.num_blocks,
3180 						   bdev_io->u.bdev.offset_blocks,
3181 						   bdev_io->u.bdev.dif_check_flags);
3182 		break;
3183 	case SPDK_BDEV_IO_TYPE_UNMAP:
3184 		rc = bdev_nvme_unmap(nbdev_io,
3185 				     bdev_io->u.bdev.offset_blocks,
3186 				     bdev_io->u.bdev.num_blocks);
3187 		break;
3188 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3189 		rc =  bdev_nvme_write_zeroes(nbdev_io,
3190 					     bdev_io->u.bdev.offset_blocks,
3191 					     bdev_io->u.bdev.num_blocks);
3192 		break;
3193 	case SPDK_BDEV_IO_TYPE_RESET:
3194 		nbdev_io->io_path = NULL;
3195 		bdev_nvme_reset_io(bdev->ctxt, nbdev_io);
3196 		return;
3197 
3198 	case SPDK_BDEV_IO_TYPE_FLUSH:
3199 		bdev_nvme_io_complete(nbdev_io, 0);
3200 		return;
3201 
3202 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3203 		rc = bdev_nvme_zone_appendv(nbdev_io,
3204 					    bdev_io->u.bdev.iovs,
3205 					    bdev_io->u.bdev.iovcnt,
3206 					    bdev_io->u.bdev.md_buf,
3207 					    bdev_io->u.bdev.num_blocks,
3208 					    bdev_io->u.bdev.offset_blocks,
3209 					    bdev_io->u.bdev.dif_check_flags);
3210 		break;
3211 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3212 		rc = bdev_nvme_get_zone_info(nbdev_io,
3213 					     bdev_io->u.zone_mgmt.zone_id,
3214 					     bdev_io->u.zone_mgmt.num_zones,
3215 					     bdev_io->u.zone_mgmt.buf);
3216 		break;
3217 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3218 		rc = bdev_nvme_zone_management(nbdev_io,
3219 					       bdev_io->u.zone_mgmt.zone_id,
3220 					       bdev_io->u.zone_mgmt.zone_action);
3221 		break;
3222 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3223 		nbdev_io->io_path = NULL;
3224 		bdev_nvme_admin_passthru(nbdev_ch,
3225 					 nbdev_io,
3226 					 &bdev_io->u.nvme_passthru.cmd,
3227 					 bdev_io->u.nvme_passthru.buf,
3228 					 bdev_io->u.nvme_passthru.nbytes);
3229 		return;
3230 
3231 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3232 		rc = bdev_nvme_io_passthru(nbdev_io,
3233 					   &bdev_io->u.nvme_passthru.cmd,
3234 					   bdev_io->u.nvme_passthru.buf,
3235 					   bdev_io->u.nvme_passthru.nbytes);
3236 		break;
3237 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3238 		rc = bdev_nvme_io_passthru_md(nbdev_io,
3239 					      &bdev_io->u.nvme_passthru.cmd,
3240 					      bdev_io->u.nvme_passthru.buf,
3241 					      bdev_io->u.nvme_passthru.nbytes,
3242 					      bdev_io->u.nvme_passthru.md_buf,
3243 					      bdev_io->u.nvme_passthru.md_len);
3244 		break;
3245 	case SPDK_BDEV_IO_TYPE_NVME_IOV_MD:
3246 		rc = bdev_nvme_iov_passthru_md(nbdev_io,
3247 					       &bdev_io->u.nvme_passthru.cmd,
3248 					       bdev_io->u.nvme_passthru.iovs,
3249 					       bdev_io->u.nvme_passthru.iovcnt,
3250 					       bdev_io->u.nvme_passthru.nbytes,
3251 					       bdev_io->u.nvme_passthru.md_buf,
3252 					       bdev_io->u.nvme_passthru.md_len);
3253 		break;
3254 	case SPDK_BDEV_IO_TYPE_ABORT:
3255 		nbdev_io->io_path = NULL;
3256 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
3257 		bdev_nvme_abort(nbdev_ch,
3258 				nbdev_io,
3259 				nbdev_io_to_abort);
3260 		return;
3261 
3262 	case SPDK_BDEV_IO_TYPE_COPY:
3263 		rc = bdev_nvme_copy(nbdev_io,
3264 				    bdev_io->u.bdev.offset_blocks,
3265 				    bdev_io->u.bdev.copy.src_offset_blocks,
3266 				    bdev_io->u.bdev.num_blocks);
3267 		break;
3268 	default:
3269 		rc = -EINVAL;
3270 		break;
3271 	}
3272 
3273 	if (spdk_unlikely(rc != 0)) {
3274 		bdev_nvme_io_complete(nbdev_io, rc);
3275 	}
3276 }
3277 
3278 static void
3279 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
3280 {
3281 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3282 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3283 
3284 	if (spdk_likely(nbdev_io->submit_tsc == 0)) {
3285 		nbdev_io->submit_tsc = spdk_bdev_io_get_submit_tsc(bdev_io);
3286 	} else {
3287 		/* There are cases where submit_tsc != 0, i.e. retry I/O.
3288 		 * We need to update submit_tsc here.
3289 		 */
3290 		nbdev_io->submit_tsc = spdk_get_ticks();
3291 	}
3292 
3293 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
3294 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
3295 	if (spdk_unlikely(!nbdev_io->io_path)) {
3296 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
3297 			bdev_nvme_io_complete(nbdev_io, -ENXIO);
3298 			return;
3299 		}
3300 
3301 		/* Admin commands do not use the optimal I/O path.
3302 		 * Simply fall through even if it is not found.
3303 		 */
3304 	}
3305 
3306 	_bdev_nvme_submit_request(nbdev_ch, bdev_io);
3307 }
3308 
3309 static bool
3310 bdev_nvme_is_supported_csi(enum spdk_nvme_csi csi)
3311 {
3312 	switch (csi) {
3313 	case SPDK_NVME_CSI_NVM:
3314 		return true;
3315 	case SPDK_NVME_CSI_ZNS:
3316 		return true;
3317 	default:
3318 		return false;
3319 	}
3320 }
3321 
3322 static bool
3323 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
3324 {
3325 	struct nvme_bdev *nbdev = ctx;
3326 	struct nvme_ns *nvme_ns;
3327 	struct spdk_nvme_ns *ns;
3328 	struct spdk_nvme_ctrlr *ctrlr;
3329 	const struct spdk_nvme_ctrlr_data *cdata;
3330 
3331 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
3332 	assert(nvme_ns != NULL);
3333 	ns = nvme_ns->ns;
3334 	if (ns == NULL) {
3335 		return false;
3336 	}
3337 
3338 	if (!bdev_nvme_is_supported_csi(spdk_nvme_ns_get_csi(ns))) {
3339 		switch (io_type) {
3340 		case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3341 		case SPDK_BDEV_IO_TYPE_NVME_IO:
3342 			return true;
3343 
3344 		case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3345 			return spdk_nvme_ns_get_md_size(ns) ? true : false;
3346 
3347 		default:
3348 			return false;
3349 		}
3350 	}
3351 
3352 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3353 
3354 	switch (io_type) {
3355 	case SPDK_BDEV_IO_TYPE_READ:
3356 	case SPDK_BDEV_IO_TYPE_WRITE:
3357 	case SPDK_BDEV_IO_TYPE_RESET:
3358 	case SPDK_BDEV_IO_TYPE_FLUSH:
3359 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3360 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3361 	case SPDK_BDEV_IO_TYPE_ABORT:
3362 		return true;
3363 
3364 	case SPDK_BDEV_IO_TYPE_COMPARE:
3365 		return spdk_nvme_ns_supports_compare(ns);
3366 
3367 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3368 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
3369 
3370 	case SPDK_BDEV_IO_TYPE_UNMAP:
3371 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3372 		return cdata->oncs.dsm;
3373 
3374 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3375 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3376 		return cdata->oncs.write_zeroes;
3377 
3378 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3379 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
3380 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
3381 			return true;
3382 		}
3383 		return false;
3384 
3385 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3386 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3387 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
3388 
3389 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3390 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
3391 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
3392 
3393 	case SPDK_BDEV_IO_TYPE_COPY:
3394 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3395 		return cdata->oncs.copy;
3396 
3397 	default:
3398 		return false;
3399 	}
3400 }
3401 
3402 static int
3403 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
3404 {
3405 	struct nvme_qpair *nvme_qpair;
3406 	struct spdk_io_channel *pg_ch;
3407 	int rc;
3408 
3409 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
3410 	if (!nvme_qpair) {
3411 		SPDK_ERRLOG("Failed to alloc nvme_qpair.\n");
3412 		return -1;
3413 	}
3414 
3415 	TAILQ_INIT(&nvme_qpair->io_path_list);
3416 
3417 	nvme_qpair->ctrlr = nvme_ctrlr;
3418 	nvme_qpair->ctrlr_ch = ctrlr_ch;
3419 
3420 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
3421 	if (!pg_ch) {
3422 		free(nvme_qpair);
3423 		return -1;
3424 	}
3425 
3426 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
3427 
3428 #ifdef SPDK_CONFIG_VTUNE
3429 	nvme_qpair->group->collect_spin_stat = true;
3430 #else
3431 	nvme_qpair->group->collect_spin_stat = false;
3432 #endif
3433 
3434 	if (!nvme_ctrlr->disabled) {
3435 		/* If a nvme_ctrlr is disabled, don't try to create qpair for it. Qpair will
3436 		 * be created when it's enabled.
3437 		 */
3438 		rc = bdev_nvme_create_qpair(nvme_qpair);
3439 		if (rc != 0) {
3440 			/* nvme_ctrlr can't create IO qpair if connection is down.
3441 			 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
3442 			 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
3443 			 * submitted IO will be queued until IO qpair is successfully created.
3444 			 *
3445 			 * Hence, if both are satisfied, ignore the failure.
3446 			 */
3447 			if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
3448 				spdk_put_io_channel(pg_ch);
3449 				free(nvme_qpair);
3450 				return rc;
3451 			}
3452 		}
3453 	}
3454 
3455 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3456 
3457 	ctrlr_ch->qpair = nvme_qpair;
3458 
3459 	pthread_mutex_lock(&nvme_qpair->ctrlr->mutex);
3460 	nvme_qpair->ctrlr->ref++;
3461 	pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex);
3462 
3463 	return 0;
3464 }
3465 
3466 static int
3467 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3468 {
3469 	struct nvme_ctrlr *nvme_ctrlr = io_device;
3470 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3471 
3472 	TAILQ_INIT(&ctrlr_ch->pending_resets);
3473 
3474 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
3475 }
3476 
3477 static void
3478 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
3479 {
3480 	struct nvme_io_path *io_path, *next;
3481 
3482 	assert(nvme_qpair->group != NULL);
3483 
3484 	TAILQ_FOREACH_SAFE(io_path, &nvme_qpair->io_path_list, tailq, next) {
3485 		TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
3486 		nvme_io_path_free(io_path);
3487 	}
3488 
3489 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3490 
3491 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
3492 
3493 	nvme_ctrlr_release(nvme_qpair->ctrlr);
3494 
3495 	free(nvme_qpair);
3496 }
3497 
3498 static void
3499 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3500 {
3501 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3502 	struct nvme_qpair *nvme_qpair;
3503 
3504 	nvme_qpair = ctrlr_ch->qpair;
3505 	assert(nvme_qpair != NULL);
3506 
3507 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
3508 
3509 	if (nvme_qpair->qpair != NULL) {
3510 		if (ctrlr_ch->reset_iter == NULL) {
3511 			spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
3512 		} else {
3513 			/* Skip current ctrlr_channel in a full reset sequence because
3514 			 * it is being deleted now. The qpair is already being disconnected.
3515 			 * We do not have to restart disconnecting it.
3516 			 */
3517 			nvme_ctrlr_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
3518 		}
3519 
3520 		/* We cannot release a reference to the poll group now.
3521 		 * The qpair may be disconnected asynchronously later.
3522 		 * We need to poll it until it is actually disconnected.
3523 		 * Just detach the qpair from the deleting ctrlr_channel.
3524 		 */
3525 		nvme_qpair->ctrlr_ch = NULL;
3526 	} else {
3527 		assert(ctrlr_ch->reset_iter == NULL);
3528 
3529 		nvme_qpair_delete(nvme_qpair);
3530 	}
3531 }
3532 
3533 static inline struct spdk_io_channel *
3534 bdev_nvme_get_accel_channel(struct nvme_poll_group *group)
3535 {
3536 	if (spdk_unlikely(!group->accel_channel)) {
3537 		group->accel_channel = spdk_accel_get_io_channel();
3538 		if (!group->accel_channel) {
3539 			SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
3540 				    group);
3541 			return NULL;
3542 		}
3543 	}
3544 
3545 	return group->accel_channel;
3546 }
3547 
3548 static void
3549 bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
3550 			      uint32_t iov_cnt, uint32_t seed,
3551 			      spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3552 {
3553 	struct spdk_io_channel *accel_ch;
3554 	struct nvme_poll_group *group = ctx;
3555 	int rc;
3556 
3557 	assert(cb_fn != NULL);
3558 
3559 	accel_ch = bdev_nvme_get_accel_channel(group);
3560 	if (spdk_unlikely(accel_ch == NULL)) {
3561 		cb_fn(cb_arg, -ENOMEM);
3562 		return;
3563 	}
3564 
3565 	rc = spdk_accel_submit_crc32cv(accel_ch, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
3566 	if (rc) {
3567 		/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
3568 		if (rc == -ENOMEM || rc == -EINVAL) {
3569 			cb_fn(cb_arg, rc);
3570 		}
3571 		SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
3572 	}
3573 }
3574 
3575 static void
3576 bdev_nvme_finish_sequence(void *seq, spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3577 {
3578 	spdk_accel_sequence_finish(seq, cb_fn, cb_arg);
3579 }
3580 
3581 static void
3582 bdev_nvme_abort_sequence(void *seq)
3583 {
3584 	spdk_accel_sequence_abort(seq);
3585 }
3586 
3587 static void
3588 bdev_nvme_reverse_sequence(void *seq)
3589 {
3590 	spdk_accel_sequence_reverse(seq);
3591 }
3592 
3593 static int
3594 bdev_nvme_append_crc32c(void *ctx, void **seq, uint32_t *dst, struct iovec *iovs, uint32_t iovcnt,
3595 			struct spdk_memory_domain *domain, void *domain_ctx, uint32_t seed,
3596 			spdk_nvme_accel_step_cb cb_fn, void *cb_arg)
3597 {
3598 	struct spdk_io_channel *ch;
3599 	struct nvme_poll_group *group = ctx;
3600 
3601 	ch = bdev_nvme_get_accel_channel(group);
3602 	if (spdk_unlikely(ch == NULL)) {
3603 		return -ENOMEM;
3604 	}
3605 
3606 	return spdk_accel_append_crc32c((struct spdk_accel_sequence **)seq, ch, dst, iovs, iovcnt,
3607 					domain, domain_ctx, seed, cb_fn, cb_arg);
3608 }
3609 
3610 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
3611 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
3612 	.submit_accel_crc32c	= bdev_nvme_submit_accel_crc32c,
3613 	.append_crc32c		= bdev_nvme_append_crc32c,
3614 	.finish_sequence	= bdev_nvme_finish_sequence,
3615 	.reverse_sequence	= bdev_nvme_reverse_sequence,
3616 	.abort_sequence		= bdev_nvme_abort_sequence,
3617 };
3618 
3619 static int
3620 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
3621 {
3622 	struct nvme_poll_group *group = ctx_buf;
3623 
3624 	TAILQ_INIT(&group->qpair_list);
3625 
3626 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
3627 	if (group->group == NULL) {
3628 		return -1;
3629 	}
3630 
3631 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
3632 
3633 	if (group->poller == NULL) {
3634 		spdk_nvme_poll_group_destroy(group->group);
3635 		return -1;
3636 	}
3637 
3638 	return 0;
3639 }
3640 
3641 static void
3642 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
3643 {
3644 	struct nvme_poll_group *group = ctx_buf;
3645 
3646 	assert(TAILQ_EMPTY(&group->qpair_list));
3647 
3648 	if (group->accel_channel) {
3649 		spdk_put_io_channel(group->accel_channel);
3650 	}
3651 
3652 	spdk_poller_unregister(&group->poller);
3653 	if (spdk_nvme_poll_group_destroy(group->group)) {
3654 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
3655 		assert(false);
3656 	}
3657 }
3658 
3659 static struct spdk_io_channel *
3660 bdev_nvme_get_io_channel(void *ctx)
3661 {
3662 	struct nvme_bdev *nvme_bdev = ctx;
3663 
3664 	return spdk_get_io_channel(nvme_bdev);
3665 }
3666 
3667 static void *
3668 bdev_nvme_get_module_ctx(void *ctx)
3669 {
3670 	struct nvme_bdev *nvme_bdev = ctx;
3671 	struct nvme_ns *nvme_ns;
3672 
3673 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
3674 		return NULL;
3675 	}
3676 
3677 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
3678 	if (!nvme_ns) {
3679 		return NULL;
3680 	}
3681 
3682 	return nvme_ns->ns;
3683 }
3684 
3685 static const char *
3686 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
3687 {
3688 	switch (ana_state) {
3689 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3690 		return "optimized";
3691 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3692 		return "non_optimized";
3693 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3694 		return "inaccessible";
3695 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
3696 		return "persistent_loss";
3697 	case SPDK_NVME_ANA_CHANGE_STATE:
3698 		return "change";
3699 	default:
3700 		return NULL;
3701 	}
3702 }
3703 
3704 static int
3705 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
3706 {
3707 	struct spdk_memory_domain **_domains = NULL;
3708 	struct nvme_bdev *nbdev = ctx;
3709 	struct nvme_ns *nvme_ns;
3710 	int i = 0, _array_size = array_size;
3711 	int rc = 0;
3712 
3713 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3714 		if (domains && array_size >= i) {
3715 			_domains = &domains[i];
3716 		} else {
3717 			_domains = NULL;
3718 		}
3719 		rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size);
3720 		if (rc > 0) {
3721 			i += rc;
3722 			if (_array_size >= rc) {
3723 				_array_size -= rc;
3724 			} else {
3725 				_array_size = 0;
3726 			}
3727 		} else if (rc < 0) {
3728 			return rc;
3729 		}
3730 	}
3731 
3732 	return i;
3733 }
3734 
3735 static const char *
3736 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
3737 {
3738 	if (nvme_ctrlr->destruct) {
3739 		return "deleting";
3740 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
3741 		return "failed";
3742 	} else if (nvme_ctrlr->resetting) {
3743 		return "resetting";
3744 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
3745 		return "reconnect_is_delayed";
3746 	} else if (nvme_ctrlr->disabled) {
3747 		return "disabled";
3748 	} else {
3749 		return "enabled";
3750 	}
3751 }
3752 
3753 void
3754 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
3755 {
3756 	struct spdk_nvme_transport_id *trid;
3757 	const struct spdk_nvme_ctrlr_opts *opts;
3758 	const struct spdk_nvme_ctrlr_data *cdata;
3759 	struct nvme_path_id *path_id;
3760 	int32_t numa_id;
3761 
3762 	spdk_json_write_object_begin(w);
3763 
3764 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
3765 
3766 #ifdef SPDK_CONFIG_NVME_CUSE
3767 	size_t cuse_name_size = 128;
3768 	char cuse_name[cuse_name_size];
3769 
3770 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
3771 	if (rc == 0) {
3772 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3773 	}
3774 #endif
3775 	trid = &nvme_ctrlr->active_path_id->trid;
3776 	spdk_json_write_named_object_begin(w, "trid");
3777 	nvme_bdev_dump_trid_json(trid, w);
3778 	spdk_json_write_object_end(w);
3779 
3780 	path_id = TAILQ_NEXT(nvme_ctrlr->active_path_id, link);
3781 	if (path_id != NULL) {
3782 		spdk_json_write_named_array_begin(w, "alternate_trids");
3783 		do {
3784 			trid = &path_id->trid;
3785 			spdk_json_write_object_begin(w);
3786 			nvme_bdev_dump_trid_json(trid, w);
3787 			spdk_json_write_object_end(w);
3788 
3789 			path_id = TAILQ_NEXT(path_id, link);
3790 		} while (path_id != NULL);
3791 		spdk_json_write_array_end(w);
3792 	}
3793 
3794 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
3795 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3796 
3797 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
3798 	spdk_json_write_named_object_begin(w, "host");
3799 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
3800 	spdk_json_write_named_string(w, "addr", opts->src_addr);
3801 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
3802 	spdk_json_write_object_end(w);
3803 
3804 	numa_id = spdk_nvme_ctrlr_get_numa_id(nvme_ctrlr->ctrlr);
3805 	if (numa_id != SPDK_ENV_NUMA_ID_ANY) {
3806 		spdk_json_write_named_uint32(w, "numa_id", numa_id);
3807 	}
3808 	spdk_json_write_object_end(w);
3809 }
3810 
3811 static void
3812 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
3813 			 struct nvme_ns *nvme_ns)
3814 {
3815 	struct spdk_nvme_ns *ns;
3816 	struct spdk_nvme_ctrlr *ctrlr;
3817 	const struct spdk_nvme_ctrlr_data *cdata;
3818 	const struct spdk_nvme_transport_id *trid;
3819 	union spdk_nvme_vs_register vs;
3820 	const struct spdk_nvme_ns_data *nsdata;
3821 	char buf[128];
3822 
3823 	ns = nvme_ns->ns;
3824 	if (ns == NULL) {
3825 		return;
3826 	}
3827 
3828 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3829 
3830 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3831 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
3832 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
3833 
3834 	spdk_json_write_object_begin(w);
3835 
3836 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
3837 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
3838 	}
3839 
3840 	spdk_json_write_named_object_begin(w, "trid");
3841 
3842 	nvme_bdev_dump_trid_json(trid, w);
3843 
3844 	spdk_json_write_object_end(w);
3845 
3846 #ifdef SPDK_CONFIG_NVME_CUSE
3847 	size_t cuse_name_size = 128;
3848 	char cuse_name[cuse_name_size];
3849 
3850 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
3851 					    cuse_name, &cuse_name_size);
3852 	if (rc == 0) {
3853 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3854 	}
3855 #endif
3856 
3857 	spdk_json_write_named_object_begin(w, "ctrlr_data");
3858 
3859 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3860 
3861 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
3862 
3863 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
3864 	spdk_str_trim(buf);
3865 	spdk_json_write_named_string(w, "model_number", buf);
3866 
3867 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
3868 	spdk_str_trim(buf);
3869 	spdk_json_write_named_string(w, "serial_number", buf);
3870 
3871 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
3872 	spdk_str_trim(buf);
3873 	spdk_json_write_named_string(w, "firmware_revision", buf);
3874 
3875 	if (cdata->subnqn[0] != '\0') {
3876 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
3877 	}
3878 
3879 	spdk_json_write_named_object_begin(w, "oacs");
3880 
3881 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
