xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision 5fd9561f54daa8eff7f3bcb56c789655bca846b1)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation. All rights reserved.
5  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
6  *   Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
7  *
8  *   Redistribution and use in source and binary forms, with or without
9  *   modification, are permitted provided that the following conditions
10  *   are met:
11  *
12  *     * Redistributions of source code must retain the above copyright
13  *       notice, this list of conditions and the following disclaimer.
14  *     * Redistributions in binary form must reproduce the above copyright
15  *       notice, this list of conditions and the following disclaimer in
16  *       the documentation and/or other materials provided with the
17  *       distribution.
18  *     * Neither the name of Intel Corporation nor the names of its
19  *       contributors may be used to endorse or promote products derived
20  *       from this software without specific prior written permission.
21  *
22  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include "spdk/stdinc.h"
36 
37 #include "bdev_nvme.h"
38 
39 #include "spdk/accel_engine.h"
40 #include "spdk/config.h"
41 #include "spdk/endian.h"
42 #include "spdk/bdev.h"
43 #include "spdk/json.h"
44 #include "spdk/likely.h"
45 #include "spdk/nvme.h"
46 #include "spdk/nvme_ocssd.h"
47 #include "spdk/nvme_zns.h"
48 #include "spdk/opal.h"
49 #include "spdk/thread.h"
50 #include "spdk/string.h"
51 #include "spdk/util.h"
52 
53 #include "spdk/bdev_module.h"
54 #include "spdk/log.h"
55 
56 #include "spdk_internal/usdt.h"
57 
58 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
59 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
60 
61 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
62 
63 struct nvme_bdev_io {
64 	/** array of iovecs to transfer. */
65 	struct iovec *iovs;
66 
67 	/** Number of iovecs in iovs array. */
68 	int iovcnt;
69 
70 	/** Current iovec position. */
71 	int iovpos;
72 
73 	/** Offset in current iovec. */
74 	uint32_t iov_offset;
75 
76 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
77 	 *  being reset in a reset I/O.
78 	 */
79 	struct nvme_io_path *io_path;
80 
81 	/** array of iovecs to transfer. */
82 	struct iovec *fused_iovs;
83 
84 	/** Number of iovecs in iovs array. */
85 	int fused_iovcnt;
86 
87 	/** Current iovec position. */
88 	int fused_iovpos;
89 
90 	/** Offset in current iovec. */
91 	uint32_t fused_iov_offset;
92 
93 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
94 	struct spdk_nvme_cpl cpl;
95 
96 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
97 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
98 
99 	/** Originating thread */
100 	struct spdk_thread *orig_thread;
101 
102 	/** Keeps track if first of fused commands was submitted */
103 	bool first_fused_submitted;
104 
105 	/** Keeps track if first of fused commands was completed */
106 	bool first_fused_completed;
107 
108 	/** Temporary pointer to zone report buffer */
109 	struct spdk_nvme_zns_zone_report *zone_report_buf;
110 
111 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
112 	uint64_t handled_zones;
113 
114 	/** Expiration value in ticks to retry the current I/O. */
115 	uint64_t retry_ticks;
116 
117 	/* How many times the current I/O was retried. */
118 	int32_t retry_count;
119 };
120 
121 struct nvme_probe_skip_entry {
122 	struct spdk_nvme_transport_id		trid;
123 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
124 };
125 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
126 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
127 			g_skipped_nvme_ctrlrs);
128 
129 static struct spdk_bdev_nvme_opts g_opts = {
130 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
131 	.timeout_us = 0,
132 	.timeout_admin_us = 0,
133 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
134 	.transport_retry_count = 4,
135 	.arbitration_burst = 0,
136 	.low_priority_weight = 0,
137 	.medium_priority_weight = 0,
138 	.high_priority_weight = 0,
139 	.nvme_adminq_poll_period_us = 10000ULL,
140 	.nvme_ioq_poll_period_us = 0,
141 	.io_queue_requests = 0,
142 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
143 	.bdev_retry_count = 3,
144 	.transport_ack_timeout = 0,
145 	.ctrlr_loss_timeout_sec = 0,
146 	.reconnect_delay_sec = 0,
147 	.fast_io_fail_timeout_sec = 0,
148 };
149 
150 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
151 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
152 
153 static int g_hot_insert_nvme_controller_index = 0;
154 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
155 static bool g_nvme_hotplug_enabled = false;
156 static struct spdk_thread *g_bdev_nvme_init_thread;
157 static struct spdk_poller *g_hotplug_poller;
158 static struct spdk_poller *g_hotplug_probe_poller;
159 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
160 
161 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
162 		struct nvme_async_probe_ctx *ctx);
163 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
164 		struct nvme_async_probe_ctx *ctx);
165 static int bdev_nvme_library_init(void);
166 static void bdev_nvme_library_fini(void);
167 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
168 				     struct spdk_bdev_io *bdev_io);
169 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
170 			   void *md, uint64_t lba_count, uint64_t lba,
171 			   uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts);
172 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
173 				 void *md, uint64_t lba_count, uint64_t lba);
174 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
175 			    void *md, uint64_t lba_count, uint64_t lba,
176 			    uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts);
177 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
178 				  void *md, uint64_t lba_count,
179 				  uint64_t zslba, uint32_t flags);
180 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
181 			      void *md, uint64_t lba_count, uint64_t lba,
182 			      uint32_t flags);
183 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
184 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
185 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
186 		uint32_t flags);
187 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
188 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
189 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
190 				     enum spdk_bdev_zone_action action);
191 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
192 				     struct nvme_bdev_io *bio,
193 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
194 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
195 				 void *buf, size_t nbytes);
196 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
197 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
198 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
199 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
200 static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio);
201 static int bdev_nvme_reset(struct nvme_ctrlr *nvme_ctrlr);
202 static int bdev_nvme_failover(struct nvme_ctrlr *nvme_ctrlr, bool remove);
203 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
204 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
205 
206 static int
207 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
208 {
209 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
210 }
211 
212 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
213 
214 struct spdk_nvme_qpair *
215 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
216 {
217 	struct nvme_ctrlr_channel *ctrlr_ch;
218 
219 	assert(ctrlr_io_ch != NULL);
220 
221 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
222 
223 	return ctrlr_ch->qpair->qpair;
224 }
225 
226 static int
227 bdev_nvme_get_ctx_size(void)
228 {
229 	return sizeof(struct nvme_bdev_io);
230 }
231 
232 static struct spdk_bdev_module nvme_if = {
233 	.name = "nvme",
234 	.async_fini = true,
235 	.module_init = bdev_nvme_library_init,
236 	.module_fini = bdev_nvme_library_fini,
237 	.config_json = bdev_nvme_config_json,
238 	.get_ctx_size = bdev_nvme_get_ctx_size,
239 
240 };
241 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
242 
243 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
244 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
245 bool g_bdev_nvme_module_finish;
246 
247 struct nvme_bdev_ctrlr *
248 nvme_bdev_ctrlr_get_by_name(const char *name)
249 {
250 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
251 
252 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
253 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
254 			break;
255 		}
256 	}
257 
258 	return nbdev_ctrlr;
259 }
260 
261 static struct nvme_ctrlr *
262 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
263 			  const struct spdk_nvme_transport_id *trid)
264 {
265 	struct nvme_ctrlr *nvme_ctrlr;
266 
267 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
268 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0) {
269 			break;
270 		}
271 	}
272 
273 	return nvme_ctrlr;
274 }
275 
276 static struct nvme_bdev *
277 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
278 {
279 	struct nvme_bdev *bdev;
280 
281 	pthread_mutex_lock(&g_bdev_nvme_mutex);
282 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
283 		if (bdev->nsid == nsid) {
284 			break;
285 		}
286 	}
287 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
288 
289 	return bdev;
290 }
291 
292 struct nvme_ns *
293 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
294 {
295 	struct nvme_ns ns;
296 
297 	assert(nsid > 0);
298 
299 	ns.id = nsid;
300 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
301 }
302 
303 struct nvme_ns *
304 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
305 {
306 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
307 }
308 
309 struct nvme_ns *
310 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
311 {
312 	if (ns == NULL) {
313 		return NULL;
314 	}
315 
316 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
317 }
318 
319 static struct nvme_ctrlr *
320 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid)
321 {
322 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
323 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
324 
325 	pthread_mutex_lock(&g_bdev_nvme_mutex);
326 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
327 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid);
328 		if (nvme_ctrlr != NULL) {
329 			break;
330 		}
331 	}
332 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
333 
334 	return nvme_ctrlr;
335 }
336 
337 struct nvme_ctrlr *
338 nvme_ctrlr_get_by_name(const char *name)
339 {
340 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
341 	struct nvme_ctrlr *nvme_ctrlr = NULL;
342 
343 	if (name == NULL) {
344 		return NULL;
345 	}
346 
347 	pthread_mutex_lock(&g_bdev_nvme_mutex);
348 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
349 	if (nbdev_ctrlr != NULL) {
350 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
351 	}
352 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
353 
354 	return nvme_ctrlr;
355 }
356 
357 void
358 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
359 {
360 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
361 
362 	pthread_mutex_lock(&g_bdev_nvme_mutex);
363 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
364 		fn(nbdev_ctrlr, ctx);
365 	}
366 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
367 }
368 
369 void
370 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
371 {
372 	const char *trtype_str;
373 	const char *adrfam_str;
374 
375 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
376 	if (trtype_str) {
377 		spdk_json_write_named_string(w, "trtype", trtype_str);
378 	}
379 
380 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
381 	if (adrfam_str) {
382 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
383 	}
384 
385 	if (trid->traddr[0] != '\0') {
386 		spdk_json_write_named_string(w, "traddr", trid->traddr);
387 	}
388 
389 	if (trid->trsvcid[0] != '\0') {
390 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
391 	}
392 
393 	if (trid->subnqn[0] != '\0') {
394 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
395 	}
396 }
397 
398 static void
399 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
400 		       struct nvme_ctrlr *nvme_ctrlr)
401 {
402 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
403 	pthread_mutex_lock(&g_bdev_nvme_mutex);
404 
405 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
406 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
407 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
408 
409 		return;
410 	}
411 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
412 
413 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
414 
415 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
416 
417 	free(nbdev_ctrlr->name);
418 	free(nbdev_ctrlr);
419 }
420 
421 static void
422 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
423 {
424 	struct nvme_path_id *path_id, *tmp_path;
425 	struct nvme_ns *ns, *tmp_ns;
426 
427 	free(nvme_ctrlr->copied_ana_desc);
428 	spdk_free(nvme_ctrlr->ana_log_page);
429 
430 	if (nvme_ctrlr->opal_dev) {
431 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
432 		nvme_ctrlr->opal_dev = NULL;
433 	}
434 
435 	if (nvme_ctrlr->nbdev_ctrlr) {
436 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
437 	}
438 
439 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
440 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
441 		free(ns);
442 	}
443 
444 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
445 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
446 		free(path_id);
447 	}
448 
449 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
450 
451 	free(nvme_ctrlr);
452 
453 	pthread_mutex_lock(&g_bdev_nvme_mutex);
454 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
455 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
456 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
457 		spdk_bdev_module_fini_done();
458 		return;
459 	}
460 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
461 }
462 
463 static int
464 nvme_detach_poller(void *arg)
465 {
466 	struct nvme_ctrlr *nvme_ctrlr = arg;
467 	int rc;
468 
469 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
470 	if (rc != -EAGAIN) {
471 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
472 		_nvme_ctrlr_delete(nvme_ctrlr);
473 	}
474 
475 	return SPDK_POLLER_BUSY;
476 }
477 
478 static void
479 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
480 {
481 	int rc;
482 
483 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
484 
485 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
486 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
487 
488 	/* If we got here, the reset/detach poller cannot be active */
489 	assert(nvme_ctrlr->reset_detach_poller == NULL);
490 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
491 					  nvme_ctrlr, 1000);
492 	if (nvme_ctrlr->reset_detach_poller == NULL) {
493 		SPDK_ERRLOG("Failed to register detach poller\n");
494 		goto error;
495 	}
496 
497 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
498 	if (rc != 0) {
499 		SPDK_ERRLOG("Failed to detach the NVMe controller\n");
500 		goto error;
501 	}
502 
503 	return;
504 error:
505 	/* We don't have a good way to handle errors here, so just do what we can and delete the
506 	 * controller without detaching the underlying NVMe device.
507 	 */
508 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
509 	_nvme_ctrlr_delete(nvme_ctrlr);
510 }
511 
512 static void
513 nvme_ctrlr_unregister_cb(void *io_device)
514 {
515 	struct nvme_ctrlr *nvme_ctrlr = io_device;
516 
517 	nvme_ctrlr_delete(nvme_ctrlr);
518 }
519 
520 static void
521 nvme_ctrlr_unregister(void *ctx)
522 {
523 	struct nvme_ctrlr *nvme_ctrlr = ctx;
524 
525 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
526 }
527 
528 static bool
529 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
530 {
531 	if (!nvme_ctrlr->destruct) {
532 		return false;
533 	}
534 
535 	if (nvme_ctrlr->ref > 0) {
536 		return false;
537 	}
538 
539 	if (nvme_ctrlr->resetting) {
540 		return false;
541 	}
542 
543 	if (nvme_ctrlr->ana_log_page_updating) {
544 		return false;
545 	}
546 
547 	return true;
548 }
549 
550 static void
551 nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
552 {
553 	pthread_mutex_lock(&nvme_ctrlr->mutex);
554 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
555 
556 	assert(nvme_ctrlr->ref > 0);
557 	nvme_ctrlr->ref--;
558 
559 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
560 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
561 		return;
562 	}
563 
564 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
565 
566 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
567 }
568 
569 static struct nvme_io_path *
570 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
571 {
572 	struct nvme_io_path *io_path;
573 
574 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
575 		if (io_path->nvme_ns == nvme_ns) {
576 			break;
577 		}
578 	}
579 
580 	return io_path;
581 }
582 
583 static int
584 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
585 {
586 	struct nvme_io_path *io_path;
587 	struct spdk_io_channel *ch;
588 	struct nvme_ctrlr_channel *ctrlr_ch;
589 	struct nvme_qpair *nvme_qpair;
590 
591 	io_path = calloc(1, sizeof(*io_path));
592 	if (io_path == NULL) {
593 		SPDK_ERRLOG("Failed to alloc io_path.\n");
594 		return -ENOMEM;
595 	}
596 
597 	io_path->nvme_ns = nvme_ns;
598 
599 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
600 	if (ch == NULL) {
601 		free(io_path);
602 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
603 		return -ENOMEM;
604 	}
605 
606 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
607 
608 	nvme_qpair = ctrlr_ch->qpair;
609 	assert(nvme_qpair != NULL);
610 
611 	io_path->qpair = nvme_qpair;
612 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
613 
614 	io_path->nbdev_ch = nbdev_ch;
615 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
616 
617 	nbdev_ch->current_io_path = NULL;
618 
619 	return 0;
620 }
621 
622 static void
623 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
624 {
625 	struct spdk_io_channel *ch;
626 	struct nvme_qpair *nvme_qpair;
627 	struct nvme_ctrlr_channel *ctrlr_ch;
628 
629 	nbdev_ch->current_io_path = NULL;
630 
631 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
632 
633 	nvme_qpair = io_path->qpair;
634 	assert(nvme_qpair != NULL);
635 
636 	TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
637 
638 	ctrlr_ch = nvme_qpair->ctrlr_ch;
639 	assert(ctrlr_ch != NULL);
640 
641 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
642 	spdk_put_io_channel(ch);
643 
644 	free(io_path);
645 }
646 
647 static void
648 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
649 {
650 	struct nvme_io_path *io_path, *tmp_io_path;
651 
652 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
653 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
654 	}
655 }
656 
657 static int
658 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
659 {
660 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
661 	struct nvme_bdev *nbdev = io_device;
662 	struct nvme_ns *nvme_ns;
663 	int rc;
664 
665 	STAILQ_INIT(&nbdev_ch->io_path_list);
666 	TAILQ_INIT(&nbdev_ch->retry_io_list);
667 
668 	pthread_mutex_lock(&nbdev->mutex);
669 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
670 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
671 		if (rc != 0) {
672 			pthread_mutex_unlock(&nbdev->mutex);
673 
674 			_bdev_nvme_delete_io_paths(nbdev_ch);
675 			return rc;
676 		}
677 	}
678 	pthread_mutex_unlock(&nbdev->mutex);
679 
680 	return 0;
681 }
682 
683 static void
684 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
685 {
686 	struct spdk_bdev_io *bdev_io, *tmp_io;
687 
688 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_io) {
689 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
690 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED);
691 	}
692 
693 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
694 }
695 
696 static void
697 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
698 {
699 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
700 
701 	bdev_nvme_abort_retry_ios(nbdev_ch);
702 	_bdev_nvme_delete_io_paths(nbdev_ch);
703 }
704 
705 static inline bool
706 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
707 {
708 	switch (io_type) {
709 	case SPDK_BDEV_IO_TYPE_RESET:
710 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
711 	case SPDK_BDEV_IO_TYPE_ABORT:
712 		return true;
713 	default:
714 		break;
715 	}
716 
717 	return false;
718 }
719 
720 static inline bool
721 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
722 {
723 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
724 		return false;
725 	}
726 
727 	switch (nvme_ns->ana_state) {
728 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
729 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
730 		return true;
731 	default:
732 		break;
733 	}
734 
735 	return false;
736 }
737 
738 static inline bool
739 nvme_io_path_is_connected(struct nvme_io_path *io_path)
740 {
741 	if (spdk_unlikely(io_path->qpair->qpair == NULL)) {
742 		return false;
743 	}
744 
745 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(io_path->qpair->qpair) !=
746 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
747 		return false;
748 	}
749 
750 	if (spdk_unlikely(io_path->qpair->ctrlr_ch->reset_iter != NULL)) {
751 		return false;
752 	}
753 
754 	if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(io_path->qpair->ctrlr->ctrlr) !=
755 	    SPDK_NVME_QPAIR_FAILURE_NONE) {
756 		return false;
757 	}
758 
759 	return true;
760 }
761 
762 static inline bool
763 nvme_io_path_is_available(struct nvme_io_path *io_path)
764 {
765 	if (spdk_unlikely(!nvme_io_path_is_connected(io_path))) {
766 		return false;
767 	}
768 
769 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
770 		return false;
771 	}
772 
773 	return true;
774 }
775 
776 static inline bool
777 nvme_io_path_is_failed(struct nvme_io_path *io_path)
778 {
779 	struct nvme_ctrlr *nvme_ctrlr;
780 
781 	nvme_ctrlr = io_path->qpair->ctrlr;
782 
783 	if (nvme_ctrlr->destruct) {
784 		return true;
785 	}
786 
787 	if (nvme_ctrlr->fast_io_fail_timedout) {
788 		return true;
789 	}
790 
791 	if (nvme_ctrlr->resetting) {
792 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
793 			return false;
794 		} else {
795 			return true;
796 		}
797 	}
798 
799 	if (nvme_ctrlr->reconnect_is_delayed) {
800 		return false;
801 	}
802 
803 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
804 		return true;
805 	} else {
806 		return false;
807 	}
808 }
809 
810 static bool
811 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
812 {
813 	if (nvme_ctrlr->destruct) {
814 		return false;
815 	}
816 
817 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
818 		return false;
819 	}
820 
821 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
822 		return false;
823 	}
824 
825 	return true;
826 }
827 
828 /* Simulate circular linked list. */
829 static inline struct nvme_io_path *
830 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
831 {
832 	struct nvme_io_path *next_path;
833 
834 	next_path = STAILQ_NEXT(prev_path, stailq);
835 	if (next_path != NULL) {
836 		return next_path;
837 	} else {
838 		return STAILQ_FIRST(&nbdev_ch->io_path_list);
839 	}
840 }
841 
842 static struct nvme_io_path *
843 bdev_nvme_find_next_io_path(struct nvme_bdev_channel *nbdev_ch,
844 			    struct nvme_io_path *prev)
845 {
846 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
847 
848 	start = nvme_io_path_get_next(nbdev_ch, prev);
849 
850 	io_path = start;
851 	do {
852 		if (spdk_likely(nvme_io_path_is_connected(io_path) &&
853 				!io_path->nvme_ns->ana_state_updating)) {
854 			switch (io_path->nvme_ns->ana_state) {
855 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
856 				nbdev_ch->current_io_path = io_path;
857 				return io_path;
858 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
859 				if (non_optimized == NULL) {
860 					non_optimized = io_path;
861 				}
862 				break;
863 			default:
864 				break;
865 			}
866 		}
867 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
868 	} while (io_path != start);
869 
870 	/* We come here only if there is no optimized path. Cache even non_optimized
871 	 * path for load balance across multiple non_optimized paths.
872 	 */
873 	nbdev_ch->current_io_path = non_optimized;
874 	return non_optimized;
875 }
876 
877 static struct nvme_io_path *
878 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
879 {
880 	struct nvme_io_path *io_path, *non_optimized = NULL;
881 
882 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
883 		if (spdk_unlikely(!nvme_io_path_is_connected(io_path))) {
884 			/* The device is currently resetting. */
885 			continue;
886 		}
887 
888 		if (spdk_unlikely(io_path->nvme_ns->ana_state_updating)) {
889 			continue;
890 		}
891 
892 		switch (io_path->nvme_ns->ana_state) {
893 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
894 			nbdev_ch->current_io_path = io_path;
895 			return io_path;
896 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
897 			if (non_optimized == NULL) {
898 				non_optimized = io_path;
899 			}
900 			break;
901 		default:
902 			break;
903 		}
904 	}
905 
906 	return non_optimized;
907 }
908 
909 static inline struct nvme_io_path *
910 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
911 {
912 	if (spdk_unlikely(nbdev_ch->current_io_path == NULL)) {
913 		return _bdev_nvme_find_io_path(nbdev_ch);
914 	}
915 
916 	if (spdk_likely(nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE)) {
917 		return nbdev_ch->current_io_path;
918 	} else {
919 		return bdev_nvme_find_next_io_path(nbdev_ch, nbdev_ch->current_io_path);
920 	}
921 }
922 
923 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
924  * or false otherwise.
925  *
926  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
927  * is likely to be non-accessible now but may become accessible.
