1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright (C) 2016 Intel Corporation. All rights reserved. 3 * Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved. 4 * Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 5 * Copyright (c) 2022 Dell Inc, or its subsidiaries. All rights reserved. 6 */ 7 8 #include "spdk/stdinc.h" 9 10 #include "bdev_nvme.h" 11 12 #include "spdk/accel.h" 13 #include "spdk/config.h" 14 #include "spdk/endian.h" 15 #include "spdk/bdev.h" 16 #include "spdk/json.h" 17 #include "spdk/keyring.h" 18 #include "spdk/likely.h" 19 #include "spdk/nvme.h" 20 #include "spdk/nvme_ocssd.h" 21 #include "spdk/nvme_zns.h" 22 #include "spdk/opal.h" 23 #include "spdk/thread.h" 24 #include "spdk/trace.h" 25 #include "spdk/string.h" 26 #include "spdk/util.h" 27 #include "spdk/uuid.h" 28 29 #include "spdk/bdev_module.h" 30 #include "spdk/log.h" 31 32 #include "spdk_internal/usdt.h" 33 #include "spdk_internal/trace_defs.h" 34 35 #define CTRLR_STRING(nvme_ctrlr) \ 36 (spdk_nvme_trtype_is_fabrics(nvme_ctrlr->active_path_id->trid.trtype) ? \ 37 nvme_ctrlr->active_path_id->trid.subnqn : nvme_ctrlr->active_path_id->trid.traddr) 38 39 #define CTRLR_ID(nvme_ctrlr) (spdk_nvme_ctrlr_get_id(nvme_ctrlr->ctrlr)) 40 41 #define NVME_CTRLR_ERRLOG(ctrlr, format, ...) \ 42 SPDK_ERRLOG("[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__); 43 44 #define NVME_CTRLR_WARNLOG(ctrlr, format, ...) \ 45 SPDK_WARNLOG("[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__); 46 47 #define NVME_CTRLR_NOTICELOG(ctrlr, format, ...) \ 48 SPDK_NOTICELOG("[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__); 49 50 #define NVME_CTRLR_INFOLOG(ctrlr, format, ...) \ 51 SPDK_INFOLOG(bdev_nvme, "[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__); 52 53 #ifdef DEBUG 54 #define NVME_CTRLR_DEBUGLOG(ctrlr, format, ...) \ 55 SPDK_DEBUGLOG(bdev_nvme, "[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__); 56 #else 57 #define NVME_CTRLR_DEBUGLOG(ctrlr, ...) do { } while (0) 58 #endif 59 60 #define BDEV_STRING(nbdev) (nbdev->disk.name) 61 62 #define NVME_BDEV_ERRLOG(nbdev, format, ...) \ 63 SPDK_ERRLOG("[%s] " format, BDEV_STRING(nbdev), ##__VA_ARGS__); 64 65 #define NVME_BDEV_WARNLOG(nbdev, format, ...) \ 66 SPDK_WARNLOG("[%s] " format, BDEV_STRING(nbdev), ##__VA_ARGS__); 67 68 #define NVME_BDEV_NOTICELOG(nbdev, format, ...) \ 69 SPDK_NOTICELOG("[%s] " format, BDEV_STRING(nbdev), ##__VA_ARGS__); 70 71 #define NVME_BDEV_INFOLOG(nbdev, format, ...) \ 72 SPDK_INFOLOG(bdev_nvme, "[%s] " format, BDEV_STRING(nbdev), ##__VA_ARGS__); 73 74 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true 75 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS (10000) 76 77 #define NSID_STR_LEN 10 78 79 #define SPDK_CONTROLLER_NAME_MAX 512 80 81 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w); 82 83 struct nvme_bdev_io { 84 /** array of iovecs to transfer. */ 85 struct iovec *iovs; 86 87 /** Number of iovecs in iovs array. */ 88 int iovcnt; 89 90 /** Current iovec position. */ 91 int iovpos; 92 93 /** Offset in current iovec. */ 94 uint32_t iov_offset; 95 96 /** Offset in current iovec. */ 97 uint32_t fused_iov_offset; 98 99 /** array of iovecs to transfer. */ 100 struct iovec *fused_iovs; 101 102 /** Number of iovecs in iovs array. */ 103 int fused_iovcnt; 104 105 /** Current iovec position. */ 106 int fused_iovpos; 107 108 /** I/O path the current I/O or admin passthrough is submitted on, or the I/O path 109 * being reset in a reset I/O. 110 */ 111 struct nvme_io_path *io_path; 112 113 /** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */ 114 struct spdk_nvme_cpl cpl; 115 116 /** Extended IO opts passed by the user to bdev layer and mapped to NVME format */ 117 struct spdk_nvme_ns_cmd_ext_io_opts ext_opts; 118 119 /** Keeps track if first of fused commands was submitted */ 120 bool first_fused_submitted; 121 122 /** Keeps track if first of fused commands was completed */ 123 bool first_fused_completed; 124 125 /* How many times the current I/O was retried. */ 126 int32_t retry_count; 127 128 /** Expiration value in ticks to retry the current I/O. */ 129 uint64_t retry_ticks; 130 131 /** Temporary pointer to zone report buffer */ 132 struct spdk_nvme_zns_zone_report *zone_report_buf; 133 134 /** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */ 135 uint64_t handled_zones; 136 137 /* Current tsc at submit time. */ 138 uint64_t submit_tsc; 139 140 /* Used to put nvme_bdev_io into the list */ 141 TAILQ_ENTRY(nvme_bdev_io) retry_link; 142 }; 143 144 struct nvme_probe_skip_entry { 145 struct spdk_nvme_transport_id trid; 146 TAILQ_ENTRY(nvme_probe_skip_entry) tailq; 147 }; 148 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */ 149 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER( 150 g_skipped_nvme_ctrlrs); 151 152 #define BDEV_NVME_DEFAULT_DIGESTS (SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA256) | \ 153 SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA384) | \ 154 SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA512)) 155 156 #define BDEV_NVME_DEFAULT_DHGROUPS (SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_NULL) | \ 157 SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_2048) | \ 158 SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_3072) | \ 159 SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_4096) | \ 160 SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_6144) | \ 161 SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_8192)) 162 163 static struct spdk_bdev_nvme_opts g_opts = { 164 .action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE, 165 .keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS, 166 .timeout_us = 0, 167 .timeout_admin_us = 0, 168 .transport_retry_count = 4, 169 .arbitration_burst = 0, 170 .low_priority_weight = 0, 171 .medium_priority_weight = 0, 172 .high_priority_weight = 0, 173 .io_queue_requests = 0, 174 .nvme_adminq_poll_period_us = 10000ULL, 175 .nvme_ioq_poll_period_us = 0, 176 .delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT, 177 .bdev_retry_count = 3, 178 .ctrlr_loss_timeout_sec = 0, 179 .reconnect_delay_sec = 0, 180 .fast_io_fail_timeout_sec = 0, 181 .transport_ack_timeout = 0, 182 .disable_auto_failback = false, 183 .generate_uuids = false, 184 .transport_tos = 0, 185 .nvme_error_stat = false, 186 .io_path_stat = false, 187 .allow_accel_sequence = false, 188 .dhchap_digests = BDEV_NVME_DEFAULT_DIGESTS, 189 .dhchap_dhgroups = BDEV_NVME_DEFAULT_DHGROUPS, 190 }; 191 192 #define NVME_HOTPLUG_POLL_PERIOD_MAX 10000000ULL 193 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT 100000ULL 194 195 static int g_hot_insert_nvme_controller_index = 0; 196 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT; 197 static bool g_nvme_hotplug_enabled = false; 198 struct spdk_thread *g_bdev_nvme_init_thread; 199 static struct spdk_poller *g_hotplug_poller; 200 static struct spdk_poller *g_hotplug_probe_poller; 201 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx; 202 203 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr, 204 struct nvme_async_probe_ctx *ctx); 205 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr, 206 struct nvme_async_probe_ctx *ctx); 207 static int bdev_nvme_library_init(void); 208 static void bdev_nvme_library_fini(void); 209 static void _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch, 210 struct spdk_bdev_io *bdev_io); 211 static void bdev_nvme_submit_request(struct spdk_io_channel *ch, 212 struct spdk_bdev_io *bdev_io); 213 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, 214 void *md, uint64_t lba_count, uint64_t lba, 215 uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx, 216 struct spdk_accel_sequence *seq); 217 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, 218 void *md, uint64_t lba_count, uint64_t lba); 219 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, 220 void *md, uint64_t lba_count, uint64_t lba, 221 uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx, 222 struct spdk_accel_sequence *seq, 223 union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13); 224 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, 225 void *md, uint64_t lba_count, 226 uint64_t zslba, uint32_t flags); 227 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, 228 void *md, uint64_t lba_count, uint64_t lba, 229 uint32_t flags); 230 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, 231 struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov, 232 int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba, 233 uint32_t flags); 234 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, 235 uint32_t num_zones, struct spdk_bdev_zone_info *info); 236 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id, 237 enum spdk_bdev_zone_action action); 238 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, 239 struct nvme_bdev_io *bio, 240 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes); 241 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd, 242 void *buf, size_t nbytes); 243 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd, 244 void *buf, size_t nbytes, void *md_buf, size_t md_len); 245 static int bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd, 246 struct iovec *iov, int iovcnt, size_t nbytes, 247 void *md_buf, size_t md_len); 248 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, 249 struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort); 250 static void bdev_nvme_reset_io(struct nvme_bdev *nbdev, struct nvme_bdev_io *bio); 251 static int bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr); 252 static int bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr); 253 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr); 254 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr); 255 256 static struct nvme_ns *nvme_ns_alloc(void); 257 static void nvme_ns_free(struct nvme_ns *ns); 258 259 static int 260 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2) 261 { 262 return ns1->id < ns2->id ? -1 : ns1->id > ns2->id; 263 } 264 265 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp); 266 267 struct spdk_nvme_qpair * 268 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch) 269 { 270 struct nvme_ctrlr_channel *ctrlr_ch; 271 272 assert(ctrlr_io_ch != NULL); 273 274 ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch); 275 276 return ctrlr_ch->qpair->qpair; 277 } 278 279 static int 280 bdev_nvme_get_ctx_size(void) 281 { 282 return sizeof(struct nvme_bdev_io); 283 } 284 285 static struct spdk_bdev_module nvme_if = { 286 .name = "nvme", 287 .async_fini = true, 288 .module_init = bdev_nvme_library_init, 289 .module_fini = bdev_nvme_library_fini, 290 .config_json = bdev_nvme_config_json, 291 .get_ctx_size = bdev_nvme_get_ctx_size, 292 293 }; 294 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if) 295 296 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs); 297 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER; 298 bool g_bdev_nvme_module_finish; 299 300 struct nvme_bdev_ctrlr * 301 nvme_bdev_ctrlr_get_by_name(const char *name) 302 { 303 struct nvme_bdev_ctrlr *nbdev_ctrlr; 304 305 TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) { 306 if (strcmp(name, nbdev_ctrlr->name) == 0) { 307 break; 308 } 309 } 310 311 return nbdev_ctrlr; 312 } 313 314 static struct nvme_ctrlr * 315 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr, 316 const struct spdk_nvme_transport_id *trid, const char *hostnqn) 317 { 318 const struct spdk_nvme_ctrlr_opts *opts; 319 struct nvme_ctrlr *nvme_ctrlr; 320 321 TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) { 322 opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr); 323 if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0 && 324 strcmp(hostnqn, opts->hostnqn) == 0) { 325 break; 326 } 327 } 328 329 return nvme_ctrlr; 330 } 331 332 struct nvme_ctrlr * 333 nvme_bdev_ctrlr_get_ctrlr_by_id(struct nvme_bdev_ctrlr *nbdev_ctrlr, 334 uint16_t cntlid) 335 { 336 struct nvme_ctrlr *nvme_ctrlr; 337 const struct spdk_nvme_ctrlr_data *cdata; 338 339 TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) { 340 cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr); 341 if (cdata->cntlid == cntlid) { 342 break; 343 } 344 } 345 346 return nvme_ctrlr; 347 } 348 349 static struct nvme_bdev * 350 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid) 351 { 352 struct nvme_bdev *nbdev; 353 354 pthread_mutex_lock(&g_bdev_nvme_mutex); 355 TAILQ_FOREACH(nbdev, &nbdev_ctrlr->bdevs, tailq) { 356 if (nbdev->nsid == nsid) { 357 break; 358 } 359 } 360 pthread_mutex_unlock(&g_bdev_nvme_mutex); 361 362 return nbdev; 363 } 364 365 struct nvme_ns * 366 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid) 367 { 368 struct nvme_ns ns; 369 370 assert(nsid > 0); 371 372 ns.id = nsid; 373 return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns); 374 } 375 376 struct nvme_ns * 377 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr) 378 { 379 return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces); 380 } 381 382 struct nvme_ns * 383 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns) 384 { 385 if (ns == NULL) { 386 return NULL; 387 } 388 389 return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns); 390 } 391 392 static struct nvme_ctrlr * 393 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid, const char *hostnqn) 394 { 395 struct nvme_bdev_ctrlr *nbdev_ctrlr; 396 struct nvme_ctrlr *nvme_ctrlr = NULL; 397 398 pthread_mutex_lock(&g_bdev_nvme_mutex); 399 TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) { 400 nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid, hostnqn); 401 if (nvme_ctrlr != NULL) { 402 break; 403 } 404 } 405 pthread_mutex_unlock(&g_bdev_nvme_mutex); 406 407 return nvme_ctrlr; 408 } 409 410 struct nvme_ctrlr * 411 nvme_ctrlr_get_by_name(const char *name) 412 { 413 struct nvme_bdev_ctrlr *nbdev_ctrlr; 414 struct nvme_ctrlr *nvme_ctrlr = NULL; 415 416 if (name == NULL) { 417 return NULL; 418 } 419 420 pthread_mutex_lock(&g_bdev_nvme_mutex); 421 nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name); 422 if (nbdev_ctrlr != NULL) { 423 nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs); 424 } 425 pthread_mutex_unlock(&g_bdev_nvme_mutex); 426 427 return nvme_ctrlr; 428 } 429 430 void 431 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx) 432 { 433 struct nvme_bdev_ctrlr *nbdev_ctrlr; 434 435 pthread_mutex_lock(&g_bdev_nvme_mutex); 436 TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) { 437 fn(nbdev_ctrlr, ctx); 438 } 439 pthread_mutex_unlock(&g_bdev_nvme_mutex); 440 } 441 442 struct nvme_ctrlr_channel_iter { 443 