3882 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
3883 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
3884 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
3885 
3886 	spdk_json_write_object_end(w);
3887 
3888 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
3889 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
3890 
3891 	spdk_json_write_object_end(w);
3892 
3893 	spdk_json_write_named_object_begin(w, "vs");
3894 
3895 	spdk_json_write_name(w, "nvme_version");
3896 	if (vs.bits.ter) {
3897 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
3898 	} else {
3899 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
3900 	}
3901 
3902 	spdk_json_write_object_end(w);
3903 
3904 	nsdata = spdk_nvme_ns_get_data(ns);
3905 
3906 	spdk_json_write_named_object_begin(w, "ns_data");
3907 
3908 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
3909 
3910 	if (cdata->cmic.ana_reporting) {
3911 		spdk_json_write_named_string(w, "ana_state",
3912 					     _nvme_ana_state_str(nvme_ns->ana_state));
3913 	}
3914 
3915 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
3916 
3917 	spdk_json_write_object_end(w);
3918 
3919 	if (cdata->oacs.security) {
3920 		spdk_json_write_named_object_begin(w, "security");
3921 
3922 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
3923 
3924 		spdk_json_write_object_end(w);
3925 	}
3926 
3927 	spdk_json_write_object_end(w);
3928 }
3929 
3930 static const char *
3931 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
3932 {
3933 	switch (nbdev->mp_policy) {
3934 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
3935 		return "active_passive";
3936 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
3937 		return "active_active";
3938 	default:
3939 		assert(false);
3940 		return "invalid";
3941 	}
3942 }
3943 
3944 static const char *
3945 nvme_bdev_get_mp_selector_str(struct nvme_bdev *nbdev)
3946 {
3947 	switch (nbdev->mp_selector) {
3948 	case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN:
3949 		return "round_robin";
3950 	case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH:
3951 		return "queue_depth";
3952 	default:
3953 		assert(false);
3954 		return "invalid";
3955 	}
3956 }
3957 
3958 static int
3959 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
3960 {
3961 	struct nvme_bdev *nvme_bdev = ctx;
3962 	struct nvme_ns *nvme_ns;
3963 
3964 	pthread_mutex_lock(&nvme_bdev->mutex);
3965 	spdk_json_write_named_array_begin(w, "nvme");
3966 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
3967 		nvme_namespace_info_json(w, nvme_ns);
3968 	}
3969 	spdk_json_write_array_end(w);
3970 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
3971 	if (nvme_bdev->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
3972 		spdk_json_write_named_string(w, "selector", nvme_bdev_get_mp_selector_str(nvme_bdev));
3973 		if (nvme_bdev->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
3974 			spdk_json_write_named_uint32(w, "rr_min_io", nvme_bdev->rr_min_io);
3975 		}
3976 	}
3977 	pthread_mutex_unlock(&nvme_bdev->mutex);
3978 
3979 	return 0;
3980 }
3981 
3982 static void
3983 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
3984 {
3985 	/* No config per bdev needed */
3986 }
3987 
3988 static uint64_t
3989 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
3990 {
3991 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3992 	struct nvme_io_path *io_path;
3993 	struct nvme_poll_group *group;
3994 	uint64_t spin_time = 0;
3995 
3996 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
3997 		group = io_path->qpair->group;
3998 
3999 		if (!group || !group->collect_spin_stat) {
4000 			continue;
4001 		}
4002 
4003 		if (group->end_ticks != 0) {
4004 			group->spin_ticks += (group->end_ticks - group->start_ticks);
4005 			group->end_ticks = 0;
4006 		}
4007 
4008 		spin_time += group->spin_ticks;
4009 		group->start_ticks = 0;
4010 		group->spin_ticks = 0;
4011 	}
4012 
4013 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
4014 }
4015 
4016 static void
4017 bdev_nvme_reset_device_stat(void *ctx)
4018 {
4019 	struct nvme_bdev *nbdev = ctx;
4020 
4021 	if (nbdev->err_stat != NULL) {
4022 		memset(nbdev->err_stat, 0, sizeof(struct nvme_error_stat));
4023 	}
4024 }
4025 
4026 /* JSON string should be lowercases and underscore delimited string. */
4027 static void
4028 bdev_nvme_format_nvme_status(char *dst, const char *src)
4029 {
4030 	char tmp[256];
4031 
4032 	spdk_strcpy_replace(dst, 256, src, " - ", "_");
4033 	spdk_strcpy_replace(tmp, 256, dst, "-", "_");
4034 	spdk_strcpy_replace(dst, 256, tmp, " ", "_");
4035 	spdk_strlwr(dst);
4036 }
4037 
4038 static void
4039 bdev_nvme_dump_device_stat_json(void *ctx, struct spdk_json_write_ctx *w)
4040 {
4041 	struct nvme_bdev *nbdev = ctx;
4042 	struct spdk_nvme_status status = {};
4043 	uint16_t sct, sc;
4044 	char status_json[256];
4045 	const char *status_str;
4046 
4047 	if (nbdev->err_stat == NULL) {
4048 		return;
4049 	}
4050 
4051 	spdk_json_write_named_object_begin(w, "nvme_error");
4052 
4053 	spdk_json_write_named_object_begin(w, "status_type");
4054 	for (sct = 0; sct < 8; sct++) {
4055 		if (nbdev->err_stat->status_type[sct] == 0) {
4056 			continue;
4057 		}
4058 		status.sct = sct;
4059 
4060 		status_str = spdk_nvme_cpl_get_status_type_string(&status);
4061 		assert(status_str != NULL);
4062 		bdev_nvme_format_nvme_status(status_json, status_str);
4063 
4064 		spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status_type[sct]);
4065 	}
4066 	spdk_json_write_object_end(w);
4067 
4068 	spdk_json_write_named_object_begin(w, "status_code");
4069 	for (sct = 0; sct < 4; sct++) {
4070 		status.sct = sct;
4071 		for (sc = 0; sc < 256; sc++) {
4072 			if (nbdev->err_stat->status[sct][sc] == 0) {
4073 				continue;
4074 			}
4075 			status.sc = sc;
4076 
4077 			status_str = spdk_nvme_cpl_get_status_string(&status);
4078 			assert(status_str != NULL);
4079 			bdev_nvme_format_nvme_status(status_json, status_str);
4080 
4081 			spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status[sct][sc]);
4082 		}
4083 	}
4084 	spdk_json_write_object_end(w);
4085 
4086 	spdk_json_write_object_end(w);
4087 }
4088 
4089 static bool
4090 bdev_nvme_accel_sequence_supported(void *ctx, enum spdk_bdev_io_type type)
4091 {
4092 	struct nvme_bdev *nbdev = ctx;
4093 	struct spdk_nvme_ctrlr *ctrlr;
4094 
4095 	if (!g_opts.allow_accel_sequence) {
4096 		return false;
4097 	}
4098 
4099 	switch (type) {
4100 	case SPDK_BDEV_IO_TYPE_WRITE:
4101 	case SPDK_BDEV_IO_TYPE_READ:
4102 		break;
4103 	default:
4104 		return false;
4105 	}
4106 
4107 	ctrlr = bdev_nvme_get_ctrlr(&nbdev->disk);
4108 	assert(ctrlr != NULL);
4109 
4110 	return spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ACCEL_SEQUENCE_SUPPORTED;
4111 }
4112 
4113 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
4114 	.destruct			= bdev_nvme_destruct,
4115 	.submit_request			= bdev_nvme_submit_request,
4116 	.io_type_supported		= bdev_nvme_io_type_supported,
4117 	.get_io_channel			= bdev_nvme_get_io_channel,
4118 	.dump_info_json			= bdev_nvme_dump_info_json,
4119 	.write_config_json		= bdev_nvme_write_config_json,
4120 	.get_spin_time			= bdev_nvme_get_spin_time,
4121 	.get_module_ctx			= bdev_nvme_get_module_ctx,
4122 	.get_memory_domains		= bdev_nvme_get_memory_domains,
4123 	.accel_sequence_supported	= bdev_nvme_accel_sequence_supported,
4124 	.reset_device_stat		= bdev_nvme_reset_device_stat,
4125 	.dump_device_stat_json		= bdev_nvme_dump_device_stat_json,
4126 };
4127 
4128 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
4129 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
4130 
4131 static int
4132 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
4133 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
4134 {
4135 	struct spdk_nvme_ana_group_descriptor *copied_desc;
4136 	uint8_t *orig_desc;
4137 	uint32_t i, desc_size, copy_len;
4138 	int rc = 0;
4139 
4140 	if (nvme_ctrlr->ana_log_page == NULL) {
4141 		return -EINVAL;
4142 	}
4143 
4144 	copied_desc = nvme_ctrlr->copied_ana_desc;
4145 
4146 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
4147 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
4148 
4149 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
4150 		memcpy(copied_desc, orig_desc, copy_len);
4151 
4152 		rc = cb_fn(copied_desc, cb_arg);
4153 		if (rc != 0) {
4154 			break;
4155 		}
4156 
4157 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
4158 			    copied_desc->num_of_nsid * sizeof(uint32_t);
4159 		orig_desc += desc_size;
4160 		copy_len -= desc_size;
4161 	}
4162 
4163 	return rc;
4164 }
4165 
4166 static int
4167 nvme_ns_ana_transition_timedout(void *ctx)
4168 {
4169 	struct nvme_ns *nvme_ns = ctx;
4170 
4171 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4172 	nvme_ns->ana_transition_timedout = true;
4173 
4174 	return SPDK_POLLER_BUSY;
4175 }
4176 
4177 static void
4178 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
4179 		       const struct spdk_nvme_ana_group_descriptor *desc)
4180 {
4181 	const struct spdk_nvme_ctrlr_data *cdata;
4182 
4183 	nvme_ns->ana_group_id = desc->ana_group_id;
4184 	nvme_ns->ana_state = desc->ana_state;
4185 	nvme_ns->ana_state_updating = false;
4186 
4187 	switch (nvme_ns->ana_state) {
4188 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
4189 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
4190 		nvme_ns->ana_transition_timedout = false;
4191 		spdk_poller_unregister(&nvme_ns->anatt_timer);
4192 		break;
4193 
4194 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
4195 	case SPDK_NVME_ANA_CHANGE_STATE:
4196 		if (nvme_ns->anatt_timer != NULL) {
4197 			break;
4198 		}
4199 
4200 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
4201 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
4202 				       nvme_ns,
4203 				       cdata->anatt * SPDK_SEC_TO_USEC);
4204 		break;
4205 	default:
4206 		break;
4207 	}
4208 }
4209 
4210 static int
4211 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
4212 {
4213 	struct nvme_ns *nvme_ns = cb_arg;
4214 	uint32_t i;
4215 
4216 	assert(nvme_ns->ns != NULL);
4217 
4218 	for (i = 0; i < desc->num_of_nsid; i++) {
4219 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
4220 			continue;
4221 		}
4222 
4223 		_nvme_ns_set_ana_state(nvme_ns, desc);
4224 		return 1;
4225 	}
4226 
4227 	return 0;
4228 }
4229 
4230 static int
4231 nvme_generate_uuid(const char *sn, uint32_t nsid, struct spdk_uuid *uuid)
4232 {
4233 	int rc = 0;
4234 	struct spdk_uuid new_uuid, namespace_uuid;
4235 	char merged_str[SPDK_NVME_CTRLR_SN_LEN + NSID_STR_LEN + 1] = {'\0'};
4236 	/* This namespace UUID was generated using uuid_generate() method. */
4237 	const char *namespace_str = {"edaed2de-24bc-4b07-b559-f47ecbe730fd"};
4238 	int size;
4239 
4240 	assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN);
4241 
4242 	spdk_uuid_set_null(&new_uuid);
4243 	spdk_uuid_set_null(&namespace_uuid);
4244 
4245 	size = snprintf(merged_str, sizeof(merged_str), "%s%"PRIu32, sn, nsid);
4246 	if (size <= 0 || (unsigned long)size >= sizeof(merged_str)) {
4247 		return -EINVAL;
4248 	}
4249 
4250 	spdk_uuid_parse(&namespace_uuid, namespace_str);
4251 
4252 	rc = spdk_uuid_generate_sha1(&new_uuid, &namespace_uuid, merged_str, size);
4253 	if (rc == 0) {
4254 		memcpy(uuid, &new_uuid, sizeof(struct spdk_uuid));
4255 	}
4256 
4257 	return rc;
4258 }
4259 
4260 static int
4261 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
4262 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
4263 		 struct spdk_bdev_nvme_ctrlr_opts *bdev_opts, void *ctx)
4264 {
4265 	const struct spdk_uuid		*uuid;
4266 	const uint8_t *nguid;
4267 	const struct spdk_nvme_ctrlr_data *cdata;
4268 	const struct spdk_nvme_ns_data	*nsdata;
4269 	const struct spdk_nvme_ctrlr_opts *opts;
4270 	enum spdk_nvme_csi		csi;
4271 	uint32_t atomic_bs, phys_bs, bs;
4272 	char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'};
4273 	int rc;
4274 
4275 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4276 	csi = spdk_nvme_ns_get_csi(ns);
4277 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
4278 
4279 	switch (csi) {
4280 	case SPDK_NVME_CSI_NVM:
4281 		disk->product_name = "NVMe disk";
4282 		break;
4283 	case SPDK_NVME_CSI_ZNS:
4284 		disk->product_name = "NVMe ZNS disk";
4285 		disk->zoned = true;
4286 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
4287 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
4288 					     spdk_nvme_ns_get_extended_sector_size(ns);
4289 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
4290 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
4291 		break;
4292 	default:
4293 		if (bdev_opts->allow_unrecognized_csi) {
4294 			disk->product_name = "NVMe Passthrough disk";
4295 			break;
4296 		}
4297 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
4298 		return -ENOTSUP;
4299 	}
4300 
4301 	nguid = spdk_nvme_ns_get_nguid(ns);
4302 	if (!nguid) {
4303 		uuid = spdk_nvme_ns_get_uuid(ns);
4304 		if (uuid) {
4305 			disk->uuid = *uuid;
4306 		} else if (g_opts.generate_uuids) {
4307 			spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0');
4308 			rc = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns), &disk->uuid);
4309 			if (rc < 0) {
4310 				SPDK_ERRLOG("UUID generation failed (%s)\n", spdk_strerror(-rc));
4311 				return rc;
4312 			}
4313 		}
4314 	} else {
4315 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
4316 	}
4317 
4318 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
4319 	if (!disk->name) {
4320 		return -ENOMEM;
4321 	}
4322 
4323 	disk->write_cache = 0;
4324 	if (cdata->vwc.present) {
4325 		/* Enable if the Volatile Write Cache exists */
4326 		disk->write_cache = 1;
4327 	}
4328 	if (cdata->oncs.write_zeroes) {
4329 		disk->max_write_zeroes = UINT16_MAX + 1;
4330 	}
4331 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
4332 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
4333 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
4334 	disk->ctratt.raw = cdata->ctratt.raw;
4335 	/* NVMe driver will split one request into multiple requests
4336 	 * based on MDTS and stripe boundary, the bdev layer will use
4337 	 * max_segment_size and max_num_segments to split one big IO
4338 	 * into multiple requests, then small request can't run out
4339 	 * of NVMe internal requests data structure.
4340 	 */
4341 	if (opts && opts->io_queue_requests) {
4342 		disk->max_num_segments = opts->io_queue_requests / 2;
4343 	}
4344 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
4345 		/* The nvme driver will try to split I/O that have too many
4346 		 * SGEs, but it doesn't work if that last SGE doesn't end on
4347 		 * an aggregate total that is block aligned. The bdev layer has
4348 		 * a more robust splitting framework, so use that instead for
4349 		 * this case. (See issue #3269.)
4350 		 */
4351 		uint16_t max_sges = spdk_nvme_ctrlr_get_max_sges(ctrlr);
4352 
4353 		if (disk->max_num_segments == 0) {
4354 			disk->max_num_segments = max_sges;
4355 		} else {
4356 			disk->max_num_segments = spdk_min(disk->max_num_segments, max_sges);
4357 		}
4358 	}
4359 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
4360 
4361 	nsdata = spdk_nvme_ns_get_data(ns);
4362 	bs = spdk_nvme_ns_get_sector_size(ns);
4363 	atomic_bs = bs;
4364 	phys_bs = bs;
4365 	if (nsdata->nabo == 0) {
4366 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
4367 			atomic_bs = bs * (1 + nsdata->nawupf);
4368 		} else {
4369 			atomic_bs = bs * (1 + cdata->awupf);
4370 		}
4371 	}
4372 	if (nsdata->nsfeat.optperf) {
4373 		phys_bs = bs * (1 + nsdata->npwg);
4374 	}
4375 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
4376 
4377 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
4378 	if (disk->md_len != 0) {
4379 		disk->md_interleave = nsdata->flbas.extended;
4380 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
4381 		if (disk->dif_type != SPDK_DIF_DISABLE) {
4382 			disk->dif_is_head_of_md = nsdata->dps.md_start;
4383 			disk->dif_check_flags = bdev_opts->prchk_flags;
4384 			disk->dif_pi_format = (enum spdk_dif_pi_format)spdk_nvme_ns_get_pi_format(ns);
4385 		}
4386 	}
4387 
4388 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
4389 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
4390 		disk->acwu = 0;
4391 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
4392 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
4393 	} else {
4394 		disk->acwu = cdata->acwu + 1; /* 0-based */
4395 	}
4396 
4397 	if (cdata->oncs.copy) {
4398 		/* For now bdev interface allows only single segment copy */
4399 		disk->max_copy = nsdata->mssrl;
4400 	}
4401 
4402 	disk->ctxt = ctx;
4403 	disk->fn_table = &nvmelib_fn_table;
4404 	disk->module = &nvme_if;
4405 
4406 	disk->numa.id_valid = 1;
4407 	disk->numa.id = spdk_nvme_ctrlr_get_numa_id(ctrlr);
4408 
4409 	return 0;
4410 }
4411 
4412 static struct nvme_bdev *
4413 nvme_bdev_alloc(void)
4414 {
4415 	struct nvme_bdev *bdev;
4416 	int rc;
4417 
4418 	bdev = calloc(1, sizeof(*bdev));
4419 	if (!bdev) {
4420 		SPDK_ERRLOG("bdev calloc() failed\n");
4421 		return NULL;
4422 	}
4423 
4424 	if (g_opts.nvme_error_stat) {
4425 		bdev->err_stat = calloc(1, sizeof(struct nvme_error_stat));
4426 		if (!bdev->err_stat) {
4427 			SPDK_ERRLOG("err_stat calloc() failed\n");
4428 			free(bdev);
4429 			return NULL;
4430 		}
4431 	}
4432 
4433 	rc = pthread_mutex_init(&bdev->mutex, NULL);
4434 	if (rc != 0) {
4435 		free(bdev->err_stat);
4436 		free(bdev);
4437 		return NULL;
4438 	}
4439 
4440 	bdev->ref = 1;
4441 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
4442 	bdev->mp_selector = BDEV_NVME_MP_SELECTOR_ROUND_ROBIN;
4443 	bdev->rr_min_io = UINT32_MAX;
4444 	TAILQ_INIT(&bdev->nvme_ns_list);
4445 
4446 	return bdev;
4447 }
4448 
4449 static int
4450 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4451 {
4452 	struct nvme_bdev *bdev;
4453 	struct nvme_bdev_ctrlr *nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
4454 	int rc;
4455 
4456 	bdev = nvme_bdev_alloc();
4457 	if (bdev == NULL) {
4458 		SPDK_ERRLOG("Failed to allocate NVMe bdev\n");
4459 		return -ENOMEM;
4460 	}
4461 
4462 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
4463 
4464 	rc = nvme_disk_create(&bdev->disk, nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
4465 			      nvme_ns->ns, &nvme_ctrlr->opts, bdev);
4466 	if (rc != 0) {
4467 		SPDK_ERRLOG("Failed to create NVMe disk\n");
4468 		nvme_bdev_free(bdev);
4469 		return rc;
4470 	}
4471 
4472 	spdk_io_device_register(bdev,
4473 				bdev_nvme_create_bdev_channel_cb,
4474 				bdev_nvme_destroy_bdev_channel_cb,
4475 				sizeof(struct nvme_bdev_channel),
4476 				bdev->disk.name);
4477 
4478 	nvme_ns->bdev = bdev;
4479 	bdev->nsid = nvme_ns->id;
4480 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4481 
4482 	bdev->nbdev_ctrlr = nbdev_ctrlr;
4483 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->bdevs, bdev, tailq);
4484 
4485 	rc = spdk_bdev_register(&bdev->disk);
4486 	if (rc != 0) {
4487 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
4488 		spdk_io_device_unregister(bdev, NULL);
4489 		nvme_ns->bdev = NULL;
4490 		TAILQ_REMOVE(&nbdev_ctrlr->bdevs, bdev, tailq);
4491 		nvme_bdev_free(bdev);
4492 		return rc;
4493 	}
4494 
4495 	return 0;
4496 }
4497 
4498 static bool
4499 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
4500 {
4501 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
4502 	const struct spdk_uuid *uuid1, *uuid2;
4503 
4504 	nsdata1 = spdk_nvme_ns_get_data(ns1);
4505 	nsdata2 = spdk_nvme_ns_get_data(ns2);
4506 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
4507 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
4508 
4509 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
4510 	       nsdata1->eui64 == nsdata2->eui64 &&
4511 	       ((uuid1 == NULL && uuid2 == NULL) ||
4512 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
4513 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
4514 }
4515 
4516 static bool
4517 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4518 		 struct spdk_nvme_ctrlr_opts *opts)
4519 {
4520 	struct nvme_probe_skip_entry *entry;
4521 
4522 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
4523 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4524 			return false;
4525 		}
4526 	}
4527 
4528 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
4529 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
4530 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
4531 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
4532 	opts->disable_read_ana_log_page = true;
4533 
4534 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
4535 
4536 	return true;
4537 }
4538 
4539 static void
4540 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
4541 {
4542 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4543 
4544 	if (spdk_nvme_cpl_is_error(cpl)) {
4545 		SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
4546 			     cpl->status.sct);
4547 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4548 	} else if (cpl->cdw0 & 0x1) {
4549 		SPDK_WARNLOG("Specified command could not be aborted.\n");
4550 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4551 	}
4552 }
4553 
4554 static void
4555 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
4556 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
4557 {
4558 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4559 	union spdk_nvme_csts_register csts;
4560 	int rc;
4561 
4562 	assert(nvme_ctrlr->ctrlr == ctrlr);
4563 
4564 	SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
4565 
4566 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
4567 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
4568 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
4569 	 * completion recursively.
