xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision 34edd9f1bf5fda4c987f4500ddc3c9f50be32e7d)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  *   Copyright (c) 2022 Dell Inc, or its subsidiaries. All rights reserved.
6  */
7 
8 #include "spdk/stdinc.h"
9 
10 #include "bdev_nvme.h"
11 
12 #include "spdk/accel.h"
13 #include "spdk/config.h"
14 #include "spdk/endian.h"
15 #include "spdk/bdev.h"
16 #include "spdk/json.h"
17 #include "spdk/keyring.h"
18 #include "spdk/likely.h"
19 #include "spdk/nvme.h"
20 #include "spdk/nvme_ocssd.h"
21 #include "spdk/nvme_zns.h"
22 #include "spdk/opal.h"
23 #include "spdk/thread.h"
24 #include "spdk/trace.h"
25 #include "spdk/string.h"
26 #include "spdk/util.h"
27 #include "spdk/uuid.h"
28 
29 #include "spdk/bdev_module.h"
30 #include "spdk/log.h"
31 
32 #include "spdk_internal/usdt.h"
33 #include "spdk_internal/trace_defs.h"
34 
35 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
36 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
37 
38 #define NSID_STR_LEN 10
39 
40 #define SPDK_CONTROLLER_NAME_MAX 512
41 
42 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
43 
44 struct nvme_bdev_io {
45 	/** array of iovecs to transfer. */
46 	struct iovec *iovs;
47 
48 	/** Number of iovecs in iovs array. */
49 	int iovcnt;
50 
51 	/** Current iovec position. */
52 	int iovpos;
53 
54 	/** Offset in current iovec. */
55 	uint32_t iov_offset;
56 
57 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
58 	 *  being reset in a reset I/O.
59 	 */
60 	struct nvme_io_path *io_path;
61 
62 	/** array of iovecs to transfer. */
63 	struct iovec *fused_iovs;
64 
65 	/** Number of iovecs in iovs array. */
66 	int fused_iovcnt;
67 
68 	/** Current iovec position. */
69 	int fused_iovpos;
70 
71 	/** Offset in current iovec. */
72 	uint32_t fused_iov_offset;
73 
74 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
75 	struct spdk_nvme_cpl cpl;
76 
77 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
78 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
79 
80 	/** Keeps track if first of fused commands was submitted */
81 	bool first_fused_submitted;
82 
83 	/** Keeps track if first of fused commands was completed */
84 	bool first_fused_completed;
85 
86 	/** Temporary pointer to zone report buffer */
87 	struct spdk_nvme_zns_zone_report *zone_report_buf;
88 
89 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
90 	uint64_t handled_zones;
91 
92 	/** Expiration value in ticks to retry the current I/O. */
93 	uint64_t retry_ticks;
94 
95 	/* How many times the current I/O was retried. */
96 	int32_t retry_count;
97 
98 	/* Current tsc at submit time. */
99 	uint64_t submit_tsc;
100 };
101 
102 struct nvme_probe_skip_entry {
103 	struct spdk_nvme_transport_id		trid;
104 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
105 };
106 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
107 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
108 			g_skipped_nvme_ctrlrs);
109 
110 #define BDEV_NVME_DEFAULT_DIGESTS (SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA256) | \
111 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA384) | \
112 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA512))
113 
114 #define BDEV_NVME_DEFAULT_DHGROUPS (SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_NULL) | \
115 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_2048) | \
116 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_3072) | \
117 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_4096) | \
118 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_6144) | \
119 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_8192))
120 
121 static struct spdk_bdev_nvme_opts g_opts = {
122 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
123 	.timeout_us = 0,
124 	.timeout_admin_us = 0,
125 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
126 	.transport_retry_count = 4,
127 	.arbitration_burst = 0,
128 	.low_priority_weight = 0,
129 	.medium_priority_weight = 0,
130 	.high_priority_weight = 0,
131 	.nvme_adminq_poll_period_us = 10000ULL,
132 	.nvme_ioq_poll_period_us = 0,
133 	.io_queue_requests = 0,
134 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
135 	.bdev_retry_count = 3,
136 	.transport_ack_timeout = 0,
137 	.ctrlr_loss_timeout_sec = 0,
138 	.reconnect_delay_sec = 0,
139 	.fast_io_fail_timeout_sec = 0,
140 	.disable_auto_failback = false,
141 	.generate_uuids = false,
142 	.transport_tos = 0,
143 	.nvme_error_stat = false,
144 	.io_path_stat = false,
145 	.allow_accel_sequence = false,
146 	.dhchap_digests = BDEV_NVME_DEFAULT_DIGESTS,
147 	.dhchap_dhgroups = BDEV_NVME_DEFAULT_DHGROUPS,
148 };
149 
150 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
151 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
152 
153 static int g_hot_insert_nvme_controller_index = 0;
154 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
155 static bool g_nvme_hotplug_enabled = false;
156 struct spdk_thread *g_bdev_nvme_init_thread;
157 static struct spdk_poller *g_hotplug_poller;
158 static struct spdk_poller *g_hotplug_probe_poller;
159 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
160 
161 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
162 		struct nvme_async_probe_ctx *ctx);
163 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
164 		struct nvme_async_probe_ctx *ctx);
165 static int bdev_nvme_library_init(void);
166 static void bdev_nvme_library_fini(void);
167 static void _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch,
168 				      struct spdk_bdev_io *bdev_io);
169 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
170 				     struct spdk_bdev_io *bdev_io);
171 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
172 			   void *md, uint64_t lba_count, uint64_t lba,
173 			   uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
174 			   struct spdk_accel_sequence *seq);
175 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
176 				 void *md, uint64_t lba_count, uint64_t lba);
177 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
178 			    void *md, uint64_t lba_count, uint64_t lba,
179 			    uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
180 			    struct spdk_accel_sequence *seq,
181 			    union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13);
182 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
183 				  void *md, uint64_t lba_count,
184 				  uint64_t zslba, uint32_t flags);
185 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
186 			      void *md, uint64_t lba_count, uint64_t lba,
187 			      uint32_t flags);
188 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
189 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
190 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
191 		uint32_t flags);
192 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
193 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
194 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
195 				     enum spdk_bdev_zone_action action);
196 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
197 				     struct nvme_bdev_io *bio,
198 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
199 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
200 				 void *buf, size_t nbytes);
201 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
202 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
203 static int bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
204 				     struct iovec *iov, int iovcnt, size_t nbytes,
205 				     void *md_buf, size_t md_len);
206 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
207 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
208 static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio);
209 static int bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
210 static int bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
211 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
212 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
213 
214 static struct nvme_ns *nvme_ns_alloc(void);
215 static void nvme_ns_free(struct nvme_ns *ns);
216 
217 static int
218 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
219 {
220 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
221 }
222 
223 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
224 
225 struct spdk_nvme_qpair *
226 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
227 {
228 	struct nvme_ctrlr_channel *ctrlr_ch;
229 
230 	assert(ctrlr_io_ch != NULL);
231 
232 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
233 
234 	return ctrlr_ch->qpair->qpair;
235 }
236 
237 static int
238 bdev_nvme_get_ctx_size(void)
239 {
240 	return sizeof(struct nvme_bdev_io);
241 }
242 
243 static struct spdk_bdev_module nvme_if = {
244 	.name = "nvme",
245 	.async_fini = true,
246 	.module_init = bdev_nvme_library_init,
247 	.module_fini = bdev_nvme_library_fini,
248 	.config_json = bdev_nvme_config_json,
249 	.get_ctx_size = bdev_nvme_get_ctx_size,
250 
251 };
252 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
253 
254 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
255 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
256 bool g_bdev_nvme_module_finish;
257 
258 struct nvme_bdev_ctrlr *
259 nvme_bdev_ctrlr_get_by_name(const char *name)
260 {
261 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
262 
263 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
264 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
265 			break;
266 		}
267 	}
268 
269 	return nbdev_ctrlr;
270 }
271 
272 static struct nvme_ctrlr *
273 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
274 			  const struct spdk_nvme_transport_id *trid, const char *hostnqn)
275 {
276 	const struct spdk_nvme_ctrlr_opts *opts;
277 	struct nvme_ctrlr *nvme_ctrlr;
278 
279 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
280 		opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
281 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0 &&
282 		    strcmp(hostnqn, opts->hostnqn) == 0) {
283 			break;
284 		}
285 	}
286 
287 	return nvme_ctrlr;
288 }
289 
290 struct nvme_ctrlr *
291 nvme_bdev_ctrlr_get_ctrlr_by_id(struct nvme_bdev_ctrlr *nbdev_ctrlr,
292 				uint16_t cntlid)
293 {
294 	struct nvme_ctrlr *nvme_ctrlr;
295 	const struct spdk_nvme_ctrlr_data *cdata;
296 
297 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
298 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
299 		if (cdata->cntlid == cntlid) {
300 			break;
301 		}
302 	}
303 
304 	return nvme_ctrlr;
305 }
306 
307 static struct nvme_bdev *
308 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
309 {
310 	struct nvme_bdev *bdev;
311 
312 	pthread_mutex_lock(&g_bdev_nvme_mutex);
313 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
314 		if (bdev->nsid == nsid) {
315 			break;
316 		}
317 	}
318 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
319 
320 	return bdev;
321 }
322 
323 struct nvme_ns *
324 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
325 {
326 	struct nvme_ns ns;
327 
328 	assert(nsid > 0);
329 
330 	ns.id = nsid;
331 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
332 }
333 
334 struct nvme_ns *
335 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
336 {
337 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
338 }
339 
340 struct nvme_ns *
341 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
342 {
343 	if (ns == NULL) {
344 		return NULL;
345 	}
346 
347 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
348 }
349 
350 static struct nvme_ctrlr *
351 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid, const char *hostnqn)
352 {
353 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
354 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
355 
356 	pthread_mutex_lock(&g_bdev_nvme_mutex);
357 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
358 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid, hostnqn);
359 		if (nvme_ctrlr != NULL) {
360 			break;
361 		}
362 	}
363 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
364 
365 	return nvme_ctrlr;
366 }
367 
368 struct nvme_ctrlr *
369 nvme_ctrlr_get_by_name(const char *name)
370 {
371 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
372 	struct nvme_ctrlr *nvme_ctrlr = NULL;
373 
374 	if (name == NULL) {
375 		return NULL;
376 	}
377 
378 	pthread_mutex_lock(&g_bdev_nvme_mutex);
379 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
380 	if (nbdev_ctrlr != NULL) {
381 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
382 	}
383 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
384 
385 	return nvme_ctrlr;
386 }
387 
388 void
389 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
390 {
391 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
392 
393 	pthread_mutex_lock(&g_bdev_nvme_mutex);
394 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
395 		fn(nbdev_ctrlr, ctx);
396 	}
397 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
398 }
399 
400 void
401 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
402 {
403 	const char *trtype_str;
404 	const char *adrfam_str;
405 
406 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
407 	if (trtype_str) {
408 		spdk_json_write_named_string(w, "trtype", trtype_str);
409 	}
410 
411 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
412 	if (adrfam_str) {
413 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
414 	}
415 
416 	if (trid->traddr[0] != '\0') {
417 		spdk_json_write_named_string(w, "traddr", trid->traddr);
418 	}
419 
420 	if (trid->trsvcid[0] != '\0') {
421 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
422 	}
423 
424 	if (trid->subnqn[0] != '\0') {
425 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
426 	}
427 }
428 
429 static void
430 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
431 		       struct nvme_ctrlr *nvme_ctrlr)
432 {
433 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
434 	pthread_mutex_lock(&g_bdev_nvme_mutex);
435 
436 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
437 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
438 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
439 
440 		return;
441 	}
442 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
443 
444 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
445 
446 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
447 
448 	free(nbdev_ctrlr->name);
449 	free(nbdev_ctrlr);
450 }
451 
452 static void
453 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
454 {
455 	struct nvme_path_id *path_id, *tmp_path;
456 	struct nvme_ns *ns, *tmp_ns;
457 
458 	free(nvme_ctrlr->copied_ana_desc);
459 	spdk_free(nvme_ctrlr->ana_log_page);
460 
461 	if (nvme_ctrlr->opal_dev) {
462 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
463 		nvme_ctrlr->opal_dev = NULL;
464 	}
465 
466 	if (nvme_ctrlr->nbdev_ctrlr) {
467 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
468 	}
469 
470 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
471 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
472 		nvme_ns_free(ns);
473 	}
474 
475 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
476 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
477 		free(path_id);
478 	}
479 
480 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
481 	spdk_keyring_put_key(nvme_ctrlr->psk);
482 	spdk_keyring_put_key(nvme_ctrlr->dhchap_key);
483 	spdk_keyring_put_key(nvme_ctrlr->dhchap_ctrlr_key);
484 	free(nvme_ctrlr);
485 
486 	pthread_mutex_lock(&g_bdev_nvme_mutex);
487 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
488 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
489 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
490 		spdk_bdev_module_fini_done();
491 		return;
492 	}
493 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
494 }
495 
496 static int
497 nvme_detach_poller(void *arg)
498 {
499 	struct nvme_ctrlr *nvme_ctrlr = arg;
500 	int rc;
501 
502 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
503 	if (rc != -EAGAIN) {
504 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
505 		_nvme_ctrlr_delete(nvme_ctrlr);
506 	}
507 
508 	return SPDK_POLLER_BUSY;
509 }
510 
511 static void
512 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
513 {
514 	int rc;
515 
516 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
517 
518 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
519 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
520 
521 	/* If we got here, the reset/detach poller cannot be active */
522 	assert(nvme_ctrlr->reset_detach_poller == NULL);
523 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
524 					  nvme_ctrlr, 1000);
525 	if (nvme_ctrlr->reset_detach_poller == NULL) {
526 		SPDK_ERRLOG("Failed to register detach poller\n");
527 		goto error;
528 	}
529 
530 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
531 	if (rc != 0) {
532 		SPDK_ERRLOG("Failed to detach the NVMe controller\n");
533 		goto error;
534 	}
535 
536 	return;
537 error:
538 	/* We don't have a good way to handle errors here, so just do what we can and delete the
539 	 * controller without detaching the underlying NVMe device.
540 	 */
541 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
542 	_nvme_ctrlr_delete(nvme_ctrlr);
543 }
544 
545 static void
546 nvme_ctrlr_unregister_cb(void *io_device)
547 {
548 	struct nvme_ctrlr *nvme_ctrlr = io_device;
549 
550 	nvme_ctrlr_delete(nvme_ctrlr);
551 }
552 
553 static void
554 nvme_ctrlr_unregister(void *ctx)
555 {
556 	struct nvme_ctrlr *nvme_ctrlr = ctx;
557 
558 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
559 }
560 
561 static bool
562 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
563 {
564 	if (!nvme_ctrlr->destruct) {
565 		return false;
566 	}
567 
568 	if (nvme_ctrlr->ref > 0) {
569 		return false;
570 	}
571 
572 	if (nvme_ctrlr->resetting) {
573 		return false;
574 	}
575 
576 	if (nvme_ctrlr->ana_log_page_updating) {
577 		return false;
578 	}
579 
580 	if (nvme_ctrlr->io_path_cache_clearing) {
581 		return false;
582 	}
583 
584 	return true;
585 }
586 
587 static void
588 nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
589 {
590 	pthread_mutex_lock(&nvme_ctrlr->mutex);
591 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
592 
593 	assert(nvme_ctrlr->ref > 0);
594 	nvme_ctrlr->ref--;
595 
596 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
597 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
598 		return;
599 	}
600 
601 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
602 
603 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
604 }
605 
606 static void
607 bdev_nvme_clear_current_io_path(struct nvme_bdev_channel *nbdev_ch)
608 {
609 	nbdev_ch->current_io_path = NULL;
610 	nbdev_ch->rr_counter = 0;
611 }
612 
613 static struct nvme_io_path *
614 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
615 {
616 	struct nvme_io_path *io_path;
617 
618 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
619 		if (io_path->nvme_ns == nvme_ns) {
620 			break;
621 		}
622 	}
623 
624 	return io_path;
625 }
626 
627 static struct nvme_io_path *
628 nvme_io_path_alloc(void)
629 {
630 	struct nvme_io_path *io_path;
631 
632 	io_path = calloc(1, sizeof(*io_path));
633 	if (io_path == NULL) {
634 		SPDK_ERRLOG("Failed to alloc io_path.\n");
635 		return NULL;
636 	}
637 
638 	if (g_opts.io_path_stat) {
639 		io_path->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
640 		if (io_path->stat == NULL) {
641 			free(io_path);
642 			SPDK_ERRLOG("Failed to alloc io_path stat.\n");
643 			return NULL;
644 		}
645 		spdk_bdev_reset_io_stat(io_path->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
646 	}
647 
648 	return io_path;
649 }
650 
651 static void
652 nvme_io_path_free(struct nvme_io_path *io_path)
653 {
654 	free(io_path->stat);
655 	free(io_path);
656 }
657 
658 static int
659 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
660 {
661 	struct nvme_io_path *io_path;
662 	struct spdk_io_channel *ch;
663 	struct nvme_ctrlr_channel *ctrlr_ch;
664 	struct nvme_qpair *nvme_qpair;
665 
666 	io_path = nvme_io_path_alloc();
667 	if (io_path == NULL) {
668 		return -ENOMEM;
669 	}
670 
671 	io_path->nvme_ns = nvme_ns;
672 
673 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
674 	if (ch == NULL) {
675 		nvme_io_path_free(io_path);
676 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
677 		return -ENOMEM;
678 	}
679 
680 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
681 
682 	nvme_qpair = ctrlr_ch->qpair;
683 	assert(nvme_qpair != NULL);
684 
685 	io_path->qpair = nvme_qpair;
686 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
687 
688 	io_path->nbdev_ch = nbdev_ch;
689 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
690 
691 	bdev_nvme_clear_current_io_path(nbdev_ch);
692 
693 	return 0;
694 }
695 
696 static void
697 bdev_nvme_clear_retry_io_path(struct nvme_bdev_channel *nbdev_ch,
698 			      struct nvme_io_path *io_path)
699 {
700 	struct spdk_bdev_io *bdev_io;
701 	struct nvme_bdev_io *bio;
702 
703 	TAILQ_FOREACH(bdev_io, &nbdev_ch->retry_io_list, module_link) {
704 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
705 		if (bio->io_path == io_path) {
706 			bio->io_path = NULL;
707 		}
708 	}
709 }
710 
711 static void
712 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
713 {
714 	struct spdk_io_channel *ch;
715 	struct nvme_qpair *nvme_qpair;
716 	struct nvme_ctrlr_channel *ctrlr_ch;
717 	struct nvme_bdev *nbdev;
718 
719 	nbdev = spdk_io_channel_get_io_device(spdk_io_channel_from_ctx(nbdev_ch));
720 
721 	/* Add the statistics to nvme_ns before this path is destroyed. */
722 	pthread_mutex_lock(&nbdev->mutex);
723 	if (nbdev->ref != 0 && io_path->nvme_ns->stat != NULL && io_path->stat != NULL) {
724 		spdk_bdev_add_io_stat(io_path->nvme_ns->stat, io_path->stat);
725 	}
726 	pthread_mutex_unlock(&nbdev->mutex);
727 
728 	bdev_nvme_clear_current_io_path(nbdev_ch);
729 	bdev_nvme_clear_retry_io_path(nbdev_ch, io_path);
730 
731 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
732 	io_path->nbdev_ch = NULL;
733 
734 	nvme_qpair = io_path->qpair;
735 	assert(nvme_qpair != NULL);
736 
737 	ctrlr_ch = nvme_qpair->ctrlr_ch;
738 	assert(ctrlr_ch != NULL);
739 
740 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
741 	spdk_put_io_channel(ch);
742 
743 	/* After an io_path is removed, I/Os submitted to it may complete and update statistics
744 	 * of the io_path. To avoid heap-use-after-free error from this case, do not free the
745 	 * io_path here but free the io_path when the associated qpair is freed. It is ensured
746 	 * that all I/Os submitted to the io_path are completed when the associated qpair is freed.
747 	 */
748 }
749 
750 static void
751 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
752 {
753 	struct nvme_io_path *io_path, *tmp_io_path;
754 
755 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
756 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
757 	}
758 }
759 
760 static int
761 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
762 {
763 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
764 	struct nvme_bdev *nbdev = io_device;
765 	struct nvme_ns *nvme_ns;
766 	int rc;
767 
768 	STAILQ_INIT(&nbdev_ch->io_path_list);
769 	TAILQ_INIT(&nbdev_ch->retry_io_list);
770 
771 	pthread_mutex_lock(&nbdev->mutex);
772 
773 	nbdev_ch->mp_policy = nbdev->mp_policy;
774 	nbdev_ch->mp_selector = nbdev->mp_selector;
775 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
776 
777 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
778 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
779 		if (rc != 0) {
780 			pthread_mutex_unlock(&nbdev->mutex);
781 
782 			_bdev_nvme_delete_io_paths(nbdev_ch);
783 			return rc;
784 		}
785 	}
786 	pthread_mutex_unlock(&nbdev->mutex);
787 
788 	return 0;
789 }
790 
791 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
792  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
793  */
794 static inline void
795 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
796 			const struct spdk_nvme_cpl *cpl)
797 {
798 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
799 			  (uintptr_t)bdev_io);
800 	if (cpl) {
801 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
802 	} else {
803 		spdk_bdev_io_complete(bdev_io, status);
804 	}
805 }
806 
807 static void bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch);
808 
809 static void
810 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
811 {
812 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
813 
814 	bdev_nvme_abort_retry_ios(nbdev_ch);
815 	_bdev_nvme_delete_io_paths(nbdev_ch);
816 }
817 
818 static inline bool
819 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
820 {
821 	switch (io_type) {
822 	case SPDK_BDEV_IO_TYPE_RESET:
823 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
824 	case SPDK_BDEV_IO_TYPE_ABORT:
825 		return true;
826 	default:
827 		break;
828 	}
829 
830 	return false;
831 }
832 
833 static inline bool
834 nvme_ns_is_active(struct nvme_ns *nvme_ns)
835 {
836 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
837 		return false;
838 	}
839 
840 	if (spdk_unlikely(nvme_ns->ns == NULL)) {
841 		return false;
842 	}
843 
844 	return true;
845 }
846 
847 static inline bool
848 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
849 {
850 	if (spdk_unlikely(!nvme_ns_is_active(nvme_ns))) {
851 		return false;
852 	}
853 
854 	switch (nvme_ns->ana_state) {
855 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
856 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
857 		return true;
858 	default:
859 		break;
860 	}
861 
862 	return false;
863 }
864 
865 static inline bool
866 nvme_qpair_is_connected(struct nvme_qpair *nvme_qpair)
867 {
868 	if (spdk_unlikely(nvme_qpair->qpair == NULL)) {
869 		return false;
870 	}
871 
872 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
873 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
874 		return false;
875 	}
876 
877 	if (spdk_unlikely(nvme_qpair->ctrlr_ch->reset_iter != NULL)) {
878 		return false;
879 	}
880 
881 	return true;
882 }
883 
884 static inline bool
885 nvme_io_path_is_available(struct nvme_io_path *io_path)
886 {
887 	if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
888 		return false;
889 	}
890 
891 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
892 		return false;
893 	}
894 
895 	return true;
896 }
897 
898 static inline bool
899 nvme_ctrlr_is_failed(struct nvme_ctrlr *nvme_ctrlr)
900 {
901 	if (nvme_ctrlr->destruct) {
902 		return true;
903 	}
904 
905 	if (nvme_ctrlr->fast_io_fail_timedout) {
906 		return true;
907 	}
908 
909 	if (nvme_ctrlr->resetting) {
910 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
911 			return false;
912 		} else {
913 			return true;
914 		}
915 	}
916 
917 	if (nvme_ctrlr->reconnect_is_delayed) {
918 		return false;
919 	}
920 
921 	if (nvme_ctrlr->disabled) {
922 		return true;
923 	}
924 
925 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
926 		return true;
927 	} else {
928 		return false;
929 	}
930 }
931 
932 static bool
933 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
934 {
935 	if (nvme_ctrlr->destruct) {
936 		return false;
937 	}
938 
939 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
940 		return false;
941 	}
942 
943 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
944 		return false;
945 	}
946 
947 	if (nvme_ctrlr->disabled) {
948 		return false;
949 	}
950 
951 	return true;
952 }
953 
954 /* Simulate circular linked list. */
955 static inline struct nvme_io_path *
956 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
957 {
958 	struct nvme_io_path *next_path;
959 
960 	if (prev_path != NULL) {
961 		next_path = STAILQ_NEXT(prev_path, stailq);
962 		if (next_path != NULL) {
963 			return next_path;
964 		}
965 	}
966 
967 	return STAILQ_FIRST(&nbdev_ch->io_path_list);
968 }
969 
970 static struct nvme_io_path *
971 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
972 {
973 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
974 
975 	start = nvme_io_path_get_next(nbdev_ch, nbdev_ch->current_io_path);
976 
977 	io_path = start;
978 	do {
979 		if (spdk_likely(nvme_io_path_is_available(io_path))) {
980 			switch (io_path->nvme_ns->ana_state) {
981 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
982 				nbdev_ch->current_io_path = io_path;
983 				return io_path;
984 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
985 				if (non_optimized == NULL) {
986 					non_optimized = io_path;
987 				}
988 				break;
989 			default:
990 				assert(false);
991 				break;
992 			}
993 		}
994 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
995 	} while (io_path != start);
996 
997 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
998 		/* We come here only if there is no optimized path. Cache even non_optimized
999 		 * path for load balance across multiple non_optimized paths.
1000 		 */
1001 		nbdev_ch->current_io_path = non_optimized;
1002 	}
1003 
1004 	return non_optimized;
1005 }
1006 
1007 static struct nvme_io_path *
1008 _bdev_nvme_find_io_path_min_qd(struct nvme_bdev_channel *nbdev_ch)
1009 {
1010 	struct nvme_io_path *io_path;
1011 	struct nvme_io_path *optimized = NULL, *non_optimized = NULL;
1012 	uint32_t opt_min_qd = UINT32_MAX, non_opt_min_qd = UINT32_MAX;
1013 	uint32_t num_outstanding_reqs;
1014 
1015 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1016 		if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
1017 			/* The device is currently resetting. */
1018 			continue;
1019 		}
1020 
1021 		if (spdk_unlikely(!nvme_ns_is_active(io_path->nvme_ns))) {
1022 			continue;
1023 		}
1024 
1025 		num_outstanding_reqs = spdk_nvme_qpair_get_num_outstanding_reqs(io_path->qpair->qpair);
1026 		switch (io_path->nvme_ns->ana_state) {
1027 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
1028 			if (num_outstanding_reqs < opt_min_qd) {
1029 				opt_min_qd = num_outstanding_reqs;
1030 				optimized = io_path;
1031 			}
1032 			break;
1033 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1034 			if (num_outstanding_reqs < non_opt_min_qd) {
1035 				non_opt_min_qd = num_outstanding_reqs;
1036 				non_optimized = io_path;
1037 			}
1038 			break;
1039 		default:
1040 			break;
1041 		}
1042 	}
1043 
1044 	/* don't cache io path for BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH selector */
1045 	if (optimized != NULL) {
1046 		return optimized;
1047 	}
1048 
1049 	return non_optimized;
1050 }
1051 
1052 static inline struct nvme_io_path *
1053 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1054 {
1055 	if (spdk_likely(nbdev_ch->current_io_path != NULL)) {
1056 		if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE) {
1057 			return nbdev_ch->current_io_path;
1058 		} else if (nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1059 			if (++nbdev_ch->rr_counter < nbdev_ch->rr_min_io) {
1060 				return nbdev_ch->current_io_path;
1061 			}
1062 			nbdev_ch->rr_counter = 0;
1063 		}
1064 	}
1065 
1066 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE ||
1067 	    nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1068 		return _bdev_nvme_find_io_path(nbdev_ch);
1069 	} else {
1070 		return _bdev_nvme_find_io_path_min_qd(nbdev_ch);
1071 	}
1072 }
1073 
1074 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
1075  * or false otherwise.
1076  *
1077  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
1078  * is likely to be non-accessible now but may become accessible.