nvme_ctrlr_for_each_channel_msg fn; 444 nvme_ctrlr_for_each_channel_done cpl; 445 struct spdk_io_channel_iter *i; 446 void *ctx; 447 }; 448 449 void 450 nvme_ctrlr_for_each_channel_continue(struct nvme_ctrlr_channel_iter *iter, int status) 451 { 452 spdk_for_each_channel_continue(iter->i, status); 453 } 454 455 static void 456 nvme_ctrlr_each_channel_msg(struct spdk_io_channel_iter *i) 457 { 458 struct nvme_ctrlr_channel_iter *iter = spdk_io_channel_iter_get_ctx(i); 459 struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i); 460 struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i); 461 struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch); 462 463 iter->i = i; 464 iter->fn(iter, nvme_ctrlr, ctrlr_ch, iter->ctx); 465 } 466 467 static void 468 nvme_ctrlr_each_channel_cpl(struct spdk_io_channel_iter *i, int status) 469 { 470 struct nvme_ctrlr_channel_iter *iter = spdk_io_channel_iter_get_ctx(i); 471 struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i); 472 473 iter->i = i; 474 iter->cpl(nvme_ctrlr, iter->ctx, status); 475 476 free(iter); 477 } 478 479 void 480 nvme_ctrlr_for_each_channel(struct nvme_ctrlr *nvme_ctrlr, 481 nvme_ctrlr_for_each_channel_msg fn, void *ctx, 482 nvme_ctrlr_for_each_channel_done cpl) 483 { 484 struct nvme_ctrlr_channel_iter *iter; 485 486 assert(nvme_ctrlr != NULL && fn != NULL); 487 488 iter = calloc(1, sizeof(struct nvme_ctrlr_channel_iter)); 489 if (iter == NULL) { 490 SPDK_ERRLOG("Unable to allocate iterator\n"); 491 assert(false); 492 return; 493 } 494 495 iter->fn = fn; 496 iter->cpl = cpl; 497 iter->ctx = ctx; 498 499 spdk_for_each_channel(nvme_ctrlr, nvme_ctrlr_each_channel_msg, 500 iter, nvme_ctrlr_each_channel_cpl); 501 } 502 503 struct nvme_bdev_channel_iter { 504 nvme_bdev_for_each_channel_msg fn; 505 nvme_bdev_for_each_channel_done cpl; 506 struct spdk_io_channel_iter *i; 507 void *ctx; 508 }; 509 510 void 511 nvme_bdev_for_each_channel_continue(struct nvme_bdev_channel_iter *iter, int status) 512 { 513 spdk_for_each_channel_continue(iter->i, status); 514 } 515 516 static void 517 nvme_bdev_each_channel_msg(struct spdk_io_channel_iter *i) 518 { 519 struct nvme_bdev_channel_iter *iter = spdk_io_channel_iter_get_ctx(i); 520 struct nvme_bdev *nbdev = spdk_io_channel_iter_get_io_device(i); 521 struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i); 522 struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch); 523 524 iter->i = i; 525 iter->fn(iter, nbdev, nbdev_ch, iter->ctx); 526 } 527 528 static void 529 nvme_bdev_each_channel_cpl(struct spdk_io_channel_iter *i, int status) 530 { 531 struct nvme_bdev_channel_iter *iter = spdk_io_channel_iter_get_ctx(i); 532 struct nvme_bdev *nbdev = spdk_io_channel_iter_get_io_device(i); 533 534 iter->i = i; 535 iter->cpl(nbdev, iter->ctx, status); 536 537 free(iter); 538 } 539 540 void 541 nvme_bdev_for_each_channel(struct nvme_bdev *nbdev, 542 nvme_bdev_for_each_channel_msg fn, void *ctx, 543 nvme_bdev_for_each_channel_done cpl) 544 { 545 struct nvme_bdev_channel_iter *iter; 546 547 assert(nbdev != NULL && fn != NULL); 548 549 iter = calloc(1, sizeof(struct nvme_bdev_channel_iter)); 550 if (iter == NULL) { 551 SPDK_ERRLOG("Unable to allocate iterator\n"); 552 assert(false); 553 return; 554 } 555 556 iter->fn = fn; 557 iter->cpl = cpl; 558 iter->ctx = ctx; 559 560 spdk_for_each_channel(nbdev, nvme_bdev_each_channel_msg, iter, 561 nvme_bdev_each_channel_cpl); 562 } 563 564 void 565 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w) 566 { 567 const char *trtype_str; 568 const char *adrfam_str; 569 570 trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype); 571 if (trtype_str) { 572 spdk_json_write_named_string(w, "trtype", trtype_str); 573 } 574 575 adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam); 576 if (adrfam_str) { 577 spdk_json_write_named_string(w, "adrfam", adrfam_str); 578 } 579 580 if (trid->traddr[0] != '\0') { 581 spdk_json_write_named_string(w, "traddr", trid->traddr); 582 } 583 584 if (trid->trsvcid[0] != '\0') { 585 spdk_json_write_named_string(w, "trsvcid", trid->trsvcid); 586 } 587 588 if (trid->subnqn[0] != '\0') { 589 spdk_json_write_named_string(w, "subnqn", trid->subnqn); 590 } 591 } 592 593 static void 594 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr, 595 struct nvme_ctrlr *nvme_ctrlr) 596 { 597 SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name); 598 pthread_mutex_lock(&g_bdev_nvme_mutex); 599 600 TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq); 601 if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) { 602 pthread_mutex_unlock(&g_bdev_nvme_mutex); 603 604 return; 605 } 606 TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq); 607 608 pthread_mutex_unlock(&g_bdev_nvme_mutex); 609 610 assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs)); 611 612 free(nbdev_ctrlr->name); 613 free(nbdev_ctrlr); 614 } 615 616 static void 617 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr) 618 { 619 struct nvme_path_id *path_id, *tmp_path; 620 struct nvme_ns *ns, *tmp_ns; 621 622 free(nvme_ctrlr->copied_ana_desc); 623 spdk_free(nvme_ctrlr->ana_log_page); 624 625 if (nvme_ctrlr->opal_dev) { 626 spdk_opal_dev_destruct(nvme_ctrlr->opal_dev); 627 nvme_ctrlr->opal_dev = NULL; 628 } 629 630 if (nvme_ctrlr->nbdev_ctrlr) { 631 nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr); 632 } 633 634 RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) { 635 RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns); 636 nvme_ns_free(ns); 637 } 638 639 TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) { 640 TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link); 641 free(path_id); 642 } 643 644 pthread_mutex_destroy(&nvme_ctrlr->mutex); 645 spdk_keyring_put_key(nvme_ctrlr->psk); 646 spdk_keyring_put_key(nvme_ctrlr->dhchap_key); 647 spdk_keyring_put_key(nvme_ctrlr->dhchap_ctrlr_key); 648 free(nvme_ctrlr); 649 650 pthread_mutex_lock(&g_bdev_nvme_mutex); 651 if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) { 652 pthread_mutex_unlock(&g_bdev_nvme_mutex); 653 spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL); 654 spdk_bdev_module_fini_done(); 655 return; 656 } 657 pthread_mutex_unlock(&g_bdev_nvme_mutex); 658 } 659 660 static int 661 nvme_detach_poller(void *arg) 662 { 663 struct nvme_ctrlr *nvme_ctrlr = arg; 664 int rc; 665 666 rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx); 667 if (rc != -EAGAIN) { 668 spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller); 669 _nvme_ctrlr_delete(nvme_ctrlr); 670 } 671 672 return SPDK_POLLER_BUSY; 673 } 674 675 static void 676 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr) 677 { 678 int rc; 679 680 spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer); 681 682 if (spdk_interrupt_mode_is_enabled()) { 683 spdk_interrupt_unregister(&nvme_ctrlr->intr); 684 } 685 686 /* First, unregister the adminq poller, as the driver will poll adminq if necessary */ 687 spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller); 688 689 /* If we got here, the reset/detach poller cannot be active */ 690 assert(nvme_ctrlr->reset_detach_poller == NULL); 691 nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller, 692 nvme_ctrlr, 1000); 693 if (nvme_ctrlr->reset_detach_poller == NULL) { 694 NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to register detach poller\n"); 695 goto error; 696 } 697 698 rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx); 699 if (rc != 0) { 700 NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to detach the NVMe controller\n"); 701 goto error; 702 } 703 704 return; 705 error: 706 /* We don't have a good way to handle errors here, so just do what we can and delete the 707 * controller without detaching the underlying NVMe device. 708 */ 709 spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller); 710 _nvme_ctrlr_delete(nvme_ctrlr); 711 } 712 713 static void 714 nvme_ctrlr_unregister_cb(void *io_device) 715 { 716 struct nvme_ctrlr *nvme_ctrlr = io_device; 717 718 nvme_ctrlr_delete(nvme_ctrlr); 719 } 720 721 static void 722 nvme_ctrlr_unregister(void *ctx) 723 { 724 struct nvme_ctrlr *nvme_ctrlr = ctx; 725 726 spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb); 727 } 728 729 static bool 730 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr) 731 { 732 if (!nvme_ctrlr->destruct) { 733 return false; 734 } 735 736 if (nvme_ctrlr->ref > 0) { 737 return false; 738 } 739 740 if (nvme_ctrlr->resetting) { 741 return false; 742 } 743 744 if (nvme_ctrlr->ana_log_page_updating) { 745 return false; 746 } 747 748 if (nvme_ctrlr->io_path_cache_clearing) { 749 return false; 750 } 751 752 return true; 753 } 754 755 static void 756 nvme_ctrlr_put_ref(struct nvme_ctrlr *nvme_ctrlr) 757 { 758 pthread_mutex_lock(&nvme_ctrlr->mutex); 759 SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref); 760 761 assert(nvme_ctrlr->ref > 0); 762 nvme_ctrlr->ref--; 763 764 if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) { 765 pthread_mutex_unlock(&nvme_ctrlr->mutex); 766 return; 767 } 768 769 pthread_mutex_unlock(&nvme_ctrlr->mutex); 770 771 spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr); 772 } 773 774 static void 775 nvme_ctrlr_get_ref(struct nvme_ctrlr *nvme_ctrlr) 776 { 777 pthread_mutex_lock(&nvme_ctrlr->mutex); 778 nvme_ctrlr->ref++; 779 pthread_mutex_unlock(&nvme_ctrlr->mutex); 780 } 781 782 static void 783 bdev_nvme_clear_current_io_path(struct nvme_bdev_channel *nbdev_ch) 784 { 785 nbdev_ch->current_io_path = NULL; 786 nbdev_ch->rr_counter = 0; 787 } 788 789 static struct nvme_io_path * 790 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns) 791 { 792 struct nvme_io_path *io_path; 793 794 STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) { 795 if (io_path->nvme_ns == nvme_ns) { 796 break; 797 } 798 } 799 800 return io_path; 801 } 802 803 static struct nvme_io_path * 804 nvme_io_path_alloc(void) 805 { 806 struct nvme_io_path *io_path; 807 808 io_path = calloc(1, sizeof(*io_path)); 809 if (io_path == NULL) { 810 SPDK_ERRLOG("Failed to alloc io_path.\n"); 811 return NULL; 812 } 813 814 if (g_opts.io_path_stat) { 815 io_path->stat = calloc(1, sizeof(struct spdk_bdev_io_stat)); 816 if (io_path->stat == NULL) { 817 free(io_path); 818 SPDK_ERRLOG("Failed to alloc io_path stat.\n"); 819 return NULL; 820 } 821 spdk_bdev_reset_io_stat(io_path->stat, SPDK_BDEV_RESET_STAT_MAXMIN); 822 } 823 824 return io_path; 825 } 826 827 static void 828 nvme_io_path_free(struct nvme_io_path *io_path) 829 { 830 free(io_path->stat); 831 free(io_path); 832 } 833 834 static int 835 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns) 836 { 837 struct nvme_io_path *io_path; 838 struct spdk_io_channel *ch; 839 struct nvme_ctrlr_channel *ctrlr_ch; 840 struct nvme_qpair *nvme_qpair; 841 842 io_path = nvme_io_path_alloc(); 843 if (io_path == NULL) { 844 return -ENOMEM; 845 } 846 847 io_path->nvme_ns = nvme_ns; 848 849 ch = spdk_get_io_channel(nvme_ns->ctrlr); 850 if (ch == NULL) { 851 nvme_io_path_free(io_path); 852 SPDK_ERRLOG("Failed to alloc io_channel.\n"); 853 return -ENOMEM; 854 } 855 856 ctrlr_ch = spdk_io_channel_get_ctx(ch); 857 858 nvme_qpair = ctrlr_ch->qpair; 859 assert(nvme_qpair != NULL); 860 861 io_path->qpair = nvme_qpair; 862 TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq); 863 864 io_path->nbdev_ch = nbdev_ch; 865 STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq); 866 867 bdev_nvme_clear_current_io_path(nbdev_ch); 868 869 return 0; 870 } 871 872 static void 873 bdev_nvme_clear_retry_io_path(struct nvme_bdev_channel *nbdev_ch, 874 struct nvme_io_path *io_path) 875 { 876 struct nvme_bdev_io *bio; 877 878 TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) { 879 if (bio->io_path == io_path) { 880 bio->io_path = NULL; 881 } 882 } 883 } 884 885 static void 886 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path) 887 { 888 struct spdk_io_channel *ch; 889 struct nvme_qpair *nvme_qpair; 890 struct nvme_ctrlr_channel *ctrlr_ch; 891 struct nvme_bdev *nbdev; 892 893 nbdev = spdk_io_channel_get_io_device(spdk_io_channel_from_ctx(nbdev_ch)); 894 895 /* Add the statistics to nvme_ns before this path is destroyed. */ 896 pthread_mutex_lock(&nbdev->mutex); 897 if (nbdev->ref != 0 && io_path->nvme_ns->stat != NULL && io_path->stat != NULL) { 898 spdk_bdev_add_io_stat(io_path->nvme_ns->stat, io_path->stat); 899 } 900 pthread_mutex_unlock(&nbdev->mutex); 901 902 bdev_nvme_clear_current_io_path(nbdev_ch); 903 bdev_nvme_clear_retry_io_path(nbdev_ch, io_path); 904 905 STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq); 906 io_path->nbdev_ch = NULL; 907 908 nvme_qpair = io_path->qpair; 909 assert(nvme_qpair != NULL); 910 911 ctrlr_ch = nvme_qpair->ctrlr_ch; 912 assert(ctrlr_ch != NULL); 913 914 ch = spdk_io_channel_from_ctx(ctrlr_ch); 915 spdk_put_io_channel(ch); 916 917 /* After an io_path is removed, I/Os submitted to it may complete and update statistics 918 * of the io_path. To avoid heap-use-after-free error from this case, do not free the 919 * io_path here but free the io_path when the associated qpair is freed. It is ensured 920 * that all I/Os submitted to the io_path are completed when the associated qpair is freed. 921 */ 922 } 923 924 static void 925 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch) 926 { 927 struct nvme_io_path *io_path, *tmp_io_path; 928 929 STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) { 930 _bdev_nvme_delete_io_path(nbdev_ch, io_path); 931 } 932 } 933 934 static int 935 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf) 936 { 937 struct nvme_bdev_channel *nbdev_ch = ctx_buf; 938 struct nvme_bdev *nbdev = io_device; 939 struct nvme_ns *nvme_ns; 940 int rc; 941 942 STAILQ_INIT(&nbdev_ch->io_path_list); 943 TAILQ_INIT(&nbdev_ch->retry_io_list); 944 945 pthread_mutex_lock(&nbdev->mutex); 946 947 nbdev_ch->mp_policy = nbdev->mp_policy; 948 nbdev_ch->mp_selector = nbdev->mp_selector; 949 nbdev_ch->rr_min_io = nbdev->rr_min_io; 950 951 TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) { 952 rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns); 953 if (rc != 0) { 954 pthread_mutex_unlock(&nbdev->mutex); 955 956 _bdev_nvme_delete_io_paths(nbdev_ch); 957 return rc; 958 } 959 } 960 pthread_mutex_unlock(&nbdev->mutex); 961 962 return 0; 963 } 964 965 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'. 966 * If cpl == NULL, complete the bdev_io with bdev status based on 'status'. 