4570 	 */
4571 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
4572 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
4573 		if (csts.bits.cfs) {
4574 			SPDK_ERRLOG("Controller Fatal Status, reset required\n");
4575 			bdev_nvme_reset_ctrlr(nvme_ctrlr);
4576 			return;
4577 		}
4578 	}
4579 
4580 	switch (g_opts.action_on_timeout) {
4581 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
4582 		if (qpair) {
4583 			/* Don't send abort to ctrlr when ctrlr is not available. */
4584 			pthread_mutex_lock(&nvme_ctrlr->mutex);
4585 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
4586 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
4587 				SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n");
4588 				return;
4589 			}
4590 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4591 
4592 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
4593 						       nvme_abort_cpl, nvme_ctrlr);
4594 			if (rc == 0) {
4595 				return;
4596 			}
4597 
4598 			SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
4599 		}
4600 
4601 	/* FALLTHROUGH */
4602 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
4603 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4604 		break;
4605 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
4606 		SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
4607 		break;
4608 	default:
4609 		SPDK_ERRLOG("An invalid timeout action value is found.\n");
4610 		break;
4611 	}
4612 }
4613 
4614 static struct nvme_ns *
4615 nvme_ns_alloc(void)
4616 {
4617 	struct nvme_ns *nvme_ns;
4618 
4619 	nvme_ns = calloc(1, sizeof(struct nvme_ns));
4620 	if (nvme_ns == NULL) {
4621 		return NULL;
4622 	}
4623 
4624 	if (g_opts.io_path_stat) {
4625 		nvme_ns->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
4626 		if (nvme_ns->stat == NULL) {
4627 			free(nvme_ns);
4628 			return NULL;
4629 		}
4630 		spdk_bdev_reset_io_stat(nvme_ns->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
4631 	}
4632 
4633 	return nvme_ns;
4634 }
4635 
4636 static void
4637 nvme_ns_free(struct nvme_ns *nvme_ns)
4638 {
4639 	free(nvme_ns->stat);
4640 	free(nvme_ns);
4641 }
4642 
4643 static void
4644 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
4645 {
4646 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4647 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
4648 
4649 	if (rc == 0) {
4650 		nvme_ns->probe_ctx = NULL;
4651 		pthread_mutex_lock(&nvme_ctrlr->mutex);
4652 		nvme_ctrlr->ref++;
4653 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4654 	} else {
4655 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4656 		nvme_ns_free(nvme_ns);
4657 	}
4658 
4659 	if (ctx) {
4660 		ctx->populates_in_progress--;
4661 		if (ctx->populates_in_progress == 0) {
4662 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4663 		}
4664 	}
4665 }
4666 
4667 static void
4668 bdev_nvme_add_io_path(struct nvme_bdev_channel_iter *i,
4669 		      struct nvme_bdev *nbdev,
4670 		      struct nvme_bdev_channel *nbdev_ch, void *ctx)
4671 {
4672 	struct nvme_ns *nvme_ns = ctx;
4673 	int rc;
4674 
4675 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
4676 	if (rc != 0) {
4677 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
4678 	}
4679 
4680 	nvme_bdev_for_each_channel_continue(i, rc);
4681 }
4682 
4683 static void
4684 bdev_nvme_delete_io_path(struct nvme_bdev_channel_iter *i,
4685 			 struct nvme_bdev *nbdev,
4686 			 struct nvme_bdev_channel *nbdev_ch, void *ctx)
4687 {
4688 	struct nvme_ns *nvme_ns = ctx;
4689 	struct nvme_io_path *io_path;
4690 
4691 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
4692 	if (io_path != NULL) {
4693 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
4694 	}
4695 
4696 	nvme_bdev_for_each_channel_continue(i, 0);
4697 }
4698 
4699 static void
4700 bdev_nvme_add_io_path_failed(struct nvme_bdev *nbdev, void *ctx, int status)
4701 {
4702 	struct nvme_ns *nvme_ns = ctx;
4703 
4704 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
4705 }
4706 
4707 static void
4708 bdev_nvme_add_io_path_done(struct nvme_bdev *nbdev, void *ctx, int status)
4709 {
4710 	struct nvme_ns *nvme_ns = ctx;
4711 
4712 	if (status == 0) {
4713 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
4714 	} else {
4715 		/* Delete the added io_paths and fail populating the namespace. */
4716 		nvme_bdev_for_each_channel(nbdev,
4717 					   bdev_nvme_delete_io_path,
4718 					   nvme_ns,
4719 					   bdev_nvme_add_io_path_failed);
4720 	}
4721 }
4722 
4723 static int
4724 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
4725 {
4726 	struct nvme_ns *tmp_ns;
4727 	const struct spdk_nvme_ns_data *nsdata;
4728 
4729 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
4730 	if (!nsdata->nmic.can_share) {
4731 		SPDK_ERRLOG("Namespace cannot be shared.\n");
4732 		return -EINVAL;
4733 	}
4734 
4735 	pthread_mutex_lock(&bdev->mutex);
4736 
4737 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
4738 	assert(tmp_ns != NULL);
4739 
4740 	if (tmp_ns->ns != NULL && !bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
4741 		pthread_mutex_unlock(&bdev->mutex);
4742 		SPDK_ERRLOG("Namespaces are not identical.\n");
4743 		return -EINVAL;
4744 	}
4745 
4746 	bdev->ref++;
4747 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4748 	nvme_ns->bdev = bdev;
4749 
4750 	pthread_mutex_unlock(&bdev->mutex);
4751 
4752 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
4753 	nvme_bdev_for_each_channel(bdev,
4754 				   bdev_nvme_add_io_path,
4755 				   nvme_ns,
4756 				   bdev_nvme_add_io_path_done);
4757 
4758 	return 0;
4759 }
4760 
4761 static void
4762 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4763 {
4764 	struct spdk_nvme_ns	*ns;
4765 	struct nvme_bdev	*bdev;
4766 	int			rc = 0;
4767 
4768 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
4769 	if (!ns) {
4770 		SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
4771 		rc = -EINVAL;
4772 		goto done;
4773 	}
4774 
4775 	nvme_ns->ns = ns;
4776 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4777 
4778 	if (nvme_ctrlr->ana_log_page != NULL) {
4779 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
4780 	}
4781 
4782 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
4783 	if (bdev == NULL) {
4784 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
4785 	} else {
4786 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
4787 		if (rc == 0) {
4788 			return;
4789 		}
4790 	}
4791 done:
4792 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
4793 }
4794 
4795 static void
4796 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
4797 {
4798 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4799 
4800 	assert(nvme_ctrlr != NULL);
4801 
4802 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4803 
4804 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4805 
4806 	if (nvme_ns->bdev != NULL) {
4807 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4808 		return;
4809 	}
4810 
4811 	nvme_ns_free(nvme_ns);
4812 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4813 
4814 	nvme_ctrlr_release(nvme_ctrlr);
4815 }
4816 
4817 static void
4818 bdev_nvme_delete_io_path_done(struct nvme_bdev *nbdev, void *ctx, int status)
4819 {
4820 	struct nvme_ns *nvme_ns = ctx;
4821 
4822 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4823 }
4824 
4825 static void
4826 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4827 {
4828 	struct nvme_bdev *bdev;
4829 
4830 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4831 
4832 	bdev = nvme_ns->bdev;
4833 	if (bdev != NULL) {
4834 		pthread_mutex_lock(&bdev->mutex);
4835 
4836 		assert(bdev->ref > 0);
4837 		bdev->ref--;
4838 		if (bdev->ref == 0) {
4839 			pthread_mutex_unlock(&bdev->mutex);
4840 
4841 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
4842 		} else {
4843 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
4844 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
4845 			 * and clear nvme_ns->bdev here.
4846 			 */
4847 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
4848 			nvme_ns->bdev = NULL;
4849 
4850 			pthread_mutex_unlock(&bdev->mutex);
4851 
4852 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
4853 			 * we call depopulate_namespace_done() to avoid use-after-free.
4854 			 */
4855 			nvme_bdev_for_each_channel(bdev,
4856 						   bdev_nvme_delete_io_path,
4857 						   nvme_ns,
4858 						   bdev_nvme_delete_io_path_done);
4859 			return;
4860 		}
4861 	}
4862 
4863 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4864 }
4865 
4866 static void
4867 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
4868 			       struct nvme_async_probe_ctx *ctx)
4869 {
4870 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
4871 	struct nvme_ns	*nvme_ns, *next;
4872 	struct spdk_nvme_ns	*ns;
4873 	struct nvme_bdev	*bdev;
4874 	uint32_t		nsid;
4875 	int			rc;
4876 	uint64_t		num_sectors;
4877 
4878 	if (ctx) {
4879 		/* Initialize this count to 1 to handle the populate functions
4880 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
4881 		 */
4882 		ctx->populates_in_progress = 1;
4883 	}
4884 
4885 	/* First loop over our existing namespaces and see if they have been
4886 	 * removed. */
4887 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4888 	while (nvme_ns != NULL) {
4889 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4890 
4891 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
4892 			/* NS is still there or added again. Its attributes may have changed. */
4893 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
4894 			if (nvme_ns->ns != ns) {
4895 				assert(nvme_ns->ns == NULL);
4896 				nvme_ns->ns = ns;
4897 				SPDK_DEBUGLOG(bdev_nvme, "NSID %u was added\n", nvme_ns->id);
4898 			}
4899 
4900 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
4901 			bdev = nvme_ns->bdev;
4902 			assert(bdev != NULL);
4903 			if (bdev->disk.blockcnt != num_sectors) {
4904 				SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
4905 					       nvme_ns->id,
4906 					       bdev->disk.name,
4907 					       bdev->disk.blockcnt,
4908 					       num_sectors);
4909 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
4910 				if (rc != 0) {
4911 					SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
4912 						    bdev->disk.name, rc);
4913 				}
4914 			}
4915 		} else {
4916 			/* Namespace was removed */
4917 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4918 		}
4919 
4920 		nvme_ns = next;
4921 	}
4922 
4923 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
4924 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4925 	while (nsid != 0) {
4926 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4927 
4928 		if (nvme_ns == NULL) {
4929 			/* Found a new one */
4930 			nvme_ns = nvme_ns_alloc();
4931 			if (nvme_ns == NULL) {
4932 				SPDK_ERRLOG("Failed to allocate namespace\n");
4933 				/* This just fails to attach the namespace. It may work on a future attempt. */
4934 				continue;
4935 			}
4936 
4937 			nvme_ns->id = nsid;
4938 			nvme_ns->ctrlr = nvme_ctrlr;
4939 
4940 			nvme_ns->bdev = NULL;
4941 
4942 			if (ctx) {
4943 				ctx->populates_in_progress++;
4944 			}
4945 			nvme_ns->probe_ctx = ctx;
4946 
4947 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4948 
4949 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
4950 		}
4951 
4952 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
4953 	}
4954 
4955 	if (ctx) {
4956 		/* Decrement this count now that the loop is over to account
4957 		 * for the one we started with.  If the count is then 0, we
4958 		 * know any populate_namespace functions completed immediately,
4959 		 * so we'll kick the callback here.
4960 		 */
4961 		ctx->populates_in_progress--;
4962 		if (ctx->populates_in_progress == 0) {
4963 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4964 		}
4965 	}
4966 
4967 }
4968 
4969 static void
4970 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
4971 {
4972 	struct nvme_ns *nvme_ns, *tmp;
4973 
4974 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
4975 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4976 	}
4977 }
4978 
4979 static uint32_t
4980 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
4981 {
4982 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
4983 	const struct spdk_nvme_ctrlr_data *cdata;
4984 	uint32_t nsid, ns_count = 0;
4985 
4986 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4987 
4988 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4989 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
4990 		ns_count++;
4991 	}
4992 
4993 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
4994 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
4995 	       sizeof(uint32_t);
4996 }
4997 
4998 static int
4999 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
5000 			  void *cb_arg)
5001 {
5002 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
5003 	struct nvme_ns *nvme_ns;
5004 	uint32_t i, nsid;
5005 
5006 	for (i = 0; i < desc->num_of_nsid; i++) {
5007 		nsid = desc->nsid[i];
5008 		if (nsid == 0) {
5009 			continue;
5010 		}
5011 
5012 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
5013 
5014 		if (nvme_ns == NULL) {
5015 			/* Target told us that an inactive namespace had an ANA change */
5016 			continue;
5017 		}
5018 
5019 		_nvme_ns_set_ana_state(nvme_ns, desc);
5020 	}
5021 
5022 	return 0;
5023 }
5024 
5025 static void
5026 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
5027 {
5028 	struct nvme_ns *nvme_ns;
5029 
5030 	spdk_free(nvme_ctrlr->ana_log_page);
5031 	nvme_ctrlr->ana_log_page = NULL;
5032 
5033 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5034 	     nvme_ns != NULL;
5035 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
5036 		nvme_ns->ana_state_updating = false;
5037 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
5038 	}
5039 }
5040 
5041 static void
5042 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
5043 {
5044 	struct nvme_ctrlr *nvme_ctrlr = ctx;
5045 
5046 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
5047 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
5048 					     nvme_ctrlr);
5049 	} else {
5050 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
5051 	}
5052 
5053 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5054 
5055 	assert(nvme_ctrlr->ana_log_page_updating == true);
5056 	nvme_ctrlr->ana_log_page_updating = false;
5057 
5058 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
5059 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
5060 
5061 		nvme_ctrlr_unregister(nvme_ctrlr);
5062 	} else {
5063 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
5064 
5065 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
5066 	}
5067 }
5068 
5069 static int
5070 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
5071 {
5072 	uint32_t ana_log_page_size;
5073 	int rc;
5074 
5075 	if (nvme_ctrlr->ana_log_page == NULL) {
5076 		return -EINVAL;
5077 	}
5078 
5079 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5080 
5081 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5082 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5083 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5084 		return -EINVAL;
5085 	}
5086 
5087 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5088 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
5089 	    nvme_ctrlr->ana_log_page_updating) {
5090 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
5091 		return -EBUSY;
5092 	}
5093 
5094 	nvme_ctrlr->ana_log_page_updating = true;
5095 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5096 
5097 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
5098 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5099 					      SPDK_NVME_GLOBAL_NS_TAG,
5100 					      nvme_ctrlr->ana_log_page,
5101 					      ana_log_page_size, 0,
5102 					      nvme_ctrlr_read_ana_log_page_done,
5103 					      nvme_ctrlr);
5104 	if (rc != 0) {
5105 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
5106 	}
5107 
5108 	return rc;
5109 }
5110 
5111 static void
5112 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
5113 {
5114 }
5115 
5116 struct bdev_nvme_set_preferred_path_ctx {
5117 	struct spdk_bdev_desc *desc;
5118 	struct nvme_ns *nvme_ns;
5119 	bdev_nvme_set_preferred_path_cb cb_fn;
5120 	void *cb_arg;
5121 };
5122 
5123 static void
5124 bdev_nvme_set_preferred_path_done(struct nvme_bdev *nbdev, void *_ctx, int status)
5125 {
5126 	struct bdev_nvme_set_preferred_path_ctx *ctx = _ctx;
5127 
5128 	assert(ctx != NULL);
5129 	assert(ctx->desc != NULL);
5130 	assert(ctx->cb_fn != NULL);
5131 
5132 	spdk_bdev_close(ctx->desc);
5133 
5134 	ctx->cb_fn(ctx->cb_arg, status);
5135 
5136 	free(ctx);
5137 }
5138 
5139 static void
5140 _bdev_nvme_set_preferred_path(struct nvme_bdev_channel_iter *i,
5141 			      struct nvme_bdev *nbdev,
5142 			      struct nvme_bdev_channel *nbdev_ch, void *_ctx)
5143 {
5144 	struct bdev_nvme_set_preferred_path_ctx *ctx = _ctx;
5145 	struct nvme_io_path *io_path, *prev;
5146 
5147 	prev = NULL;
5148 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
5149 		if (io_path->nvme_ns == ctx->nvme_ns) {
5150 			break;
5151 		}
5152 		prev = io_path;
5153 	}
5154 
5155 	if (io_path != NULL) {
5156 		if (prev != NULL) {
5157 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
5158 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
5159 		}
5160 
5161 		/* We can set io_path to nbdev_ch->current_io_path directly here.
5162 		 * However, it needs to be conditional. To simplify the code,
5163 		 * just clear nbdev_ch->current_io_path and let find_io_path()
5164 		 * fill it.
5165 		 *
5166 		 * Automatic failback may be disabled. Hence even if the io_path is
5167 		 * already at the head, clear nbdev_ch->current_io_path.
5168 		 */
5169 		bdev_nvme_clear_current_io_path(nbdev_ch);
5170 	}
5171 
5172 	nvme_bdev_for_each_channel_continue(i, 0);
5173 }
5174 
5175 static struct nvme_ns *
5176 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
5177 {
5178 	struct nvme_ns *nvme_ns, *prev;
5179 	const struct spdk_nvme_ctrlr_data *cdata;
5180 
5181 	prev = NULL;
5182 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
5183 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
5184 
5185 		if (cdata->cntlid == cntlid) {
5186 			break;
5187 		}
5188 		prev = nvme_ns;
5189 	}
5190 
5191 	if (nvme_ns != NULL && prev != NULL) {
5192 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
5193 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
5194 	}
5195 
5196 	return nvme_ns;
5197 }
5198 
5199 /* This function supports only multipath mode. There is only a single I/O path
5200  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
5201  * head of the I/O path list for each NVMe bdev channel.
5202  *
5203  * NVMe bdev channel may be acquired after completing this function. move the
5204  * matched namespace to the head of the namespace list for the NVMe bdev too.