1079  *
1080  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
1081  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
1082  * when starting to reset it but it is set to failed when the reset failed. Hence, if
1083  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
1084  */
1085 static bool
1086 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
1087 {
1088 	struct nvme_io_path *io_path;
1089 
1090 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1091 		if (io_path->nvme_ns->ana_transition_timedout) {
1092 			continue;
1093 		}
1094 
1095 		if (nvme_qpair_is_connected(io_path->qpair) ||
1096 		    !nvme_ctrlr_is_failed(io_path->qpair->ctrlr)) {
1097 			return true;
1098 		}
1099 	}
1100 
1101 	return false;
1102 }
1103 
1104 static void
1105 bdev_nvme_retry_io(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
1106 {
1107 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1108 	struct spdk_io_channel *ch;
1109 
1110 	if (nbdev_io->io_path != NULL && nvme_io_path_is_available(nbdev_io->io_path)) {
1111 		_bdev_nvme_submit_request(nbdev_ch, bdev_io);
1112 	} else {
1113 		ch = spdk_io_channel_from_ctx(nbdev_ch);
1114 		bdev_nvme_submit_request(ch, bdev_io);
1115 	}
1116 }
1117 
1118 static int
1119 bdev_nvme_retry_ios(void *arg)
1120 {
1121 	struct nvme_bdev_channel *nbdev_ch = arg;
1122 	struct spdk_bdev_io *bdev_io, *tmp_bdev_io;
1123 	struct nvme_bdev_io *bio;
1124 	uint64_t now, delay_us;
1125 
1126 	now = spdk_get_ticks();
1127 
1128 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_bdev_io) {
1129 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1130 		if (bio->retry_ticks > now) {
1131 			break;
1132 		}
1133 
1134 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
1135 
1136 		bdev_nvme_retry_io(nbdev_ch, bdev_io);
1137 	}
1138 
1139 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1140 
1141 	bdev_io = TAILQ_FIRST(&nbdev_ch->retry_io_list);
1142 	if (bdev_io != NULL) {
1143 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1144 
1145 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
1146 
1147 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1148 					    delay_us);
1149 	}
1150 
1151 	return SPDK_POLLER_BUSY;
1152 }
1153 
1154 static void
1155 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
1156 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
1157 {
1158 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1159 	struct spdk_bdev_io *tmp_bdev_io;
1160 	struct nvme_bdev_io *tmp_bio;
1161 
1162 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
1163 
1164 	TAILQ_FOREACH_REVERSE(tmp_bdev_io, &nbdev_ch->retry_io_list, retry_io_head, module_link) {
1165 		tmp_bio = (struct nvme_bdev_io *)tmp_bdev_io->driver_ctx;
1166 
1167 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1168 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bdev_io, bdev_io,
1169 					   module_link);
1170 			return;
1171 		}
1172 	}
1173 
1174 	/* No earlier I/Os were found. This I/O must be the new head. */
1175 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bdev_io, module_link);
1176 
1177 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1178 
1179 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1180 				    delay_ms * 1000ULL);
1181 }
1182 
1183 static void
1184 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
1185 {
1186 	struct spdk_bdev_io *bdev_io, *tmp_io;
1187 
1188 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_io) {
1189 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
1190 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1191 	}
1192 
1193 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1194 }
1195 
1196 static int
1197 bdev_nvme_abort_retry_io(struct nvme_bdev_channel *nbdev_ch,
1198 			 struct nvme_bdev_io *bio_to_abort)
1199 {
1200 	struct spdk_bdev_io *bdev_io_to_abort;
1201 
1202 	TAILQ_FOREACH(bdev_io_to_abort, &nbdev_ch->retry_io_list, module_link) {
1203 		if ((struct nvme_bdev_io *)bdev_io_to_abort->driver_ctx == bio_to_abort) {
1204 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io_to_abort, module_link);
1205 			__bdev_nvme_io_complete(bdev_io_to_abort, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1206 			return 0;
1207 		}
1208 	}
1209 
1210 	return -ENOENT;
1211 }
1212 
1213 static void
1214 bdev_nvme_update_nvme_error_stat(struct spdk_bdev_io *bdev_io, const struct spdk_nvme_cpl *cpl)
1215 {
1216 	struct nvme_bdev *nbdev;
1217 	uint16_t sct, sc;
1218 
1219 	assert(spdk_nvme_cpl_is_error(cpl));
1220 
1221 	nbdev = bdev_io->bdev->ctxt;
1222 
1223 	if (nbdev->err_stat == NULL) {
1224 		return;
1225 	}
1226 
1227 	sct = cpl->status.sct;
1228 	sc = cpl->status.sc;
1229 
1230 	pthread_mutex_lock(&nbdev->mutex);
1231 
1232 	nbdev->err_stat->status_type[sct]++;
1233 	switch (sct) {
1234 	case SPDK_NVME_SCT_GENERIC:
1235 	case SPDK_NVME_SCT_COMMAND_SPECIFIC:
1236 	case SPDK_NVME_SCT_MEDIA_ERROR:
1237 	case SPDK_NVME_SCT_PATH:
1238 		nbdev->err_stat->status[sct][sc]++;
1239 		break;
1240 	default:
1241 		break;
1242 	}
1243 
1244 	pthread_mutex_unlock(&nbdev->mutex);
1245 }
1246 
1247 static inline void
1248 bdev_nvme_update_io_path_stat(struct nvme_bdev_io *bio)
1249 {
1250 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1251 	uint64_t num_blocks = bdev_io->u.bdev.num_blocks;
1252 	uint32_t blocklen = bdev_io->bdev->blocklen;
1253 	struct spdk_bdev_io_stat *stat;
1254 	uint64_t tsc_diff;
1255 
1256 	if (bio->io_path->stat == NULL) {
1257 		return;
1258 	}
1259 
1260 	tsc_diff = spdk_get_ticks() - bio->submit_tsc;
1261 	stat = bio->io_path->stat;
1262 
1263 	switch (bdev_io->type) {
1264 	case SPDK_BDEV_IO_TYPE_READ:
1265 		stat->bytes_read += num_blocks * blocklen;
1266 		stat->num_read_ops++;
1267 		stat->read_latency_ticks += tsc_diff;
1268 		if (stat->max_read_latency_ticks < tsc_diff) {
1269 			stat->max_read_latency_ticks = tsc_diff;
1270 		}
1271 		if (stat->min_read_latency_ticks > tsc_diff) {
1272 			stat->min_read_latency_ticks = tsc_diff;
1273 		}
1274 		break;
1275 	case SPDK_BDEV_IO_TYPE_WRITE:
1276 		stat->bytes_written += num_blocks * blocklen;
1277 		stat->num_write_ops++;
1278 		stat->write_latency_ticks += tsc_diff;
1279 		if (stat->max_write_latency_ticks < tsc_diff) {
1280 			stat->max_write_latency_ticks = tsc_diff;
1281 		}
1282 		if (stat->min_write_latency_ticks > tsc_diff) {
1283 			stat->min_write_latency_ticks = tsc_diff;
1284 		}
1285 		break;
1286 	case SPDK_BDEV_IO_TYPE_UNMAP:
1287 		stat->bytes_unmapped += num_blocks * blocklen;
1288 		stat->num_unmap_ops++;
1289 		stat->unmap_latency_ticks += tsc_diff;
1290 		if (stat->max_unmap_latency_ticks < tsc_diff) {
1291 			stat->max_unmap_latency_ticks = tsc_diff;
1292 		}
1293 		if (stat->min_unmap_latency_ticks > tsc_diff) {
1294 			stat->min_unmap_latency_ticks = tsc_diff;
1295 		}
1296 		break;
1297 	case SPDK_BDEV_IO_TYPE_ZCOPY:
1298 		/* Track the data in the start phase only */
1299 		if (!bdev_io->u.bdev.zcopy.start) {
1300 			break;
1301 		}
1302 		if (bdev_io->u.bdev.zcopy.populate) {
1303 			stat->bytes_read += num_blocks * blocklen;
1304 			stat->num_read_ops++;
1305 			stat->read_latency_ticks += tsc_diff;
1306 			if (stat->max_read_latency_ticks < tsc_diff) {
1307 				stat->max_read_latency_ticks = tsc_diff;
1308 			}
1309 			if (stat->min_read_latency_ticks > tsc_diff) {
1310 				stat->min_read_latency_ticks = tsc_diff;
1311 			}
1312 		} else {
1313 			stat->bytes_written += num_blocks * blocklen;
1314 			stat->num_write_ops++;
1315 			stat->write_latency_ticks += tsc_diff;
1316 			if (stat->max_write_latency_ticks < tsc_diff) {
1317 				stat->max_write_latency_ticks = tsc_diff;
1318 			}
1319 			if (stat->min_write_latency_ticks > tsc_diff) {
1320 				stat->min_write_latency_ticks = tsc_diff;
1321 			}
1322 		}
1323 		break;
1324 	case SPDK_BDEV_IO_TYPE_COPY:
1325 		stat->bytes_copied += num_blocks * blocklen;
1326 		stat->num_copy_ops++;
1327 		stat->copy_latency_ticks += tsc_diff;
1328 		if (stat->max_copy_latency_ticks < tsc_diff) {
1329 			stat->max_copy_latency_ticks = tsc_diff;
1330 		}
1331 		if (stat->min_copy_latency_ticks > tsc_diff) {
1332 			stat->min_copy_latency_ticks = tsc_diff;
1333 		}
1334 		break;
1335 	default:
1336 		break;
1337 	}
1338 }
1339 
1340 static bool
1341 bdev_nvme_check_retry_io(struct nvme_bdev_io *bio,
1342 			 const struct spdk_nvme_cpl *cpl,
1343 			 struct nvme_bdev_channel *nbdev_ch,
1344 			 uint64_t *_delay_ms)
1345 {
1346 	struct nvme_io_path *io_path = bio->io_path;
1347 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1348 	const struct spdk_nvme_ctrlr_data *cdata;
1349 
1350 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1351 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1352 	    !nvme_io_path_is_available(io_path) ||
1353 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1354 		bdev_nvme_clear_current_io_path(nbdev_ch);
1355 		bio->io_path = NULL;
1356 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1357 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1358 				io_path->nvme_ns->ana_state_updating = true;
1359 			}
1360 		}
1361 		if (!any_io_path_may_become_available(nbdev_ch)) {
1362 			return false;
1363 		}
1364 		*_delay_ms = 0;
1365 	} else {
1366 		bio->retry_count++;
1367 
1368 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1369 
1370 		if (cpl->status.crd != 0) {
1371 			*_delay_ms = cdata->crdt[cpl->status.crd] * 100;
1372 		} else {
1373 			*_delay_ms = 0;
1374 		}
1375 	}
1376 
1377 	return true;
1378 }
1379 
1380 static inline void
1381 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1382 				  const struct spdk_nvme_cpl *cpl)
1383 {
1384 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1385 	struct nvme_bdev_channel *nbdev_ch;
1386 	uint64_t delay_ms;
1387 
1388 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1389 
1390 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1391 		bdev_nvme_update_io_path_stat(bio);
1392 		goto complete;
1393 	}
1394 
1395 	/* Update error counts before deciding if retry is needed.
1396 	 * Hence, error counts may be more than the number of I/O errors.
1397 	 */
1398 	bdev_nvme_update_nvme_error_stat(bdev_io, cpl);
1399 
1400 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1401 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1402 		goto complete;
1403 	}
1404 
1405 	/* At this point we don't know whether the sequence was successfully executed or not, so we
1406 	 * cannot retry the IO */
1407 	if (bdev_io->u.bdev.accel_sequence != NULL) {
1408 		goto complete;
1409 	}
1410 
1411 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1412 
1413 	if (bdev_nvme_check_retry_io(bio, cpl, nbdev_ch, &delay_ms)) {
1414 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1415 		return;
1416 	}
1417 
1418 complete:
1419 	bio->retry_count = 0;
1420 	bio->submit_tsc = 0;
1421 	bdev_io->u.bdev.accel_sequence = NULL;
1422 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1423 }
1424 
1425 static inline void
1426 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1427 {
1428 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1429 	struct nvme_bdev_channel *nbdev_ch;
1430 	enum spdk_bdev_io_status io_status;
1431 
1432 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1433 
1434 	switch (rc) {
1435 	case 0:
1436 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1437 		break;
1438 	case -ENOMEM:
1439 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1440 		break;
1441 	case -ENXIO:
1442 		if (g_opts.bdev_retry_count == -1 || bio->retry_count < g_opts.bdev_retry_count) {
1443 			nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1444 
1445 			bdev_nvme_clear_current_io_path(nbdev_ch);
1446 			bio->io_path = NULL;
1447 
1448 			if (any_io_path_may_become_available(nbdev_ch)) {
1449 				bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1450 				return;
1451 			}
1452 		}
1453 
1454 	/* fallthrough */
1455 	default:
1456 		spdk_accel_sequence_abort(bdev_io->u.bdev.accel_sequence);
1457 		bdev_io->u.bdev.accel_sequence = NULL;
1458 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1459 		break;
1460 	}
1461 
1462 	bio->retry_count = 0;
1463 	bio->submit_tsc = 0;
1464 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1465 }
1466 
1467 static inline void
1468 bdev_nvme_admin_complete(struct nvme_bdev_io *bio, int rc)
1469 {
1470 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1471 	enum spdk_bdev_io_status io_status;
1472 
1473 	switch (rc) {
1474 	case 0:
1475 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1476 		break;
1477 	case -ENOMEM:
1478 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1479 		break;
1480 	case -ENXIO:
1481 	/* fallthrough */
1482 	default:
1483 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1484 		break;
1485 	}
1486 
1487 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1488 }
1489 
1490 static void
1491 bdev_nvme_clear_io_path_caches_done(struct spdk_io_channel_iter *i, int status)
1492 {
1493 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1494 
1495 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1496 
1497 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1498 	nvme_ctrlr->io_path_cache_clearing = false;
1499 
1500 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1501 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1502 		return;
1503 	}
1504 
1505 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1506 
1507 	nvme_ctrlr_unregister(nvme_ctrlr);
1508 }
1509 
1510 static void
1511 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1512 {
1513 	struct nvme_io_path *io_path;
1514 
1515 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1516 		if (io_path->nbdev_ch == NULL) {
1517 			continue;
1518 		}
1519 		bdev_nvme_clear_current_io_path(io_path->nbdev_ch);
1520 	}
1521 }
1522 
1523 static void
1524 bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i)
1525 {
1526 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1527 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1528 
1529 	assert(ctrlr_ch->qpair != NULL);
1530 
1531 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1532 
1533 	spdk_for_each_channel_continue(i, 0);
1534 }
1535 
1536 static void
1537 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1538 {
1539 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1540 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1541 	    nvme_ctrlr->io_path_cache_clearing) {
1542 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1543 		return;
1544 	}
1545 
1546 	nvme_ctrlr->io_path_cache_clearing = true;
1547 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1548 
1549 	spdk_for_each_channel(nvme_ctrlr,
1550 			      bdev_nvme_clear_io_path_cache,
1551 			      NULL,
1552 			      bdev_nvme_clear_io_path_caches_done);
1553 }
1554 
1555 static struct nvme_qpair *
1556 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1557 {
1558 	struct nvme_qpair *nvme_qpair;
1559 
1560 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1561 		if (nvme_qpair->qpair == qpair) {
1562 			break;
1563 		}
1564 	}
1565 
1566 	return nvme_qpair;
1567 }
1568 
1569 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1570 
1571 static void
1572 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1573 {
1574 	struct nvme_poll_group *group = poll_group_ctx;
1575 	struct nvme_qpair *nvme_qpair;
1576 	struct nvme_ctrlr_channel *ctrlr_ch;
1577 	int status;
1578 
1579 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1580 	if (nvme_qpair == NULL) {
1581 		return;
1582 	}
1583 
1584 	if (nvme_qpair->qpair != NULL) {
1585 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1586 		nvme_qpair->qpair = NULL;
1587 	}
1588 
1589 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1590 
1591 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1592 
1593 	if (ctrlr_ch != NULL) {
1594 		if (ctrlr_ch->reset_iter != NULL) {
1595 			/* We are in a full reset sequence. */
1596 			if (ctrlr_ch->connect_poller != NULL) {
1597 				/* qpair was failed to connect. Abort the reset sequence. */
1598 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was failed to connect. abort the reset ctrlr sequence.\n",
1599 					      qpair);
1600 				spdk_poller_unregister(&ctrlr_ch->connect_poller);
1601 				status = -1;
1602 			} else {
1603 				/* qpair was completed to disconnect. Just move to the next ctrlr_channel. */
1604 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1605 					      qpair);
1606 				status = 0;
1607 			}
1608 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, status);
1609 			ctrlr_ch->reset_iter = NULL;
1610 		} else {
1611 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1612 			SPDK_NOTICELOG("qpair %p was disconnected and freed. reset controller.\n", qpair);
1613 			bdev_nvme_failover_ctrlr(nvme_qpair->ctrlr);
1614 		}
1615 	} else {
1616 		/* In this case, ctrlr_channel is already deleted. */
1617 		SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed. delete nvme_qpair.\n", qpair);
1618 		nvme_qpair_delete(nvme_qpair);
1619 	}
1620 }
1621 
1622 static void
1623 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1624 {
1625 	struct nvme_qpair *nvme_qpair;
1626 
1627 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1628 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1629 			continue;
1630 		}
1631 
1632 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1633 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1634 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1635 		}
1636 	}
1637 }
1638 
1639 static int
1640 bdev_nvme_poll(void *arg)
1641 {
1642 	struct nvme_poll_group *group = arg;
1643 	int64_t num_completions;
1644 
1645 	if (group->collect_spin_stat && group->start_ticks == 0) {
1646 		group->start_ticks = spdk_get_ticks();
1647 	}
1648 
1649 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1650 			  bdev_nvme_disconnected_qpair_cb);
1651 	if (group->collect_spin_stat) {
1652 		if (num_completions > 0) {
1653 			if (group->end_ticks != 0) {
1654 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1655 				group->end_ticks = 0;
1656 			}
1657 			group->start_ticks = 0;
1658 		} else {
1659 			group->end_ticks = spdk_get_ticks();
1660 		}
1661 	}
1662 
1663 	if (spdk_unlikely(num_completions < 0)) {
1664 		bdev_nvme_check_io_qpairs(group);
1665 	}
1666 
1667 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1668 }
1669 
1670 static int bdev_nvme_poll_adminq(void *arg);
1671 
1672 static void
1673 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1674 {
1675 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1676 
1677 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1678 					  nvme_ctrlr, new_period_us);
1679 }
1680 
1681 static int
1682 bdev_nvme_poll_adminq(void *arg)
1683 {
1684 	int32_t rc;
1685 	struct nvme_ctrlr *nvme_ctrlr = arg;
1686 	nvme_ctrlr_disconnected_cb disconnected_cb;
1687 
1688 	assert(nvme_ctrlr != NULL);
1689 
1690 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1691 	if (rc < 0) {
1692 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1693 		nvme_ctrlr->disconnected_cb = NULL;
1694 
1695 		if (disconnected_cb != NULL) {
1696 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1697 							    g_opts.nvme_adminq_poll_period_us);
1698 			disconnected_cb(nvme_ctrlr);
1699 		} else {
1700 			bdev_nvme_failover_ctrlr(nvme_ctrlr);
1701 		}
1702 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1703 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1704 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1705 	}
1706 
1707 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1708 }
1709 
1710 static void
1711 nvme_bdev_free(void *io_device)
1712 {
1713 	struct nvme_bdev *nvme_disk = io_device;
1714 
1715 	pthread_mutex_destroy(&nvme_disk->mutex);
1716 	free(nvme_disk->disk.name);
1717 	free(nvme_disk->err_stat);
1718 	free(nvme_disk);
1719 }
1720 
1721 static int
1722 bdev_nvme_destruct(void *ctx)
1723 {
1724 	struct nvme_bdev *nvme_disk = ctx;
1725 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1726 
1727 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1728 
1729 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1730 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1731 
1732 		nvme_ns->bdev = NULL;
1733 
1734 		assert(nvme_ns->id > 0);
1735 
1736 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1737 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1738 
1739 			nvme_ctrlr_release(nvme_ns->ctrlr);
1740 			nvme_ns_free(nvme_ns);
1741 		} else {
1742 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1743 		}
1744 	}
1745 
1746 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1747 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1748 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1749 
1750 	spdk_io_device_unregister(nvme_disk, nvme_bdev_free);
1751 
1752 	return 0;
1753 }
1754 
1755 static int
1756 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1757 {
1758 	struct nvme_ctrlr *nvme_ctrlr;
1759 	struct spdk_nvme_io_qpair_opts opts;
1760 	struct spdk_nvme_qpair *qpair;
1761 	int rc;
1762 
1763 	nvme_ctrlr = nvme_qpair->ctrlr;
1764 
1765 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1766 	opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1767 	opts.create_only = true;
1768 	opts.async_mode = true;
1769 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1770 	g_opts.io_queue_requests = opts.io_queue_requests;
1771 
1772 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1773 	if (qpair == NULL) {
1774 		return -1;
1775 	}
1776 
1777 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1778 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1779 
1780 	assert(nvme_qpair->group != NULL);
1781 
1782 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1783 	if (rc != 0) {
1784 		SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
1785 		goto err;
1786 	}
1787 
1788 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1789 	if (rc != 0) {
1790 		SPDK_ERRLOG("Unable to connect I/O qpair.\n");
1791 		goto err;
1792 	}
1793 
1794 	nvme_qpair->qpair = qpair;
1795 
1796 	if (!g_opts.disable_auto_failback) {
1797 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1798 	}
1799 
1800 	return 0;
1801 
1802 err:
1803 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1804 
1805 	return rc;
1806 }
1807 
1808 static void bdev_nvme_reset_io_continue(void *cb_arg, int rc);
1809 
1810 static void
1811 bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
1812 {
1813 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1814 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1815 	int rc = 0;
1816 	struct spdk_bdev_io *bdev_io;
1817 	struct nvme_bdev_io *bio;
1818 
1819 	if (spdk_io_channel_iter_get_ctx(i) != NULL) {
1820 		rc = -1;
1821 	}
1822 
1823 	while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
1824 		bdev_io = TAILQ_FIRST(&ctrlr_ch->pending_resets);
1825 		TAILQ_REMOVE(&ctrlr_ch->pending_resets, bdev_io, module_link);
1826 
1827 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1828 		bdev_nvme_reset_io_continue(bio, rc);
1829 	}
1830 
1831 	spdk_for_each_channel_continue(i, 0);
1832 }
1833 
1834 /* This function marks the current trid as failed by storing the current ticks
1835  * and then sets the next trid to the active trid within a controller if exists.
1836  *
1837  * The purpose of the boolean return value is to request the caller to disconnect
1838  * the current trid now to try connecting the next trid.
1839  */
1840 static bool
1841 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove, bool start)
1842 {
1843 	struct nvme_path_id *path_id, *next_path;
1844 	int rc __attribute__((unused));
1845 
1846 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1847 	assert(path_id);
1848 	assert(path_id == nvme_ctrlr->active_path_id);
1849 	next_path = TAILQ_NEXT(path_id, link);
1850 
1851 	/* Update the last failed time. It means the trid is failed if its last
1852 	 * failed time is non-zero.
1853 	 */
1854 	path_id->last_failed_tsc = spdk_get_ticks();
1855 
1856 	if (next_path == NULL) {
1857 		/* There is no alternate trid within a controller. */
1858 		return false;
1859 	}
1860 
1861 	if (!start && nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1862 		/* Connect is not retried in a controller reset sequence. Connecting
1863 		 * the next trid will be done by the next bdev_nvme_failover_ctrlr() call.
1864 		 */
1865 		return false;
1866 	}
1867 
1868 	assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
1869 
1870 	SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr,
1871 		       path_id->trid.trsvcid,	next_path->trid.traddr, next_path->trid.trsvcid);
1872 
1873 	spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
1874 	nvme_ctrlr->active_path_id = next_path;
1875 	rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
1876 	assert(rc == 0);
1877 	TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
1878 	if (!remove) {
1879 		/** Shuffle the old trid to the end of the list and use the new one.
1880 		 * Allows for round robin through multiple connections.
1881 		 */
1882 		TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
1883 	} else {
1884 		free(path_id);
1885 	}
1886 
1887 	if (start || next_path->last_failed_tsc == 0) {
1888 		/* bdev_nvme_failover_ctrlr() is just called or the next trid is not failed
1889 		 * or used yet. Try the next trid now.
1890 		 */
1891 		return true;
1892 	}
1893 
1894 	if (spdk_get_ticks() > next_path->last_failed_tsc + spdk_get_ticks_hz() *
1895 	    nvme_ctrlr->opts.reconnect_delay_sec) {
1896 		/* Enough backoff passed since the next trid failed. Try the next trid now. */
1897 		return true;
1898 	}
1899 
1900 	/* The next trid will be tried after reconnect_delay_sec seconds. */
1901 	return false;
1902 }
1903 
1904 static bool
1905 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
1906 {
1907 	int32_t elapsed;
1908 
1909 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
1910 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
1911 		return false;
1912 	}
1913 
1914 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1915 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
1916 		return true;
1917 	} else {
1918 		return false;
1919 	}
1920 }
1921 
1922 static bool
1923 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
1924 {
1925 	uint32_t elapsed;
1926 
1927 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
1928 		return false;
1929 	}
1930 
1931 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1932 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
1933 		return true;
1934 	} else {
1935 		return false;
1936 	}
1937 }
1938 
1939 static void bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
1940 
1941 static void
1942 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
1943 {
1944 	int rc;
1945 
1946 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
1947 	if (rc != 0) {
1948 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
1949 		 * fail the reset sequence immediately.
1950 		 */
1951 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
1952 		return;
1953 	}
1954 
1955 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
1956 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
1957 	 */
1958 	assert(nvme_ctrlr->disconnected_cb == NULL);
1959 	nvme_ctrlr->disconnected_cb = cb_fn;
1960 
1961 	/* During disconnection, reduce the period to poll adminq more often. */
1962 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
1963 }
1964 
1965 enum bdev_nvme_op_after_reset {
1966 	OP_NONE,
1967 	OP_COMPLETE_PENDING_DESTRUCT,
1968 	OP_DESTRUCT,
1969 	OP_DELAYED_RECONNECT,
1970 	OP_FAILOVER,
1971 };
1972 
1973 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
1974 
1975 static _bdev_nvme_op_after_reset
1976 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
1977 {
1978 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1979 		/* Complete pending destruct after reset completes. */
1980 		return OP_COMPLETE_PENDING_DESTRUCT;
1981 	} else if (nvme_ctrlr->pending_failover) {
1982 		nvme_ctrlr->pending_failover = false;
1983 		nvme_ctrlr->reset_start_tsc = 0;
1984 		return OP_FAILOVER;
1985 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1986 		nvme_ctrlr->reset_start_tsc = 0;
1987 		return OP_NONE;
1988 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1989 		return OP_DESTRUCT;
1990 	} else {
1991 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
1992 			nvme_ctrlr->fast_io_fail_timedout = true;
1993 		}
1994 		return OP_DELAYED_RECONNECT;
1995 	}
1996 }
1997 
1998 static int bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
1999 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
2000 
2001 static int
2002 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
2003 {
2004 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2005 
2006 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
2007 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2008 
2009 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2010 
2011 	if (!nvme_ctrlr->reconnect_is_delayed) {
2012 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2013 		return SPDK_POLLER_BUSY;
2014 	}
2015 
2016 	nvme_ctrlr->reconnect_is_delayed = false;
2017 
2018 	if (nvme_ctrlr->destruct) {
2019 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2020 		return SPDK_POLLER_BUSY;
2021 	}
2022 
2023 	assert(nvme_ctrlr->resetting == false);
2024 	nvme_ctrlr->resetting = true;
2025 
2026 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2027 
2028 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2029 
2030 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2031 	return SPDK_POLLER_BUSY;
2032 }
2033 
2034 static void
2035 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
2036 {
2037 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2038 
2039 	assert(nvme_ctrlr->reconnect_is_delayed == false);
2040 	nvme_ctrlr->reconnect_is_delayed = true;
2041 
2042 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
2043 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
2044 					    nvme_ctrlr,
2045 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
2046 }
2047 
2048 static void remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr);
2049 
2050 static void
2051 _bdev_nvme_reset_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2052 {
2053 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2054 	bool success = spdk_io_channel_iter_get_ctx(i) == NULL;
2055 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2056 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2057 	enum bdev_nvme_op_after_reset op_after_reset;
2058 
2059 	assert(nvme_ctrlr->thread == spdk_get_thread());
2060 
2061 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2062 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2063 
2064 	if (!success) {
2065 		SPDK_ERRLOG("Resetting controller failed.\n");
2066 	} else {
2067 		SPDK_NOTICELOG("Resetting controller successful.\n");
2068 	}
2069 
2070 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2071 	nvme_ctrlr->resetting = false;
2072 	nvme_ctrlr->dont_retry = false;
2073 	nvme_ctrlr->in_failover = false;
2074 
2075 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
2076 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2077 
2078 	/* Delay callbacks when the next operation is a failover. */
2079 	if (ctrlr_op_cb_fn && op_after_reset != OP_FAILOVER) {
2080 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, success ? 0 : -1);
2081 	}
2082 
2083 	switch (op_after_reset) {
2084 	case OP_COMPLETE_PENDING_DESTRUCT:
2085 		nvme_ctrlr_unregister(nvme_ctrlr);
2086 		break;
2087 	case OP_DESTRUCT:
2088 		bdev_nvme_delete_ctrlr(nvme_ctrlr, false);
2089 		remove_discovery_entry(nvme_ctrlr);
2090 		break;
2091 	case OP_DELAYED_RECONNECT:
2092 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
2093 		break;
2094 	case OP_FAILOVER:
2095 		nvme_ctrlr->ctrlr_op_cb_fn = ctrlr_op_cb_fn;
2096 		nvme_ctrlr->ctrlr_op_cb_arg = ctrlr_op_cb_arg;
2097 		bdev_nvme_failover_ctrlr(nvme_ctrlr);
2098 		break;
2099 	default:
2100 		break;
2101 	}
2102 }
2103 
2104 static void
2105 bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
2106 {
2107 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2108 	if (!success) {
2109 		/* Connecting the active trid failed. Set the next alternate trid to the
2110 		 * active trid if it exists.
2111 		 */
2112 		if (bdev_nvme_failover_trid(nvme_ctrlr, false, false)) {
2113 			/* The next alternate trid exists and is ready to try. Try it now. */
2114 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
2115 
2116 			nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2117 			return;
2118 		}
2119 
2120 		/* We came here if there is no alternate trid or if the next trid exists but
2121 		 * is not ready to try. We will try the active trid after reconnect_delay_sec
2122 		 * seconds if it is non-zero or at the next reset call otherwise.
2123 		 */
2124 	} else {
2125 		/* Connecting the active trid succeeded. Clear the last failed time because it
2126 		 * means the trid is failed if its last failed time is non-zero.
2127 		 */
2128 		nvme_ctrlr->active_path_id->last_failed_tsc = 0;
2129 	}
2130 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2131 
2132 	/* Make sure we clear any pending resets before returning. */
2133 	spdk_for_each_channel(nvme_ctrlr,
2134 			      bdev_nvme_complete_pending_resets,
2135 			      success ? NULL : (void *)0x1,
2136 			      _bdev_nvme_reset_ctrlr_complete);
2137 }
2138 
2139 static void
2140 bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status)
2141 {
2142 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2143 
2144 	bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2145 }
2146 
2147 static void
2148 bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
2149 {
2150 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
2151 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
2152 	struct nvme_qpair *nvme_qpair;
2153 
2154 	nvme_qpair = ctrlr_ch->qpair;
2155 	assert(nvme_qpair != NULL);
2156 
2157 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2158 
2159 	if (nvme_qpair->qpair != NULL) {
2160 		if (nvme_qpair->ctrlr->dont_retry) {
2161 			spdk_nvme_qpair_set_abort_dnr(nvme_qpair->qpair, true);
2162 		}
2163 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
2164 
2165 		/* The current full reset sequence will move to the next
2166 		 * ctrlr_channel after the qpair is actually disconnected.
2167 		 */
2168 		assert(ctrlr_ch->reset_iter == NULL);
2169 		ctrlr_ch->reset_iter = i;
2170 	} else {
2171 		spdk_for_each_channel_continue(i, 0);
2172 	}
2173 }
2174 
2175 static void
2176 bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
2177 {
2178 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2179 
2180 	if (status == 0) {
2181 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, true);
2182 	} else {
2183 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
2184 		spdk_for_each_channel(nvme_ctrlr,
2185 				      bdev_nvme_reset_destroy_qpair,
2186 				      NULL,
2187 				      bdev_nvme_reset_create_qpairs_failed);
2188 	}
2189 }
2190 
2191 static int
2192 bdev_nvme_reset_check_qpair_connected(void *ctx)
2193 {
2194 	struct nvme_ctrlr_channel *ctrlr_ch = ctx;
2195 
2196 	if (ctrlr_ch->reset_iter == NULL) {
2197 		/* qpair was already failed to connect and the reset sequence is being aborted. */
2198 		assert(ctrlr_ch->connect_poller == NULL);
2199 		assert(ctrlr_ch->qpair->qpair == NULL);
2200 		return SPDK_POLLER_BUSY;
2201 	}
2202 
2203 	assert(ctrlr_ch->qpair->qpair != NULL);
2204 
2205 	if (!spdk_nvme_qpair_is_connected(ctrlr_ch->qpair->qpair)) {
2206 		return SPDK_POLLER_BUSY;
2207 	}
2208 
2209 	spdk_poller_unregister(&ctrlr_ch->connect_poller);
2210 
2211 	/* qpair was completed to connect. Move to the next ctrlr_channel */
2212 	spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2213 	ctrlr_ch->reset_iter = NULL;
2214 
2215 	if (!g_opts.disable_auto_failback) {
2216 		_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
2217 	}
2218 
2219 	return SPDK_POLLER_BUSY;
2220 }
2221 
2222 static void
2223 bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
2224 {
2225 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2226 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
2227 	int rc;
2228 
2229 	rc = bdev_nvme_create_qpair(ctrlr_ch->qpair);
2230 	if (rc == 0) {
2231 		ctrlr_ch->connect_poller = SPDK_POLLER_REGISTER(bdev_nvme_reset_check_qpair_connected,
2232 					   ctrlr_ch, 0);
2233 
2234 		/* The current full reset sequence will move to the next
2235 		 * ctrlr_channel after the qpair is actually connected.
2236 		 */
2237 		assert(ctrlr_ch->reset_iter == NULL);
2238 		ctrlr_ch->reset_iter = i;
2239 	} else {
2240 		spdk_for_each_channel_continue(i, rc);
2241 	}
2242 }
2243 
2244 static void
2245 nvme_ctrlr_check_namespaces(struct nvme_ctrlr *nvme_ctrlr)
2246 {
2247 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
2248 	struct nvme_ns *nvme_ns;
2249 
2250 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
2251 	     nvme_ns != NULL;
2252 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
2253 		if (!spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
2254 			SPDK_DEBUGLOG(bdev_nvme, "NSID %u was removed during reset.\n", nvme_ns->id);
2255 			/* NS can be added again. Just nullify nvme_ns->ns. */
2256 			nvme_ns->ns = NULL;
2257 		}
2258 	}
2259 }
2260 
2261 
2262 static int
2263 bdev_nvme_reconnect_ctrlr_poll(void *arg)
2264 {
2265 	struct nvme_ctrlr *nvme_ctrlr = arg;
2266 	int rc = -ETIMEDOUT;
2267 
2268 	if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2269 		/* Mark the ctrlr as failed. The next call to
2270 		 * spdk_nvme_ctrlr_reconnect_poll_async() will then
2271 		 * do the necessary cleanup and return failure.