967 */ 968 static inline void 969 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status, 970 const struct spdk_nvme_cpl *cpl) 971 { 972 spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx, 973 (uintptr_t)bdev_io); 974 if (cpl) { 975 spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc); 976 } else { 977 spdk_bdev_io_complete(bdev_io, status); 978 } 979 } 980 981 static void bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch); 982 983 static void 984 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf) 985 { 986 struct nvme_bdev_channel *nbdev_ch = ctx_buf; 987 988 bdev_nvme_abort_retry_ios(nbdev_ch); 989 _bdev_nvme_delete_io_paths(nbdev_ch); 990 } 991 992 static inline bool 993 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type) 994 { 995 switch (io_type) { 996 case SPDK_BDEV_IO_TYPE_RESET: 997 case SPDK_BDEV_IO_TYPE_NVME_ADMIN: 998 case SPDK_BDEV_IO_TYPE_ABORT: 999 return true; 1000 default: 1001 break; 1002 } 1003 1004 return false; 1005 } 1006 1007 static inline bool 1008 nvme_ns_is_active(struct nvme_ns *nvme_ns) 1009 { 1010 if (spdk_unlikely(nvme_ns->ana_state_updating)) { 1011 return false; 1012 } 1013 1014 if (spdk_unlikely(nvme_ns->ns == NULL)) { 1015 return false; 1016 } 1017 1018 return true; 1019 } 1020 1021 static inline bool 1022 nvme_ns_is_accessible(struct nvme_ns *nvme_ns) 1023 { 1024 if (spdk_unlikely(!nvme_ns_is_active(nvme_ns))) { 1025 return false; 1026 } 1027 1028 switch (nvme_ns->ana_state) { 1029 case SPDK_NVME_ANA_OPTIMIZED_STATE: 1030 case SPDK_NVME_ANA_NON_OPTIMIZED_STATE: 1031 return true; 1032 default: 1033 break; 1034 } 1035 1036 return false; 1037 } 1038 1039 static inline bool 1040 nvme_qpair_is_connected(struct nvme_qpair *nvme_qpair) 1041 { 1042 if (spdk_unlikely(nvme_qpair->qpair == NULL)) { 1043 return false; 1044 } 1045 1046 if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) != 1047 SPDK_NVME_QPAIR_FAILURE_NONE)) { 1048 return false; 1049 } 1050 1051 if (spdk_unlikely(nvme_qpair->ctrlr_ch->reset_iter != NULL)) { 1052 return false; 1053 } 1054 1055 return true; 1056 } 1057 1058 static inline bool 1059 nvme_io_path_is_available(struct nvme_io_path *io_path) 1060 { 1061 if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) { 1062 return false; 1063 } 1064 1065 if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) { 1066 return false; 1067 } 1068 1069 return true; 1070 } 1071 1072 static inline bool 1073 nvme_ctrlr_is_failed(struct nvme_ctrlr *nvme_ctrlr) 1074 { 1075 if (nvme_ctrlr->destruct) { 1076 return true; 1077 } 1078 1079 if (nvme_ctrlr->fast_io_fail_timedout) { 1080 return true; 1081 } 1082 1083 if (nvme_ctrlr->resetting) { 1084 if (nvme_ctrlr->opts.reconnect_delay_sec != 0) { 1085 return false; 1086 } else { 1087 return true; 1088 } 1089 } 1090 1091 if (nvme_ctrlr->reconnect_is_delayed) { 1092 return false; 1093 } 1094 1095 if (nvme_ctrlr->disabled) { 1096 return true; 1097 } 1098 1099 if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) { 1100 return true; 1101 } else { 1102 return false; 1103 } 1104 } 1105 1106 static bool 1107 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr) 1108 { 1109 if (nvme_ctrlr->destruct) { 1110 return false; 1111 } 1112 1113 if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) { 1114 return false; 1115 } 1116 1117 if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) { 1118 return false; 1119 } 1120 1121 if (nvme_ctrlr->disabled) { 1122 return false; 1123 } 1124 1125 return true; 1126 } 1127 1128 /* Simulate circular linked list. */ 1129 static inline struct nvme_io_path * 1130 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path) 1131 { 1132 struct nvme_io_path *next_path; 1133 1134 if (prev_path != NULL) { 1135 next_path = STAILQ_NEXT(prev_path, stailq); 1136 if (next_path != NULL) { 1137 return next_path; 1138 } 1139 } 1140 1141 return STAILQ_FIRST(&nbdev_ch->io_path_list); 1142 } 1143 1144 static struct nvme_io_path * 1145 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch) 1146 { 1147 struct nvme_io_path *io_path, *start, *non_optimized = NULL; 1148 1149 start = nvme_io_path_get_next(nbdev_ch, nbdev_ch->current_io_path); 1150 1151 io_path = start; 1152 do { 1153 if (spdk_likely(nvme_io_path_is_available(io_path))) { 1154 switch (io_path->nvme_ns->ana_state) { 1155 case SPDK_NVME_ANA_OPTIMIZED_STATE: 1156 nbdev_ch->current_io_path = io_path; 1157 return io_path; 1158 case SPDK_NVME_ANA_NON_OPTIMIZED_STATE: 1159 if (non_optimized == NULL) { 1160 non_optimized = io_path; 1161 } 1162 break; 1163 default: 1164 assert(false); 1165 break; 1166 } 1167 } 1168 io_path = nvme_io_path_get_next(nbdev_ch, io_path); 1169 } while (io_path != start); 1170 1171 if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) { 1172 /* We come here only if there is no optimized path. Cache even non_optimized 1173 * path for load balance across multiple non_optimized paths. 1174 */ 1175 nbdev_ch->current_io_path = non_optimized; 1176 } 1177 1178 return non_optimized; 1179 } 1180 1181 static struct nvme_io_path * 1182 _bdev_nvme_find_io_path_min_qd(struct nvme_bdev_channel *nbdev_ch) 1183 { 1184 struct nvme_io_path *io_path; 1185 struct nvme_io_path *optimized = NULL, *non_optimized = NULL; 1186 uint32_t opt_min_qd = UINT32_MAX, non_opt_min_qd = UINT32_MAX; 1187 uint32_t num_outstanding_reqs; 1188 1189 STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) { 1190 if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) { 1191 /* The device is currently resetting. */ 1192 continue; 1193 } 1194 1195 if (spdk_unlikely(!nvme_ns_is_active(io_path->nvme_ns))) { 1196 continue; 1197 } 1198 1199 num_outstanding_reqs = spdk_nvme_qpair_get_num_outstanding_reqs(io_path->qpair->qpair); 1200 switch (io_path->nvme_ns->ana_state) { 1201 case SPDK_NVME_ANA_OPTIMIZED_STATE: 1202 if (num_outstanding_reqs < opt_min_qd) { 1203 opt_min_qd = num_outstanding_reqs; 1204 optimized = io_path; 1205 } 1206 break; 1207 case SPDK_NVME_ANA_NON_OPTIMIZED_STATE: 1208 if (num_outstanding_reqs < non_opt_min_qd) { 1209 non_opt_min_qd = num_outstanding_reqs; 1210 non_optimized = io_path; 1211 } 1212 break; 1213 default: 1214 break; 1215 } 1216 } 1217 1218 /* don't cache io path for BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH selector */ 1219 if (optimized != NULL) { 1220 return optimized; 1221 } 1222 1223 return non_optimized; 1224 } 1225 1226 static inline struct nvme_io_path * 1227 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch) 1228 { 1229 if (spdk_likely(nbdev_ch->current_io_path != NULL)) { 1230 if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE) { 1231 return nbdev_ch->current_io_path; 1232 } else if (nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) { 1233 if (++nbdev_ch->rr_counter < nbdev_ch->rr_min_io) { 1234 return nbdev_ch->current_io_path; 1235 } 1236 nbdev_ch->rr_counter = 0; 1237 } 1238 } 1239 1240 if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE || 1241 nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) { 1242 return _bdev_nvme_find_io_path(nbdev_ch); 1243 } else { 1244 return _bdev_nvme_find_io_path_min_qd(nbdev_ch); 1245 } 1246 } 1247 1248 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed, 1249 * or false otherwise. 1250 * 1251 * If any io_path has an active qpair but find_io_path() returned NULL, its namespace 1252 * is likely to be non-accessible now but may become accessible. 1253 * 1254 * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr 1255 * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed 1256 * when starting to reset it but it is set to failed when the reset failed. Hence, if 1257 * a ctrlr is unfailed, it is likely that it works fine or is resetting. 1258 */ 1259 static bool 1260 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch) 1261 { 1262 struct nvme_io_path *io_path; 1263 1264 if (nbdev_ch->resetting) { 1265 return false; 1266 } 1267 1268 STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) { 1269 if (io_path->nvme_ns->ana_transition_timedout) { 1270 continue; 1271 } 1272 1273 if (nvme_qpair_is_connected(io_path->qpair) || 1274 !nvme_ctrlr_is_failed(io_path->qpair->ctrlr)) { 1275 return true; 1276 } 1277 } 1278 1279 return false; 1280 } 1281 1282 static void 1283 bdev_nvme_retry_io(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io) 1284 { 1285 struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx; 1286 struct spdk_io_channel *ch; 1287 1288 if (nbdev_io->io_path != NULL && nvme_io_path_is_available(nbdev_io->io_path)) { 1289 _bdev_nvme_submit_request(nbdev_ch, bdev_io); 1290 } else { 1291 ch = spdk_io_channel_from_ctx(nbdev_ch); 1292 bdev_nvme_submit_request(ch, bdev_io); 1293 } 1294 } 1295 1296 static int 1297 bdev_nvme_retry_ios(void *arg) 1298 { 1299 struct nvme_bdev_channel *nbdev_ch = arg; 1300 struct nvme_bdev_io *bio, *tmp_bio; 1301 uint64_t now, delay_us; 1302 1303 now = spdk_get_ticks(); 1304 1305 TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) { 1306 if (bio->retry_ticks > now) { 1307 break; 1308 } 1309 1310 TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link); 1311 1312 bdev_nvme_retry_io(nbdev_ch, spdk_bdev_io_from_ctx(bio)); 1313 } 1314 1315 spdk_poller_unregister(&nbdev_ch->retry_io_poller); 1316 1317 bio = TAILQ_FIRST(&nbdev_ch->retry_io_list); 1318 if (bio != NULL) { 1319 delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz(); 1320 1321 nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch, 1322 delay_us); 1323 } 1324 1325 return SPDK_POLLER_BUSY; 1326 } 1327 1328 static void 1329 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch, 1330 struct nvme_bdev_io *bio, uint64_t delay_ms) 1331 { 1332 struct nvme_bdev_io *tmp_bio; 1333 1334 bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL; 1335 1336 TAILQ_FOREACH_REVERSE(tmp_bio, &nbdev_ch->retry_io_list, retry_io_head, retry_link) { 1337 if (tmp_bio->retry_ticks <= bio->retry_ticks) { 1338 TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bio, bio, 1339 retry_link); 1340 return; 1341 } 1342 } 1343 1344 /* No earlier I/Os were found. This I/O must be the new head. */ 1345 TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bio, retry_link); 1346 1347 spdk_poller_unregister(&nbdev_ch->retry_io_poller); 1348 1349 nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch, 1350 delay_ms * 1000ULL); 1351 } 1352 1353 static void 1354 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch) 1355 { 1356 struct nvme_bdev_io *bio, *tmp_bio; 1357 1358 TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) { 1359 TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link); 1360 __bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL); 1361 } 1362 1363 spdk_poller_unregister(&nbdev_ch->retry_io_poller); 1364 } 1365 1366 static int 1367 bdev_nvme_abort_retry_io(struct nvme_bdev_channel *nbdev_ch, 1368 struct nvme_bdev_io *bio_to_abort) 1369 { 1370 struct nvme_bdev_io *bio; 1371 1372 TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) { 1373 if (bio == bio_to_abort) { 1374 TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link); 1375 __bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL); 1376 return 0; 1377 } 1378 } 1379 1380 return -ENOENT; 1381 } 1382 1383 static void 1384 bdev_nvme_update_nvme_error_stat(struct spdk_bdev_io *bdev_io, const struct spdk_nvme_cpl *cpl) 1385 { 1386 struct nvme_bdev *nbdev; 1387 uint16_t sct, sc; 1388 1389 assert(spdk_nvme_cpl_is_error(cpl)); 1390 1391 nbdev = bdev_io->bdev->ctxt; 1392 1393 if (nbdev->err_stat == NULL) { 1394 return; 1395 } 1396 1397 sct = cpl->status.sct; 1398 sc = cpl->status.sc; 1399 1400 pthread_mutex_lock(&nbdev->mutex); 1401 1402 nbdev->err_stat->status_type[sct]++; 1403 switch (sct) { 1404 case SPDK_NVME_SCT_GENERIC: 1405 case SPDK_NVME_SCT_COMMAND_SPECIFIC: 1406 case SPDK_NVME_SCT_MEDIA_ERROR: 1407 case SPDK_NVME_SCT_PATH: 1408 nbdev->err_stat->status[sct][sc]++; 1409 break; 1410 default: 1411 break; 1412 } 1413 1414 pthread_mutex_unlock(&nbdev->mutex); 1415 } 1416 1417 static inline void 1418 bdev_nvme_update_io_path_stat(struct nvme_bdev_io *bio) 1419 { 1420 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 1421 uint64_t num_blocks = bdev_io->u.bdev.num_blocks; 1422 uint32_t blocklen = bdev_io->bdev->blocklen; 1423 struct spdk_bdev_io_stat *stat; 1424 uint64_t tsc_diff; 1425 1426 if (bio->io_path->stat == NULL) { 1427 return; 1428 } 1429 1430 tsc_diff = spdk_get_ticks() - bio->submit_tsc; 1431 stat = bio->io_path->stat; 1432 1433 switch (bdev_io->type) { 1434 case SPDK_BDEV_IO_TYPE_READ: 1435 stat->bytes_read += num_blocks * blocklen; 1436 stat->num_read_ops++; 1437 stat->read_latency_ticks += tsc_diff; 1438 if (stat->max_read_latency_ticks < tsc_diff) { 1439 stat->max_read_latency_ticks = tsc_diff; 1440 } 1441 if (stat->min_read_latency_ticks > tsc_diff) { 1442 stat->min_read_latency_ticks = tsc_diff; 1443 } 1444 break; 1445 case SPDK_BDEV_IO_TYPE_WRITE: 1446 stat->bytes_written += num_blocks * blocklen; 1447 stat->num_write_ops++; 1448 stat->write_latency_ticks += tsc_diff; 1449 if (stat->max_write_latency_ticks < tsc_diff) { 1450 stat->max_write_latency_ticks = tsc_diff; 1451 } 1452 if (stat->min_write_latency_ticks > tsc_diff) { 1453 stat->min_write_latency_ticks = tsc_diff; 1454 } 1455 break; 1456 case SPDK_BDEV_IO_TYPE_UNMAP: 1457 stat->bytes_unmapped += num_blocks * blocklen; 1458 stat->num_unmap_ops++; 1459 stat->unmap_latency_ticks += tsc_diff; 1460 if (stat->max_unmap_latency_ticks < tsc_diff) { 1461 stat->max_unmap_latency_ticks = tsc_diff; 1462 } 1463 if (stat->min_unmap_latency_ticks > tsc_diff) { 1464 stat->min_unmap_latency_ticks = tsc_diff; 1465 } 1466 break; 1467 case SPDK_BDEV_IO_TYPE_ZCOPY: 1468 /* Track the data in the start phase only */ 1469 if (!bdev_io->u.bdev.zcopy.start) { 1470 break; 1471 } 1472 if (bdev_io->u.bdev.zcopy.populate) { 1473 stat->bytes_read += num_blocks * blocklen; 1474 stat->num_read_ops++; 1475 stat->read_latency_ticks += tsc_diff; 1476 if (stat->max_read_latency_ticks < tsc_diff) { 1477 stat->max_read_latency_ticks = tsc_diff; 1478 } 1479 if (stat->min_read_latency_ticks > tsc_diff) { 1480 stat->min_read_latency_ticks = tsc_diff; 1481 } 1482 } else { 1483 stat->bytes_written += num_blocks * blocklen; 1484 stat->num_write_ops++; 1485 stat->write_latency_ticks += tsc_diff; 1486 if (stat->max_write_latency_ticks < tsc_diff) { 1487 stat->max_write_latency_ticks = tsc_diff; 1488 } 1489 if (stat->min_write_latency_ticks > tsc_diff) { 1490 stat->min_write_latency_ticks = tsc_diff; 1491 } 1492 } 1493 break; 1494 case SPDK_BDEV_IO_TYPE_COPY: 1495 stat->bytes_copied += num_blocks * blocklen; 1496 stat->num_copy_ops++; 1497 stat->copy_latency_ticks += tsc_diff; 1498 if (stat->max_copy_latency_ticks < tsc_diff) { 1499 stat->max_copy_latency_ticks = tsc_diff; 1500 } 1501 if (stat->min_copy_latency_ticks > tsc_diff) { 1502 stat->min_copy_latency_ticks = tsc_diff; 1503 } 1504 break; 1505 default: 1506 break; 1507 } 1508 } 1509 1510 static bool 1511 bdev_nvme_check_retry_io(struct nvme_bdev_io *bio, 1512 const struct spdk_nvme_cpl *cpl, 1513 struct nvme_bdev_channel *nbdev_ch, 1514 uint64_t *_delay_ms) 1515 { 1516 struct nvme_io_path *io_path = bio->io_path; 1517 struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr; 1518 const struct spdk_nvme_ctrlr_data *cdata; 1519 1520 if (spdk_nvme_cpl_is_path_error(cpl) || 1521 spdk_nvme_cpl_is_aborted_sq_deletion(cpl) || 1522 !nvme_io_path_is_available(io_path) || 1523 !nvme_ctrlr_is_available(nvme_ctrlr)) { 1524 bdev_nvme_clear_current_io_path(nbdev_ch); 1525 bio->io_path = NULL; 1526 if (spdk_nvme_cpl_is_ana_error(cpl)) { 1527 if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) { 1528 io_path->nvme_ns->ana_state_updating = true; 1529 } 1530 } 1531 if (!any_io_path_may_become_available(nbdev_ch)) { 1532 return false; 1533 } 1534 *_delay_ms = 0; 1535 } else { 1536 bio->retry_count++; 1537 1538 cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr); 1539 1540 if (cpl->status.crd != 0) { 1541 *_delay_ms = cdata->crdt[cpl->status.crd] * 100; 1542 } else { 1543 *_delay_ms = 0; 1544 } 1545 } 1546 1547 return true; 1548 } 1549 1550 static inline void 1551 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio, 1552 const struct spdk_nvme_cpl *cpl) 1553 { 1554 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 1555 struct nvme_bdev_channel *nbdev_ch; 1556 uint64_t delay_ms; 1557 1558 assert(!bdev_nvme_io_type_is_admin(bdev_io->type)); 1559 1560 if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) { 1561 bdev_nvme_update_io_path_stat(bio); 1562 goto complete; 1563 } 1564 1565 /* Update error counts before deciding if retry is needed. 