5205  */
5206 void
5207 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
5208 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
5209 {
5210 	struct bdev_nvme_set_preferred_path_ctx *ctx;
5211 	struct spdk_bdev *bdev;
5212 	struct nvme_bdev *nbdev;
5213 	int rc = 0;
5214 
5215 	assert(cb_fn != NULL);
5216 
5217 	ctx = calloc(1, sizeof(*ctx));
5218 	if (ctx == NULL) {
5219 		SPDK_ERRLOG("Failed to alloc context.\n");
5220 		rc = -ENOMEM;
5221 		goto err_alloc;
5222 	}
5223 
5224 	ctx->cb_fn = cb_fn;
5225 	ctx->cb_arg = cb_arg;
5226 
5227 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5228 	if (rc != 0) {
5229 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5230 		goto err_open;
5231 	}
5232 
5233 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5234 
5235 	if (bdev->module != &nvme_if) {
5236 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5237 		rc = -ENODEV;
5238 		goto err_bdev;
5239 	}
5240 
5241 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5242 
5243 	pthread_mutex_lock(&nbdev->mutex);
5244 
5245 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
5246 	if (ctx->nvme_ns == NULL) {
5247 		pthread_mutex_unlock(&nbdev->mutex);
5248 
5249 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
5250 		rc = -ENODEV;
5251 		goto err_bdev;
5252 	}
5253 
5254 	pthread_mutex_unlock(&nbdev->mutex);
5255 
5256 	nvme_bdev_for_each_channel(nbdev,
5257 				   _bdev_nvme_set_preferred_path,
5258 				   ctx,
5259 				   bdev_nvme_set_preferred_path_done);
5260 	return;
5261 
5262 err_bdev:
5263 	spdk_bdev_close(ctx->desc);
5264 err_open:
5265 	free(ctx);
5266 err_alloc:
5267 	cb_fn(cb_arg, rc);
5268 }
5269 
5270 struct bdev_nvme_set_multipath_policy_ctx {
5271 	struct spdk_bdev_desc *desc;
5272 	spdk_bdev_nvme_set_multipath_policy_cb cb_fn;
5273 	void *cb_arg;
5274 };
5275 
5276 static void
5277 bdev_nvme_set_multipath_policy_done(struct nvme_bdev *nbdev, void *_ctx, int status)
5278 {
5279 	struct bdev_nvme_set_multipath_policy_ctx *ctx = _ctx;
5280 
5281 	assert(ctx != NULL);
5282 	assert(ctx->desc != NULL);
5283 	assert(ctx->cb_fn != NULL);
5284 
5285 	spdk_bdev_close(ctx->desc);
5286 
5287 	ctx->cb_fn(ctx->cb_arg, status);
5288 
5289 	free(ctx);
5290 }
5291 
5292 static void
5293 _bdev_nvme_set_multipath_policy(struct nvme_bdev_channel_iter *i,
5294 				struct nvme_bdev *nbdev,
5295 				struct nvme_bdev_channel *nbdev_ch, void *ctx)
5296 {
5297 	nbdev_ch->mp_policy = nbdev->mp_policy;
5298 	nbdev_ch->mp_selector = nbdev->mp_selector;
5299 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
5300 	bdev_nvme_clear_current_io_path(nbdev_ch);
5301 
5302 	nvme_bdev_for_each_channel_continue(i, 0);
5303 }
5304 
5305 void
5306 spdk_bdev_nvme_set_multipath_policy(const char *name, enum spdk_bdev_nvme_multipath_policy policy,
5307 				    enum spdk_bdev_nvme_multipath_selector selector, uint32_t rr_min_io,
5308 				    spdk_bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
5309 {
5310 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
5311 	struct spdk_bdev *bdev;
5312 	struct nvme_bdev *nbdev;
5313 	int rc;
5314 
5315 	assert(cb_fn != NULL);
5316 
5317 	switch (policy) {
5318 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
5319 		break;
5320 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
5321 		switch (selector) {
5322 		case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN:
5323 			if (rr_min_io == UINT32_MAX) {
5324 				rr_min_io = 1;
5325 			} else if (rr_min_io == 0) {
5326 				rc = -EINVAL;
5327 				goto exit;
5328 			}
5329 			break;
5330 		case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH:
5331 			break;
5332 		default:
5333 			rc = -EINVAL;
5334 			goto exit;
5335 		}
5336 		break;
5337 	default:
5338 		rc = -EINVAL;
5339 		goto exit;
5340 	}
5341 
5342 	ctx = calloc(1, sizeof(*ctx));
5343 	if (ctx == NULL) {
5344 		SPDK_ERRLOG("Failed to alloc context.\n");
5345 		rc = -ENOMEM;
5346 		goto exit;
5347 	}
5348 
5349 	ctx->cb_fn = cb_fn;
5350 	ctx->cb_arg = cb_arg;
5351 
5352 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5353 	if (rc != 0) {
5354 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5355 		rc = -ENODEV;
5356 		goto err_open;
5357 	}
5358 
5359 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5360 	if (bdev->module != &nvme_if) {
5361 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5362 		rc = -ENODEV;
5363 		goto err_module;
5364 	}
5365 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5366 
5367 	pthread_mutex_lock(&nbdev->mutex);
5368 	nbdev->mp_policy = policy;
5369 	nbdev->mp_selector = selector;
5370 	nbdev->rr_min_io = rr_min_io;
5371 	pthread_mutex_unlock(&nbdev->mutex);
5372 
5373 	nvme_bdev_for_each_channel(nbdev,
5374 				   _bdev_nvme_set_multipath_policy,
5375 				   ctx,
5376 				   bdev_nvme_set_multipath_policy_done);
5377 	return;
5378 
5379 err_module:
5380 	spdk_bdev_close(ctx->desc);
5381 err_open:
5382 	free(ctx);
5383 exit:
5384 	cb_fn(cb_arg, rc);
5385 }
5386 
5387 static void
5388 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5389 {
5390 	struct nvme_ctrlr *nvme_ctrlr		= arg;
5391 	union spdk_nvme_async_event_completion	event;
5392 
5393 	if (spdk_nvme_cpl_is_error(cpl)) {
5394 		SPDK_WARNLOG("AER request execute failed\n");
5395 		return;
5396 	}
5397 
5398 	event.raw = cpl->cdw0;
5399 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5400 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
5401 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
5402 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5403 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
5404 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
5405 	}
5406 }
5407 
5408 static void
5409 free_nvme_async_probe_ctx(struct nvme_async_probe_ctx *ctx)
5410 {
5411 	spdk_keyring_put_key(ctx->drv_opts.tls_psk);
5412 	spdk_keyring_put_key(ctx->drv_opts.dhchap_key);
5413 	spdk_keyring_put_key(ctx->drv_opts.dhchap_ctrlr_key);
5414 	free(ctx);
5415 }
5416 
5417 static void
5418 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, int rc)
5419 {
5420 	if (ctx->cb_fn) {
5421 		ctx->cb_fn(ctx->cb_ctx, ctx->reported_bdevs, rc);
5422 	}
5423 
5424 	ctx->namespaces_populated = true;
5425 	if (ctx->probe_done) {
5426 		/* The probe was already completed, so we need to free the context
5427 		 * here.  This can happen for cases like OCSSD, where we need to
5428 		 * send additional commands to the SSD after attach.
5429 		 */
5430 		free_nvme_async_probe_ctx(ctx);
5431 	}
5432 }
5433 
5434 static int
5435 bdev_nvme_remove_poller(void *ctx)
5436 {
5437 	struct spdk_nvme_transport_id trid_pcie;
5438 
5439 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5440 		spdk_poller_unregister(&g_hotplug_poller);
5441 		return SPDK_POLLER_IDLE;
5442 	}
5443 
5444 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5445 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5446 
5447 	if (spdk_nvme_scan_attached(&trid_pcie)) {
5448 		SPDK_ERRLOG_RATELIMIT("spdk_nvme_scan_attached() failed\n");
5449 	}
5450 
5451 	return SPDK_POLLER_BUSY;
5452 }
5453 
5454 static void
5455 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
5456 		       struct nvme_async_probe_ctx *ctx)
5457 {
5458 	spdk_io_device_register(nvme_ctrlr,
5459 				bdev_nvme_create_ctrlr_channel_cb,
5460 				bdev_nvme_destroy_ctrlr_channel_cb,
5461 				sizeof(struct nvme_ctrlr_channel),
5462 				nvme_ctrlr->nbdev_ctrlr->name);
5463 
5464 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
5465 
5466 	if (g_hotplug_poller == NULL) {
5467 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_remove_poller, NULL,
5468 							NVME_HOTPLUG_POLL_PERIOD_DEFAULT);
5469 	}
5470 }
5471 
5472 static void
5473 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
5474 {
5475 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
5476 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
5477 
5478 	nvme_ctrlr->probe_ctx = NULL;
5479 
5480 	if (spdk_nvme_cpl_is_error(cpl)) {
5481 		nvme_ctrlr_delete(nvme_ctrlr);
5482 
5483 		if (ctx != NULL) {
5484 			ctx->reported_bdevs = 0;
5485 			populate_namespaces_cb(ctx, -1);
5486 		}
5487 		return;
5488 	}
5489 
5490 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5491 }
5492 
5493 static int
5494 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
5495 			     struct nvme_async_probe_ctx *ctx)
5496 {
5497 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5498 	const struct spdk_nvme_ctrlr_data *cdata;
5499 	uint32_t ana_log_page_size;
5500 
5501 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5502 
5503 	/* Set buffer size enough to include maximum number of allowed namespaces. */
5504 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5505 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
5506 			    sizeof(uint32_t);
5507 
5508 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
5509 						SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
5510 	if (nvme_ctrlr->ana_log_page == NULL) {
5511 		SPDK_ERRLOG("could not allocate ANA log page buffer\n");
5512 		return -ENXIO;
5513 	}
5514 
5515 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
5516 	 * Hence copy each descriptor to a temporary area when parsing it.
5517 	 *
5518 	 * Allocate a buffer whose size is as large as ANA log page buffer because
5519 	 * we do not know the size of a descriptor until actually reading it.
5520 	 */
5521 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
5522 	if (nvme_ctrlr->copied_ana_desc == NULL) {
5523 		SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
5524 		return -ENOMEM;
5525 	}
5526 
5527 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
5528 
5529 	nvme_ctrlr->probe_ctx = ctx;
5530 
5531 	/* Then, set the read size only to include the current active namespaces. */
5532 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5533 
5534 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5535 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5536 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5537 		return -EINVAL;
5538 	}
5539 
5540 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
5541 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5542 						SPDK_NVME_GLOBAL_NS_TAG,
5543 						nvme_ctrlr->ana_log_page,
5544 						ana_log_page_size, 0,
5545 						nvme_ctrlr_init_ana_log_page_done,
5546 						nvme_ctrlr);
5547 }
5548 
5549 /* hostnqn and subnqn were already verified before attaching a controller.
5550  * Hence check only the multipath capability and cntlid here.
5551  */
5552 static bool
5553 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
5554 {
5555 	struct nvme_ctrlr *tmp;
5556 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
5557 
5558 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5559 
5560 	if (!cdata->cmic.multi_ctrlr) {
5561 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5562 		return false;
5563 	}
5564 
5565 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
5566 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
5567 
5568 		if (!tmp_cdata->cmic.multi_ctrlr) {
5569 			SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5570 			return false;
5571 		}
5572 		if (cdata->cntlid == tmp_cdata->cntlid) {
5573 			SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid);
5574 			return false;
5575 		}
5576 	}
5577 
5578 	return true;
5579 }
5580 
5581 static int
5582 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
5583 {
5584 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5585 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5586 	int rc = 0;
5587 
5588 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5589 
5590 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
5591 	if (nbdev_ctrlr != NULL) {
5592 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
5593 			rc = -EINVAL;
5594 			goto exit;
5595 		}
5596 	} else {
5597 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
5598 		if (nbdev_ctrlr == NULL) {
5599 			SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n");
5600 			rc = -ENOMEM;
5601 			goto exit;
5602 		}
5603 		nbdev_ctrlr->name = strdup(name);
5604 		if (nbdev_ctrlr->name == NULL) {
5605 			SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n");
5606 			free(nbdev_ctrlr);
5607 			goto exit;
5608 		}
5609 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
5610 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
5611 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
5612 	}
5613 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
5614 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
5615 exit:
5616 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5617 	return rc;
5618 }
5619 
5620 static int
5621 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
5622 		  const char *name,
5623 		  const struct spdk_nvme_transport_id *trid,
5624 		  struct nvme_async_probe_ctx *ctx)
5625 {
5626 	struct nvme_ctrlr *nvme_ctrlr;
5627 	struct nvme_path_id *path_id;
5628 	const struct spdk_nvme_ctrlr_data *cdata;
5629 	int rc;
5630 
5631 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
5632 	if (nvme_ctrlr == NULL) {
5633 		SPDK_ERRLOG("Failed to allocate device struct\n");
5634 		return -ENOMEM;
5635 	}
5636 
5637 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
5638 	if (rc != 0) {
5639 		free(nvme_ctrlr);
5640 		return rc;
5641 	}
5642 
5643 	TAILQ_INIT(&nvme_ctrlr->trids);
5644 	RB_INIT(&nvme_ctrlr->namespaces);
5645 
5646 	/* Get another reference to the key, so the first one can be released from probe_ctx */
5647 	if (ctx != NULL) {
5648 		if (ctx->drv_opts.tls_psk != NULL) {
5649 			nvme_ctrlr->psk = spdk_keyring_get_key(
5650 						  spdk_key_get_name(ctx->drv_opts.tls_psk));
5651 			if (nvme_ctrlr->psk == NULL) {
5652 				/* Could only happen if the key was removed in the meantime */
5653 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5654 					    spdk_key_get_name(ctx->drv_opts.tls_psk));
5655 				rc = -ENOKEY;
5656 				goto err;
5657 			}
5658 		}
5659 
5660 		if (ctx->drv_opts.dhchap_key != NULL) {
5661 			nvme_ctrlr->dhchap_key = spdk_keyring_get_key(
5662 							 spdk_key_get_name(ctx->drv_opts.dhchap_key));
5663 			if (nvme_ctrlr->dhchap_key == NULL) {
5664 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5665 					    spdk_key_get_name(ctx->drv_opts.dhchap_key));
5666 				rc = -ENOKEY;
5667 				goto err;
5668 			}
5669 		}
5670 
5671 		if (ctx->drv_opts.dhchap_ctrlr_key != NULL) {
5672 			nvme_ctrlr->dhchap_ctrlr_key =
5673 				spdk_keyring_get_key(
5674 					spdk_key_get_name(ctx->drv_opts.dhchap_ctrlr_key));
5675 			if (nvme_ctrlr->dhchap_ctrlr_key == NULL) {
5676 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5677 					    spdk_key_get_name(ctx->drv_opts.dhchap_ctrlr_key));
5678 				rc = -ENOKEY;
5679 				goto err;
5680 			}
5681 		}
5682 	}
5683 
5684 	path_id = calloc(1, sizeof(*path_id));
5685 	if (path_id == NULL) {
5686 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
5687 		rc = -ENOMEM;
5688 		goto err;
5689 	}
5690 
5691 	path_id->trid = *trid;
5692 	if (ctx != NULL) {
5693 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
5694 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
5695 	}
5696 	nvme_ctrlr->active_path_id = path_id;
5697 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
5698 
5699 	nvme_ctrlr->thread = spdk_get_thread();
5700 	nvme_ctrlr->ctrlr = ctrlr;
5701 	nvme_ctrlr->ref = 1;
5702 
5703 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
5704 		SPDK_ERRLOG("OCSSDs are not supported");
5705 		rc = -ENOTSUP;
5706 		goto err;
5707 	}
5708 
5709 	if (ctx != NULL) {
5710 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
5711 	} else {
5712 		spdk_bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
5713 	}
5714 
5715 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
5716 					  g_opts.nvme_adminq_poll_period_us);
5717 
5718 	if (g_opts.timeout_us > 0) {
5719 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
5720 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
5721 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
5722 					  g_opts.timeout_us : g_opts.timeout_admin_us;
5723 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
5724 				adm_timeout_us, timeout_cb, nvme_ctrlr);
5725 	}
5726 
5727 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
5728 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
5729 
5730 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
5731 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
5732 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
5733 	}
5734 
5735 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
5736 	if (rc != 0) {
5737 		goto err;
5738 	}
5739 
5740 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5741 
5742 	if (cdata->cmic.ana_reporting) {
5743 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
5744 		if (rc == 0) {
5745 			return 0;
5746 		}
5747 	} else {
5748 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5749 		return 0;
5750 	}
5751 
5752 err:
5753 	nvme_ctrlr_delete(nvme_ctrlr);
5754 	return rc;
5755 }
5756 
5757 void
5758 spdk_bdev_nvme_get_default_ctrlr_opts(struct spdk_bdev_nvme_ctrlr_opts *opts)
5759 {
5760 	opts->prchk_flags = 0;
5761 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
5762 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
5763 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
5764 	opts->multipath = false;
5765 }
5766 
5767 static void
5768 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5769 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
5770 {
5771 	char *name;
5772 
5773 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
5774 	if (!name) {
5775 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
5776 		return;
5777 	}
5778 
5779 	if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) {
5780 		SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
5781 	} else {
5782 		SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name);
5783 	}
5784 
5785 	free(name);
5786 }
5787 
5788 static void
5789 _nvme_ctrlr_destruct(void *ctx)
5790 {
5791 	struct nvme_ctrlr *nvme_ctrlr = ctx;
5792 
5793 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
5794 	nvme_ctrlr_release(nvme_ctrlr);
5795 }
5796 
5797 static int
5798 bdev_nvme_delete_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5799 {
5800 	struct nvme_probe_skip_entry *entry;
5801 
5802 	/* The controller's destruction was already started */
5803 	if (nvme_ctrlr->destruct) {
5804 		return -EALREADY;
5805 	}
5806 
5807 	if (!hotplug &&
5808 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
5809 		entry = calloc(1, sizeof(*entry));
5810 		if (!entry) {
5811 			return -ENOMEM;
5812 		}
5813 		entry->trid = nvme_ctrlr->active_path_id->trid;
5814 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
5815 	}
5816 
5817 	nvme_ctrlr->destruct = true;
5818 	return 0;
5819 }
5820 
5821 static int
5822 bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5823 {
5824 	int rc;
5825 
5826 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5827 	rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, hotplug);
5828 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5829 
5830 	if (rc == 0) {
5831 		_nvme_ctrlr_destruct(nvme_ctrlr);
5832 	} else if (rc == -EALREADY) {
5833 		rc = 0;
5834 	}
5835 
5836 	return rc;
5837 }
5838 
5839 static void
5840 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
5841 {
5842 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
5843 
5844 	bdev_nvme_delete_ctrlr(nvme_ctrlr, true);
5845 }
5846 
5847 static int
5848 bdev_nvme_hotplug_probe(void *arg)
5849 {
5850 	if (g_hotplug_probe_ctx == NULL) {
5851 		spdk_poller_unregister(&g_hotplug_probe_poller);
5852 		return SPDK_POLLER_IDLE;
5853 	}
5854 
5855 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
5856 		g_hotplug_probe_ctx = NULL;
5857 		spdk_poller_unregister(&g_hotplug_probe_poller);
5858 	}
5859 
5860 	return SPDK_POLLER_BUSY;
5861 }
5862 
5863 static int
5864 bdev_nvme_hotplug(void *arg)
5865 {
5866 	struct spdk_nvme_transport_id trid_pcie;
5867 
5868 	if (g_hotplug_probe_ctx) {
5869 		return SPDK_POLLER_BUSY;
5870 	}
5871 
5872 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5873 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5874 
5875 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
5876 			      hotplug_probe_cb, attach_cb, NULL);
5877 
5878 	if (g_hotplug_probe_ctx) {
5879 		assert(g_hotplug_probe_poller == NULL);
5880 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
5881 	}
5882 
5883 	return SPDK_POLLER_BUSY;
5884 }
5885 
5886 void
5887 bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
5888 {
5889 	*opts = g_opts;
5890 }
5891 
5892 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5893 		uint32_t reconnect_delay_sec,
5894 		uint32_t fast_io_fail_timeout_sec);
5895 
5896 static int
5897 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
5898 {
5899 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
5900 		/* Can't set timeout_admin_us without also setting timeout_us */
5901 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
5902 		return -EINVAL;
5903 	}
5904 
5905 	if (opts->bdev_retry_count < -1) {
5906 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
5907 		return -EINVAL;
5908 	}
5909 
5910 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
5911 			opts->reconnect_delay_sec,
5912 			opts->fast_io_fail_timeout_sec)) {
5913 		return -EINVAL;
5914 	}
5915 
5916 	return 0;
5917 }
5918 
5919 int
5920 bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
5921 {
5922 	int ret;
5923 
5924 	ret = bdev_nvme_validate_opts(opts);
5925 	if (ret) {
5926 		SPDK_WARNLOG("Failed to set nvme opts.\n");
5927 		return ret;
5928 	}
5929 
5930 	if (g_bdev_nvme_init_thread != NULL) {
5931 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5932 			return -EPERM;
5933 		}
5934 	}
5935 
5936 	if (opts->rdma_srq_size != 0 ||
5937 	    opts->rdma_max_cq_size != 0 ||
5938 	    opts->rdma_cm_event_timeout_ms != 0) {
5939 		struct spdk_nvme_transport_opts drv_opts;
5940 
5941 		spdk_nvme_transport_get_opts(&drv_opts, sizeof(drv_opts));
5942 		if (opts->rdma_srq_size != 0) {
5943 			drv_opts.rdma_srq_size = opts->rdma_srq_size;
5944 		}
5945 		if (opts->rdma_max_cq_size != 0) {
5946 			drv_opts.rdma_max_cq_size = opts->rdma_max_cq_size;
5947 		}
5948 		if (opts->rdma_cm_event_timeout_ms != 0) {
5949 			drv_opts.rdma_cm_event_timeout_ms = opts->rdma_cm_event_timeout_ms;
5950 		}
5951 
5952 		ret = spdk_nvme_transport_set_opts(&drv_opts, sizeof(drv_opts));
5953 		if (ret) {
5954 			SPDK_ERRLOG("Failed to set NVMe transport opts.\n");
5955 			return ret;
5956 		}
5957 	}
5958 
5959 	g_opts = *opts;
5960 
5961 	return 0;
5962 }
5963 
5964 struct set_nvme_hotplug_ctx {
5965 	uint64_t period_us;
5966 	bool enabled;
5967 	spdk_msg_fn fn;
5968 	void *fn_ctx;
5969 };
5970 
5971 static void
5972 set_nvme_hotplug_period_cb(void *_ctx)
5973 {
5974 	struct set_nvme_hotplug_ctx *ctx = _ctx;
5975 
5976 	spdk_poller_unregister(&g_hotplug_poller);
5977 	if (ctx->enabled) {
5978 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
5979 	} else {
5980 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_remove_poller, NULL,
5981 							NVME_HOTPLUG_POLL_PERIOD_DEFAULT);
5982 	}
5983 
5984 	g_nvme_hotplug_poll_period_us = ctx->period_us;
5985 	g_nvme_hotplug_enabled = ctx->enabled;
5986 	if (ctx->fn) {
5987 		ctx->fn(ctx->fn_ctx);
5988 	}
5989 
5990 	free(ctx);
5991 }
5992 
5993 int
5994 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
5995 {
5996 	struct set_nvme_hotplug_ctx *ctx;
5997 
5998 	if (enabled == true && !spdk_process_is_primary()) {
5999 		return -EPERM;
6000 	}
6001 
6002 	ctx = calloc(1, sizeof(*ctx));
6003 	if (ctx == NULL) {
6004 		return -ENOMEM;
6005 	}
6006 
6007 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
6008 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
6009 	ctx->enabled = enabled;
6010 	ctx->fn = cb;
6011 	ctx->fn_ctx = cb_ctx;
6012 
6013 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
6014 	return 0;
6015 }
6016 
6017 static void
6018 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
6019 				    struct nvme_async_probe_ctx *ctx)
6020 {
6021 	struct nvme_ns	*nvme_ns;
6022 	struct nvme_bdev	*nvme_bdev;
6023 	size_t			j;
6024 
6025 	assert(nvme_ctrlr != NULL);
6026 
6027 	if (ctx->names == NULL) {
6028 		ctx->reported_bdevs = 0;
6029 		populate_namespaces_cb(ctx, 0);
6030 		return;
6031 	}
6032 
6033 	/*
6034 	 * Report the new bdevs that were created in this call.