928  *
929  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
930  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
931  * when starting to reset it but it is set to failed when the reset failed. Hence, if
932  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
933  */
934 static bool
935 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
936 {
937 	struct nvme_io_path *io_path;
938 
939 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
940 		if (io_path->nvme_ns->ana_transition_timedout) {
941 			continue;
942 		}
943 
944 		if (nvme_io_path_is_connected(io_path) ||
945 		    !nvme_io_path_is_failed(io_path)) {
946 			return true;
947 		}
948 	}
949 
950 	return false;
951 }
952 
953 static bool
954 any_ctrlr_may_become_available(struct nvme_bdev_channel *nbdev_ch)
955 {
956 	struct nvme_io_path *io_path;
957 
958 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
959 		if (!nvme_io_path_is_failed(io_path)) {
960 			return true;
961 		}
962 	}
963 
964 	return false;
965 }
966 
967 static int
968 bdev_nvme_retry_ios(void *arg)
969 {
970 	struct nvme_bdev_channel *nbdev_ch = arg;
971 	struct spdk_io_channel *ch = spdk_io_channel_from_ctx(nbdev_ch);
972 	struct spdk_bdev_io *bdev_io, *tmp_bdev_io;
973 	struct nvme_bdev_io *bio;
974 	uint64_t now, delay_us;
975 
976 	now = spdk_get_ticks();
977 
978 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_bdev_io) {
979 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
980 		if (bio->retry_ticks > now) {
981 			break;
982 		}
983 
984 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
985 
986 		bdev_nvme_submit_request(ch, bdev_io);
987 	}
988 
989 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
990 
991 	bdev_io = TAILQ_FIRST(&nbdev_ch->retry_io_list);
992 	if (bdev_io != NULL) {
993 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
994 
995 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
996 
997 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
998 					    delay_us);
999 	}
1000 
1001 	return SPDK_POLLER_BUSY;
1002 }
1003 
1004 static void
1005 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
1006 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
1007 {
1008 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1009 	struct spdk_bdev_io *tmp_bdev_io;
1010 	struct nvme_bdev_io *tmp_bio;
1011 
1012 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
1013 
1014 	TAILQ_FOREACH_REVERSE(tmp_bdev_io, &nbdev_ch->retry_io_list, retry_io_head, module_link) {
1015 		tmp_bio = (struct nvme_bdev_io *)tmp_bdev_io->driver_ctx;
1016 
1017 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1018 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bdev_io, bdev_io,
1019 					   module_link);
1020 			return;
1021 		}
1022 	}
1023 
1024 	/* No earlier I/Os were found. This I/O must be the new head. */
1025 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bdev_io, module_link);
1026 
1027 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1028 
1029 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1030 				    delay_ms * 1000ULL);
1031 }
1032 
1033 static inline void
1034 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1035 				  const struct spdk_nvme_cpl *cpl)
1036 {
1037 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1038 	struct nvme_bdev_channel *nbdev_ch;
1039 	struct nvme_ctrlr *nvme_ctrlr;
1040 	const struct spdk_nvme_ctrlr_data *cdata;
1041 	uint64_t delay_ms;
1042 
1043 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1044 
1045 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1046 		goto complete;
1047 	}
1048 
1049 	if (cpl->status.dnr != 0 || (g_opts.bdev_retry_count != -1 &&
1050 				     bio->retry_count >= g_opts.bdev_retry_count)) {
1051 		goto complete;
1052 	}
1053 
1054 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1055 
1056 	assert(bio->io_path != NULL);
1057 	nvme_ctrlr = bio->io_path->qpair->ctrlr;
1058 
1059 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1060 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1061 	    !nvme_io_path_is_available(bio->io_path) ||
1062 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1063 		nbdev_ch->current_io_path = NULL;
1064 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1065 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1066 				bio->io_path->nvme_ns->ana_state_updating = true;
1067 			}
1068 		}
1069 		delay_ms = 0;
1070 	} else if (spdk_nvme_cpl_is_aborted_by_request(cpl)) {
1071 		goto complete;
1072 	} else {
1073 		bio->retry_count++;
1074 
1075 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1076 
1077 		if (cpl->status.crd != 0) {
1078 			delay_ms = cdata->crdt[cpl->status.crd] * 100;
1079 		} else {
1080 			delay_ms = 0;
1081 		}
1082 	}
1083 
1084 	if (any_io_path_may_become_available(nbdev_ch)) {
1085 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1086 		return;
1087 	}
1088 
1089 complete:
1090 	bio->retry_count = 0;
1091 	spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
1092 }
1093 
1094 static inline void
1095 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1096 {
1097 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1098 	struct nvme_bdev_channel *nbdev_ch;
1099 	enum spdk_bdev_io_status io_status;
1100 
1101 	switch (rc) {
1102 	case 0:
1103 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1104 		break;
1105 	case -ENOMEM:
1106 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1107 		break;
1108 	case -ENXIO:
1109 		nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1110 
1111 		nbdev_ch->current_io_path = NULL;
1112 
1113 		if (any_io_path_may_become_available(nbdev_ch)) {
1114 			bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1115 			return;
1116 		}
1117 
1118 	/* fallthrough */
1119 	default:
1120 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1121 		break;
1122 	}
1123 
1124 	bio->retry_count = 0;
1125 	spdk_bdev_io_complete(bdev_io, io_status);
1126 }
1127 
1128 static inline void
1129 bdev_nvme_admin_passthru_complete(struct nvme_bdev_io *bio, int rc)
1130 {
1131 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1132 	struct nvme_bdev_channel *nbdev_ch;
1133 	enum spdk_bdev_io_status io_status;
1134 
1135 	switch (rc) {
1136 	case 0:
1137 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1138 		break;
1139 	case -ENOMEM:
1140 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1141 		break;
1142 	case -ENXIO:
1143 		nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1144 
1145 		if (any_ctrlr_may_become_available(nbdev_ch)) {
1146 			bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1147 			return;
1148 		}
1149 
1150 	/* fallthrough */
1151 	default:
1152 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1153 		break;
1154 	}
1155 
1156 	bio->retry_count = 0;
1157 	spdk_bdev_io_complete(bdev_io, io_status);
1158 }
1159 
1160 static void
1161 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1162 {
1163 	struct nvme_io_path *io_path;
1164 
1165 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1166 		io_path->nbdev_ch->current_io_path = NULL;
1167 	}
1168 }
1169 
1170 static void
1171 bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i)
1172 {
1173 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1174 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1175 
1176 	assert(ctrlr_ch->qpair != NULL);
1177 
1178 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1179 
1180 	spdk_for_each_channel_continue(i, 0);
1181 }
1182 
1183 static void
1184 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr,
1185 			       spdk_channel_for_each_cpl cpl)
1186 {
1187 	spdk_for_each_channel(nvme_ctrlr,
1188 			      bdev_nvme_clear_io_path_cache,
1189 			      NULL,
1190 			      cpl);
1191 }
1192 
1193 static struct nvme_qpair *
1194 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1195 {
1196 	struct nvme_qpair *nvme_qpair;
1197 
1198 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1199 		if (nvme_qpair->qpair == qpair) {
1200 			break;
1201 		}
1202 	}
1203 
1204 	return nvme_qpair;
1205 }
1206 
1207 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1208 
1209 static void
1210 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1211 {
1212 	struct nvme_poll_group *group = poll_group_ctx;
1213 	struct nvme_qpair *nvme_qpair;
1214 	struct nvme_ctrlr_channel *ctrlr_ch;
1215 
1216 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1217 	if (nvme_qpair == NULL) {
1218 		return;
1219 	}
1220 
1221 	if (nvme_qpair->qpair != NULL) {
1222 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1223 		nvme_qpair->qpair = NULL;
1224 	}
1225 
1226 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1227 
1228 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1229 
1230 	if (ctrlr_ch != NULL) {
1231 		if (ctrlr_ch->reset_iter != NULL) {
1232 			/* If we are already in a full reset sequence, we do not have
1233 			 * to restart it. Just move to the next ctrlr_channel.
1234 			 */
1235 			SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1236 				      qpair);
1237 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
1238 			ctrlr_ch->reset_iter = NULL;
1239 		} else {
1240 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1241 			SPDK_NOTICELOG("qpair %p was disconnected and freed. reset controller.\n", qpair);
1242 			bdev_nvme_failover(nvme_qpair->ctrlr, false);
1243 		}
1244 	} else {
1245 		/* In this case, ctrlr_channel is already deleted. */
1246 		SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed. delete nvme_qpair.\n", qpair);
1247 		nvme_qpair_delete(nvme_qpair);
1248 	}
1249 }
1250 
1251 static void
1252 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1253 {
1254 	struct nvme_qpair *nvme_qpair;
1255 
1256 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1257 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1258 			continue;
1259 		}
1260 
1261 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1262 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1263 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1264 		}
1265 	}
1266 }
1267 
1268 static int
1269 bdev_nvme_poll(void *arg)
1270 {
1271 	struct nvme_poll_group *group = arg;
1272 	int64_t num_completions;
1273 
1274 	if (group->collect_spin_stat && group->start_ticks == 0) {
1275 		group->start_ticks = spdk_get_ticks();
1276 	}
1277 
1278 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1279 			  bdev_nvme_disconnected_qpair_cb);
1280 	if (group->collect_spin_stat) {
1281 		if (num_completions > 0) {
1282 			if (group->end_ticks != 0) {
1283 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1284 				group->end_ticks = 0;
1285 			}
1286 			group->start_ticks = 0;
1287 		} else {
1288 			group->end_ticks = spdk_get_ticks();
1289 		}
1290 	}
1291 
1292 	if (spdk_unlikely(num_completions < 0)) {
1293 		bdev_nvme_check_io_qpairs(group);
1294 	}
1295 
1296 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1297 }
1298 
1299 static int
1300 bdev_nvme_poll_adminq(void *arg)
1301 {
1302 	int32_t rc;
1303 	struct nvme_ctrlr *nvme_ctrlr = arg;
1304 	nvme_ctrlr_disconnected_cb disconnected_cb;
1305 
1306 	assert(nvme_ctrlr != NULL);
1307 
1308 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1309 	if (rc < 0) {
1310 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1311 		nvme_ctrlr->disconnected_cb = NULL;
1312 
1313 		if (rc == -ENXIO && disconnected_cb != NULL) {
1314 			disconnected_cb(nvme_ctrlr);
1315 		} else {
1316 			bdev_nvme_failover(nvme_ctrlr, false);
1317 		}
1318 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1319 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1320 		bdev_nvme_clear_io_path_caches(nvme_ctrlr, NULL);
1321 	}
1322 
1323 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1324 }
1325 
1326 static void
1327 _bdev_nvme_unregister_dev_cb(void *io_device)
1328 {
1329 	struct nvme_bdev *nvme_disk = io_device;
1330 
1331 	free(nvme_disk->disk.name);
1332 	free(nvme_disk);
1333 }
1334 
1335 static int
1336 bdev_nvme_destruct(void *ctx)
1337 {
1338 	struct nvme_bdev *nvme_disk = ctx;
1339 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1340 
1341 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1342 
1343 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1344 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1345 
1346 		nvme_ns->bdev = NULL;
1347 
1348 		assert(nvme_ns->id > 0);
1349 
1350 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1351 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1352 
1353 			nvme_ctrlr_release(nvme_ns->ctrlr);
1354 			free(nvme_ns);
1355 		} else {
1356 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1357 		}
1358 	}
1359 
1360 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1361 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1362 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1363 
1364 	spdk_io_device_unregister(nvme_disk, _bdev_nvme_unregister_dev_cb);
1365 
1366 	return 0;
1367 }
1368 
1369 static int
1370 bdev_nvme_flush(struct nvme_bdev_io *bio, uint64_t offset, uint64_t nbytes)
1371 {
1372 	bdev_nvme_io_complete(bio, 0);
1373 
1374 	return 0;
1375 }
1376 
1377 static int
1378 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1379 {
1380 	struct nvme_ctrlr *nvme_ctrlr;
1381 	struct spdk_nvme_io_qpair_opts opts;
1382 	struct spdk_nvme_qpair *qpair;
1383 	int rc;
1384 
1385 	nvme_ctrlr = nvme_qpair->ctrlr;
1386 
1387 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1388 	opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1389 	opts.create_only = true;
1390 	opts.async_mode = true;
1391 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1392 	g_opts.io_queue_requests = opts.io_queue_requests;
1393 
1394 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1395 	if (qpair == NULL) {
1396 		return -1;
1397 	}
1398 
1399 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1400 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1401 
1402 	assert(nvme_qpair->group != NULL);
1403 
1404 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1405 	if (rc != 0) {
1406 		SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
1407 		goto err;
1408 	}
1409 
1410 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1411 	if (rc != 0) {
1412 		SPDK_ERRLOG("Unable to connect I/O qpair.\n");
1413 		goto err;
1414 	}
1415 
1416 	nvme_qpair->qpair = qpair;
1417 
1418 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1419 
1420 	return 0;
1421 
1422 err:
1423 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1424 
1425 	return rc;
1426 }
1427 
1428 static void
1429 bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
1430 {
1431 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1432 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1433 	enum spdk_bdev_io_status status = SPDK_BDEV_IO_STATUS_SUCCESS;
1434 	struct spdk_bdev_io *bdev_io;
1435 
1436 	if (spdk_io_channel_iter_get_ctx(i) != NULL) {
1437 		status = SPDK_BDEV_IO_STATUS_FAILED;
1438 	}
1439 
1440 	while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
1441 		bdev_io = TAILQ_FIRST(&ctrlr_ch->pending_resets);
1442 		TAILQ_REMOVE(&ctrlr_ch->pending_resets, bdev_io, module_link);
1443 		spdk_bdev_io_complete(bdev_io, status);
1444 	}
1445 
1446 	spdk_for_each_channel_continue(i, 0);
1447 }
1448 
1449 static void
1450 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove)
1451 {
1452 	struct nvme_path_id *path_id, *next_path;
1453 	int rc __attribute__((unused));
1454 
1455 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1456 	assert(path_id);
1457 	assert(path_id == nvme_ctrlr->active_path_id);
1458 	next_path = TAILQ_NEXT(path_id, link);
1459 
1460 	path_id->is_failed = true;
1461 
1462 	if (next_path) {
1463 		assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
1464 
1465 		SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr,
1466 			       path_id->trid.trsvcid,	next_path->trid.traddr, next_path->trid.trsvcid);
1467 
1468 		spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
1469 		nvme_ctrlr->active_path_id = next_path;
1470 		rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
1471 		assert(rc == 0);
1472 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
1473 		if (!remove) {
1474 			/** Shuffle the old trid to the end of the list and use the new one.
1475 			 * Allows for round robin through multiple connections.
1476 			 */
1477 			TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
1478 		} else {
1479 			free(path_id);
1480 		}
1481 	}
1482 }
1483 
1484 static bool
1485 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
1486 {
1487 	int32_t elapsed;
1488 
1489 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
1490 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
1491 		return false;
1492 	}
1493 
1494 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1495 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
1496 		return true;
1497 	} else {
1498 		return false;
1499 	}
1500 }
1501 
1502 static bool
1503 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
1504 {
1505 	uint32_t elapsed;
1506 
1507 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
1508 		return false;
1509 	}
1510 
1511 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1512 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
1513 		return true;
1514 	} else {
1515 		return false;
1516 	}
1517 }
1518 
1519 static void
1520 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
1521 {
1522 	int rc __attribute__((unused));
1523 
1524 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
1525 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
1526 	 */
1527 	assert(nvme_ctrlr->disconnected_cb == NULL);
1528 	nvme_ctrlr->disconnected_cb = cb_fn;
1529 
1530 	/* Disconnect fails if ctrlr is already resetting or removed. Both cases are
1531 	 * not possible. Reset is controlled and the callback to hot remove is called
1532 	 * when ctrlr is hot removed.
1533 	 */
1534 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
1535 	assert(rc == 0);
1536 }
1537 
1538 enum bdev_nvme_op_after_reset {
1539 	OP_NONE,
1540 	OP_COMPLETE_PENDING_DESTRUCT,
1541 	OP_DESTRUCT,
1542 	OP_DELAYED_RECONNECT,
1543 };
1544 
1545 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
1546 
1547 static _bdev_nvme_op_after_reset
1548 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
1549 {
1550 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1551 		/* Complete pending destruct after reset completes. */
1552 		return OP_COMPLETE_PENDING_DESTRUCT;
1553 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1554 		nvme_ctrlr->reset_start_tsc = 0;
1555 		return OP_NONE;
1556 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1557 		return OP_DESTRUCT;
1558 	} else {
1559 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
1560 			nvme_ctrlr->fast_io_fail_timedout = true;
1561 		}
1562 		bdev_nvme_failover_trid(nvme_ctrlr, false);
1563 		return OP_DELAYED_RECONNECT;
1564 	}
1565 }
1566 
1567 static int _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
1568 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
1569 
1570 static int
1571 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
1572 {
1573 	struct nvme_ctrlr *nvme_ctrlr = ctx;
1574 
1575 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1576 
1577 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
1578 
1579 	assert(nvme_ctrlr->reconnect_is_delayed == true);
1580 	nvme_ctrlr->reconnect_is_delayed = false;
1581 
1582 	if (nvme_ctrlr->destruct) {
1583 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1584 		return SPDK_POLLER_BUSY;
1585 	}
1586 
1587 	assert(nvme_ctrlr->resetting == false);
1588 	nvme_ctrlr->resetting = true;
1589 
1590 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1591 
1592 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
1593 
1594 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
1595 	return SPDK_POLLER_BUSY;
1596 }
1597 
1598 static void
1599 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
1600 {
1601 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
1602 
1603 	assert(nvme_ctrlr->reconnect_is_delayed == false);
1604 	nvme_ctrlr->reconnect_is_delayed = true;
1605 
1606 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
1607 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
1608 					    nvme_ctrlr,
1609 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
1610 }
1611 
1612 static void
1613 _bdev_nvme_reset_complete(struct spdk_io_channel_iter *i, int status)
1614 {
1615 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1616 	bool success = spdk_io_channel_iter_get_ctx(i) == NULL;
1617 	struct nvme_path_id *path_id;
1618 	bdev_nvme_reset_cb reset_cb_fn = nvme_ctrlr->reset_cb_fn;
1619 	void *reset_cb_arg = nvme_ctrlr->reset_cb_arg;
1620 	enum bdev_nvme_op_after_reset op_after_reset;
1621 
1622 	assert(nvme_ctrlr->thread == spdk_get_thread());
1623 
1624 	nvme_ctrlr->reset_cb_fn = NULL;
1625 	nvme_ctrlr->reset_cb_arg = NULL;
1626 
1627 	if (!success) {
1628 		SPDK_ERRLOG("Resetting controller failed.\n");
1629 	} else {
1630 		SPDK_NOTICELOG("Resetting controller successful.\n");
1631 	}
1632 
1633 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1634 	nvme_ctrlr->resetting = false;
1635 
1636 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1637 	assert(path_id != NULL);
1638 	assert(path_id == nvme_ctrlr->active_path_id);
1639 
1640 	path_id->is_failed = !success;
1641 
1642 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
1643 
1644 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1645 
1646 	if (reset_cb_fn) {
1647 		reset_cb_fn(reset_cb_arg, success);
1648 	}
1649 
1650 	switch (op_after_reset) {
1651 	case OP_COMPLETE_PENDING_DESTRUCT:
1652 		nvme_ctrlr_unregister(nvme_ctrlr);
1653 		break;
1654 	case OP_DESTRUCT:
1655 		_bdev_nvme_delete(nvme_ctrlr, false);
1656 		break;
1657 	case OP_DELAYED_RECONNECT:
1658 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
1659 		break;
1660 	default:
1661 		break;
1662 	}
1663 }
1664 
1665 static void
1666 bdev_nvme_reset_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
1667 {
1668 	/* Make sure we clear any pending resets before returning. */
1669 	spdk_for_each_channel(nvme_ctrlr,
1670 			      bdev_nvme_complete_pending_resets,
1671 			      success ? NULL : (void *)0x1,
1672 			      _bdev_nvme_reset_complete);
1673 }
1674 
1675 static void
1676 bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status)
1677 {
1678 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1679 
1680 	bdev_nvme_reset_complete(nvme_ctrlr, false);
1681 }
1682 
1683 static void
1684 bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
1685 {
1686 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
1687 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
1688 	struct nvme_qpair *nvme_qpair;
1689 
1690 	nvme_qpair = ctrlr_ch->qpair;
1691 	assert(nvme_qpair != NULL);
1692 
1693 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1694 
1695 	if (nvme_qpair->qpair != NULL) {
1696 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
1697 
1698 		/* The current full reset sequence will move to the next
1699 		 * ctrlr_channel after the qpair is actually disconnected.