1566 * Hence, error counts may be more than the number of I/O errors. 1567 */ 1568 bdev_nvme_update_nvme_error_stat(bdev_io, cpl); 1569 1570 if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) || 1571 (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) { 1572 goto complete; 1573 } 1574 1575 /* At this point we don't know whether the sequence was successfully executed or not, so we 1576 * cannot retry the IO */ 1577 if (bdev_io->u.bdev.accel_sequence != NULL) { 1578 goto complete; 1579 } 1580 1581 nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io)); 1582 1583 if (bdev_nvme_check_retry_io(bio, cpl, nbdev_ch, &delay_ms)) { 1584 bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms); 1585 return; 1586 } 1587 1588 complete: 1589 bio->retry_count = 0; 1590 bio->submit_tsc = 0; 1591 bdev_io->u.bdev.accel_sequence = NULL; 1592 __bdev_nvme_io_complete(bdev_io, 0, cpl); 1593 } 1594 1595 static inline void 1596 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc) 1597 { 1598 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 1599 struct nvme_bdev_channel *nbdev_ch; 1600 enum spdk_bdev_io_status io_status; 1601 1602 assert(!bdev_nvme_io_type_is_admin(bdev_io->type)); 1603 1604 switch (rc) { 1605 case 0: 1606 io_status = SPDK_BDEV_IO_STATUS_SUCCESS; 1607 break; 1608 case -ENOMEM: 1609 io_status = SPDK_BDEV_IO_STATUS_NOMEM; 1610 break; 1611 case -ENXIO: 1612 if (g_opts.bdev_retry_count == -1 || bio->retry_count < g_opts.bdev_retry_count) { 1613 nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io)); 1614 1615 bdev_nvme_clear_current_io_path(nbdev_ch); 1616 bio->io_path = NULL; 1617 1618 if (any_io_path_may_become_available(nbdev_ch)) { 1619 bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL); 1620 return; 1621 } 1622 } 1623 1624 /* fallthrough */ 1625 default: 1626 spdk_accel_sequence_abort(bdev_io->u.bdev.accel_sequence); 1627 bdev_io->u.bdev.accel_sequence = NULL; 1628 io_status = SPDK_BDEV_IO_STATUS_FAILED; 1629 break; 1630 } 1631 1632 bio->retry_count = 0; 1633 bio->submit_tsc = 0; 1634 __bdev_nvme_io_complete(bdev_io, io_status, NULL); 1635 } 1636 1637 static inline void 1638 bdev_nvme_admin_complete(struct nvme_bdev_io *bio, int rc) 1639 { 1640 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 1641 enum spdk_bdev_io_status io_status; 1642 1643 switch (rc) { 1644 case 0: 1645 io_status = SPDK_BDEV_IO_STATUS_SUCCESS; 1646 break; 1647 case -ENOMEM: 1648 io_status = SPDK_BDEV_IO_STATUS_NOMEM; 1649 break; 1650 case -ENXIO: 1651 /* fallthrough */ 1652 default: 1653 io_status = SPDK_BDEV_IO_STATUS_FAILED; 1654 break; 1655 } 1656 1657 __bdev_nvme_io_complete(bdev_io, io_status, NULL); 1658 } 1659 1660 static void 1661 bdev_nvme_clear_io_path_caches_done(struct nvme_ctrlr *nvme_ctrlr, 1662 void *ctx, int status) 1663 { 1664 pthread_mutex_lock(&nvme_ctrlr->mutex); 1665 1666 assert(nvme_ctrlr->io_path_cache_clearing == true); 1667 nvme_ctrlr->io_path_cache_clearing = false; 1668 1669 if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) { 1670 pthread_mutex_unlock(&nvme_ctrlr->mutex); 1671 return; 1672 } 1673 1674 pthread_mutex_unlock(&nvme_ctrlr->mutex); 1675 1676 nvme_ctrlr_unregister(nvme_ctrlr); 1677 } 1678 1679 static void 1680 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair) 1681 { 1682 struct nvme_io_path *io_path; 1683 1684 TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) { 1685 if (io_path->nbdev_ch == NULL) { 1686 continue; 1687 } 1688 bdev_nvme_clear_current_io_path(io_path->nbdev_ch); 1689 } 1690 } 1691 1692 static void 1693 bdev_nvme_clear_io_path_cache(struct nvme_ctrlr_channel_iter *i, 1694 struct nvme_ctrlr *nvme_ctrlr, 1695 struct nvme_ctrlr_channel *ctrlr_ch, 1696 void *ctx) 1697 { 1698 assert(ctrlr_ch->qpair != NULL); 1699 1700 _bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair); 1701 1702 nvme_ctrlr_for_each_channel_continue(i, 0); 1703 } 1704 1705 static void 1706 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr) 1707 { 1708 pthread_mutex_lock(&nvme_ctrlr->mutex); 1709 if (!nvme_ctrlr_is_available(nvme_ctrlr) || 1710 nvme_ctrlr->io_path_cache_clearing) { 1711 pthread_mutex_unlock(&nvme_ctrlr->mutex); 1712 return; 1713 } 1714 1715 nvme_ctrlr->io_path_cache_clearing = true; 1716 pthread_mutex_unlock(&nvme_ctrlr->mutex); 1717 1718 nvme_ctrlr_for_each_channel(nvme_ctrlr, 1719 bdev_nvme_clear_io_path_cache, 1720 NULL, 1721 bdev_nvme_clear_io_path_caches_done); 1722 } 1723 1724 static struct nvme_qpair * 1725 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair) 1726 { 1727 struct nvme_qpair *nvme_qpair; 1728 1729 TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) { 1730 if (nvme_qpair->qpair == qpair) { 1731 break; 1732 } 1733 } 1734 1735 return nvme_qpair; 1736 } 1737 1738 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair); 1739 1740 static void 1741 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx) 1742 { 1743 struct nvme_poll_group *group = poll_group_ctx; 1744 struct nvme_qpair *nvme_qpair; 1745 struct nvme_ctrlr *nvme_ctrlr; 1746 struct nvme_ctrlr_channel *ctrlr_ch; 1747 int status; 1748 1749 nvme_qpair = nvme_poll_group_get_qpair(group, qpair); 1750 if (nvme_qpair == NULL) { 1751 return; 1752 } 1753 1754 if (nvme_qpair->qpair != NULL) { 1755 spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair); 1756 nvme_qpair->qpair = NULL; 1757 } 1758 1759 _bdev_nvme_clear_io_path_cache(nvme_qpair); 1760 1761 nvme_ctrlr = nvme_qpair->ctrlr; 1762 ctrlr_ch = nvme_qpair->ctrlr_ch; 1763 1764 if (ctrlr_ch != NULL) { 1765 if (ctrlr_ch->reset_iter != NULL) { 1766 /* We are in a full reset sequence. */ 1767 if (ctrlr_ch->connect_poller != NULL) { 1768 /* qpair was failed to connect. Abort the reset sequence. */ 1769 NVME_CTRLR_INFOLOG(nvme_ctrlr, 1770 "qpair %p was failed to connect. abort the reset ctrlr sequence.\n", 1771 qpair); 1772 spdk_poller_unregister(&ctrlr_ch->connect_poller); 1773 status = -1; 1774 } else { 1775 /* qpair was completed to disconnect. Just move to the next ctrlr_channel. */ 1776 NVME_CTRLR_INFOLOG(nvme_ctrlr, 1777 "qpair %p was disconnected and freed in a reset ctrlr sequence.\n", 1778 qpair); 1779 status = 0; 1780 } 1781 nvme_ctrlr_for_each_channel_continue(ctrlr_ch->reset_iter, status); 1782 ctrlr_ch->reset_iter = NULL; 1783 } else { 1784 /* qpair was disconnected unexpectedly. Reset controller for recovery. */ 1785 NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpair %p was disconnected and freed. reset controller.\n", 1786 qpair); 1787 bdev_nvme_failover_ctrlr(nvme_ctrlr); 1788 } 1789 } else { 1790 /* In this case, ctrlr_channel is already deleted. */ 1791 NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpair %p was disconnected and freed. delete nvme_qpair.\n", 1792 qpair); 1793 nvme_qpair_delete(nvme_qpair); 1794 } 1795 } 1796 1797 static void 1798 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group) 1799 { 1800 struct nvme_qpair *nvme_qpair; 1801 1802 TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) { 1803 if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) { 1804 continue; 1805 } 1806 1807 if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) != 1808 SPDK_NVME_QPAIR_FAILURE_NONE) { 1809 _bdev_nvme_clear_io_path_cache(nvme_qpair); 1810 } 1811 } 1812 } 1813 1814 static int 1815 bdev_nvme_poll(void *arg) 1816 { 1817 struct nvme_poll_group *group = arg; 1818 int64_t num_completions; 1819 1820 if (group->collect_spin_stat && group->start_ticks == 0) { 1821 group->start_ticks = spdk_get_ticks(); 1822 } 1823 1824 num_completions = spdk_nvme_poll_group_process_completions(group->group, 0, 1825 bdev_nvme_disconnected_qpair_cb); 1826 if (group->collect_spin_stat) { 1827 if (num_completions > 0) { 1828 if (group->end_ticks != 0) { 1829 group->spin_ticks += (group->end_ticks - group->start_ticks); 1830 group->end_ticks = 0; 1831 } 1832 group->start_ticks = 0; 1833 } else { 1834 group->end_ticks = spdk_get_ticks(); 1835 } 1836 } 1837 1838 if (spdk_unlikely(num_completions < 0)) { 1839 bdev_nvme_check_io_qpairs(group); 1840 } 1841 1842 return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE; 1843 } 1844 1845 static int bdev_nvme_poll_adminq(void *arg); 1846 1847 static void 1848 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us) 1849 { 1850 if (spdk_interrupt_mode_is_enabled()) { 1851 return; 1852 } 1853 1854 spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller); 1855 1856 nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, 1857 nvme_ctrlr, new_period_us); 1858 } 1859 1860 static int 1861 bdev_nvme_poll_adminq(void *arg) 1862 { 1863 int32_t rc; 1864 struct nvme_ctrlr *nvme_ctrlr = arg; 1865 nvme_ctrlr_disconnected_cb disconnected_cb; 1866 1867 assert(nvme_ctrlr != NULL); 1868 1869 rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr); 1870 if (rc < 0) { 1871 disconnected_cb = nvme_ctrlr->disconnected_cb; 1872 nvme_ctrlr->disconnected_cb = NULL; 1873 1874 if (disconnected_cb != NULL) { 1875 bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 1876 g_opts.nvme_adminq_poll_period_us); 1877 disconnected_cb(nvme_ctrlr); 1878 } else { 1879 bdev_nvme_failover_ctrlr(nvme_ctrlr); 1880 } 1881 } else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) != 1882 SPDK_NVME_QPAIR_FAILURE_NONE) { 1883 bdev_nvme_clear_io_path_caches(nvme_ctrlr); 1884 } 1885 1886 return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY; 1887 } 1888 1889 static void 1890 nvme_bdev_free(void *io_device) 1891 { 1892 struct nvme_bdev *nbdev = io_device; 1893 1894 pthread_mutex_destroy(&nbdev->mutex); 1895 free(nbdev->disk.name); 1896 free(nbdev->err_stat); 1897 free(nbdev); 1898 } 1899 1900 static int 1901 bdev_nvme_destruct(void *ctx) 1902 { 1903 struct nvme_bdev *nbdev = ctx; 1904 struct nvme_ns *nvme_ns, *tmp_nvme_ns; 1905 1906 SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nbdev->nbdev_ctrlr->name, nbdev->nsid); 1907 1908 pthread_mutex_lock(&nbdev->mutex); 1909 1910 TAILQ_FOREACH_SAFE(nvme_ns, &nbdev->nvme_ns_list, tailq, tmp_nvme_ns) { 1911 pthread_mutex_lock(&nvme_ns->ctrlr->mutex); 1912 1913 nvme_ns->bdev = NULL; 1914 1915 assert(nvme_ns->id > 0); 1916 1917 if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) { 1918 pthread_mutex_unlock(&nvme_ns->ctrlr->mutex); 1919 1920 nvme_ctrlr_put_ref(nvme_ns->ctrlr); 1921 nvme_ns_free(nvme_ns); 1922 } else { 1923 pthread_mutex_unlock(&nvme_ns->ctrlr->mutex); 1924 } 1925 } 1926 1927 pthread_mutex_unlock(&nbdev->mutex); 1928 1929 pthread_mutex_lock(&g_bdev_nvme_mutex); 1930 TAILQ_REMOVE(&nbdev->nbdev_ctrlr->bdevs, nbdev, tailq); 1931 pthread_mutex_unlock(&g_bdev_nvme_mutex); 1932 1933 spdk_io_device_unregister(nbdev, nvme_bdev_free); 1934 1935 return 0; 1936 } 1937 1938 static int 1939 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair) 1940 { 1941 struct nvme_ctrlr *nvme_ctrlr; 1942 struct spdk_nvme_io_qpair_opts opts; 1943 struct spdk_nvme_qpair *qpair; 1944 int rc; 1945 1946 nvme_ctrlr = nvme_qpair->ctrlr; 1947 1948 spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts)); 1949 opts.create_only = true; 1950 /* In interrupt mode qpairs must be created in sync mode, else it will never be connected. 1951 * delay_cmd_submit must be false as in interrupt mode requests cannot be submitted in 1952 * completion context. 1953 */ 1954 if (!spdk_interrupt_mode_is_enabled()) { 1955 opts.async_mode = true; 1956 opts.delay_cmd_submit = g_opts.delay_cmd_submit; 1957 } 1958 opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests); 1959 g_opts.io_queue_requests = opts.io_queue_requests; 1960 1961 qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts)); 1962 if (qpair == NULL) { 1963 return -1; 1964 } 1965 1966 SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name, 1967 spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread)); 1968 1969 assert(nvme_qpair->group != NULL); 1970 1971 rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair); 1972 if (rc != 0) { 1973 NVME_CTRLR_ERRLOG(nvme_ctrlr, "Unable to begin polling on NVMe Channel.\n"); 1974 goto err; 1975 } 1976 1977 rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair); 1978 if (rc != 0) { 1979 NVME_CTRLR_ERRLOG(nvme_ctrlr, "Unable to connect I/O qpair.\n"); 1980 goto err; 1981 } 1982 1983 nvme_qpair->qpair = qpair; 1984 1985 if (!g_opts.disable_auto_failback) { 1986 _bdev_nvme_clear_io_path_cache(nvme_qpair); 1987 } 1988 1989 NVME_CTRLR_INFOLOG(nvme_ctrlr, "Connecting qpair %p:%u started.\n", 1990 qpair, spdk_nvme_qpair_get_id(qpair)); 1991 1992 return 0; 1993 1994 err: 1995 spdk_nvme_ctrlr_free_io_qpair(qpair); 1996 1997 return rc; 1998 } 1999 2000 static void bdev_nvme_reset_io_continue(void *cb_arg, int rc); 2001 2002 static void 2003 bdev_nvme_complete_pending_resets(struct nvme_ctrlr *nvme_ctrlr, bool success) 2004 { 2005 int rc = 0; 2006 struct nvme_bdev_io *bio; 2007 2008 if (!success) { 2009 rc = -1; 2010 } 2011 2012 while (!TAILQ_EMPTY(&nvme_ctrlr->pending_resets)) { 2013 bio = TAILQ_FIRST(&nvme_ctrlr->pending_resets); 2014 TAILQ_REMOVE(&nvme_ctrlr->pending_resets, bio, retry_link); 2015 2016 bdev_nvme_reset_io_continue(bio, rc); 2017 } 2018 } 2019 2020 /* This function marks the current trid as failed by storing the current ticks 2021 * and then sets the next trid to the active trid within a controller if exists. 