2272 		 */
2273 		spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
2274 	}
2275 
2276 	rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
2277 	if (rc == -EAGAIN) {
2278 		return SPDK_POLLER_BUSY;
2279 	}
2280 
2281 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
2282 	if (rc == 0) {
2283 		nvme_ctrlr_check_namespaces(nvme_ctrlr);
2284 
2285 		/* Recreate all of the I/O queue pairs */
2286 		spdk_for_each_channel(nvme_ctrlr,
2287 				      bdev_nvme_reset_create_qpair,
2288 				      NULL,
2289 				      bdev_nvme_reset_create_qpairs_done);
2290 	} else {
2291 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2292 	}
2293 	return SPDK_POLLER_BUSY;
2294 }
2295 
2296 static void
2297 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2298 {
2299 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
2300 
2301 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
2302 	assert(nvme_ctrlr->reset_detach_poller == NULL);
2303 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
2304 					  nvme_ctrlr, 0);
2305 }
2306 
2307 static void
2308 bdev_nvme_reset_destroy_qpair_done(struct spdk_io_channel_iter *i, int status)
2309 {
2310 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2311 
2312 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
2313 	assert(status == 0);
2314 
2315 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2316 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2317 	} else {
2318 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2319 	}
2320 }
2321 
2322 static void
2323 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2324 {
2325 	spdk_for_each_channel(nvme_ctrlr,
2326 			      bdev_nvme_reset_destroy_qpair,
2327 			      NULL,
2328 			      bdev_nvme_reset_destroy_qpair_done);
2329 }
2330 
2331 static void
2332 bdev_nvme_reconnect_ctrlr_now(void *ctx)
2333 {
2334 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2335 
2336 	assert(nvme_ctrlr->resetting == true);
2337 	assert(nvme_ctrlr->thread == spdk_get_thread());
2338 
2339 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2340 
2341 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2342 
2343 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2344 }
2345 
2346 static void
2347 _bdev_nvme_reset_ctrlr(void *ctx)
2348 {
2349 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2350 
2351 	assert(nvme_ctrlr->resetting == true);
2352 	assert(nvme_ctrlr->thread == spdk_get_thread());
2353 
2354 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2355 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
2356 	} else {
2357 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
2358 	}
2359 }
2360 
2361 static int
2362 bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2363 {
2364 	spdk_msg_fn msg_fn;
2365 
2366 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2367 	if (nvme_ctrlr->destruct) {
2368 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2369 		return -ENXIO;
2370 	}
2371 
2372 	if (nvme_ctrlr->resetting) {
2373 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2374 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
2375 		return -EBUSY;
2376 	}
2377 
2378 	if (nvme_ctrlr->disabled) {
2379 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2380 		SPDK_NOTICELOG("Unable to perform reset. Controller is disabled.\n");
2381 		return -EALREADY;
2382 	}
2383 
2384 	nvme_ctrlr->resetting = true;
2385 	nvme_ctrlr->dont_retry = true;
2386 
2387 	if (nvme_ctrlr->reconnect_is_delayed) {
2388 		SPDK_DEBUGLOG(bdev_nvme, "Reconnect is already scheduled.\n");
2389 		msg_fn = bdev_nvme_reconnect_ctrlr_now;
2390 		nvme_ctrlr->reconnect_is_delayed = false;
2391 	} else {
2392 		msg_fn = _bdev_nvme_reset_ctrlr;
2393 		assert(nvme_ctrlr->reset_start_tsc == 0);
2394 	}
2395 
2396 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2397 
2398 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2399 
2400 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2401 	return 0;
2402 }
2403 
2404 static int
2405 bdev_nvme_enable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2406 {
2407 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2408 	if (nvme_ctrlr->destruct) {
2409 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2410 		return -ENXIO;
2411 	}
2412 
2413 	if (nvme_ctrlr->resetting) {
2414 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2415 		return -EBUSY;
2416 	}
2417 
2418 	if (!nvme_ctrlr->disabled) {
2419 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2420 		return -EALREADY;
2421 	}
2422 
2423 	nvme_ctrlr->disabled = false;
2424 	nvme_ctrlr->resetting = true;
2425 
2426 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2427 
2428 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2429 
2430 	spdk_thread_send_msg(nvme_ctrlr->thread, bdev_nvme_reconnect_ctrlr_now, nvme_ctrlr);
2431 	return 0;
2432 }
2433 
2434 static void
2435 _bdev_nvme_disable_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2436 {
2437 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2438 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2439 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2440 	enum bdev_nvme_op_after_reset op_after_disable;
2441 
2442 	assert(nvme_ctrlr->thread == spdk_get_thread());
2443 
2444 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2445 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2446 
2447 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2448 
2449 	nvme_ctrlr->resetting = false;
2450 	nvme_ctrlr->dont_retry = false;
2451 
2452 	op_after_disable = bdev_nvme_check_op_after_reset(nvme_ctrlr, true);
2453 
2454 	nvme_ctrlr->disabled = true;
2455 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2456 
2457 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2458 
2459 	if (ctrlr_op_cb_fn) {
2460 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, 0);
2461 	}
2462 
2463 	switch (op_after_disable) {
2464 	case OP_COMPLETE_PENDING_DESTRUCT:
2465 		nvme_ctrlr_unregister(nvme_ctrlr);
2466 		break;
2467 	default:
2468 		break;
2469 	}
2470 
2471 }
2472 
2473 static void
2474 bdev_nvme_disable_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr)
2475 {
2476 	/* Make sure we clear any pending resets before returning. */
2477 	spdk_for_each_channel(nvme_ctrlr,
2478 			      bdev_nvme_complete_pending_resets,
2479 			      NULL,
2480 			      _bdev_nvme_disable_ctrlr_complete);
2481 }
2482 
2483 static void
2484 bdev_nvme_disable_destroy_qpairs_done(struct spdk_io_channel_iter *i, int status)
2485 {
2486 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2487 
2488 	assert(status == 0);
2489 
2490 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2491 		bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2492 	} else {
2493 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_ctrlr_complete);
2494 	}
2495 }
2496 
2497 static void
2498 bdev_nvme_disable_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2499 {
2500 	spdk_for_each_channel(nvme_ctrlr,
2501 			      bdev_nvme_reset_destroy_qpair,
2502 			      NULL,
2503 			      bdev_nvme_disable_destroy_qpairs_done);
2504 }
2505 
2506 static void
2507 _bdev_nvme_cancel_reconnect_and_disable_ctrlr(void *ctx)
2508 {
2509 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2510 
2511 	assert(nvme_ctrlr->resetting == true);
2512 	assert(nvme_ctrlr->thread == spdk_get_thread());
2513 
2514 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2515 
2516 	bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2517 }
2518 
2519 static void
2520 _bdev_nvme_disconnect_and_disable_ctrlr(void *ctx)
2521 {
2522 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2523 
2524 	assert(nvme_ctrlr->resetting == true);
2525 	assert(nvme_ctrlr->thread == spdk_get_thread());
2526 
2527 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2528 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_destroy_qpairs);
2529 	} else {
2530 		bdev_nvme_disable_destroy_qpairs(nvme_ctrlr);
2531 	}
2532 }
2533 
2534 static int
2535 bdev_nvme_disable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2536 {
2537 	spdk_msg_fn msg_fn;
2538 
2539 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2540 	if (nvme_ctrlr->destruct) {
2541 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2542 		return -ENXIO;
2543 	}
2544 
2545 	if (nvme_ctrlr->resetting) {
2546 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2547 		return -EBUSY;
2548 	}
2549 
2550 	if (nvme_ctrlr->disabled) {
2551 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2552 		return -EALREADY;
2553 	}
2554 
2555 	nvme_ctrlr->resetting = true;
2556 	nvme_ctrlr->dont_retry = true;
2557 
2558 	if (nvme_ctrlr->reconnect_is_delayed) {
2559 		msg_fn = _bdev_nvme_cancel_reconnect_and_disable_ctrlr;
2560 		nvme_ctrlr->reconnect_is_delayed = false;
2561 	} else {
2562 		msg_fn = _bdev_nvme_disconnect_and_disable_ctrlr;
2563 	}
2564 
2565 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2566 
2567 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2568 
2569 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2570 	return 0;
2571 }
2572 
2573 static int
2574 nvme_ctrlr_op(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2575 	      bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2576 {
2577 	int rc;
2578 
2579 	switch (op) {
2580 	case NVME_CTRLR_OP_RESET:
2581 		rc = bdev_nvme_reset_ctrlr(nvme_ctrlr);
2582 		break;
2583 	case NVME_CTRLR_OP_ENABLE:
2584 		rc = bdev_nvme_enable_ctrlr(nvme_ctrlr);
2585 		break;
2586 	case NVME_CTRLR_OP_DISABLE:
2587 		rc = bdev_nvme_disable_ctrlr(nvme_ctrlr);
2588 		break;
2589 	default:
2590 		rc = -EINVAL;
2591 		break;
2592 	}
2593 
2594 	if (rc == 0) {
2595 		assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL);
2596 		assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL);
2597 		nvme_ctrlr->ctrlr_op_cb_fn = cb_fn;
2598 		nvme_ctrlr->ctrlr_op_cb_arg = cb_arg;
2599 	}
2600 	return rc;
2601 }
2602 
2603 struct nvme_ctrlr_op_rpc_ctx {
2604 	struct nvme_ctrlr *nvme_ctrlr;
2605 	struct spdk_thread *orig_thread;
2606 	enum nvme_ctrlr_op op;
2607 	int rc;
2608 	bdev_nvme_ctrlr_op_cb cb_fn;
2609 	void *cb_arg;
2610 };
2611 
2612 static void
2613 _nvme_ctrlr_op_rpc_complete(void *_ctx)
2614 {
2615 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2616 
2617 	assert(ctx != NULL);
2618 	assert(ctx->cb_fn != NULL);
2619 
2620 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2621 
2622 	free(ctx);
2623 }
2624 
2625 static void
2626 nvme_ctrlr_op_rpc_complete(void *cb_arg, int rc)
2627 {
2628 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2629 
2630 	ctx->rc = rc;
2631 
2632 	spdk_thread_send_msg(ctx->orig_thread, _nvme_ctrlr_op_rpc_complete, ctx);
2633 }
2634 
2635 void
2636 nvme_ctrlr_op_rpc(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2637 		  bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2638 {
2639 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2640 	int rc;
2641 
2642 	assert(cb_fn != NULL);
2643 
2644 	ctx = calloc(1, sizeof(*ctx));
2645 	if (ctx == NULL) {
2646 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2647 		cb_fn(cb_arg, -ENOMEM);
2648 		return;
2649 	}
2650 
2651 	ctx->orig_thread = spdk_get_thread();
2652 	ctx->cb_fn = cb_fn;
2653 	ctx->cb_arg = cb_arg;
2654 
2655 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_ctrlr_op_rpc_complete, ctx);
2656 	if (rc == 0) {
2657 		return;
2658 	} else if (rc == -EALREADY) {
2659 		rc = 0;
2660 	}
2661 
2662 	nvme_ctrlr_op_rpc_complete(ctx, rc);
2663 }
2664 
2665 static void nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc);
2666 
2667 static void
2668 _nvme_bdev_ctrlr_op_rpc_continue(void *_ctx)
2669 {
2670 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2671 	struct nvme_ctrlr *prev_nvme_ctrlr, *next_nvme_ctrlr;
2672 	int rc;
2673 
2674 	prev_nvme_ctrlr = ctx->nvme_ctrlr;
2675 	ctx->nvme_ctrlr = NULL;
2676 
2677 	if (ctx->rc != 0) {
2678 		goto complete;
2679 	}
2680 
2681 	next_nvme_ctrlr = TAILQ_NEXT(prev_nvme_ctrlr, tailq);
2682 	if (next_nvme_ctrlr == NULL) {
2683 		goto complete;
2684 	}
2685 
2686 	rc = nvme_ctrlr_op(next_nvme_ctrlr, ctx->op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2687 	if (rc == 0) {
2688 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2689 		return;
2690 	} else if (rc == -EALREADY) {
2691 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2692 		rc = 0;
2693 	}
2694 
2695 	ctx->rc = rc;
2696 
2697 complete:
2698 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2699 	free(ctx);
2700 }
2701 
2702 static void
2703 nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc)
2704 {
2705 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2706 
2707 	ctx->rc = rc;
2708 
2709 	spdk_thread_send_msg(ctx->orig_thread, _nvme_bdev_ctrlr_op_rpc_continue, ctx);
2710 }
2711 
2712 void
2713 nvme_bdev_ctrlr_op_rpc(struct nvme_bdev_ctrlr *nbdev_ctrlr, enum nvme_ctrlr_op op,
2714 		       bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2715 {
2716 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2717 	struct nvme_ctrlr *nvme_ctrlr;
2718 	int rc;
2719 
2720 	assert(cb_fn != NULL);
2721 
2722 	ctx = calloc(1, sizeof(*ctx));
2723 	if (ctx == NULL) {
2724 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2725 		cb_fn(cb_arg, -ENOMEM);
2726 		return;
2727 	}
2728 
2729 	ctx->orig_thread = spdk_get_thread();
2730 	ctx->op = op;
2731 	ctx->cb_fn = cb_fn;
2732 	ctx->cb_arg = cb_arg;
2733 
2734 	nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
2735 	assert(nvme_ctrlr != NULL);
2736 
2737 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2738 	if (rc == 0) {
2739 		ctx->nvme_ctrlr = nvme_ctrlr;
2740 		return;
2741 	} else if (rc == -EALREADY) {
2742 		ctx->nvme_ctrlr = nvme_ctrlr;
2743 		rc = 0;
2744 	}
2745 
2746 	nvme_bdev_ctrlr_op_rpc_continue(ctx, rc);
2747 }
2748 
2749 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
2750 
2751 static void
2752 _bdev_nvme_reset_io_complete(struct spdk_io_channel_iter *i, int status)
2753 {
2754 	struct nvme_bdev_io *bio = spdk_io_channel_iter_get_ctx(i);
2755 	enum spdk_bdev_io_status io_status;
2756 
2757 	if (bio->cpl.cdw0 == 0) {
2758 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2759 	} else {
2760 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
2761 	}
2762 
2763 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
2764 }
2765 
2766 static void
2767 bdev_nvme_abort_bdev_channel(struct spdk_io_channel_iter *i)
2768 {
2769 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2770 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
2771 
2772 	bdev_nvme_abort_retry_ios(nbdev_ch);
2773 
2774 	spdk_for_each_channel_continue(i, 0);
2775 }
2776 
2777 static void
2778 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
2779 {
2780 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2781 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
2782 
2783 	/* Abort all queued I/Os for retry. */
2784 	spdk_for_each_channel(nbdev,
2785 			      bdev_nvme_abort_bdev_channel,
2786 			      bio,
2787 			      _bdev_nvme_reset_io_complete);
2788 }
2789 
2790 static void
2791 _bdev_nvme_reset_io_continue(void *ctx)
2792 {
2793 	struct nvme_bdev_io *bio = ctx;
2794 	struct nvme_io_path *prev_io_path, *next_io_path;
2795 	int rc;
2796 
2797 	prev_io_path = bio->io_path;
2798 	bio->io_path = NULL;
2799 
2800 	if (bio->cpl.cdw0 != 0) {
2801 		goto complete;
2802 	}
2803 
2804 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
2805 	if (next_io_path == NULL) {
2806 		goto complete;
2807 	}
2808 
2809 	rc = _bdev_nvme_reset_io(next_io_path, bio);
2810 	if (rc == 0) {
2811 		return;
2812 	}
2813 
2814 	bio->cpl.cdw0 = 1;
2815 
2816 complete:
2817 	bdev_nvme_reset_io_complete(bio);
2818 }
2819 
2820 static void
2821 bdev_nvme_reset_io_continue(void *cb_arg, int rc)
2822 {
2823 	struct nvme_bdev_io *bio = cb_arg;
2824 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2825 
2826 	bio->cpl.cdw0 = (rc == 0) ? 0 : 1;
2827 
2828 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), _bdev_nvme_reset_io_continue, bio);
2829 }
2830 
2831 static int
2832 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
2833 {
2834 	struct nvme_ctrlr_channel *ctrlr_ch;
2835 	struct spdk_bdev_io *bdev_io;
2836 	int rc;
2837 
2838 	rc = nvme_ctrlr_op(io_path->qpair->ctrlr, NVME_CTRLR_OP_RESET,
2839 			   bdev_nvme_reset_io_continue, bio);
2840 	if (rc != 0 && rc != -EBUSY) {
2841 		return rc;
2842 	}
2843 
2844 	assert(bio->io_path == NULL);
2845 	bio->io_path = io_path;
2846 
2847 	if (rc == -EBUSY) {
2848 		ctrlr_ch = io_path->qpair->ctrlr_ch;
2849 		assert(ctrlr_ch != NULL);
2850 		/*
2851 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
2852 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
2853 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
2854 		 */
2855 		bdev_io = spdk_bdev_io_from_ctx(bio);
2856 		TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bdev_io, module_link);
2857 	}
2858 
2859 	return 0;
2860 }
2861 
2862 static void
2863 bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio)
2864 {
2865 	struct nvme_io_path *io_path;
2866 	int rc;
2867 
2868 	bio->cpl.cdw0 = 0;
2869 
2870 	/* Reset all nvme_ctrlrs of a bdev controller sequentially. */
2871 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
2872 	assert(io_path != NULL);
2873 
2874 	rc = _bdev_nvme_reset_io(io_path, bio);
2875 	if (rc != 0) {
2876 		/* If the current nvme_ctrlr is disabled, skip it and move to the next nvme_ctrlr. */
2877 		rc = (rc == -EALREADY) ? 0 : rc;
2878 
2879 		bdev_nvme_reset_io_continue(bio, rc);
2880 	}
2881 }
2882 
2883 static int
2884 bdev_nvme_failover_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool remove)
2885 {
2886 	if (nvme_ctrlr->destruct) {
2887 		/* Don't bother resetting if the controller is in the process of being destructed. */
2888 		return -ENXIO;
2889 	}
2890 
2891 	if (nvme_ctrlr->resetting) {
2892 		if (!nvme_ctrlr->in_failover) {
2893 			SPDK_NOTICELOG("Reset is already in progress. Defer failover until reset completes.\n");
2894 
2895 			/* Defer failover until reset completes. */
2896 			nvme_ctrlr->pending_failover = true;
2897 			return -EINPROGRESS;
2898 		} else {
2899 			SPDK_NOTICELOG("Unable to perform failover, already in progress.\n");
2900 			return -EBUSY;
2901 		}
2902 	}
2903 
2904 	bdev_nvme_failover_trid(nvme_ctrlr, remove, true);
2905 
2906 	if (nvme_ctrlr->reconnect_is_delayed) {
2907 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
2908 
2909 		/* We rely on the next reconnect for the failover. */
2910 		return -EALREADY;
2911 	}
2912 
2913 	if (nvme_ctrlr->disabled) {
2914 		SPDK_NOTICELOG("Controller is disabled.\n");
2915 
2916 		/* We rely on the enablement for the failover. */
2917 		return -EALREADY;
2918 	}
2919 
2920 	nvme_ctrlr->resetting = true;
2921 	nvme_ctrlr->in_failover = true;
2922 
2923 	assert(nvme_ctrlr->reset_start_tsc == 0);
2924 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2925 
2926 	return 0;
2927 }
2928 
2929 static int
2930 bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2931 {
2932 	int rc;
2933 
2934 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2935 	rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, false);
2936 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2937 
2938 	if (rc == 0) {
2939 		spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset_ctrlr, nvme_ctrlr);
2940 	} else if (rc == -EALREADY) {
2941 		rc = 0;
2942 	}
2943 
2944 	return rc;
2945 }
2946 
2947 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2948 			   uint64_t num_blocks);
2949 
2950 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2951 				  uint64_t num_blocks);
2952 
2953 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks,
2954 			  uint64_t src_offset_blocks,
2955 			  uint64_t num_blocks);
2956 
2957 static void
2958 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
2959 		     bool success)
2960 {
2961 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2962 	int ret;
2963 
2964 	if (!success) {
2965 		ret = -EINVAL;
2966 		goto exit;
2967 	}
2968 
2969 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
2970 		ret = -ENXIO;
2971 		goto exit;
2972 	}
2973 
2974 	ret = bdev_nvme_readv(bio,
2975 			      bdev_io->u.bdev.iovs,
2976 			      bdev_io->u.bdev.iovcnt,
2977 			      bdev_io->u.bdev.md_buf,
2978 			      bdev_io->u.bdev.num_blocks,
2979 			      bdev_io->u.bdev.offset_blocks,
2980 			      bdev_io->u.bdev.dif_check_flags,
2981 			      bdev_io->u.bdev.memory_domain,
2982 			      bdev_io->u.bdev.memory_domain_ctx,
2983 			      bdev_io->u.bdev.accel_sequence);
2984 
2985 exit:
2986 	if (spdk_unlikely(ret != 0)) {
2987 		bdev_nvme_io_complete(bio, ret);
2988 	}
2989 }
2990 
2991 static inline void
2992 _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
2993 {
2994 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2995 	struct spdk_bdev *bdev = bdev_io->bdev;
2996 	struct nvme_bdev_io *nbdev_io_to_abort;
2997 	int rc = 0;
2998 
2999 	switch (bdev_io->type) {
3000 	case SPDK_BDEV_IO_TYPE_READ:
3001 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
3002 
3003 			rc = bdev_nvme_readv(nbdev_io,
3004 					     bdev_io->u.bdev.iovs,
3005 					     bdev_io->u.bdev.iovcnt,
3006 					     bdev_io->u.bdev.md_buf,
3007 					     bdev_io->u.bdev.num_blocks,
3008 					     bdev_io->u.bdev.offset_blocks,
3009 					     bdev_io->u.bdev.dif_check_flags,
3010 					     bdev_io->u.bdev.memory_domain,
3011 					     bdev_io->u.bdev.memory_domain_ctx,
3012 					     bdev_io->u.bdev.accel_sequence);
3013 		} else {
3014 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
3015 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
3016 			rc = 0;
3017 		}
3018 		break;
3019 	case SPDK_BDEV_IO_TYPE_WRITE:
3020 		rc = bdev_nvme_writev(nbdev_io,
3021 				      bdev_io->u.bdev.iovs,
3022 				      bdev_io->u.bdev.iovcnt,
3023 				      bdev_io->u.bdev.md_buf,
3024 				      bdev_io->u.bdev.num_blocks,
3025 				      bdev_io->u.bdev.offset_blocks,
3026 				      bdev_io->u.bdev.dif_check_flags,
3027 				      bdev_io->u.bdev.memory_domain,
3028 				      bdev_io->u.bdev.memory_domain_ctx,
3029 				      bdev_io->u.bdev.accel_sequence,
3030 				      bdev_io->u.bdev.nvme_cdw12,
3031 				      bdev_io->u.bdev.nvme_cdw13);
3032 		break;
3033 	case SPDK_BDEV_IO_TYPE_COMPARE:
3034 		rc = bdev_nvme_comparev(nbdev_io,
3035 					bdev_io->u.bdev.iovs,
3036 					bdev_io->u.bdev.iovcnt,
3037 					bdev_io->u.bdev.md_buf,
3038 					bdev_io->u.bdev.num_blocks,
3039 					bdev_io->u.bdev.offset_blocks,
3040 					bdev_io->u.bdev.dif_check_flags);
3041 		break;
3042 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3043 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
3044 						   bdev_io->u.bdev.iovs,
3045 						   bdev_io->u.bdev.iovcnt,
3046 						   bdev_io->u.bdev.fused_iovs,
3047 						   bdev_io->u.bdev.fused_iovcnt,
3048 						   bdev_io->u.bdev.md_buf,
3049 						   bdev_io->u.bdev.num_blocks,
3050 						   bdev_io->u.bdev.offset_blocks,
3051 						   bdev_io->u.bdev.dif_check_flags);
3052 		break;
3053 	case SPDK_BDEV_IO_TYPE_UNMAP:
3054 		rc = bdev_nvme_unmap(nbdev_io,
3055 				     bdev_io->u.bdev.offset_blocks,
3056 				     bdev_io->u.bdev.num_blocks);
3057 		break;
3058 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3059 		rc =  bdev_nvme_write_zeroes(nbdev_io,
3060 					     bdev_io->u.bdev.offset_blocks,
3061 					     bdev_io->u.bdev.num_blocks);
3062 		break;
3063 	case SPDK_BDEV_IO_TYPE_RESET:
3064 		nbdev_io->io_path = NULL;
3065 		bdev_nvme_reset_io(nbdev_ch, nbdev_io);
3066 		return;
3067 
3068 	case SPDK_BDEV_IO_TYPE_FLUSH:
3069 		bdev_nvme_io_complete(nbdev_io, 0);
3070 		return;
3071 
3072 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3073 		rc = bdev_nvme_zone_appendv(nbdev_io,
3074 					    bdev_io->u.bdev.iovs,
3075 					    bdev_io->u.bdev.iovcnt,
3076 					    bdev_io->u.bdev.md_buf,
3077 					    bdev_io->u.bdev.num_blocks,
3078 					    bdev_io->u.bdev.offset_blocks,
3079 					    bdev_io->u.bdev.dif_check_flags);
3080 		break;
3081 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3082 		rc = bdev_nvme_get_zone_info(nbdev_io,
3083 					     bdev_io->u.zone_mgmt.zone_id,
3084 					     bdev_io->u.zone_mgmt.num_zones,
3085 					     bdev_io->u.zone_mgmt.buf);
3086 		break;
3087 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3088 		rc = bdev_nvme_zone_management(nbdev_io,
3089 					       bdev_io->u.zone_mgmt.zone_id,
3090 					       bdev_io->u.zone_mgmt.zone_action);
3091 		break;
3092 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3093 		nbdev_io->io_path = NULL;
3094 		bdev_nvme_admin_passthru(nbdev_ch,
3095 					 nbdev_io,
3096 					 &bdev_io->u.nvme_passthru.cmd,
3097 					 bdev_io->u.nvme_passthru.buf,
3098 					 bdev_io->u.nvme_passthru.nbytes);
3099 		return;
3100 
3101 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3102 		rc = bdev_nvme_io_passthru(nbdev_io,
3103 					   &bdev_io->u.nvme_passthru.cmd,
3104 					   bdev_io->u.nvme_passthru.buf,
3105 					   bdev_io->u.nvme_passthru.nbytes);
3106 		break;
3107 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3108 		rc = bdev_nvme_io_passthru_md(nbdev_io,
3109 					      &bdev_io->u.nvme_passthru.cmd,
3110 					      bdev_io->u.nvme_passthru.buf,
3111 					      bdev_io->u.nvme_passthru.nbytes,
3112 					      bdev_io->u.nvme_passthru.md_buf,
3113 					      bdev_io->u.nvme_passthru.md_len);
3114 		break;
3115 	case SPDK_BDEV_IO_TYPE_NVME_IOV_MD:
3116 		rc = bdev_nvme_iov_passthru_md(nbdev_io,
3117 					       &bdev_io->u.nvme_passthru.cmd,
3118 					       bdev_io->u.nvme_passthru.iovs,
3119 					       bdev_io->u.nvme_passthru.iovcnt,
3120 					       bdev_io->u.nvme_passthru.nbytes,
3121 					       bdev_io->u.nvme_passthru.md_buf,
3122 					       bdev_io->u.nvme_passthru.md_len);
3123 		break;
3124 	case SPDK_BDEV_IO_TYPE_ABORT:
3125 		nbdev_io->io_path = NULL;
3126 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
3127 		bdev_nvme_abort(nbdev_ch,
3128 				nbdev_io,
3129 				nbdev_io_to_abort);
3130 		return;
3131 
3132 	case SPDK_BDEV_IO_TYPE_COPY:
3133 		rc = bdev_nvme_copy(nbdev_io,
3134 				    bdev_io->u.bdev.offset_blocks,
3135 				    bdev_io->u.bdev.copy.src_offset_blocks,
3136 				    bdev_io->u.bdev.num_blocks);
3137 		break;
3138 	default:
3139 		rc = -EINVAL;
3140 		break;
3141 	}
3142 
3143 	if (spdk_unlikely(rc != 0)) {
3144 		bdev_nvme_io_complete(nbdev_io, rc);
3145 	}
3146 }
3147 
3148 static void
3149 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
3150 {
3151 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3152 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3153 
3154 	if (spdk_likely(nbdev_io->submit_tsc == 0)) {
3155 		nbdev_io->submit_tsc = spdk_bdev_io_get_submit_tsc(bdev_io);
3156 	} else {
3157 		/* There are cases where submit_tsc != 0, i.e. retry I/O.
3158 		 * We need to update submit_tsc here.
3159 		 */
3160 		nbdev_io->submit_tsc = spdk_get_ticks();
3161 	}
3162 
3163 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
3164 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
3165 	if (spdk_unlikely(!nbdev_io->io_path)) {
3166 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
3167 			bdev_nvme_io_complete(nbdev_io, -ENXIO);
3168 			return;
3169 		}
3170 
3171 		/* Admin commands do not use the optimal I/O path.
3172 		 * Simply fall through even if it is not found.
3173 		 */
3174 	}
3175 
3176 	_bdev_nvme_submit_request(nbdev_ch, bdev_io);
3177 }
3178 
3179 static bool
3180 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
3181 {
3182 	struct nvme_bdev *nbdev = ctx;
3183 	struct nvme_ns *nvme_ns;
3184 	struct spdk_nvme_ns *ns;
3185 	struct spdk_nvme_ctrlr *ctrlr;
3186 	const struct spdk_nvme_ctrlr_data *cdata;
3187 
3188 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
3189 	assert(nvme_ns != NULL);
3190 	ns = nvme_ns->ns;
3191 	if (ns == NULL) {
3192 		return false;
3193 	}
3194 
3195 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3196 
3197 	switch (io_type) {
3198 	case SPDK_BDEV_IO_TYPE_READ:
3199 	case SPDK_BDEV_IO_TYPE_WRITE:
3200 	case SPDK_BDEV_IO_TYPE_RESET:
3201 	case SPDK_BDEV_IO_TYPE_FLUSH:
3202 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3203 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3204 	case SPDK_BDEV_IO_TYPE_ABORT:
3205 		return true;
3206 
3207 	case SPDK_BDEV_IO_TYPE_COMPARE:
3208 		return spdk_nvme_ns_supports_compare(ns);
3209 
3210 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3211 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
3212 
3213 	case SPDK_BDEV_IO_TYPE_UNMAP:
3214 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3215 		return cdata->oncs.dsm;
3216 
3217 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3218 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3219 		return cdata->oncs.write_zeroes;
3220 
3221 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3222 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
3223 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
3224 			return true;
3225 		}
3226 		return false;
3227 
3228 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3229 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3230 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
3231 
3232 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3233 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
3234 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
3235 
3236 	case SPDK_BDEV_IO_TYPE_COPY:
3237 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3238 		return cdata->oncs.copy;
3239 
3240 	default:
3241 		return false;
3242 	}
3243 }
3244 
3245 static int
3246 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
3247 {
3248 	struct nvme_qpair *nvme_qpair;
3249 	struct spdk_io_channel *pg_ch;
3250 	int rc;
3251 
3252 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
3253 	if (!nvme_qpair) {
3254 		SPDK_ERRLOG("Failed to alloc nvme_qpair.\n");
3255 		return -1;
3256 	}
3257 
3258 	TAILQ_INIT(&nvme_qpair->io_path_list);
3259 
3260 	nvme_qpair->ctrlr = nvme_ctrlr;
3261 	nvme_qpair->ctrlr_ch = ctrlr_ch;
3262 
3263 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
3264 	if (!pg_ch) {
3265 		free(nvme_qpair);
3266 		return -1;
3267 	}
3268 
3269 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
3270 
3271 #ifdef SPDK_CONFIG_VTUNE
3272 	nvme_qpair->group->collect_spin_stat = true;
3273 #else
3274 	nvme_qpair->group->collect_spin_stat = false;
3275 #endif
3276 
3277 	if (!nvme_ctrlr->disabled) {
3278 		/* If a nvme_ctrlr is disabled, don't try to create qpair for it. Qpair will
3279 		 * be created when it's enabled.