1700 		 */
1701 		assert(ctrlr_ch->reset_iter == NULL);
1702 		ctrlr_ch->reset_iter = i;
1703 	} else {
1704 		spdk_for_each_channel_continue(i, 0);
1705 	}
1706 }
1707 
1708 static void
1709 bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
1710 {
1711 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1712 
1713 	if (status == 0) {
1714 		bdev_nvme_reset_complete(nvme_ctrlr, true);
1715 	} else {
1716 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
1717 		spdk_for_each_channel(nvme_ctrlr,
1718 				      bdev_nvme_reset_destroy_qpair,
1719 				      NULL,
1720 				      bdev_nvme_reset_create_qpairs_failed);
1721 	}
1722 }
1723 
1724 static void
1725 bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
1726 {
1727 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1728 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1729 	int rc;
1730 
1731 	rc = bdev_nvme_create_qpair(ctrlr_ch->qpair);
1732 
1733 	spdk_for_each_channel_continue(i, rc);
1734 }
1735 
1736 static int
1737 bdev_nvme_reconnect_ctrlr_poll(void *arg)
1738 {
1739 	struct nvme_ctrlr *nvme_ctrlr = arg;
1740 	int rc = -ETIMEDOUT;
1741 
1742 	if (!bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1743 		rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
1744 		if (rc == -EAGAIN) {
1745 			return SPDK_POLLER_BUSY;
1746 		}
1747 	}
1748 
1749 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
1750 	if (rc == 0) {
1751 		/* Recreate all of the I/O queue pairs */
1752 		spdk_for_each_channel(nvme_ctrlr,
1753 				      bdev_nvme_reset_create_qpair,
1754 				      NULL,
1755 				      bdev_nvme_reset_create_qpairs_done);
1756 	} else {
1757 		bdev_nvme_reset_complete(nvme_ctrlr, false);
1758 	}
1759 	return SPDK_POLLER_BUSY;
1760 }
1761 
1762 static void
1763 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
1764 {
1765 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
1766 
1767 	assert(nvme_ctrlr->reset_detach_poller == NULL);
1768 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
1769 					  nvme_ctrlr, 0);
1770 }
1771 
1772 static void
1773 bdev_nvme_reset_ctrlr(struct spdk_io_channel_iter *i, int status)
1774 {
1775 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1776 
1777 	assert(status == 0);
1778 
1779 	nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
1780 }
1781 
1782 static void
1783 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
1784 {
1785 	spdk_for_each_channel(nvme_ctrlr,
1786 			      bdev_nvme_reset_destroy_qpair,
1787 			      NULL,
1788 			      bdev_nvme_reset_ctrlr);
1789 }
1790 
1791 static void
1792 _bdev_nvme_reset(void *ctx)
1793 {
1794 	struct nvme_ctrlr *nvme_ctrlr = ctx;
1795 
1796 	assert(nvme_ctrlr->resetting == true);
1797 	assert(nvme_ctrlr->thread == spdk_get_thread());
1798 
1799 	spdk_nvme_ctrlr_prepare_for_reset(nvme_ctrlr->ctrlr);
1800 
1801 	/* First, delete all NVMe I/O queue pairs. */
1802 	bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
1803 }
1804 
1805 static int
1806 bdev_nvme_reset(struct nvme_ctrlr *nvme_ctrlr)
1807 {
1808 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1809 	if (nvme_ctrlr->destruct) {
1810 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1811 		return -ENXIO;
1812 	}
1813 
1814 	if (nvme_ctrlr->resetting) {
1815 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1816 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
1817 		return -EBUSY;
1818 	}
1819 
1820 	if (nvme_ctrlr->reconnect_is_delayed) {
1821 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1822 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
1823 		return -EBUSY;
1824 	}
1825 
1826 	nvme_ctrlr->resetting = true;
1827 
1828 	assert(nvme_ctrlr->reset_start_tsc == 0);
1829 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
1830 
1831 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1832 
1833 	spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset, nvme_ctrlr);
1834 	return 0;
1835 }
1836 
1837 int
1838 bdev_nvme_reset_rpc(struct nvme_ctrlr *nvme_ctrlr, bdev_nvme_reset_cb cb_fn, void *cb_arg)
1839 {
1840 	int rc;
1841 
1842 	rc = bdev_nvme_reset(nvme_ctrlr);
1843 	if (rc == 0) {
1844 		nvme_ctrlr->reset_cb_fn = cb_fn;
1845 		nvme_ctrlr->reset_cb_arg = cb_arg;
1846 	}
1847 	return rc;
1848 }
1849 
1850 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
1851 
1852 static void
1853 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
1854 {
1855 	enum spdk_bdev_io_status io_status;
1856 
1857 	if (bio->cpl.cdw0 == 0) {
1858 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1859 	} else {
1860 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1861 	}
1862 
1863 	spdk_bdev_io_complete(spdk_bdev_io_from_ctx(bio), io_status);
1864 }
1865 
1866 static void
1867 _bdev_nvme_reset_io_continue(void *ctx)
1868 {
1869 	struct nvme_bdev_io *bio = ctx;
1870 	struct nvme_io_path *prev_io_path, *next_io_path;
1871 	int rc;
1872 
1873 	prev_io_path = bio->io_path;
1874 	bio->io_path = NULL;
1875 
1876 	if (bio->cpl.cdw0 != 0) {
1877 		goto complete;
1878 	}
1879 
1880 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
1881 	if (next_io_path == NULL) {
1882 		goto complete;
1883 	}
1884 
1885 	rc = _bdev_nvme_reset_io(next_io_path, bio);
1886 	if (rc == 0) {
1887 		return;
1888 	}
1889 
1890 	bio->cpl.cdw0 = 1;
1891 
1892 complete:
1893 	bdev_nvme_reset_io_complete(bio);
1894 }
1895 
1896 static void
1897 bdev_nvme_reset_io_continue(void *cb_arg, bool success)
1898 {
1899 	struct nvme_bdev_io *bio = cb_arg;
1900 
1901 	bio->cpl.cdw0 = !success;
1902 
1903 	spdk_thread_send_msg(bio->orig_thread, _bdev_nvme_reset_io_continue, bio);
1904 }
1905 
1906 static int
1907 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
1908 {
1909 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1910 	struct nvme_ctrlr_channel *ctrlr_ch;
1911 	struct spdk_bdev_io *bdev_io;
1912 	int rc;
1913 
1914 	rc = bdev_nvme_reset(nvme_ctrlr);
1915 	if (rc == 0) {
1916 		assert(bio->io_path == NULL);
1917 		bio->io_path = io_path;
1918 
1919 		assert(nvme_ctrlr->reset_cb_fn == NULL);
1920 		assert(nvme_ctrlr->reset_cb_arg == NULL);
1921 		nvme_ctrlr->reset_cb_fn = bdev_nvme_reset_io_continue;
1922 		nvme_ctrlr->reset_cb_arg = bio;
1923 	} else if (rc == -EBUSY) {
1924 		ctrlr_ch = io_path->qpair->ctrlr_ch;
1925 		assert(ctrlr_ch != NULL);
1926 		/*
1927 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
1928 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
1929 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
1930 		 */
1931 		bdev_io = spdk_bdev_io_from_ctx(bio);
1932 		TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bdev_io, module_link);
1933 	} else {
1934 		return rc;
1935 	}
1936 
1937 	return 0;
1938 }
1939 
1940 static void
1941 bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio)
1942 {
1943 	struct nvme_io_path *io_path;
1944 	int rc;
1945 
1946 	bio->cpl.cdw0 = 0;
1947 	bio->orig_thread = spdk_get_thread();
1948 
1949 	/* Reset only the first nvme_ctrlr in the nvme_bdev_ctrlr for now.
1950 	 *
1951 	 * TODO: Reset all nvme_ctrlrs in the nvme_bdev_ctrlr sequentially.
1952 	 * This will be done in the following patches.
1953 	 */
1954 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
1955 	assert(io_path != NULL);
1956 
1957 	rc = _bdev_nvme_reset_io(io_path, bio);
1958 	if (rc != 0) {
1959 		bio->cpl.cdw0 = 1;
1960 		bdev_nvme_reset_io_complete(bio);
1961 	}
1962 }
1963 
1964 static int
1965 bdev_nvme_failover(struct nvme_ctrlr *nvme_ctrlr, bool remove)
1966 {
1967 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1968 	if (nvme_ctrlr->destruct) {
1969 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1970 		/* Don't bother resetting if the controller is in the process of being destructed. */
1971 		return -ENXIO;
1972 	}
1973 
1974 	if (nvme_ctrlr->resetting) {
1975 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1976 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
1977 		return -EBUSY;
1978 	}
1979 
1980 	bdev_nvme_failover_trid(nvme_ctrlr, remove);
1981 
1982 	if (nvme_ctrlr->reconnect_is_delayed) {
1983 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1984 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
1985 
1986 		/* We rely on the next reconnect for the failover. */
1987 		return 0;
1988 	}
1989 
1990 	nvme_ctrlr->resetting = true;
1991 
1992 	assert(nvme_ctrlr->reset_start_tsc == 0);
1993 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
1994 
1995 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1996 
1997 	spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset, nvme_ctrlr);
1998 	return 0;
1999 }
2000 
2001 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2002 			   uint64_t num_blocks);
2003 
2004 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2005 				  uint64_t num_blocks);
2006 
2007 static void
2008 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
2009 		     bool success)
2010 {
2011 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2012 	struct spdk_bdev *bdev = bdev_io->bdev;
2013 	int ret;
2014 
2015 	if (!success) {
2016 		ret = -EINVAL;
2017 		goto exit;
2018 	}
2019 
2020 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
2021 		ret = -ENXIO;
2022 		goto exit;
2023 	}
2024 
2025 	ret = bdev_nvme_readv(bio,
2026 			      bdev_io->u.bdev.iovs,
2027 			      bdev_io->u.bdev.iovcnt,
2028 			      bdev_io->u.bdev.md_buf,
2029 			      bdev_io->u.bdev.num_blocks,
2030 			      bdev_io->u.bdev.offset_blocks,
2031 			      bdev->dif_check_flags,
2032 			      bdev_io->u.bdev.ext_opts);
2033 
2034 exit:
2035 	if (spdk_unlikely(ret != 0)) {
2036 		bdev_nvme_io_complete(bio, ret);
2037 	}
2038 }
2039 
2040 static void
2041 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
2042 {
2043 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
2044 	struct spdk_bdev *bdev = bdev_io->bdev;
2045 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2046 	struct nvme_bdev_io *nbdev_io_to_abort;
2047 	int rc = 0;
2048 
2049 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
2050 	if (spdk_unlikely(!nbdev_io->io_path)) {
2051 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
2052 			rc = -ENXIO;
2053 			goto exit;
2054 		}
2055 
2056 		/* Admin commands do not use the optimal I/O path.
2057 		 * Simply fall through even if it is not found.
2058 		 */
2059 	}
2060 
2061 	switch (bdev_io->type) {
2062 	case SPDK_BDEV_IO_TYPE_READ:
2063 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
2064 			rc = bdev_nvme_readv(nbdev_io,
2065 					     bdev_io->u.bdev.iovs,
2066 					     bdev_io->u.bdev.iovcnt,
2067 					     bdev_io->u.bdev.md_buf,
2068 					     bdev_io->u.bdev.num_blocks,
2069 					     bdev_io->u.bdev.offset_blocks,
2070 					     bdev->dif_check_flags,
2071 					     bdev_io->u.bdev.ext_opts);
2072 		} else {
2073 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
2074 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
2075 			rc = 0;
2076 		}
2077 		break;
2078 	case SPDK_BDEV_IO_TYPE_WRITE:
2079 		rc = bdev_nvme_writev(nbdev_io,
2080 				      bdev_io->u.bdev.iovs,
2081 				      bdev_io->u.bdev.iovcnt,
2082 				      bdev_io->u.bdev.md_buf,
2083 				      bdev_io->u.bdev.num_blocks,
2084 				      bdev_io->u.bdev.offset_blocks,
2085 				      bdev->dif_check_flags,
2086 				      bdev_io->u.bdev.ext_opts);
2087 		break;
2088 	case SPDK_BDEV_IO_TYPE_COMPARE:
2089 		rc = bdev_nvme_comparev(nbdev_io,
2090 					bdev_io->u.bdev.iovs,
2091 					bdev_io->u.bdev.iovcnt,
2092 					bdev_io->u.bdev.md_buf,
2093 					bdev_io->u.bdev.num_blocks,
2094 					bdev_io->u.bdev.offset_blocks,
2095 					bdev->dif_check_flags);
2096 		break;
2097 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
2098 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
2099 						   bdev_io->u.bdev.iovs,
2100 						   bdev_io->u.bdev.iovcnt,
2101 						   bdev_io->u.bdev.fused_iovs,
2102 						   bdev_io->u.bdev.fused_iovcnt,
2103 						   bdev_io->u.bdev.md_buf,
2104 						   bdev_io->u.bdev.num_blocks,
2105 						   bdev_io->u.bdev.offset_blocks,
2106 						   bdev->dif_check_flags);
2107 		break;
2108 	case SPDK_BDEV_IO_TYPE_UNMAP:
2109 		rc = bdev_nvme_unmap(nbdev_io,
2110 				     bdev_io->u.bdev.offset_blocks,
2111 				     bdev_io->u.bdev.num_blocks);
2112 		break;
2113 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
2114 		rc =  bdev_nvme_write_zeroes(nbdev_io,
2115 					     bdev_io->u.bdev.offset_blocks,
2116 					     bdev_io->u.bdev.num_blocks);
2117 		break;
2118 	case SPDK_BDEV_IO_TYPE_RESET:
2119 		nbdev_io->io_path = NULL;
2120 		bdev_nvme_reset_io(nbdev_ch, nbdev_io);
2121 		break;
2122 	case SPDK_BDEV_IO_TYPE_FLUSH:
2123 		rc = bdev_nvme_flush(nbdev_io,
2124 				     bdev_io->u.bdev.offset_blocks,
2125 				     bdev_io->u.bdev.num_blocks);
2126 		break;
2127 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
2128 		rc = bdev_nvme_zone_appendv(nbdev_io,
2129 					    bdev_io->u.bdev.iovs,
2130 					    bdev_io->u.bdev.iovcnt,
2131 					    bdev_io->u.bdev.md_buf,
2132 					    bdev_io->u.bdev.num_blocks,
2133 					    bdev_io->u.bdev.offset_blocks,
2134 					    bdev->dif_check_flags);
2135 		break;
2136 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
2137 		rc = bdev_nvme_get_zone_info(nbdev_io,
2138 					     bdev_io->u.zone_mgmt.zone_id,
2139 					     bdev_io->u.zone_mgmt.num_zones,
2140 					     bdev_io->u.zone_mgmt.buf);
2141 		break;
2142 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
2143 		rc = bdev_nvme_zone_management(nbdev_io,
2144 					       bdev_io->u.zone_mgmt.zone_id,
2145 					       bdev_io->u.zone_mgmt.zone_action);
2146 		break;
2147 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
2148 		nbdev_io->io_path = NULL;
2149 		bdev_nvme_admin_passthru(nbdev_ch,
2150 					 nbdev_io,
2151 					 &bdev_io->u.nvme_passthru.cmd,
2152 					 bdev_io->u.nvme_passthru.buf,
2153 					 bdev_io->u.nvme_passthru.nbytes);
2154 		break;
2155 	case SPDK_BDEV_IO_TYPE_NVME_IO:
2156 		rc = bdev_nvme_io_passthru(nbdev_io,
2157 					   &bdev_io->u.nvme_passthru.cmd,
2158 					   bdev_io->u.nvme_passthru.buf,
2159 					   bdev_io->u.nvme_passthru.nbytes);
2160 		break;
2161 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
2162 		rc = bdev_nvme_io_passthru_md(nbdev_io,
2163 					      &bdev_io->u.nvme_passthru.cmd,
2164 					      bdev_io->u.nvme_passthru.buf,
2165 					      bdev_io->u.nvme_passthru.nbytes,
2166 					      bdev_io->u.nvme_passthru.md_buf,
2167 					      bdev_io->u.nvme_passthru.md_len);
2168 		break;
2169 	case SPDK_BDEV_IO_TYPE_ABORT:
2170 		nbdev_io->io_path = NULL;
2171 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
2172 		bdev_nvme_abort(nbdev_ch,
2173 				nbdev_io,
2174 				nbdev_io_to_abort);
2175 		break;
2176 	default:
2177 		rc = -EINVAL;
2178 		break;
2179 	}
2180 
2181 exit:
2182 	if (spdk_unlikely(rc != 0)) {
2183 		bdev_nvme_io_complete(nbdev_io, rc);
2184 	}
2185 }
2186 
2187 static bool
2188 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
2189 {
2190 	struct nvme_bdev *nbdev = ctx;
2191 	struct nvme_ns *nvme_ns;
2192 	struct spdk_nvme_ns *ns;
2193 	struct spdk_nvme_ctrlr *ctrlr;
2194 	const struct spdk_nvme_ctrlr_data *cdata;
2195 
2196 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
2197 	assert(nvme_ns != NULL);
2198 	ns = nvme_ns->ns;
2199 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
2200 
2201 	switch (io_type) {
2202 	case SPDK_BDEV_IO_TYPE_READ:
2203 	case SPDK_BDEV_IO_TYPE_WRITE:
2204 	case SPDK_BDEV_IO_TYPE_RESET:
2205 	case SPDK_BDEV_IO_TYPE_FLUSH:
2206 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
2207 	case SPDK_BDEV_IO_TYPE_NVME_IO:
2208 	case SPDK_BDEV_IO_TYPE_ABORT:
2209 		return true;
2210 
2211 	case SPDK_BDEV_IO_TYPE_COMPARE:
2212 		return spdk_nvme_ns_supports_compare(ns);
2213 
2214 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
2215 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
2216 
2217 	case SPDK_BDEV_IO_TYPE_UNMAP:
2218 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2219 		return cdata->oncs.dsm;
2220 
2221 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
2222 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2223 		return cdata->oncs.write_zeroes;
2224 
2225 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
2226 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
2227 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
2228 			return true;
2229 		}
2230 		return false;
2231 
2232 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
2233 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
2234 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
2235 
2236 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
2237 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
2238 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
2239 
2240 	default:
2241 		return false;
2242 	}
2243 }
2244 
2245 static int
2246 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
2247 {
2248 	struct nvme_qpair *nvme_qpair;
2249 	struct spdk_io_channel *pg_ch;
2250 	int rc;
2251 
2252 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
2253 	if (!nvme_qpair) {
2254 		SPDK_ERRLOG("Failed to alloc nvme_qpair.\n");
2255 		return -1;
2256 	}
2257 
2258 	TAILQ_INIT(&nvme_qpair->io_path_list);
2259 
2260 	nvme_qpair->ctrlr = nvme_ctrlr;
2261 	nvme_qpair->ctrlr_ch = ctrlr_ch;
2262 
2263 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
2264 	if (!pg_ch) {
2265 		free(nvme_qpair);
2266 		return -1;
2267 	}
2268 
2269 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
2270 
2271 #ifdef SPDK_CONFIG_VTUNE
2272 	nvme_qpair->group->collect_spin_stat = true;
2273 #else
2274 	nvme_qpair->group->collect_spin_stat = false;
2275 #endif
2276 
2277 	rc = bdev_nvme_create_qpair(nvme_qpair);
2278 	if (rc != 0) {
2279 		/* nvme_ctrlr can't create IO qpair if connection is down. If nvme_ctrlr is
2280 		 * being reset or scheduled to reconnect later, ignore this failure.
2281 		 * Then IO qpair will be created later when reconnect completes.
2282 		 * If the user submits IO requests in the meantime, they will be queued and
2283 		 * resubmitted later */
2284 		if (!nvme_ctrlr->resetting && !nvme_ctrlr->reconnect_is_delayed) {
2285 			spdk_put_io_channel(pg_ch);
2286 			free(nvme_qpair);
2287 			return rc;
2288 		}
2289 	}
2290 
2291 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
2292 
2293 	ctrlr_ch->qpair = nvme_qpair;
2294 
2295 	pthread_mutex_lock(&nvme_qpair->ctrlr->mutex);
2296 	nvme_qpair->ctrlr->ref++;
2297 	pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex);
2298 
2299 	return 0;
2300 }
2301 
2302 static int
2303 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
2304 {
2305 	struct nvme_ctrlr *nvme_ctrlr = io_device;
2306 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
2307 
2308 	TAILQ_INIT(&ctrlr_ch->pending_resets);
2309 
2310 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
2311 }
2312 
2313 static void
2314 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
2315 {
2316 	assert(nvme_qpair->group != NULL);
2317 
2318 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
2319 
2320 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
2321 
2322 	nvme_ctrlr_release(nvme_qpair->ctrlr);
2323 
2324 	free(nvme_qpair);
2325 }
2326 
2327 static void
2328 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
2329 {
2330 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
2331 	struct nvme_qpair *nvme_qpair;
2332 
2333 	nvme_qpair = ctrlr_ch->qpair;
2334 	assert(nvme_qpair != NULL);
2335 
2336 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2337 
2338 	if (nvme_qpair->qpair != NULL) {
2339 		if (ctrlr_ch->reset_iter == NULL) {
2340 			spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
2341 		} else {
2342 			/* Skip current ctrlr_channel in a full reset sequence because
2343 			 * it is being deleted now. The qpair is already being disconnected.
2344 			 * We do not have to restart disconnecting it.
2345 			 */
2346 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2347 		}
2348 
2349 		/* We cannot release a reference to the poll group now.
2350 		 * The qpair may be disconnected asynchronously later.
2351 		 * We need to poll it until it is actually disconnected.
2352 		 * Just detach the qpair from the deleting ctrlr_channel.