2022 * 2023 * The purpose of the boolean return value is to request the caller to disconnect 2024 * the current trid now to try connecting the next trid. 2025 */ 2026 static bool 2027 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove, bool start) 2028 { 2029 struct nvme_path_id *path_id, *next_path; 2030 int rc __attribute__((unused)); 2031 2032 path_id = TAILQ_FIRST(&nvme_ctrlr->trids); 2033 assert(path_id); 2034 assert(path_id == nvme_ctrlr->active_path_id); 2035 next_path = TAILQ_NEXT(path_id, link); 2036 2037 /* Update the last failed time. It means the trid is failed if its last 2038 * failed time is non-zero. 2039 */ 2040 path_id->last_failed_tsc = spdk_get_ticks(); 2041 2042 if (next_path == NULL) { 2043 /* There is no alternate trid within a controller. */ 2044 return false; 2045 } 2046 2047 if (!start && nvme_ctrlr->opts.reconnect_delay_sec == 0) { 2048 /* Connect is not retried in a controller reset sequence. Connecting 2049 * the next trid will be done by the next bdev_nvme_failover_ctrlr() call. 2050 */ 2051 return false; 2052 } 2053 2054 assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE); 2055 2056 NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Start failover from %s:%s to %s:%s\n", 2057 path_id->trid.traddr, path_id->trid.trsvcid, 2058 next_path->trid.traddr, next_path->trid.trsvcid); 2059 2060 spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr); 2061 nvme_ctrlr->active_path_id = next_path; 2062 rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid); 2063 assert(rc == 0); 2064 TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link); 2065 if (!remove) { 2066 /** Shuffle the old trid to the end of the list and use the new one. 2067 * Allows for round robin through multiple connections. 2068 */ 2069 TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link); 2070 } else { 2071 free(path_id); 2072 } 2073 2074 if (start || next_path->last_failed_tsc == 0) { 2075 /* bdev_nvme_failover_ctrlr() is just called or the next trid is not failed 2076 * or used yet. Try the next trid now. 2077 */ 2078 return true; 2079 } 2080 2081 if (spdk_get_ticks() > next_path->last_failed_tsc + spdk_get_ticks_hz() * 2082 nvme_ctrlr->opts.reconnect_delay_sec) { 2083 /* Enough backoff passed since the next trid failed. Try the next trid now. */ 2084 return true; 2085 } 2086 2087 /* The next trid will be tried after reconnect_delay_sec seconds. */ 2088 return false; 2089 } 2090 2091 static bool 2092 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr) 2093 { 2094 int32_t elapsed; 2095 2096 if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 || 2097 nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) { 2098 return false; 2099 } 2100 2101 elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz(); 2102 if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) { 2103 return true; 2104 } else { 2105 return false; 2106 } 2107 } 2108 2109 static bool 2110 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr) 2111 { 2112 uint32_t elapsed; 2113 2114 if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) { 2115 return false; 2116 } 2117 2118 elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz(); 2119 if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) { 2120 return true; 2121 } else { 2122 return false; 2123 } 2124 } 2125 2126 static void bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success); 2127 2128 static void 2129 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn) 2130 { 2131 int rc; 2132 2133 NVME_CTRLR_INFOLOG(nvme_ctrlr, "Start disconnecting ctrlr.\n"); 2134 2135 rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr); 2136 if (rc != 0) { 2137 NVME_CTRLR_WARNLOG(nvme_ctrlr, "disconnecting ctrlr failed.\n"); 2138 2139 /* Disconnect fails if ctrlr is already resetting or removed. In this case, 2140 * fail the reset sequence immediately. 2141 */ 2142 bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false); 2143 return; 2144 } 2145 2146 /* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq. 2147 * Set callback here to execute the specified operation after ctrlr is really disconnected. 2148 */ 2149 assert(nvme_ctrlr->disconnected_cb == NULL); 2150 nvme_ctrlr->disconnected_cb = cb_fn; 2151 2152 /* During disconnection, reduce the period to poll adminq more often. */ 2153 bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0); 2154 } 2155 2156 enum bdev_nvme_op_after_reset { 2157 OP_NONE, 2158 OP_COMPLETE_PENDING_DESTRUCT, 2159 OP_DESTRUCT, 2160 OP_DELAYED_RECONNECT, 2161 OP_FAILOVER, 2162 }; 2163 2164 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset; 2165 2166 static _bdev_nvme_op_after_reset 2167 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success) 2168 { 2169 if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) { 2170 /* Complete pending destruct after reset completes. */ 2171 return OP_COMPLETE_PENDING_DESTRUCT; 2172 } else if (nvme_ctrlr->pending_failover) { 2173 nvme_ctrlr->pending_failover = false; 2174 nvme_ctrlr->reset_start_tsc = 0; 2175 return OP_FAILOVER; 2176 } else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) { 2177 nvme_ctrlr->reset_start_tsc = 0; 2178 return OP_NONE; 2179 } else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) { 2180 return OP_DESTRUCT; 2181 } else { 2182 if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) { 2183 nvme_ctrlr->fast_io_fail_timedout = true; 2184 } 2185 return OP_DELAYED_RECONNECT; 2186 } 2187 } 2188 2189 static int bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug); 2190 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr); 2191 2192 static int 2193 bdev_nvme_reconnect_delay_timer_expired(void *ctx) 2194 { 2195 struct nvme_ctrlr *nvme_ctrlr = ctx; 2196 2197 SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name); 2198 pthread_mutex_lock(&nvme_ctrlr->mutex); 2199 2200 spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer); 2201 2202 if (!nvme_ctrlr->reconnect_is_delayed) { 2203 pthread_mutex_unlock(&nvme_ctrlr->mutex); 2204 return SPDK_POLLER_BUSY; 2205 } 2206 2207 nvme_ctrlr->reconnect_is_delayed = false; 2208 2209 if (nvme_ctrlr->destruct) { 2210 pthread_mutex_unlock(&nvme_ctrlr->mutex); 2211 return SPDK_POLLER_BUSY; 2212 } 2213 2214 assert(nvme_ctrlr->resetting == false); 2215 nvme_ctrlr->resetting = true; 2216 2217 pthread_mutex_unlock(&nvme_ctrlr->mutex); 2218 2219 spdk_poller_resume(nvme_ctrlr->adminq_timer_poller); 2220 2221 bdev_nvme_reconnect_ctrlr(nvme_ctrlr); 2222 return SPDK_POLLER_BUSY; 2223 } 2224 2225 static void 2226 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr) 2227 { 2228 spdk_poller_pause(nvme_ctrlr->adminq_timer_poller); 2229 2230 assert(nvme_ctrlr->reconnect_is_delayed == false); 2231 nvme_ctrlr->reconnect_is_delayed = true; 2232 2233 assert(nvme_ctrlr->reconnect_delay_timer == NULL); 2234 nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired, 2235 nvme_ctrlr, 2236 nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC); 2237 } 2238 2239 static void remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr); 2240 2241 static void 2242 bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success) 2243 { 2244 bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn; 2245 void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg; 2246 enum bdev_nvme_op_after_reset op_after_reset; 2247 2248 assert(nvme_ctrlr->thread == spdk_get_thread()); 2249 2250 pthread_mutex_lock(&nvme_ctrlr->mutex); 2251 if (!success) { 2252 /* Connecting the active trid failed. Set the next alternate trid to the 2253 * active trid if it exists. 2254 */ 2255 if (bdev_nvme_failover_trid(nvme_ctrlr, false, false)) { 2256 /* The next alternate trid exists and is ready to try. Try it now. */ 2257 pthread_mutex_unlock(&nvme_ctrlr->mutex); 2258 2259 NVME_CTRLR_INFOLOG(nvme_ctrlr, "Try the next alternate trid %s:%s now.\n", 2260 nvme_ctrlr->active_path_id->trid.traddr, 2261 nvme_ctrlr->active_path_id->trid.trsvcid); 2262 2263 nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr); 2264 return; 2265 } 2266 2267 /* We came here if there is no alternate trid or if the next trid exists but 2268 * is not ready to try. We will try the active trid after reconnect_delay_sec 2269 * seconds if it is non-zero or at the next reset call otherwise. 2270 */ 2271 } else { 2272 /* Connecting the active trid succeeded. Clear the last failed time because it 2273 * means the trid is failed if its last failed time is non-zero. 2274 */ 2275 nvme_ctrlr->active_path_id->last_failed_tsc = 0; 2276 } 2277 2278 NVME_CTRLR_INFOLOG(nvme_ctrlr, "Clear pending resets.\n"); 2279 2280 /* Make sure we clear any pending resets before returning. */ 2281 bdev_nvme_complete_pending_resets(nvme_ctrlr, success); 2282 2283 if (!success) { 2284 NVME_CTRLR_ERRLOG(nvme_ctrlr, "Resetting controller failed.\n"); 2285 } else { 2286 NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Resetting controller successful.\n"); 2287 } 2288 2289 nvme_ctrlr->resetting = false; 2290 nvme_ctrlr->dont_retry = false; 2291 nvme_ctrlr->in_failover = false; 2292 2293 nvme_ctrlr->ctrlr_op_cb_fn = NULL; 2294 nvme_ctrlr->ctrlr_op_cb_arg = NULL; 2295 2296 op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success); 2297 pthread_mutex_unlock(&nvme_ctrlr->mutex); 2298 2299 /* Delay callbacks when the next operation is a failover. */ 2300 if (ctrlr_op_cb_fn && op_after_reset != OP_FAILOVER) { 2301 ctrlr_op_cb_fn(ctrlr_op_cb_arg, success ? 0 : -1); 2302 } 2303 2304 switch (op_after_reset) { 2305 case OP_COMPLETE_PENDING_DESTRUCT: 2306 nvme_ctrlr_unregister(nvme_ctrlr); 2307 break; 2308 case OP_DESTRUCT: 2309 bdev_nvme_delete_ctrlr(nvme_ctrlr, false); 2310 remove_discovery_entry(nvme_ctrlr); 2311 break; 2312 case OP_DELAYED_RECONNECT: 2313 nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer); 2314 break; 2315 case OP_FAILOVER: 2316 nvme_ctrlr->ctrlr_op_cb_fn = ctrlr_op_cb_fn; 2317 nvme_ctrlr->ctrlr_op_cb_arg = ctrlr_op_cb_arg; 2318 bdev_nvme_failover_ctrlr(nvme_ctrlr); 2319 break; 2320 default: 2321 break; 2322 } 2323 } 2324 2325 static void 2326 bdev_nvme_reset_create_qpairs_failed(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status) 2327 { 2328 bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false); 2329 } 2330 2331 static void 2332 bdev_nvme_reset_destroy_qpair(struct nvme_ctrlr_channel_iter *i, 2333 struct nvme_ctrlr *nvme_ctrlr, 2334 struct nvme_ctrlr_channel *ctrlr_ch, void *ctx) 2335 { 2336 struct nvme_qpair *nvme_qpair; 2337 struct spdk_nvme_qpair *qpair; 2338 2339 nvme_qpair = ctrlr_ch->qpair; 2340 assert(nvme_qpair != NULL); 2341 2342 _bdev_nvme_clear_io_path_cache(nvme_qpair); 2343 2344 qpair = nvme_qpair->qpair; 2345 if (qpair != NULL) { 2346 NVME_CTRLR_INFOLOG(nvme_ctrlr, "Start disconnecting qpair %p:%u.\n", 2347 qpair, spdk_nvme_qpair_get_id(qpair)); 2348 2349 if (nvme_qpair->ctrlr->dont_retry) { 2350 spdk_nvme_qpair_set_abort_dnr(qpair, true); 2351 } 2352 spdk_nvme_ctrlr_disconnect_io_qpair(qpair); 2353 2354 /* The current full reset sequence will move to the next 2355 * ctrlr_channel after the qpair is actually disconnected. 2356 */ 2357 assert(ctrlr_ch->reset_iter == NULL); 2358 ctrlr_ch->reset_iter = i; 2359 } else { 2360 nvme_ctrlr_for_each_channel_continue(i, 0); 2361 } 2362 } 2363 2364 static void 2365 bdev_nvme_reset_create_qpairs_done(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status) 2366 { 2367 if (status == 0) { 2368 NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpairs were created after ctrlr reset.\n"); 2369 2370 bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, true); 2371 } else { 2372 NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpairs were failed to create after ctrlr reset.\n"); 2373 2374 /* Delete the added qpairs and quiesce ctrlr to make the states clean. */ 2375 nvme_ctrlr_for_each_channel(nvme_ctrlr, 2376 bdev_nvme_reset_destroy_qpair, 2377 NULL, 2378 bdev_nvme_reset_create_qpairs_failed); 2379 } 2380 } 2381 2382 static int 2383 bdev_nvme_reset_check_qpair_connected(void *ctx) 2384 { 2385 struct nvme_ctrlr_channel *ctrlr_ch = ctx; 2386 struct nvme_qpair *nvme_qpair = ctrlr_ch->qpair; 2387 struct spdk_nvme_qpair *qpair; 2388 2389 if (ctrlr_ch->reset_iter == NULL) { 2390 /* qpair was already failed to connect and the reset sequence is being aborted. */ 2391 assert(ctrlr_ch->connect_poller == NULL); 2392 assert(nvme_qpair->qpair == NULL); 2393 2394 NVME_CTRLR_INFOLOG(nvme_qpair->ctrlr, 2395 "qpair was already failed to connect. reset is being aborted.\n"); 2396 return SPDK_POLLER_BUSY; 2397 } 2398 2399 qpair = nvme_qpair->qpair; 2400 assert(qpair != NULL); 2401 2402 if (!spdk_nvme_qpair_is_connected(qpair)) { 2403 return SPDK_POLLER_BUSY; 2404 } 2405 2406 NVME_CTRLR_INFOLOG(nvme_qpair->ctrlr, "qpair %p:%u was connected.\n", 2407 qpair, spdk_nvme_qpair_get_id(qpair)); 2408 2409 spdk_poller_unregister(&ctrlr_ch->connect_poller); 2410 2411 /* qpair was completed to connect. Move to the next ctrlr_channel */ 2412 nvme_ctrlr_for_each_channel_continue(ctrlr_ch->reset_iter, 0); 2413 ctrlr_ch->reset_iter = NULL; 2414 2415 if (!g_opts.disable_auto_failback) { 2416 _bdev_nvme_clear_io_path_cache(nvme_qpair); 2417 } 2418 2419 return SPDK_POLLER_BUSY; 2420 } 2421 2422 static void 2423 bdev_nvme_reset_create_qpair(struct nvme_ctrlr_channel_iter *i, 2424 struct nvme_ctrlr *nvme_ctrlr, 2425 struct nvme_ctrlr_channel *ctrlr_ch, 2426 void *ctx) 2427 { 2428 struct nvme_qpair *nvme_qpair = ctrlr_ch->qpair; 2429 struct spdk_nvme_qpair *qpair; 2430 int rc = 0; 2431 2432 if (nvme_qpair->qpair == NULL) { 2433 rc = bdev_nvme_create_qpair(nvme_qpair); 2434 } 2435 if (rc == 0) { 2436 ctrlr_ch->connect_poller = SPDK_POLLER_REGISTER(bdev_nvme_reset_check_qpair_connected, 2437 ctrlr_ch, 0); 2438 2439 qpair = nvme_qpair->qpair; 2440 2441 NVME_CTRLR_INFOLOG(nvme_ctrlr, "Start checking qpair %p:%u to be connected.\n", 2442 qpair, spdk_nvme_qpair_get_id(qpair)); 2443 2444 /* The current full reset sequence will move to the next 2445 * ctrlr_channel after the qpair is actually connected. 