3280 		 */
3281 		rc = bdev_nvme_create_qpair(nvme_qpair);
3282 		if (rc != 0) {
3283 			/* nvme_ctrlr can't create IO qpair if connection is down.
3284 			 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
3285 			 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
3286 			 * submitted IO will be queued until IO qpair is successfully created.
3287 			 *
3288 			 * Hence, if both are satisfied, ignore the failure.
3289 			 */
3290 			if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
3291 				spdk_put_io_channel(pg_ch);
3292 				free(nvme_qpair);
3293 				return rc;
3294 			}
3295 		}
3296 	}
3297 
3298 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3299 
3300 	ctrlr_ch->qpair = nvme_qpair;
3301 
3302 	pthread_mutex_lock(&nvme_qpair->ctrlr->mutex);
3303 	nvme_qpair->ctrlr->ref++;
3304 	pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex);
3305 
3306 	return 0;
3307 }
3308 
3309 static int
3310 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3311 {
3312 	struct nvme_ctrlr *nvme_ctrlr = io_device;
3313 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3314 
3315 	TAILQ_INIT(&ctrlr_ch->pending_resets);
3316 
3317 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
3318 }
3319 
3320 static void
3321 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
3322 {
3323 	struct nvme_io_path *io_path, *next;
3324 
3325 	assert(nvme_qpair->group != NULL);
3326 
3327 	TAILQ_FOREACH_SAFE(io_path, &nvme_qpair->io_path_list, tailq, next) {
3328 		TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
3329 		nvme_io_path_free(io_path);
3330 	}
3331 
3332 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3333 
3334 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
3335 
3336 	nvme_ctrlr_release(nvme_qpair->ctrlr);
3337 
3338 	free(nvme_qpair);
3339 }
3340 
3341 static void
3342 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3343 {
3344 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3345 	struct nvme_qpair *nvme_qpair;
3346 
3347 	nvme_qpair = ctrlr_ch->qpair;
3348 	assert(nvme_qpair != NULL);
3349 
3350 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
3351 
3352 	if (nvme_qpair->qpair != NULL) {
3353 		if (ctrlr_ch->reset_iter == NULL) {
3354 			spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
3355 		} else {
3356 			/* Skip current ctrlr_channel in a full reset sequence because
3357 			 * it is being deleted now. The qpair is already being disconnected.
3358 			 * We do not have to restart disconnecting it.
3359 			 */
3360 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
3361 		}
3362 
3363 		/* We cannot release a reference to the poll group now.
3364 		 * The qpair may be disconnected asynchronously later.
3365 		 * We need to poll it until it is actually disconnected.
3366 		 * Just detach the qpair from the deleting ctrlr_channel.
3367 		 */
3368 		nvme_qpair->ctrlr_ch = NULL;
3369 	} else {
3370 		assert(ctrlr_ch->reset_iter == NULL);
3371 
3372 		nvme_qpair_delete(nvme_qpair);
3373 	}
3374 }
3375 
3376 static inline struct spdk_io_channel *
3377 bdev_nvme_get_accel_channel(struct nvme_poll_group *group)
3378 {
3379 	if (spdk_unlikely(!group->accel_channel)) {
3380 		group->accel_channel = spdk_accel_get_io_channel();
3381 		if (!group->accel_channel) {
3382 			SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
3383 				    group);
3384 			return NULL;
3385 		}
3386 	}
3387 
3388 	return group->accel_channel;
3389 }
3390 
3391 static void
3392 bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
3393 			      uint32_t iov_cnt, uint32_t seed,
3394 			      spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3395 {
3396 	struct spdk_io_channel *accel_ch;
3397 	struct nvme_poll_group *group = ctx;
3398 	int rc;
3399 
3400 	assert(cb_fn != NULL);
3401 
3402 	accel_ch = bdev_nvme_get_accel_channel(group);
3403 	if (spdk_unlikely(accel_ch == NULL)) {
3404 		cb_fn(cb_arg, -ENOMEM);
3405 		return;
3406 	}
3407 
3408 	rc = spdk_accel_submit_crc32cv(accel_ch, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
3409 	if (rc) {
3410 		/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
3411 		if (rc == -ENOMEM || rc == -EINVAL) {
3412 			cb_fn(cb_arg, rc);
3413 		}
3414 		SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
3415 	}
3416 }
3417 
3418 static void
3419 bdev_nvme_finish_sequence(void *seq, spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3420 {
3421 	spdk_accel_sequence_finish(seq, cb_fn, cb_arg);
3422 }
3423 
3424 static void
3425 bdev_nvme_abort_sequence(void *seq)
3426 {
3427 	spdk_accel_sequence_abort(seq);
3428 }
3429 
3430 static void
3431 bdev_nvme_reverse_sequence(void *seq)
3432 {
3433 	spdk_accel_sequence_reverse(seq);
3434 }
3435 
3436 static int
3437 bdev_nvme_append_crc32c(void *ctx, void **seq, uint32_t *dst, struct iovec *iovs, uint32_t iovcnt,
3438 			struct spdk_memory_domain *domain, void *domain_ctx, uint32_t seed,
3439 			spdk_nvme_accel_step_cb cb_fn, void *cb_arg)
3440 {
3441 	struct spdk_io_channel *ch;
3442 	struct nvme_poll_group *group = ctx;
3443 
3444 	ch = bdev_nvme_get_accel_channel(group);
3445 	if (spdk_unlikely(ch == NULL)) {
3446 		return -ENOMEM;
3447 	}
3448 
3449 	return spdk_accel_append_crc32c((struct spdk_accel_sequence **)seq, ch, dst, iovs, iovcnt,
3450 					domain, domain_ctx, seed, cb_fn, cb_arg);
3451 }
3452 
3453 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
3454 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
3455 	.submit_accel_crc32c	= bdev_nvme_submit_accel_crc32c,
3456 	.append_crc32c		= bdev_nvme_append_crc32c,
3457 	.finish_sequence	= bdev_nvme_finish_sequence,
3458 	.reverse_sequence	= bdev_nvme_reverse_sequence,
3459 	.abort_sequence		= bdev_nvme_abort_sequence,
3460 };
3461 
3462 static int
3463 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
3464 {
3465 	struct nvme_poll_group *group = ctx_buf;
3466 
3467 	TAILQ_INIT(&group->qpair_list);
3468 
3469 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
3470 	if (group->group == NULL) {
3471 		return -1;
3472 	}
3473 
3474 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
3475 
3476 	if (group->poller == NULL) {
3477 		spdk_nvme_poll_group_destroy(group->group);
3478 		return -1;
3479 	}
3480 
3481 	return 0;
3482 }
3483 
3484 static void
3485 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
3486 {
3487 	struct nvme_poll_group *group = ctx_buf;
3488 
3489 	assert(TAILQ_EMPTY(&group->qpair_list));
3490 
3491 	if (group->accel_channel) {
3492 		spdk_put_io_channel(group->accel_channel);
3493 	}
3494 
3495 	spdk_poller_unregister(&group->poller);
3496 	if (spdk_nvme_poll_group_destroy(group->group)) {
3497 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
3498 		assert(false);
3499 	}
3500 }
3501 
3502 static struct spdk_io_channel *
3503 bdev_nvme_get_io_channel(void *ctx)
3504 {
3505 	struct nvme_bdev *nvme_bdev = ctx;
3506 
3507 	return spdk_get_io_channel(nvme_bdev);
3508 }
3509 
3510 static void *
3511 bdev_nvme_get_module_ctx(void *ctx)
3512 {
3513 	struct nvme_bdev *nvme_bdev = ctx;
3514 	struct nvme_ns *nvme_ns;
3515 
3516 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
3517 		return NULL;
3518 	}
3519 
3520 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
3521 	if (!nvme_ns) {
3522 		return NULL;
3523 	}
3524 
3525 	return nvme_ns->ns;
3526 }
3527 
3528 static const char *
3529 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
3530 {
3531 	switch (ana_state) {
3532 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3533 		return "optimized";
3534 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3535 		return "non_optimized";
3536 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3537 		return "inaccessible";
3538 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
3539 		return "persistent_loss";
3540 	case SPDK_NVME_ANA_CHANGE_STATE:
3541 		return "change";
3542 	default:
3543 		return NULL;
3544 	}
3545 }
3546 
3547 static int
3548 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
3549 {
3550 	struct spdk_memory_domain **_domains = NULL;
3551 	struct nvme_bdev *nbdev = ctx;
3552 	struct nvme_ns *nvme_ns;
3553 	int i = 0, _array_size = array_size;
3554 	int rc = 0;
3555 
3556 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3557 		if (domains && array_size >= i) {
3558 			_domains = &domains[i];
3559 		} else {
3560 			_domains = NULL;
3561 		}
3562 		rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size);
3563 		if (rc > 0) {
3564 			i += rc;
3565 			if (_array_size >= rc) {
3566 				_array_size -= rc;
3567 			} else {
3568 				_array_size = 0;
3569 			}
3570 		} else if (rc < 0) {
3571 			return rc;
3572 		}
3573 	}
3574 
3575 	return i;
3576 }
3577 
3578 static const char *
3579 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
3580 {
3581 	if (nvme_ctrlr->destruct) {
3582 		return "deleting";
3583 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
3584 		return "failed";
3585 	} else if (nvme_ctrlr->resetting) {
3586 		return "resetting";
3587 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
3588 		return "reconnect_is_delayed";
3589 	} else if (nvme_ctrlr->disabled) {
3590 		return "disabled";
3591 	} else {
3592 		return "enabled";
3593 	}
3594 }
3595 
3596 void
3597 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
3598 {
3599 	struct spdk_nvme_transport_id *trid;
3600 	const struct spdk_nvme_ctrlr_opts *opts;
3601 	const struct spdk_nvme_ctrlr_data *cdata;
3602 	struct nvme_path_id *path_id;
3603 
3604 	spdk_json_write_object_begin(w);
3605 
3606 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
3607 
3608 #ifdef SPDK_CONFIG_NVME_CUSE
3609 	size_t cuse_name_size = 128;
3610 	char cuse_name[cuse_name_size];
3611 
3612 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
3613 	if (rc == 0) {
3614 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3615 	}
3616 #endif
3617 	trid = &nvme_ctrlr->active_path_id->trid;
3618 	spdk_json_write_named_object_begin(w, "trid");
3619 	nvme_bdev_dump_trid_json(trid, w);
3620 	spdk_json_write_object_end(w);
3621 
3622 	path_id = TAILQ_NEXT(nvme_ctrlr->active_path_id, link);
3623 	if (path_id != NULL) {
3624 		spdk_json_write_named_array_begin(w, "alternate_trids");
3625 		do {
3626 			trid = &path_id->trid;
3627 			spdk_json_write_object_begin(w);
3628 			nvme_bdev_dump_trid_json(trid, w);
3629 			spdk_json_write_object_end(w);
3630 
3631 			path_id = TAILQ_NEXT(path_id, link);
3632 		} while (path_id != NULL);
3633 		spdk_json_write_array_end(w);
3634 	}
3635 
3636 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
3637 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3638 
3639 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
3640 	spdk_json_write_named_object_begin(w, "host");
3641 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
3642 	spdk_json_write_named_string(w, "addr", opts->src_addr);
3643 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
3644 	spdk_json_write_object_end(w);
3645 
3646 	spdk_json_write_object_end(w);
3647 }
3648 
3649 static void
3650 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
3651 			 struct nvme_ns *nvme_ns)
3652 {
3653 	struct spdk_nvme_ns *ns;
3654 	struct spdk_nvme_ctrlr *ctrlr;
3655 	const struct spdk_nvme_ctrlr_data *cdata;
3656 	const struct spdk_nvme_transport_id *trid;
3657 	union spdk_nvme_vs_register vs;
3658 	const struct spdk_nvme_ns_data *nsdata;
3659 	char buf[128];
3660 
3661 	ns = nvme_ns->ns;
3662 	if (ns == NULL) {
3663 		return;
3664 	}
3665 
3666 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3667 
3668 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3669 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
3670 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
3671 
3672 	spdk_json_write_object_begin(w);
3673 
3674 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
3675 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
3676 	}
3677 
3678 	spdk_json_write_named_object_begin(w, "trid");
3679 
3680 	nvme_bdev_dump_trid_json(trid, w);
3681 
3682 	spdk_json_write_object_end(w);
3683 
3684 #ifdef SPDK_CONFIG_NVME_CUSE
3685 	size_t cuse_name_size = 128;
3686 	char cuse_name[cuse_name_size];
3687 
3688 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
3689 					    cuse_name, &cuse_name_size);
3690 	if (rc == 0) {
3691 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3692 	}
3693 #endif
3694 
3695 	spdk_json_write_named_object_begin(w, "ctrlr_data");
3696 
3697 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3698 
3699 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
3700 
3701 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
3702 	spdk_str_trim(buf);
3703 	spdk_json_write_named_string(w, "model_number", buf);
3704 
3705 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
3706 	spdk_str_trim(buf);
3707 	spdk_json_write_named_string(w, "serial_number", buf);
3708 
3709 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
3710 	spdk_str_trim(buf);
3711 	spdk_json_write_named_string(w, "firmware_revision", buf);
3712 
3713 	if (cdata->subnqn[0] != '\0') {
3714 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
3715 	}
3716 
3717 	spdk_json_write_named_object_begin(w, "oacs");
3718 
3719 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
3720 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
3721 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
3722 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
3723 
3724 	spdk_json_write_object_end(w);
3725 
3726 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
3727 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
3728 
3729 	spdk_json_write_object_end(w);
3730 
3731 	spdk_json_write_named_object_begin(w, "vs");
3732 
3733 	spdk_json_write_name(w, "nvme_version");
3734 	if (vs.bits.ter) {
3735 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
3736 	} else {
3737 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
3738 	}
3739 
3740 	spdk_json_write_object_end(w);
3741 
3742 	nsdata = spdk_nvme_ns_get_data(ns);
3743 
3744 	spdk_json_write_named_object_begin(w, "ns_data");
3745 
3746 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
3747 
3748 	if (cdata->cmic.ana_reporting) {
3749 		spdk_json_write_named_string(w, "ana_state",
3750 					     _nvme_ana_state_str(nvme_ns->ana_state));
3751 	}
3752 
3753 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
3754 
3755 	spdk_json_write_object_end(w);
3756 
3757 	if (cdata->oacs.security) {
3758 		spdk_json_write_named_object_begin(w, "security");
3759 
3760 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
3761 
3762 		spdk_json_write_object_end(w);
3763 	}
3764 
3765 	spdk_json_write_object_end(w);
3766 }
3767 
3768 static const char *
3769 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
3770 {
3771 	switch (nbdev->mp_policy) {
3772 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
3773 		return "active_passive";
3774 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
3775 		return "active_active";
3776 	default:
3777 		assert(false);
3778 		return "invalid";
3779 	}
3780 }
3781 
3782 static const char *
3783 nvme_bdev_get_mp_selector_str(struct nvme_bdev *nbdev)
3784 {
3785 	switch (nbdev->mp_selector) {
3786 	case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN:
3787 		return "round_robin";
3788 	case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH:
3789 		return "queue_depth";
3790 	default:
3791 		assert(false);
3792 		return "invalid";
3793 	}
3794 }
3795 
3796 static int
3797 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
3798 {
3799 	struct nvme_bdev *nvme_bdev = ctx;
3800 	struct nvme_ns *nvme_ns;
3801 
3802 	pthread_mutex_lock(&nvme_bdev->mutex);
3803 	spdk_json_write_named_array_begin(w, "nvme");
3804 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
3805 		nvme_namespace_info_json(w, nvme_ns);
3806 	}
3807 	spdk_json_write_array_end(w);
3808 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
3809 	if (nvme_bdev->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
3810 		spdk_json_write_named_string(w, "selector", nvme_bdev_get_mp_selector_str(nvme_bdev));
3811 		if (nvme_bdev->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
3812 			spdk_json_write_named_uint32(w, "rr_min_io", nvme_bdev->rr_min_io);
3813 		}
3814 	}
3815 	pthread_mutex_unlock(&nvme_bdev->mutex);
3816 
3817 	return 0;
3818 }
3819 
3820 static void
3821 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
3822 {
3823 	/* No config per bdev needed */
3824 }
3825 
3826 static uint64_t
3827 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
3828 {
3829 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3830 	struct nvme_io_path *io_path;
3831 	struct nvme_poll_group *group;
3832 	uint64_t spin_time = 0;
3833 
3834 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
3835 		group = io_path->qpair->group;
3836 
3837 		if (!group || !group->collect_spin_stat) {
3838 			continue;
3839 		}
3840 
3841 		if (group->end_ticks != 0) {
3842 			group->spin_ticks += (group->end_ticks - group->start_ticks);
3843 			group->end_ticks = 0;
3844 		}
3845 
3846 		spin_time += group->spin_ticks;
3847 		group->start_ticks = 0;
3848 		group->spin_ticks = 0;
3849 	}
3850 
3851 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
3852 }
3853 
3854 static void
3855 bdev_nvme_reset_device_stat(void *ctx)
3856 {
3857 	struct nvme_bdev *nbdev = ctx;
3858 
3859 	if (nbdev->err_stat != NULL) {
3860 		memset(nbdev->err_stat, 0, sizeof(struct nvme_error_stat));
3861 	}
3862 }
3863 
3864 /* JSON string should be lowercases and underscore delimited string. */
3865 static void
3866 bdev_nvme_format_nvme_status(char *dst, const char *src)
3867 {
3868 	char tmp[256];
3869 
3870 	spdk_strcpy_replace(dst, 256, src, " - ", "_");
3871 	spdk_strcpy_replace(tmp, 256, dst, "-", "_");
3872 	spdk_strcpy_replace(dst, 256, tmp, " ", "_");
3873 	spdk_strlwr(dst);
3874 }
3875 
3876 static void
3877 bdev_nvme_dump_device_stat_json(void *ctx, struct spdk_json_write_ctx *w)
3878 {
3879 	struct nvme_bdev *nbdev = ctx;
3880 	struct spdk_nvme_status status = {};
3881 	uint16_t sct, sc;
3882 	char status_json[256];
3883 	const char *status_str;
3884 
3885 	if (nbdev->err_stat == NULL) {
3886 		return;
3887 	}
3888 
3889 	spdk_json_write_named_object_begin(w, "nvme_error");
3890 
3891 	spdk_json_write_named_object_begin(w, "status_type");
3892 	for (sct = 0; sct < 8; sct++) {
3893 		if (nbdev->err_stat->status_type[sct] == 0) {
3894 			continue;
3895 		}
3896 		status.sct = sct;
3897 
3898 		status_str = spdk_nvme_cpl_get_status_type_string(&status);
3899 		assert(status_str != NULL);
3900 		bdev_nvme_format_nvme_status(status_json, status_str);
3901 
3902 		spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status_type[sct]);
3903 	}
3904 	spdk_json_write_object_end(w);
3905 
3906 	spdk_json_write_named_object_begin(w, "status_code");
3907 	for (sct = 0; sct < 4; sct++) {
3908 		status.sct = sct;
3909 		for (sc = 0; sc < 256; sc++) {
3910 			if (nbdev->err_stat->status[sct][sc] == 0) {
3911 				continue;
3912 			}
3913 			status.sc = sc;
3914 
3915 			status_str = spdk_nvme_cpl_get_status_string(&status);
3916 			assert(status_str != NULL);
3917 			bdev_nvme_format_nvme_status(status_json, status_str);
3918 
3919 			spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status[sct][sc]);
3920 		}
3921 	}
3922 	spdk_json_write_object_end(w);
3923 
3924 	spdk_json_write_object_end(w);
3925 }
3926 
3927 static bool
3928 bdev_nvme_accel_sequence_supported(void *ctx, enum spdk_bdev_io_type type)
3929 {
3930 	struct nvme_bdev *nbdev = ctx;
3931 	struct spdk_nvme_ctrlr *ctrlr;
3932 
3933 	if (!g_opts.allow_accel_sequence) {
3934 		return false;
3935 	}
3936 
3937 	switch (type) {
3938 	case SPDK_BDEV_IO_TYPE_WRITE:
3939 	case SPDK_BDEV_IO_TYPE_READ:
3940 		break;
3941 	default:
3942 		return false;
3943 	}
3944 
3945 	ctrlr = bdev_nvme_get_ctrlr(&nbdev->disk);
3946 	assert(ctrlr != NULL);
3947 
3948 	return spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ACCEL_SEQUENCE_SUPPORTED;
3949 }
3950 
3951 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
3952 	.destruct			= bdev_nvme_destruct,
3953 	.submit_request			= bdev_nvme_submit_request,
3954 	.io_type_supported		= bdev_nvme_io_type_supported,
3955 	.get_io_channel			= bdev_nvme_get_io_channel,
3956 	.dump_info_json			= bdev_nvme_dump_info_json,
3957 	.write_config_json		= bdev_nvme_write_config_json,
3958 	.get_spin_time			= bdev_nvme_get_spin_time,
3959 	.get_module_ctx			= bdev_nvme_get_module_ctx,
3960 	.get_memory_domains		= bdev_nvme_get_memory_domains,
3961 	.accel_sequence_supported	= bdev_nvme_accel_sequence_supported,
3962 	.reset_device_stat		= bdev_nvme_reset_device_stat,
3963 	.dump_device_stat_json		= bdev_nvme_dump_device_stat_json,
3964 };
3965 
3966 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
3967 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
3968 
3969 static int
3970 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
3971 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
3972 {
3973 	struct spdk_nvme_ana_group_descriptor *copied_desc;
3974 	uint8_t *orig_desc;
3975 	uint32_t i, desc_size, copy_len;
3976 	int rc = 0;
3977 
3978 	if (nvme_ctrlr->ana_log_page == NULL) {
3979 		return -EINVAL;
3980 	}
3981 
3982 	copied_desc = nvme_ctrlr->copied_ana_desc;
3983 
3984 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
3985 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
3986 
3987 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
3988 		memcpy(copied_desc, orig_desc, copy_len);
3989 
3990 		rc = cb_fn(copied_desc, cb_arg);
3991 		if (rc != 0) {
3992 			break;
3993 		}
3994 
3995 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
3996 			    copied_desc->num_of_nsid * sizeof(uint32_t);
3997 		orig_desc += desc_size;
3998 		copy_len -= desc_size;
3999 	}
4000 
4001 	return rc;
4002 }
4003 
4004 static int
4005 nvme_ns_ana_transition_timedout(void *ctx)
4006 {
4007 	struct nvme_ns *nvme_ns = ctx;
4008 
4009 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4010 	nvme_ns->ana_transition_timedout = true;
4011 
4012 	return SPDK_POLLER_BUSY;
4013 }
4014 
4015 static void
4016 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
4017 		       const struct spdk_nvme_ana_group_descriptor *desc)
4018 {
4019 	const struct spdk_nvme_ctrlr_data *cdata;
4020 
4021 	nvme_ns->ana_group_id = desc->ana_group_id;
4022 	nvme_ns->ana_state = desc->ana_state;
4023 	nvme_ns->ana_state_updating = false;
4024 
4025 	switch (nvme_ns->ana_state) {
4026 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
4027 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
4028 		nvme_ns->ana_transition_timedout = false;
4029 		spdk_poller_unregister(&nvme_ns->anatt_timer);
4030 		break;
4031 
4032 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
4033 	case SPDK_NVME_ANA_CHANGE_STATE:
4034 		if (nvme_ns->anatt_timer != NULL) {
4035 			break;
4036 		}
4037 
4038 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
4039 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
4040 				       nvme_ns,
4041 				       cdata->anatt * SPDK_SEC_TO_USEC);
4042 		break;
4043 	default:
4044 		break;
4045 	}
4046 }
4047 
4048 static int
4049 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
4050 {
4051 	struct nvme_ns *nvme_ns = cb_arg;
4052 	uint32_t i;
4053 
4054 	assert(nvme_ns->ns != NULL);
4055 
4056 	for (i = 0; i < desc->num_of_nsid; i++) {
4057 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
4058 			continue;
4059 		}
4060 
4061 		_nvme_ns_set_ana_state(nvme_ns, desc);
4062 		return 1;
4063 	}
4064 
4065 	return 0;
4066 }
4067 
4068 static int
4069 nvme_generate_uuid(const char *sn, uint32_t nsid, struct spdk_uuid *uuid)
4070 {
4071 	int rc = 0;
4072 	struct spdk_uuid new_uuid, namespace_uuid;
4073 	char merged_str[SPDK_NVME_CTRLR_SN_LEN + NSID_STR_LEN + 1] = {'\0'};
4074 	/* This namespace UUID was generated using uuid_generate() method. */
4075 	const char *namespace_str = {"edaed2de-24bc-4b07-b559-f47ecbe730fd"};
4076 	int size;
4077 
4078 	assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN);
4079 
4080 	spdk_uuid_set_null(&new_uuid);
4081 	spdk_uuid_set_null(&namespace_uuid);
4082 
4083 	size = snprintf(merged_str, sizeof(merged_str), "%s%"PRIu32, sn, nsid);
4084 	if (size <= 0 || (unsigned long)size >= sizeof(merged_str)) {
4085 		return -EINVAL;
4086 	}
4087 
4088 	spdk_uuid_parse(&namespace_uuid, namespace_str);
4089 
4090 	rc = spdk_uuid_generate_sha1(&new_uuid, &namespace_uuid, merged_str, size);
4091 	if (rc == 0) {
4092 		memcpy(uuid, &new_uuid, sizeof(struct spdk_uuid));
4093 	}
4094 
4095 	return rc;
4096 }
4097 
4098 static int
4099 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
4100 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
4101 		 uint32_t prchk_flags, void *ctx)
4102 {
4103 	const struct spdk_uuid		*uuid;
4104 	const uint8_t *nguid;
4105 	const struct spdk_nvme_ctrlr_data *cdata;
4106 	const struct spdk_nvme_ns_data	*nsdata;
4107 	const struct spdk_nvme_ctrlr_opts *opts;
4108 	enum spdk_nvme_csi		csi;
4109 	uint32_t atomic_bs, phys_bs, bs;
4110 	char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'};
4111 	int rc;
4112 
4113 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4114 	csi = spdk_nvme_ns_get_csi(ns);
4115 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
4116 
4117 	switch (csi) {
4118 	case SPDK_NVME_CSI_NVM:
4119 		disk->product_name = "NVMe disk";
4120 		break;
4121 	case SPDK_NVME_CSI_ZNS:
4122 		disk->product_name = "NVMe ZNS disk";
4123 		disk->zoned = true;
4124 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
4125 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
4126 					     spdk_nvme_ns_get_extended_sector_size(ns);
4127 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
4128 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
4129 		break;
4130 	default:
4131 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
4132 		return -ENOTSUP;
4133 	}
4134 
4135 	nguid = spdk_nvme_ns_get_nguid(ns);
4136 	if (!nguid) {
4137 		uuid = spdk_nvme_ns_get_uuid(ns);
4138 		if (uuid) {
4139 			disk->uuid = *uuid;
4140 		} else if (g_opts.generate_uuids) {
4141 			spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0');
4142 			rc = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns), &disk->uuid);
4143 			if (rc < 0) {
4144 				SPDK_ERRLOG("UUID generation failed (%s)\n", spdk_strerror(-rc));
4145 				return rc;
4146 			}
4147 		}
4148 	} else {
4149 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
4150 	}
4151 
4152 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
4153 	if (!disk->name) {
4154 		return -ENOMEM;
4155 	}
4156 
4157 	disk->write_cache = 0;
4158 	if (cdata->vwc.present) {
4159 		/* Enable if the Volatile Write Cache exists */
4160 		disk->write_cache = 1;
4161 	}
4162 	if (cdata->oncs.write_zeroes) {
4163 		disk->max_write_zeroes = UINT16_MAX + 1;
4164 	}
4165 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
4166 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
4167 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
4168 	disk->ctratt.raw = cdata->ctratt.raw;
4169 	/* NVMe driver will split one request into multiple requests
4170 	 * based on MDTS and stripe boundary, the bdev layer will use
4171 	 * max_segment_size and max_num_segments to split one big IO
4172 	 * into multiple requests, then small request can't run out
4173 	 * of NVMe internal requests data structure.
4174 	 */
4175 	if (opts && opts->io_queue_requests) {
4176 		disk->max_num_segments = opts->io_queue_requests / 2;
4177 	}
4178 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
4179 		/* The nvme driver will try to split I/O that have too many
4180 		 * SGEs, but it doesn't work if that last SGE doesn't end on
4181 		 * an aggregate total that is block aligned. The bdev layer has
4182 		 * a more robust splitting framework, so use that instead for
4183 		 * this case. (See issue #3269.)
4184 		 */
4185 		uint16_t max_sges = spdk_nvme_ctrlr_get_max_sges(ctrlr);
4186 
4187 		if (disk->max_num_segments == 0) {
4188 			disk->max_num_segments = max_sges;
4189 		} else {
4190 			disk->max_num_segments = spdk_min(disk->max_num_segments, max_sges);
4191 		}
4192 	}
4193 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
4194 
4195 	nsdata = spdk_nvme_ns_get_data(ns);
4196 	bs = spdk_nvme_ns_get_sector_size(ns);
4197 	atomic_bs = bs;
4198 	phys_bs = bs;
4199 	if (nsdata->nabo == 0) {
4200 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
4201 			atomic_bs = bs * (1 + nsdata->nawupf);
4202 		} else {
4203 			atomic_bs = bs * (1 + cdata->awupf);
4204 		}
4205 	}
4206 	if (nsdata->nsfeat.optperf) {
4207 		phys_bs = bs * (1 + nsdata->npwg);
4208 	}
4209 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
4210 
4211 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
4212 	if (disk->md_len != 0) {
4213 		disk->md_interleave = nsdata->flbas.extended;
4214 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
4215 		if (disk->dif_type != SPDK_DIF_DISABLE) {
4216 			disk->dif_is_head_of_md = nsdata->dps.md_start;
4217 			disk->dif_check_flags = prchk_flags;
4218 			disk->dif_pi_format = (enum spdk_dif_pi_format)spdk_nvme_ns_get_pi_format(ns);
4219 		}
4220 	}
4221 
4222 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
4223 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
4224 		disk->acwu = 0;
4225 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
4226 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
4227 	} else {
4228 		disk->acwu = cdata->acwu + 1; /* 0-based */
4229 	}
4230 
4231 	if (cdata->oncs.copy) {
4232 		/* For now bdev interface allows only single segment copy */
4233 		disk->max_copy = nsdata->mssrl;
4234 	}
4235 
4236 	disk->ctxt = ctx;
4237 	disk->fn_table = &nvmelib_fn_table;
4238 	disk->module = &nvme_if;
4239 
4240 	return 0;
4241 }
4242 
4243 static struct nvme_bdev *
4244 nvme_bdev_alloc(void)
4245 {
4246 	struct nvme_bdev *bdev;
4247 	int rc;
4248 
4249 	bdev = calloc(1, sizeof(*bdev));
4250 	if (!bdev) {
4251 		SPDK_ERRLOG("bdev calloc() failed\n");
4252 		return NULL;
4253 	}
4254 
4255 	if (g_opts.nvme_error_stat) {
4256 		bdev->err_stat = calloc(1, sizeof(struct nvme_error_stat));
4257 		if (!bdev->err_stat) {
4258 			SPDK_ERRLOG("err_stat calloc() failed\n");
4259 			free(bdev);
4260 			return NULL;
4261 		}
4262 	}
4263 
4264 	rc = pthread_mutex_init(&bdev->mutex, NULL);
4265 	if (rc != 0) {
4266 		free(bdev->err_stat);
4267 		free(bdev);
4268 		return NULL;
4269 	}
4270 
4271 	bdev->ref = 1;
4272 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
4273 	bdev->mp_selector = BDEV_NVME_MP_SELECTOR_ROUND_ROBIN;
4274 	bdev->rr_min_io = UINT32_MAX;
4275 	TAILQ_INIT(&bdev->nvme_ns_list);
4276 
4277 	return bdev;
4278 }
4279 
4280 static int
4281 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4282 {
4283 	struct nvme_bdev *bdev;
4284 	struct nvme_bdev_ctrlr *nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
4285 	int rc;
4286 
4287 	bdev = nvme_bdev_alloc();
4288 	if (bdev == NULL) {
4289 		SPDK_ERRLOG("Failed to allocate NVMe bdev\n");
4290 		return -ENOMEM;
4291 	}
4292 
4293 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
4294 
4295 	rc = nvme_disk_create(&bdev->disk, nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
4296 			      nvme_ns->ns, nvme_ctrlr->opts.prchk_flags, bdev);
4297 	if (rc != 0) {
4298 		SPDK_ERRLOG("Failed to create NVMe disk\n");
4299 		nvme_bdev_free(bdev);
4300 		return rc;
4301 	}
4302 
4303 	spdk_io_device_register(bdev,
4304 				bdev_nvme_create_bdev_channel_cb,
4305 				bdev_nvme_destroy_bdev_channel_cb,
4306 				sizeof(struct nvme_bdev_channel),
4307 				bdev->disk.name);
4308 
4309 	nvme_ns->bdev = bdev;
4310 	bdev->nsid = nvme_ns->id;
4311 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4312 
4313 	bdev->nbdev_ctrlr = nbdev_ctrlr;
4314 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->bdevs, bdev, tailq);
4315 
4316 	rc = spdk_bdev_register(&bdev->disk);
4317 	if (rc != 0) {
4318 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
4319 		spdk_io_device_unregister(bdev, NULL);
4320 		nvme_ns->bdev = NULL;
4321 		TAILQ_REMOVE(&nbdev_ctrlr->bdevs, bdev, tailq);
4322 		nvme_bdev_free(bdev);
4323 		return rc;
4324 	}
4325 
4326 	return 0;
4327 }
4328 
4329 static bool
4330 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
4331 {
4332 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
4333 	const struct spdk_uuid *uuid1, *uuid2;
4334 
4335 	nsdata1 = spdk_nvme_ns_get_data(ns1);
4336 	nsdata2 = spdk_nvme_ns_get_data(ns2);
4337 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
4338 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
4339 
4340 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
4341 	       nsdata1->eui64 == nsdata2->eui64 &&
4342 	       ((uuid1 == NULL && uuid2 == NULL) ||
4343 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
4344 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
4345 }
4346 
4347 static bool
4348 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4349 		 struct spdk_nvme_ctrlr_opts *opts)
4350 {
4351 	struct nvme_probe_skip_entry *entry;
4352 
4353 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
4354 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4355 			return false;
4356 		}
4357 	}
4358 
4359 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
4360 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
4361 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
4362 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
4363 	opts->disable_read_ana_log_page = true;
4364 
4365 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
4366 
4367 	return true;
4368 }
4369 
4370 static void
4371 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
4372 {
4373 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4374 
4375 	if (spdk_nvme_cpl_is_error(cpl)) {
4376 		SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
4377 			     cpl->status.sct);
4378 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4379 	} else if (cpl->cdw0 & 0x1) {
4380 		SPDK_WARNLOG("Specified command could not be aborted.\n");
4381 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4382 	}
4383 }
4384 
4385 static void
4386 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
4387 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
4388 {
4389 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4390 	union spdk_nvme_csts_register csts;
4391 	int rc;
4392 
4393 	assert(nvme_ctrlr->ctrlr == ctrlr);
4394 
4395 	SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
4396 
4397 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
4398 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
4399 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
4400 	 * completion recursively.