2353 		 */
2354 		nvme_qpair->ctrlr_ch = NULL;
2355 	} else {
2356 		assert(ctrlr_ch->reset_iter == NULL);
2357 
2358 		nvme_qpair_delete(nvme_qpair);
2359 	}
2360 }
2361 
2362 static void
2363 bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
2364 			      uint32_t iov_cnt, uint32_t seed,
2365 			      spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
2366 {
2367 	struct nvme_poll_group *group = ctx;
2368 	int rc;
2369 
2370 	assert(group->accel_channel != NULL);
2371 	assert(cb_fn != NULL);
2372 
2373 	rc = spdk_accel_submit_crc32cv(group->accel_channel, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
2374 	if (rc) {
2375 		/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
2376 		if (rc == -ENOMEM || rc == -EINVAL) {
2377 			cb_fn(cb_arg, rc);
2378 		}
2379 		SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
2380 	}
2381 }
2382 
2383 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
2384 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
2385 	.submit_accel_crc32c	= bdev_nvme_submit_accel_crc32c,
2386 };
2387 
2388 static int
2389 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
2390 {
2391 	struct nvme_poll_group *group = ctx_buf;
2392 
2393 	TAILQ_INIT(&group->qpair_list);
2394 
2395 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
2396 	if (group->group == NULL) {
2397 		return -1;
2398 	}
2399 
2400 	group->accel_channel = spdk_accel_engine_get_io_channel();
2401 	if (!group->accel_channel) {
2402 		spdk_nvme_poll_group_destroy(group->group);
2403 		SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
2404 			    group);
2405 		return -1;
2406 	}
2407 
2408 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
2409 
2410 	if (group->poller == NULL) {
2411 		spdk_put_io_channel(group->accel_channel);
2412 		spdk_nvme_poll_group_destroy(group->group);
2413 		return -1;
2414 	}
2415 
2416 	return 0;
2417 }
2418 
2419 static void
2420 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
2421 {
2422 	struct nvme_poll_group *group = ctx_buf;
2423 
2424 	assert(TAILQ_EMPTY(&group->qpair_list));
2425 
2426 	if (group->accel_channel) {
2427 		spdk_put_io_channel(group->accel_channel);
2428 	}
2429 
2430 	spdk_poller_unregister(&group->poller);
2431 	if (spdk_nvme_poll_group_destroy(group->group)) {
2432 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
2433 		assert(false);
2434 	}
2435 }
2436 
2437 static struct spdk_io_channel *
2438 bdev_nvme_get_io_channel(void *ctx)
2439 {
2440 	struct nvme_bdev *nvme_bdev = ctx;
2441 
2442 	return spdk_get_io_channel(nvme_bdev);
2443 }
2444 
2445 static void *
2446 bdev_nvme_get_module_ctx(void *ctx)
2447 {
2448 	struct nvme_bdev *nvme_bdev = ctx;
2449 	struct nvme_ns *nvme_ns;
2450 
2451 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
2452 		return NULL;
2453 	}
2454 
2455 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
2456 	if (!nvme_ns) {
2457 		return NULL;
2458 	}
2459 
2460 	return nvme_ns->ns;
2461 }
2462 
2463 static const char *
2464 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
2465 {
2466 	switch (ana_state) {
2467 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
2468 		return "optimized";
2469 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
2470 		return "non_optimized";
2471 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
2472 		return "inaccessible";
2473 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
2474 		return "persistent_loss";
2475 	case SPDK_NVME_ANA_CHANGE_STATE:
2476 		return "change";
2477 	default:
2478 		return NULL;
2479 	}
2480 }
2481 
2482 static int
2483 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
2484 {
2485 	struct nvme_bdev *nbdev = ctx;
2486 	struct nvme_ns *nvme_ns;
2487 
2488 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
2489 	assert(nvme_ns != NULL);
2490 
2491 	return spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, domains, array_size);
2492 }
2493 
2494 static const char *
2495 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
2496 {
2497 	if (nvme_ctrlr->destruct) {
2498 		return "deleting";
2499 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
2500 		return "failed";
2501 	} else if (nvme_ctrlr->resetting) {
2502 		return "resetting";
2503 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
2504 		return "reconnect_is_delayed";
2505 	} else {
2506 		return "enabled";
2507 	}
2508 }
2509 
2510 void
2511 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
2512 {
2513 	struct spdk_nvme_transport_id *trid;
2514 	const struct spdk_nvme_ctrlr_opts *opts;
2515 	const struct spdk_nvme_ctrlr_data *cdata;
2516 
2517 	spdk_json_write_object_begin(w);
2518 
2519 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
2520 
2521 #ifdef SPDK_CONFIG_NVME_CUSE
2522 	size_t cuse_name_size = 128;
2523 	char cuse_name[cuse_name_size];
2524 
2525 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
2526 	if (rc == 0) {
2527 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
2528 	}
2529 #endif
2530 	trid = &nvme_ctrlr->active_path_id->trid;
2531 	spdk_json_write_named_object_begin(w, "trid");
2532 	nvme_bdev_dump_trid_json(trid, w);
2533 	spdk_json_write_object_end(w);
2534 
2535 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
2536 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
2537 
2538 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
2539 	spdk_json_write_named_object_begin(w, "host");
2540 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
2541 	spdk_json_write_named_string(w, "addr", opts->src_addr);
2542 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
2543 	spdk_json_write_object_end(w);
2544 
2545 	spdk_json_write_object_end(w);
2546 }
2547 
2548 static void
2549 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
2550 			 struct nvme_ns *nvme_ns)
2551 {
2552 	struct spdk_nvme_ns *ns;
2553 	struct spdk_nvme_ctrlr *ctrlr;
2554 	const struct spdk_nvme_ctrlr_data *cdata;
2555 	const struct spdk_nvme_transport_id *trid;
2556 	union spdk_nvme_vs_register vs;
2557 	const struct spdk_nvme_ns_data *nsdata;
2558 	char buf[128];
2559 
2560 	ns = nvme_ns->ns;
2561 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
2562 
2563 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2564 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
2565 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
2566 
2567 	spdk_json_write_object_begin(w);
2568 
2569 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
2570 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
2571 	}
2572 
2573 	spdk_json_write_named_object_begin(w, "trid");
2574 
2575 	nvme_bdev_dump_trid_json(trid, w);
2576 
2577 	spdk_json_write_object_end(w);
2578 
2579 #ifdef SPDK_CONFIG_NVME_CUSE
2580 	size_t cuse_name_size = 128;
2581 	char cuse_name[cuse_name_size];
2582 
2583 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
2584 					    cuse_name, &cuse_name_size);
2585 	if (rc == 0) {
2586 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
2587 	}
2588 #endif
2589 
2590 	spdk_json_write_named_object_begin(w, "ctrlr_data");
2591 
2592 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
2593 
2594 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
2595 
2596 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
2597 	spdk_str_trim(buf);
2598 	spdk_json_write_named_string(w, "model_number", buf);
2599 
2600 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
2601 	spdk_str_trim(buf);
2602 	spdk_json_write_named_string(w, "serial_number", buf);
2603 
2604 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
2605 	spdk_str_trim(buf);
2606 	spdk_json_write_named_string(w, "firmware_revision", buf);
2607 
2608 	if (cdata->subnqn[0] != '\0') {
2609 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
2610 	}
2611 
2612 	spdk_json_write_named_object_begin(w, "oacs");
2613 
2614 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
2615 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
2616 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
2617 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
2618 
2619 	spdk_json_write_object_end(w);
2620 
2621 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
2622 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
2623 
2624 	spdk_json_write_object_end(w);
2625 
2626 	spdk_json_write_named_object_begin(w, "vs");
2627 
2628 	spdk_json_write_name(w, "nvme_version");
2629 	if (vs.bits.ter) {
2630 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
2631 	} else {
2632 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
2633 	}
2634 
2635 	spdk_json_write_object_end(w);
2636 
2637 	nsdata = spdk_nvme_ns_get_data(ns);
2638 
2639 	spdk_json_write_named_object_begin(w, "ns_data");
2640 
2641 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
2642 
2643 	if (cdata->cmic.ana_reporting) {
2644 		spdk_json_write_named_string(w, "ana_state",
2645 					     _nvme_ana_state_str(nvme_ns->ana_state));
2646 	}
2647 
2648 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
2649 
2650 	spdk_json_write_object_end(w);
2651 
2652 	if (cdata->oacs.security) {
2653 		spdk_json_write_named_object_begin(w, "security");
2654 
2655 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
2656 
2657 		spdk_json_write_object_end(w);
2658 	}
2659 
2660 	spdk_json_write_object_end(w);
2661 }
2662 
2663 static const char *
2664 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
2665 {
2666 	switch (nbdev->mp_policy) {
2667 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
2668 		return "active_passive";
2669 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
2670 		return "active_active";
2671 	default:
2672 		assert(false);
2673 		return "invalid";
2674 	}
2675 }
2676 
2677 static int
2678 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
2679 {
2680 	struct nvme_bdev *nvme_bdev = ctx;
2681 	struct nvme_ns *nvme_ns;
2682 
2683 	pthread_mutex_lock(&nvme_bdev->mutex);
2684 	spdk_json_write_named_array_begin(w, "nvme");
2685 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
2686 		nvme_namespace_info_json(w, nvme_ns);
2687 	}
2688 	spdk_json_write_array_end(w);
2689 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
2690 	pthread_mutex_unlock(&nvme_bdev->mutex);
2691 
2692 	return 0;
2693 }
2694 
2695 static void
2696 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
2697 {
2698 	/* No config per bdev needed */
2699 }
2700 
2701 static uint64_t
2702 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
2703 {
2704 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
2705 	struct nvme_io_path *io_path;
2706 	struct nvme_poll_group *group;
2707 	uint64_t spin_time = 0;
2708 
2709 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
2710 		group = io_path->qpair->group;
2711 
2712 		if (!group || !group->collect_spin_stat) {
2713 			continue;
2714 		}
2715 
2716 		if (group->end_ticks != 0) {
2717 			group->spin_ticks += (group->end_ticks - group->start_ticks);
2718 			group->end_ticks = 0;
2719 		}
2720 
2721 		spin_time += group->spin_ticks;
2722 		group->start_ticks = 0;
2723 		group->spin_ticks = 0;
2724 	}
2725 
2726 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
2727 }
2728 
2729 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
2730 	.destruct		= bdev_nvme_destruct,
2731 	.submit_request		= bdev_nvme_submit_request,
2732 	.io_type_supported	= bdev_nvme_io_type_supported,
2733 	.get_io_channel		= bdev_nvme_get_io_channel,
2734 	.dump_info_json		= bdev_nvme_dump_info_json,
2735 	.write_config_json	= bdev_nvme_write_config_json,
2736 	.get_spin_time		= bdev_nvme_get_spin_time,
2737 	.get_module_ctx		= bdev_nvme_get_module_ctx,
2738 	.get_memory_domains	= bdev_nvme_get_memory_domains,
2739 };
2740 
2741 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
2742 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
2743 
2744 static int
2745 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
2746 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
2747 {
2748 	struct spdk_nvme_ana_group_descriptor *copied_desc;
2749 	uint8_t *orig_desc;
2750 	uint32_t i, desc_size, copy_len;
2751 	int rc = 0;
2752 
2753 	if (nvme_ctrlr->ana_log_page == NULL) {
2754 		return -EINVAL;
2755 	}
2756 
2757 	copied_desc = nvme_ctrlr->copied_ana_desc;
2758 
2759 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
2760 	copy_len = nvme_ctrlr->ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
2761 
2762 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
2763 		memcpy(copied_desc, orig_desc, copy_len);
2764 
2765 		rc = cb_fn(copied_desc, cb_arg);
2766 		if (rc != 0) {
2767 			break;
2768 		}
2769 
2770 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
2771 			    copied_desc->num_of_nsid * sizeof(uint32_t);
2772 		orig_desc += desc_size;
2773 		copy_len -= desc_size;
2774 	}
2775 
2776 	return rc;
2777 }
2778 
2779 static int
2780 nvme_ns_ana_transition_timedout(void *ctx)
2781 {
2782 	struct nvme_ns *nvme_ns = ctx;
2783 
2784 	spdk_poller_unregister(&nvme_ns->anatt_timer);
2785 	nvme_ns->ana_transition_timedout = true;
2786 
2787 	return SPDK_POLLER_BUSY;
2788 }
2789 
2790 static void
2791 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
2792 		       const struct spdk_nvme_ana_group_descriptor *desc)
2793 {
2794 	const struct spdk_nvme_ctrlr_data *cdata;
2795 
2796 	nvme_ns->ana_group_id = desc->ana_group_id;
2797 	nvme_ns->ana_state = desc->ana_state;
2798 	nvme_ns->ana_state_updating = false;
2799 
2800 	switch (nvme_ns->ana_state) {
2801 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
2802 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
2803 		nvme_ns->ana_transition_timedout = false;
2804 		spdk_poller_unregister(&nvme_ns->anatt_timer);
2805 		break;
2806 
2807 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
2808 	case SPDK_NVME_ANA_CHANGE_STATE:
2809 		if (nvme_ns->anatt_timer != NULL) {
2810 			break;
2811 		}
2812 
2813 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
2814 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
2815 				       nvme_ns,
2816 				       cdata->anatt * SPDK_SEC_TO_USEC);
2817 		break;
2818 	default:
2819 		break;
2820 	}
2821 }
2822 
2823 static int
2824 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
2825 {
2826 	struct nvme_ns *nvme_ns = cb_arg;
2827 	uint32_t i;
2828 
2829 	for (i = 0; i < desc->num_of_nsid; i++) {
2830 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
2831 			continue;
2832 		}
2833 
2834 		_nvme_ns_set_ana_state(nvme_ns, desc);
2835 		return 1;
2836 	}
2837 
2838 	return 0;
2839 }
2840 
2841 static int
2842 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
2843 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
2844 		 uint32_t prchk_flags, void *ctx)
2845 {
2846 	const struct spdk_uuid		*uuid;
2847 	const uint8_t *nguid;
2848 	const struct spdk_nvme_ctrlr_data *cdata;
2849 	const struct spdk_nvme_ns_data	*nsdata;
2850 	enum spdk_nvme_csi		csi;
2851 	uint32_t atomic_bs, phys_bs, bs;
2852 
2853 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2854 	csi = spdk_nvme_ns_get_csi(ns);
2855 
2856 	switch (csi) {
2857 	case SPDK_NVME_CSI_NVM:
2858 		disk->product_name = "NVMe disk";
2859 		break;
2860 	case SPDK_NVME_CSI_ZNS:
2861 		disk->product_name = "NVMe ZNS disk";
2862 		disk->zoned = true;
2863 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
2864 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
2865 					     spdk_nvme_ns_get_extended_sector_size(ns);
2866 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
2867 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
2868 		break;
2869 	default:
2870 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
2871 		return -ENOTSUP;
2872 	}
2873 
2874 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
2875 	if (!disk->name) {
2876 		return -ENOMEM;
2877 	}
2878 
2879 	disk->write_cache = 0;
2880 	if (cdata->vwc.present) {
2881 		/* Enable if the Volatile Write Cache exists */
2882 		disk->write_cache = 1;
2883 	}
2884 	if (cdata->oncs.write_zeroes) {
2885 		disk->max_write_zeroes = UINT16_MAX + 1;
2886 	}
2887 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
2888 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
2889 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
2890 
2891 	nguid = spdk_nvme_ns_get_nguid(ns);
2892 	if (!nguid) {
2893 		uuid = spdk_nvme_ns_get_uuid(ns);
2894 		if (uuid) {
2895 			disk->uuid = *uuid;
2896 		}
2897 	} else {
2898 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
2899 	}
2900 
2901 	nsdata = spdk_nvme_ns_get_data(ns);
2902 	bs = spdk_nvme_ns_get_sector_size(ns);
2903 	atomic_bs = bs;
2904 	phys_bs = bs;
2905 	if (nsdata->nabo == 0) {
2906 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
2907 			atomic_bs = bs * (1 + nsdata->nawupf);
2908 		} else {
2909 			atomic_bs = bs * (1 + cdata->awupf);
2910 		}
2911 	}
2912 	if (nsdata->nsfeat.optperf) {
2913 		phys_bs = bs * (1 + nsdata->npwg);
2914 	}
2915 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
2916 
2917 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
2918 	if (disk->md_len != 0) {
2919 		disk->md_interleave = nsdata->flbas.extended;
2920 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
2921 		if (disk->dif_type != SPDK_DIF_DISABLE) {
2922 			disk->dif_is_head_of_md = nsdata->dps.md_start;
2923 			disk->dif_check_flags = prchk_flags;
2924 		}
2925 	}
2926 
2927 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
2928 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
2929 		disk->acwu = 0;
2930 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
2931 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
2932 	} else {
2933 		disk->acwu = cdata->acwu + 1; /* 0-based */
2934 	}
2935 
2936 	disk->ctxt = ctx;
2937 	disk->fn_table = &nvmelib_fn_table;
2938 	disk->module = &nvme_if;
2939 
2940 	return 0;
2941 }
2942 
2943 static int
2944 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
2945 {
2946 	struct nvme_bdev *bdev;
2947 	int rc;
2948 
2949 	bdev = calloc(1, sizeof(*bdev));
2950 	if (!bdev) {
2951 		SPDK_ERRLOG("bdev calloc() failed\n");
2952 		return -ENOMEM;
2953 	}
2954 
2955 	rc = pthread_mutex_init(&bdev->mutex, NULL);
2956 	if (rc != 0) {
2957 		free(bdev);
2958 		return rc;
2959 	}
2960 
2961 	bdev->ref = 1;
2962 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
2963 	TAILQ_INIT(&bdev->nvme_ns_list);
2964 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
2965 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
2966 
2967 	rc = nvme_disk_create(&bdev->disk, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
2968 			      nvme_ns->ns, nvme_ctrlr->opts.prchk_flags, bdev);
2969 	if (rc != 0) {
2970 		SPDK_ERRLOG("Failed to create NVMe disk\n");
2971 		pthread_mutex_destroy(&bdev->mutex);
2972 		free(bdev);
2973 		return rc;
2974 	}
2975 
2976 	spdk_io_device_register(bdev,
2977 				bdev_nvme_create_bdev_channel_cb,
2978 				bdev_nvme_destroy_bdev_channel_cb,
2979 				sizeof(struct nvme_bdev_channel),
2980 				bdev->disk.name);
2981 
2982 	rc = spdk_bdev_register(&bdev->disk);
2983 	if (rc != 0) {
2984 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
2985 		spdk_io_device_unregister(bdev, NULL);
2986 		pthread_mutex_destroy(&bdev->mutex);
2987 		free(bdev->disk.name);
2988 		free(bdev);
2989 		return rc;
2990 	}
2991 
2992 	nvme_ns->bdev = bdev;
2993 	bdev->nsid = nvme_ns->id;
2994 
2995 	bdev->nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
2996 	TAILQ_INSERT_TAIL(&nvme_ctrlr->nbdev_ctrlr->bdevs, bdev, tailq);
2997 
2998 	return 0;
2999 }
3000 
3001 static bool
3002 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
3003 {
3004 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
3005 	const struct spdk_uuid *uuid1, *uuid2;
3006 
3007 	nsdata1 = spdk_nvme_ns_get_data(ns1);
3008 	nsdata2 = spdk_nvme_ns_get_data(ns2);
3009 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
3010 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
3011 
3012 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
3013 	       nsdata1->eui64 == nsdata2->eui64 &&
3014 	       ((uuid1 == NULL && uuid2 == NULL) ||
3015 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
3016 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
3017 }
3018 
3019 static bool
3020 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
3021 		 struct spdk_nvme_ctrlr_opts *opts)
3022 {
3023 	struct nvme_probe_skip_entry *entry;
3024 
3025 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
3026 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
3027 			return false;
3028 		}
3029 	}
3030 
3031 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
3032 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
3033 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
3034 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
3035 	opts->disable_read_ana_log_page = true;
3036 
3037 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
3038 
3039 	return true;
3040 }
3041 
3042 static void
3043 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
3044 {
3045 	struct nvme_ctrlr *nvme_ctrlr = ctx;
3046 
3047 	if (spdk_nvme_cpl_is_error(cpl)) {
3048 		SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
3049 			     cpl->status.sct);
3050 		bdev_nvme_reset(nvme_ctrlr);
3051 	} else if (cpl->cdw0 & 0x1) {
3052 		SPDK_WARNLOG("Specified command could not be aborted.\n");
3053 		bdev_nvme_reset(nvme_ctrlr);
3054 	}
3055 }
3056 
3057 static void
3058 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
3059 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
3060 {
3061 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
3062 	union spdk_nvme_csts_register csts;
3063 	int rc;
3064 
3065 	assert(nvme_ctrlr->ctrlr == ctrlr);
3066 
3067 	SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
3068 
3069 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
3070 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
3071 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
3072 	 * completion recursively.
3073 	 */
3074 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
3075 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
3076 		if (csts.bits.cfs) {
3077 			SPDK_ERRLOG("Controller Fatal Status, reset required\n");
3078 			bdev_nvme_reset(nvme_ctrlr);
3079 			return;
3080 		}
3081 	}
3082 
3083 	switch (g_opts.action_on_timeout) {
3084 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
3085 		if (qpair) {
3086 			/* Don't send abort to ctrlr when ctrlr is not available. */
3087 			pthread_mutex_lock(&nvme_ctrlr->mutex);
3088 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
3089 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
3090 				SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n");
3091 				return;
3092 			}
3093 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
3094 
3095 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
3096 						       nvme_abort_cpl, nvme_ctrlr);
3097 			if (rc == 0) {
3098 				return;
3099 			}
3100 
3101 			SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
3102 		}
3103 
3104 	/* FALLTHROUGH */
3105 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
3106 		bdev_nvme_reset(nvme_ctrlr);
3107 		break;
3108 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
3109 		SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
3110 		break;
3111 	default:
3112 		SPDK_ERRLOG("An invalid timeout action value is found.\n");
3113 		break;
3114 	}
3115 }
3116 
3117 static void
3118 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
3119 {
3120 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
3121 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
3122 
3123 	if (rc == 0) {
3124 		nvme_ns->probe_ctx = NULL;
3125 		pthread_mutex_lock(&nvme_ctrlr->mutex);
3126 		nvme_ctrlr->ref++;
3127 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3128 	} else {
3129 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
3130 		free(nvme_ns);
3131 	}
3132 
3133 	if (ctx) {
3134 		ctx->populates_in_progress--;
3135 		if (ctx->populates_in_progress == 0) {
3136 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
3137 		}
3138 	}
3139 }
3140 
3141 static void
3142 bdev_nvme_add_io_path(struct spdk_io_channel_iter *i)
3143 {
3144 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
3145 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
3146 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3147 	int rc;
3148 
3149 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
3150 	if (rc != 0) {
3151 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
3152 	}
3153 
3154 	spdk_for_each_channel_continue(i, rc);
3155 }
3156 
3157 static void
3158 bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i)
3159 {
3160 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
3161 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
3162 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3163 	struct nvme_io_path *io_path;
3164 
3165 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
3166 	if (io_path != NULL) {
3167 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
3168 	}
3169 
3170 	spdk_for_each_channel_continue(i, 0);
3171 }
3172 
3173 static void
3174 bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status)
3175 {
3176 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3177 
3178 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
3179 }
3180 
3181 static void
3182 bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status)
3183 {
3184 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3185 	struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i);
3186 
3187 	if (status == 0) {
3188 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
3189 	} else {
3190 		/* Delete the added io_paths and fail populating the namespace. */
3191 		spdk_for_each_channel(bdev,
3192 				      bdev_nvme_delete_io_path,
3193 				      nvme_ns,
3194 				      bdev_nvme_add_io_path_failed);
3195 	}
3196 }
3197 
3198 static int
3199 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
3200 {
3201 	struct nvme_ns *tmp_ns;
3202 	const struct spdk_nvme_ns_data *nsdata;
3203 
3204 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
3205 	if (!nsdata->nmic.can_share) {
3206 		SPDK_ERRLOG("Namespace cannot be shared.\n");
3207 		return -EINVAL;
3208 	}
3209 
3210 	pthread_mutex_lock(&bdev->mutex);
3211 
3212 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
3213 	assert(tmp_ns != NULL);
3214 
3215 	if (!bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
3216 		pthread_mutex_unlock(&bdev->mutex);
3217 		SPDK_ERRLOG("Namespaces are not identical.\n");
3218 		return -EINVAL;
3219 	}
3220 
3221 	bdev->ref++;
3222 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
3223 	nvme_ns->bdev = bdev;
3224 
3225 	pthread_mutex_unlock(&bdev->mutex);
3226 
3227 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
3228 	spdk_for_each_channel(bdev,
3229 			      bdev_nvme_add_io_path,
3230 			      nvme_ns,
3231 			      bdev_nvme_add_io_path_done);
3232 
3233 	return 0;
3234 }
3235 
3236 static void
3237 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
3238 {
3239 	struct spdk_nvme_ns	*ns;
3240 	struct nvme_bdev	*bdev;
3241 	int			rc = 0;
3242 
3243 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
3244 	if (!ns) {
3245 		SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
3246 		rc = -EINVAL;
3247 		goto done;
3248 	}
3249 
3250 	nvme_ns->ns = ns;
3251 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
3252 
3253 	if (nvme_ctrlr->ana_log_page != NULL) {
3254 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
3255 	}
3256 
3257 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
3258 	if (bdev == NULL) {
3259 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
3260 	} else {
3261 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
3262 		if (rc == 0) {
3263 			return;
3264 		}
3265 	}
3266 done:
3267 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
3268 }
3269 
3270 static void
3271 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
3272 {
3273 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
3274 
3275 	assert(nvme_ctrlr != NULL);
3276 
3277 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3278 
3279 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
3280 
3281 	if (nvme_ns->bdev != NULL) {
3282 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3283 		return;
3284 	}
3285 
3286 	free(nvme_ns);
3287 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
3288 
3289 	nvme_ctrlr_release(nvme_ctrlr);
3290 }
3291 
3292 static void
3293 bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status)
3294 {
3295 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3296 
3297 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
3298 }
3299 
3300 static void
3301 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
3302 {
3303 	struct nvme_bdev *bdev;
3304 
3305 	spdk_poller_unregister(&nvme_ns->anatt_timer);
3306 
3307 	bdev = nvme_ns->bdev;
3308 	if (bdev != NULL) {
3309 		pthread_mutex_lock(&bdev->mutex);
3310 
3311 		assert(bdev->ref > 0);
3312 		bdev->ref--;
3313 		if (bdev->ref == 0) {
3314 			pthread_mutex_unlock(&bdev->mutex);
3315 
3316 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
3317 		} else {
3318 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
3319 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
3320 			 * and clear nvme_ns->bdev here.