2446 */ 2447 assert(ctrlr_ch->reset_iter == NULL); 2448 ctrlr_ch->reset_iter = i; 2449 } else { 2450 nvme_ctrlr_for_each_channel_continue(i, rc); 2451 } 2452 } 2453 2454 static void 2455 nvme_ctrlr_check_namespaces(struct nvme_ctrlr *nvme_ctrlr) 2456 { 2457 struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr; 2458 struct nvme_ns *nvme_ns; 2459 2460 for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr); 2461 nvme_ns != NULL; 2462 nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) { 2463 if (!spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) { 2464 SPDK_DEBUGLOG(bdev_nvme, "NSID %u was removed during reset.\n", nvme_ns->id); 2465 /* NS can be added again. Just nullify nvme_ns->ns. */ 2466 nvme_ns->ns = NULL; 2467 } 2468 } 2469 } 2470 2471 2472 static int 2473 bdev_nvme_reconnect_ctrlr_poll(void *arg) 2474 { 2475 struct nvme_ctrlr *nvme_ctrlr = arg; 2476 struct spdk_nvme_transport_id *trid; 2477 int rc = -ETIMEDOUT; 2478 2479 if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) { 2480 /* Mark the ctrlr as failed. The next call to 2481 * spdk_nvme_ctrlr_reconnect_poll_async() will then 2482 * do the necessary cleanup and return failure. 2483 */ 2484 spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr); 2485 } 2486 2487 rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr); 2488 if (rc == -EAGAIN) { 2489 return SPDK_POLLER_BUSY; 2490 } 2491 2492 spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller); 2493 if (rc == 0) { 2494 trid = &nvme_ctrlr->active_path_id->trid; 2495 2496 if (spdk_nvme_trtype_is_fabrics(trid->trtype)) { 2497 NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr was connected to %s:%s. Create qpairs.\n", 2498 trid->traddr, trid->trsvcid); 2499 } else { 2500 NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr was connected. Create qpairs.\n"); 2501 } 2502 2503 nvme_ctrlr_check_namespaces(nvme_ctrlr); 2504 2505 /* Recreate all of the I/O queue pairs */ 2506 nvme_ctrlr_for_each_channel(nvme_ctrlr, 2507 bdev_nvme_reset_create_qpair, 2508 NULL, 2509 bdev_nvme_reset_create_qpairs_done); 2510 } else { 2511 NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr could not be connected.\n"); 2512 2513 bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false); 2514 } 2515 return SPDK_POLLER_BUSY; 2516 } 2517 2518 static void 2519 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr) 2520 { 2521 NVME_CTRLR_INFOLOG(nvme_ctrlr, "Start reconnecting ctrlr.\n"); 2522 2523 spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr); 2524 2525 SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name); 2526 assert(nvme_ctrlr->reset_detach_poller == NULL); 2527 nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll, 2528 nvme_ctrlr, 0); 2529 } 2530 2531 static void 2532 bdev_nvme_reset_destroy_qpair_done(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status) 2533 { 2534 SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name); 2535 assert(status == 0); 2536 2537 NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpairs were deleted.\n"); 2538 2539 if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) { 2540 bdev_nvme_reconnect_ctrlr(nvme_ctrlr); 2541 } else { 2542 nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr); 2543 } 2544 } 2545 2546 static void 2547 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr) 2548 { 2549 NVME_CTRLR_INFOLOG(nvme_ctrlr, "Delete qpairs for reset.\n"); 2550 2551 nvme_ctrlr_for_each_channel(nvme_ctrlr, 2552 bdev_nvme_reset_destroy_qpair, 2553 NULL, 2554 bdev_nvme_reset_destroy_qpair_done); 2555 } 2556 2557 static void 2558 bdev_nvme_reconnect_ctrlr_now(void *ctx) 2559 { 2560 struct nvme_ctrlr *nvme_ctrlr = ctx; 2561 2562 assert(nvme_ctrlr->resetting == true); 2563 assert(nvme_ctrlr->thread == spdk_get_thread()); 2564 2565 spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer); 2566 2567 spdk_poller_resume(nvme_ctrlr->adminq_timer_poller); 2568 2569 bdev_nvme_reconnect_ctrlr(nvme_ctrlr); 2570 } 2571 2572 static void 2573 _bdev_nvme_reset_ctrlr(void *ctx) 2574 { 2575 struct nvme_ctrlr *nvme_ctrlr = ctx; 2576 2577 assert(nvme_ctrlr->resetting == true); 2578 assert(nvme_ctrlr->thread == spdk_get_thread()); 2579 2580 if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) { 2581 nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs); 2582 } else { 2583 bdev_nvme_reset_destroy_qpairs(nvme_ctrlr); 2584 } 2585 } 2586 2587 static int 2588 bdev_nvme_reset_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, spdk_msg_fn *msg_fn) 2589 { 2590 if (nvme_ctrlr->destruct) { 2591 return -ENXIO; 2592 } 2593 2594 if (nvme_ctrlr->resetting) { 2595 NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Unable to perform reset, already in progress.\n"); 2596 return -EBUSY; 2597 } 2598 2599 if (nvme_ctrlr->disabled) { 2600 NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Unable to perform reset. Controller is disabled.\n"); 2601 return -EALREADY; 2602 } 2603 2604 nvme_ctrlr->resetting = true; 2605 nvme_ctrlr->dont_retry = true; 2606 2607 if (nvme_ctrlr->reconnect_is_delayed) { 2608 NVME_CTRLR_INFOLOG(nvme_ctrlr, "Reconnect is already scheduled.\n"); 2609 *msg_fn = bdev_nvme_reconnect_ctrlr_now; 2610 nvme_ctrlr->reconnect_is_delayed = false; 2611 } else { 2612 *msg_fn = _bdev_nvme_reset_ctrlr; 2613 assert(nvme_ctrlr->reset_start_tsc == 0); 2614 } 2615 2616 nvme_ctrlr->reset_start_tsc = spdk_get_ticks(); 2617 2618 return 0; 2619 } 2620 2621 static int 2622 bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr) 2623 { 2624 spdk_msg_fn msg_fn; 2625 int rc; 2626 2627 pthread_mutex_lock(&nvme_ctrlr->mutex); 2628 rc = bdev_nvme_reset_ctrlr_unsafe(nvme_ctrlr, &msg_fn); 2629 pthread_mutex_unlock(&nvme_ctrlr->mutex); 2630 2631 if (rc == 0) { 2632 spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr); 2633 } 2634 2635 return rc; 2636 } 2637 2638 static int 2639 bdev_nvme_enable_ctrlr(struct nvme_ctrlr *nvme_ctrlr) 2640 { 2641 pthread_mutex_lock(&nvme_ctrlr->mutex); 2642 if (nvme_ctrlr->destruct) { 2643 pthread_mutex_unlock(&nvme_ctrlr->mutex); 2644 return -ENXIO; 2645 } 2646 2647 if (nvme_ctrlr->resetting) { 2648 pthread_mutex_unlock(&nvme_ctrlr->mutex); 2649 return -EBUSY; 2650 } 2651 2652 if (!nvme_ctrlr->disabled) { 2653 pthread_mutex_unlock(&nvme_ctrlr->mutex); 2654 return -EALREADY; 2655 } 2656 2657 nvme_ctrlr->disabled = false; 2658 nvme_ctrlr->resetting = true; 2659 2660 nvme_ctrlr->reset_start_tsc = spdk_get_ticks(); 2661 2662 pthread_mutex_unlock(&nvme_ctrlr->mutex); 2663 2664 spdk_thread_send_msg(nvme_ctrlr->thread, bdev_nvme_reconnect_ctrlr_now, nvme_ctrlr); 2665 return 0; 2666 } 2667 2668 static void 2669 bdev_nvme_disable_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr) 2670 { 2671 bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn; 2672 void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg; 2673 enum bdev_nvme_op_after_reset op_after_disable; 2674 2675 assert(nvme_ctrlr->thread == spdk_get_thread()); 2676 2677 nvme_ctrlr->ctrlr_op_cb_fn = NULL; 2678 nvme_ctrlr->ctrlr_op_cb_arg = NULL; 2679 2680 pthread_mutex_lock(&nvme_ctrlr->mutex); 2681 2682 nvme_ctrlr->resetting = false; 2683 nvme_ctrlr->dont_retry = false; 2684 2685 op_after_disable = bdev_nvme_check_op_after_reset(nvme_ctrlr, true); 2686 2687 nvme_ctrlr->disabled = true; 2688 spdk_poller_pause(nvme_ctrlr->adminq_timer_poller); 2689 2690 /* Make sure we clear any pending resets before returning. */ 2691 bdev_nvme_complete_pending_resets(nvme_ctrlr, true); 2692 2693 pthread_mutex_unlock(&nvme_ctrlr->mutex); 2694 2695 if (ctrlr_op_cb_fn) { 2696 ctrlr_op_cb_fn(ctrlr_op_cb_arg, 0); 2697 } 2698 2699 switch (op_after_disable) { 2700 case OP_COMPLETE_PENDING_DESTRUCT: 2701 nvme_ctrlr_unregister(nvme_ctrlr); 2702 break; 2703 default: 2704 break; 2705 } 2706 } 2707 2708 static void 2709 bdev_nvme_disable_destroy_qpairs_done(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status) 2710 { 2711 assert(status == 0); 2712 2713 if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) { 2714 bdev_nvme_disable_ctrlr_complete(nvme_ctrlr); 2715 } else { 2716 nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_ctrlr_complete); 2717 } 2718 } 2719 2720 static void 2721 bdev_nvme_disable_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr) 2722 { 2723 nvme_ctrlr_for_each_channel(nvme_ctrlr, 2724 bdev_nvme_reset_destroy_qpair, 2725 NULL, 2726 bdev_nvme_disable_destroy_qpairs_done); 2727 } 2728 2729 static void 2730 _bdev_nvme_cancel_reconnect_and_disable_ctrlr(void *ctx) 2731 { 2732 struct nvme_ctrlr *nvme_ctrlr = ctx; 2733 2734 assert(nvme_ctrlr->resetting == true); 2735 assert(nvme_ctrlr->thread == spdk_get_thread()); 2736 2737 spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer); 2738 2739 bdev_nvme_disable_ctrlr_complete(nvme_ctrlr); 2740 } 2741 2742 static void 2743 _bdev_nvme_disconnect_and_disable_ctrlr(void *ctx) 2744 { 2745 struct nvme_ctrlr *nvme_ctrlr = ctx; 2746 2747 assert(nvme_ctrlr->resetting == true); 2748 assert(nvme_ctrlr->thread == spdk_get_thread()); 2749 2750 if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) { 2751 nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_destroy_qpairs); 2752 } else { 2753 bdev_nvme_disable_destroy_qpairs(nvme_ctrlr); 2754 } 2755 } 2756 2757 static int 2758 bdev_nvme_disable_ctrlr(struct nvme_ctrlr *nvme_ctrlr) 2759 { 2760 spdk_msg_fn msg_fn; 2761 2762 pthread_mutex_lock(&nvme_ctrlr->mutex); 2763 if (nvme_ctrlr->destruct) { 2764 pthread_mutex_unlock(&nvme_ctrlr->mutex); 2765 return -ENXIO; 2766 } 2767 2768 if (nvme_ctrlr->resetting) { 2769 pthread_mutex_unlock(&nvme_ctrlr->mutex); 2770 return -EBUSY; 2771 } 2772 2773 if (nvme_ctrlr->disabled) { 2774 pthread_mutex_unlock(&nvme_ctrlr->mutex); 2775 return -EALREADY; 2776 } 2777 2778 nvme_ctrlr->resetting = true; 2779 nvme_ctrlr->dont_retry = true; 2780 2781 if (nvme_ctrlr->reconnect_is_delayed) { 2782 msg_fn = _bdev_nvme_cancel_reconnect_and_disable_ctrlr; 2783 nvme_ctrlr->reconnect_is_delayed = false; 2784 } else { 2785 msg_fn = _bdev_nvme_disconnect_and_disable_ctrlr; 2786 } 2787 2788 nvme_ctrlr->reset_start_tsc = spdk_get_ticks(); 2789 2790 pthread_mutex_unlock(&nvme_ctrlr->mutex); 2791 2792 spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr); 2793 return 0; 2794 } 2795 2796 static int 2797 nvme_ctrlr_op(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op, 2798 bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg) 2799 { 2800 int rc; 2801 2802 switch (op) { 2803 case NVME_CTRLR_OP_RESET: 2804 rc = bdev_nvme_reset_ctrlr(nvme_ctrlr); 2805 break; 2806 case NVME_CTRLR_OP_ENABLE: 2807 rc = bdev_nvme_enable_ctrlr(nvme_ctrlr); 2808 break; 2809 case NVME_CTRLR_OP_DISABLE: 2810 rc = bdev_nvme_disable_ctrlr(nvme_ctrlr); 2811 break; 2812 default: 2813 rc = -EINVAL; 2814 break; 2815 } 2816 2817 if (rc == 0) { 2818 assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL); 2819 assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL); 2820 nvme_ctrlr->ctrlr_op_cb_fn = cb_fn; 2821 nvme_ctrlr->ctrlr_op_cb_arg = cb_arg; 2822 } 2823 return rc; 2824 } 2825 2826 struct nvme_ctrlr_op_rpc_ctx { 2827 struct nvme_ctrlr *nvme_ctrlr; 2828 struct spdk_thread *orig_thread; 2829 enum nvme_ctrlr_op op; 2830 int rc; 2831 bdev_nvme_ctrlr_op_cb cb_fn; 2832 void *cb_arg; 2833 }; 2834 2835 static void 2836 _nvme_ctrlr_op_rpc_complete(void *_ctx) 2837 { 2838 struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx; 2839 2840 assert(ctx != NULL); 2841 assert(ctx->cb_fn != NULL); 2842 2843 ctx->cb_fn(ctx->cb_arg, ctx->rc); 2844 2845 free(ctx); 2846 } 2847 2848 static void 2849 nvme_ctrlr_op_rpc_complete(void *cb_arg, int rc) 2850 { 2851 struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg; 2852 2853 ctx->rc = rc; 2854 2855 spdk_thread_send_msg(ctx->orig_thread, _nvme_ctrlr_op_rpc_complete, ctx); 2856 } 2857 2858 void 2859 nvme_ctrlr_op_rpc(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op, 2860 bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg) 2861 { 2862 struct nvme_ctrlr_op_rpc_ctx *ctx; 2863 int rc; 2864 2865 assert(cb_fn != NULL); 2866 2867 ctx = calloc(1, sizeof(*ctx)); 2868 if (ctx == NULL) { 2869 NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to allocate nvme_ctrlr_op_rpc_ctx.\n"); 2870 cb_fn(cb_arg, -ENOMEM); 2871 return; 2872 } 2873 2874 ctx->orig_thread = spdk_get_thread(); 2875 ctx->cb_fn = cb_fn; 2876 ctx->cb_arg = cb_arg; 2877 2878 rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_ctrlr_op_rpc_complete, ctx); 2879 if (rc == 0) { 2880 return; 2881 } else if (rc == -EALREADY) { 2882 rc = 0; 2883 } 2884 2885 nvme_ctrlr_op_rpc_complete(ctx, rc); 2886 } 2887 2888 static void nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc); 2889 2890 static void 2891 _nvme_bdev_ctrlr_op_rpc_continue(void *_ctx) 2892 { 2893 struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx; 2894 struct nvme_ctrlr *prev_nvme_ctrlr, *next_nvme_ctrlr; 2895 int rc; 2896 2897 prev_nvme_ctrlr = ctx->nvme_ctrlr; 2898 ctx->nvme_ctrlr = NULL; 2899 2900 if (ctx->rc != 0) { 2901 goto complete; 2902 } 2903 2904 next_nvme_ctrlr = TAILQ_NEXT(prev_nvme_ctrlr, tailq); 2905 if (next_nvme_ctrlr == NULL) { 2906 goto complete; 2907 } 2908 2909 rc = nvme_ctrlr_op(next_nvme_ctrlr, ctx->op, nvme_bdev_ctrlr_op_rpc_continue, ctx); 2910 if (rc == 0) { 2911 ctx->nvme_ctrlr = next_nvme_ctrlr; 2912 return; 2913 } else if (rc == -EALREADY) { 2914 ctx->nvme_ctrlr = next_nvme_ctrlr; 2915 rc = 0; 2916 } 2917 2918 ctx->rc = rc; 2919 2920 complete: 2921 ctx->cb_fn(ctx->cb_arg, ctx->rc); 2922 free(ctx); 2923 } 2924 2925 static void 2926 nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc) 2927 { 2928 struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg; 2929 2930 ctx->rc = rc; 2931 2932 spdk_thread_send_msg(ctx->orig_thread, _nvme_bdev_ctrlr_op_rpc_continue, ctx); 2933 } 2934 2935 void 2936 nvme_bdev_ctrlr_op_rpc(struct nvme_bdev_ctrlr *nbdev_ctrlr, enum nvme_ctrlr_op op, 2937 bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg) 2938 { 2939 struct nvme_ctrlr_op_rpc_ctx *ctx; 2940 struct nvme_ctrlr *nvme_ctrlr; 2941 int rc; 2942 2943 assert(cb_fn != NULL); 2944 2945 ctx = calloc(1, sizeof(*ctx)); 2946 if (ctx == NULL) { 2947 SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n"); 2948 cb_fn(cb_arg, -ENOMEM); 2949 return; 2950 } 2951 2952 ctx->orig_thread = spdk_get_thread(); 2953 ctx->op = op; 2954 ctx->cb_fn = cb_fn; 2955 ctx->cb_arg = cb_arg; 2956 2957 nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs); 2958 assert(nvme_ctrlr != NULL); 2959 2960 rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_bdev_ctrlr_op_rpc_continue, ctx); 2961 if (rc == 0) { 2962 ctx->nvme_ctrlr = nvme_ctrlr; 2963 return; 2964 } else if (rc == -EALREADY) { 2965 ctx->nvme_ctrlr = nvme_ctrlr; 2966 rc = 0; 2967 } 2968 2969 nvme_bdev_ctrlr_op_rpc_continue(ctx, rc); 2970 } 2971 2972 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio); 