6035 	 * There can be more than one bdev per NVMe controller.
6036 	 */
6037 	j = 0;
6038 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
6039 	while (nvme_ns != NULL) {
6040 		nvme_bdev = nvme_ns->bdev;
6041 		if (j < ctx->max_bdevs) {
6042 			ctx->names[j] = nvme_bdev->disk.name;
6043 			j++;
6044 		} else {
6045 			SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
6046 				    ctx->max_bdevs);
6047 			ctx->reported_bdevs = 0;
6048 			populate_namespaces_cb(ctx, -ERANGE);
6049 			return;
6050 		}
6051 
6052 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
6053 	}
6054 
6055 	ctx->reported_bdevs = j;
6056 	populate_namespaces_cb(ctx, 0);
6057 }
6058 
6059 static int
6060 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
6061 			       struct spdk_nvme_ctrlr *new_ctrlr,
6062 			       struct spdk_nvme_transport_id *trid)
6063 {
6064 	struct nvme_path_id *tmp_trid;
6065 
6066 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
6067 		SPDK_ERRLOG("PCIe failover is not supported.\n");
6068 		return -ENOTSUP;
6069 	}
6070 
6071 	/* Currently we only support failover to the same transport type. */
6072 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
6073 		SPDK_WARNLOG("Failover from trtype: %s to a different trtype: %s is not supported currently\n",
6074 			     spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
6075 			     spdk_nvme_transport_id_trtype_str(trid->trtype));
6076 		return -EINVAL;
6077 	}
6078 
6079 
6080 	/* Currently we only support failover to the same NQN. */
6081 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
6082 		SPDK_WARNLOG("Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
6083 			     nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
6084 		return -EINVAL;
6085 	}
6086 
6087 	/* Skip all the other checks if we've already registered this path. */
6088 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
6089 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
6090 			SPDK_WARNLOG("This path (traddr: %s subnqn: %s) is already registered\n", trid->traddr,
6091 				     trid->subnqn);
6092 			return -EALREADY;
6093 		}
6094 	}
6095 
6096 	return 0;
6097 }
6098 
6099 static int
6100 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
6101 				    struct spdk_nvme_ctrlr *new_ctrlr)
6102 {
6103 	struct nvme_ns *nvme_ns;
6104 	struct spdk_nvme_ns *new_ns;
6105 
6106 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
6107 	while (nvme_ns != NULL) {
6108 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
6109 		assert(new_ns != NULL);
6110 
6111 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
6112 			return -EINVAL;
6113 		}
6114 
6115 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
6116 	}
6117 
6118 	return 0;
6119 }
6120 
6121 static int
6122 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
6123 			      struct spdk_nvme_transport_id *trid)
6124 {
6125 	struct nvme_path_id *active_id, *new_trid, *tmp_trid;
6126 
6127 	new_trid = calloc(1, sizeof(*new_trid));
6128 	if (new_trid == NULL) {
6129 		return -ENOMEM;
6130 	}
6131 	new_trid->trid = *trid;
6132 
6133 	active_id = nvme_ctrlr->active_path_id;
6134 	assert(active_id != NULL);
6135 	assert(active_id == TAILQ_FIRST(&nvme_ctrlr->trids));
6136 
6137 	/* Skip the active trid not to replace it until it is failed. */
6138 	tmp_trid = TAILQ_NEXT(active_id, link);
6139 	if (tmp_trid == NULL) {
6140 		goto add_tail;
6141 	}
6142 
6143 	/* It means the trid is faled if its last failed time is non-zero.
6144 	 * Insert the new alternate trid before any failed trid.
6145 	 */
6146 	TAILQ_FOREACH_FROM(tmp_trid, &nvme_ctrlr->trids, link) {
6147 		if (tmp_trid->last_failed_tsc != 0) {
6148 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
6149 			return 0;
6150 		}
6151 	}
6152 
6153 add_tail:
6154 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
6155 	return 0;
6156 }
6157 
6158 /* This is the case that a secondary path is added to an existing
6159  * nvme_ctrlr for failover. After checking if it can access the same
6160  * namespaces as the primary path, it is disconnected until failover occurs.
6161  */
6162 static int
6163 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
6164 			     struct spdk_nvme_ctrlr *new_ctrlr,
6165 			     struct spdk_nvme_transport_id *trid)
6166 {
6167 	int rc;
6168 
6169 	assert(nvme_ctrlr != NULL);
6170 
6171 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6172 
6173 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
6174 	if (rc != 0) {
6175 		goto exit;
6176 	}
6177 
6178 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
6179 	if (rc != 0) {
6180 		goto exit;
6181 	}
6182 
6183 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
6184 
6185 exit:
6186 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6187 
6188 	spdk_nvme_detach(new_ctrlr);
6189 
6190 	return rc;
6191 }
6192 
6193 static void
6194 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6195 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
6196 {
6197 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6198 	struct nvme_async_probe_ctx *ctx;
6199 	int rc;
6200 
6201 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
6202 	ctx->ctrlr_attached = true;
6203 
6204 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
6205 	if (rc != 0) {
6206 		ctx->reported_bdevs = 0;
6207 		populate_namespaces_cb(ctx, rc);
6208 	}
6209 }
6210 
6211 static void
6212 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6213 			struct spdk_nvme_ctrlr *ctrlr,
6214 			const struct spdk_nvme_ctrlr_opts *opts)
6215 {
6216 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6217 	struct nvme_ctrlr *nvme_ctrlr;
6218 	struct nvme_async_probe_ctx *ctx;
6219 	int rc;
6220 
6221 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
6222 	ctx->ctrlr_attached = true;
6223 
6224 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
6225 	if (nvme_ctrlr) {
6226 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
6227 	} else {
6228 		rc = -ENODEV;
6229 	}
6230 
6231 	ctx->reported_bdevs = 0;
6232 	populate_namespaces_cb(ctx, rc);
6233 }
6234 
6235 static int
6236 bdev_nvme_async_poll(void *arg)
6237 {
6238 	struct nvme_async_probe_ctx	*ctx = arg;
6239 	int				rc;
6240 
6241 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
6242 	if (spdk_unlikely(rc != -EAGAIN)) {
6243 		ctx->probe_done = true;
6244 		spdk_poller_unregister(&ctx->poller);
6245 		if (!ctx->ctrlr_attached) {
6246 			/* The probe is done, but no controller was attached.
6247 			 * That means we had a failure, so report -EIO back to
6248 			 * the caller (usually the RPC). populate_namespaces_cb()
6249 			 * will take care of freeing the nvme_async_probe_ctx.
6250 			 */
6251 			ctx->reported_bdevs = 0;
6252 			populate_namespaces_cb(ctx, -EIO);
6253 		} else if (ctx->namespaces_populated) {
6254 			/* The namespaces for the attached controller were all
6255 			 * populated and the response was already sent to the
6256 			 * caller (usually the RPC).  So free the context here.
6257 			 */
6258 			free_nvme_async_probe_ctx(ctx);
6259 		}
6260 	}
6261 
6262 	return SPDK_POLLER_BUSY;
6263 }
6264 
6265 static bool
6266 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
6267 		uint32_t reconnect_delay_sec,
6268 		uint32_t fast_io_fail_timeout_sec)
6269 {
6270 	if (ctrlr_loss_timeout_sec < -1) {
6271 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
6272 		return false;
6273 	} else if (ctrlr_loss_timeout_sec == -1) {
6274 		if (reconnect_delay_sec == 0) {
6275 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6276 			return false;
6277 		} else if (fast_io_fail_timeout_sec != 0 &&
6278 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
6279 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
6280 			return false;
6281 		}
6282 	} else if (ctrlr_loss_timeout_sec != 0) {
6283 		if (reconnect_delay_sec == 0) {
6284 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6285 			return false;
6286 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6287 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
6288 			return false;
6289 		} else if (fast_io_fail_timeout_sec != 0) {
6290 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
6291 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
6292 				return false;
6293 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6294 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
6295 				return false;
6296 			}
6297 		}
6298 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
6299 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
6300 		return false;
6301 	}
6302 
6303 	return true;
6304 }
6305 
6306 static int
6307 bdev_nvme_load_psk(const char *fname, char *buf, size_t bufsz)
6308 {
6309 	FILE *psk_file;
6310 	struct stat statbuf;
6311 	int rc;
6312 #define TCP_PSK_INVALID_PERMISSIONS 0177
6313 
6314 	if (stat(fname, &statbuf) != 0) {
6315 		SPDK_ERRLOG("Could not read permissions for PSK file\n");
6316 		return -EACCES;
6317 	}
6318 
6319 	if ((statbuf.st_mode & TCP_PSK_INVALID_PERMISSIONS) != 0) {
6320 		SPDK_ERRLOG("Incorrect permissions for PSK file\n");
6321 		return -EPERM;
6322 	}
6323 	if ((size_t)statbuf.st_size >= bufsz) {
6324 		SPDK_ERRLOG("Invalid PSK: too long\n");
6325 		return -EINVAL;
6326 	}
6327 	psk_file = fopen(fname, "r");
6328 	if (psk_file == NULL) {
6329 		SPDK_ERRLOG("Could not open PSK file\n");
6330 		return -EINVAL;
6331 	}
6332 
6333 	memset(buf, 0, bufsz);
6334 	rc = fread(buf, 1, statbuf.st_size, psk_file);
6335 	if (rc != statbuf.st_size) {
6336 		SPDK_ERRLOG("Failed to read PSK\n");
6337 		fclose(psk_file);
6338 		return -EINVAL;
6339 	}
6340 
6341 	fclose(psk_file);
6342 	return 0;
6343 }
6344 
6345 int
6346 spdk_bdev_nvme_create(struct spdk_nvme_transport_id *trid,
6347 		      const char *base_name,
6348 		      const char **names,
6349 		      uint32_t count,
6350 		      spdk_bdev_nvme_create_cb cb_fn,
6351 		      void *cb_ctx,
6352 		      struct spdk_nvme_ctrlr_opts *drv_opts,
6353 		      struct spdk_bdev_nvme_ctrlr_opts *bdev_opts,
6354 		      bool multipath)
6355 {
6356 	struct nvme_probe_skip_entry *entry, *tmp;
6357 	struct nvme_async_probe_ctx *ctx;
6358 	spdk_nvme_attach_cb attach_cb;
6359 	int rc, len;
6360 
6361 	/* TODO expand this check to include both the host and target TRIDs.
6362 	 * Only if both are the same should we fail.
6363 	 */
6364 	if (nvme_ctrlr_get(trid, drv_opts->hostnqn) != NULL) {
6365 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s, hostnqn: %s) "
6366 			    "already exists.\n", trid->traddr, drv_opts->hostnqn);
6367 		return -EEXIST;
6368 	}
6369 
6370 	len = strnlen(base_name, SPDK_CONTROLLER_NAME_MAX);
6371 
6372 	if (len == 0 || len == SPDK_CONTROLLER_NAME_MAX) {
6373 		SPDK_ERRLOG("controller name must be between 1 and %d characters\n", SPDK_CONTROLLER_NAME_MAX - 1);
6374 		return -EINVAL;
6375 	}
6376 
6377 	if (bdev_opts != NULL &&
6378 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
6379 			    bdev_opts->reconnect_delay_sec,
6380 			    bdev_opts->fast_io_fail_timeout_sec)) {
6381 		return -EINVAL;
6382 	}
6383 
6384 	ctx = calloc(1, sizeof(*ctx));
6385 	if (!ctx) {
6386 		return -ENOMEM;
6387 	}
6388 	ctx->base_name = base_name;
6389 	ctx->names = names;
6390 	ctx->max_bdevs = count;
6391 	ctx->cb_fn = cb_fn;
6392 	ctx->cb_ctx = cb_ctx;
6393 	ctx->trid = *trid;
6394 
6395 	if (bdev_opts) {
6396 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
6397 	} else {
6398 		spdk_bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
6399 	}
6400 
6401 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
6402 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
6403 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
6404 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
6405 				free(entry);
6406 				break;
6407 			}
6408 		}
6409 	}
6410 
6411 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
6412 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
6413 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
6414 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
6415 	ctx->drv_opts.disable_read_ana_log_page = true;
6416 	ctx->drv_opts.transport_tos = g_opts.transport_tos;
6417 
6418 	if (ctx->bdev_opts.psk[0] != '\0') {
6419 		/* Try to use the keyring first */
6420 		ctx->drv_opts.tls_psk = spdk_keyring_get_key(ctx->bdev_opts.psk);
6421 		if (ctx->drv_opts.tls_psk == NULL) {
6422 			rc = bdev_nvme_load_psk(ctx->bdev_opts.psk,
6423 						ctx->drv_opts.psk, sizeof(ctx->drv_opts.psk));
6424 			if (rc != 0) {
6425 				SPDK_ERRLOG("Could not load PSK from %s\n", ctx->bdev_opts.psk);
6426 				free_nvme_async_probe_ctx(ctx);
6427 				return rc;
6428 			}
6429 		}
6430 	}
6431 
6432 	if (ctx->bdev_opts.dhchap_key != NULL) {
6433 		ctx->drv_opts.dhchap_key = spdk_keyring_get_key(ctx->bdev_opts.dhchap_key);
6434 		if (ctx->drv_opts.dhchap_key == NULL) {
6435 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP key: %s\n",
6436 				    ctx->bdev_opts.dhchap_key);
6437 			free_nvme_async_probe_ctx(ctx);
6438 			return -ENOKEY;
6439 		}
6440 
6441 		ctx->drv_opts.dhchap_digests = g_opts.dhchap_digests;
6442 		ctx->drv_opts.dhchap_dhgroups = g_opts.dhchap_dhgroups;
6443 	}
6444 	if (ctx->bdev_opts.dhchap_ctrlr_key != NULL) {
6445 		ctx->drv_opts.dhchap_ctrlr_key =
6446 			spdk_keyring_get_key(ctx->bdev_opts.dhchap_ctrlr_key);
6447 		if (ctx->drv_opts.dhchap_ctrlr_key == NULL) {
6448 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP controller key: %s\n",
6449 				    ctx->bdev_opts.dhchap_ctrlr_key);
6450 			free_nvme_async_probe_ctx(ctx);
6451 			return -ENOKEY;
6452 		}
6453 	}
6454 
6455 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) {
6456 		attach_cb = connect_attach_cb;
6457 	} else {
6458 		attach_cb = connect_set_failover_cb;
6459 	}
6460 
6461 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
6462 	if (ctx->probe_ctx == NULL) {
6463 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
6464 		free_nvme_async_probe_ctx(ctx);
6465 		return -ENODEV;
6466 	}
6467 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
6468 
6469 	return 0;
6470 }
6471 
6472 struct bdev_nvme_delete_ctx {
6473 	char                        *name;
6474 	struct nvme_path_id         path_id;
6475 	bdev_nvme_delete_done_fn    delete_done;
6476 	void                        *delete_done_ctx;
6477 	uint64_t                    timeout_ticks;
6478 	struct spdk_poller          *poller;
6479 };
6480 
6481 static void
6482 free_bdev_nvme_delete_ctx(struct bdev_nvme_delete_ctx *ctx)
6483 {
6484 	if (ctx != NULL) {
6485 		free(ctx->name);
6486 		free(ctx);
6487 	}
6488 }
6489 
6490 static bool
6491 nvme_path_id_compare(struct nvme_path_id *p, const struct nvme_path_id *path_id)
6492 {
6493 	if (path_id->trid.trtype != 0) {
6494 		if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
6495 			if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
6496 				return false;
6497 			}
6498 		} else {
6499 			if (path_id->trid.trtype != p->trid.trtype) {
6500 				return false;
6501 			}
6502 		}
6503 	}
6504 
6505 	if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
6506 		if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
6507 			return false;
6508 		}
6509 	}
6510 
6511 	if (path_id->trid.adrfam != 0) {
6512 		if (path_id->trid.adrfam != p->trid.adrfam) {
6513 			return false;
6514 		}
6515 	}
6516 
6517 	if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
6518 		if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
6519 			return false;
6520 		}
6521 	}
6522 
6523 	if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
6524 		if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
6525 			return false;
6526 		}
6527 	}
6528 
6529 	if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
6530 		if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
6531 			return false;
6532 		}
6533 	}
6534 
6535 	if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
6536 		if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
6537 			return false;
6538 		}
6539 	}
6540 
6541 	return true;
6542 }
6543 
6544 static bool
6545 nvme_path_id_exists(const char *name, const struct nvme_path_id *path_id)
6546 {
6547 	struct nvme_bdev_ctrlr  *nbdev_ctrlr;
6548 	struct nvme_ctrlr       *ctrlr;
6549 	struct nvme_path_id     *p;
6550 
6551 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6552 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6553 	if (!nbdev_ctrlr) {
6554 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6555 		return false;
6556 	}
6557 
6558 	TAILQ_FOREACH(ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6559 		pthread_mutex_lock(&ctrlr->mutex);
6560 		TAILQ_FOREACH(p, &ctrlr->trids, link) {
6561 			if (nvme_path_id_compare(p, path_id)) {
6562 				pthread_mutex_unlock(&ctrlr->mutex);
6563 				pthread_mutex_unlock(&g_bdev_nvme_mutex);
6564 				return true;
6565 			}
6566 		}
6567 		pthread_mutex_unlock(&ctrlr->mutex);
6568 	}
6569 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6570 
6571 	return false;
6572 }
6573 
6574 static int
6575 bdev_nvme_delete_complete_poll(void *arg)
6576 {
6577 	struct bdev_nvme_delete_ctx     *ctx = arg;
6578 	int                             rc = 0;
6579 
6580 	if (nvme_path_id_exists(ctx->name, &ctx->path_id)) {
6581 		if (ctx->timeout_ticks > spdk_get_ticks()) {
6582 			return SPDK_POLLER_BUSY;
6583 		}
6584 
6585 		SPDK_ERRLOG("NVMe path '%s' still exists after delete\n", ctx->name);
6586 		rc = -ETIMEDOUT;
6587 	}
6588 
6589 	spdk_poller_unregister(&ctx->poller);
6590 
6591 	ctx->delete_done(ctx->delete_done_ctx, rc);
6592 	free_bdev_nvme_delete_ctx(ctx);
6593 
6594 	return SPDK_POLLER_BUSY;
6595 }
6596 
6597 static int
6598 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, const struct nvme_path_id *path_id)
6599 {
6600 	struct nvme_path_id	*p, *t;
6601 	spdk_msg_fn		msg_fn;
6602 	int			rc = -ENXIO;
6603 
6604 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6605 
6606 	TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
6607 		if (p == TAILQ_FIRST(&nvme_ctrlr->trids)) {
6608 			break;
6609 		}
6610 
6611 		if (!nvme_path_id_compare(p, path_id)) {
6612 			continue;
6613 		}
6614 
6615 		/* We are not using the specified path. */
6616 		TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
6617 		free(p);
6618 		rc = 0;
6619 	}
6620 
6621 	if (p == NULL || !nvme_path_id_compare(p, path_id)) {
6622 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
6623 		return rc;
6624 	}
6625 
6626 	/* If we made it here, then this path is a match! Now we need to remove it. */
6627 
6628 	/* This is the active path in use right now. The active path is always the first in the list. */
6629 	assert(p == nvme_ctrlr->active_path_id);
6630 
6631 	if (!TAILQ_NEXT(p, link)) {
6632 		/* The current path is the only path. */
6633 		msg_fn = _nvme_ctrlr_destruct;
6634 		rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, false);
6635 	} else {
6636 		/* There is an alternative path. */
6637 		msg_fn = _bdev_nvme_reset_ctrlr;
6638 		rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, true);
6639 	}
6640 
6641 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6642 
6643 	if (rc == 0) {
6644 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
6645 	} else if (rc == -EALREADY) {
6646 		rc = 0;
6647 	}
6648 
6649 	return rc;
6650 }
6651 
6652 int
6653 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id,
6654 		 bdev_nvme_delete_done_fn delete_done, void *delete_done_ctx)
6655 {
6656 	struct nvme_bdev_ctrlr		*nbdev_ctrlr;
6657 	struct nvme_ctrlr		*nvme_ctrlr, *tmp_nvme_ctrlr;
6658 	struct bdev_nvme_delete_ctx     *ctx = NULL;
6659 	int				rc = -ENXIO, _rc;
6660 
6661 	if (name == NULL || path_id == NULL) {
6662 		rc = -EINVAL;
6663 		goto exit;
6664 	}
6665 
6666 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6667 
6668 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6669 	if (nbdev_ctrlr == NULL) {
6670 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6671 
6672 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
6673 		rc = -ENODEV;
6674 		goto exit;
6675 	}
6676 
6677 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
6678 		_rc = _bdev_nvme_delete(nvme_ctrlr, path_id);
6679 		if (_rc < 0 && _rc != -ENXIO) {
6680 			pthread_mutex_unlock(&g_bdev_nvme_mutex);
6681 			rc = _rc;
6682 			goto exit;
6683 		} else if (_rc == 0) {
6684 			/* We traverse all remaining nvme_ctrlrs even if one nvme_ctrlr
6685 			 * was deleted successfully. To remember the successful deletion,
6686 			 * overwrite rc only if _rc is zero.