4401 	 */
4402 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
4403 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
4404 		if (csts.bits.cfs) {
4405 			SPDK_ERRLOG("Controller Fatal Status, reset required\n");
4406 			bdev_nvme_reset_ctrlr(nvme_ctrlr);
4407 			return;
4408 		}
4409 	}
4410 
4411 	switch (g_opts.action_on_timeout) {
4412 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
4413 		if (qpair) {
4414 			/* Don't send abort to ctrlr when ctrlr is not available. */
4415 			pthread_mutex_lock(&nvme_ctrlr->mutex);
4416 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
4417 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
4418 				SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n");
4419 				return;
4420 			}
4421 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4422 
4423 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
4424 						       nvme_abort_cpl, nvme_ctrlr);
4425 			if (rc == 0) {
4426 				return;
4427 			}
4428 
4429 			SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
4430 		}
4431 
4432 	/* FALLTHROUGH */
4433 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
4434 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4435 		break;
4436 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
4437 		SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
4438 		break;
4439 	default:
4440 		SPDK_ERRLOG("An invalid timeout action value is found.\n");
4441 		break;
4442 	}
4443 }
4444 
4445 static struct nvme_ns *
4446 nvme_ns_alloc(void)
4447 {
4448 	struct nvme_ns *nvme_ns;
4449 
4450 	nvme_ns = calloc(1, sizeof(struct nvme_ns));
4451 	if (nvme_ns == NULL) {
4452 		return NULL;
4453 	}
4454 
4455 	if (g_opts.io_path_stat) {
4456 		nvme_ns->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
4457 		if (nvme_ns->stat == NULL) {
4458 			free(nvme_ns);
4459 			return NULL;
4460 		}
4461 		spdk_bdev_reset_io_stat(nvme_ns->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
4462 	}
4463 
4464 	return nvme_ns;
4465 }
4466 
4467 static void
4468 nvme_ns_free(struct nvme_ns *nvme_ns)
4469 {
4470 	free(nvme_ns->stat);
4471 	free(nvme_ns);
4472 }
4473 
4474 static void
4475 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
4476 {
4477 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4478 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
4479 
4480 	if (rc == 0) {
4481 		nvme_ns->probe_ctx = NULL;
4482 		pthread_mutex_lock(&nvme_ctrlr->mutex);
4483 		nvme_ctrlr->ref++;
4484 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4485 	} else {
4486 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4487 		nvme_ns_free(nvme_ns);
4488 	}
4489 
4490 	if (ctx) {
4491 		ctx->populates_in_progress--;
4492 		if (ctx->populates_in_progress == 0) {
4493 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4494 		}
4495 	}
4496 }
4497 
4498 static void
4499 bdev_nvme_add_io_path(struct spdk_io_channel_iter *i)
4500 {
4501 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4502 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4503 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4504 	int rc;
4505 
4506 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
4507 	if (rc != 0) {
4508 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
4509 	}
4510 
4511 	spdk_for_each_channel_continue(i, rc);
4512 }
4513 
4514 static void
4515 bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i)
4516 {
4517 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4518 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4519 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4520 	struct nvme_io_path *io_path;
4521 
4522 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
4523 	if (io_path != NULL) {
4524 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
4525 	}
4526 
4527 	spdk_for_each_channel_continue(i, 0);
4528 }
4529 
4530 static void
4531 bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status)
4532 {
4533 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4534 
4535 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
4536 }
4537 
4538 static void
4539 bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status)
4540 {
4541 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4542 	struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i);
4543 
4544 	if (status == 0) {
4545 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
4546 	} else {
4547 		/* Delete the added io_paths and fail populating the namespace. */
4548 		spdk_for_each_channel(bdev,
4549 				      bdev_nvme_delete_io_path,
4550 				      nvme_ns,
4551 				      bdev_nvme_add_io_path_failed);
4552 	}
4553 }
4554 
4555 static int
4556 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
4557 {
4558 	struct nvme_ns *tmp_ns;
4559 	const struct spdk_nvme_ns_data *nsdata;
4560 
4561 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
4562 	if (!nsdata->nmic.can_share) {
4563 		SPDK_ERRLOG("Namespace cannot be shared.\n");
4564 		return -EINVAL;
4565 	}
4566 
4567 	pthread_mutex_lock(&bdev->mutex);
4568 
4569 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
4570 	assert(tmp_ns != NULL);
4571 
4572 	if (tmp_ns->ns != NULL && !bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
4573 		pthread_mutex_unlock(&bdev->mutex);
4574 		SPDK_ERRLOG("Namespaces are not identical.\n");
4575 		return -EINVAL;
4576 	}
4577 
4578 	bdev->ref++;
4579 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4580 	nvme_ns->bdev = bdev;
4581 
4582 	pthread_mutex_unlock(&bdev->mutex);
4583 
4584 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
4585 	spdk_for_each_channel(bdev,
4586 			      bdev_nvme_add_io_path,
4587 			      nvme_ns,
4588 			      bdev_nvme_add_io_path_done);
4589 
4590 	return 0;
4591 }
4592 
4593 static void
4594 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4595 {
4596 	struct spdk_nvme_ns	*ns;
4597 	struct nvme_bdev	*bdev;
4598 	int			rc = 0;
4599 
4600 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
4601 	if (!ns) {
4602 		SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
4603 		rc = -EINVAL;
4604 		goto done;
4605 	}
4606 
4607 	nvme_ns->ns = ns;
4608 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4609 
4610 	if (nvme_ctrlr->ana_log_page != NULL) {
4611 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
4612 	}
4613 
4614 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
4615 	if (bdev == NULL) {
4616 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
4617 	} else {
4618 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
4619 		if (rc == 0) {
4620 			return;
4621 		}
4622 	}
4623 done:
4624 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
4625 }
4626 
4627 static void
4628 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
4629 {
4630 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4631 
4632 	assert(nvme_ctrlr != NULL);
4633 
4634 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4635 
4636 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4637 
4638 	if (nvme_ns->bdev != NULL) {
4639 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4640 		return;
4641 	}
4642 
4643 	nvme_ns_free(nvme_ns);
4644 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4645 
4646 	nvme_ctrlr_release(nvme_ctrlr);
4647 }
4648 
4649 static void
4650 bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status)
4651 {
4652 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4653 
4654 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4655 }
4656 
4657 static void
4658 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4659 {
4660 	struct nvme_bdev *bdev;
4661 
4662 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4663 
4664 	bdev = nvme_ns->bdev;
4665 	if (bdev != NULL) {
4666 		pthread_mutex_lock(&bdev->mutex);
4667 
4668 		assert(bdev->ref > 0);
4669 		bdev->ref--;
4670 		if (bdev->ref == 0) {
4671 			pthread_mutex_unlock(&bdev->mutex);
4672 
4673 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
4674 		} else {
4675 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
4676 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
4677 			 * and clear nvme_ns->bdev here.
4678 			 */
4679 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
4680 			nvme_ns->bdev = NULL;
4681 
4682 			pthread_mutex_unlock(&bdev->mutex);
4683 
4684 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
4685 			 * we call depopulate_namespace_done() to avoid use-after-free.
4686 			 */
4687 			spdk_for_each_channel(bdev,
4688 					      bdev_nvme_delete_io_path,
4689 					      nvme_ns,
4690 					      bdev_nvme_delete_io_path_done);
4691 			return;
4692 		}
4693 	}
4694 
4695 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4696 }
4697 
4698 static void
4699 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
4700 			       struct nvme_async_probe_ctx *ctx)
4701 {
4702 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
4703 	struct nvme_ns	*nvme_ns, *next;
4704 	struct spdk_nvme_ns	*ns;
4705 	struct nvme_bdev	*bdev;
4706 	uint32_t		nsid;
4707 	int			rc;
4708 	uint64_t		num_sectors;
4709 
4710 	if (ctx) {
4711 		/* Initialize this count to 1 to handle the populate functions
4712 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
4713 		 */
4714 		ctx->populates_in_progress = 1;
4715 	}
4716 
4717 	/* First loop over our existing namespaces and see if they have been
4718 	 * removed. */
4719 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4720 	while (nvme_ns != NULL) {
4721 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4722 
4723 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
4724 			/* NS is still there or added again. Its attributes may have changed. */
4725 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
4726 			if (nvme_ns->ns != ns) {
4727 				assert(nvme_ns->ns == NULL);
4728 				nvme_ns->ns = ns;
4729 				SPDK_DEBUGLOG(bdev_nvme, "NSID %u was added\n", nvme_ns->id);
4730 			}
4731 
4732 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
4733 			bdev = nvme_ns->bdev;
4734 			assert(bdev != NULL);
4735 			if (bdev->disk.blockcnt != num_sectors) {
4736 				SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
4737 					       nvme_ns->id,
4738 					       bdev->disk.name,
4739 					       bdev->disk.blockcnt,
4740 					       num_sectors);
4741 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
4742 				if (rc != 0) {
4743 					SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
4744 						    bdev->disk.name, rc);
4745 				}
4746 			}
4747 		} else {
4748 			/* Namespace was removed */
4749 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4750 		}
4751 
4752 		nvme_ns = next;
4753 	}
4754 
4755 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
4756 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4757 	while (nsid != 0) {
4758 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4759 
4760 		if (nvme_ns == NULL) {
4761 			/* Found a new one */
4762 			nvme_ns = nvme_ns_alloc();
4763 			if (nvme_ns == NULL) {
4764 				SPDK_ERRLOG("Failed to allocate namespace\n");
4765 				/* This just fails to attach the namespace. It may work on a future attempt. */
4766 				continue;
4767 			}
4768 
4769 			nvme_ns->id = nsid;
4770 			nvme_ns->ctrlr = nvme_ctrlr;
4771 
4772 			nvme_ns->bdev = NULL;
4773 
4774 			if (ctx) {
4775 				ctx->populates_in_progress++;
4776 			}
4777 			nvme_ns->probe_ctx = ctx;
4778 
4779 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4780 
4781 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
4782 		}
4783 
4784 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
4785 	}
4786 
4787 	if (ctx) {
4788 		/* Decrement this count now that the loop is over to account
4789 		 * for the one we started with.  If the count is then 0, we
4790 		 * know any populate_namespace functions completed immediately,
4791 		 * so we'll kick the callback here.
4792 		 */
4793 		ctx->populates_in_progress--;
4794 		if (ctx->populates_in_progress == 0) {
4795 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4796 		}
4797 	}
4798 
4799 }
4800 
4801 static void
4802 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
4803 {
4804 	struct nvme_ns *nvme_ns, *tmp;
4805 
4806 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
4807 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4808 	}
4809 }
4810 
4811 static uint32_t
4812 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
4813 {
4814 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
4815 	const struct spdk_nvme_ctrlr_data *cdata;
4816 	uint32_t nsid, ns_count = 0;
4817 
4818 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4819 
4820 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4821 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
4822 		ns_count++;
4823 	}
4824 
4825 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
4826 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
4827 	       sizeof(uint32_t);
4828 }
4829 
4830 static int
4831 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
4832 			  void *cb_arg)
4833 {
4834 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4835 	struct nvme_ns *nvme_ns;
4836 	uint32_t i, nsid;
4837 
4838 	for (i = 0; i < desc->num_of_nsid; i++) {
4839 		nsid = desc->nsid[i];
4840 		if (nsid == 0) {
4841 			continue;
4842 		}
4843 
4844 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4845 
4846 		if (nvme_ns == NULL) {
4847 			/* Target told us that an inactive namespace had an ANA change */
4848 			continue;
4849 		}
4850 
4851 		_nvme_ns_set_ana_state(nvme_ns, desc);
4852 	}
4853 
4854 	return 0;
4855 }
4856 
4857 static void
4858 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4859 {
4860 	struct nvme_ns *nvme_ns;
4861 
4862 	spdk_free(nvme_ctrlr->ana_log_page);
4863 	nvme_ctrlr->ana_log_page = NULL;
4864 
4865 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4866 	     nvme_ns != NULL;
4867 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
4868 		nvme_ns->ana_state_updating = false;
4869 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4870 	}
4871 }
4872 
4873 static void
4874 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
4875 {
4876 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4877 
4878 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
4879 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
4880 					     nvme_ctrlr);
4881 	} else {
4882 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
4883 	}
4884 
4885 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4886 
4887 	assert(nvme_ctrlr->ana_log_page_updating == true);
4888 	nvme_ctrlr->ana_log_page_updating = false;
4889 
4890 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
4891 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4892 
4893 		nvme_ctrlr_unregister(nvme_ctrlr);
4894 	} else {
4895 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4896 
4897 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
4898 	}
4899 }
4900 
4901 static int
4902 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4903 {
4904 	uint32_t ana_log_page_size;
4905 	int rc;
4906 
4907 	if (nvme_ctrlr->ana_log_page == NULL) {
4908 		return -EINVAL;
4909 	}
4910 
4911 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
4912 
4913 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
4914 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
4915 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
4916 		return -EINVAL;
4917 	}
4918 
4919 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4920 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
4921 	    nvme_ctrlr->ana_log_page_updating) {
4922 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4923 		return -EBUSY;
4924 	}
4925 
4926 	nvme_ctrlr->ana_log_page_updating = true;
4927 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4928 
4929 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
4930 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
4931 					      SPDK_NVME_GLOBAL_NS_TAG,
4932 					      nvme_ctrlr->ana_log_page,
4933 					      ana_log_page_size, 0,
4934 					      nvme_ctrlr_read_ana_log_page_done,
4935 					      nvme_ctrlr);
4936 	if (rc != 0) {
4937 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
4938 	}
4939 
4940 	return rc;
4941 }
4942 
4943 static void
4944 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
4945 {
4946 }
4947 
4948 struct bdev_nvme_set_preferred_path_ctx {
4949 	struct spdk_bdev_desc *desc;
4950 	struct nvme_ns *nvme_ns;
4951 	bdev_nvme_set_preferred_path_cb cb_fn;
4952 	void *cb_arg;
4953 };
4954 
4955 static void
4956 bdev_nvme_set_preferred_path_done(struct spdk_io_channel_iter *i, int status)
4957 {
4958 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4959 
4960 	assert(ctx != NULL);
4961 	assert(ctx->desc != NULL);
4962 	assert(ctx->cb_fn != NULL);
4963 
4964 	spdk_bdev_close(ctx->desc);
4965 
4966 	ctx->cb_fn(ctx->cb_arg, status);
4967 
4968 	free(ctx);
4969 }
4970 
4971 static void
4972 _bdev_nvme_set_preferred_path(struct spdk_io_channel_iter *i)
4973 {
4974 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4975 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4976 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4977 	struct nvme_io_path *io_path, *prev;
4978 
4979 	prev = NULL;
4980 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
4981 		if (io_path->nvme_ns == ctx->nvme_ns) {
4982 			break;
4983 		}
4984 		prev = io_path;
4985 	}
4986 
4987 	if (io_path != NULL) {
4988 		if (prev != NULL) {
4989 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
4990 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
4991 		}
4992 
4993 		/* We can set io_path to nbdev_ch->current_io_path directly here.
4994 		 * However, it needs to be conditional. To simplify the code,
4995 		 * just clear nbdev_ch->current_io_path and let find_io_path()
4996 		 * fill it.
4997 		 *
4998 		 * Automatic failback may be disabled. Hence even if the io_path is
4999 		 * already at the head, clear nbdev_ch->current_io_path.
5000 		 */
5001 		bdev_nvme_clear_current_io_path(nbdev_ch);
5002 	}
5003 
5004 	spdk_for_each_channel_continue(i, 0);
5005 }
5006 
5007 static struct nvme_ns *
5008 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
5009 {
5010 	struct nvme_ns *nvme_ns, *prev;
5011 	const struct spdk_nvme_ctrlr_data *cdata;
5012 
5013 	prev = NULL;
5014 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
5015 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
5016 
5017 		if (cdata->cntlid == cntlid) {
5018 			break;
5019 		}
5020 		prev = nvme_ns;
5021 	}
5022 
5023 	if (nvme_ns != NULL && prev != NULL) {
5024 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
5025 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
5026 	}
5027 
5028 	return nvme_ns;
5029 }
5030 
5031 /* This function supports only multipath mode. There is only a single I/O path
5032  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
5033  * head of the I/O path list for each NVMe bdev channel.
5034  *
5035  * NVMe bdev channel may be acquired after completing this function. move the
5036  * matched namespace to the head of the namespace list for the NVMe bdev too.
5037  */
5038 void
5039 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
5040 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
5041 {
5042 	struct bdev_nvme_set_preferred_path_ctx *ctx;
5043 	struct spdk_bdev *bdev;
5044 	struct nvme_bdev *nbdev;
5045 	int rc = 0;
5046 
5047 	assert(cb_fn != NULL);
5048 
5049 	ctx = calloc(1, sizeof(*ctx));
5050 	if (ctx == NULL) {
5051 		SPDK_ERRLOG("Failed to alloc context.\n");
5052 		rc = -ENOMEM;
5053 		goto err_alloc;
5054 	}
5055 
5056 	ctx->cb_fn = cb_fn;
5057 	ctx->cb_arg = cb_arg;
5058 
5059 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5060 	if (rc != 0) {
5061 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5062 		goto err_open;
5063 	}
5064 
5065 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5066 
5067 	if (bdev->module != &nvme_if) {
5068 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5069 		rc = -ENODEV;
5070 		goto err_bdev;
5071 	}
5072 
5073 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5074 
5075 	pthread_mutex_lock(&nbdev->mutex);
5076 
5077 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
5078 	if (ctx->nvme_ns == NULL) {
5079 		pthread_mutex_unlock(&nbdev->mutex);
5080 
5081 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
5082 		rc = -ENODEV;
5083 		goto err_bdev;
5084 	}
5085 
5086 	pthread_mutex_unlock(&nbdev->mutex);
5087 
5088 	spdk_for_each_channel(nbdev,
5089 			      _bdev_nvme_set_preferred_path,
5090 			      ctx,
5091 			      bdev_nvme_set_preferred_path_done);
5092 	return;
5093 
5094 err_bdev:
5095 	spdk_bdev_close(ctx->desc);
5096 err_open:
5097 	free(ctx);
5098 err_alloc:
5099 	cb_fn(cb_arg, rc);
5100 }
5101 
5102 struct bdev_nvme_set_multipath_policy_ctx {
5103 	struct spdk_bdev_desc *desc;
5104 	bdev_nvme_set_multipath_policy_cb cb_fn;
5105 	void *cb_arg;
5106 };
5107 
5108 static void
5109 bdev_nvme_set_multipath_policy_done(struct spdk_io_channel_iter *i, int status)
5110 {
5111 	struct bdev_nvme_set_multipath_policy_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
5112 
5113 	assert(ctx != NULL);
5114 	assert(ctx->desc != NULL);
5115 	assert(ctx->cb_fn != NULL);
5116 
5117 	spdk_bdev_close(ctx->desc);
5118 
5119 	ctx->cb_fn(ctx->cb_arg, status);
5120 
5121 	free(ctx);
5122 }
5123 
5124 static void
5125 _bdev_nvme_set_multipath_policy(struct spdk_io_channel_iter *i)
5126 {
5127 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
5128 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
5129 	struct nvme_bdev *nbdev = spdk_io_channel_get_io_device(_ch);
5130 
5131 	nbdev_ch->mp_policy = nbdev->mp_policy;
5132 	nbdev_ch->mp_selector = nbdev->mp_selector;
5133 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
5134 	bdev_nvme_clear_current_io_path(nbdev_ch);
5135 
5136 	spdk_for_each_channel_continue(i, 0);
5137 }
5138 
5139 void
5140 bdev_nvme_set_multipath_policy(const char *name, enum bdev_nvme_multipath_policy policy,
5141 			       enum bdev_nvme_multipath_selector selector, uint32_t rr_min_io,
5142 			       bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
5143 {
5144 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
5145 	struct spdk_bdev *bdev;
5146 	struct nvme_bdev *nbdev;
5147 	int rc;
5148 
5149 	assert(cb_fn != NULL);
5150 
5151 	switch (policy) {
5152 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
5153 		break;
5154 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
5155 		switch (selector) {
5156 		case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN:
5157 			if (rr_min_io == UINT32_MAX) {
5158 				rr_min_io = 1;
5159 			} else if (rr_min_io == 0) {
5160 				rc = -EINVAL;
5161 				goto exit;
5162 			}
5163 			break;
5164 		case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH:
5165 			break;
5166 		default:
5167 			rc = -EINVAL;
5168 			goto exit;
5169 		}
5170 		break;
5171 	default:
5172 		rc = -EINVAL;
5173 		goto exit;
5174 	}
5175 
5176 	ctx = calloc(1, sizeof(*ctx));
5177 	if (ctx == NULL) {
5178 		SPDK_ERRLOG("Failed to alloc context.\n");
5179 		rc = -ENOMEM;
5180 		goto exit;
5181 	}
5182 
5183 	ctx->cb_fn = cb_fn;
5184 	ctx->cb_arg = cb_arg;
5185 
5186 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5187 	if (rc != 0) {
5188 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5189 		rc = -ENODEV;
5190 		goto err_open;
5191 	}
5192 
5193 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5194 	if (bdev->module != &nvme_if) {
5195 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5196 		rc = -ENODEV;
5197 		goto err_module;
5198 	}
5199 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5200 
5201 	pthread_mutex_lock(&nbdev->mutex);
5202 	nbdev->mp_policy = policy;
5203 	nbdev->mp_selector = selector;
5204 	nbdev->rr_min_io = rr_min_io;
5205 	pthread_mutex_unlock(&nbdev->mutex);
5206 
5207 	spdk_for_each_channel(nbdev,
5208 			      _bdev_nvme_set_multipath_policy,
5209 			      ctx,
5210 			      bdev_nvme_set_multipath_policy_done);
5211 	return;
5212 
5213 err_module:
5214 	spdk_bdev_close(ctx->desc);
5215 err_open:
5216 	free(ctx);
5217 exit:
5218 	cb_fn(cb_arg, rc);
5219 }
5220 
5221 static void
5222 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5223 {
5224 	struct nvme_ctrlr *nvme_ctrlr		= arg;
5225 	union spdk_nvme_async_event_completion	event;
5226 
5227 	if (spdk_nvme_cpl_is_error(cpl)) {
5228 		SPDK_WARNLOG("AER request execute failed\n");
5229 		return;
5230 	}
5231 
5232 	event.raw = cpl->cdw0;
5233 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5234 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
5235 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
5236 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5237 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
5238 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
5239 	}
5240 }
5241 
5242 static void
5243 free_nvme_async_probe_ctx(struct nvme_async_probe_ctx *ctx)
5244 {
5245 	spdk_keyring_put_key(ctx->drv_opts.tls_psk);
5246 	spdk_keyring_put_key(ctx->drv_opts.dhchap_key);
5247 	spdk_keyring_put_key(ctx->drv_opts.dhchap_ctrlr_key);
5248 	free(ctx);
5249 }
5250 
5251 static void
5252 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, int rc)
5253 {
5254 	if (ctx->cb_fn) {
5255 		ctx->cb_fn(ctx->cb_ctx, ctx->reported_bdevs, rc);
5256 	}
5257 
5258 	ctx->namespaces_populated = true;
5259 	if (ctx->probe_done) {
5260 		/* The probe was already completed, so we need to free the context
5261 		 * here.  This can happen for cases like OCSSD, where we need to
5262 		 * send additional commands to the SSD after attach.
5263 		 */
5264 		free_nvme_async_probe_ctx(ctx);
5265 	}
5266 }
5267 
5268 static int
5269 bdev_nvme_remove_poller(void *ctx)
5270 {
5271 	struct spdk_nvme_transport_id trid_pcie;
5272 
5273 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5274 		spdk_poller_unregister(&g_hotplug_poller);
5275 		return SPDK_POLLER_IDLE;
5276 	}
5277 
5278 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5279 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5280 
5281 	if (spdk_nvme_scan_attached(&trid_pcie)) {
5282 		SPDK_ERRLOG_RATELIMIT("spdk_nvme_scan_attached() failed\n");
5283 	}
5284 
5285 	return SPDK_POLLER_BUSY;
5286 }
5287 
5288 static void
5289 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
5290 		       struct nvme_async_probe_ctx *ctx)
5291 {
5292 	spdk_io_device_register(nvme_ctrlr,
5293 				bdev_nvme_create_ctrlr_channel_cb,
5294 				bdev_nvme_destroy_ctrlr_channel_cb,
5295 				sizeof(struct nvme_ctrlr_channel),
5296 				nvme_ctrlr->nbdev_ctrlr->name);
5297 
5298 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
5299 
5300 	if (g_hotplug_poller == NULL) {
5301 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_remove_poller, NULL,
5302 							NVME_HOTPLUG_POLL_PERIOD_DEFAULT);
5303 	}
5304 }
5305 
5306 static void
5307 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
5308 {
5309 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
5310 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
5311 
5312 	nvme_ctrlr->probe_ctx = NULL;
5313 
5314 	if (spdk_nvme_cpl_is_error(cpl)) {
5315 		nvme_ctrlr_delete(nvme_ctrlr);
5316 
5317 		if (ctx != NULL) {
5318 			ctx->reported_bdevs = 0;
5319 			populate_namespaces_cb(ctx, -1);
5320 		}
5321 		return;
5322 	}
5323 
5324 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5325 }
5326 
5327 static int
5328 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
5329 			     struct nvme_async_probe_ctx *ctx)
5330 {
5331 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5332 	const struct spdk_nvme_ctrlr_data *cdata;
5333 	uint32_t ana_log_page_size;
5334 
5335 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5336 
5337 	/* Set buffer size enough to include maximum number of allowed namespaces. */
5338 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5339 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
5340 			    sizeof(uint32_t);
5341 
5342 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
5343 						SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
5344 	if (nvme_ctrlr->ana_log_page == NULL) {
5345 		SPDK_ERRLOG("could not allocate ANA log page buffer\n");
5346 		return -ENXIO;
5347 	}
5348 
5349 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
5350 	 * Hence copy each descriptor to a temporary area when parsing it.
5351 	 *
5352 	 * Allocate a buffer whose size is as large as ANA log page buffer because
5353 	 * we do not know the size of a descriptor until actually reading it.
5354 	 */
5355 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
5356 	if (nvme_ctrlr->copied_ana_desc == NULL) {
5357 		SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
5358 		return -ENOMEM;
5359 	}
5360 
5361 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
5362 
5363 	nvme_ctrlr->probe_ctx = ctx;
5364 
5365 	/* Then, set the read size only to include the current active namespaces. */
5366 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5367 
5368 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5369 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5370 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5371 		return -EINVAL;
5372 	}
5373 
5374 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
5375 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5376 						SPDK_NVME_GLOBAL_NS_TAG,
5377 						nvme_ctrlr->ana_log_page,
5378 						ana_log_page_size, 0,
5379 						nvme_ctrlr_init_ana_log_page_done,
5380 						nvme_ctrlr);
5381 }
5382 
5383 /* hostnqn and subnqn were already verified before attaching a controller.
5384  * Hence check only the multipath capability and cntlid here.