2973 2974 static void 2975 bdev_nvme_unfreeze_bdev_channel_done(struct nvme_bdev *nbdev, void *ctx, int status) 2976 { 2977 struct nvme_bdev_io *bio = ctx; 2978 enum spdk_bdev_io_status io_status; 2979 2980 if (bio->cpl.cdw0 == 0) { 2981 io_status = SPDK_BDEV_IO_STATUS_SUCCESS; 2982 } else { 2983 io_status = SPDK_BDEV_IO_STATUS_FAILED; 2984 } 2985 2986 NVME_BDEV_INFOLOG(nbdev, "reset_io %p completed, status:%d\n", bio, io_status); 2987 2988 __bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL); 2989 } 2990 2991 static void 2992 bdev_nvme_unfreeze_bdev_channel(struct nvme_bdev_channel_iter *i, 2993 struct nvme_bdev *nbdev, 2994 struct nvme_bdev_channel *nbdev_ch, void *ctx) 2995 { 2996 bdev_nvme_abort_retry_ios(nbdev_ch); 2997 nbdev_ch->resetting = false; 2998 2999 nvme_bdev_for_each_channel_continue(i, 0); 3000 } 3001 3002 static void 3003 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio) 3004 { 3005 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 3006 struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt; 3007 3008 /* Abort all queued I/Os for retry. */ 3009 nvme_bdev_for_each_channel(nbdev, 3010 bdev_nvme_unfreeze_bdev_channel, 3011 bio, 3012 bdev_nvme_unfreeze_bdev_channel_done); 3013 } 3014 3015 static void 3016 _bdev_nvme_reset_io_continue(void *ctx) 3017 { 3018 struct nvme_bdev_io *bio = ctx; 3019 struct nvme_io_path *prev_io_path, *next_io_path; 3020 int rc; 3021 3022 prev_io_path = bio->io_path; 3023 bio->io_path = NULL; 3024 3025 next_io_path = STAILQ_NEXT(prev_io_path, stailq); 3026 if (next_io_path == NULL) { 3027 goto complete; 3028 } 3029 3030 rc = _bdev_nvme_reset_io(next_io_path, bio); 3031 if (rc == 0) { 3032 return; 3033 } 3034 3035 complete: 3036 bdev_nvme_reset_io_complete(bio); 3037 } 3038 3039 static void 3040 bdev_nvme_reset_io_continue(void *cb_arg, int rc) 3041 { 3042 struct nvme_bdev_io *bio = cb_arg; 3043 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 3044 struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt; 3045 3046 NVME_BDEV_INFOLOG(nbdev, "continue reset_io %p, rc:%d\n", bio, rc); 3047 3048 /* Reset status is initialized as "failed". Set to "success" once we have at least one 3049 * successfully reset nvme_ctrlr. 3050 */ 3051 if (rc == 0) { 3052 bio->cpl.cdw0 = 0; 3053 } 3054 3055 spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), _bdev_nvme_reset_io_continue, bio); 3056 } 3057 3058 static int 3059 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio) 3060 { 3061 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 3062 struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt; 3063 struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr; 3064 spdk_msg_fn msg_fn; 3065 int rc; 3066 3067 assert(bio->io_path == NULL); 3068 bio->io_path = io_path; 3069 3070 pthread_mutex_lock(&nvme_ctrlr->mutex); 3071 rc = bdev_nvme_reset_ctrlr_unsafe(nvme_ctrlr, &msg_fn); 3072 if (rc == -EBUSY) { 3073 /* 3074 * Reset call is queued only if it is from the app framework. This is on purpose so that 3075 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the 3076 * upper level. If they are in the middle of a reset, we won't try to schedule another one. 3077 */ 3078 TAILQ_INSERT_TAIL(&nvme_ctrlr->pending_resets, bio, retry_link); 3079 } 3080 pthread_mutex_unlock(&nvme_ctrlr->mutex); 3081 3082 if (rc == 0) { 3083 assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL); 3084 assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL); 3085 nvme_ctrlr->ctrlr_op_cb_fn = bdev_nvme_reset_io_continue; 3086 nvme_ctrlr->ctrlr_op_cb_arg = bio; 3087 3088 spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr); 3089 3090 NVME_BDEV_INFOLOG(nbdev, "reset_io %p started resetting ctrlr [%s, %u].\n", 3091 bio, CTRLR_STRING(nvme_ctrlr), CTRLR_ID(nvme_ctrlr)); 3092 } else if (rc == -EBUSY) { 3093 rc = 0; 3094 3095 NVME_BDEV_INFOLOG(nbdev, "reset_io %p was queued to ctrlr [%s, %u].\n", 3096 bio, CTRLR_STRING(nvme_ctrlr), CTRLR_ID(nvme_ctrlr)); 3097 } else { 3098 NVME_BDEV_INFOLOG(nbdev, "reset_io %p could not reset ctrlr [%s, %u], rc:%d\n", 3099 bio, CTRLR_STRING(nvme_ctrlr), CTRLR_ID(nvme_ctrlr), rc); 3100 } 3101 3102 return rc; 3103 } 3104 3105 static void 3106 bdev_nvme_freeze_bdev_channel_done(struct nvme_bdev *nbdev, void *ctx, int status) 3107 { 3108 struct nvme_bdev_io *bio = ctx; 3109 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 3110 struct nvme_bdev_channel *nbdev_ch; 3111 struct nvme_io_path *io_path; 3112 int rc; 3113 3114 nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io)); 3115 3116 /* Initialize with failed status. With multipath it is enough to have at least one successful 3117 * nvme_ctrlr reset. If there is none, reset status will remain failed. 3118 */ 3119 bio->cpl.cdw0 = 1; 3120 3121 /* Reset all nvme_ctrlrs of a bdev controller sequentially. */ 3122 io_path = STAILQ_FIRST(&nbdev_ch->io_path_list); 3123 assert(io_path != NULL); 3124 3125 rc = _bdev_nvme_reset_io(io_path, bio); 3126 if (rc != 0) { 3127 /* If the current nvme_ctrlr is disabled, skip it and move to the next nvme_ctrlr. */ 3128 rc = (rc == -EALREADY) ? 0 : rc; 3129 3130 bdev_nvme_reset_io_continue(bio, rc); 3131 } 3132 } 3133 3134 static void 3135 bdev_nvme_freeze_bdev_channel(struct nvme_bdev_channel_iter *i, 3136 struct nvme_bdev *nbdev, 3137 struct nvme_bdev_channel *nbdev_ch, void *ctx) 3138 { 3139 nbdev_ch->resetting = true; 3140 3141 nvme_bdev_for_each_channel_continue(i, 0); 3142 } 3143 3144 static void 3145 bdev_nvme_reset_io(struct nvme_bdev *nbdev, struct nvme_bdev_io *bio) 3146 { 3147 NVME_BDEV_INFOLOG(nbdev, "reset_io %p started.\n", bio); 3148 3149 nvme_bdev_for_each_channel(nbdev, 3150 bdev_nvme_freeze_bdev_channel, 3151 bio, 3152 bdev_nvme_freeze_bdev_channel_done); 3153 } 3154 3155 static int 3156 bdev_nvme_failover_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool remove) 3157 { 3158 if (nvme_ctrlr->destruct) { 3159 /* Don't bother resetting if the controller is in the process of being destructed. */ 3160 return -ENXIO; 3161 } 3162 3163 if (nvme_ctrlr->resetting) { 3164 if (!nvme_ctrlr->in_failover) { 3165 NVME_CTRLR_NOTICELOG(nvme_ctrlr, 3166 "Reset is already in progress. Defer failover until reset completes.\n"); 3167 3168 /* Defer failover until reset completes. */ 3169 nvme_ctrlr->pending_failover = true; 3170 return -EINPROGRESS; 3171 } else { 3172 NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Unable to perform failover, already in progress.\n"); 3173 return -EBUSY; 3174 } 3175 } 3176 3177 bdev_nvme_failover_trid(nvme_ctrlr, remove, true); 3178 3179 if (nvme_ctrlr->reconnect_is_delayed) { 3180 NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Reconnect is already scheduled.\n"); 3181 3182 /* We rely on the next reconnect for the failover. */ 3183 return -EALREADY; 3184 } 3185 3186 if (nvme_ctrlr->disabled) { 3187 NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Controller is disabled.\n"); 3188 3189 /* We rely on the enablement for the failover. */ 3190 return -EALREADY; 3191 } 3192 3193 nvme_ctrlr->resetting = true; 3194 nvme_ctrlr->in_failover = true; 3195 3196 assert(nvme_ctrlr->reset_start_tsc == 0); 3197 nvme_ctrlr->reset_start_tsc = spdk_get_ticks(); 3198 3199 return 0; 3200 } 3201 3202 static int 3203 bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr) 3204 { 3205 int rc; 3206 3207 pthread_mutex_lock(&nvme_ctrlr->mutex); 3208 rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, false); 3209 pthread_mutex_unlock(&nvme_ctrlr->mutex); 3210 3211 if (rc == 0) { 3212 spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset_ctrlr, nvme_ctrlr); 3213 } else if (rc == -EALREADY) { 3214 rc = 0; 3215 } 3216 3217 return rc; 3218 } 3219 3220 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, 3221 uint64_t num_blocks); 3222 3223 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, 3224 uint64_t num_blocks); 3225 3226 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, 3227 uint64_t src_offset_blocks, 3228 uint64_t num_blocks); 3229 3230 static void 3231 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io, 3232 bool success) 3233 { 3234 struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx; 3235 int ret; 3236 3237 if (!success) { 3238 ret = -EINVAL; 3239 goto exit; 3240 } 3241 3242 if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) { 3243 ret = -ENXIO; 3244 goto exit; 3245 } 3246 3247 ret = bdev_nvme_readv(bio, 3248 bdev_io->u.bdev.iovs, 3249 bdev_io->u.bdev.iovcnt, 3250 bdev_io->u.bdev.md_buf, 3251 bdev_io->u.bdev.num_blocks, 3252 bdev_io->u.bdev.offset_blocks, 3253 bdev_io->u.bdev.dif_check_flags, 3254 bdev_io->u.bdev.memory_domain, 3255 bdev_io->u.bdev.memory_domain_ctx, 3256 bdev_io->u.bdev.accel_sequence); 3257 3258 exit: 3259 if (spdk_unlikely(ret != 0)) { 3260 bdev_nvme_io_complete(bio, ret); 3261 } 3262 } 3263 3264 static inline void 3265 _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io) 3266 { 3267 struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx; 3268 struct spdk_bdev *bdev = bdev_io->bdev; 3269 struct nvme_bdev_io *nbdev_io_to_abort; 3270 int rc = 0; 3271 3272 switch (bdev_io->type) { 3273 case SPDK_BDEV_IO_TYPE_READ: 3274 if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) { 3275 3276 rc = bdev_nvme_readv(nbdev_io, 3277 bdev_io->u.bdev.iovs, 3278 bdev_io->u.bdev.iovcnt, 3279 bdev_io->u.bdev.md_buf, 3280 bdev_io->u.bdev.num_blocks, 3281 bdev_io->u.bdev.offset_blocks, 3282 bdev_io->u.bdev.dif_check_flags, 3283 bdev_io->u.bdev.memory_domain, 3284 bdev_io->u.bdev.memory_domain_ctx, 3285 bdev_io->u.bdev.accel_sequence); 3286 } else { 3287 spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb, 3288 bdev_io->u.bdev.num_blocks * bdev->blocklen); 3289 rc = 0; 3290 } 3291 break; 3292 case SPDK_BDEV_IO_TYPE_WRITE: 3293 rc = bdev_nvme_writev(nbdev_io, 3294 bdev_io->u.bdev.iovs, 3295 bdev_io->u.bdev.iovcnt, 3296 bdev_io->u.bdev.md_buf, 3297 bdev_io->u.bdev.num_blocks, 3298 bdev_io->u.bdev.offset_blocks, 3299 bdev_io->u.bdev.dif_check_flags, 3300 bdev_io->u.bdev.memory_domain, 3301 bdev_io->u.bdev.memory_domain_ctx, 3302 bdev_io->u.bdev.accel_sequence, 3303 bdev_io->u.bdev.nvme_cdw12, 3304 bdev_io->u.bdev.nvme_cdw13); 3305 break; 3306 case SPDK_BDEV_IO_TYPE_COMPARE: 3307 rc = bdev_nvme_comparev(nbdev_io, 3308 bdev_io->u.bdev.iovs, 3309 bdev_io->u.bdev.iovcnt, 3310 bdev_io->u.bdev.md_buf, 3311 bdev_io->u.bdev.num_blocks, 3312 bdev_io->u.bdev.offset_blocks, 3313 bdev_io->u.bdev.dif_check_flags); 3314 break; 3315 case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE: 3316 rc = bdev_nvme_comparev_and_writev(nbdev_io, 3317 bdev_io->u.bdev.iovs, 3318 bdev_io->u.bdev.iovcnt, 3319 bdev_io->u.bdev.fused_iovs, 3320 bdev_io->u.bdev.fused_iovcnt, 3321 bdev_io->u.bdev.md_buf, 3322 bdev_io->u.bdev.num_blocks, 3323 bdev_io->u.bdev.offset_blocks, 3324 bdev_io->u.bdev.dif_check_flags); 3325 break; 3326 case SPDK_BDEV_IO_TYPE_UNMAP: 3327 rc = bdev_nvme_unmap(nbdev_io, 3328 bdev_io->u.bdev.offset_blocks, 3329 bdev_io->u.bdev.num_blocks); 3330 break; 3331 case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: 3332 rc = bdev_nvme_write_zeroes(nbdev_io, 3333 bdev_io->u.bdev.offset_blocks, 3334 bdev_io->u.bdev.num_blocks); 3335 break; 3336 case SPDK_BDEV_IO_TYPE_RESET: 3337 nbdev_io->io_path = NULL; 3338 bdev_nvme_reset_io(bdev->ctxt, nbdev_io); 3339 return; 3340 3341 case SPDK_BDEV_IO_TYPE_FLUSH: 3342 bdev_nvme_io_complete(nbdev_io, 0); 3343 return; 3344 3345 case SPDK_BDEV_IO_TYPE_ZONE_APPEND: 3346 rc = bdev_nvme_zone_appendv(nbdev_io, 3347 bdev_io->u.bdev.iovs, 3348 bdev_io->u.bdev.iovcnt, 3349 bdev_io->u.bdev.md_buf, 3350 bdev_io->u.bdev.num_blocks, 3351 bdev_io->u.bdev.offset_blocks, 3352 bdev_io->u.bdev.dif_check_flags); 3353 break; 3354 case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO: 3355 rc = bdev_nvme_get_zone_info(nbdev_io, 3356 bdev_io->u.zone_mgmt.zone_id, 3357 bdev_io->u.zone_mgmt.num_zones, 3358 bdev_io->u.zone_mgmt.buf); 3359 break; 3360 case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT: 3361 rc = bdev_nvme_zone_management(nbdev_io, 3362 bdev_io->u.zone_mgmt.zone_id, 3363 bdev_io->u.zone_mgmt.zone_action); 3364 break; 3365 case SPDK_BDEV_IO_TYPE_NVME_ADMIN: 3366 nbdev_io->io_path = NULL; 3367 bdev_nvme_admin_passthru(nbdev_ch, 3368 nbdev_io, 3369 &bdev_io->u.nvme_passthru.cmd, 3370 bdev_io->u.nvme_passthru.buf, 3371 bdev_io->u.nvme_passthru.nbytes); 3372 return; 3373 3374 case SPDK_BDEV_IO_TYPE_NVME_IO: 3375 rc = bdev_nvme_io_passthru(nbdev_io, 3376 &bdev_io->u.nvme_passthru.cmd, 3377 bdev_io->u.nvme_passthru.buf, 3378 bdev_io->u.nvme_passthru.nbytes); 3379 break; 3380 case SPDK_BDEV_IO_TYPE_NVME_IO_MD: 3381 rc = bdev_nvme_io_passthru_md(nbdev_io, 3382 &bdev_io->u.nvme_passthru.cmd, 3383 bdev_io->u.nvme_passthru.buf, 3384 bdev_io->u.nvme_passthru.nbytes, 3385 bdev_io->u.nvme_passthru.md_buf, 3386 bdev_io->u.nvme_passthru.md_len); 3387 break; 3388 case SPDK_BDEV_IO_TYPE_NVME_IOV_MD: 3389 rc = bdev_nvme_iov_passthru_md(nbdev_io, 3390 &bdev_io->u.nvme_passthru.cmd, 3391 bdev_io->u.nvme_passthru.iovs, 3392 bdev_io->u.nvme_passthru.iovcnt, 3393 bdev_io->u.nvme_passthru.nbytes, 3394 bdev_io->u.nvme_passthru.md_buf, 3395 bdev_io->u.nvme_passthru.md_len); 3396 break; 3397 case SPDK_BDEV_IO_TYPE_ABORT: 3398 nbdev_io->io_path = NULL; 3399 nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx; 3400 bdev_nvme_abort(nbdev_ch, 3401 nbdev_io, 3402 nbdev_io_to_abort); 3403 return; 3404 3405 case SPDK_BDEV_IO_TYPE_COPY: 3406 rc = bdev_nvme_copy(nbdev_io, 3407 bdev_io->u.bdev.offset_blocks, 3408 bdev_io->u.bdev.copy.src_offset_blocks, 3409 bdev_io->u.bdev.num_blocks); 3410 break; 3411 default: 3412 rc = -EINVAL; 3413 break; 3414 } 3415 3416 if (spdk_unlikely(rc != 0)) { 3417 bdev_nvme_io_complete(nbdev_io, rc); 3418 } 3419 } 3420 3421 static void 3422 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io) 3423 { 3424 struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch); 3425 struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx; 3426 3427 if (spdk_likely(nbdev_io->submit_tsc == 0)) { 3428 nbdev_io->submit_tsc = spdk_bdev_io_get_submit_tsc(bdev_io); 3429 } else { 3430 /* There are cases where submit_tsc != 0, i.e. retry I/O. 3431 * We need to update submit_tsc here. 3432 */ 3433 nbdev_io->submit_tsc = spdk_get_ticks(); 3434 } 3435 3436 spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io); 3437 nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch); 3438 if (spdk_unlikely(!nbdev_io->io_path)) { 3439 if (!bdev_nvme_io_type_is_admin(bdev_io->type)) { 3440 bdev_nvme_io_complete(nbdev_io, -ENXIO); 3441 return; 3442 } 3443 3444 /* Admin commands do not use the optimal I/O path. 3445 * Simply fall through even if it is not found. 