3321 			 */
3322 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
3323 			nvme_ns->bdev = NULL;
3324 
3325 			pthread_mutex_unlock(&bdev->mutex);
3326 
3327 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
3328 			 * we call depopulate_namespace_done() to avoid use-after-free.
3329 			 */
3330 			spdk_for_each_channel(bdev,
3331 					      bdev_nvme_delete_io_path,
3332 					      nvme_ns,
3333 					      bdev_nvme_delete_io_path_done);
3334 			return;
3335 		}
3336 	}
3337 
3338 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
3339 }
3340 
3341 static void
3342 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
3343 			       struct nvme_async_probe_ctx *ctx)
3344 {
3345 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
3346 	struct nvme_ns	*nvme_ns, *next;
3347 	struct spdk_nvme_ns	*ns;
3348 	struct nvme_bdev	*bdev;
3349 	uint32_t		nsid;
3350 	int			rc;
3351 	uint64_t		num_sectors;
3352 
3353 	if (ctx) {
3354 		/* Initialize this count to 1 to handle the populate functions
3355 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
3356 		 */
3357 		ctx->populates_in_progress = 1;
3358 	}
3359 
3360 	/* First loop over our existing namespaces and see if they have been
3361 	 * removed. */
3362 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
3363 	while (nvme_ns != NULL) {
3364 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
3365 
3366 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
3367 			/* NS is still there but attributes may have changed */
3368 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
3369 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
3370 			bdev = nvme_ns->bdev;
3371 			assert(bdev != NULL);
3372 			if (bdev->disk.blockcnt != num_sectors) {
3373 				SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
3374 					       nvme_ns->id,
3375 					       bdev->disk.name,
3376 					       bdev->disk.blockcnt,
3377 					       num_sectors);
3378 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
3379 				if (rc != 0) {
3380 					SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
3381 						    bdev->disk.name, rc);
3382 				}
3383 			}
3384 		} else {
3385 			/* Namespace was removed */
3386 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
3387 		}
3388 
3389 		nvme_ns = next;
3390 	}
3391 
3392 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
3393 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
3394 	while (nsid != 0) {
3395 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
3396 
3397 		if (nvme_ns == NULL) {
3398 			/* Found a new one */
3399 			nvme_ns = calloc(1, sizeof(struct nvme_ns));
3400 			if (nvme_ns == NULL) {
3401 				SPDK_ERRLOG("Failed to allocate namespace\n");
3402 				/* This just fails to attach the namespace. It may work on a future attempt. */
3403 				continue;
3404 			}
3405 
3406 			nvme_ns->id = nsid;
3407 			nvme_ns->ctrlr = nvme_ctrlr;
3408 
3409 			nvme_ns->bdev = NULL;
3410 
3411 			if (ctx) {
3412 				ctx->populates_in_progress++;
3413 			}
3414 			nvme_ns->probe_ctx = ctx;
3415 
3416 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
3417 
3418 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
3419 		}
3420 
3421 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
3422 	}
3423 
3424 	if (ctx) {
3425 		/* Decrement this count now that the loop is over to account
3426 		 * for the one we started with.  If the count is then 0, we
3427 		 * know any populate_namespace functions completed immediately,
3428 		 * so we'll kick the callback here.
3429 		 */
3430 		ctx->populates_in_progress--;
3431 		if (ctx->populates_in_progress == 0) {
3432 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
3433 		}
3434 	}
3435 
3436 }
3437 
3438 static void
3439 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
3440 {
3441 	struct nvme_ns *nvme_ns, *tmp;
3442 
3443 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
3444 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
3445 	}
3446 }
3447 
3448 static int
3449 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
3450 			  void *cb_arg)
3451 {
3452 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
3453 	struct nvme_ns *nvme_ns;
3454 	uint32_t i, nsid;
3455 
3456 	for (i = 0; i < desc->num_of_nsid; i++) {
3457 		nsid = desc->nsid[i];
3458 		if (nsid == 0) {
3459 			continue;
3460 		}
3461 
3462 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
3463 
3464 		assert(nvme_ns != NULL);
3465 		if (nvme_ns == NULL) {
3466 			/* Target told us that an inactive namespace had an ANA change */
3467 			continue;
3468 		}
3469 
3470 		_nvme_ns_set_ana_state(nvme_ns, desc);
3471 	}
3472 
3473 	return 0;
3474 }
3475 
3476 static void
3477 _nvme_ctrlr_read_ana_log_page_done(struct spdk_io_channel_iter *i, int status)
3478 {
3479 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
3480 
3481 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3482 
3483 	assert(nvme_ctrlr->ana_log_page_updating == true);
3484 	nvme_ctrlr->ana_log_page_updating = false;
3485 
3486 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
3487 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3488 		return;
3489 	}
3490 
3491 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
3492 
3493 	nvme_ctrlr_unregister(nvme_ctrlr);
3494 }
3495 
3496 static void
3497 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
3498 {
3499 	struct nvme_ns *nvme_ns;
3500 
3501 	spdk_free(nvme_ctrlr->ana_log_page);
3502 	nvme_ctrlr->ana_log_page = NULL;
3503 
3504 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
3505 	     nvme_ns != NULL;
3506 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
3507 		nvme_ns->ana_state_updating = false;
3508 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
3509 	}
3510 }
3511 
3512 static void
3513 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
3514 {
3515 	struct nvme_ctrlr *nvme_ctrlr = ctx;
3516 
3517 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
3518 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
3519 					     nvme_ctrlr);
3520 	} else {
3521 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
3522 	}
3523 
3524 	bdev_nvme_clear_io_path_caches(nvme_ctrlr, _nvme_ctrlr_read_ana_log_page_done);
3525 }
3526 
3527 static int
3528 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
3529 {
3530 	int rc;
3531 
3532 	if (nvme_ctrlr->ana_log_page == NULL) {
3533 		return -EINVAL;
3534 	}
3535 
3536 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3537 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
3538 	    nvme_ctrlr->ana_log_page_updating) {
3539 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3540 		return -EBUSY;
3541 	}
3542 
3543 	nvme_ctrlr->ana_log_page_updating = true;
3544 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
3545 
3546 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
3547 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
3548 					      SPDK_NVME_GLOBAL_NS_TAG,
3549 					      nvme_ctrlr->ana_log_page,
3550 					      nvme_ctrlr->ana_log_page_size, 0,
3551 					      nvme_ctrlr_read_ana_log_page_done,
3552 					      nvme_ctrlr);
3553 	if (rc != 0) {
3554 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
3555 	}
3556 
3557 	return rc;
3558 }
3559 
3560 static void
3561 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
3562 {
3563 }
3564 
3565 struct bdev_nvme_set_preferred_path_ctx {
3566 	struct spdk_bdev_desc *desc;
3567 	struct nvme_ns *nvme_ns;
3568 	bdev_nvme_set_preferred_path_cb cb_fn;
3569 	void *cb_arg;
3570 };
3571 
3572 static void
3573 bdev_nvme_set_preferred_path_done(struct spdk_io_channel_iter *i, int status)
3574 {
3575 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
3576 
3577 	assert(ctx != NULL);
3578 	assert(ctx->desc != NULL);
3579 	assert(ctx->cb_fn != NULL);
3580 
3581 	spdk_bdev_close(ctx->desc);
3582 
3583 	ctx->cb_fn(ctx->cb_arg, status);
3584 
3585 	free(ctx);
3586 }
3587 
3588 static void
3589 _bdev_nvme_set_preferred_path(struct spdk_io_channel_iter *i)
3590 {
3591 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
3592 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
3593 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
3594 	struct nvme_io_path *io_path, *prev;
3595 
3596 	prev = NULL;
3597 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
3598 		if (io_path->nvme_ns == ctx->nvme_ns) {
3599 			break;
3600 		}
3601 		prev = io_path;
3602 	}
3603 
3604 	if (io_path != NULL && prev != NULL) {
3605 		STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
3606 		STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
3607 
3608 		/* We can set io_path to nbdev_ch->current_io_path directly here.
3609 		 * However, it needs to be conditional. To simplify the code,
3610 		 * just clear nbdev_ch->current_io_path and let find_io_path()
3611 		 * fill it.
3612 		 */
3613 		nbdev_ch->current_io_path = NULL;
3614 	}
3615 
3616 	spdk_for_each_channel_continue(i, 0);
3617 }
3618 
3619 static struct nvme_ns *
3620 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
3621 {
3622 	struct nvme_ns *nvme_ns, *prev;
3623 	const struct spdk_nvme_ctrlr_data *cdata;
3624 
3625 	prev = NULL;
3626 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3627 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
3628 
3629 		if (cdata->cntlid == cntlid) {
3630 			break;
3631 		}
3632 		prev = nvme_ns;
3633 	}
3634 
3635 	if (nvme_ns != NULL && prev != NULL) {
3636 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
3637 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
3638 	}
3639 
3640 	return nvme_ns;
3641 }
3642 
3643 /* This function supports only multipath mode. There is only a single I/O path
3644  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
3645  * head of the I/O path list for each NVMe bdev channel.
3646  *
3647  * NVMe bdev channel may be acquired after completing this function. move the
3648  * matched namespace to the head of the namespace list for the NVMe bdev too.
3649  */
3650 void
3651 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
3652 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
3653 {
3654 	struct bdev_nvme_set_preferred_path_ctx *ctx;
3655 	struct spdk_bdev *bdev;
3656 	struct nvme_bdev *nbdev;
3657 	int rc = 0;
3658 
3659 	assert(cb_fn != NULL);
3660 
3661 	ctx = calloc(1, sizeof(*ctx));
3662 	if (ctx == NULL) {
3663 		SPDK_ERRLOG("Failed to alloc context.\n");
3664 		rc = -ENOMEM;
3665 		goto err_alloc;
3666 	}
3667 
3668 	ctx->cb_fn = cb_fn;
3669 	ctx->cb_arg = cb_arg;
3670 
3671 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
3672 	if (rc != 0) {
3673 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
3674 		goto err_open;
3675 	}
3676 
3677 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
3678 
3679 	if (bdev->module != &nvme_if) {
3680 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
3681 		rc = -ENODEV;
3682 		goto err_bdev;
3683 	}
3684 
3685 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
3686 
3687 	pthread_mutex_lock(&nbdev->mutex);
3688 
3689 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
3690 	if (ctx->nvme_ns == NULL) {
3691 		pthread_mutex_unlock(&nbdev->mutex);
3692 
3693 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
3694 		rc = -ENODEV;
3695 		goto err_bdev;
3696 	}
3697 
3698 	pthread_mutex_unlock(&nbdev->mutex);
3699 
3700 	spdk_for_each_channel(nbdev,
3701 			      _bdev_nvme_set_preferred_path,
3702 			      ctx,
3703 			      bdev_nvme_set_preferred_path_done);
3704 	return;
3705 
3706 err_bdev:
3707 	spdk_bdev_close(ctx->desc);
3708 err_open:
3709 	free(ctx);
3710 err_alloc:
3711 	cb_fn(cb_arg, rc);
3712 }
3713 
3714 struct bdev_nvme_set_multipath_policy_ctx {
3715 	struct spdk_bdev_desc *desc;
3716 	bdev_nvme_set_multipath_policy_cb cb_fn;
3717 	void *cb_arg;
3718 };
3719 
3720 static void
3721 bdev_nvme_set_multipath_policy_done(struct spdk_io_channel_iter *i, int status)
3722 {
3723 	struct bdev_nvme_set_multipath_policy_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
3724 
3725 	assert(ctx != NULL);
3726 	assert(ctx->desc != NULL);
3727 	assert(ctx->cb_fn != NULL);
3728 
3729 	spdk_bdev_close(ctx->desc);
3730 
3731 	ctx->cb_fn(ctx->cb_arg, status);
3732 
3733 	free(ctx);
3734 }
3735 
3736 static void
3737 _bdev_nvme_set_multipath_policy(struct spdk_io_channel_iter *i)
3738 {
3739 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
3740 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
3741 	struct nvme_bdev *nbdev = spdk_io_channel_get_io_device(_ch);
3742 
3743 	nbdev_ch->mp_policy = nbdev->mp_policy;
3744 	nbdev_ch->current_io_path = NULL;
3745 
3746 	spdk_for_each_channel_continue(i, 0);
3747 }
3748 
3749 void
3750 bdev_nvme_set_multipath_policy(const char *name, enum bdev_nvme_multipath_policy policy,
3751 			       bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
3752 {
3753 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
3754 	struct spdk_bdev *bdev;
3755 	struct nvme_bdev *nbdev;
3756 	int rc;
3757 
3758 	assert(cb_fn != NULL);
3759 
3760 	ctx = calloc(1, sizeof(*ctx));
3761 	if (ctx == NULL) {
3762 		SPDK_ERRLOG("Failed to alloc context.\n");
3763 		rc = -ENOMEM;
3764 		goto err_alloc;
3765 	}
3766 
3767 	ctx->cb_fn = cb_fn;
3768 	ctx->cb_arg = cb_arg;
3769 
3770 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
3771 	if (rc != 0) {
3772 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
3773 		rc = -ENODEV;
3774 		goto err_open;
3775 	}
3776 
3777 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
3778 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
3779 
3780 	pthread_mutex_lock(&nbdev->mutex);
3781 	nbdev->mp_policy = policy;
3782 	pthread_mutex_unlock(&nbdev->mutex);
3783 
3784 	spdk_for_each_channel(nbdev,
3785 			      _bdev_nvme_set_multipath_policy,
3786 			      ctx,
3787 			      bdev_nvme_set_multipath_policy_done);
3788 	return;
3789 
3790 err_open:
3791 	free(ctx);
3792 err_alloc:
3793 	cb_fn(cb_arg, rc);
3794 }
3795 
3796 static void
3797 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
3798 {
3799 	struct nvme_ctrlr *nvme_ctrlr		= arg;
3800 	union spdk_nvme_async_event_completion	event;
3801 
3802 	if (spdk_nvme_cpl_is_error(cpl)) {
3803 		SPDK_WARNLOG("AER request execute failed");
3804 		return;
3805 	}
3806 
3807 	event.raw = cpl->cdw0;
3808 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3809 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
3810 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
3811 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3812 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
3813 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
3814 	}
3815 }
3816 
3817 static void
3818 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, size_t count, int rc)
3819 {
3820 	if (ctx->cb_fn) {
3821 		ctx->cb_fn(ctx->cb_ctx, count, rc);
3822 	}
3823 
3824 	ctx->namespaces_populated = true;
3825 	if (ctx->probe_done) {
3826 		/* The probe was already completed, so we need to free the context
3827 		 * here.  This can happen for cases like OCSSD, where we need to
3828 		 * send additional commands to the SSD after attach.
3829 		 */
3830 		free(ctx);
3831 	}
3832 }
3833 
3834 static void
3835 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
3836 		       struct nvme_async_probe_ctx *ctx)
3837 {
3838 	spdk_io_device_register(nvme_ctrlr,
3839 				bdev_nvme_create_ctrlr_channel_cb,
3840 				bdev_nvme_destroy_ctrlr_channel_cb,
3841 				sizeof(struct nvme_ctrlr_channel),
3842 				nvme_ctrlr->nbdev_ctrlr->name);
3843 
3844 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
3845 }
3846 
3847 static void
3848 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
3849 {
3850 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
3851 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
3852 
3853 	nvme_ctrlr->probe_ctx = NULL;
3854 
3855 	if (spdk_nvme_cpl_is_error(cpl)) {
3856 		nvme_ctrlr_delete(nvme_ctrlr);
3857 
3858 		if (ctx != NULL) {
3859 			populate_namespaces_cb(ctx, 0, -1);
3860 		}
3861 		return;
3862 	}
3863 
3864 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
3865 }
3866 
3867 static int
3868 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
3869 			     struct nvme_async_probe_ctx *ctx)
3870 {
3871 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
3872 	const struct spdk_nvme_ctrlr_data *cdata;
3873 	uint32_t ana_log_page_size;
3874 
3875 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3876 
3877 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
3878 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->nn *
3879 			    sizeof(uint32_t);
3880 
3881 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
3882 						SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
3883 	if (nvme_ctrlr->ana_log_page == NULL) {
3884 		SPDK_ERRLOG("could not allocate ANA log page buffer\n");
3885 		return -ENXIO;
3886 	}
3887 
3888 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
3889 	 * Hence copy each descriptor to a temporary area when parsing it.
3890 	 *
3891 	 * Allocate a buffer whose size is as large as ANA log page buffer because
3892 	 * we do not know the size of a descriptor until actually reading it.
3893 	 */
3894 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
3895 	if (nvme_ctrlr->copied_ana_desc == NULL) {
3896 		SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
3897 		return -ENOMEM;
3898 	}
3899 
3900 	nvme_ctrlr->ana_log_page_size = ana_log_page_size;
3901 
3902 	nvme_ctrlr->probe_ctx = ctx;
3903 
3904 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
3905 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
3906 						SPDK_NVME_GLOBAL_NS_TAG,
3907 						nvme_ctrlr->ana_log_page,
3908 						nvme_ctrlr->ana_log_page_size, 0,
3909 						nvme_ctrlr_init_ana_log_page_done,
3910 						nvme_ctrlr);
3911 }
3912 
3913 /* hostnqn and subnqn were already verified before attaching a controller.
3914  * Hence check only the multipath capability and cntlid here.