5385  */
5386 static bool
5387 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
5388 {
5389 	struct nvme_ctrlr *tmp;
5390 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
5391 
5392 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5393 
5394 	if (!cdata->cmic.multi_ctrlr) {
5395 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5396 		return false;
5397 	}
5398 
5399 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
5400 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
5401 
5402 		if (!tmp_cdata->cmic.multi_ctrlr) {
5403 			SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5404 			return false;
5405 		}
5406 		if (cdata->cntlid == tmp_cdata->cntlid) {
5407 			SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid);
5408 			return false;
5409 		}
5410 	}
5411 
5412 	return true;
5413 }
5414 
5415 static int
5416 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
5417 {
5418 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5419 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5420 	int rc = 0;
5421 
5422 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5423 
5424 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
5425 	if (nbdev_ctrlr != NULL) {
5426 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
5427 			rc = -EINVAL;
5428 			goto exit;
5429 		}
5430 	} else {
5431 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
5432 		if (nbdev_ctrlr == NULL) {
5433 			SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n");
5434 			rc = -ENOMEM;
5435 			goto exit;
5436 		}
5437 		nbdev_ctrlr->name = strdup(name);
5438 		if (nbdev_ctrlr->name == NULL) {
5439 			SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n");
5440 			free(nbdev_ctrlr);
5441 			goto exit;
5442 		}
5443 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
5444 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
5445 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
5446 	}
5447 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
5448 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
5449 exit:
5450 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5451 	return rc;
5452 }
5453 
5454 static int
5455 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
5456 		  const char *name,
5457 		  const struct spdk_nvme_transport_id *trid,
5458 		  struct nvme_async_probe_ctx *ctx)
5459 {
5460 	struct nvme_ctrlr *nvme_ctrlr;
5461 	struct nvme_path_id *path_id;
5462 	const struct spdk_nvme_ctrlr_data *cdata;
5463 	int rc;
5464 
5465 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
5466 	if (nvme_ctrlr == NULL) {
5467 		SPDK_ERRLOG("Failed to allocate device struct\n");
5468 		return -ENOMEM;
5469 	}
5470 
5471 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
5472 	if (rc != 0) {
5473 		free(nvme_ctrlr);
5474 		return rc;
5475 	}
5476 
5477 	TAILQ_INIT(&nvme_ctrlr->trids);
5478 	RB_INIT(&nvme_ctrlr->namespaces);
5479 
5480 	/* Get another reference to the key, so the first one can be released from probe_ctx */
5481 	if (ctx != NULL) {
5482 		if (ctx->drv_opts.tls_psk != NULL) {
5483 			nvme_ctrlr->psk = spdk_keyring_get_key(
5484 						  spdk_key_get_name(ctx->drv_opts.tls_psk));
5485 			if (nvme_ctrlr->psk == NULL) {
5486 				/* Could only happen if the key was removed in the meantime */
5487 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5488 					    spdk_key_get_name(ctx->drv_opts.tls_psk));
5489 				rc = -ENOKEY;
5490 				goto err;
5491 			}
5492 		}
5493 
5494 		if (ctx->drv_opts.dhchap_key != NULL) {
5495 			nvme_ctrlr->dhchap_key = spdk_keyring_get_key(
5496 							 spdk_key_get_name(ctx->drv_opts.dhchap_key));
5497 			if (nvme_ctrlr->dhchap_key == NULL) {
5498 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5499 					    spdk_key_get_name(ctx->drv_opts.dhchap_key));
5500 				rc = -ENOKEY;
5501 				goto err;
5502 			}
5503 		}
5504 
5505 		if (ctx->drv_opts.dhchap_ctrlr_key != NULL) {
5506 			nvme_ctrlr->dhchap_ctrlr_key =
5507 				spdk_keyring_get_key(
5508 					spdk_key_get_name(ctx->drv_opts.dhchap_ctrlr_key));
5509 			if (nvme_ctrlr->dhchap_ctrlr_key == NULL) {
5510 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5511 					    spdk_key_get_name(ctx->drv_opts.dhchap_ctrlr_key));
5512 				rc = -ENOKEY;
5513 				goto err;
5514 			}
5515 		}
5516 	}
5517 
5518 	path_id = calloc(1, sizeof(*path_id));
5519 	if (path_id == NULL) {
5520 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
5521 		rc = -ENOMEM;
5522 		goto err;
5523 	}
5524 
5525 	path_id->trid = *trid;
5526 	if (ctx != NULL) {
5527 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
5528 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
5529 	}
5530 	nvme_ctrlr->active_path_id = path_id;
5531 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
5532 
5533 	nvme_ctrlr->thread = spdk_get_thread();
5534 	nvme_ctrlr->ctrlr = ctrlr;
5535 	nvme_ctrlr->ref = 1;
5536 
5537 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
5538 		SPDK_ERRLOG("OCSSDs are not supported");
5539 		rc = -ENOTSUP;
5540 		goto err;
5541 	}
5542 
5543 	if (ctx != NULL) {
5544 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
5545 	} else {
5546 		bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
5547 	}
5548 
5549 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
5550 					  g_opts.nvme_adminq_poll_period_us);
5551 
5552 	if (g_opts.timeout_us > 0) {
5553 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
5554 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
5555 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
5556 					  g_opts.timeout_us : g_opts.timeout_admin_us;
5557 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
5558 				adm_timeout_us, timeout_cb, nvme_ctrlr);
5559 	}
5560 
5561 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
5562 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
5563 
5564 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
5565 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
5566 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
5567 	}
5568 
5569 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
5570 	if (rc != 0) {
5571 		goto err;
5572 	}
5573 
5574 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5575 
5576 	if (cdata->cmic.ana_reporting) {
5577 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
5578 		if (rc == 0) {
5579 			return 0;
5580 		}
5581 	} else {
5582 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5583 		return 0;
5584 	}
5585 
5586 err:
5587 	nvme_ctrlr_delete(nvme_ctrlr);
5588 	return rc;
5589 }
5590 
5591 void
5592 bdev_nvme_get_default_ctrlr_opts(struct nvme_ctrlr_opts *opts)
5593 {
5594 	opts->prchk_flags = 0;
5595 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
5596 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
5597 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
5598 }
5599 
5600 static void
5601 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5602 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
5603 {
5604 	char *name;
5605 
5606 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
5607 	if (!name) {
5608 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
5609 		return;
5610 	}
5611 
5612 	if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) {
5613 		SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
5614 	} else {
5615 		SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name);
5616 	}
5617 
5618 	free(name);
5619 }
5620 
5621 static void
5622 _nvme_ctrlr_destruct(void *ctx)
5623 {
5624 	struct nvme_ctrlr *nvme_ctrlr = ctx;
5625 
5626 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
5627 	nvme_ctrlr_release(nvme_ctrlr);
5628 }
5629 
5630 static int
5631 bdev_nvme_delete_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5632 {
5633 	struct nvme_probe_skip_entry *entry;
5634 
5635 	/* The controller's destruction was already started */
5636 	if (nvme_ctrlr->destruct) {
5637 		return -EALREADY;
5638 	}
5639 
5640 	if (!hotplug &&
5641 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
5642 		entry = calloc(1, sizeof(*entry));
5643 		if (!entry) {
5644 			return -ENOMEM;
5645 		}
5646 		entry->trid = nvme_ctrlr->active_path_id->trid;
5647 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
5648 	}
5649 
5650 	nvme_ctrlr->destruct = true;
5651 	return 0;
5652 }
5653 
5654 static int
5655 bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5656 {
5657 	int rc;
5658 
5659 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5660 	rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, hotplug);
5661 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5662 
5663 	if (rc == 0) {
5664 		_nvme_ctrlr_destruct(nvme_ctrlr);
5665 	} else if (rc == -EALREADY) {
5666 		rc = 0;
5667 	}
5668 
5669 	return rc;
5670 }
5671 
5672 static void
5673 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
5674 {
5675 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
5676 
5677 	bdev_nvme_delete_ctrlr(nvme_ctrlr, true);
5678 }
5679 
5680 static int
5681 bdev_nvme_hotplug_probe(void *arg)
5682 {
5683 	if (g_hotplug_probe_ctx == NULL) {
5684 		spdk_poller_unregister(&g_hotplug_probe_poller);
5685 		return SPDK_POLLER_IDLE;
5686 	}
5687 
5688 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
5689 		g_hotplug_probe_ctx = NULL;
5690 		spdk_poller_unregister(&g_hotplug_probe_poller);
5691 	}
5692 
5693 	return SPDK_POLLER_BUSY;
5694 }
5695 
5696 static int
5697 bdev_nvme_hotplug(void *arg)
5698 {
5699 	struct spdk_nvme_transport_id trid_pcie;
5700 
5701 	if (g_hotplug_probe_ctx) {
5702 		return SPDK_POLLER_BUSY;
5703 	}
5704 
5705 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5706 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5707 
5708 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
5709 			      hotplug_probe_cb, attach_cb, NULL);
5710 
5711 	if (g_hotplug_probe_ctx) {
5712 		assert(g_hotplug_probe_poller == NULL);
5713 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
5714 	}
5715 
5716 	return SPDK_POLLER_BUSY;
5717 }
5718 
5719 void
5720 bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
5721 {
5722 	*opts = g_opts;
5723 }
5724 
5725 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5726 		uint32_t reconnect_delay_sec,
5727 		uint32_t fast_io_fail_timeout_sec);
5728 
5729 static int
5730 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
5731 {
5732 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
5733 		/* Can't set timeout_admin_us without also setting timeout_us */
5734 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
5735 		return -EINVAL;
5736 	}
5737 
5738 	if (opts->bdev_retry_count < -1) {
5739 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
5740 		return -EINVAL;
5741 	}
5742 
5743 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
5744 			opts->reconnect_delay_sec,
5745 			opts->fast_io_fail_timeout_sec)) {
5746 		return -EINVAL;
5747 	}
5748 
5749 	return 0;
5750 }
5751 
5752 int
5753 bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
5754 {
5755 	int ret;
5756 
5757 	ret = bdev_nvme_validate_opts(opts);
5758 	if (ret) {
5759 		SPDK_WARNLOG("Failed to set nvme opts.\n");
5760 		return ret;
5761 	}
5762 
5763 	if (g_bdev_nvme_init_thread != NULL) {
5764 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5765 			return -EPERM;
5766 		}
5767 	}
5768 
5769 	if (opts->rdma_srq_size != 0 ||
5770 	    opts->rdma_max_cq_size != 0 ||
5771 	    opts->rdma_cm_event_timeout_ms != 0) {
5772 		struct spdk_nvme_transport_opts drv_opts;
5773 
5774 		spdk_nvme_transport_get_opts(&drv_opts, sizeof(drv_opts));
5775 		if (opts->rdma_srq_size != 0) {
5776 			drv_opts.rdma_srq_size = opts->rdma_srq_size;
5777 		}
5778 		if (opts->rdma_max_cq_size != 0) {
5779 			drv_opts.rdma_max_cq_size = opts->rdma_max_cq_size;
5780 		}
5781 		if (opts->rdma_cm_event_timeout_ms != 0) {
5782 			drv_opts.rdma_cm_event_timeout_ms = opts->rdma_cm_event_timeout_ms;
5783 		}
5784 
5785 		ret = spdk_nvme_transport_set_opts(&drv_opts, sizeof(drv_opts));
5786 		if (ret) {
5787 			SPDK_ERRLOG("Failed to set NVMe transport opts.\n");
5788 			return ret;
5789 		}
5790 	}
5791 
5792 	g_opts = *opts;
5793 
5794 	return 0;
5795 }
5796 
5797 struct set_nvme_hotplug_ctx {
5798 	uint64_t period_us;
5799 	bool enabled;
5800 	spdk_msg_fn fn;
5801 	void *fn_ctx;
5802 };
5803 
5804 static void
5805 set_nvme_hotplug_period_cb(void *_ctx)
5806 {
5807 	struct set_nvme_hotplug_ctx *ctx = _ctx;
5808 
5809 	spdk_poller_unregister(&g_hotplug_poller);
5810 	if (ctx->enabled) {
5811 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
5812 	} else {
5813 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_remove_poller, NULL,
5814 							NVME_HOTPLUG_POLL_PERIOD_DEFAULT);
5815 	}
5816 
5817 	g_nvme_hotplug_poll_period_us = ctx->period_us;
5818 	g_nvme_hotplug_enabled = ctx->enabled;
5819 	if (ctx->fn) {
5820 		ctx->fn(ctx->fn_ctx);
5821 	}
5822 
5823 	free(ctx);
5824 }
5825 
5826 int
5827 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
5828 {
5829 	struct set_nvme_hotplug_ctx *ctx;
5830 
5831 	if (enabled == true && !spdk_process_is_primary()) {
5832 		return -EPERM;
5833 	}
5834 
5835 	ctx = calloc(1, sizeof(*ctx));
5836 	if (ctx == NULL) {
5837 		return -ENOMEM;
5838 	}
5839 
5840 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
5841 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
5842 	ctx->enabled = enabled;
5843 	ctx->fn = cb;
5844 	ctx->fn_ctx = cb_ctx;
5845 
5846 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
5847 	return 0;
5848 }
5849 
5850 static void
5851 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
5852 				    struct nvme_async_probe_ctx *ctx)
5853 {
5854 	struct nvme_ns	*nvme_ns;
5855 	struct nvme_bdev	*nvme_bdev;
5856 	size_t			j;
5857 
5858 	assert(nvme_ctrlr != NULL);
5859 
5860 	if (ctx->names == NULL) {
5861 		ctx->reported_bdevs = 0;
5862 		populate_namespaces_cb(ctx, 0);
5863 		return;
5864 	}
5865 
5866 	/*
5867 	 * Report the new bdevs that were created in this call.
5868 	 * There can be more than one bdev per NVMe controller.
5869 	 */
5870 	j = 0;
5871 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5872 	while (nvme_ns != NULL) {
5873 		nvme_bdev = nvme_ns->bdev;
5874 		if (j < ctx->max_bdevs) {
5875 			ctx->names[j] = nvme_bdev->disk.name;
5876 			j++;
5877 		} else {
5878 			SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
5879 				    ctx->max_bdevs);
5880 			ctx->reported_bdevs = 0;
5881 			populate_namespaces_cb(ctx, -ERANGE);
5882 			return;
5883 		}
5884 
5885 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5886 	}
5887 
5888 	ctx->reported_bdevs = j;
5889 	populate_namespaces_cb(ctx, 0);
5890 }
5891 
5892 static int
5893 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5894 			       struct spdk_nvme_ctrlr *new_ctrlr,
5895 			       struct spdk_nvme_transport_id *trid)
5896 {
5897 	struct nvme_path_id *tmp_trid;
5898 
5899 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
5900 		SPDK_ERRLOG("PCIe failover is not supported.\n");
5901 		return -ENOTSUP;
5902 	}
5903 
5904 	/* Currently we only support failover to the same transport type. */
5905 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
5906 		SPDK_WARNLOG("Failover from trtype: %s to a different trtype: %s is not supported currently\n",
5907 			     spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
5908 			     spdk_nvme_transport_id_trtype_str(trid->trtype));
5909 		return -EINVAL;
5910 	}
5911 
5912 
5913 	/* Currently we only support failover to the same NQN. */
5914 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
5915 		SPDK_WARNLOG("Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
5916 			     nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
5917 		return -EINVAL;
5918 	}
5919 
5920 	/* Skip all the other checks if we've already registered this path. */
5921 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
5922 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
5923 			SPDK_WARNLOG("This path (traddr: %s subnqn: %s) is already registered\n", trid->traddr,
5924 				     trid->subnqn);
5925 			return -EALREADY;
5926 		}
5927 	}
5928 
5929 	return 0;
5930 }
5931 
5932 static int
5933 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
5934 				    struct spdk_nvme_ctrlr *new_ctrlr)
5935 {
5936 	struct nvme_ns *nvme_ns;
5937 	struct spdk_nvme_ns *new_ns;
5938 
5939 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5940 	while (nvme_ns != NULL) {
5941 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
5942 		assert(new_ns != NULL);
5943 
5944 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
5945 			return -EINVAL;
5946 		}
5947 
5948 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5949 	}
5950 
5951 	return 0;
5952 }
5953 
5954 static int
5955 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5956 			      struct spdk_nvme_transport_id *trid)
5957 {
5958 	struct nvme_path_id *active_id, *new_trid, *tmp_trid;
5959 
5960 	new_trid = calloc(1, sizeof(*new_trid));
5961 	if (new_trid == NULL) {
5962 		return -ENOMEM;
5963 	}
5964 	new_trid->trid = *trid;
5965 
5966 	active_id = nvme_ctrlr->active_path_id;
5967 	assert(active_id != NULL);
5968 	assert(active_id == TAILQ_FIRST(&nvme_ctrlr->trids));
5969 
5970 	/* Skip the active trid not to replace it until it is failed. */
5971 	tmp_trid = TAILQ_NEXT(active_id, link);
5972 	if (tmp_trid == NULL) {
5973 		goto add_tail;
5974 	}
5975 
5976 	/* It means the trid is faled if its last failed time is non-zero.
5977 	 * Insert the new alternate trid before any failed trid.
5978 	 */
5979 	TAILQ_FOREACH_FROM(tmp_trid, &nvme_ctrlr->trids, link) {
5980 		if (tmp_trid->last_failed_tsc != 0) {
5981 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
5982 			return 0;
5983 		}
5984 	}
5985 
5986 add_tail:
5987 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
5988 	return 0;
5989 }
5990 
5991 /* This is the case that a secondary path is added to an existing
5992  * nvme_ctrlr for failover. After checking if it can access the same
5993  * namespaces as the primary path, it is disconnected until failover occurs.
5994  */
5995 static int
5996 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5997 			     struct spdk_nvme_ctrlr *new_ctrlr,
5998 			     struct spdk_nvme_transport_id *trid)
5999 {
6000 	int rc;
6001 
6002 	assert(nvme_ctrlr != NULL);
6003 
6004 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6005 
6006 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
6007 	if (rc != 0) {
6008 		goto exit;
6009 	}
6010 
6011 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
6012 	if (rc != 0) {
6013 		goto exit;
6014 	}
6015 
6016 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
6017 
6018 exit:
6019 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6020 
6021 	spdk_nvme_detach(new_ctrlr);
6022 
6023 	return rc;
6024 }
6025 
6026 static void
6027 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6028 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
6029 {
6030 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6031 	struct nvme_async_probe_ctx *ctx;
6032 	int rc;
6033 
6034 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
6035 	ctx->ctrlr_attached = true;
6036 
6037 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
6038 	if (rc != 0) {
6039 		ctx->reported_bdevs = 0;
6040 		populate_namespaces_cb(ctx, rc);
6041 	}
6042 }
6043 
6044 static void
6045 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6046 			struct spdk_nvme_ctrlr *ctrlr,
6047 			const struct spdk_nvme_ctrlr_opts *opts)
6048 {
6049 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6050 	struct nvme_ctrlr *nvme_ctrlr;
6051 	struct nvme_async_probe_ctx *ctx;
6052 	int rc;
6053 
6054 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
6055 	ctx->ctrlr_attached = true;
6056 
6057 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
6058 	if (nvme_ctrlr) {
6059 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
6060 	} else {
6061 		rc = -ENODEV;
6062 	}
6063 
6064 	ctx->reported_bdevs = 0;
6065 	populate_namespaces_cb(ctx, rc);
6066 }
6067 
6068 static int
6069 bdev_nvme_async_poll(void *arg)
6070 {
6071 	struct nvme_async_probe_ctx	*ctx = arg;
6072 	int				rc;
6073 
6074 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
6075 	if (spdk_unlikely(rc != -EAGAIN)) {
6076 		ctx->probe_done = true;
6077 		spdk_poller_unregister(&ctx->poller);
6078 		if (!ctx->ctrlr_attached) {
6079 			/* The probe is done, but no controller was attached.
6080 			 * That means we had a failure, so report -EIO back to
6081 			 * the caller (usually the RPC). populate_namespaces_cb()
6082 			 * will take care of freeing the nvme_async_probe_ctx.
6083 			 */
6084 			ctx->reported_bdevs = 0;
6085 			populate_namespaces_cb(ctx, -EIO);
6086 		} else if (ctx->namespaces_populated) {
6087 			/* The namespaces for the attached controller were all
6088 			 * populated and the response was already sent to the
6089 			 * caller (usually the RPC).  So free the context here.
6090 			 */
6091 			free_nvme_async_probe_ctx(ctx);
6092 		}
6093 	}
6094 
6095 	return SPDK_POLLER_BUSY;
6096 }
6097 
6098 static bool
6099 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
6100 		uint32_t reconnect_delay_sec,
6101 		uint32_t fast_io_fail_timeout_sec)
6102 {
6103 	if (ctrlr_loss_timeout_sec < -1) {
6104 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
6105 		return false;
6106 	} else if (ctrlr_loss_timeout_sec == -1) {
6107 		if (reconnect_delay_sec == 0) {
6108 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6109 			return false;
6110 		} else if (fast_io_fail_timeout_sec != 0 &&
6111 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
6112 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
6113 			return false;
6114 		}
6115 	} else if (ctrlr_loss_timeout_sec != 0) {
6116 		if (reconnect_delay_sec == 0) {
6117 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6118 			return false;
6119 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6120 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
6121 			return false;
6122 		} else if (fast_io_fail_timeout_sec != 0) {
6123 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
6124 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
6125 				return false;
6126 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6127 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
6128 				return false;
6129 			}
6130 		}
6131 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
6132 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
6133 		return false;
6134 	}
6135 
6136 	return true;
6137 }
6138 
6139 static int
6140 bdev_nvme_load_psk(const char *fname, char *buf, size_t bufsz)
6141 {
6142 	FILE *psk_file;
6143 	struct stat statbuf;
6144 	int rc;
6145 #define TCP_PSK_INVALID_PERMISSIONS 0177
6146 
6147 	if (stat(fname, &statbuf) != 0) {
6148 		SPDK_ERRLOG("Could not read permissions for PSK file\n");
6149 		return -EACCES;
6150 	}
6151 
6152 	if ((statbuf.st_mode & TCP_PSK_INVALID_PERMISSIONS) != 0) {
6153 		SPDK_ERRLOG("Incorrect permissions for PSK file\n");
6154 		return -EPERM;
6155 	}
6156 	if ((size_t)statbuf.st_size >= bufsz) {
6157 		SPDK_ERRLOG("Invalid PSK: too long\n");
6158 		return -EINVAL;
6159 	}
6160 	psk_file = fopen(fname, "r");
6161 	if (psk_file == NULL) {
6162 		SPDK_ERRLOG("Could not open PSK file\n");
6163 		return -EINVAL;
6164 	}
6165 
6166 	memset(buf, 0, bufsz);
6167 	rc = fread(buf, 1, statbuf.st_size, psk_file);
6168 	if (rc != statbuf.st_size) {
6169 		SPDK_ERRLOG("Failed to read PSK\n");
6170 		fclose(psk_file);
6171 		return -EINVAL;
6172 	}
6173 
6174 	fclose(psk_file);
6175 	return 0;
6176 }
6177 
6178 int
6179 bdev_nvme_create(struct spdk_nvme_transport_id *trid,
6180 		 const char *base_name,
6181 		 const char **names,
6182 		 uint32_t count,
6183 		 spdk_bdev_create_nvme_fn cb_fn,
6184 		 void *cb_ctx,
6185 		 struct spdk_nvme_ctrlr_opts *drv_opts,
6186 		 struct nvme_ctrlr_opts *bdev_opts,
6187 		 bool multipath)
6188 {
6189 	struct nvme_probe_skip_entry *entry, *tmp;
6190 	struct nvme_async_probe_ctx *ctx;
6191 	spdk_nvme_attach_cb attach_cb;
6192 	int rc, len;
6193 
6194 	/* TODO expand this check to include both the host and target TRIDs.
6195 	 * Only if both are the same should we fail.
6196 	 */
6197 	if (nvme_ctrlr_get(trid, drv_opts->hostnqn) != NULL) {
6198 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s, hostnqn: %s) "
6199 			    "already exists.\n", trid->traddr, drv_opts->hostnqn);
6200 		return -EEXIST;
6201 	}
6202 
6203 	len = strnlen(base_name, SPDK_CONTROLLER_NAME_MAX);
6204 
6205 	if (len == 0 || len == SPDK_CONTROLLER_NAME_MAX) {
6206 		SPDK_ERRLOG("controller name must be between 1 and %d characters\n", SPDK_CONTROLLER_NAME_MAX - 1);
6207 		return -EINVAL;
6208 	}
6209 
6210 	if (bdev_opts != NULL &&
6211 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
6212 			    bdev_opts->reconnect_delay_sec,
6213 			    bdev_opts->fast_io_fail_timeout_sec)) {
6214 		return -EINVAL;
6215 	}
6216 
6217 	ctx = calloc(1, sizeof(*ctx));
6218 	if (!ctx) {
6219 		return -ENOMEM;
6220 	}
6221 	ctx->base_name = base_name;
6222 	ctx->names = names;
6223 	ctx->max_bdevs = count;
6224 	ctx->cb_fn = cb_fn;
6225 	ctx->cb_ctx = cb_ctx;
6226 	ctx->trid = *trid;
6227 
6228 	if (bdev_opts) {
6229 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
6230 	} else {
6231 		bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
6232 	}
6233 
6234 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
6235 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
6236 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
6237 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
6238 				free(entry);
6239 				break;
6240 			}
6241 		}
6242 	}
6243 
6244 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
6245 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
6246 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
6247 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
6248 	ctx->drv_opts.disable_read_ana_log_page = true;
6249 	ctx->drv_opts.transport_tos = g_opts.transport_tos;
6250 
6251 	if (ctx->bdev_opts.psk[0] != '\0') {
6252 		/* Try to use the keyring first */
6253 		ctx->drv_opts.tls_psk = spdk_keyring_get_key(ctx->bdev_opts.psk);
6254 		if (ctx->drv_opts.tls_psk == NULL) {
6255 			rc = bdev_nvme_load_psk(ctx->bdev_opts.psk,
6256 						ctx->drv_opts.psk, sizeof(ctx->drv_opts.psk));
6257 			if (rc != 0) {
6258 				SPDK_ERRLOG("Could not load PSK from %s\n", ctx->bdev_opts.psk);
6259 				free_nvme_async_probe_ctx(ctx);
6260 				return rc;
6261 			}
6262 		}
6263 	}
6264 
6265 	if (ctx->bdev_opts.dhchap_key != NULL) {
6266 		ctx->drv_opts.dhchap_key = spdk_keyring_get_key(ctx->bdev_opts.dhchap_key);
6267 		if (ctx->drv_opts.dhchap_key == NULL) {
6268 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP key: %s\n",
6269 				    ctx->bdev_opts.dhchap_key);
6270 			free_nvme_async_probe_ctx(ctx);
6271 			return -ENOKEY;
6272 		}
6273 
6274 		ctx->drv_opts.dhchap_digests = g_opts.dhchap_digests;
6275 		ctx->drv_opts.dhchap_dhgroups = g_opts.dhchap_dhgroups;
6276 	}
6277 	if (ctx->bdev_opts.dhchap_ctrlr_key != NULL) {
6278 		ctx->drv_opts.dhchap_ctrlr_key =
6279 			spdk_keyring_get_key(ctx->bdev_opts.dhchap_ctrlr_key);
6280 		if (ctx->drv_opts.dhchap_ctrlr_key == NULL) {
6281 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP controller key: %s\n",
6282 				    ctx->bdev_opts.dhchap_ctrlr_key);
6283 			free_nvme_async_probe_ctx(ctx);
6284 			return -ENOKEY;
6285 		}
6286 	}
6287 
6288 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) {
6289 		attach_cb = connect_attach_cb;
6290 	} else {
6291 		attach_cb = connect_set_failover_cb;
6292 	}
6293 
6294 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
6295 	if (ctx->probe_ctx == NULL) {
6296 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
6297 		free_nvme_async_probe_ctx(ctx);
6298 		return -ENODEV;
6299 	}
6300 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
6301 
6302 	return 0;
6303 }
6304 
6305 struct bdev_nvme_delete_ctx {
6306 	char                        *name;
6307 	struct nvme_path_id         path_id;
6308 	bdev_nvme_delete_done_fn    delete_done;
6309 	void                        *delete_done_ctx;
6310 	uint64_t                    timeout_ticks;
6311 	struct spdk_poller          *poller;
6312 };
6313 
6314 static void
6315 free_bdev_nvme_delete_ctx(struct bdev_nvme_delete_ctx *ctx)
6316 {
6317 	if (ctx != NULL) {
6318 		free(ctx->name);
6319 		free(ctx);
6320 	}
6321 }
6322 
6323 static bool
6324 nvme_path_id_compare(struct nvme_path_id *p, const struct nvme_path_id *path_id)
6325 {
6326 	if (path_id->trid.trtype != 0) {
6327 		if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
6328 			if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
6329 				return false;
6330 			}
6331 		} else {
6332 			if (path_id->trid.trtype != p->trid.trtype) {
6333 				return false;
6334 			}
6335 		}
6336 	}
6337 
6338 	if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
6339 		if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
6340 			return false;
6341 		}
6342 	}
6343 
6344 	if (path_id->trid.adrfam != 0) {
6345 		if (path_id->trid.adrfam != p->trid.adrfam) {
6346 			return false;
6347 		}
6348 	}
6349 
6350 	if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
6351 		if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
6352 			return false;
6353 		}
6354 	}
6355 
6356 	if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
6357 		if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
6358 			return false;
6359 		}
6360 	}
6361 
6362 	if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
6363 		if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
6364 			return false;
6365 		}
6366 	}
6367 
6368 	if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
6369 		if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
6370 			return false;
6371 		}
6372 	}
6373 
6374 	return true;
6375 }
6376 
6377 static bool
6378 nvme_path_id_exists(const char *name, const struct nvme_path_id *path_id)
6379 {
6380 	struct nvme_bdev_ctrlr  *nbdev_ctrlr;
6381 	struct nvme_ctrlr       *ctrlr;
6382 	struct nvme_path_id     *p;
6383 
6384 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6385 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6386 	if (!nbdev_ctrlr) {
6387 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6388 		return false;
6389 	}
6390 
6391 	TAILQ_FOREACH(ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6392 		pthread_mutex_lock(&ctrlr->mutex);
6393 		TAILQ_FOREACH(p, &ctrlr->trids, link) {
6394 			if (nvme_path_id_compare(p, path_id)) {
6395 				pthread_mutex_unlock(&ctrlr->mutex);
6396 				pthread_mutex_unlock(&g_bdev_nvme_mutex);
6397 				return true;
6398 			}
6399 		}
6400 		pthread_mutex_unlock(&ctrlr->mutex);
6401 	}
6402 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6403 
6404 	return false;
6405 }
6406 
6407 static int
6408 bdev_nvme_delete_complete_poll(void *arg)
6409 {
6410 	struct bdev_nvme_delete_ctx     *ctx = arg;
6411 	int                             rc = 0;
6412 
6413 	if (nvme_path_id_exists(ctx->name, &ctx->path_id)) {
6414 		if (ctx->timeout_ticks > spdk_get_ticks()) {
6415 			return SPDK_POLLER_BUSY;
6416 		}
6417 
6418 		SPDK_ERRLOG("NVMe path '%s' still exists after delete\n", ctx->name);
6419 		rc = -ETIMEDOUT;
6420 	}
6421 
6422 	spdk_poller_unregister(&ctx->poller);
6423 
6424 	ctx->delete_done(ctx->delete_done_ctx, rc);
6425 	free_bdev_nvme_delete_ctx(ctx);
6426 
6427 	return SPDK_POLLER_BUSY;
6428 }
6429 
6430 static int
6431 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, const struct nvme_path_id *path_id)
6432 {
6433 	struct nvme_path_id	*p, *t;
6434 	spdk_msg_fn		msg_fn;
6435 	int			rc = -ENXIO;
6436 
6437 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6438 
6439 	TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
6440 		if (p == TAILQ_FIRST(&nvme_ctrlr->trids)) {
6441 			break;
6442 		}
6443 
6444 		if (!nvme_path_id_compare(p, path_id)) {
6445 			continue;
6446 		}
6447 
6448 		/* We are not using the specified path. */
6449 		TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
6450 		free(p);
6451 		rc = 0;
6452 	}
6453 
6454 	if (p == NULL || !nvme_path_id_compare(p, path_id)) {
6455 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
6456 		return rc;
6457 	}
6458 
6459 	/* If we made it here, then this path is a match! Now we need to remove it. */
6460 
6461 	/* This is the active path in use right now. The active path is always the first in the list. */
6462 	assert(p == nvme_ctrlr->active_path_id);
6463 
6464 	if (!TAILQ_NEXT(p, link)) {
6465 		/* The current path is the only path. */
6466 		msg_fn = _nvme_ctrlr_destruct;
6467 		rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, false);
6468 	} else {
6469 		/* There is an alternative path. */
6470 		msg_fn = _bdev_nvme_reset_ctrlr;
6471 		rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, true);
6472 	}
6473 
6474 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6475 
6476 	if (rc == 0) {
6477 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
6478 	} else if (rc == -EALREADY) {
6479 		rc = 0;
6480 	}
6481 
6482 	return rc;
6483 }
6484 
6485 int
6486 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id,
6487 		 bdev_nvme_delete_done_fn delete_done, void *delete_done_ctx)
6488 {
6489 	struct nvme_bdev_ctrlr		*nbdev_ctrlr;
6490 	struct nvme_ctrlr		*nvme_ctrlr, *tmp_nvme_ctrlr;
6491 	struct bdev_nvme_delete_ctx     *ctx = NULL;
6492 	int				rc = -ENXIO, _rc;
6493 
6494 	if (name == NULL || path_id == NULL) {
6495 		rc = -EINVAL;
6496 		goto exit;
6497 	}
6498 
6499 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6500 
6501 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6502 	if (nbdev_ctrlr == NULL) {
6503 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6504 
6505 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
6506 		rc = -ENODEV;
6507 		goto exit;
6508 	}
6509 
6510 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
6511 		_rc = _bdev_nvme_delete(nvme_ctrlr, path_id);
6512 		if (_rc < 0 && _rc != -ENXIO) {
6513 			pthread_mutex_unlock(&g_bdev_nvme_mutex);
6514 			rc = _rc;
6515 			goto exit;
6516 		} else if (_rc == 0) {
6517 			/* We traverse all remaining nvme_ctrlrs even if one nvme_ctrlr
6518 			 * was deleted successfully. To remember the successful deletion,
6519 			 * overwrite rc only if _rc is zero.