6687 			 */
6688 			rc = 0;
6689 		}
6690 	}
6691 
6692 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6693 
6694 	if (rc != 0 || delete_done == NULL) {
6695 		goto exit;
6696 	}
6697 
6698 	ctx = calloc(1, sizeof(*ctx));
6699 	if (ctx == NULL) {
6700 		SPDK_ERRLOG("Failed to allocate context for bdev_nvme_delete\n");
6701 		rc = -ENOMEM;
6702 		goto exit;
6703 	}
6704 
6705 	ctx->name = strdup(name);
6706 	if (ctx->name == NULL) {
6707 		SPDK_ERRLOG("Failed to copy controller name for deletion\n");
6708 		rc = -ENOMEM;
6709 		goto exit;
6710 	}
6711 
6712 	ctx->delete_done = delete_done;
6713 	ctx->delete_done_ctx = delete_done_ctx;
6714 	ctx->path_id = *path_id;
6715 	ctx->timeout_ticks = spdk_get_ticks() + 10 * spdk_get_ticks_hz();
6716 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_delete_complete_poll, ctx, 1000);
6717 	if (ctx->poller == NULL) {
6718 		SPDK_ERRLOG("Failed to register bdev_nvme_delete poller\n");
6719 		rc = -ENOMEM;
6720 		goto exit;
6721 	}
6722 
6723 exit:
6724 	if (rc != 0) {
6725 		free_bdev_nvme_delete_ctx(ctx);
6726 	}
6727 
6728 	return rc;
6729 }
6730 
6731 #define DISCOVERY_INFOLOG(ctx, format, ...) \
6732 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6733 
6734 #define DISCOVERY_ERRLOG(ctx, format, ...) \
6735 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6736 
6737 struct discovery_entry_ctx {
6738 	char						name[128];
6739 	struct spdk_nvme_transport_id			trid;
6740 	struct spdk_nvme_ctrlr_opts			drv_opts;
6741 	struct spdk_nvmf_discovery_log_page_entry	entry;
6742 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
6743 	struct discovery_ctx				*ctx;
6744 };
6745 
6746 struct discovery_ctx {
6747 	char					*name;
6748 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
6749 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
6750 	void					*cb_ctx;
6751 	struct spdk_nvme_probe_ctx		*probe_ctx;
6752 	struct spdk_nvme_detach_ctx		*detach_ctx;
6753 	struct spdk_nvme_ctrlr			*ctrlr;
6754 	struct spdk_nvme_transport_id		trid;
6755 	struct discovery_entry_ctx		*entry_ctx_in_use;
6756 	struct spdk_poller			*poller;
6757 	struct spdk_nvme_ctrlr_opts		drv_opts;
6758 	struct spdk_bdev_nvme_ctrlr_opts	bdev_opts;
6759 	struct spdk_nvmf_discovery_log_page	*log_page;
6760 	TAILQ_ENTRY(discovery_ctx)		tailq;
6761 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
6762 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
6763 	int					rc;
6764 	bool					wait_for_attach;
6765 	uint64_t				timeout_ticks;
6766 	/* Denotes that the discovery service is being started. We're waiting
6767 	 * for the initial connection to the discovery controller to be
6768 	 * established and attach discovered NVM ctrlrs.
6769 	 */
6770 	bool					initializing;
6771 	/* Denotes if a discovery is currently in progress for this context.
6772 	 * That includes connecting to newly discovered subsystems.  Used to
6773 	 * ensure we do not start a new discovery until an existing one is
6774 	 * complete.
6775 	 */
6776 	bool					in_progress;
6777 
6778 	/* Denotes if another discovery is needed after the one in progress
6779 	 * completes.  Set when we receive an AER completion while a discovery
6780 	 * is already in progress.
6781 	 */
6782 	bool					pending;
6783 
6784 	/* Signal to the discovery context poller that it should stop the
6785 	 * discovery service, including detaching from the current discovery
6786 	 * controller.
6787 	 */
6788 	bool					stop;
6789 
6790 	struct spdk_thread			*calling_thread;
6791 	uint32_t				index;
6792 	uint32_t				attach_in_progress;
6793 	char					*hostnqn;
6794 
6795 	/* Denotes if the discovery service was started by the mdns discovery.
6796 	 */
6797 	bool					from_mdns_discovery_service;
6798 };
6799 
6800 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
6801 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
6802 
6803 static void get_discovery_log_page(struct discovery_ctx *ctx);
6804 
6805 static void
6806 free_discovery_ctx(struct discovery_ctx *ctx)
6807 {
6808 	free(ctx->log_page);
6809 	free(ctx->hostnqn);
6810 	free(ctx->name);
6811 	free(ctx);
6812 }
6813 
6814 static void
6815 discovery_complete(struct discovery_ctx *ctx)
6816 {
6817 	ctx->initializing = false;
6818 	ctx->in_progress = false;
6819 	if (ctx->pending) {
6820 		ctx->pending = false;
6821 		get_discovery_log_page(ctx);
6822 	}
6823 }
6824 
6825 static void
6826 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
6827 			       struct spdk_nvmf_discovery_log_page_entry *entry)
6828 {
6829 	char *space;
6830 
6831 	trid->trtype = entry->trtype;
6832 	trid->adrfam = entry->adrfam;
6833 	memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr));
6834 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid));
6835 	/* Because the source buffer (entry->subnqn) is longer than trid->subnqn, and
6836 	 * before call to this function trid->subnqn is zeroed out, we need
6837 	 * to copy sizeof(trid->subnqn) minus one byte to make sure the last character
6838 	 * remains 0. Then we can shorten the string (replace ' ' with 0) if required
6839 	 */
6840 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn) - 1);
6841 
6842 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
6843 	 * But the log page entries typically pad them with spaces, not zeroes.
6844 	 * So add a NULL terminator to each of these fields at the appropriate
6845 	 * location.
6846 	 */
6847 	space = strchr(trid->traddr, ' ');
6848 	if (space) {
6849 		*space = 0;
6850 	}
6851 	space = strchr(trid->trsvcid, ' ');
6852 	if (space) {
6853 		*space = 0;
6854 	}
6855 	space = strchr(trid->subnqn, ' ');
6856 	if (space) {
6857 		*space = 0;
6858 	}
6859 }
6860 
6861 static void
6862 _stop_discovery(void *_ctx)
6863 {
6864 	struct discovery_ctx *ctx = _ctx;
6865 
6866 	if (ctx->attach_in_progress > 0) {
6867 		spdk_thread_send_msg(spdk_get_thread(), _stop_discovery, ctx);
6868 		return;
6869 	}
6870 
6871 	ctx->stop = true;
6872 
6873 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
6874 		struct discovery_entry_ctx *entry_ctx;
6875 		struct nvme_path_id path = {};
6876 
6877 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
6878 		path.trid = entry_ctx->trid;
6879 		bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6880 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6881 		free(entry_ctx);
6882 	}
6883 
6884 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
6885 		struct discovery_entry_ctx *entry_ctx;
6886 
6887 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6888 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6889 		free(entry_ctx);
6890 	}
6891 
6892 	free(ctx->entry_ctx_in_use);
6893 	ctx->entry_ctx_in_use = NULL;
6894 }
6895 
6896 static void
6897 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
6898 {
6899 	ctx->stop_cb_fn = cb_fn;
6900 	ctx->cb_ctx = cb_ctx;
6901 
6902 	if (ctx->attach_in_progress > 0) {
6903 		DISCOVERY_INFOLOG(ctx, "stopping discovery with attach_in_progress: %"PRIu32"\n",
6904 				  ctx->attach_in_progress);
6905 	}
6906 
6907 	_stop_discovery(ctx);
6908 }
6909 
6910 static void
6911 remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr)
6912 {
6913 	struct discovery_ctx *d_ctx;
6914 	struct nvme_path_id *path_id;
6915 	struct spdk_nvme_transport_id trid = {};
6916 	struct discovery_entry_ctx *entry_ctx, *tmp;
6917 
6918 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
6919 
6920 	TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6921 		TAILQ_FOREACH_SAFE(entry_ctx, &d_ctx->nvm_entry_ctxs, tailq, tmp) {
6922 			build_trid_from_log_page_entry(&trid, &entry_ctx->entry);
6923 			if (spdk_nvme_transport_id_compare(&trid, &path_id->trid) != 0) {
6924 				continue;
6925 			}
6926 
6927 			TAILQ_REMOVE(&d_ctx->nvm_entry_ctxs, entry_ctx, tailq);
6928 			free(entry_ctx);
6929 			DISCOVERY_INFOLOG(d_ctx, "Remove discovery entry: %s:%s:%s\n",
6930 					  trid.subnqn, trid.traddr, trid.trsvcid);
6931 
6932 			/* Fail discovery ctrlr to force reattach attempt */
6933 			spdk_nvme_ctrlr_fail(d_ctx->ctrlr);
6934 		}
6935 	}
6936 }
6937 
6938 static void
6939 discovery_remove_controllers(struct discovery_ctx *ctx)
6940 {
6941 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
6942 	struct discovery_entry_ctx *entry_ctx, *tmp;
6943 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6944 	struct spdk_nvme_transport_id old_trid = {};
6945 	uint64_t numrec, i;
6946 	bool found;
6947 
6948 	numrec = from_le64(&log_page->numrec);
6949 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
6950 		found = false;
6951 		old_entry = &entry_ctx->entry;
6952 		build_trid_from_log_page_entry(&old_trid, old_entry);
6953 		for (i = 0; i < numrec; i++) {
6954 			new_entry = &log_page->entries[i];
6955 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
6956 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
6957 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6958 				found = true;
6959 				break;
6960 			}
6961 		}
6962 		if (!found) {
6963 			struct nvme_path_id path = {};
6964 
6965 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
6966 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6967 
6968 			path.trid = entry_ctx->trid;
6969 			bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6970 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6971 			free(entry_ctx);
6972 		}
6973 	}
6974 	free(log_page);
6975 	ctx->log_page = NULL;
6976 	discovery_complete(ctx);
6977 }
6978 
6979 static void
6980 complete_discovery_start(struct discovery_ctx *ctx, int status)
6981 {
6982 	ctx->timeout_ticks = 0;
6983 	ctx->rc = status;
6984 	if (ctx->start_cb_fn) {
6985 		ctx->start_cb_fn(ctx->cb_ctx, status);
6986 		ctx->start_cb_fn = NULL;
6987 		ctx->cb_ctx = NULL;
6988 	}
6989 }
6990 
6991 static void
6992 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
6993 {
6994 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
6995 	struct discovery_ctx *ctx = entry_ctx->ctx;
6996 
6997 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
6998 	ctx->attach_in_progress--;
6999 	if (ctx->attach_in_progress == 0) {
7000 		complete_discovery_start(ctx, ctx->rc);
7001 		if (ctx->initializing && ctx->rc != 0) {
7002 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
7003 			stop_discovery(ctx, NULL, ctx->cb_ctx);
7004 		} else {
7005 			discovery_remove_controllers(ctx);
7006 		}
7007 	}
7008 }
7009 
7010 static struct discovery_entry_ctx *
7011 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
7012 {
7013 	struct discovery_entry_ctx *new_ctx;
7014 
7015 	new_ctx = calloc(1, sizeof(*new_ctx));
7016 	if (new_ctx == NULL) {
7017 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7018 		return NULL;
7019 	}
7020 
7021 	new_ctx->ctx = ctx;
7022 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
7023 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
7024 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
7025 	return new_ctx;
7026 }
7027 
7028 static void
7029 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
7030 		      struct spdk_nvmf_discovery_log_page *log_page)
7031 {
7032 	struct discovery_ctx *ctx = cb_arg;
7033 	struct discovery_entry_ctx *entry_ctx, *tmp;
7034 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
7035 	uint64_t numrec, i;
7036 	bool found;
7037 
7038 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
7039 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
7040 		return;
7041 	}
7042 
7043 	ctx->log_page = log_page;
7044 	assert(ctx->attach_in_progress == 0);
7045 	numrec = from_le64(&log_page->numrec);
7046 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
7047 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
7048 		free(entry_ctx);
7049 	}
7050 	for (i = 0; i < numrec; i++) {
7051 		found = false;
7052 		new_entry = &log_page->entries[i];
7053 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY_CURRENT ||
7054 		    new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
7055 			struct discovery_entry_ctx *new_ctx;
7056 			struct spdk_nvme_transport_id trid = {};
7057 
7058 			build_trid_from_log_page_entry(&trid, new_entry);
7059 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
7060 			if (new_ctx == NULL) {
7061 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7062 				break;
7063 			}
7064 
7065 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
7066 			continue;
7067 		}
7068 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
7069 			old_entry = &entry_ctx->entry;
7070 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
7071 				found = true;
7072 				break;
7073 			}
7074 		}
7075 		if (!found) {
7076 			struct discovery_entry_ctx *subnqn_ctx = NULL, *new_ctx;
7077 			struct discovery_ctx *d_ctx;
7078 
7079 			TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
7080 				TAILQ_FOREACH(subnqn_ctx, &d_ctx->nvm_entry_ctxs, tailq) {
7081 					if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
7082 						    sizeof(new_entry->subnqn))) {
7083 						break;
7084 					}
7085 				}
7086 				if (subnqn_ctx) {
7087 					break;
7088 				}
7089 			}
7090 
7091 			new_ctx = calloc(1, sizeof(*new_ctx));
7092 			if (new_ctx == NULL) {
7093 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7094 				break;
7095 			}
7096 
7097 			new_ctx->ctx = ctx;
7098 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
7099 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
7100 			if (subnqn_ctx) {
7101 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
7102 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
7103 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
7104 						  new_ctx->name);
7105 			} else {
7106 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
7107 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
7108 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
7109 						  new_ctx->name);
7110 			}
7111 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
7112 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
7113 			rc = spdk_bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
7114 						   discovery_attach_controller_done, new_ctx,
7115 						   &new_ctx->drv_opts, &ctx->bdev_opts, true);
7116 			if (rc == 0) {
7117 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
7118 				ctx->attach_in_progress++;
7119 			} else {
7120 				DISCOVERY_ERRLOG(ctx, "spdk_bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
7121 			}
7122 		}
7123 	}
7124 
7125 	if (ctx->attach_in_progress == 0) {
7126 		discovery_remove_controllers(ctx);
7127 	}
7128 }
7129 
7130 static void
7131 get_discovery_log_page(struct discovery_ctx *ctx)
7132 {
7133 	int rc;
7134 
7135 	assert(ctx->in_progress == false);
7136 	ctx->in_progress = true;
7137 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
7138 	if (rc != 0) {
7139 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
7140 	}
7141 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
7142 }
7143 
7144 static void
7145 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
7146 {
7147 	struct discovery_ctx *ctx = arg;
7148 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
7149 
7150 	if (spdk_nvme_cpl_is_error(cpl)) {
7151 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
7152 		return;
7153 	}
7154 
7155 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
7156 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
7157 		return;
7158 	}
7159 
7160 	DISCOVERY_INFOLOG(ctx, "got aer\n");
7161 	if (ctx->in_progress) {
7162 		ctx->pending = true;
7163 		return;
7164 	}
7165 
7166 	get_discovery_log_page(ctx);
7167 }
7168 
7169 static void
7170 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
7171 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
7172 {
7173 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
7174 	struct discovery_ctx *ctx;
7175 
7176 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
7177 
7178 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
7179 	ctx->probe_ctx = NULL;
7180 	ctx->ctrlr = ctrlr;
7181 
7182 	if (ctx->rc != 0) {
7183 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
7184 				 ctx->rc);
7185 		return;
7186 	}
7187 
7188 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
7189 }
7190 
7191 static int
7192 discovery_poller(void *arg)
7193 {
7194 	struct discovery_ctx *ctx = arg;
7195 	struct spdk_nvme_transport_id *trid;
7196 	int rc;
7197 
7198 	if (ctx->detach_ctx) {
7199 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
7200 		if (rc != -EAGAIN) {
7201 			ctx->detach_ctx = NULL;
7202 			ctx->ctrlr = NULL;
7203 		}
7204 	} else if (ctx->stop) {
7205 		if (ctx->ctrlr != NULL) {
7206 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
7207 			if (rc == 0) {
7208 				return SPDK_POLLER_BUSY;
7209 			}
7210 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7211 		}
7212 		spdk_poller_unregister(&ctx->poller);
7213 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
7214 		assert(ctx->start_cb_fn == NULL);
7215 		if (ctx->stop_cb_fn != NULL) {
7216 			ctx->stop_cb_fn(ctx->cb_ctx);
7217 		}
7218 		free_discovery_ctx(ctx);
7219 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
7220 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7221 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
7222 			assert(ctx->initializing);
7223 			spdk_poller_unregister(&ctx->poller);
7224 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
7225 			complete_discovery_start(ctx, -ETIMEDOUT);
7226 			stop_discovery(ctx, NULL, NULL);
7227 			free_discovery_ctx(ctx);
7228 			return SPDK_POLLER_BUSY;
7229 		}
7230 
7231 		assert(ctx->entry_ctx_in_use == NULL);
7232 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
7233 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7234 		trid = &ctx->entry_ctx_in_use->trid;
7235 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
7236 		if (ctx->probe_ctx) {
7237 			spdk_poller_unregister(&ctx->poller);
7238 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
7239 		} else {
7240 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
7241 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7242 			ctx->entry_ctx_in_use = NULL;
7243 		}
7244 	} else if (ctx->probe_ctx) {
7245 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7246 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
7247 			complete_discovery_start(ctx, -ETIMEDOUT);
7248 			return SPDK_POLLER_BUSY;
7249 		}
7250 
7251 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
7252 		if (rc != -EAGAIN) {
7253 			if (ctx->rc != 0) {
7254 				assert(ctx->initializing);
7255 				stop_discovery(ctx, NULL, ctx->cb_ctx);
7256 			} else {
7257 				assert(rc == 0);
7258 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
7259 				ctx->rc = rc;
7260 				get_discovery_log_page(ctx);
7261 			}
7262 		}
7263 	} else {
7264 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7265 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
7266 			complete_discovery_start(ctx, -ETIMEDOUT);
7267 			/* We need to wait until all NVM ctrlrs are attached before we stop the
7268 			 * discovery service to make sure we don't detach a ctrlr that is still
7269 			 * being attached.
7270 			 */
7271 			if (ctx->attach_in_progress == 0) {
7272 				stop_discovery(ctx, NULL, ctx->cb_ctx);
7273 				return SPDK_POLLER_BUSY;
7274 			}
7275 		}
7276 
7277 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
7278 		if (rc < 0) {
7279 			spdk_poller_unregister(&ctx->poller);
7280 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7281 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7282 			ctx->entry_ctx_in_use = NULL;
7283 
7284 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
7285 			if (rc != 0) {
7286 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7287 				ctx->ctrlr = NULL;
7288 			}
7289 		}
7290 	}
7291 
7292 	return SPDK_POLLER_BUSY;
7293 }
7294 
7295 static void
7296 start_discovery_poller(void *arg)
7297 {
7298 	struct discovery_ctx *ctx = arg;
7299 
7300 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
7301 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7302 }
7303 
7304 int
7305 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
7306 			  const char *base_name,
7307 			  struct spdk_nvme_ctrlr_opts *drv_opts,
7308 			  struct spdk_bdev_nvme_ctrlr_opts *bdev_opts,
7309 			  uint64_t attach_timeout,
7310 			  bool from_mdns,
7311 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
7312 {
7313 	struct discovery_ctx *ctx;
7314 	struct discovery_entry_ctx *discovery_entry_ctx;
7315 
7316 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
7317 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7318 		if (strcmp(ctx->name, base_name) == 0) {
7319 			return -EEXIST;
7320 		}
7321 
7322 		if (ctx->entry_ctx_in_use != NULL) {
7323 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
7324 				return -EEXIST;
7325 			}
7326 		}
7327 
7328 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
7329 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
7330 				return -EEXIST;
7331 			}
7332 		}
7333 	}
7334 
7335 	ctx = calloc(1, sizeof(*ctx));
7336 	if (ctx == NULL) {
7337 		return -ENOMEM;
7338 	}
7339 
7340 	ctx->name = strdup(base_name);
7341 	if (ctx->name == NULL) {
7342 		free_discovery_ctx(ctx);
7343 		return -ENOMEM;
7344 	}
7345 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
7346 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
7347 	ctx->from_mdns_discovery_service = from_mdns;
7348 	ctx->bdev_opts.from_discovery_service = true;
7349 	ctx->calling_thread = spdk_get_thread();
7350 	ctx->start_cb_fn = cb_fn;
7351 	ctx->cb_ctx = cb_ctx;
7352 	ctx->initializing = true;
7353 	if (ctx->start_cb_fn) {
7354 		/* We can use this when dumping json to denote if this RPC parameter
7355 		 * was specified or not.