3915  */
3916 static bool
3917 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
3918 {
3919 	struct nvme_ctrlr *tmp;
3920 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
3921 
3922 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3923 
3924 	if (!cdata->cmic.multi_ctrlr) {
3925 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
3926 		return false;
3927 	}
3928 
3929 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
3930 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
3931 
3932 		if (!tmp_cdata->cmic.multi_ctrlr) {
3933 			SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
3934 			return false;
3935 		}
3936 		if (cdata->cntlid == tmp_cdata->cntlid) {
3937 			SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid);
3938 			return false;
3939 		}
3940 	}
3941 
3942 	return true;
3943 }
3944 
3945 static int
3946 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
3947 {
3948 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
3949 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
3950 	int rc = 0;
3951 
3952 	pthread_mutex_lock(&g_bdev_nvme_mutex);
3953 
3954 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
3955 	if (nbdev_ctrlr != NULL) {
3956 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
3957 			rc = -EINVAL;
3958 			goto exit;
3959 		}
3960 	} else {
3961 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
3962 		if (nbdev_ctrlr == NULL) {
3963 			SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n");
3964 			rc = -ENOMEM;
3965 			goto exit;
3966 		}
3967 		nbdev_ctrlr->name = strdup(name);
3968 		if (nbdev_ctrlr->name == NULL) {
3969 			SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n");
3970 			free(nbdev_ctrlr);
3971 			goto exit;
3972 		}
3973 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
3974 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
3975 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
3976 	}
3977 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
3978 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
3979 exit:
3980 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
3981 	return rc;
3982 }
3983 
3984 static int
3985 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
3986 		  const char *name,
3987 		  const struct spdk_nvme_transport_id *trid,
3988 		  struct nvme_async_probe_ctx *ctx)
3989 {
3990 	struct nvme_ctrlr *nvme_ctrlr;
3991 	struct nvme_path_id *path_id;
3992 	const struct spdk_nvme_ctrlr_data *cdata;
3993 	int rc;
3994 
3995 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
3996 	if (nvme_ctrlr == NULL) {
3997 		SPDK_ERRLOG("Failed to allocate device struct\n");
3998 		return -ENOMEM;
3999 	}
4000 
4001 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
4002 	if (rc != 0) {
4003 		free(nvme_ctrlr);
4004 		return rc;
4005 	}
4006 
4007 	TAILQ_INIT(&nvme_ctrlr->trids);
4008 
4009 	RB_INIT(&nvme_ctrlr->namespaces);
4010 
4011 	path_id = calloc(1, sizeof(*path_id));
4012 	if (path_id == NULL) {
4013 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
4014 		rc = -ENOMEM;
4015 		goto err;
4016 	}
4017 
4018 	path_id->trid = *trid;
4019 	if (ctx != NULL) {
4020 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
4021 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
4022 	}
4023 	nvme_ctrlr->active_path_id = path_id;
4024 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
4025 
4026 	nvme_ctrlr->thread = spdk_get_thread();
4027 	nvme_ctrlr->ctrlr = ctrlr;
4028 	nvme_ctrlr->ref = 1;
4029 
4030 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
4031 		SPDK_ERRLOG("OCSSDs are not supported");
4032 		rc = -ENOTSUP;
4033 		goto err;
4034 	}
4035 
4036 	if (ctx != NULL) {
4037 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
4038 	} else {
4039 		bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
4040 	}
4041 
4042 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
4043 					  g_opts.nvme_adminq_poll_period_us);
4044 
4045 	if (g_opts.timeout_us > 0) {
4046 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
4047 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
4048 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
4049 					  g_opts.timeout_us : g_opts.timeout_admin_us;
4050 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
4051 				adm_timeout_us, timeout_cb, nvme_ctrlr);
4052 	}
4053 
4054 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
4055 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
4056 
4057 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
4058 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
4059 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
4060 	}
4061 
4062 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
4063 	if (rc != 0) {
4064 		goto err;
4065 	}
4066 
4067 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4068 
4069 	if (cdata->cmic.ana_reporting) {
4070 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
4071 		if (rc == 0) {
4072 			return 0;
4073 		}
4074 	} else {
4075 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
4076 		return 0;
4077 	}
4078 
4079 err:
4080 	nvme_ctrlr_delete(nvme_ctrlr);
4081 	return rc;
4082 }
4083 
4084 void
4085 bdev_nvme_get_default_ctrlr_opts(struct nvme_ctrlr_opts *opts)
4086 {
4087 	opts->prchk_flags = 0;
4088 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
4089 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
4090 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
4091 }
4092 
4093 static void
4094 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4095 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
4096 {
4097 	char *name;
4098 
4099 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
4100 	if (!name) {
4101 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
4102 		return;
4103 	}
4104 
4105 	SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
4106 
4107 	nvme_ctrlr_create(ctrlr, name, trid, NULL);
4108 
4109 	free(name);
4110 }
4111 
4112 static void
4113 _nvme_ctrlr_destruct(void *ctx)
4114 {
4115 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4116 
4117 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
4118 	nvme_ctrlr_release(nvme_ctrlr);
4119 }
4120 
4121 static int
4122 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
4123 {
4124 	struct nvme_probe_skip_entry *entry;
4125 
4126 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4127 
4128 	/* The controller's destruction was already started */
4129 	if (nvme_ctrlr->destruct) {
4130 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4131 		return 0;
4132 	}
4133 
4134 	if (!hotplug &&
4135 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
4136 		entry = calloc(1, sizeof(*entry));
4137 		if (!entry) {
4138 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4139 			return -ENOMEM;
4140 		}
4141 		entry->trid = nvme_ctrlr->active_path_id->trid;
4142 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
4143 	}
4144 
4145 	nvme_ctrlr->destruct = true;
4146 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4147 
4148 	_nvme_ctrlr_destruct(nvme_ctrlr);
4149 
4150 	return 0;
4151 }
4152 
4153 static void
4154 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
4155 {
4156 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
4157 
4158 	_bdev_nvme_delete(nvme_ctrlr, true);
4159 }
4160 
4161 static int
4162 bdev_nvme_hotplug_probe(void *arg)
4163 {
4164 	if (g_hotplug_probe_ctx == NULL) {
4165 		spdk_poller_unregister(&g_hotplug_probe_poller);
4166 		return SPDK_POLLER_IDLE;
4167 	}
4168 
4169 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
4170 		g_hotplug_probe_ctx = NULL;
4171 		spdk_poller_unregister(&g_hotplug_probe_poller);
4172 	}
4173 
4174 	return SPDK_POLLER_BUSY;
4175 }
4176 
4177 static int
4178 bdev_nvme_hotplug(void *arg)
4179 {
4180 	struct spdk_nvme_transport_id trid_pcie;
4181 
4182 	if (g_hotplug_probe_ctx) {
4183 		return SPDK_POLLER_BUSY;
4184 	}
4185 
4186 	memset(&trid_pcie, 0, sizeof(trid_pcie));
4187 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
4188 
4189 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
4190 			      hotplug_probe_cb, attach_cb, NULL);
4191 
4192 	if (g_hotplug_probe_ctx) {
4193 		assert(g_hotplug_probe_poller == NULL);
4194 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
4195 	}
4196 
4197 	return SPDK_POLLER_BUSY;
4198 }
4199 
4200 void
4201 bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
4202 {
4203 	*opts = g_opts;
4204 }
4205 
4206 static bool bdev_nvme_check_multipath_params(int32_t ctrlr_loss_timeout_sec,
4207 		uint32_t reconnect_delay_sec,
4208 		uint32_t fast_io_fail_timeout_sec);
4209 
4210 static int
4211 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
4212 {
4213 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
4214 		/* Can't set timeout_admin_us without also setting timeout_us */
4215 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
4216 		return -EINVAL;
4217 	}
4218 
4219 	if (opts->bdev_retry_count < -1) {
4220 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
4221 		return -EINVAL;
4222 	}
4223 
4224 	if (!bdev_nvme_check_multipath_params(opts->ctrlr_loss_timeout_sec,
4225 					      opts->reconnect_delay_sec,
4226 					      opts->fast_io_fail_timeout_sec)) {
4227 		return -EINVAL;
4228 	}
4229 
4230 	return 0;
4231 }
4232 
4233 int
4234 bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
4235 {
4236 	int ret = bdev_nvme_validate_opts(opts);
4237 	if (ret) {
4238 		SPDK_WARNLOG("Failed to set nvme opts.\n");
4239 		return ret;
4240 	}
4241 
4242 	if (g_bdev_nvme_init_thread != NULL) {
4243 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
4244 			return -EPERM;
4245 		}
4246 	}
4247 
4248 	g_opts = *opts;
4249 
4250 	return 0;
4251 }
4252 
4253 struct set_nvme_hotplug_ctx {
4254 	uint64_t period_us;
4255 	bool enabled;
4256 	spdk_msg_fn fn;
4257 	void *fn_ctx;
4258 };
4259 
4260 static void
4261 set_nvme_hotplug_period_cb(void *_ctx)
4262 {
4263 	struct set_nvme_hotplug_ctx *ctx = _ctx;
4264 
4265 	spdk_poller_unregister(&g_hotplug_poller);
4266 	if (ctx->enabled) {
4267 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
4268 	}
4269 
4270 	g_nvme_hotplug_poll_period_us = ctx->period_us;
4271 	g_nvme_hotplug_enabled = ctx->enabled;
4272 	if (ctx->fn) {
4273 		ctx->fn(ctx->fn_ctx);
4274 	}
4275 
4276 	free(ctx);
4277 }
4278 
4279 int
4280 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
4281 {
4282 	struct set_nvme_hotplug_ctx *ctx;
4283 
4284 	if (enabled == true && !spdk_process_is_primary()) {
4285 		return -EPERM;
4286 	}
4287 
4288 	ctx = calloc(1, sizeof(*ctx));
4289 	if (ctx == NULL) {
4290 		return -ENOMEM;
4291 	}
4292 
4293 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
4294 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
4295 	ctx->enabled = enabled;
4296 	ctx->fn = cb;
4297 	ctx->fn_ctx = cb_ctx;
4298 
4299 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
4300 	return 0;
4301 }
4302 
4303 static void
4304 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
4305 				    struct nvme_async_probe_ctx *ctx)
4306 {
4307 	struct nvme_ns	*nvme_ns;
4308 	struct nvme_bdev	*nvme_bdev;
4309 	size_t			j;
4310 
4311 	assert(nvme_ctrlr != NULL);
4312 
4313 	if (ctx->names == NULL) {
4314 		populate_namespaces_cb(ctx, 0, 0);
4315 		return;
4316 	}
4317 
4318 	/*
4319 	 * Report the new bdevs that were created in this call.
4320 	 * There can be more than one bdev per NVMe controller.
4321 	 */
4322 	j = 0;
4323 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4324 	while (nvme_ns != NULL) {
4325 		nvme_bdev = nvme_ns->bdev;
4326 		if (j < ctx->count) {
4327 			ctx->names[j] = nvme_bdev->disk.name;
4328 			j++;
4329 		} else {
4330 			SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
4331 				    ctx->count);
4332 			populate_namespaces_cb(ctx, 0, -ERANGE);
4333 			return;
4334 		}
4335 
4336 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4337 	}
4338 
4339 	populate_namespaces_cb(ctx, j, 0);
4340 }
4341 
4342 static int
4343 bdev_nvme_compare_trids(struct nvme_ctrlr *nvme_ctrlr,
4344 			struct spdk_nvme_ctrlr *new_ctrlr,
4345 			struct spdk_nvme_transport_id *trid)
4346 {
4347 	struct nvme_path_id *tmp_trid;
4348 
4349 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
4350 		SPDK_ERRLOG("PCIe failover is not supported.\n");
4351 		return -ENOTSUP;
4352 	}
4353 
4354 	/* Currently we only support failover to the same transport type. */
4355 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
4356 		return -EINVAL;
4357 	}
4358 
4359 	/* Currently we only support failover to the same NQN. */
4360 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
4361 		return -EINVAL;
4362 	}
4363 
4364 	/* Skip all the other checks if we've already registered this path. */
4365 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
4366 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
4367 			return -EEXIST;
4368 		}
4369 	}
4370 
4371 	return 0;
4372 }
4373 
4374 static int
4375 bdev_nvme_compare_namespaces(struct nvme_ctrlr *nvme_ctrlr,
4376 			     struct spdk_nvme_ctrlr *new_ctrlr)
4377 {
4378 	struct nvme_ns *nvme_ns;
4379 	struct spdk_nvme_ns *new_ns;
4380 
4381 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4382 	while (nvme_ns != NULL) {
4383 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
4384 		assert(new_ns != NULL);
4385 
4386 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
4387 			return -EINVAL;
4388 		}
4389 
4390 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4391 	}
4392 
4393 	return 0;
4394 }
4395 
4396 static int
4397 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
4398 			      struct spdk_nvme_transport_id *trid)
4399 {
4400 	struct nvme_path_id *new_trid, *tmp_trid;
4401 
4402 	new_trid = calloc(1, sizeof(*new_trid));
4403 	if (new_trid == NULL) {
4404 		return -ENOMEM;
4405 	}
4406 	new_trid->trid = *trid;
4407 	new_trid->is_failed = false;
4408 
4409 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
4410 		if (tmp_trid->is_failed && tmp_trid != nvme_ctrlr->active_path_id) {
4411 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
4412 			return 0;
4413 		}
4414 	}
4415 
4416 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
4417 	return 0;
4418 }
4419 
4420 /* This is the case that a secondary path is added to an existing
4421  * nvme_ctrlr for failover. After checking if it can access the same
4422  * namespaces as the primary path, it is disconnected until failover occurs.
4423  */
4424 static int
4425 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
4426 			     struct spdk_nvme_ctrlr *new_ctrlr,
4427 			     struct spdk_nvme_transport_id *trid)
4428 {
4429 	int rc;
4430 
4431 	assert(nvme_ctrlr != NULL);
4432 
4433 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4434 
4435 	rc = bdev_nvme_compare_trids(nvme_ctrlr, new_ctrlr, trid);
4436 	if (rc != 0) {
4437 		goto exit;
4438 	}
4439 
4440 	rc = bdev_nvme_compare_namespaces(nvme_ctrlr, new_ctrlr);
4441 	if (rc != 0) {
4442 		goto exit;
4443 	}
4444 
4445 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
4446 
4447 exit:
4448 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4449 
4450 	spdk_nvme_detach(new_ctrlr);
4451 
4452 	return rc;
4453 }
4454 
4455 static void
4456 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4457 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
4458 {
4459 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
4460 	struct nvme_async_probe_ctx *ctx;
4461 	int rc;
4462 
4463 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
4464 	ctx->ctrlr_attached = true;
4465 
4466 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
4467 	if (rc != 0) {
4468 		populate_namespaces_cb(ctx, 0, rc);
4469 	}
4470 }
4471 
4472 static void
4473 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4474 			struct spdk_nvme_ctrlr *ctrlr,
4475 			const struct spdk_nvme_ctrlr_opts *opts)
4476 {
4477 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
4478 	struct nvme_ctrlr *nvme_ctrlr;
4479 	struct nvme_async_probe_ctx *ctx;
4480 	int rc;
4481 
4482 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
4483 	ctx->ctrlr_attached = true;
4484 
4485 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
4486 	if (nvme_ctrlr) {
4487 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
4488 	} else {
4489 		rc = -ENODEV;
4490 	}
4491 
4492 	populate_namespaces_cb(ctx, 0, rc);
4493 }
4494 
4495 static int
4496 bdev_nvme_async_poll(void *arg)
4497 {
4498 	struct nvme_async_probe_ctx	*ctx = arg;
4499 	int				rc;
4500 
4501 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
4502 	if (spdk_unlikely(rc != -EAGAIN)) {
4503 		ctx->probe_done = true;
4504 		spdk_poller_unregister(&ctx->poller);
4505 		if (!ctx->ctrlr_attached) {
4506 			/* The probe is done, but no controller was attached.
4507 			 * That means we had a failure, so report -EIO back to
4508 			 * the caller (usually the RPC). populate_namespaces_cb()
4509 			 * will take care of freeing the nvme_async_probe_ctx.
4510 			 */
4511 			populate_namespaces_cb(ctx, 0, -EIO);
4512 		} else if (ctx->namespaces_populated) {
4513 			/* The namespaces for the attached controller were all
4514 			 * populated and the response was already sent to the
4515 			 * caller (usually the RPC).  So free the context here.
4516 			 */
4517 			free(ctx);
4518 		}
4519 	}
4520 
4521 	return SPDK_POLLER_BUSY;
4522 }
4523 
4524 static bool
4525 bdev_nvme_check_multipath_params(int32_t ctrlr_loss_timeout_sec,
4526 				 uint32_t reconnect_delay_sec,
4527 				 uint32_t fast_io_fail_timeout_sec)
4528 {
4529 	if (ctrlr_loss_timeout_sec < -1) {
4530 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
4531 		return false;
4532 	} else if (ctrlr_loss_timeout_sec == -1) {
4533 		if (reconnect_delay_sec == 0) {
4534 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
4535 			return false;
4536 		} else if (fast_io_fail_timeout_sec != 0 &&
4537 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
4538 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
4539 			return false;
4540 		}
4541 	} else if (ctrlr_loss_timeout_sec != 0) {
4542 		if (reconnect_delay_sec == 0) {
4543 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
4544 			return false;
4545 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
4546 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
4547 			return false;
4548 		} else if (fast_io_fail_timeout_sec != 0) {
4549 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
4550 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
4551 				return false;
4552 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
4553 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
4554 				return false;
4555 			}
4556 		}
4557 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
4558 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
4559 		return false;
4560 	}
4561 
4562 	return true;
4563 }
4564 
4565 int
4566 bdev_nvme_create(struct spdk_nvme_transport_id *trid,
4567 		 const char *base_name,
4568 		 const char **names,
4569 		 uint32_t count,
4570 		 spdk_bdev_create_nvme_fn cb_fn,
4571 		 void *cb_ctx,
4572 		 struct spdk_nvme_ctrlr_opts *drv_opts,
4573 		 struct nvme_ctrlr_opts *bdev_opts,
4574 		 bool multipath)
4575 {
4576 	struct nvme_probe_skip_entry	*entry, *tmp;
4577 	struct nvme_async_probe_ctx	*ctx;
4578 	spdk_nvme_attach_cb attach_cb;
4579 
4580 	/* TODO expand this check to include both the host and target TRIDs.
4581 	 * Only if both are the same should we fail.
4582 	 */
4583 	if (nvme_ctrlr_get(trid) != NULL) {
4584 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr);
4585 		return -EEXIST;
4586 	}
4587 
4588 	if (bdev_opts != NULL &&
4589 	    !bdev_nvme_check_multipath_params(bdev_opts->ctrlr_loss_timeout_sec,
4590 					      bdev_opts->reconnect_delay_sec,
4591 					      bdev_opts->fast_io_fail_timeout_sec)) {
4592 		return -EINVAL;
4593 	}
4594 
4595 	ctx = calloc(1, sizeof(*ctx));
4596 	if (!ctx) {
4597 		return -ENOMEM;
4598 	}
4599 	ctx->base_name = base_name;
4600 	ctx->names = names;
4601 	ctx->count = count;
4602 	ctx->cb_fn = cb_fn;
4603 	ctx->cb_ctx = cb_ctx;
4604 	ctx->trid = *trid;
4605 
4606 	if (bdev_opts) {
4607 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
4608 	} else {
4609 		bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
4610 	}
4611 
4612 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
4613 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
4614 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4615 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
4616 				free(entry);
4617 				break;
4618 			}
4619 		}
4620 	}
4621 
4622 	if (drv_opts) {
4623 		memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
4624 	} else {
4625 		spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->drv_opts, sizeof(ctx->drv_opts));
4626 	}
4627 
4628 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
4629 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
4630 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
4631 	ctx->drv_opts.disable_read_ana_log_page = true;
4632 
4633 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) {
4634 		attach_cb = connect_attach_cb;
4635 	} else {
4636 		attach_cb = connect_set_failover_cb;
4637 	}
4638 
4639 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
4640 	if (ctx->probe_ctx == NULL) {
4641 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
4642 		free(ctx);
4643 		return -ENODEV;
4644 	}
4645 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
4646 
4647 	return 0;
4648 }
4649 
4650 int
4651 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id)
4652 {
4653 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
4654 	struct nvme_ctrlr	*nvme_ctrlr, *tmp_nvme_ctrlr;
4655 	struct nvme_path_id	*p, *t;
4656 	int			rc = -ENXIO;
4657 
4658 	if (name == NULL || path_id == NULL) {
4659 		return -EINVAL;
4660 	}
4661 
4662 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
4663 	if (nbdev_ctrlr == NULL) {
4664 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
4665 		return -ENODEV;
4666 	}
4667 
4668 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
4669 		TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
4670 			if (path_id->trid.trtype != 0) {
4671 				if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
4672 					if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
4673 						continue;
4674 					}
4675 				} else {
4676 					if (path_id->trid.trtype != p->trid.trtype) {
4677 						continue;
4678 					}
4679 				}
4680 			}
4681 
4682 			if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
4683 				if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
4684 					continue;
4685 				}
4686 			}
4687 
4688 			if (path_id->trid.adrfam != 0) {
4689 				if (path_id->trid.adrfam != p->trid.adrfam) {
4690 					continue;
4691 				}
4692 			}
4693 
4694 			if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
4695 				if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
4696 					continue;
4697 				}
4698 			}
4699 
4700 			if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
4701 				if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
4702 					continue;
4703 				}
4704 			}
4705 
4706 			if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
4707 				if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
4708 					continue;
4709 				}
4710 			}
4711 
4712 			if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
4713 				if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
4714 					continue;
4715 				}
4716 			}
4717 
4718 			/* If we made it here, then this path is a match! Now we need to remove it. */
4719 			if (p == nvme_ctrlr->active_path_id) {
4720 				/* This is the active path in use right now. The active path is always the first in the list. */
4721 
4722 				if (!TAILQ_NEXT(p, link)) {
4723 					/* The current path is the only path. */
4724 					rc = _bdev_nvme_delete(nvme_ctrlr, false);
4725 				} else {
4726 					/* There is an alternative path. */
4727 					rc = bdev_nvme_failover(nvme_ctrlr, true);
4728 				}
4729 			} else {
4730 				/* We are not using the specified path. */
4731 				TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
4732 				free(p);
4733 				rc = 0;
4734 			}
4735 
4736 			if (rc < 0 && rc != -ENXIO) {
4737 				return rc;
4738 			}
4739 
4740 
4741 		}
4742 	}
4743 
4744 	/* All nvme_ctrlrs were deleted or no nvme_ctrlr which had the trid was found. */
4745 	return rc;
4746 }
4747 
4748 #define DISCOVERY_INFOLOG(ctx, format, ...) \
4749 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
4750 
4751 #define DISCOVERY_ERRLOG(ctx, format, ...) \
4752 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
4753 
4754 struct discovery_entry_ctx {
4755 	char						name[128];
4756 	struct spdk_nvme_transport_id			trid;
4757 	struct spdk_nvme_ctrlr_opts			drv_opts;
4758 	struct spdk_nvmf_discovery_log_page_entry	entry;
4759 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
4760 	struct discovery_ctx				*ctx;
4761 };
4762 
4763 struct discovery_ctx {
4764 	char					*name;
4765 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
4766 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
4767 	void					*cb_ctx;
4768 	struct spdk_nvme_probe_ctx		*probe_ctx;
4769 	struct spdk_nvme_detach_ctx		*detach_ctx;
4770 	struct spdk_nvme_ctrlr			*ctrlr;
4771 	struct spdk_nvme_transport_id		trid;
4772 	struct discovery_entry_ctx		*entry_ctx_in_use;
4773 	struct spdk_poller			*poller;
4774 	struct spdk_nvme_ctrlr_opts		drv_opts;
4775 	struct nvme_ctrlr_opts			bdev_opts;
4776 	struct spdk_nvmf_discovery_log_page	*log_page;
4777 	TAILQ_ENTRY(discovery_ctx)		tailq;
4778 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
4779 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
4780 	int					rc;
4781 	bool					wait_for_attach;
4782 	/* Denotes if a discovery is currently in progress for this context.
4783 	 * That includes connecting to newly discovered subsystems.  Used to
4784 	 * ensure we do not start a new discovery until an existing one is
4785 	 * complete.
4786 	 */
4787 	bool					in_progress;
4788 
4789 	/* Denotes if another discovery is needed after the one in progress
4790 	 * completes.  Set when we receive an AER completion while a discovery
4791 	 * is already in progress.
4792 	 */
4793 	bool					pending;
4794 
4795 	/* Signal to the discovery context poller that it should stop the
4796 	 * discovery service, including detaching from the current discovery
4797 	 * controller.
4798 	 */
4799 	bool					stop;
4800 
4801 	struct spdk_thread			*calling_thread;
4802 	uint32_t				index;
4803 	uint32_t				attach_in_progress;
4804 	char					*hostnqn;
4805 };
4806 
4807 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
4808 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
4809 
4810 static void get_discovery_log_page(struct discovery_ctx *ctx);
4811 
4812 static void
4813 free_discovery_ctx(struct discovery_ctx *ctx)
4814 {
4815 	free(ctx->hostnqn);
4816 	free(ctx->name);
4817 	free(ctx);
4818 }
4819 
4820 static void
4821 discovery_complete(struct discovery_ctx *ctx)
4822 {
4823 	ctx->in_progress = false;
4824 	if (ctx->pending) {
4825 		ctx->pending = false;
4826 		get_discovery_log_page(ctx);
4827 	}
4828 }
4829 
4830 static void
4831 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
4832 			       struct spdk_nvmf_discovery_log_page_entry *entry)
4833 {
4834 	char *space;
4835 
4836 	trid->trtype = entry->trtype;
4837 	trid->adrfam = entry->adrfam;
4838 	memcpy(trid->traddr, entry->traddr, sizeof(trid->traddr));
4839 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(trid->trsvcid));
4840 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn));
4841 
4842 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
4843 	 * But the log page entries typically pad them with spaces, not zeroes.
4844 	 * So add a NULL terminator to each of these fields at the appropriate
4845 	 * location.