6520 			 */
6521 			rc = 0;
6522 		}
6523 	}
6524 
6525 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6526 
6527 	if (rc != 0 || delete_done == NULL) {
6528 		goto exit;
6529 	}
6530 
6531 	ctx = calloc(1, sizeof(*ctx));
6532 	if (ctx == NULL) {
6533 		SPDK_ERRLOG("Failed to allocate context for bdev_nvme_delete\n");
6534 		rc = -ENOMEM;
6535 		goto exit;
6536 	}
6537 
6538 	ctx->name = strdup(name);
6539 	if (ctx->name == NULL) {
6540 		SPDK_ERRLOG("Failed to copy controller name for deletion\n");
6541 		rc = -ENOMEM;
6542 		goto exit;
6543 	}
6544 
6545 	ctx->delete_done = delete_done;
6546 	ctx->delete_done_ctx = delete_done_ctx;
6547 	ctx->path_id = *path_id;
6548 	ctx->timeout_ticks = spdk_get_ticks() + 10 * spdk_get_ticks_hz();
6549 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_delete_complete_poll, ctx, 1000);
6550 	if (ctx->poller == NULL) {
6551 		SPDK_ERRLOG("Failed to register bdev_nvme_delete poller\n");
6552 		rc = -ENOMEM;
6553 		goto exit;
6554 	}
6555 
6556 exit:
6557 	if (rc != 0) {
6558 		free_bdev_nvme_delete_ctx(ctx);
6559 	}
6560 
6561 	return rc;
6562 }
6563 
6564 #define DISCOVERY_INFOLOG(ctx, format, ...) \
6565 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6566 
6567 #define DISCOVERY_ERRLOG(ctx, format, ...) \
6568 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6569 
6570 struct discovery_entry_ctx {
6571 	char						name[128];
6572 	struct spdk_nvme_transport_id			trid;
6573 	struct spdk_nvme_ctrlr_opts			drv_opts;
6574 	struct spdk_nvmf_discovery_log_page_entry	entry;
6575 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
6576 	struct discovery_ctx				*ctx;
6577 };
6578 
6579 struct discovery_ctx {
6580 	char					*name;
6581 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
6582 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
6583 	void					*cb_ctx;
6584 	struct spdk_nvme_probe_ctx		*probe_ctx;
6585 	struct spdk_nvme_detach_ctx		*detach_ctx;
6586 	struct spdk_nvme_ctrlr			*ctrlr;
6587 	struct spdk_nvme_transport_id		trid;
6588 	struct discovery_entry_ctx		*entry_ctx_in_use;
6589 	struct spdk_poller			*poller;
6590 	struct spdk_nvme_ctrlr_opts		drv_opts;
6591 	struct nvme_ctrlr_opts			bdev_opts;
6592 	struct spdk_nvmf_discovery_log_page	*log_page;
6593 	TAILQ_ENTRY(discovery_ctx)		tailq;
6594 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
6595 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
6596 	int					rc;
6597 	bool					wait_for_attach;
6598 	uint64_t				timeout_ticks;
6599 	/* Denotes that the discovery service is being started. We're waiting
6600 	 * for the initial connection to the discovery controller to be
6601 	 * established and attach discovered NVM ctrlrs.
6602 	 */
6603 	bool					initializing;
6604 	/* Denotes if a discovery is currently in progress for this context.
6605 	 * That includes connecting to newly discovered subsystems.  Used to
6606 	 * ensure we do not start a new discovery until an existing one is
6607 	 * complete.
6608 	 */
6609 	bool					in_progress;
6610 
6611 	/* Denotes if another discovery is needed after the one in progress
6612 	 * completes.  Set when we receive an AER completion while a discovery
6613 	 * is already in progress.
6614 	 */
6615 	bool					pending;
6616 
6617 	/* Signal to the discovery context poller that it should stop the
6618 	 * discovery service, including detaching from the current discovery
6619 	 * controller.
6620 	 */
6621 	bool					stop;
6622 
6623 	struct spdk_thread			*calling_thread;
6624 	uint32_t				index;
6625 	uint32_t				attach_in_progress;
6626 	char					*hostnqn;
6627 
6628 	/* Denotes if the discovery service was started by the mdns discovery.
6629 	 */
6630 	bool					from_mdns_discovery_service;
6631 };
6632 
6633 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
6634 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
6635 
6636 static void get_discovery_log_page(struct discovery_ctx *ctx);
6637 
6638 static void
6639 free_discovery_ctx(struct discovery_ctx *ctx)
6640 {
6641 	free(ctx->log_page);
6642 	free(ctx->hostnqn);
6643 	free(ctx->name);
6644 	free(ctx);
6645 }
6646 
6647 static void
6648 discovery_complete(struct discovery_ctx *ctx)
6649 {
6650 	ctx->initializing = false;
6651 	ctx->in_progress = false;
6652 	if (ctx->pending) {
6653 		ctx->pending = false;
6654 		get_discovery_log_page(ctx);
6655 	}
6656 }
6657 
6658 static void
6659 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
6660 			       struct spdk_nvmf_discovery_log_page_entry *entry)
6661 {
6662 	char *space;
6663 
6664 	trid->trtype = entry->trtype;
6665 	trid->adrfam = entry->adrfam;
6666 	memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr));
6667 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid));
6668 	/* Because the source buffer (entry->subnqn) is longer than trid->subnqn, and
6669 	 * before call to this function trid->subnqn is zeroed out, we need
6670 	 * to copy sizeof(trid->subnqn) minus one byte to make sure the last character
6671 	 * remains 0. Then we can shorten the string (replace ' ' with 0) if required
6672 	 */
6673 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn) - 1);
6674 
6675 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
6676 	 * But the log page entries typically pad them with spaces, not zeroes.
6677 	 * So add a NULL terminator to each of these fields at the appropriate
6678 	 * location.
6679 	 */
6680 	space = strchr(trid->traddr, ' ');
6681 	if (space) {
6682 		*space = 0;
6683 	}
6684 	space = strchr(trid->trsvcid, ' ');
6685 	if (space) {
6686 		*space = 0;
6687 	}
6688 	space = strchr(trid->subnqn, ' ');
6689 	if (space) {
6690 		*space = 0;
6691 	}
6692 }
6693 
6694 static void
6695 _stop_discovery(void *_ctx)
6696 {
6697 	struct discovery_ctx *ctx = _ctx;
6698 
6699 	if (ctx->attach_in_progress > 0) {
6700 		spdk_thread_send_msg(spdk_get_thread(), _stop_discovery, ctx);
6701 		return;
6702 	}
6703 
6704 	ctx->stop = true;
6705 
6706 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
6707 		struct discovery_entry_ctx *entry_ctx;
6708 		struct nvme_path_id path = {};
6709 
6710 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
6711 		path.trid = entry_ctx->trid;
6712 		bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6713 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6714 		free(entry_ctx);
6715 	}
6716 
6717 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
6718 		struct discovery_entry_ctx *entry_ctx;
6719 
6720 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6721 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6722 		free(entry_ctx);
6723 	}
6724 
6725 	free(ctx->entry_ctx_in_use);
6726 	ctx->entry_ctx_in_use = NULL;
6727 }
6728 
6729 static void
6730 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
6731 {
6732 	ctx->stop_cb_fn = cb_fn;
6733 	ctx->cb_ctx = cb_ctx;
6734 
6735 	if (ctx->attach_in_progress > 0) {
6736 		DISCOVERY_INFOLOG(ctx, "stopping discovery with attach_in_progress: %"PRIu32"\n",
6737 				  ctx->attach_in_progress);
6738 	}
6739 
6740 	_stop_discovery(ctx);
6741 }
6742 
6743 static void
6744 remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr)
6745 {
6746 	struct discovery_ctx *d_ctx;
6747 	struct nvme_path_id *path_id;
6748 	struct spdk_nvme_transport_id trid = {};
6749 	struct discovery_entry_ctx *entry_ctx, *tmp;
6750 
6751 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
6752 
6753 	TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6754 		TAILQ_FOREACH_SAFE(entry_ctx, &d_ctx->nvm_entry_ctxs, tailq, tmp) {
6755 			build_trid_from_log_page_entry(&trid, &entry_ctx->entry);
6756 			if (spdk_nvme_transport_id_compare(&trid, &path_id->trid) != 0) {
6757 				continue;
6758 			}
6759 
6760 			TAILQ_REMOVE(&d_ctx->nvm_entry_ctxs, entry_ctx, tailq);
6761 			free(entry_ctx);
6762 			DISCOVERY_INFOLOG(d_ctx, "Remove discovery entry: %s:%s:%s\n",
6763 					  trid.subnqn, trid.traddr, trid.trsvcid);
6764 
6765 			/* Fail discovery ctrlr to force reattach attempt */
6766 			spdk_nvme_ctrlr_fail(d_ctx->ctrlr);
6767 		}
6768 	}
6769 }
6770 
6771 static void
6772 discovery_remove_controllers(struct discovery_ctx *ctx)
6773 {
6774 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
6775 	struct discovery_entry_ctx *entry_ctx, *tmp;
6776 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6777 	struct spdk_nvme_transport_id old_trid = {};
6778 	uint64_t numrec, i;
6779 	bool found;
6780 
6781 	numrec = from_le64(&log_page->numrec);
6782 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
6783 		found = false;
6784 		old_entry = &entry_ctx->entry;
6785 		build_trid_from_log_page_entry(&old_trid, old_entry);
6786 		for (i = 0; i < numrec; i++) {
6787 			new_entry = &log_page->entries[i];
6788 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
6789 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
6790 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6791 				found = true;
6792 				break;
6793 			}
6794 		}
6795 		if (!found) {
6796 			struct nvme_path_id path = {};
6797 
6798 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
6799 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6800 
6801 			path.trid = entry_ctx->trid;
6802 			bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6803 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6804 			free(entry_ctx);
6805 		}
6806 	}
6807 	free(log_page);
6808 	ctx->log_page = NULL;
6809 	discovery_complete(ctx);
6810 }
6811 
6812 static void
6813 complete_discovery_start(struct discovery_ctx *ctx, int status)
6814 {
6815 	ctx->timeout_ticks = 0;
6816 	ctx->rc = status;
6817 	if (ctx->start_cb_fn) {
6818 		ctx->start_cb_fn(ctx->cb_ctx, status);
6819 		ctx->start_cb_fn = NULL;
6820 		ctx->cb_ctx = NULL;
6821 	}
6822 }
6823 
6824 static void
6825 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
6826 {
6827 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
6828 	struct discovery_ctx *ctx = entry_ctx->ctx;
6829 
6830 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
6831 	ctx->attach_in_progress--;
6832 	if (ctx->attach_in_progress == 0) {
6833 		complete_discovery_start(ctx, ctx->rc);
6834 		if (ctx->initializing && ctx->rc != 0) {
6835 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
6836 			stop_discovery(ctx, NULL, ctx->cb_ctx);
6837 		} else {
6838 			discovery_remove_controllers(ctx);
6839 		}
6840 	}
6841 }
6842 
6843 static struct discovery_entry_ctx *
6844 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
6845 {
6846 	struct discovery_entry_ctx *new_ctx;
6847 
6848 	new_ctx = calloc(1, sizeof(*new_ctx));
6849 	if (new_ctx == NULL) {
6850 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6851 		return NULL;
6852 	}
6853 
6854 	new_ctx->ctx = ctx;
6855 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
6856 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6857 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6858 	return new_ctx;
6859 }
6860 
6861 static void
6862 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
6863 		      struct spdk_nvmf_discovery_log_page *log_page)
6864 {
6865 	struct discovery_ctx *ctx = cb_arg;
6866 	struct discovery_entry_ctx *entry_ctx, *tmp;
6867 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6868 	uint64_t numrec, i;
6869 	bool found;
6870 
6871 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
6872 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6873 		return;
6874 	}
6875 
6876 	ctx->log_page = log_page;
6877 	assert(ctx->attach_in_progress == 0);
6878 	numrec = from_le64(&log_page->numrec);
6879 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
6880 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6881 		free(entry_ctx);
6882 	}
6883 	for (i = 0; i < numrec; i++) {
6884 		found = false;
6885 		new_entry = &log_page->entries[i];
6886 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY_CURRENT ||
6887 		    new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
6888 			struct discovery_entry_ctx *new_ctx;
6889 			struct spdk_nvme_transport_id trid = {};
6890 
6891 			build_trid_from_log_page_entry(&trid, new_entry);
6892 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
6893 			if (new_ctx == NULL) {
6894 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6895 				break;
6896 			}
6897 
6898 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
6899 			continue;
6900 		}
6901 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
6902 			old_entry = &entry_ctx->entry;
6903 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
6904 				found = true;
6905 				break;
6906 			}
6907 		}
6908 		if (!found) {
6909 			struct discovery_entry_ctx *subnqn_ctx = NULL, *new_ctx;
6910 			struct discovery_ctx *d_ctx;
6911 
6912 			TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6913 				TAILQ_FOREACH(subnqn_ctx, &d_ctx->nvm_entry_ctxs, tailq) {
6914 					if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
6915 						    sizeof(new_entry->subnqn))) {
6916 						break;
6917 					}
6918 				}
6919 				if (subnqn_ctx) {
6920 					break;
6921 				}
6922 			}
6923 
6924 			new_ctx = calloc(1, sizeof(*new_ctx));
6925 			if (new_ctx == NULL) {
6926 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6927 				break;
6928 			}
6929 
6930 			new_ctx->ctx = ctx;
6931 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
6932 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
6933 			if (subnqn_ctx) {
6934 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
6935 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
6936 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6937 						  new_ctx->name);
6938 			} else {
6939 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
6940 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
6941 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6942 						  new_ctx->name);
6943 			}
6944 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6945 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6946 			rc = bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
6947 					      discovery_attach_controller_done, new_ctx,
6948 					      &new_ctx->drv_opts, &ctx->bdev_opts, true);
6949 			if (rc == 0) {
6950 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
6951 				ctx->attach_in_progress++;
6952 			} else {
6953 				DISCOVERY_ERRLOG(ctx, "bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
6954 			}
6955 		}
6956 	}
6957 
6958 	if (ctx->attach_in_progress == 0) {
6959 		discovery_remove_controllers(ctx);
6960 	}
6961 }
6962 
6963 static void
6964 get_discovery_log_page(struct discovery_ctx *ctx)
6965 {
6966 	int rc;
6967 
6968 	assert(ctx->in_progress == false);
6969 	ctx->in_progress = true;
6970 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
6971 	if (rc != 0) {
6972 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6973 	}
6974 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
6975 }
6976 
6977 static void
6978 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
6979 {
6980 	struct discovery_ctx *ctx = arg;
6981 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
6982 
6983 	if (spdk_nvme_cpl_is_error(cpl)) {
6984 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
6985 		return;
6986 	}
6987 
6988 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
6989 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
6990 		return;
6991 	}
6992 
6993 	DISCOVERY_INFOLOG(ctx, "got aer\n");
6994 	if (ctx->in_progress) {
6995 		ctx->pending = true;
6996 		return;
6997 	}
6998 
6999 	get_discovery_log_page(ctx);
7000 }
7001 
7002 static void
7003 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
7004 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
7005 {
7006 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
7007 	struct discovery_ctx *ctx;
7008 
7009 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
7010 
7011 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
7012 	ctx->probe_ctx = NULL;
7013 	ctx->ctrlr = ctrlr;
7014 
7015 	if (ctx->rc != 0) {
7016 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
7017 				 ctx->rc);
7018 		return;
7019 	}
7020 
7021 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
7022 }
7023 
7024 static int
7025 discovery_poller(void *arg)
7026 {
7027 	struct discovery_ctx *ctx = arg;
7028 	struct spdk_nvme_transport_id *trid;
7029 	int rc;
7030 
7031 	if (ctx->detach_ctx) {
7032 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
7033 		if (rc != -EAGAIN) {
7034 			ctx->detach_ctx = NULL;
7035 			ctx->ctrlr = NULL;
7036 		}
7037 	} else if (ctx->stop) {
7038 		if (ctx->ctrlr != NULL) {
7039 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
7040 			if (rc == 0) {
7041 				return SPDK_POLLER_BUSY;
7042 			}
7043 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7044 		}
7045 		spdk_poller_unregister(&ctx->poller);
7046 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
7047 		assert(ctx->start_cb_fn == NULL);
7048 		if (ctx->stop_cb_fn != NULL) {
7049 			ctx->stop_cb_fn(ctx->cb_ctx);
7050 		}
7051 		free_discovery_ctx(ctx);
7052 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
7053 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7054 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
7055 			assert(ctx->initializing);
7056 			spdk_poller_unregister(&ctx->poller);
7057 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
7058 			complete_discovery_start(ctx, -ETIMEDOUT);
7059 			stop_discovery(ctx, NULL, NULL);
7060 			free_discovery_ctx(ctx);
7061 			return SPDK_POLLER_BUSY;
7062 		}
7063 
7064 		assert(ctx->entry_ctx_in_use == NULL);
7065 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
7066 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7067 		trid = &ctx->entry_ctx_in_use->trid;
7068 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
7069 		if (ctx->probe_ctx) {
7070 			spdk_poller_unregister(&ctx->poller);
7071 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
7072 		} else {
7073 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
7074 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7075 			ctx->entry_ctx_in_use = NULL;
7076 		}
7077 	} else if (ctx->probe_ctx) {
7078 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7079 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
7080 			complete_discovery_start(ctx, -ETIMEDOUT);
7081 			return SPDK_POLLER_BUSY;
7082 		}
7083 
7084 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
7085 		if (rc != -EAGAIN) {
7086 			if (ctx->rc != 0) {
7087 				assert(ctx->initializing);
7088 				stop_discovery(ctx, NULL, ctx->cb_ctx);
7089 			} else {
7090 				assert(rc == 0);
7091 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
7092 				ctx->rc = rc;
7093 				get_discovery_log_page(ctx);
7094 			}
7095 		}
7096 	} else {
7097 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7098 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
7099 			complete_discovery_start(ctx, -ETIMEDOUT);
7100 			/* We need to wait until all NVM ctrlrs are attached before we stop the
7101 			 * discovery service to make sure we don't detach a ctrlr that is still
7102 			 * being attached.
7103 			 */
7104 			if (ctx->attach_in_progress == 0) {
7105 				stop_discovery(ctx, NULL, ctx->cb_ctx);
7106 				return SPDK_POLLER_BUSY;
7107 			}
7108 		}
7109 
7110 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
7111 		if (rc < 0) {
7112 			spdk_poller_unregister(&ctx->poller);
7113 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7114 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7115 			ctx->entry_ctx_in_use = NULL;
7116 
7117 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
7118 			if (rc != 0) {
7119 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7120 				ctx->ctrlr = NULL;
7121 			}
7122 		}
7123 	}
7124 
7125 	return SPDK_POLLER_BUSY;
7126 }
7127 
7128 static void
7129 start_discovery_poller(void *arg)
7130 {
7131 	struct discovery_ctx *ctx = arg;
7132 
7133 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
7134 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7135 }
7136 
7137 int
7138 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
7139 			  const char *base_name,
7140 			  struct spdk_nvme_ctrlr_opts *drv_opts,
7141 			  struct nvme_ctrlr_opts *bdev_opts,
7142 			  uint64_t attach_timeout,
7143 			  bool from_mdns,
7144 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
7145 {
7146 	struct discovery_ctx *ctx;
7147 	struct discovery_entry_ctx *discovery_entry_ctx;
7148 
7149 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
7150 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7151 		if (strcmp(ctx->name, base_name) == 0) {
7152 			return -EEXIST;
7153 		}
7154 
7155 		if (ctx->entry_ctx_in_use != NULL) {
7156 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
7157 				return -EEXIST;
7158 			}
7159 		}
7160 
7161 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
7162 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
7163 				return -EEXIST;
7164 			}
7165 		}
7166 	}
7167 
7168 	ctx = calloc(1, sizeof(*ctx));
7169 	if (ctx == NULL) {
7170 		return -ENOMEM;
7171 	}
7172 
7173 	ctx->name = strdup(base_name);
7174 	if (ctx->name == NULL) {
7175 		free_discovery_ctx(ctx);
7176 		return -ENOMEM;
7177 	}
7178 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
7179 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
7180 	ctx->from_mdns_discovery_service = from_mdns;
7181 	ctx->bdev_opts.from_discovery_service = true;
7182 	ctx->calling_thread = spdk_get_thread();
7183 	ctx->start_cb_fn = cb_fn;
7184 	ctx->cb_ctx = cb_ctx;
7185 	ctx->initializing = true;
7186 	if (ctx->start_cb_fn) {
7187 		/* We can use this when dumping json to denote if this RPC parameter
7188 		 * was specified or not.
7189 		 */
7190 		ctx->wait_for_attach = true;
7191 	}
7192 	if (attach_timeout != 0) {
7193 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
7194 				     spdk_get_ticks_hz() / 1000ull;
7195 	}
7196 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
7197 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
7198 	memcpy(&ctx->trid, trid, sizeof(*trid));
7199 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
7200 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
7201 	if (ctx->hostnqn == NULL) {
7202 		free_discovery_ctx(ctx);
7203 		return -ENOMEM;
7204 	}
7205 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
7206 	if (discovery_entry_ctx == NULL) {
7207 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7208 		free_discovery_ctx(ctx);
7209 		return -ENOMEM;
7210 	}
7211 
7212 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
7213 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
7214 	return 0;
7215 }
7216 
7217 int
7218 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
7219 {
7220 	struct discovery_ctx *ctx;
7221 
7222 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7223 		if (strcmp(name, ctx->name) == 0) {
7224 			if (ctx->stop) {
7225 				return -EALREADY;
7226 			}
7227 			/* If we're still starting the discovery service and ->rc is non-zero, we're
7228 			 * going to stop it as soon as we can
7229 			 */
7230 			if (ctx->initializing && ctx->rc != 0) {
7231 				return -EALREADY;
7232 			}
7233 			stop_discovery(ctx, cb_fn, cb_ctx);
7234 			return 0;
7235 		}
7236 	}
7237 
7238 	return -ENOENT;
7239 }
7240 
7241 static int
7242 bdev_nvme_library_init(void)
7243 {
7244 	g_bdev_nvme_init_thread = spdk_get_thread();
7245 
7246 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
7247 				bdev_nvme_destroy_poll_group_cb,
7248 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
7249 
7250 	return 0;
7251 }
7252 
7253 static void
7254 bdev_nvme_fini_destruct_ctrlrs(void)
7255 {
7256 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
7257 	struct nvme_ctrlr *nvme_ctrlr;
7258 
7259 	pthread_mutex_lock(&g_bdev_nvme_mutex);
7260 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
7261 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
7262 			pthread_mutex_lock(&nvme_ctrlr->mutex);
7263 			if (nvme_ctrlr->destruct) {
7264 				/* This controller's destruction was already started
7265 				 * before the application started shutting down
7266 				 */
7267 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
7268 				continue;
7269 			}
7270 			nvme_ctrlr->destruct = true;
7271 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
7272 
7273 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
7274 					     nvme_ctrlr);
7275 		}
7276 	}
7277 
7278 	g_bdev_nvme_module_finish = true;
7279 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
7280 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
7281 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
7282 		spdk_bdev_module_fini_done();
7283 		return;
7284 	}
7285 
7286 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
7287 }
7288 
7289 static void
7290 check_discovery_fini(void *arg)
7291 {
7292 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7293 		bdev_nvme_fini_destruct_ctrlrs();
7294 	}
7295 }
7296 
7297 static void
7298 bdev_nvme_library_fini(void)
7299 {
7300 	struct nvme_probe_skip_entry *entry, *entry_tmp;
7301 	struct discovery_ctx *ctx;
7302 
7303 	spdk_poller_unregister(&g_hotplug_poller);
7304 	free(g_hotplug_probe_ctx);
7305 	g_hotplug_probe_ctx = NULL;
7306 
7307 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
7308 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
7309 		free(entry);
7310 	}
7311 
7312 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
7313 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7314 		bdev_nvme_fini_destruct_ctrlrs();
7315 	} else {
7316 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7317 			stop_discovery(ctx, check_discovery_fini, NULL);
7318 		}
7319 	}
7320 }
7321 
7322 static void
7323 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
7324 {
7325 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7326 	struct spdk_bdev *bdev = bdev_io->bdev;
7327 	struct spdk_dif_ctx dif_ctx;
7328 	struct spdk_dif_error err_blk = {};
7329 	int rc;
7330 	struct spdk_dif_ctx_init_ext_opts dif_opts;
7331 
7332 	dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format);
7333 	dif_opts.dif_pi_format = bdev->dif_pi_format;
7334 	rc = spdk_dif_ctx_init(&dif_ctx,
7335 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
7336 			       bdev->dif_is_head_of_md, bdev->dif_type,
7337 			       bdev_io->u.bdev.dif_check_flags,
7338 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0, &dif_opts);
7339 	if (rc != 0) {
7340 		SPDK_ERRLOG("Initialization of DIF context failed\n");
7341 		return;
7342 	}
7343 
7344 	if (bdev->md_interleave) {
7345 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7346 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7347 	} else {
7348 		struct iovec md_iov = {
7349 			.iov_base	= bdev_io->u.bdev.md_buf,
7350 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
7351 		};
7352 
7353 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7354 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7355 	}
7356 
7357 	if (rc != 0) {
7358 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
7359 			    err_blk.err_type, err_blk.err_offset);
7360 	} else {
7361 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
7362 	}
7363 }
7364 
7365 static void
7366 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7367 {
7368 	struct nvme_bdev_io *bio = ref;
7369 
7370 	if (spdk_nvme_cpl_is_success(cpl)) {
7371 		/* Run PI verification for read data buffer. */
7372 		bdev_nvme_verify_pi_error(bio);
7373 	}
7374 
7375 	/* Return original completion status */
7376 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7377 }
7378 
7379 static void
7380 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7381 {
7382 	struct nvme_bdev_io *bio = ref;
7383 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7384 	int ret;
7385 
7386 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7387 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
7388 			    cpl->status.sct, cpl->status.sc);
7389 
7390 		/* Save completion status to use after verifying PI error. */
7391 		bio->cpl = *cpl;
7392 
7393 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
7394 			/* Read without PI checking to verify PI error. */
7395 			ret = bdev_nvme_no_pi_readv(bio,
7396 						    bdev_io->u.bdev.iovs,
7397 						    bdev_io->u.bdev.iovcnt,
7398 						    bdev_io->u.bdev.md_buf,
7399 						    bdev_io->u.bdev.num_blocks,
7400 						    bdev_io->u.bdev.offset_blocks);
7401 			if (ret == 0) {
7402 				return;
7403 			}
7404 		}
7405 	}
7406 
7407 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7408 }
7409 
7410 static void
7411 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7412 {
7413 	struct nvme_bdev_io *bio = ref;
7414 
7415 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7416 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
7417 			    cpl->status.sct, cpl->status.sc);
7418 		/* Run PI verification for write data buffer if PI error is detected. */
7419 		bdev_nvme_verify_pi_error(bio);
7420 	}
7421 
7422 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7423 }
7424 
7425 static void
7426 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7427 {
7428 	struct nvme_bdev_io *bio = ref;
7429 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7430 
7431 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
7432 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
7433 	 */
7434 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
7435 
7436 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7437 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
7438 			    cpl->status.sct, cpl->status.sc);
7439 		/* Run PI verification for zone append data buffer if PI error is detected. */
7440 		bdev_nvme_verify_pi_error(bio);
7441 	}
7442 
7443 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7444 }
7445 
7446 static void
7447 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7448 {
7449 	struct nvme_bdev_io *bio = ref;
7450 
7451 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7452 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
7453 			    cpl->status.sct, cpl->status.sc);
7454 		/* Run PI verification for compare data buffer if PI error is detected. */
7455 		bdev_nvme_verify_pi_error(bio);
7456 	}
7457 
7458 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7459 }
7460 
7461 static void
7462 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7463 {
7464 	struct nvme_bdev_io *bio = ref;
7465 
7466 	/* Compare operation completion */
7467 	if (!bio->first_fused_completed) {
7468 		/* Save compare result for write callback */
7469 		bio->cpl = *cpl;
7470 		bio->first_fused_completed = true;
7471 		return;
7472 	}
7473 
7474 	/* Write operation completion */
7475 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
7476 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
7477 		 * complete the IO with the compare operation's status.