7356 		 */
7357 		ctx->wait_for_attach = true;
7358 	}
7359 	if (attach_timeout != 0) {
7360 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
7361 				     spdk_get_ticks_hz() / 1000ull;
7362 	}
7363 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
7364 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
7365 	memcpy(&ctx->trid, trid, sizeof(*trid));
7366 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
7367 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
7368 	if (ctx->hostnqn == NULL) {
7369 		free_discovery_ctx(ctx);
7370 		return -ENOMEM;
7371 	}
7372 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
7373 	if (discovery_entry_ctx == NULL) {
7374 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7375 		free_discovery_ctx(ctx);
7376 		return -ENOMEM;
7377 	}
7378 
7379 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
7380 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
7381 	return 0;
7382 }
7383 
7384 int
7385 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
7386 {
7387 	struct discovery_ctx *ctx;
7388 
7389 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7390 		if (strcmp(name, ctx->name) == 0) {
7391 			if (ctx->stop) {
7392 				return -EALREADY;
7393 			}
7394 			/* If we're still starting the discovery service and ->rc is non-zero, we're
7395 			 * going to stop it as soon as we can
7396 			 */
7397 			if (ctx->initializing && ctx->rc != 0) {
7398 				return -EALREADY;
7399 			}
7400 			stop_discovery(ctx, cb_fn, cb_ctx);
7401 			return 0;
7402 		}
7403 	}
7404 
7405 	return -ENOENT;
7406 }
7407 
7408 static int
7409 bdev_nvme_library_init(void)
7410 {
7411 	g_bdev_nvme_init_thread = spdk_get_thread();
7412 
7413 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
7414 				bdev_nvme_destroy_poll_group_cb,
7415 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
7416 
7417 	return 0;
7418 }
7419 
7420 static void
7421 bdev_nvme_fini_destruct_ctrlrs(void)
7422 {
7423 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
7424 	struct nvme_ctrlr *nvme_ctrlr;
7425 
7426 	pthread_mutex_lock(&g_bdev_nvme_mutex);
7427 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
7428 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
7429 			pthread_mutex_lock(&nvme_ctrlr->mutex);
7430 			if (nvme_ctrlr->destruct) {
7431 				/* This controller's destruction was already started
7432 				 * before the application started shutting down
7433 				 */
7434 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
7435 				continue;
7436 			}
7437 			nvme_ctrlr->destruct = true;
7438 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
7439 
7440 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
7441 					     nvme_ctrlr);
7442 		}
7443 	}
7444 
7445 	g_bdev_nvme_module_finish = true;
7446 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
7447 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
7448 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
7449 		spdk_bdev_module_fini_done();
7450 		return;
7451 	}
7452 
7453 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
7454 }
7455 
7456 static void
7457 check_discovery_fini(void *arg)
7458 {
7459 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7460 		bdev_nvme_fini_destruct_ctrlrs();
7461 	}
7462 }
7463 
7464 static void
7465 bdev_nvme_library_fini(void)
7466 {
7467 	struct nvme_probe_skip_entry *entry, *entry_tmp;
7468 	struct discovery_ctx *ctx;
7469 
7470 	spdk_poller_unregister(&g_hotplug_poller);
7471 	free(g_hotplug_probe_ctx);
7472 	g_hotplug_probe_ctx = NULL;
7473 
7474 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
7475 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
7476 		free(entry);
7477 	}
7478 
7479 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
7480 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7481 		bdev_nvme_fini_destruct_ctrlrs();
7482 	} else {
7483 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7484 			stop_discovery(ctx, check_discovery_fini, NULL);
7485 		}
7486 	}
7487 }
7488 
7489 static void
7490 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
7491 {
7492 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7493 	struct spdk_bdev *bdev = bdev_io->bdev;
7494 	struct spdk_dif_ctx dif_ctx;
7495 	struct spdk_dif_error err_blk = {};
7496 	int rc;
7497 	struct spdk_dif_ctx_init_ext_opts dif_opts;
7498 
7499 	dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format);
7500 	dif_opts.dif_pi_format = bdev->dif_pi_format;
7501 	rc = spdk_dif_ctx_init(&dif_ctx,
7502 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
7503 			       bdev->dif_is_head_of_md, bdev->dif_type,
7504 			       bdev_io->u.bdev.dif_check_flags,
7505 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0, &dif_opts);
7506 	if (rc != 0) {
7507 		SPDK_ERRLOG("Initialization of DIF context failed\n");
7508 		return;
7509 	}
7510 
7511 	if (bdev->md_interleave) {
7512 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7513 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7514 	} else {
7515 		struct iovec md_iov = {
7516 			.iov_base	= bdev_io->u.bdev.md_buf,
7517 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
7518 		};
7519 
7520 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7521 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7522 	}
7523 
7524 	if (rc != 0) {
7525 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
7526 			    err_blk.err_type, err_blk.err_offset);
7527 	} else {
7528 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
7529 	}
7530 }
7531 
7532 static void
7533 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7534 {
7535 	struct nvme_bdev_io *bio = ref;
7536 
7537 	if (spdk_nvme_cpl_is_success(cpl)) {
7538 		/* Run PI verification for read data buffer. */
7539 		bdev_nvme_verify_pi_error(bio);
7540 	}
7541 
7542 	/* Return original completion status */
7543 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7544 }
7545 
7546 static void
7547 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7548 {
7549 	struct nvme_bdev_io *bio = ref;
7550 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7551 	int ret;
7552 
7553 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7554 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
7555 			    cpl->status.sct, cpl->status.sc);
7556 
7557 		/* Save completion status to use after verifying PI error. */
7558 		bio->cpl = *cpl;
7559 
7560 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
7561 			/* Read without PI checking to verify PI error. */
7562 			ret = bdev_nvme_no_pi_readv(bio,
7563 						    bdev_io->u.bdev.iovs,
7564 						    bdev_io->u.bdev.iovcnt,
7565 						    bdev_io->u.bdev.md_buf,
7566 						    bdev_io->u.bdev.num_blocks,
7567 						    bdev_io->u.bdev.offset_blocks);
7568 			if (ret == 0) {
7569 				return;
7570 			}
7571 		}
7572 	}
7573 
7574 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7575 }
7576 
7577 static void
7578 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7579 {
7580 	struct nvme_bdev_io *bio = ref;
7581 
7582 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7583 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
7584 			    cpl->status.sct, cpl->status.sc);
7585 		/* Run PI verification for write data buffer if PI error is detected. */
7586 		bdev_nvme_verify_pi_error(bio);
7587 	}
7588 
7589 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7590 }
7591 
7592 static void
7593 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7594 {
7595 	struct nvme_bdev_io *bio = ref;
7596 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7597 
7598 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
7599 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
7600 	 */
7601 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
7602 
7603 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7604 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
7605 			    cpl->status.sct, cpl->status.sc);
7606 		/* Run PI verification for zone append data buffer if PI error is detected. */
7607 		bdev_nvme_verify_pi_error(bio);
7608 	}
7609 
7610 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7611 }
7612 
7613 static void
7614 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7615 {
7616 	struct nvme_bdev_io *bio = ref;
7617 
7618 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7619 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
7620 			    cpl->status.sct, cpl->status.sc);
7621 		/* Run PI verification for compare data buffer if PI error is detected. */
7622 		bdev_nvme_verify_pi_error(bio);
7623 	}
7624 
7625 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7626 }
7627 
7628 static void
7629 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7630 {
7631 	struct nvme_bdev_io *bio = ref;
7632 
7633 	/* Compare operation completion */
7634 	if (!bio->first_fused_completed) {
7635 		/* Save compare result for write callback */
7636 		bio->cpl = *cpl;
7637 		bio->first_fused_completed = true;
7638 		return;
7639 	}
7640 
7641 	/* Write operation completion */
7642 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
7643 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
7644 		 * complete the IO with the compare operation's status.
7645 		 */
7646 		if (!spdk_nvme_cpl_is_error(cpl)) {
7647 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
7648 		}
7649 
7650 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7651 	} else {
7652 		bdev_nvme_io_complete_nvme_status(bio, cpl);
7653 	}
7654 }
7655 
7656 static void
7657 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
7658 {
7659 	struct nvme_bdev_io *bio = ref;
7660 
7661 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7662 }
7663 
7664 static int
7665 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
7666 {
7667 	switch (desc->zt) {
7668 	case SPDK_NVME_ZONE_TYPE_SEQWR:
7669 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
7670 		break;
7671 	default:
7672 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
7673 		return -EIO;
7674 	}
7675 
7676 	switch (desc->zs) {
7677 	case SPDK_NVME_ZONE_STATE_EMPTY:
7678 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
7679 		break;
7680 	case SPDK_NVME_ZONE_STATE_IOPEN:
7681 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
7682 		break;
7683 	case SPDK_NVME_ZONE_STATE_EOPEN:
7684 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
7685 		break;
7686 	case SPDK_NVME_ZONE_STATE_CLOSED:
7687 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
7688 		break;
7689 	case SPDK_NVME_ZONE_STATE_RONLY:
7690 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
7691 		break;
7692 	case SPDK_NVME_ZONE_STATE_FULL:
7693 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
7694 		break;
7695 	case SPDK_NVME_ZONE_STATE_OFFLINE:
7696 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
7697 		break;
7698 	default:
7699 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
7700 		return -EIO;
7701 	}
7702 
7703 	info->zone_id = desc->zslba;
7704 	info->write_pointer = desc->wp;
7705 	info->capacity = desc->zcap;
7706 
7707 	return 0;
7708 }
7709 
7710 static void
7711 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
7712 {
7713 	struct nvme_bdev_io *bio = ref;
7714 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7715 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
7716 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
7717 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
7718 	uint64_t max_zones_per_buf, i;
7719 	uint32_t zone_report_bufsize;
7720 	struct spdk_nvme_ns *ns;
7721 	struct spdk_nvme_qpair *qpair;
7722 	int ret;
7723 
7724 	if (spdk_nvme_cpl_is_error(cpl)) {
7725 		goto out_complete_io_nvme_cpl;
7726 	}
7727 
7728 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
7729 		ret = -ENXIO;
7730 		goto out_complete_io_ret;
7731 	}
7732 
7733 	ns = bio->io_path->nvme_ns->ns;
7734 	qpair = bio->io_path->qpair->qpair;
7735 
7736 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7737 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
7738 			    sizeof(bio->zone_report_buf->descs[0]);
7739 
7740 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
7741 		ret = -EINVAL;
7742 		goto out_complete_io_ret;
7743 	}
7744 
7745 	if (!bio->zone_report_buf->nr_zones) {
7746 		ret = -EINVAL;
7747 		goto out_complete_io_ret;
7748 	}
7749 
7750 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
7751 		ret = fill_zone_from_report(&info[bio->handled_zones],
7752 					    &bio->zone_report_buf->descs[i]);
7753 		if (ret) {
7754 			goto out_complete_io_ret;
7755 		}
7756 		bio->handled_zones++;
7757 	}
7758 
7759 	if (bio->handled_zones < zones_to_copy) {
7760 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7761 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
7762 
7763 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
7764 		ret = spdk_nvme_zns_report_zones(ns, qpair,
7765 						 bio->zone_report_buf, zone_report_bufsize,
7766 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
7767 						 bdev_nvme_get_zone_info_done, bio);
7768 		if (!ret) {
7769 			return;
7770 		} else {
7771 			goto out_complete_io_ret;
7772 		}
7773 	}
7774 
7775 out_complete_io_nvme_cpl:
7776 	free(bio->zone_report_buf);
7777 	bio->zone_report_buf = NULL;
7778 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7779 	return;
7780 
7781 out_complete_io_ret:
7782 	free(bio->zone_report_buf);
7783 	bio->zone_report_buf = NULL;
7784 	bdev_nvme_io_complete(bio, ret);
7785 }
7786 
7787 static void
7788 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
7789 {
7790 	struct nvme_bdev_io *bio = ref;
7791 
7792 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7793 }
7794 
7795 static void
7796 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
7797 {
7798 	struct nvme_bdev_io *bio = ctx;
7799 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7800 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
7801 
7802 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
7803 
7804 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
7805 }
7806 
7807 static void
7808 bdev_nvme_abort_complete(void *ctx)
7809 {
7810 	struct nvme_bdev_io *bio = ctx;
7811 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7812 
7813 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
7814 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
7815 	} else {
7816 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
7817 	}
7818 }
7819 
7820 static void
7821 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
7822 {
7823 	struct nvme_bdev_io *bio = ref;
7824 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7825 
7826 	bio->cpl = *cpl;
7827 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), bdev_nvme_abort_complete, bio);
7828 }
7829 
7830 static void
7831 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
7832 {
7833 	struct nvme_bdev_io *bio = ref;
7834 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7835 
7836 	bio->cpl = *cpl;
7837 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io),
7838 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
7839 }
7840 
7841 static void
7842 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
7843 {
7844 	struct nvme_bdev_io *bio = ref;
7845 	struct iovec *iov;
7846 
7847 	bio->iov_offset = sgl_offset;
7848 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
7849 		iov = &bio->iovs[bio->iovpos];
7850 		if (bio->iov_offset < iov->iov_len) {
7851 			break;
7852 		}
7853 
7854 		bio->iov_offset -= iov->iov_len;
7855 	}
7856 }
7857 
7858 static int
7859 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
7860 {
7861 	struct nvme_bdev_io *bio = ref;
7862 	struct iovec *iov;
7863 
7864 	assert(bio->iovpos < bio->iovcnt);
7865 
7866 	iov = &bio->iovs[bio->iovpos];
7867 
7868 	*address = iov->iov_base;
7869 	*length = iov->iov_len;
7870 
7871 	if (bio->iov_offset) {
7872 		assert(bio->iov_offset <= iov->iov_len);
7873 		*address += bio->iov_offset;
7874 		*length -= bio->iov_offset;
7875 	}
7876 
7877 	bio->iov_offset += *length;
7878 	if (bio->iov_offset == iov->iov_len) {
7879 		bio->iovpos++;
7880 		bio->iov_offset = 0;
7881 	}
7882 
7883 	return 0;
7884 }
7885 
7886 static void
7887 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
7888 {
7889 	struct nvme_bdev_io *bio = ref;
7890 	struct iovec *iov;
7891 
7892 	bio->fused_iov_offset = sgl_offset;
7893 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
7894 		iov = &bio->fused_iovs[bio->fused_iovpos];
7895 		if (bio->fused_iov_offset < iov->iov_len) {
7896 			break;
7897 		}
7898 
7899 		bio->fused_iov_offset -= iov->iov_len;
7900 	}
7901 }
7902 
7903 static int
7904 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
7905 {
7906 	struct nvme_bdev_io *bio = ref;
7907 	struct iovec *iov;
7908 
7909 	assert(bio->fused_iovpos < bio->fused_iovcnt);
7910 
7911 	iov = &bio->fused_iovs[bio->fused_iovpos];
7912 
7913 	*address = iov->iov_base;
7914 	*length = iov->iov_len;
7915 
7916 	if (bio->fused_iov_offset) {
7917 		assert(bio->fused_iov_offset <= iov->iov_len);
7918 		*address += bio->fused_iov_offset;
7919 		*length -= bio->fused_iov_offset;
7920 	}
7921 
7922 	bio->fused_iov_offset += *length;
7923 	if (bio->fused_iov_offset == iov->iov_len) {
7924 		bio->fused_iovpos++;
7925 		bio->fused_iov_offset = 0;
7926 	}
7927 
7928 	return 0;
7929 }
7930 
7931 static int
7932 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7933 		      void *md, uint64_t lba_count, uint64_t lba)
7934 {
7935 	int rc;
7936 
7937 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
7938 		      lba_count, lba);
7939 
7940 	bio->iovs = iov;
7941 	bio->iovcnt = iovcnt;
7942 	bio->iovpos = 0;
7943 	bio->iov_offset = 0;
7944 
7945 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
7946 					    bio->io_path->qpair->qpair,
7947 					    lba, lba_count,
7948 					    bdev_nvme_no_pi_readv_done, bio, 0,
7949 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7950 					    md, 0, 0);
7951 
7952 	if (rc != 0 && rc != -ENOMEM) {
7953 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
7954 	}
7955 	return rc;
7956 }
7957 
7958 static int
7959 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7960 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7961 		struct spdk_memory_domain *domain, void *domain_ctx,
7962 		struct spdk_accel_sequence *seq)
7963 {
7964 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7965 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7966 	int rc;
7967 
7968 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7969 		      lba_count, lba);
7970 
7971 	bio->iovs = iov;
7972 	bio->iovcnt = iovcnt;
7973 	bio->iovpos = 0;
7974 	bio->iov_offset = 0;
7975 
7976 	if (domain != NULL || seq != NULL) {
7977 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7978 		bio->ext_opts.memory_domain = domain;
7979 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7980 		bio->ext_opts.io_flags = flags;
7981 		bio->ext_opts.metadata = md;
7982 		bio->ext_opts.accel_sequence = seq;
7983 
7984 		if (iovcnt == 1) {
7985 			rc = spdk_nvme_ns_cmd_read_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_readv_done,
7986 						       bio, &bio->ext_opts);
7987 		} else {
7988 			rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
7989 							bdev_nvme_readv_done, bio,
7990 							bdev_nvme_queued_reset_sgl,
7991 							bdev_nvme_queued_next_sge,
7992 							&bio->ext_opts);
7993 		}
7994 	} else if (iovcnt == 1) {
7995 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base,
7996 						   md, lba, lba_count, bdev_nvme_readv_done,
7997 						   bio, flags, 0, 0);
7998 	} else {
7999 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
8000 						    bdev_nvme_readv_done, bio, flags,
8001 						    bdev_nvme_queued_reset_sgl,
8002 						    bdev_nvme_queued_next_sge, md, 0, 0);
8003 	}
8004 
8005 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
8006 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
8007 	}
8008 	return rc;
8009 }
8010 
8011 static int
8012 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8013 		 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
8014 		 struct spdk_memory_domain *domain, void *domain_ctx,
8015 		 struct spdk_accel_sequence *seq,
8016 		 union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13)
8017 {
8018 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8019 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8020 	int rc;
8021 
8022 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
8023 		      lba_count, lba);
8024 
8025 	bio->iovs = iov;
8026 	bio->iovcnt = iovcnt;
8027 	bio->iovpos = 0;
8028 	bio->iov_offset = 0;
8029 
8030 	if (domain != NULL || seq != NULL) {
8031 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
8032 		bio->ext_opts.memory_domain = domain;
8033 		bio->ext_opts.memory_domain_ctx = domain_ctx;
8034 		bio->ext_opts.io_flags = flags | SPDK_NVME_IO_FLAGS_DIRECTIVE(cdw12.write.dtype);
8035 		bio->ext_opts.cdw13 = cdw13.raw;
8036 		bio->ext_opts.metadata = md;
8037 		bio->ext_opts.accel_sequence = seq;
8038 
8039 		if (iovcnt == 1) {
8040 			rc = spdk_nvme_ns_cmd_write_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_writev_done,
8041 							bio, &bio->ext_opts);
8042 		} else {
8043 			rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
8044 							 bdev_nvme_writev_done, bio,
8045 							 bdev_nvme_queued_reset_sgl,
8046 							 bdev_nvme_queued_next_sge,
8047 							 &bio->ext_opts);
8048 		}
8049 	} else if (iovcnt == 1) {
8050 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base,
8051 						    md, lba, lba_count, bdev_nvme_writev_done,
8052 						    bio, flags, 0, 0);
8053 	} else {
8054 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
8055 						     bdev_nvme_writev_done, bio, flags,
8056 						     bdev_nvme_queued_reset_sgl,
8057 						     bdev_nvme_queued_next_sge, md, 0, 0);
8058 	}
8059 
8060 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
8061 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
8062 	}
8063 	return rc;
8064 }
8065 
8066 static int
8067 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8068 		       void *md, uint64_t lba_count, uint64_t zslba,
8069 		       uint32_t flags)
8070 {
8071 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8072 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8073 	int rc;
8074 
8075 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
8076 		      lba_count, zslba);
8077 
8078 	bio->iovs = iov;
8079 	bio->iovcnt = iovcnt;
8080 	bio->iovpos = 0;
8081 	bio->iov_offset = 0;
8082 
8083 	if (iovcnt == 1) {
8084 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
8085 						       lba_count,
8086 						       bdev_nvme_zone_appendv_done, bio,
8087 						       flags,
8088 						       0, 0);
8089 	} else {
8090 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
8091 							bdev_nvme_zone_appendv_done, bio, flags,
8092 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
8093 							md, 0, 0);
8094 	}
8095 
8096 	if (rc != 0 && rc != -ENOMEM) {
8097 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
8098 	}
8099 	return rc;
8100 }
8101 
8102 static int
8103 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8104 		   void *md, uint64_t lba_count, uint64_t lba,
8105 		   uint32_t flags)
8106 {
8107 	int rc;
8108 
8109 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
8110 		      lba_count, lba);
8111 
8112 	bio->iovs = iov;
8113 	bio->iovcnt = iovcnt;
8114 	bio->iovpos = 0;
8115 	bio->iov_offset = 0;
8116 
8117 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
8118 					       bio->io_path->qpair->qpair,
8119 					       lba, lba_count,
8120 					       bdev_nvme_comparev_done, bio, flags,
8121 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
8122 					       md, 0, 0);
8123 
8124 	if (rc != 0 && rc != -ENOMEM) {
8125 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
8126 	}
8127 	return rc;
8128 }
8129 
8130 static int
8131 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
8132 			      struct iovec *write_iov, int write_iovcnt,
8133 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
8134 {
8135 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8136 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8137 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
8138 	int rc;
8139 
8140 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
8141 		      lba_count, lba);
8142 
8143 	bio->iovs = cmp_iov;
8144 	bio->iovcnt = cmp_iovcnt;
8145 	bio->iovpos = 0;
8146 	bio->iov_offset = 0;
8147 	bio->fused_iovs = write_iov;
8148 	bio->fused_iovcnt = write_iovcnt;
8149 	bio->fused_iovpos = 0;
8150 	bio->fused_iov_offset = 0;
8151 
8152 	if (bdev_io->num_retries == 0) {
8153 		bio->first_fused_submitted = false;
8154 		bio->first_fused_completed = false;
8155 	}
8156 
8157 	if (!bio->first_fused_submitted) {
8158 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
8159 		memset(&bio->cpl, 0, sizeof(bio->cpl));
8160 
8161 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
8162 						       bdev_nvme_comparev_and_writev_done, bio, flags,
8163 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
8164 		if (rc == 0) {
8165 			bio->first_fused_submitted = true;
8166 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
8167 		} else {
8168 			if (rc != -ENOMEM) {
8169 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
8170 			}
8171 			return rc;
8172 		}
8173 	}
8174 
8175 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
8176 
8177 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
8178 					     bdev_nvme_comparev_and_writev_done, bio, flags,
8179 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
8180 	if (rc != 0 && rc != -ENOMEM) {
8181 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
8182 		rc = 0;
8183 	}
8184 
8185 	return rc;
8186 }
8187 
8188 static int
8189 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
8190 {
8191 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
8192 	struct spdk_nvme_dsm_range *range;
8193 	uint64_t offset, remaining;
8194 	uint64_t num_ranges_u64;
8195 	uint16_t num_ranges;
8196 	int rc;
8197 
8198 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
8199 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8200 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
8201 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
8202 		return -EINVAL;
8203 	}
8204 	num_ranges = (uint16_t)num_ranges_u64;
8205 
8206 	offset = offset_blocks;
8207 	remaining = num_blocks;
8208 	range = &dsm_ranges[0];
8209 
8210 	/* Fill max-size ranges until the remaining blocks fit into one range */
8211 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
8212 		range->attributes.raw = 0;
8213 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8214 		range->starting_lba = offset;
8215 
8216 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8217 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8218 		range++;
8219 	}
8220 
8221 	/* Final range describes the remaining blocks */
8222 	range->attributes.raw = 0;
8223 	range->length = remaining;
8224 	range->starting_lba = offset;
8225 
8226 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
8227 			bio->io_path->qpair->qpair,
8228 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
8229 			dsm_ranges, num_ranges,
8230 			bdev_nvme_queued_done, bio);
8231 
8232 	return rc;
8233 }
8234 
8235 static int
8236 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
8237 {
8238 	if (num_blocks > UINT16_MAX + 1) {
8239 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
8240 		return -EINVAL;
8241 	}
8242 
8243 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
8244 					     bio->io_path->qpair->qpair,
8245 					     offset_blocks, num_blocks,
8246 					     bdev_nvme_queued_done, bio,
8247 					     0);
8248 }
8249 
8250 static int
8251 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
8252 			struct spdk_bdev_zone_info *info)
8253 {
8254 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8255 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8256 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
8257 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
8258 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
8259 
8260 	if (zone_id % zone_size != 0) {
8261 		return -EINVAL;
8262 	}
8263 
8264 	if (num_zones > total_zones || !num_zones) {
8265 		return -EINVAL;
8266 	}
8267 
8268 	assert(!bio->zone_report_buf);
8269 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
8270 	if (!bio->zone_report_buf) {
8271 		return -ENOMEM;
8272 	}
8273 
8274 	bio->handled_zones = 0;
8275 
8276 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
8277 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
8278 					  bdev_nvme_get_zone_info_done, bio);
8279 }
8280 
8281 static int
8282 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
8283 			  enum spdk_bdev_zone_action action)
8284 {
8285 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8286 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8287 
8288 	switch (action) {
8289 	case SPDK_BDEV_ZONE_CLOSE:
8290 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
8291 						bdev_nvme_zone_management_done, bio);
8292 	case SPDK_BDEV_ZONE_FINISH:
8293 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
8294 						 bdev_nvme_zone_management_done, bio);
8295 	case SPDK_BDEV_ZONE_OPEN:
8296 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
8297 					       bdev_nvme_zone_management_done, bio);
8298 	case SPDK_BDEV_ZONE_RESET:
8299 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
8300 						bdev_nvme_zone_management_done, bio);
8301 	case SPDK_BDEV_ZONE_OFFLINE:
8302 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
8303 						  bdev_nvme_zone_management_done, bio);
8304 	default:
8305 		return -EINVAL;
8306 	}
8307 }
8308 
8309 static void
8310 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8311 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
8312 {
8313 	struct nvme_io_path *io_path;
8314 	struct nvme_ctrlr *nvme_ctrlr;
8315 	uint32_t max_xfer_size;
8316 	int rc = -ENXIO;
8317 
8318 	/* Choose the first ctrlr which is not failed. */
8319 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8320 		nvme_ctrlr = io_path->qpair->ctrlr;
8321 
8322 		/* We should skip any unavailable nvme_ctrlr rather than checking
8323 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
8324 		 */
8325 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
8326 			continue;
8327 		}
8328 
8329 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
8330 
8331 		if (nbytes > max_xfer_size) {
8332 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8333 			rc = -EINVAL;
8334 			goto err;
8335 		}
8336 
8337 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
8338 						   bdev_nvme_admin_passthru_done, bio);
8339 		if (rc == 0) {
8340 			return;
8341 		}
8342 	}
8343 
8344 err:
8345 	bdev_nvme_admin_complete(bio, rc);
8346 }
8347 
8348 static int
8349 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8350 		      void *buf, size_t nbytes)
8351 {
8352 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8353 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8354 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8355 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8356 
8357 	if (nbytes > max_xfer_size) {
8358 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8359 		return -EINVAL;
8360 	}
8361 
8362 	/*
8363 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8364 	 * so fill it out automatically.