4846 	 */
4847 	space = strchr(trid->traddr, ' ');
4848 	if (space) {
4849 		*space = 0;
4850 	}
4851 	space = strchr(trid->trsvcid, ' ');
4852 	if (space) {
4853 		*space = 0;
4854 	}
4855 	space = strchr(trid->subnqn, ' ');
4856 	if (space) {
4857 		*space = 0;
4858 	}
4859 }
4860 
4861 static void
4862 discovery_remove_controllers(struct discovery_ctx *ctx)
4863 {
4864 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
4865 	struct discovery_entry_ctx *entry_ctx, *tmp;
4866 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
4867 	struct spdk_nvme_transport_id old_trid;
4868 	uint64_t numrec, i;
4869 	bool found;
4870 
4871 	numrec = from_le64(&log_page->numrec);
4872 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
4873 		found = false;
4874 		old_entry = &entry_ctx->entry;
4875 		build_trid_from_log_page_entry(&old_trid, old_entry);
4876 		for (i = 0; i < numrec; i++) {
4877 			new_entry = &log_page->entries[i];
4878 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
4879 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
4880 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
4881 				found = true;
4882 				break;
4883 			}
4884 		}
4885 		if (!found) {
4886 			struct nvme_path_id path = {};
4887 
4888 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
4889 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
4890 
4891 			path.trid = entry_ctx->trid;
4892 			bdev_nvme_delete(entry_ctx->name, &path);
4893 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
4894 			free(entry_ctx);
4895 		}
4896 	}
4897 	free(log_page);
4898 	ctx->log_page = NULL;
4899 	discovery_complete(ctx);
4900 }
4901 
4902 static void
4903 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
4904 {
4905 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
4906 	struct discovery_ctx *ctx = entry_ctx->ctx;;
4907 
4908 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
4909 	ctx->attach_in_progress--;
4910 	if (ctx->attach_in_progress == 0) {
4911 		if (ctx->start_cb_fn) {
4912 			ctx->start_cb_fn(ctx->cb_ctx);
4913 			ctx->start_cb_fn = NULL;
4914 			ctx->cb_ctx = NULL;
4915 		}
4916 		discovery_remove_controllers(ctx);
4917 	}
4918 }
4919 
4920 static struct discovery_entry_ctx *
4921 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
4922 {
4923 	struct discovery_entry_ctx *new_ctx;
4924 
4925 	new_ctx = calloc(1, sizeof(*new_ctx));
4926 	if (new_ctx == NULL) {
4927 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
4928 		return NULL;
4929 	}
4930 
4931 	new_ctx->ctx = ctx;
4932 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
4933 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
4934 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
4935 	return new_ctx;
4936 }
4937 
4938 static void
4939 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
4940 		      struct spdk_nvmf_discovery_log_page *log_page)
4941 {
4942 	struct discovery_ctx *ctx = cb_arg;
4943 	struct discovery_entry_ctx *entry_ctx, *tmp;
4944 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
4945 	uint64_t numrec, i;
4946 	bool found;
4947 
4948 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
4949 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
4950 		return;
4951 	}
4952 
4953 	ctx->log_page = log_page;
4954 	assert(ctx->attach_in_progress == 0);
4955 	numrec = from_le64(&log_page->numrec);
4956 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
4957 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
4958 		free(entry_ctx);
4959 	}
4960 	for (i = 0; i < numrec; i++) {
4961 		found = false;
4962 		new_entry = &log_page->entries[i];
4963 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
4964 			struct discovery_entry_ctx *new_ctx;
4965 			struct spdk_nvme_transport_id trid;
4966 
4967 			build_trid_from_log_page_entry(&trid, new_entry);
4968 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
4969 			if (new_ctx == NULL) {
4970 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
4971 				break;
4972 			}
4973 
4974 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
4975 			continue;
4976 		}
4977 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
4978 			old_entry = &entry_ctx->entry;
4979 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
4980 				found = true;
4981 				break;
4982 			}
4983 		}
4984 		if (!found) {
4985 			struct discovery_entry_ctx *subnqn_ctx, *new_ctx;
4986 
4987 			TAILQ_FOREACH(subnqn_ctx, &ctx->nvm_entry_ctxs, tailq) {
4988 				if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
4989 					    sizeof(new_entry->subnqn))) {
4990 					break;
4991 				}
4992 			}
4993 
4994 			new_ctx = calloc(1, sizeof(*new_ctx));
4995 			if (new_ctx == NULL) {
4996 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
4997 				break;
4998 			}
4999 
5000 			new_ctx->ctx = ctx;
5001 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
5002 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
5003 			if (subnqn_ctx) {
5004 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
5005 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
5006 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
5007 						  new_ctx->name);
5008 			} else {
5009 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
5010 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
5011 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
5012 						  new_ctx->name);
5013 			}
5014 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
5015 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
5016 			rc = bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
5017 					      discovery_attach_controller_done, new_ctx,
5018 					      &new_ctx->drv_opts, &ctx->bdev_opts, true);
5019 			if (rc == 0) {
5020 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
5021 				ctx->attach_in_progress++;
5022 			} else {
5023 				DISCOVERY_ERRLOG(ctx, "bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
5024 			}
5025 		}
5026 	}
5027 
5028 	if (ctx->attach_in_progress == 0) {
5029 		discovery_remove_controllers(ctx);
5030 	}
5031 }
5032 
5033 static void
5034 get_discovery_log_page(struct discovery_ctx *ctx)
5035 {
5036 	int rc;
5037 
5038 	assert(ctx->in_progress == false);
5039 	ctx->in_progress = true;
5040 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
5041 	if (rc != 0) {
5042 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
5043 	}
5044 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
5045 }
5046 
5047 static void
5048 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5049 {
5050 	struct discovery_ctx *ctx = arg;
5051 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
5052 
5053 	if (spdk_nvme_cpl_is_error(cpl)) {
5054 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
5055 		return;
5056 	}
5057 
5058 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
5059 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
5060 		return;
5061 	}
5062 
5063 	DISCOVERY_INFOLOG(ctx, "got aer\n");
5064 	if (ctx->in_progress) {
5065 		ctx->pending = true;
5066 		return;
5067 	}
5068 
5069 	get_discovery_log_page(ctx);
5070 }
5071 
5072 static void
5073 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5074 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
5075 {
5076 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5077 	struct discovery_ctx *ctx;
5078 
5079 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
5080 
5081 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
5082 	ctx->probe_ctx = NULL;
5083 	ctx->ctrlr = ctrlr;
5084 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
5085 }
5086 
5087 static int
5088 discovery_poller(void *arg)
5089 {
5090 	struct discovery_ctx *ctx = arg;
5091 	struct spdk_nvme_transport_id *trid;
5092 	int rc;
5093 
5094 	if (ctx->detach_ctx) {
5095 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
5096 		if (rc != -EAGAIN) {
5097 			ctx->detach_ctx = NULL;
5098 			ctx->ctrlr = NULL;
5099 		}
5100 	} else if (ctx->stop) {
5101 		if (ctx->ctrlr != NULL) {
5102 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
5103 			if (rc == 0) {
5104 				return SPDK_POLLER_BUSY;
5105 			}
5106 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
5107 		}
5108 		spdk_poller_unregister(&ctx->poller);
5109 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
5110 		ctx->stop_cb_fn(ctx->cb_ctx);
5111 		free_discovery_ctx(ctx);
5112 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
5113 		assert(ctx->entry_ctx_in_use == NULL);
5114 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
5115 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
5116 		trid = &ctx->entry_ctx_in_use->trid;
5117 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
5118 		if (ctx->probe_ctx) {
5119 			spdk_poller_unregister(&ctx->poller);
5120 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
5121 		} else {
5122 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
5123 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
5124 			ctx->entry_ctx_in_use = NULL;
5125 		}
5126 	} else if (ctx->probe_ctx) {
5127 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
5128 		if (rc != -EAGAIN) {
5129 			DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
5130 			ctx->rc = rc;
5131 			if (rc == 0) {
5132 				get_discovery_log_page(ctx);
5133 			}
5134 		}
5135 	} else {
5136 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
5137 		if (rc < 0) {
5138 			spdk_poller_unregister(&ctx->poller);
5139 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
5140 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
5141 			ctx->entry_ctx_in_use = NULL;
5142 
5143 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
5144 			if (rc != 0) {
5145 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
5146 				ctx->ctrlr = NULL;
5147 			}
5148 		}
5149 	}
5150 
5151 	return SPDK_POLLER_BUSY;
5152 }
5153 
5154 static void
5155 start_discovery_poller(void *arg)
5156 {
5157 	struct discovery_ctx *ctx = arg;
5158 
5159 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
5160 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
5161 }
5162 
5163 int
5164 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
5165 			  const char *base_name,
5166 			  struct spdk_nvme_ctrlr_opts *drv_opts,
5167 			  struct nvme_ctrlr_opts *bdev_opts,
5168 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
5169 {
5170 	struct discovery_ctx *ctx;
5171 	struct discovery_entry_ctx *discovery_entry_ctx;
5172 
5173 	ctx = calloc(1, sizeof(*ctx));
5174 	if (ctx == NULL) {
5175 		return -ENOMEM;
5176 	}
5177 
5178 	ctx->name = strdup(base_name);
5179 	if (ctx->name == NULL) {
5180 		free_discovery_ctx(ctx);
5181 		return -ENOMEM;
5182 	}
5183 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
5184 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
5185 	ctx->bdev_opts.from_discovery_service = true;
5186 	ctx->calling_thread = spdk_get_thread();
5187 	if (ctx->start_cb_fn) {
5188 		/* We can use this when dumping json to denote if this RPC parameter
5189 		 * was specified or not.
5190 		 */
5191 		ctx->wait_for_attach = true;
5192 	}
5193 	ctx->start_cb_fn = cb_fn;
5194 	ctx->cb_ctx = cb_ctx;
5195 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
5196 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
5197 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
5198 	memcpy(&ctx->trid, trid, sizeof(*trid));
5199 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
5200 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
5201 	if (ctx->hostnqn == NULL) {
5202 		free_discovery_ctx(ctx);
5203 		return -ENOMEM;
5204 	}
5205 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
5206 	if (discovery_entry_ctx == NULL) {
5207 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
5208 		free_discovery_ctx(ctx);
5209 		return -ENOMEM;
5210 	}
5211 
5212 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
5213 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
5214 	return 0;
5215 }
5216 
5217 int
5218 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
5219 {
5220 	struct discovery_ctx *ctx;
5221 
5222 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
5223 		if (strcmp(name, ctx->name) == 0) {
5224 			if (ctx->stop) {
5225 				return -EALREADY;
5226 			}
5227 			ctx->stop = true;
5228 			ctx->stop_cb_fn = cb_fn;
5229 			ctx->cb_ctx = cb_ctx;
5230 			while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
5231 				struct discovery_entry_ctx *entry_ctx;
5232 				struct nvme_path_id path = {};
5233 
5234 				entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
5235 				path.trid = entry_ctx->trid;
5236 				bdev_nvme_delete(entry_ctx->name, &path);
5237 				TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
5238 				free(entry_ctx);
5239 			}
5240 			while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
5241 				struct discovery_entry_ctx *entry_ctx;
5242 
5243 				entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
5244 				TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
5245 				free(entry_ctx);
5246 			}
5247 			return 0;
5248 		}
5249 	}
5250 
5251 	return -ENOENT;
5252 }
5253 
5254 static int
5255 bdev_nvme_library_init(void)
5256 {
5257 	g_bdev_nvme_init_thread = spdk_get_thread();
5258 
5259 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
5260 				bdev_nvme_destroy_poll_group_cb,
5261 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
5262 
5263 	return 0;
5264 }
5265 
5266 static void
5267 bdev_nvme_fini_destruct_ctrlrs(void)
5268 {
5269 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5270 	struct nvme_ctrlr *nvme_ctrlr;
5271 
5272 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5273 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
5274 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
5275 			pthread_mutex_lock(&nvme_ctrlr->mutex);
5276 			if (nvme_ctrlr->destruct) {
5277 				/* This controller's destruction was already started
5278 				 * before the application started shutting down
5279 				 */
5280 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
5281 				continue;
5282 			}
5283 			nvme_ctrlr->destruct = true;
5284 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
5285 
5286 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
5287 					     nvme_ctrlr);
5288 		}
5289 	}
5290 
5291 	g_bdev_nvme_module_finish = true;
5292 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5293 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
5294 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
5295 		spdk_bdev_module_fini_done();
5296 		return;
5297 	}
5298 
5299 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5300 }
5301 
5302 static void
5303 check_discovery_fini(void *arg)
5304 {
5305 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
5306 		bdev_nvme_fini_destruct_ctrlrs();
5307 	}
5308 }
5309 
5310 static void
5311 bdev_nvme_library_fini(void)
5312 {
5313 	struct nvme_probe_skip_entry *entry, *entry_tmp;
5314 	struct discovery_ctx *ctx;
5315 
5316 	spdk_poller_unregister(&g_hotplug_poller);
5317 	free(g_hotplug_probe_ctx);
5318 	g_hotplug_probe_ctx = NULL;
5319 
5320 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
5321 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
5322 		free(entry);
5323 	}
5324 
5325 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
5326 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
5327 		bdev_nvme_fini_destruct_ctrlrs();
5328 	} else {
5329 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
5330 			ctx->stop = true;
5331 			ctx->stop_cb_fn = check_discovery_fini;
5332 		}
5333 	}
5334 }
5335 
5336 static void
5337 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
5338 {
5339 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5340 	struct spdk_bdev *bdev = bdev_io->bdev;
5341 	struct spdk_dif_ctx dif_ctx;
5342 	struct spdk_dif_error err_blk = {};
5343 	int rc;
5344 
5345 	rc = spdk_dif_ctx_init(&dif_ctx,
5346 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
5347 			       bdev->dif_is_head_of_md, bdev->dif_type, bdev->dif_check_flags,
5348 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0);
5349 	if (rc != 0) {
5350 		SPDK_ERRLOG("Initialization of DIF context failed\n");
5351 		return;
5352 	}
5353 
5354 	if (bdev->md_interleave) {
5355 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
5356 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
5357 	} else {
5358 		struct iovec md_iov = {
5359 			.iov_base	= bdev_io->u.bdev.md_buf,
5360 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
5361 		};
5362 
5363 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
5364 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
5365 	}
5366 
5367 	if (rc != 0) {
5368 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
5369 			    err_blk.err_type, err_blk.err_offset);
5370 	} else {
5371 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
5372 	}
5373 }
5374 
5375 static void
5376 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
5377 {
5378 	struct nvme_bdev_io *bio = ref;
5379 
5380 	if (spdk_nvme_cpl_is_success(cpl)) {
5381 		/* Run PI verification for read data buffer. */
5382 		bdev_nvme_verify_pi_error(bio);
5383 	}
5384 
5385 	/* Return original completion status */
5386 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
5387 }
5388 
5389 static void
5390 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
5391 {
5392 	struct nvme_bdev_io *bio = ref;
5393 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5394 	int ret;
5395 
5396 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
5397 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
5398 			    cpl->status.sct, cpl->status.sc);
5399 
5400 		/* Save completion status to use after verifying PI error. */
5401 		bio->cpl = *cpl;
5402 
5403 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
5404 			/* Read without PI checking to verify PI error. */
5405 			ret = bdev_nvme_no_pi_readv(bio,
5406 						    bdev_io->u.bdev.iovs,
5407 						    bdev_io->u.bdev.iovcnt,
5408 						    bdev_io->u.bdev.md_buf,
5409 						    bdev_io->u.bdev.num_blocks,
5410 						    bdev_io->u.bdev.offset_blocks);
5411 			if (ret == 0) {
5412 				return;
5413 			}
5414 		}
5415 	}
5416 
5417 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5418 }
5419 
5420 static void
5421 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
5422 {
5423 	struct nvme_bdev_io *bio = ref;
5424 
5425 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
5426 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
5427 			    cpl->status.sct, cpl->status.sc);
5428 		/* Run PI verification for write data buffer if PI error is detected. */
5429 		bdev_nvme_verify_pi_error(bio);
5430 	}
5431 
5432 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5433 }
5434 
5435 static void
5436 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
5437 {
5438 	struct nvme_bdev_io *bio = ref;
5439 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5440 
5441 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
5442 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
5443 	 */
5444 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
5445 
5446 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
5447 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
5448 			    cpl->status.sct, cpl->status.sc);
5449 		/* Run PI verification for zone append data buffer if PI error is detected. */
5450 		bdev_nvme_verify_pi_error(bio);
5451 	}
5452 
5453 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5454 }
5455 
5456 static void
5457 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
5458 {
5459 	struct nvme_bdev_io *bio = ref;
5460 
5461 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
5462 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
5463 			    cpl->status.sct, cpl->status.sc);
5464 		/* Run PI verification for compare data buffer if PI error is detected. */
5465 		bdev_nvme_verify_pi_error(bio);
5466 	}
5467 
5468 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5469 }
5470 
5471 static void
5472 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
5473 {
5474 	struct nvme_bdev_io *bio = ref;
5475 
5476 	/* Compare operation completion */
5477 	if (!bio->first_fused_completed) {
5478 		/* Save compare result for write callback */
5479 		bio->cpl = *cpl;
5480 		bio->first_fused_completed = true;
5481 		return;
5482 	}
5483 
5484 	/* Write operation completion */
5485 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
5486 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
5487 		 * complete the IO with the compare operation's status.