7478 		 */
7479 		if (!spdk_nvme_cpl_is_error(cpl)) {
7480 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
7481 		}
7482 
7483 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7484 	} else {
7485 		bdev_nvme_io_complete_nvme_status(bio, cpl);
7486 	}
7487 }
7488 
7489 static void
7490 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
7491 {
7492 	struct nvme_bdev_io *bio = ref;
7493 
7494 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7495 }
7496 
7497 static int
7498 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
7499 {
7500 	switch (desc->zt) {
7501 	case SPDK_NVME_ZONE_TYPE_SEQWR:
7502 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
7503 		break;
7504 	default:
7505 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
7506 		return -EIO;
7507 	}
7508 
7509 	switch (desc->zs) {
7510 	case SPDK_NVME_ZONE_STATE_EMPTY:
7511 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
7512 		break;
7513 	case SPDK_NVME_ZONE_STATE_IOPEN:
7514 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
7515 		break;
7516 	case SPDK_NVME_ZONE_STATE_EOPEN:
7517 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
7518 		break;
7519 	case SPDK_NVME_ZONE_STATE_CLOSED:
7520 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
7521 		break;
7522 	case SPDK_NVME_ZONE_STATE_RONLY:
7523 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
7524 		break;
7525 	case SPDK_NVME_ZONE_STATE_FULL:
7526 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
7527 		break;
7528 	case SPDK_NVME_ZONE_STATE_OFFLINE:
7529 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
7530 		break;
7531 	default:
7532 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
7533 		return -EIO;
7534 	}
7535 
7536 	info->zone_id = desc->zslba;
7537 	info->write_pointer = desc->wp;
7538 	info->capacity = desc->zcap;
7539 
7540 	return 0;
7541 }
7542 
7543 static void
7544 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
7545 {
7546 	struct nvme_bdev_io *bio = ref;
7547 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7548 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
7549 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
7550 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
7551 	uint64_t max_zones_per_buf, i;
7552 	uint32_t zone_report_bufsize;
7553 	struct spdk_nvme_ns *ns;
7554 	struct spdk_nvme_qpair *qpair;
7555 	int ret;
7556 
7557 	if (spdk_nvme_cpl_is_error(cpl)) {
7558 		goto out_complete_io_nvme_cpl;
7559 	}
7560 
7561 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
7562 		ret = -ENXIO;
7563 		goto out_complete_io_ret;
7564 	}
7565 
7566 	ns = bio->io_path->nvme_ns->ns;
7567 	qpair = bio->io_path->qpair->qpair;
7568 
7569 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7570 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
7571 			    sizeof(bio->zone_report_buf->descs[0]);
7572 
7573 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
7574 		ret = -EINVAL;
7575 		goto out_complete_io_ret;
7576 	}
7577 
7578 	if (!bio->zone_report_buf->nr_zones) {
7579 		ret = -EINVAL;
7580 		goto out_complete_io_ret;
7581 	}
7582 
7583 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
7584 		ret = fill_zone_from_report(&info[bio->handled_zones],
7585 					    &bio->zone_report_buf->descs[i]);
7586 		if (ret) {
7587 			goto out_complete_io_ret;
7588 		}
7589 		bio->handled_zones++;
7590 	}
7591 
7592 	if (bio->handled_zones < zones_to_copy) {
7593 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7594 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
7595 
7596 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
7597 		ret = spdk_nvme_zns_report_zones(ns, qpair,
7598 						 bio->zone_report_buf, zone_report_bufsize,
7599 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
7600 						 bdev_nvme_get_zone_info_done, bio);
7601 		if (!ret) {
7602 			return;
7603 		} else {
7604 			goto out_complete_io_ret;
7605 		}
7606 	}
7607 
7608 out_complete_io_nvme_cpl:
7609 	free(bio->zone_report_buf);
7610 	bio->zone_report_buf = NULL;
7611 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7612 	return;
7613 
7614 out_complete_io_ret:
7615 	free(bio->zone_report_buf);
7616 	bio->zone_report_buf = NULL;
7617 	bdev_nvme_io_complete(bio, ret);
7618 }
7619 
7620 static void
7621 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
7622 {
7623 	struct nvme_bdev_io *bio = ref;
7624 
7625 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7626 }
7627 
7628 static void
7629 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
7630 {
7631 	struct nvme_bdev_io *bio = ctx;
7632 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7633 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
7634 
7635 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
7636 
7637 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
7638 }
7639 
7640 static void
7641 bdev_nvme_abort_complete(void *ctx)
7642 {
7643 	struct nvme_bdev_io *bio = ctx;
7644 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7645 
7646 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
7647 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
7648 	} else {
7649 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
7650 	}
7651 }
7652 
7653 static void
7654 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
7655 {
7656 	struct nvme_bdev_io *bio = ref;
7657 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7658 
7659 	bio->cpl = *cpl;
7660 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), bdev_nvme_abort_complete, bio);
7661 }
7662 
7663 static void
7664 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
7665 {
7666 	struct nvme_bdev_io *bio = ref;
7667 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7668 
7669 	bio->cpl = *cpl;
7670 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io),
7671 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
7672 }
7673 
7674 static void
7675 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
7676 {
7677 	struct nvme_bdev_io *bio = ref;
7678 	struct iovec *iov;
7679 
7680 	bio->iov_offset = sgl_offset;
7681 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
7682 		iov = &bio->iovs[bio->iovpos];
7683 		if (bio->iov_offset < iov->iov_len) {
7684 			break;
7685 		}
7686 
7687 		bio->iov_offset -= iov->iov_len;
7688 	}
7689 }
7690 
7691 static int
7692 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
7693 {
7694 	struct nvme_bdev_io *bio = ref;
7695 	struct iovec *iov;
7696 
7697 	assert(bio->iovpos < bio->iovcnt);
7698 
7699 	iov = &bio->iovs[bio->iovpos];
7700 
7701 	*address = iov->iov_base;
7702 	*length = iov->iov_len;
7703 
7704 	if (bio->iov_offset) {
7705 		assert(bio->iov_offset <= iov->iov_len);
7706 		*address += bio->iov_offset;
7707 		*length -= bio->iov_offset;
7708 	}
7709 
7710 	bio->iov_offset += *length;
7711 	if (bio->iov_offset == iov->iov_len) {
7712 		bio->iovpos++;
7713 		bio->iov_offset = 0;
7714 	}
7715 
7716 	return 0;
7717 }
7718 
7719 static void
7720 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
7721 {
7722 	struct nvme_bdev_io *bio = ref;
7723 	struct iovec *iov;
7724 
7725 	bio->fused_iov_offset = sgl_offset;
7726 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
7727 		iov = &bio->fused_iovs[bio->fused_iovpos];
7728 		if (bio->fused_iov_offset < iov->iov_len) {
7729 			break;
7730 		}
7731 
7732 		bio->fused_iov_offset -= iov->iov_len;
7733 	}
7734 }
7735 
7736 static int
7737 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
7738 {
7739 	struct nvme_bdev_io *bio = ref;
7740 	struct iovec *iov;
7741 
7742 	assert(bio->fused_iovpos < bio->fused_iovcnt);
7743 
7744 	iov = &bio->fused_iovs[bio->fused_iovpos];
7745 
7746 	*address = iov->iov_base;
7747 	*length = iov->iov_len;
7748 
7749 	if (bio->fused_iov_offset) {
7750 		assert(bio->fused_iov_offset <= iov->iov_len);
7751 		*address += bio->fused_iov_offset;
7752 		*length -= bio->fused_iov_offset;
7753 	}
7754 
7755 	bio->fused_iov_offset += *length;
7756 	if (bio->fused_iov_offset == iov->iov_len) {
7757 		bio->fused_iovpos++;
7758 		bio->fused_iov_offset = 0;
7759 	}
7760 
7761 	return 0;
7762 }
7763 
7764 static int
7765 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7766 		      void *md, uint64_t lba_count, uint64_t lba)
7767 {
7768 	int rc;
7769 
7770 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
7771 		      lba_count, lba);
7772 
7773 	bio->iovs = iov;
7774 	bio->iovcnt = iovcnt;
7775 	bio->iovpos = 0;
7776 	bio->iov_offset = 0;
7777 
7778 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
7779 					    bio->io_path->qpair->qpair,
7780 					    lba, lba_count,
7781 					    bdev_nvme_no_pi_readv_done, bio, 0,
7782 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7783 					    md, 0, 0);
7784 
7785 	if (rc != 0 && rc != -ENOMEM) {
7786 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
7787 	}
7788 	return rc;
7789 }
7790 
7791 static int
7792 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7793 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7794 		struct spdk_memory_domain *domain, void *domain_ctx,
7795 		struct spdk_accel_sequence *seq)
7796 {
7797 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7798 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7799 	int rc;
7800 
7801 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7802 		      lba_count, lba);
7803 
7804 	bio->iovs = iov;
7805 	bio->iovcnt = iovcnt;
7806 	bio->iovpos = 0;
7807 	bio->iov_offset = 0;
7808 
7809 	if (domain != NULL || seq != NULL) {
7810 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7811 		bio->ext_opts.memory_domain = domain;
7812 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7813 		bio->ext_opts.io_flags = flags;
7814 		bio->ext_opts.metadata = md;
7815 		bio->ext_opts.accel_sequence = seq;
7816 
7817 		if (iovcnt == 1) {
7818 			rc = spdk_nvme_ns_cmd_read_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_readv_done,
7819 						       bio, &bio->ext_opts);
7820 		} else {
7821 			rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
7822 							bdev_nvme_readv_done, bio,
7823 							bdev_nvme_queued_reset_sgl,
7824 							bdev_nvme_queued_next_sge,
7825 							&bio->ext_opts);
7826 		}
7827 	} else if (iovcnt == 1) {
7828 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base,
7829 						   md, lba, lba_count, bdev_nvme_readv_done,
7830 						   bio, flags, 0, 0);
7831 	} else {
7832 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
7833 						    bdev_nvme_readv_done, bio, flags,
7834 						    bdev_nvme_queued_reset_sgl,
7835 						    bdev_nvme_queued_next_sge, md, 0, 0);
7836 	}
7837 
7838 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
7839 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
7840 	}
7841 	return rc;
7842 }
7843 
7844 static int
7845 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7846 		 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7847 		 struct spdk_memory_domain *domain, void *domain_ctx,
7848 		 struct spdk_accel_sequence *seq,
7849 		 union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13)
7850 {
7851 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7852 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7853 	int rc;
7854 
7855 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7856 		      lba_count, lba);
7857 
7858 	bio->iovs = iov;
7859 	bio->iovcnt = iovcnt;
7860 	bio->iovpos = 0;
7861 	bio->iov_offset = 0;
7862 
7863 	if (domain != NULL || seq != NULL) {
7864 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7865 		bio->ext_opts.memory_domain = domain;
7866 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7867 		bio->ext_opts.io_flags = flags | SPDK_NVME_IO_FLAGS_DIRECTIVE(cdw12.write.dtype);
7868 		bio->ext_opts.cdw13 = cdw13.raw;
7869 		bio->ext_opts.metadata = md;
7870 		bio->ext_opts.accel_sequence = seq;
7871 
7872 		if (iovcnt == 1) {
7873 			rc = spdk_nvme_ns_cmd_write_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_writev_done,
7874 							bio, &bio->ext_opts);
7875 		} else {
7876 			rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
7877 							 bdev_nvme_writev_done, bio,
7878 							 bdev_nvme_queued_reset_sgl,
7879 							 bdev_nvme_queued_next_sge,
7880 							 &bio->ext_opts);
7881 		}
7882 	} else if (iovcnt == 1) {
7883 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base,
7884 						    md, lba, lba_count, bdev_nvme_writev_done,
7885 						    bio, flags, 0, 0);
7886 	} else {
7887 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7888 						     bdev_nvme_writev_done, bio, flags,
7889 						     bdev_nvme_queued_reset_sgl,
7890 						     bdev_nvme_queued_next_sge, md, 0, 0);
7891 	}
7892 
7893 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
7894 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
7895 	}
7896 	return rc;
7897 }
7898 
7899 static int
7900 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7901 		       void *md, uint64_t lba_count, uint64_t zslba,
7902 		       uint32_t flags)
7903 {
7904 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7905 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7906 	int rc;
7907 
7908 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
7909 		      lba_count, zslba);
7910 
7911 	bio->iovs = iov;
7912 	bio->iovcnt = iovcnt;
7913 	bio->iovpos = 0;
7914 	bio->iov_offset = 0;
7915 
7916 	if (iovcnt == 1) {
7917 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
7918 						       lba_count,
7919 						       bdev_nvme_zone_appendv_done, bio,
7920 						       flags,
7921 						       0, 0);
7922 	} else {
7923 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
7924 							bdev_nvme_zone_appendv_done, bio, flags,
7925 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7926 							md, 0, 0);
7927 	}
7928 
7929 	if (rc != 0 && rc != -ENOMEM) {
7930 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
7931 	}
7932 	return rc;
7933 }
7934 
7935 static int
7936 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7937 		   void *md, uint64_t lba_count, uint64_t lba,
7938 		   uint32_t flags)
7939 {
7940 	int rc;
7941 
7942 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7943 		      lba_count, lba);
7944 
7945 	bio->iovs = iov;
7946 	bio->iovcnt = iovcnt;
7947 	bio->iovpos = 0;
7948 	bio->iov_offset = 0;
7949 
7950 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
7951 					       bio->io_path->qpair->qpair,
7952 					       lba, lba_count,
7953 					       bdev_nvme_comparev_done, bio, flags,
7954 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7955 					       md, 0, 0);
7956 
7957 	if (rc != 0 && rc != -ENOMEM) {
7958 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
7959 	}
7960 	return rc;
7961 }
7962 
7963 static int
7964 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
7965 			      struct iovec *write_iov, int write_iovcnt,
7966 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
7967 {
7968 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7969 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7970 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7971 	int rc;
7972 
7973 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7974 		      lba_count, lba);
7975 
7976 	bio->iovs = cmp_iov;
7977 	bio->iovcnt = cmp_iovcnt;
7978 	bio->iovpos = 0;
7979 	bio->iov_offset = 0;
7980 	bio->fused_iovs = write_iov;
7981 	bio->fused_iovcnt = write_iovcnt;
7982 	bio->fused_iovpos = 0;
7983 	bio->fused_iov_offset = 0;
7984 
7985 	if (bdev_io->num_retries == 0) {
7986 		bio->first_fused_submitted = false;
7987 		bio->first_fused_completed = false;
7988 	}
7989 
7990 	if (!bio->first_fused_submitted) {
7991 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7992 		memset(&bio->cpl, 0, sizeof(bio->cpl));
7993 
7994 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
7995 						       bdev_nvme_comparev_and_writev_done, bio, flags,
7996 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
7997 		if (rc == 0) {
7998 			bio->first_fused_submitted = true;
7999 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
8000 		} else {
8001 			if (rc != -ENOMEM) {
8002 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
8003 			}
8004 			return rc;
8005 		}
8006 	}
8007 
8008 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
8009 
8010 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
8011 					     bdev_nvme_comparev_and_writev_done, bio, flags,
8012 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
8013 	if (rc != 0 && rc != -ENOMEM) {
8014 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
8015 		rc = 0;
8016 	}
8017 
8018 	return rc;
8019 }
8020 
8021 static int
8022 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
8023 {
8024 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
8025 	struct spdk_nvme_dsm_range *range;
8026 	uint64_t offset, remaining;
8027 	uint64_t num_ranges_u64;
8028 	uint16_t num_ranges;
8029 	int rc;
8030 
8031 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
8032 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8033 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
8034 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
8035 		return -EINVAL;
8036 	}
8037 	num_ranges = (uint16_t)num_ranges_u64;
8038 
8039 	offset = offset_blocks;
8040 	remaining = num_blocks;
8041 	range = &dsm_ranges[0];
8042 
8043 	/* Fill max-size ranges until the remaining blocks fit into one range */
8044 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
8045 		range->attributes.raw = 0;
8046 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8047 		range->starting_lba = offset;
8048 
8049 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8050 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8051 		range++;
8052 	}
8053 
8054 	/* Final range describes the remaining blocks */
8055 	range->attributes.raw = 0;
8056 	range->length = remaining;
8057 	range->starting_lba = offset;
8058 
8059 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
8060 			bio->io_path->qpair->qpair,
8061 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
8062 			dsm_ranges, num_ranges,
8063 			bdev_nvme_queued_done, bio);
8064 
8065 	return rc;
8066 }
8067 
8068 static int
8069 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
8070 {
8071 	if (num_blocks > UINT16_MAX + 1) {
8072 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
8073 		return -EINVAL;
8074 	}
8075 
8076 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
8077 					     bio->io_path->qpair->qpair,
8078 					     offset_blocks, num_blocks,
8079 					     bdev_nvme_queued_done, bio,
8080 					     0);
8081 }
8082 
8083 static int
8084 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
8085 			struct spdk_bdev_zone_info *info)
8086 {
8087 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8088 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8089 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
8090 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
8091 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
8092 
8093 	if (zone_id % zone_size != 0) {
8094 		return -EINVAL;
8095 	}
8096 
8097 	if (num_zones > total_zones || !num_zones) {
8098 		return -EINVAL;
8099 	}
8100 
8101 	assert(!bio->zone_report_buf);
8102 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
8103 	if (!bio->zone_report_buf) {
8104 		return -ENOMEM;
8105 	}
8106 
8107 	bio->handled_zones = 0;
8108 
8109 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
8110 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
8111 					  bdev_nvme_get_zone_info_done, bio);
8112 }
8113 
8114 static int
8115 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
8116 			  enum spdk_bdev_zone_action action)
8117 {
8118 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8119 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8120 
8121 	switch (action) {
8122 	case SPDK_BDEV_ZONE_CLOSE:
8123 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
8124 						bdev_nvme_zone_management_done, bio);
8125 	case SPDK_BDEV_ZONE_FINISH:
8126 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
8127 						 bdev_nvme_zone_management_done, bio);
8128 	case SPDK_BDEV_ZONE_OPEN:
8129 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
8130 					       bdev_nvme_zone_management_done, bio);
8131 	case SPDK_BDEV_ZONE_RESET:
8132 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
8133 						bdev_nvme_zone_management_done, bio);
8134 	case SPDK_BDEV_ZONE_OFFLINE:
8135 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
8136 						  bdev_nvme_zone_management_done, bio);
8137 	default:
8138 		return -EINVAL;
8139 	}
8140 }
8141 
8142 static void
8143 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8144 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
8145 {
8146 	struct nvme_io_path *io_path;
8147 	struct nvme_ctrlr *nvme_ctrlr;
8148 	uint32_t max_xfer_size;
8149 	int rc = -ENXIO;
8150 
8151 	/* Choose the first ctrlr which is not failed. */
8152 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8153 		nvme_ctrlr = io_path->qpair->ctrlr;
8154 
8155 		/* We should skip any unavailable nvme_ctrlr rather than checking
8156 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
8157 		 */
8158 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
8159 			continue;
8160 		}
8161 
8162 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
8163 
8164 		if (nbytes > max_xfer_size) {
8165 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8166 			rc = -EINVAL;
8167 			goto err;
8168 		}
8169 
8170 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
8171 						   bdev_nvme_admin_passthru_done, bio);
8172 		if (rc == 0) {
8173 			return;
8174 		}
8175 	}
8176 
8177 err:
8178 	bdev_nvme_admin_complete(bio, rc);
8179 }
8180 
8181 static int
8182 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8183 		      void *buf, size_t nbytes)
8184 {
8185 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8186 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8187 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8188 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8189 
8190 	if (nbytes > max_xfer_size) {
8191 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8192 		return -EINVAL;
8193 	}
8194 
8195 	/*
8196 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8197 	 * so fill it out automatically.
8198 	 */
8199 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8200 
8201 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
8202 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
8203 }
8204 
8205 static int
8206 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8207 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
8208 {
8209 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8210 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8211 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8212 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8213 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8214 
8215 	if (nbytes > max_xfer_size) {
8216 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8217 		return -EINVAL;
8218 	}
8219 
8220 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8221 		SPDK_ERRLOG("invalid meta data buffer size\n");
8222 		return -EINVAL;
8223 	}
8224 
8225 	/*
8226 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8227 	 * so fill it out automatically.
8228 	 */
8229 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8230 
8231 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
8232 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
8233 }
8234 
8235 static int
8236 bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio,
8237 			  struct spdk_nvme_cmd *cmd, struct iovec *iov, int iovcnt,
8238 			  size_t nbytes, void *md_buf, size_t md_len)
8239 {
8240 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8241 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8242 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8243 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8244 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8245 
8246 	bio->iovs = iov;
8247 	bio->iovcnt = iovcnt;
8248 	bio->iovpos = 0;
8249 	bio->iov_offset = 0;
8250 
8251 	if (nbytes > max_xfer_size) {
8252 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8253 		return -EINVAL;
8254 	}
8255 
8256 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8257 		SPDK_ERRLOG("invalid meta data buffer size\n");
8258 		return -EINVAL;
8259 	}
8260 
8261 	/*
8262 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands
8263 	 * require a nsid, so fill it out automatically.
8264 	 */
8265 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8266 
8267 	return spdk_nvme_ctrlr_cmd_iov_raw_with_md(
8268 		       ctrlr, qpair, cmd, (uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio,
8269 		       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge);
8270 }
8271 
8272 static void
8273 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8274 		struct nvme_bdev_io *bio_to_abort)
8275 {
8276 	struct nvme_io_path *io_path;
8277 	int rc = 0;
8278 
8279 	rc = bdev_nvme_abort_retry_io(nbdev_ch, bio_to_abort);
8280 	if (rc == 0) {
8281 		bdev_nvme_admin_complete(bio, 0);
8282 		return;
8283 	}
8284 
8285 	io_path = bio_to_abort->io_path;
8286 	if (io_path != NULL) {
8287 		rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8288 						   io_path->qpair->qpair,
8289 						   bio_to_abort,
8290 						   bdev_nvme_abort_done, bio);
8291 	} else {
8292 		STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8293 			rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8294 							   NULL,
8295 							   bio_to_abort,
8296 							   bdev_nvme_abort_done, bio);
8297 
8298 			if (rc != -ENOENT) {
8299 				break;
8300 			}
8301 		}
8302 	}
8303 
8304 	if (rc != 0) {
8305 		/* If no command was found or there was any error, complete the abort
8306 		 * request with failure.
8307 		 */
8308 		bdev_nvme_admin_complete(bio, rc);
8309 	}
8310 }
8311 
8312 static int
8313 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks,
8314 	       uint64_t num_blocks)
8315 {
8316 	struct spdk_nvme_scc_source_range range = {
8317 		.slba = src_offset_blocks,
8318 		.nlb = num_blocks - 1
8319 	};
8320 
8321 	return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns,
8322 				     bio->io_path->qpair->qpair,
8323 				     &range, 1, dst_offset_blocks,
8324 				     bdev_nvme_queued_done, bio);
8325 }
8326 
8327 static void
8328 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
8329 {
8330 	const char *action;
8331 	uint32_t i;
8332 
8333 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
8334 		action = "reset";
8335 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
8336 		action = "abort";
8337 	} else {
8338 		action = "none";
8339 	}
8340 
8341 	spdk_json_write_object_begin(w);
8342 
8343 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
8344 
8345 	spdk_json_write_named_object_begin(w, "params");
8346 	spdk_json_write_named_string(w, "action_on_timeout", action);
8347 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
8348 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
8349 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
8350 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
8351 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
8352 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
8353 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
8354 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
8355 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
8356 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
8357 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
8358 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
8359 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
8360 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
8361 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
8362 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
8363 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
8364 	spdk_json_write_named_bool(w, "disable_auto_failback", g_opts.disable_auto_failback);
8365 	spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids);
8366 	spdk_json_write_named_uint8(w, "transport_tos", g_opts.transport_tos);
8367 	spdk_json_write_named_bool(w, "nvme_error_stat", g_opts.nvme_error_stat);
8368 	spdk_json_write_named_uint32(w, "rdma_srq_size", g_opts.rdma_srq_size);
8369 	spdk_json_write_named_bool(w, "io_path_stat", g_opts.io_path_stat);
8370 	spdk_json_write_named_bool(w, "allow_accel_sequence", g_opts.allow_accel_sequence);
8371 	spdk_json_write_named_uint32(w, "rdma_max_cq_size", g_opts.rdma_max_cq_size);
8372 	spdk_json_write_named_uint16(w, "rdma_cm_event_timeout_ms", g_opts.rdma_cm_event_timeout_ms);
8373 	spdk_json_write_named_array_begin(w, "dhchap_digests");
8374 	for (i = 0; i < 32; ++i) {
8375 		if (g_opts.dhchap_digests & SPDK_BIT(i)) {
8376 			spdk_json_write_string(w, spdk_nvme_dhchap_get_digest_name(i));
8377 		}
8378 	}
8379 	spdk_json_write_array_end(w);
8380 	spdk_json_write_named_array_begin(w, "dhchap_dhgroups");
8381 	for (i = 0; i < 32; ++i) {
8382 		if (g_opts.dhchap_dhgroups & SPDK_BIT(i)) {
8383 			spdk_json_write_string(w, spdk_nvme_dhchap_get_dhgroup_name(i));
8384 		}
8385 	}
8386 
8387 	spdk_json_write_array_end(w);
8388 	spdk_json_write_object_end(w);
8389 
8390 	spdk_json_write_object_end(w);
8391 }
8392 
8393 static void
8394 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
8395 {
8396 	struct spdk_nvme_transport_id trid;
8397 
8398 	spdk_json_write_object_begin(w);
8399 
8400 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
8401 
8402 	spdk_json_write_named_object_begin(w, "params");
8403 	spdk_json_write_named_string(w, "name", ctx->name);
8404 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
8405 
8406 	trid = ctx->trid;
8407 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
8408 	nvme_bdev_dump_trid_json(&trid, w);
8409 
8410 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
8411 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
8412 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
8413 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8414 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
8415 	spdk_json_write_object_end(w);
8416 
8417 	spdk_json_write_object_end(w);
8418 }
8419 
8420 #ifdef SPDK_CONFIG_NVME_CUSE
8421 static void
8422 nvme_ctrlr_cuse_config_json(struct spdk_json_write_ctx *w,
8423 			    struct nvme_ctrlr *nvme_ctrlr)
8424 {
8425 	size_t cuse_name_size = 128;
8426 	char cuse_name[cuse_name_size];
8427 
8428 	if (spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr,
8429 					  cuse_name, &cuse_name_size) != 0) {
8430 		return;
8431 	}
8432 
8433 	spdk_json_write_object_begin(w);
8434 
8435 	spdk_json_write_named_string(w, "method", "bdev_nvme_cuse_register");
8436 
8437 	spdk_json_write_named_object_begin(w, "params");
8438 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8439 	spdk_json_write_object_end(w);
8440 
8441 	spdk_json_write_object_end(w);
8442 }
8443 #endif
8444 
8445 static void
8446 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
8447 		       struct nvme_ctrlr *nvme_ctrlr)
8448 {
8449 	struct spdk_nvme_transport_id	*trid;
8450 	const struct spdk_nvme_ctrlr_opts *opts;
8451 
8452 	if (nvme_ctrlr->opts.from_discovery_service) {
8453 		/* Do not emit an RPC for this - it will be implicitly
8454 		 * covered by a separate bdev_nvme_start_discovery or
8455 		 * bdev_nvme_start_mdns_discovery RPC.
8456 		 */
8457 		return;
8458 	}
8459 
8460 	trid = &nvme_ctrlr->active_path_id->trid;
8461 
8462 	spdk_json_write_object_begin(w);
8463 
8464 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
8465 
8466 	spdk_json_write_named_object_begin(w, "params");
8467 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8468 	nvme_bdev_dump_trid_json(trid, w);
8469 	spdk_json_write_named_bool(w, "prchk_reftag",
8470 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
8471 	spdk_json_write_named_bool(w, "prchk_guard",
8472 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
8473 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
8474 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
8475 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8476 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
8477 	if (nvme_ctrlr->psk != NULL) {
8478 		spdk_json_write_named_string(w, "psk", spdk_key_get_name(nvme_ctrlr->psk));
8479 	} else if (nvme_ctrlr->opts.psk[0] != '\0') {
8480 		spdk_json_write_named_string(w, "psk", nvme_ctrlr->opts.psk);
8481 	}
8482 
8483 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
8484 	spdk_json_write_named_string(w, "hostnqn", opts->hostnqn);
8485 	spdk_json_write_named_bool(w, "hdgst", opts->header_digest);
8486 	spdk_json_write_named_bool(w, "ddgst", opts->data_digest);
8487 	if (opts->src_addr[0] != '\0') {
8488 		spdk_json_write_named_string(w, "hostaddr", opts->src_addr);
8489 	}
8490 	if (opts->src_svcid[0] != '\0') {
8491 		spdk_json_write_named_string(w, "hostsvcid", opts->src_svcid);
8492 	}
8493 
8494 	spdk_json_write_object_end(w);
8495 
8496 	spdk_json_write_object_end(w);
8497 }
8498 
8499 static void
8500 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
8501 {
8502 	spdk_json_write_object_begin(w);
8503 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
8504 
8505 	spdk_json_write_named_object_begin(w, "params");
8506 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
8507 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
8508 	spdk_json_write_object_end(w);
8509 
8510 	spdk_json_write_object_end(w);
8511 }
8512 
8513 static int
8514 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
8515 {
8516 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
8517 	struct nvme_ctrlr	*nvme_ctrlr;
8518 	struct discovery_ctx	*ctx;
8519 
8520 	bdev_nvme_opts_config_json(w);
8521 
8522 	pthread_mutex_lock(&g_bdev_nvme_mutex);
8523 
8524 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
8525 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
8526 			nvme_ctrlr_config_json(w, nvme_ctrlr);
8527 
8528 #ifdef SPDK_CONFIG_NVME_CUSE
8529 			nvme_ctrlr_cuse_config_json(w, nvme_ctrlr);
8530 #endif
8531 		}
8532 	}
8533 
8534 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8535 		if (!ctx->from_mdns_discovery_service) {
8536 			bdev_nvme_discovery_config_json(w, ctx);
8537 		}
8538 	}
8539 
8540 	bdev_nvme_mdns_discovery_config_json(w);
8541 
8542 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
8543 	 * before enabling hotplug poller.
8544 	 */
8545 	bdev_nvme_hotplug_config_json(w);
8546 
8547 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
8548 	return 0;
8549 }
8550 
8551 struct spdk_nvme_ctrlr *
8552 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
8553 {
8554 	struct nvme_bdev *nbdev;
8555 	struct nvme_ns *nvme_ns;
8556 
8557 	if (!bdev || bdev->module != &nvme_if) {
8558 		return NULL;
8559 	}
8560 
8561 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
8562 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
8563 	assert(nvme_ns != NULL);
8564 
8565 	return nvme_ns->ctrlr->ctrlr;
8566 }
8567 
8568 static bool
8569 nvme_io_path_is_current(struct nvme_io_path *io_path)
8570 {
8571 	const struct nvme_bdev_channel *nbdev_ch;
8572 	bool current;
8573 
8574 	if (!nvme_io_path_is_available(io_path)) {
8575 		return false;
8576 	}
8577 
8578 	nbdev_ch = io_path->nbdev_ch;
8579 	if (nbdev_ch == NULL) {
8580 		current = false;
8581 	} else if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
8582 		struct nvme_io_path *optimized_io_path = NULL;
8583 
8584 		STAILQ_FOREACH(optimized_io_path, &nbdev_ch->io_path_list, stailq) {
8585 			if (optimized_io_path->nvme_ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE) {
8586 				break;
8587 			}
8588 		}
8589 
8590 		/* A non-optimized path is only current if there are no optimized paths. */
8591 		current = (io_path->nvme_ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE) ||
8592 			  (optimized_io_path == NULL);
8593 	} else {
8594 		if (nbdev_ch->current_io_path) {
8595 			current = (io_path == nbdev_ch->current_io_path);
8596 		} else {
8597 			struct nvme_io_path *first_path;
8598 
8599 			/* We arrived here as there are no optimized paths for active-passive
8600 			 * mode. Check if this io_path is the first one available on the list.
8601 			 */
8602 			current = false;
8603 			STAILQ_FOREACH(first_path, &nbdev_ch->io_path_list, stailq) {
8604 				if (nvme_io_path_is_available(first_path)) {
8605 					current = (io_path == first_path);
8606 					break;
8607 				}
8608 			}
8609 		}
8610 	}
8611 
8612 	return current;
8613 }
8614 
8615 void
8616 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
8617 {
8618 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
8619 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
8620 	const struct spdk_nvme_ctrlr_data *cdata;
8621 	const struct spdk_nvme_transport_id *trid;
8622 	const char *adrfam_str;
8623 
8624 	spdk_json_write_object_begin(w);
8625 
8626 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
8627 
8628 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
8629 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
8630 
8631 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
8632 	spdk_json_write_named_bool(w, "current", nvme_io_path_is_current(io_path));
8633 	spdk_json_write_named_bool(w, "connected", nvme_qpair_is_connected(io_path->qpair));
8634 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
8635 
8636 	spdk_json_write_named_object_begin(w, "transport");
8637 	spdk_json_write_named_string(w, "trtype", trid->trstring);
8638 	spdk_json_write_named_string(w, "traddr", trid->traddr);
8639 	if (trid->trsvcid[0] != '\0') {
8640 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
8641 	}
8642 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
8643 	if (adrfam_str) {
8644 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
8645 	}
8646 	spdk_json_write_object_end(w);
8647 
8648 	spdk_json_write_object_end(w);
8649 }
8650 
8651 void
8652 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
8653 {
8654 	struct discovery_ctx *ctx;
8655 	struct discovery_entry_ctx *entry_ctx;
8656 
8657 	spdk_json_write_array_begin(w);
8658 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8659 		spdk_json_write_object_begin(w);
8660 		spdk_json_write_named_string(w, "name", ctx->name);
8661 
8662 		spdk_json_write_named_object_begin(w, "trid");
8663 		nvme_bdev_dump_trid_json(&ctx->trid, w);
8664 		spdk_json_write_object_end(w);
8665 
8666 		spdk_json_write_named_array_begin(w, "referrals");
8667 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
8668 			spdk_json_write_object_begin(w);
8669 			spdk_json_write_named_object_begin(w, "trid");
8670 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
8671 			spdk_json_write_object_end(w);
8672 			spdk_json_write_object_end(w);
8673 		}
8674 		spdk_json_write_array_end(w);
8675 
8676 		spdk_json_write_object_end(w);
8677 	}
8678 	spdk_json_write_array_end(w);
8679 }
8680 
8681 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
8682 
8683 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
8684 {
8685 	struct spdk_trace_tpoint_opts opts[] = {
8686 		{
8687 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
8688 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 1,
8689 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8690 		},
8691 		{
8692 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
8693 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 0,
8694 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8695 		}
8696 	};
8697 
8698 
8699 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
8700 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
8701 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8702 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8703 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8704 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8705 }
8706