8365 	 */
8366 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8367 
8368 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
8369 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
8370 }
8371 
8372 static int
8373 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8374 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
8375 {
8376 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8377 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8378 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8379 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8380 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8381 
8382 	if (nbytes > max_xfer_size) {
8383 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8384 		return -EINVAL;
8385 	}
8386 
8387 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8388 		SPDK_ERRLOG("invalid meta data buffer size\n");
8389 		return -EINVAL;
8390 	}
8391 
8392 	/*
8393 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8394 	 * so fill it out automatically.
8395 	 */
8396 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8397 
8398 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
8399 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
8400 }
8401 
8402 static int
8403 bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio,
8404 			  struct spdk_nvme_cmd *cmd, struct iovec *iov, int iovcnt,
8405 			  size_t nbytes, void *md_buf, size_t md_len)
8406 {
8407 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8408 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8409 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8410 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8411 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8412 
8413 	bio->iovs = iov;
8414 	bio->iovcnt = iovcnt;
8415 	bio->iovpos = 0;
8416 	bio->iov_offset = 0;
8417 
8418 	if (nbytes > max_xfer_size) {
8419 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8420 		return -EINVAL;
8421 	}
8422 
8423 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8424 		SPDK_ERRLOG("invalid meta data buffer size\n");
8425 		return -EINVAL;
8426 	}
8427 
8428 	/*
8429 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands
8430 	 * require a nsid, so fill it out automatically.
8431 	 */
8432 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8433 
8434 	return spdk_nvme_ctrlr_cmd_iov_raw_with_md(
8435 		       ctrlr, qpair, cmd, (uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio,
8436 		       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge);
8437 }
8438 
8439 static void
8440 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8441 		struct nvme_bdev_io *bio_to_abort)
8442 {
8443 	struct nvme_io_path *io_path;
8444 	int rc = 0;
8445 
8446 	rc = bdev_nvme_abort_retry_io(nbdev_ch, bio_to_abort);
8447 	if (rc == 0) {
8448 		bdev_nvme_admin_complete(bio, 0);
8449 		return;
8450 	}
8451 
8452 	io_path = bio_to_abort->io_path;
8453 	if (io_path != NULL) {
8454 		rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8455 						   io_path->qpair->qpair,
8456 						   bio_to_abort,
8457 						   bdev_nvme_abort_done, bio);
8458 	} else {
8459 		STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8460 			rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8461 							   NULL,
8462 							   bio_to_abort,
8463 							   bdev_nvme_abort_done, bio);
8464 
8465 			if (rc != -ENOENT) {
8466 				break;
8467 			}
8468 		}
8469 	}
8470 
8471 	if (rc != 0) {
8472 		/* If no command was found or there was any error, complete the abort
8473 		 * request with failure.
8474 		 */
8475 		bdev_nvme_admin_complete(bio, rc);
8476 	}
8477 }
8478 
8479 static int
8480 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks,
8481 	       uint64_t num_blocks)
8482 {
8483 	struct spdk_nvme_scc_source_range range = {
8484 		.slba = src_offset_blocks,
8485 		.nlb = num_blocks - 1
8486 	};
8487 
8488 	return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns,
8489 				     bio->io_path->qpair->qpair,
8490 				     &range, 1, dst_offset_blocks,
8491 				     bdev_nvme_queued_done, bio);
8492 }
8493 
8494 static void
8495 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
8496 {
8497 	const char *action;
8498 	uint32_t i;
8499 
8500 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
8501 		action = "reset";
8502 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
8503 		action = "abort";
8504 	} else {
8505 		action = "none";
8506 	}
8507 
8508 	spdk_json_write_object_begin(w);
8509 
8510 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
8511 
8512 	spdk_json_write_named_object_begin(w, "params");
8513 	spdk_json_write_named_string(w, "action_on_timeout", action);
8514 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
8515 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
8516 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
8517 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
8518 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
8519 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
8520 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
8521 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
8522 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
8523 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
8524 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
8525 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
8526 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
8527 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
8528 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
8529 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
8530 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
8531 	spdk_json_write_named_bool(w, "disable_auto_failback", g_opts.disable_auto_failback);
8532 	spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids);
8533 	spdk_json_write_named_uint8(w, "transport_tos", g_opts.transport_tos);
8534 	spdk_json_write_named_bool(w, "nvme_error_stat", g_opts.nvme_error_stat);
8535 	spdk_json_write_named_uint32(w, "rdma_srq_size", g_opts.rdma_srq_size);
8536 	spdk_json_write_named_bool(w, "io_path_stat", g_opts.io_path_stat);
8537 	spdk_json_write_named_bool(w, "allow_accel_sequence", g_opts.allow_accel_sequence);
8538 	spdk_json_write_named_uint32(w, "rdma_max_cq_size", g_opts.rdma_max_cq_size);
8539 	spdk_json_write_named_uint16(w, "rdma_cm_event_timeout_ms", g_opts.rdma_cm_event_timeout_ms);
8540 	spdk_json_write_named_array_begin(w, "dhchap_digests");
8541 	for (i = 0; i < 32; ++i) {
8542 		if (g_opts.dhchap_digests & SPDK_BIT(i)) {
8543 			spdk_json_write_string(w, spdk_nvme_dhchap_get_digest_name(i));
8544 		}
8545 	}
8546 	spdk_json_write_array_end(w);
8547 	spdk_json_write_named_array_begin(w, "dhchap_dhgroups");
8548 	for (i = 0; i < 32; ++i) {
8549 		if (g_opts.dhchap_dhgroups & SPDK_BIT(i)) {
8550 			spdk_json_write_string(w, spdk_nvme_dhchap_get_dhgroup_name(i));
8551 		}
8552 	}
8553 
8554 	spdk_json_write_array_end(w);
8555 	spdk_json_write_object_end(w);
8556 
8557 	spdk_json_write_object_end(w);
8558 }
8559 
8560 static void
8561 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
8562 {
8563 	struct spdk_nvme_transport_id trid;
8564 
8565 	spdk_json_write_object_begin(w);
8566 
8567 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
8568 
8569 	spdk_json_write_named_object_begin(w, "params");
8570 	spdk_json_write_named_string(w, "name", ctx->name);
8571 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
8572 
8573 	trid = ctx->trid;
8574 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
8575 	nvme_bdev_dump_trid_json(&trid, w);
8576 
8577 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
8578 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
8579 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
8580 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8581 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
8582 	spdk_json_write_object_end(w);
8583 
8584 	spdk_json_write_object_end(w);
8585 }
8586 
8587 #ifdef SPDK_CONFIG_NVME_CUSE
8588 static void
8589 nvme_ctrlr_cuse_config_json(struct spdk_json_write_ctx *w,
8590 			    struct nvme_ctrlr *nvme_ctrlr)
8591 {
8592 	size_t cuse_name_size = 128;
8593 	char cuse_name[cuse_name_size];
8594 
8595 	if (spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr,
8596 					  cuse_name, &cuse_name_size) != 0) {
8597 		return;
8598 	}
8599 
8600 	spdk_json_write_object_begin(w);
8601 
8602 	spdk_json_write_named_string(w, "method", "bdev_nvme_cuse_register");
8603 
8604 	spdk_json_write_named_object_begin(w, "params");
8605 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8606 	spdk_json_write_object_end(w);
8607 
8608 	spdk_json_write_object_end(w);
8609 }
8610 #endif
8611 
8612 static void
8613 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
8614 		       struct nvme_ctrlr *nvme_ctrlr,
8615 		       struct nvme_path_id *path_id)
8616 {
8617 	struct spdk_nvme_transport_id	*trid;
8618 	const struct spdk_nvme_ctrlr_opts *opts;
8619 
8620 	if (nvme_ctrlr->opts.from_discovery_service) {
8621 		/* Do not emit an RPC for this - it will be implicitly
8622 		 * covered by a separate bdev_nvme_start_discovery or
8623 		 * bdev_nvme_start_mdns_discovery RPC.
8624 		 */
8625 		return;
8626 	}
8627 
8628 	trid = &path_id->trid;
8629 
8630 	spdk_json_write_object_begin(w);
8631 
8632 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
8633 
8634 	spdk_json_write_named_object_begin(w, "params");
8635 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8636 	nvme_bdev_dump_trid_json(trid, w);
8637 	spdk_json_write_named_bool(w, "prchk_reftag",
8638 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
8639 	spdk_json_write_named_bool(w, "prchk_guard",
8640 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
8641 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
8642 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
8643 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8644 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
8645 	if (nvme_ctrlr->psk != NULL) {
8646 		spdk_json_write_named_string(w, "psk", spdk_key_get_name(nvme_ctrlr->psk));
8647 	} else if (nvme_ctrlr->opts.psk[0] != '\0') {
8648 		spdk_json_write_named_string(w, "psk", nvme_ctrlr->opts.psk);
8649 	}
8650 
8651 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
8652 	spdk_json_write_named_string(w, "hostnqn", opts->hostnqn);
8653 	spdk_json_write_named_bool(w, "hdgst", opts->header_digest);
8654 	spdk_json_write_named_bool(w, "ddgst", opts->data_digest);
8655 	if (opts->src_addr[0] != '\0') {
8656 		spdk_json_write_named_string(w, "hostaddr", opts->src_addr);
8657 	}
8658 	if (opts->src_svcid[0] != '\0') {
8659 		spdk_json_write_named_string(w, "hostsvcid", opts->src_svcid);
8660 	}
8661 
8662 	if (nvme_ctrlr->opts.multipath) {
8663 		spdk_json_write_named_string(w, "multipath", "multipath");
8664 	}
8665 	spdk_json_write_object_end(w);
8666 
8667 	spdk_json_write_object_end(w);
8668 }
8669 
8670 static void
8671 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
8672 {
8673 	spdk_json_write_object_begin(w);
8674 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
8675 
8676 	spdk_json_write_named_object_begin(w, "params");
8677 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
8678 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
8679 	spdk_json_write_object_end(w);
8680 
8681 	spdk_json_write_object_end(w);
8682 }
8683 
8684 static int
8685 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
8686 {
8687 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
8688 	struct nvme_ctrlr	*nvme_ctrlr;
8689 	struct discovery_ctx	*ctx;
8690 	struct nvme_path_id	*path_id;
8691 
8692 	bdev_nvme_opts_config_json(w);
8693 
8694 	pthread_mutex_lock(&g_bdev_nvme_mutex);
8695 
8696 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
8697 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
8698 			path_id = nvme_ctrlr->active_path_id;
8699 			assert(path_id == TAILQ_FIRST(&nvme_ctrlr->trids));
8700 			nvme_ctrlr_config_json(w, nvme_ctrlr, path_id);
8701 
8702 			path_id = TAILQ_NEXT(path_id, link);
8703 			while (path_id != NULL) {
8704 				nvme_ctrlr_config_json(w, nvme_ctrlr, path_id);
8705 				path_id = TAILQ_NEXT(path_id, link);
8706 			}
8707 
8708 #ifdef SPDK_CONFIG_NVME_CUSE
8709 			nvme_ctrlr_cuse_config_json(w, nvme_ctrlr);
8710 #endif
8711 		}
8712 	}
8713 
8714 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8715 		if (!ctx->from_mdns_discovery_service) {
8716 			bdev_nvme_discovery_config_json(w, ctx);
8717 		}
8718 	}
8719 
8720 	bdev_nvme_mdns_discovery_config_json(w);
8721 
8722 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
8723 	 * before enabling hotplug poller.
8724 	 */
8725 	bdev_nvme_hotplug_config_json(w);
8726 
8727 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
8728 	return 0;
8729 }
8730 
8731 struct spdk_nvme_ctrlr *
8732 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
8733 {
8734 	struct nvme_bdev *nbdev;
8735 	struct nvme_ns *nvme_ns;
8736 
8737 	if (!bdev || bdev->module != &nvme_if) {
8738 		return NULL;
8739 	}
8740 
8741 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
8742 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
8743 	assert(nvme_ns != NULL);
8744 
8745 	return nvme_ns->ctrlr->ctrlr;
8746 }
8747 
8748 static bool
8749 nvme_io_path_is_current(struct nvme_io_path *io_path)
8750 {
8751 	const struct nvme_bdev_channel *nbdev_ch;
8752 	bool current;
8753 
8754 	if (!nvme_io_path_is_available(io_path)) {
8755 		return false;
8756 	}
8757 
8758 	nbdev_ch = io_path->nbdev_ch;
8759 	if (nbdev_ch == NULL) {
8760 		current = false;
8761 	} else if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
8762 		struct nvme_io_path *optimized_io_path = NULL;
8763 
8764 		STAILQ_FOREACH(optimized_io_path, &nbdev_ch->io_path_list, stailq) {
8765 			if (optimized_io_path->nvme_ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE) {
8766 				break;
8767 			}
8768 		}
8769 
8770 		/* A non-optimized path is only current if there are no optimized paths. */
8771 		current = (io_path->nvme_ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE) ||
8772 			  (optimized_io_path == NULL);
8773 	} else {
8774 		if (nbdev_ch->current_io_path) {
8775 			current = (io_path == nbdev_ch->current_io_path);
8776 		} else {
8777 			struct nvme_io_path *first_path;
8778 
8779 			/* We arrived here as there are no optimized paths for active-passive
8780 			 * mode. Check if this io_path is the first one available on the list.
8781 			 */
8782 			current = false;
8783 			STAILQ_FOREACH(first_path, &nbdev_ch->io_path_list, stailq) {
8784 				if (nvme_io_path_is_available(first_path)) {
8785 					current = (io_path == first_path);
8786 					break;
8787 				}
8788 			}
8789 		}
8790 	}
8791 
8792 	return current;
8793 }
8794 
8795 void
8796 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
8797 {
8798 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
8799 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
8800 	const struct spdk_nvme_ctrlr_data *cdata;
8801 	const struct spdk_nvme_transport_id *trid;
8802 	const char *adrfam_str;
8803 
8804 	spdk_json_write_object_begin(w);
8805 
8806 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
8807 
8808 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
8809 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
8810 
8811 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
8812 	spdk_json_write_named_bool(w, "current", nvme_io_path_is_current(io_path));
8813 	spdk_json_write_named_bool(w, "connected", nvme_qpair_is_connected(io_path->qpair));
8814 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
8815 
8816 	spdk_json_write_named_object_begin(w, "transport");
8817 	spdk_json_write_named_string(w, "trtype", trid->trstring);
8818 	spdk_json_write_named_string(w, "traddr", trid->traddr);
8819 	if (trid->trsvcid[0] != '\0') {
8820 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
8821 	}
8822 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
8823 	if (adrfam_str) {
8824 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
8825 	}
8826 	spdk_json_write_object_end(w);
8827 
8828 	spdk_json_write_object_end(w);
8829 }
8830 
8831 void
8832 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
8833 {
8834 	struct discovery_ctx *ctx;
8835 	struct discovery_entry_ctx *entry_ctx;
8836 
8837 	spdk_json_write_array_begin(w);
8838 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8839 		spdk_json_write_object_begin(w);
8840 		spdk_json_write_named_string(w, "name", ctx->name);
8841 
8842 		spdk_json_write_named_object_begin(w, "trid");
8843 		nvme_bdev_dump_trid_json(&ctx->trid, w);
8844 		spdk_json_write_object_end(w);
8845 
8846 		spdk_json_write_named_array_begin(w, "referrals");
8847 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
8848 			spdk_json_write_object_begin(w);
8849 			spdk_json_write_named_object_begin(w, "trid");
8850 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
8851 			spdk_json_write_object_end(w);
8852 			spdk_json_write_object_end(w);
8853 		}
8854 		spdk_json_write_array_end(w);
8855 
8856 		spdk_json_write_object_end(w);
8857 	}
8858 	spdk_json_write_array_end(w);
8859 }
8860 
8861 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
8862 
8863 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
8864 {
8865 	struct spdk_trace_tpoint_opts opts[] = {
8866 		{
8867 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
8868 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 1,
8869 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8870 		},
8871 		{
8872 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
8873 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 0,
8874 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8875 		}
8876 	};
8877 
8878 
8879 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
8880 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
8881 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8882 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8883 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8884 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8885 }
8886