5488 		 */
5489 		if (!spdk_nvme_cpl_is_error(cpl)) {
5490 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
5491 		}
5492 
5493 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
5494 	} else {
5495 		bdev_nvme_io_complete_nvme_status(bio, cpl);
5496 	}
5497 }
5498 
5499 static void
5500 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
5501 {
5502 	struct nvme_bdev_io *bio = ref;
5503 
5504 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5505 }
5506 
5507 static int
5508 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
5509 {
5510 	switch (desc->zs) {
5511 	case SPDK_NVME_ZONE_STATE_EMPTY:
5512 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
5513 		break;
5514 	case SPDK_NVME_ZONE_STATE_IOPEN:
5515 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
5516 		break;
5517 	case SPDK_NVME_ZONE_STATE_EOPEN:
5518 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
5519 		break;
5520 	case SPDK_NVME_ZONE_STATE_CLOSED:
5521 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
5522 		break;
5523 	case SPDK_NVME_ZONE_STATE_RONLY:
5524 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
5525 		break;
5526 	case SPDK_NVME_ZONE_STATE_FULL:
5527 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
5528 		break;
5529 	case SPDK_NVME_ZONE_STATE_OFFLINE:
5530 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
5531 		break;
5532 	default:
5533 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
5534 		return -EIO;
5535 	}
5536 
5537 	info->zone_id = desc->zslba;
5538 	info->write_pointer = desc->wp;
5539 	info->capacity = desc->zcap;
5540 
5541 	return 0;
5542 }
5543 
5544 static void
5545 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
5546 {
5547 	struct nvme_bdev_io *bio = ref;
5548 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5549 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
5550 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
5551 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
5552 	uint64_t max_zones_per_buf, i;
5553 	uint32_t zone_report_bufsize;
5554 	struct spdk_nvme_ns *ns;
5555 	struct spdk_nvme_qpair *qpair;
5556 	int ret;
5557 
5558 	if (spdk_nvme_cpl_is_error(cpl)) {
5559 		goto out_complete_io_nvme_cpl;
5560 	}
5561 
5562 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
5563 		ret = -ENXIO;
5564 		goto out_complete_io_ret;
5565 	}
5566 
5567 	ns = bio->io_path->nvme_ns->ns;
5568 	qpair = bio->io_path->qpair->qpair;
5569 
5570 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
5571 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
5572 			    sizeof(bio->zone_report_buf->descs[0]);
5573 
5574 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
5575 		ret = -EINVAL;
5576 		goto out_complete_io_ret;
5577 	}
5578 
5579 	if (!bio->zone_report_buf->nr_zones) {
5580 		ret = -EINVAL;
5581 		goto out_complete_io_ret;
5582 	}
5583 
5584 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
5585 		ret = fill_zone_from_report(&info[bio->handled_zones],
5586 					    &bio->zone_report_buf->descs[i]);
5587 		if (ret) {
5588 			goto out_complete_io_ret;
5589 		}
5590 		bio->handled_zones++;
5591 	}
5592 
5593 	if (bio->handled_zones < zones_to_copy) {
5594 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
5595 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
5596 
5597 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
5598 		ret = spdk_nvme_zns_report_zones(ns, qpair,
5599 						 bio->zone_report_buf, zone_report_bufsize,
5600 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
5601 						 bdev_nvme_get_zone_info_done, bio);
5602 		if (!ret) {
5603 			return;
5604 		} else {
5605 			goto out_complete_io_ret;
5606 		}
5607 	}
5608 
5609 out_complete_io_nvme_cpl:
5610 	free(bio->zone_report_buf);
5611 	bio->zone_report_buf = NULL;
5612 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5613 	return;
5614 
5615 out_complete_io_ret:
5616 	free(bio->zone_report_buf);
5617 	bio->zone_report_buf = NULL;
5618 	bdev_nvme_io_complete(bio, ret);
5619 }
5620 
5621 static void
5622 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
5623 {
5624 	struct nvme_bdev_io *bio = ref;
5625 
5626 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5627 }
5628 
5629 static void
5630 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
5631 {
5632 	struct nvme_bdev_io *bio = ctx;
5633 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5634 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
5635 	struct nvme_bdev_channel *nbdev_ch;
5636 	struct nvme_ctrlr *nvme_ctrlr;
5637 	const struct spdk_nvme_ctrlr_data *cdata;
5638 	uint64_t delay_ms;
5639 
5640 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
5641 
5642 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
5643 		goto complete;
5644 	}
5645 
5646 	if (cpl->status.dnr != 0 || (g_opts.bdev_retry_count != -1 &&
5647 				     bio->retry_count >= g_opts.bdev_retry_count)) {
5648 		goto complete;
5649 	}
5650 
5651 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
5652 	nvme_ctrlr = bio->io_path->qpair->ctrlr;
5653 
5654 	if (spdk_nvme_cpl_is_path_error(cpl) ||
5655 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
5656 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
5657 		delay_ms = 0;
5658 	} else if (spdk_nvme_cpl_is_aborted_by_request(cpl)) {
5659 		goto complete;
5660 	} else {
5661 		bio->retry_count++;
5662 
5663 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
5664 
5665 		if (cpl->status.crd != 0) {
5666 			delay_ms = cdata->crdt[cpl->status.crd] * 100;
5667 		} else {
5668 			delay_ms = 0;
5669 		}
5670 	}
5671 
5672 	if (any_ctrlr_may_become_available(nbdev_ch)) {
5673 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
5674 		return;
5675 	}
5676 
5677 complete:
5678 	bio->retry_count = 0;
5679 	spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
5680 }
5681 
5682 static void
5683 bdev_nvme_abort_complete(void *ctx)
5684 {
5685 	struct nvme_bdev_io *bio = ctx;
5686 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5687 
5688 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
5689 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS);
5690 	} else {
5691 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
5692 	}
5693 }
5694 
5695 static void
5696 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
5697 {
5698 	struct nvme_bdev_io *bio = ref;
5699 
5700 	bio->cpl = *cpl;
5701 	spdk_thread_send_msg(bio->orig_thread, bdev_nvme_abort_complete, bio);
5702 }
5703 
5704 static void
5705 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
5706 {
5707 	struct nvme_bdev_io *bio = ref;
5708 
5709 	bio->cpl = *cpl;
5710 	spdk_thread_send_msg(bio->orig_thread,
5711 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
5712 }
5713 
5714 static void
5715 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
5716 {
5717 	struct nvme_bdev_io *bio = ref;
5718 	struct iovec *iov;
5719 
5720 	bio->iov_offset = sgl_offset;
5721 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
5722 		iov = &bio->iovs[bio->iovpos];
5723 		if (bio->iov_offset < iov->iov_len) {
5724 			break;
5725 		}
5726 
5727 		bio->iov_offset -= iov->iov_len;
5728 	}
5729 }
5730 
5731 static int
5732 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
5733 {
5734 	struct nvme_bdev_io *bio = ref;
5735 	struct iovec *iov;
5736 
5737 	assert(bio->iovpos < bio->iovcnt);
5738 
5739 	iov = &bio->iovs[bio->iovpos];
5740 
5741 	*address = iov->iov_base;
5742 	*length = iov->iov_len;
5743 
5744 	if (bio->iov_offset) {
5745 		assert(bio->iov_offset <= iov->iov_len);
5746 		*address += bio->iov_offset;
5747 		*length -= bio->iov_offset;
5748 	}
5749 
5750 	bio->iov_offset += *length;
5751 	if (bio->iov_offset == iov->iov_len) {
5752 		bio->iovpos++;
5753 		bio->iov_offset = 0;
5754 	}
5755 
5756 	return 0;
5757 }
5758 
5759 static void
5760 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
5761 {
5762 	struct nvme_bdev_io *bio = ref;
5763 	struct iovec *iov;
5764 
5765 	bio->fused_iov_offset = sgl_offset;
5766 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
5767 		iov = &bio->fused_iovs[bio->fused_iovpos];
5768 		if (bio->fused_iov_offset < iov->iov_len) {
5769 			break;
5770 		}
5771 
5772 		bio->fused_iov_offset -= iov->iov_len;
5773 	}
5774 }
5775 
5776 static int
5777 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
5778 {
5779 	struct nvme_bdev_io *bio = ref;
5780 	struct iovec *iov;
5781 
5782 	assert(bio->fused_iovpos < bio->fused_iovcnt);
5783 
5784 	iov = &bio->fused_iovs[bio->fused_iovpos];
5785 
5786 	*address = iov->iov_base;
5787 	*length = iov->iov_len;
5788 
5789 	if (bio->fused_iov_offset) {
5790 		assert(bio->fused_iov_offset <= iov->iov_len);
5791 		*address += bio->fused_iov_offset;
5792 		*length -= bio->fused_iov_offset;
5793 	}
5794 
5795 	bio->fused_iov_offset += *length;
5796 	if (bio->fused_iov_offset == iov->iov_len) {
5797 		bio->fused_iovpos++;
5798 		bio->fused_iov_offset = 0;
5799 	}
5800 
5801 	return 0;
5802 }
5803 
5804 static int
5805 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
5806 		      void *md, uint64_t lba_count, uint64_t lba)
5807 {
5808 	int rc;
5809 
5810 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
5811 		      lba_count, lba);
5812 
5813 	bio->iovs = iov;
5814 	bio->iovcnt = iovcnt;
5815 	bio->iovpos = 0;
5816 	bio->iov_offset = 0;
5817 
5818 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
5819 					    bio->io_path->qpair->qpair,
5820 					    lba, lba_count,
5821 					    bdev_nvme_no_pi_readv_done, bio, 0,
5822 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
5823 					    md, 0, 0);
5824 
5825 	if (rc != 0 && rc != -ENOMEM) {
5826 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
5827 	}
5828 	return rc;
5829 }
5830 
5831 static int
5832 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
5833 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
5834 		struct spdk_bdev_ext_io_opts *ext_opts)
5835 {
5836 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
5837 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
5838 	int rc;
5839 
5840 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
5841 		      lba_count, lba);
5842 
5843 	bio->iovs = iov;
5844 	bio->iovcnt = iovcnt;
5845 	bio->iovpos = 0;
5846 	bio->iov_offset = 0;
5847 
5848 	if (ext_opts) {
5849 		bio->ext_opts.size = sizeof(struct spdk_nvme_ns_cmd_ext_io_opts);
5850 		bio->ext_opts.memory_domain = ext_opts->memory_domain;
5851 		bio->ext_opts.memory_domain_ctx = ext_opts->memory_domain_ctx;
5852 		bio->ext_opts.io_flags = flags;
5853 		bio->ext_opts.metadata = md;
5854 
5855 		rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
5856 						bdev_nvme_readv_done, bio,
5857 						bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
5858 						&bio->ext_opts);
5859 	} else if (iovcnt == 1) {
5860 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base, md, lba,
5861 						   lba_count,
5862 						   bdev_nvme_readv_done, bio,
5863 						   flags,
5864 						   0, 0);
5865 	} else {
5866 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
5867 						    bdev_nvme_readv_done, bio, flags,
5868 						    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
5869 						    md, 0, 0);
5870 	}
5871 
5872 	if (rc != 0 && rc != -ENOMEM) {
5873 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
5874 	}
5875 	return rc;
5876 }
5877 
5878 static int
5879 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
5880 		 void *md, uint64_t lba_count, uint64_t lba,
5881 		 uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts)
5882 {
5883 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
5884 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
5885 	int rc;
5886 
5887 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
5888 		      lba_count, lba);
5889 
5890 	bio->iovs = iov;
5891 	bio->iovcnt = iovcnt;
5892 	bio->iovpos = 0;
5893 	bio->iov_offset = 0;
5894 
5895 	if (ext_opts) {
5896 		bio->ext_opts.size = sizeof(struct spdk_nvme_ns_cmd_ext_io_opts);
5897 		bio->ext_opts.memory_domain = ext_opts->memory_domain;
5898 		bio->ext_opts.memory_domain_ctx = ext_opts->memory_domain_ctx;
5899 		bio->ext_opts.io_flags = flags;
5900 		bio->ext_opts.metadata = md;
5901 
5902 		rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
5903 						 bdev_nvme_writev_done, bio,
5904 						 bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
5905 						 &bio->ext_opts);
5906 	} else if (iovcnt == 1) {
5907 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base, md, lba,
5908 						    lba_count,
5909 						    bdev_nvme_writev_done, bio,
5910 						    flags,
5911 						    0, 0);
5912 	} else {
5913 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
5914 						     bdev_nvme_writev_done, bio, flags,
5915 						     bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
5916 						     md, 0, 0);
5917 	}
5918 
5919 	if (rc != 0 && rc != -ENOMEM) {
5920 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
5921 	}
5922 	return rc;
5923 }
5924 
5925 static int
5926 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
5927 		       void *md, uint64_t lba_count, uint64_t zslba,
5928 		       uint32_t flags)
5929 {
5930 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
5931 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
5932 	int rc;
5933 
5934 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
5935 		      lba_count, zslba);
5936 
5937 	bio->iovs = iov;
5938 	bio->iovcnt = iovcnt;
5939 	bio->iovpos = 0;
5940 	bio->iov_offset = 0;
5941 
5942 	if (iovcnt == 1) {
5943 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
5944 						       lba_count,
5945 						       bdev_nvme_zone_appendv_done, bio,
5946 						       flags,
5947 						       0, 0);
5948 	} else {
5949 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
5950 							bdev_nvme_zone_appendv_done, bio, flags,
5951 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
5952 							md, 0, 0);
5953 	}
5954 
5955 	if (rc != 0 && rc != -ENOMEM) {
5956 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
5957 	}
5958 	return rc;
5959 }
5960 
5961 static int
5962 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
5963 		   void *md, uint64_t lba_count, uint64_t lba,
5964 		   uint32_t flags)
5965 {
5966 	int rc;
5967 
5968 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
5969 		      lba_count, lba);
5970 
5971 	bio->iovs = iov;
5972 	bio->iovcnt = iovcnt;
5973 	bio->iovpos = 0;
5974 	bio->iov_offset = 0;
5975 
5976 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
5977 					       bio->io_path->qpair->qpair,
5978 					       lba, lba_count,
5979 					       bdev_nvme_comparev_done, bio, flags,
5980 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
5981 					       md, 0, 0);
5982 
5983 	if (rc != 0 && rc != -ENOMEM) {
5984 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
5985 	}
5986 	return rc;
5987 }
5988 
5989 static int
5990 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
5991 			      struct iovec *write_iov, int write_iovcnt,
5992 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
5993 {
5994 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
5995 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
5996 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5997 	int rc;
5998 
5999 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
6000 		      lba_count, lba);
6001 
6002 	bio->iovs = cmp_iov;
6003 	bio->iovcnt = cmp_iovcnt;
6004 	bio->iovpos = 0;
6005 	bio->iov_offset = 0;
6006 	bio->fused_iovs = write_iov;
6007 	bio->fused_iovcnt = write_iovcnt;
6008 	bio->fused_iovpos = 0;
6009 	bio->fused_iov_offset = 0;
6010 
6011 	if (bdev_io->num_retries == 0) {
6012 		bio->first_fused_submitted = false;
6013 		bio->first_fused_completed = false;
6014 	}
6015 
6016 	if (!bio->first_fused_submitted) {
6017 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
6018 		memset(&bio->cpl, 0, sizeof(bio->cpl));
6019 
6020 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
6021 						       bdev_nvme_comparev_and_writev_done, bio, flags,
6022 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
6023 		if (rc == 0) {
6024 			bio->first_fused_submitted = true;
6025 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
6026 		} else {
6027 			if (rc != -ENOMEM) {
6028 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
6029 			}
6030 			return rc;
6031 		}
6032 	}
6033 
6034 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
6035 
6036 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
6037 					     bdev_nvme_comparev_and_writev_done, bio, flags,
6038 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
6039 	if (rc != 0 && rc != -ENOMEM) {
6040 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
6041 		rc = 0;
6042 	}
6043 
6044 	return rc;
6045 }
6046 
6047 static int
6048 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
6049 {
6050 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
6051 	struct spdk_nvme_dsm_range *range;
6052 	uint64_t offset, remaining;
6053 	uint64_t num_ranges_u64;
6054 	uint16_t num_ranges;
6055 	int rc;
6056 
6057 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
6058 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6059 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
6060 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
6061 		return -EINVAL;
6062 	}
6063 	num_ranges = (uint16_t)num_ranges_u64;
6064 
6065 	offset = offset_blocks;
6066 	remaining = num_blocks;
6067 	range = &dsm_ranges[0];
6068 
6069 	/* Fill max-size ranges until the remaining blocks fit into one range */
6070 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
6071 		range->attributes.raw = 0;
6072 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6073 		range->starting_lba = offset;
6074 
6075 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6076 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6077 		range++;
6078 	}
6079 
6080 	/* Final range describes the remaining blocks */
6081 	range->attributes.raw = 0;
6082 	range->length = remaining;
6083 	range->starting_lba = offset;
6084 
6085 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
6086 			bio->io_path->qpair->qpair,
6087 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
6088 			dsm_ranges, num_ranges,
6089 			bdev_nvme_queued_done, bio);
6090 
6091 	return rc;
6092 }
6093 
6094 static int
6095 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
6096 {
6097 	if (num_blocks > UINT16_MAX + 1) {
6098 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
6099 		return -EINVAL;
6100 	}
6101 
6102 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
6103 					     bio->io_path->qpair->qpair,
6104 					     offset_blocks, num_blocks,
6105 					     bdev_nvme_queued_done, bio,
6106 					     0);
6107 }
6108 
6109 static int
6110 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
6111 			struct spdk_bdev_zone_info *info)
6112 {
6113 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6114 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6115 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
6116 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
6117 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
6118 
6119 	if (zone_id % zone_size != 0) {
6120 		return -EINVAL;
6121 	}
6122 
6123 	if (num_zones > total_zones || !num_zones) {
6124 		return -EINVAL;
6125 	}
6126 
6127 	assert(!bio->zone_report_buf);
6128 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
6129 	if (!bio->zone_report_buf) {
6130 		return -ENOMEM;
6131 	}
6132 
6133 	bio->handled_zones = 0;
6134 
6135 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
6136 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
6137 					  bdev_nvme_get_zone_info_done, bio);
6138 }
6139 
6140 static int
6141 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
6142 			  enum spdk_bdev_zone_action action)
6143 {
6144 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6145 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6146 
6147 	switch (action) {
6148 	case SPDK_BDEV_ZONE_CLOSE:
6149 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
6150 						bdev_nvme_zone_management_done, bio);
6151 	case SPDK_BDEV_ZONE_FINISH:
6152 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
6153 						 bdev_nvme_zone_management_done, bio);
6154 	case SPDK_BDEV_ZONE_OPEN:
6155 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
6156 					       bdev_nvme_zone_management_done, bio);
6157 	case SPDK_BDEV_ZONE_RESET:
6158 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
6159 						bdev_nvme_zone_management_done, bio);
6160 	case SPDK_BDEV_ZONE_OFFLINE:
6161 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
6162 						  bdev_nvme_zone_management_done, bio);
6163 	default:
6164 		return -EINVAL;
6165 	}
6166 }
6167 
6168 static void
6169 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
6170 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
6171 {
6172 	struct nvme_io_path *io_path;
6173 	struct nvme_ctrlr *nvme_ctrlr;
6174 	uint32_t max_xfer_size;
6175 	int rc = -ENXIO;
6176 
6177 	/* Choose the first ctrlr which is not failed. */
6178 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
6179 		nvme_ctrlr = io_path->qpair->ctrlr;
6180 
6181 		/* We should skip any unavailable nvme_ctrlr rather than checking
6182 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
6183 		 */
6184 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
6185 			continue;
6186 		}
6187 
6188 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
6189 
6190 		if (nbytes > max_xfer_size) {
6191 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
6192 			rc = -EINVAL;
6193 			goto err;
6194 		}
6195 
6196 		bio->io_path = io_path;
6197 		bio->orig_thread = spdk_get_thread();
6198 
6199 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
6200 						   bdev_nvme_admin_passthru_done, bio);
6201 		if (rc == 0) {
6202 			return;
6203 		}
6204 	}
6205 
6206 err:
6207 	bdev_nvme_admin_passthru_complete(bio, rc);
6208 }
6209 
6210 static int
6211 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
6212 		      void *buf, size_t nbytes)
6213 {
6214 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6215 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6216 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
6217 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
6218 
6219 	if (nbytes > max_xfer_size) {
6220 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
6221 		return -EINVAL;
6222 	}
6223 
6224 	/*
6225 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
6226 	 * so fill it out automatically.
6227 	 */
6228 	cmd->nsid = spdk_nvme_ns_get_id(ns);
6229 
6230 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
6231 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
6232 }
6233 
6234 static int
6235 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
6236 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
6237 {
6238 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6239 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6240 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
6241 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
6242 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
6243 
6244 	if (nbytes > max_xfer_size) {
6245 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
6246 		return -EINVAL;
6247 	}
6248 
6249 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
6250 		SPDK_ERRLOG("invalid meta data buffer size\n");
6251 		return -EINVAL;
6252 	}
6253 
6254 	/*
6255 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
6256 	 * so fill it out automatically.
6257 	 */
6258 	cmd->nsid = spdk_nvme_ns_get_id(ns);
6259 
6260 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
6261 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
6262 }
6263 
6264 static void
6265 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
6266 		struct nvme_bdev_io *bio_to_abort)
6267 {
6268 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6269 	struct spdk_bdev_io *bdev_io_to_abort;
6270 	struct nvme_io_path *io_path;
6271 	struct nvme_ctrlr *nvme_ctrlr;
6272 	int rc = 0;
6273 
6274 	bio->orig_thread = spdk_get_thread();
6275 
6276 	/* Traverse the retry_io_list first. */
6277 	TAILQ_FOREACH(bdev_io_to_abort, &nbdev_ch->retry_io_list, module_link) {
6278 		if ((struct nvme_bdev_io *)bdev_io_to_abort->driver_ctx == bio_to_abort) {
6279 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io_to_abort, module_link);
6280 			spdk_bdev_io_complete(bdev_io_to_abort, SPDK_BDEV_IO_STATUS_ABORTED);
6281 
6282 			spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS);
6283 			return;
6284 		}
6285 	}
6286 
6287 	/* Even admin commands, they were submitted to only nvme_ctrlrs which were
6288 	 * on any io_path. So traverse the io_path list for not only I/O commands
6289 	 * but also admin commands.
6290 	 */
6291 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
6292 		nvme_ctrlr = io_path->qpair->ctrlr;
6293 
6294 		rc = spdk_nvme_ctrlr_cmd_abort_ext(nvme_ctrlr->ctrlr,
6295 						   io_path->qpair->qpair,
6296 						   bio_to_abort,
6297 						   bdev_nvme_abort_done, bio);
6298 		if (rc == -ENOENT) {
6299 			/* If no command was found in I/O qpair, the target command may be
6300 			 * admin command.
6301 			 */
6302 			rc = spdk_nvme_ctrlr_cmd_abort_ext(nvme_ctrlr->ctrlr,
6303 							   NULL,
6304 							   bio_to_abort,
6305 							   bdev_nvme_abort_done, bio);
6306 		}
6307 
6308 		if (rc != -ENOENT) {
6309 			break;
6310 		}
6311 	}
6312 
6313 	if (rc != 0) {
6314 		/* If no command was found or there was any error, complete the abort
6315 		 * request with failure.
6316 		 */
6317 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
6318 	}
6319 }
6320 
6321 static void
6322 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
6323 {
6324 	const char	*action;
6325 
6326 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
6327 		action = "reset";
6328 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
6329 		action = "abort";
6330 	} else {
6331 		action = "none";
6332 	}
6333 
6334 	spdk_json_write_object_begin(w);
6335 
6336 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
6337 
6338 	spdk_json_write_named_object_begin(w, "params");
6339 	spdk_json_write_named_string(w, "action_on_timeout", action);
6340 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
6341 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
6342 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
6343 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
6344 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
6345 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
6346 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
6347 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
6348 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
6349 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
6350 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
6351 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
6352 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
6353 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
6354 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
6355 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
6356 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
6357 	spdk_json_write_object_end(w);
6358 
6359 	spdk_json_write_object_end(w);
6360 }
6361 
6362 static void
6363 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
6364 {
6365 	struct spdk_nvme_transport_id trid;
6366 
6367 	spdk_json_write_object_begin(w);
6368 
6369 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
6370 
6371 	spdk_json_write_named_object_begin(w, "params");
6372 	spdk_json_write_named_string(w, "name", ctx->name);
6373 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
6374 
6375 	trid = ctx->trid;
6376 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
6377 	nvme_bdev_dump_trid_json(&trid, w);
6378 
6379 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
6380 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
6381 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
6382 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
6383 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
6384 	spdk_json_write_object_end(w);
6385 
6386 	spdk_json_write_object_end(w);
6387 }
6388 
6389 static void
6390 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
6391 		       struct nvme_ctrlr *nvme_ctrlr)
6392 {
6393 	struct spdk_nvme_transport_id	*trid;
6394 
6395 	if (nvme_ctrlr->opts.from_discovery_service) {
6396 		/* Do not emit an RPC for this - it will be implicitly
6397 		 * covered by a separate bdev_nvme_start_discovery RPC.
6398 		 */
6399 		return;
6400 	}
6401 
6402 	trid = &nvme_ctrlr->active_path_id->trid;
6403 
6404 	spdk_json_write_object_begin(w);
6405 
6406 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
6407 
6408 	spdk_json_write_named_object_begin(w, "params");
6409 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
6410 	nvme_bdev_dump_trid_json(trid, w);
6411 	spdk_json_write_named_bool(w, "prchk_reftag",
6412 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
6413 	spdk_json_write_named_bool(w, "prchk_guard",
6414 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
6415 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
6416 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
6417 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
6418 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
6419 
6420 	spdk_json_write_object_end(w);
6421 
6422 	spdk_json_write_object_end(w);
6423 }
6424 
6425 static void
6426 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
6427 {
6428 	spdk_json_write_object_begin(w);
6429 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
6430 
6431 	spdk_json_write_named_object_begin(w, "params");
6432 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
6433 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
6434 	spdk_json_write_object_end(w);
6435 
6436 	spdk_json_write_object_end(w);
6437 }
6438 
6439 static int
6440 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
6441 {
6442 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
6443 	struct nvme_ctrlr	*nvme_ctrlr;
6444 	struct discovery_ctx	*ctx;
6445 
6446 	bdev_nvme_opts_config_json(w);
6447 
6448 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6449 
6450 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
6451 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6452 			nvme_ctrlr_config_json(w, nvme_ctrlr);
6453 		}
6454 	}
6455 
6456 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6457 		bdev_nvme_discovery_config_json(w, ctx);
6458 	}
6459 
6460 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
6461 	 * before enabling hotplug poller.
6462 	 */
6463 	bdev_nvme_hotplug_config_json(w);
6464 
6465 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6466 	return 0;
6467 }
6468 
6469 struct spdk_nvme_ctrlr *
6470 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
6471 {
6472 	struct nvme_bdev *nbdev;
6473 	struct nvme_ns *nvme_ns;
6474 
6475 	if (!bdev || bdev->module != &nvme_if) {
6476 		return NULL;
6477 	}
6478 
6479 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
6480 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
6481 	assert(nvme_ns != NULL);
6482 
6483 	return nvme_ns->ctrlr->ctrlr;
6484 }
6485 
6486 void
6487 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
6488 {
6489 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
6490 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
6491 	const struct spdk_nvme_ctrlr_data *cdata;
6492 
6493 	spdk_json_write_object_begin(w);
6494 
6495 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
6496 
6497 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
6498 
6499 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
6500 
6501 	spdk_json_write_named_bool(w, "current", io_path == io_path->nbdev_ch->current_io_path);
6502 
6503 	spdk_json_write_named_bool(w, "connected", nvme_io_path_is_connected(io_path));
6504 
6505 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
6506 
6507 	spdk_json_write_object_end(w);
6508 }
6509 
6510 void
6511 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
6512 {
6513 	struct discovery_ctx *ctx;
6514 	struct discovery_entry_ctx *entry_ctx;
6515 
6516 	spdk_json_write_array_begin(w);
6517 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6518 		spdk_json_write_object_begin(w);
6519 		spdk_json_write_named_string(w, "name", ctx->name);
6520 
6521 		spdk_json_write_named_object_begin(w, "trid");
6522 		nvme_bdev_dump_trid_json(&ctx->trid, w);
6523 		spdk_json_write_object_end(w);
6524 
6525 		spdk_json_write_named_array_begin(w, "referrals");
6526 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
6527 			spdk_json_write_object_begin(w);
6528 			spdk_json_write_named_object_begin(w, "trid");
6529 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
6530 			spdk_json_write_object_end(w);
6531 			spdk_json_write_object_end(w);
6532 		}
6533 		spdk_json_write_array_end(w);
6534 
6535 		spdk_json_write_object_end(w);
6536 	}
6537 	spdk_json_write_array_end(w);
6538 }
6539 
6540 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
6541