3446 */ 3447 } 3448 3449 _bdev_nvme_submit_request(nbdev_ch, bdev_io); 3450 } 3451 3452 static bool 3453 bdev_nvme_is_supported_csi(enum spdk_nvme_csi csi) 3454 { 3455 switch (csi) { 3456 case SPDK_NVME_CSI_NVM: 3457 return true; 3458 case SPDK_NVME_CSI_ZNS: 3459 return true; 3460 default: 3461 return false; 3462 } 3463 } 3464 3465 static bool 3466 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type) 3467 { 3468 struct nvme_bdev *nbdev = ctx; 3469 struct nvme_ns *nvme_ns; 3470 struct spdk_nvme_ns *ns; 3471 struct spdk_nvme_ctrlr *ctrlr; 3472 const struct spdk_nvme_ctrlr_data *cdata; 3473 3474 nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list); 3475 assert(nvme_ns != NULL); 3476 ns = nvme_ns->ns; 3477 if (ns == NULL) { 3478 return false; 3479 } 3480 3481 if (!bdev_nvme_is_supported_csi(spdk_nvme_ns_get_csi(ns))) { 3482 switch (io_type) { 3483 case SPDK_BDEV_IO_TYPE_NVME_ADMIN: 3484 case SPDK_BDEV_IO_TYPE_NVME_IO: 3485 return true; 3486 3487 case SPDK_BDEV_IO_TYPE_NVME_IO_MD: 3488 return spdk_nvme_ns_get_md_size(ns) ? true : false; 3489 3490 default: 3491 return false; 3492 } 3493 } 3494 3495 ctrlr = spdk_nvme_ns_get_ctrlr(ns); 3496 3497 switch (io_type) { 3498 case SPDK_BDEV_IO_TYPE_READ: 3499 case SPDK_BDEV_IO_TYPE_WRITE: 3500 case SPDK_BDEV_IO_TYPE_RESET: 3501 case SPDK_BDEV_IO_TYPE_FLUSH: 3502 case SPDK_BDEV_IO_TYPE_NVME_ADMIN: 3503 case SPDK_BDEV_IO_TYPE_NVME_IO: 3504 case SPDK_BDEV_IO_TYPE_ABORT: 3505 return true; 3506 3507 case SPDK_BDEV_IO_TYPE_COMPARE: 3508 return spdk_nvme_ns_supports_compare(ns); 3509 3510 case SPDK_BDEV_IO_TYPE_NVME_IO_MD: 3511 return spdk_nvme_ns_get_md_size(ns) ? true : false; 3512 3513 case SPDK_BDEV_IO_TYPE_UNMAP: 3514 cdata = spdk_nvme_ctrlr_get_data(ctrlr); 3515 return cdata->oncs.dsm; 3516 3517 case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: 3518 cdata = spdk_nvme_ctrlr_get_data(ctrlr); 3519 return cdata->oncs.write_zeroes; 3520 3521 case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE: 3522 if (spdk_nvme_ctrlr_get_flags(ctrlr) & 3523 SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) { 3524 return true; 3525 } 3526 return false; 3527 3528 case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO: 3529 case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT: 3530 return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS; 3531 3532 case SPDK_BDEV_IO_TYPE_ZONE_APPEND: 3533 return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS && 3534 spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED; 3535 3536 case SPDK_BDEV_IO_TYPE_COPY: 3537 cdata = spdk_nvme_ctrlr_get_data(ctrlr); 3538 return cdata->oncs.copy; 3539 3540 default: 3541 return false; 3542 } 3543 } 3544 3545 static int 3546 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch) 3547 { 3548 struct nvme_qpair *nvme_qpair; 3549 struct spdk_io_channel *pg_ch; 3550 int rc; 3551 3552 nvme_qpair = calloc(1, sizeof(*nvme_qpair)); 3553 if (!nvme_qpair) { 3554 NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to alloc nvme_qpair.\n"); 3555 return -1; 3556 } 3557 3558 TAILQ_INIT(&nvme_qpair->io_path_list); 3559 3560 nvme_qpair->ctrlr = nvme_ctrlr; 3561 nvme_qpair->ctrlr_ch = ctrlr_ch; 3562 3563 pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs); 3564 if (!pg_ch) { 3565 free(nvme_qpair); 3566 return -1; 3567 } 3568 3569 nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch); 3570 3571 #ifdef SPDK_CONFIG_VTUNE 3572 nvme_qpair->group->collect_spin_stat = true; 3573 #else 3574 nvme_qpair->group->collect_spin_stat = false; 3575 #endif 3576 3577 if (!nvme_ctrlr->disabled) { 3578 /* If a nvme_ctrlr is disabled, don't try to create qpair for it. Qpair will 3579 * be created when it's enabled. 3580 */ 3581 rc = bdev_nvme_create_qpair(nvme_qpair); 3582 if (rc != 0) { 3583 /* nvme_ctrlr can't create IO qpair if connection is down. 3584 * If reconnect_delay_sec is non-zero, creating IO qpair is retried 3585 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero, 3586 * submitted IO will be queued until IO qpair is successfully created. 3587 * 3588 * Hence, if both are satisfied, ignore the failure. 3589 */ 3590 if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) { 3591 spdk_put_io_channel(pg_ch); 3592 free(nvme_qpair); 3593 return rc; 3594 } 3595 } 3596 } 3597 3598 TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq); 3599 3600 ctrlr_ch->qpair = nvme_qpair; 3601 3602 nvme_ctrlr_get_ref(nvme_ctrlr); 3603 3604 return 0; 3605 } 3606 3607 static int 3608 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf) 3609 { 3610 struct nvme_ctrlr *nvme_ctrlr = io_device; 3611 struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf; 3612 3613 return nvme_qpair_create(nvme_ctrlr, ctrlr_ch); 3614 } 3615 3616 static void 3617 nvme_qpair_delete(struct nvme_qpair *nvme_qpair) 3618 { 3619 struct nvme_io_path *io_path, *next; 3620 3621 assert(nvme_qpair->group != NULL); 3622 3623 TAILQ_FOREACH_SAFE(io_path, &nvme_qpair->io_path_list, tailq, next) { 3624 TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq); 3625 nvme_io_path_free(io_path); 3626 } 3627 3628 TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq); 3629 3630 spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group)); 3631 3632 nvme_ctrlr_put_ref(nvme_qpair->ctrlr); 3633 3634 free(nvme_qpair); 3635 } 3636 3637 static void 3638 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf) 3639 { 3640 struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf; 3641 struct nvme_qpair *nvme_qpair; 3642 3643 nvme_qpair = ctrlr_ch->qpair; 3644 assert(nvme_qpair != NULL); 3645 3646 _bdev_nvme_clear_io_path_cache(nvme_qpair); 3647 3648 if (nvme_qpair->qpair != NULL) { 3649 /* Always try to disconnect the qpair, even if a reset is in progress. 3650 * The qpair may have been created after the reset process started. 3651 */ 3652 spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair); 3653 if (ctrlr_ch->reset_iter) { 3654 /* Skip current ctrlr_channel in a full reset sequence because 3655 * it is being deleted now. 3656 */ 3657 nvme_ctrlr_for_each_channel_continue(ctrlr_ch->reset_iter, 0); 3658 } 3659 3660 /* We cannot release a reference to the poll group now. 3661 * The qpair may be disconnected asynchronously later. 3662 * We need to poll it until it is actually disconnected. 3663 * Just detach the qpair from the deleting ctrlr_channel. 3664 */ 3665 nvme_qpair->ctrlr_ch = NULL; 3666 } else { 3667 assert(ctrlr_ch->reset_iter == NULL); 3668 3669 nvme_qpair_delete(nvme_qpair); 3670 } 3671 } 3672 3673 static inline struct spdk_io_channel * 3674 bdev_nvme_get_accel_channel(struct nvme_poll_group *group) 3675 { 3676 if (spdk_unlikely(!group->accel_channel)) { 3677 group->accel_channel = spdk_accel_get_io_channel(); 3678 if (!group->accel_channel) { 3679 SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n", 3680 group); 3681 return NULL; 3682 } 3683 } 3684 3685 return group->accel_channel; 3686 } 3687 3688 static void 3689 bdev_nvme_finish_sequence(void *seq, spdk_nvme_accel_completion_cb cb_fn, void *cb_arg) 3690 { 3691 spdk_accel_sequence_finish(seq, cb_fn, cb_arg); 3692 } 3693 3694 static void 3695 bdev_nvme_abort_sequence(void *seq) 3696 { 3697 spdk_accel_sequence_abort(seq); 3698 } 3699 3700 static void 3701 bdev_nvme_reverse_sequence(void *seq) 3702 { 3703 spdk_accel_sequence_reverse(seq); 3704 } 3705 3706 static int 3707 bdev_nvme_append_crc32c(void *ctx, void **seq, uint32_t *dst, struct iovec *iovs, uint32_t iovcnt, 3708 struct spdk_memory_domain *domain, void *domain_ctx, uint32_t seed, 3709 spdk_nvme_accel_step_cb cb_fn, void *cb_arg) 3710 { 3711 struct spdk_io_channel *ch; 3712 struct nvme_poll_group *group = ctx; 3713 3714 ch = bdev_nvme_get_accel_channel(group); 3715 if (spdk_unlikely(ch == NULL)) { 3716 return -ENOMEM; 3717 } 3718 3719 return spdk_accel_append_crc32c((struct spdk_accel_sequence **)seq, ch, dst, iovs, iovcnt, 3720 domain, domain_ctx, seed, cb_fn, cb_arg); 3721 } 3722 3723 static int 3724 bdev_nvme_append_copy(void *ctx, void **seq, struct iovec *dst_iovs, uint32_t dst_iovcnt, 3725 struct spdk_memory_domain *dst_domain, void *dst_domain_ctx, 3726 struct iovec *src_iovs, uint32_t src_iovcnt, 3727 struct spdk_memory_domain *src_domain, void *src_domain_ctx, 3728 spdk_nvme_accel_step_cb cb_fn, void *cb_arg) 3729 { 3730 struct spdk_io_channel *ch; 3731 struct nvme_poll_group *group = ctx; 3732 3733 ch = bdev_nvme_get_accel_channel(group); 3734 if (spdk_unlikely(ch == NULL)) { 3735 return -ENOMEM; 3736 } 3737 3738 return spdk_accel_append_copy((struct spdk_accel_sequence **)seq, ch, 3739 dst_iovs, dst_iovcnt, dst_domain, dst_domain_ctx, 3740 src_iovs, src_iovcnt, src_domain, src_domain_ctx, 3741 cb_fn, cb_arg); 3742 } 3743 3744 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = { 3745 .table_size = sizeof(struct spdk_nvme_accel_fn_table), 3746 .append_crc32c = bdev_nvme_append_crc32c, 3747 .append_copy = bdev_nvme_append_copy, 3748 .finish_sequence = bdev_nvme_finish_sequence, 3749 .reverse_sequence = bdev_nvme_reverse_sequence, 3750 .abort_sequence = bdev_nvme_abort_sequence, 3751 }; 3752 3753 static int 3754 bdev_nvme_interrupt_wrapper(void *ctx) 3755 { 3756 int num_events; 3757 struct nvme_poll_group *group = ctx; 3758 3759 num_events = spdk_nvme_poll_group_wait(group->group, bdev_nvme_disconnected_qpair_cb); 3760 if (spdk_unlikely(num_events < 0)) { 3761 bdev_nvme_check_io_qpairs(group); 3762 } 3763 3764 return num_events; 3765 } 3766 3767 static int 3768 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf) 3769 { 3770 struct nvme_poll_group *group = ctx_buf; 3771 uint64_t period; 3772 int fd; 3773 3774 TAILQ_INIT(&group->qpair_list); 3775 3776 group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table); 3777 if (group->group == NULL) { 3778 return -1; 3779 } 3780 3781 period = spdk_interrupt_mode_is_enabled() ? 0 : g_opts.nvme_ioq_poll_period_us; 3782 group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, period); 3783 3784 if (group->poller == NULL) { 3785 spdk_nvme_poll_group_destroy(group->group); 3786 return -1; 3787 } 3788 3789 if (spdk_interrupt_mode_is_enabled()) { 3790 spdk_poller_register_interrupt(group->poller, NULL, NULL); 3791 3792 fd = spdk_nvme_poll_group_get_fd(group->group); 3793 if (fd < 0) { 3794 spdk_nvme_poll_group_destroy(group->group); 3795 return -1; 3796 } 3797 3798 group->intr = SPDK_INTERRUPT_REGISTER(fd, bdev_nvme_interrupt_wrapper, group); 3799 if (!group->intr) { 3800 spdk_nvme_poll_group_destroy(group->group); 3801 return -1; 3802 } 3803 } 3804 3805 return 0; 3806 } 3807 3808 static void 3809 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf) 3810 { 3811 struct nvme_poll_group *group = ctx_buf; 3812 3813 assert(TAILQ_EMPTY(&group->qpair_list)); 3814 3815 if (group->accel_channel) { 3816 spdk_put_io_channel(group->accel_channel); 3817 } 3818 3819 if (spdk_interrupt_mode_is_enabled()) { 3820 spdk_interrupt_unregister(&group->intr); 3821 } 3822 3823 spdk_poller_unregister(&group->poller); 3824 if (spdk_nvme_poll_group_destroy(group->group)) { 3825 SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n"); 3826 assert(false); 3827 } 3828 } 3829 3830 static struct spdk_io_channel * 3831 bdev_nvme_get_io_channel(void *ctx) 3832 { 3833 struct nvme_bdev *nbdev = ctx; 3834 3835 return spdk_get_io_channel(nbdev); 3836 } 3837 3838 static void * 3839 bdev_nvme_get_module_ctx(void *ctx) 3840 { 3841 struct nvme_bdev *nbdev = ctx; 3842 struct nvme_ns *nvme_ns; 3843 3844 if (!nbdev || nbdev->disk.module != &nvme_if) { 3845 return NULL; 3846 } 3847 3848 nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list); 3849 if (!nvme_ns) { 3850 return NULL; 3851 } 3852 3853 return nvme_ns->ns; 3854 } 3855 3856 static const char * 3857 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state) 3858 { 3859 switch (ana_state) { 3860 case SPDK_NVME_ANA_OPTIMIZED_STATE: 3861 return "optimized"; 3862 case SPDK_NVME_ANA_NON_OPTIMIZED_STATE: 3863 return "non_optimized"; 3864 case SPDK_NVME_ANA_INACCESSIBLE_STATE: 3865 return "inaccessible"; 3866 case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE: 3867 return "persistent_loss"; 3868 case SPDK_NVME_ANA_CHANGE_STATE: 3869 return "change"; 3870 default: 3871 return NULL; 3872 } 3873 } 3874 3875 static int 3876 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size) 3877 { 3878 struct spdk_memory_domain **_domains = NULL; 3879 struct nvme_bdev *nbdev = ctx; 3880 struct nvme_ns *nvme_ns; 3881 int i = 0, _array_size = array_size; 3882 int rc = 0; 3883 3884 TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) { 3885 if (domains && array_size >= i) { 3886 _domains = &domains[i]; 3887 } else { 3888 _domains = NULL; 3889 } 3890 rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size); 3891 if (rc > 0) { 3892 i += rc; 3893 if (_array_size >= rc) { 3894 _array_size -= rc; 3895 } else { 3896 _array_size = 0; 3897 } 3898 } else if (rc < 0) { 3899 return rc; 3900 } 3901 } 3902 3903 return i; 3904 } 3905 3906 static const char * 3907 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr) 3908 { 3909 if (nvme_ctrlr->destruct) { 3910 return "deleting"; 3911 } else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) { 3912 return "failed"; 3913 } else if (nvme_ctrlr->resetting) { 3914 return "resetting"; 3915 } else if (nvme_ctrlr->reconnect_is_delayed > 0) { 3916 return "reconnect_is_delayed"; 3917 } else if (nvme_ctrlr->disabled) { 3918 return "disabled"; 3919 } else { 3920 return "enabled"; 3921 } 3922 } 3923 3924 void 3925 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr) 3926 { 3927 struct spdk_nvme_transport_id *trid; 3928 const struct spdk_nvme_ctrlr_opts *opts; 3929 const struct spdk_nvme_ctrlr_data *cdata; 3930 struct nvme_path_id *path_id; 3931 int32_t numa_id; 3932 3933 spdk_json_write_object_begin(w); 3934 3935 spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr)); 3936 3937 #ifdef SPDK_CONFIG_NVME_CUSE 3938 size_t cuse_name_size = 128; 3939 char cuse_name[cuse_name_size]; 3940 3941 int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size); 3942 if (rc == 0) { 3943 spdk_json_write_named_string(w, "cuse_device", cuse_name); 3944 } 3945 #endif 3946 trid = &nvme_ctrlr->active_path_id->trid; 3947 spdk_json_write_named_object_begin(w, "trid"); 3948 nvme_bdev_dump_trid_json(trid, w); 3949 spdk_json_write_object_end(w); 3950 3951 path_id = TAILQ_NEXT(nvme_ctrlr->active_path_id, link); 3952 if (path_id != NULL) { 3953 spdk_json_write_named_array_begin(w, "alternate_trids"); 3954 do { 3955 trid = &path_id->trid; 3956 spdk_json_write_object_begin(w); 3957 nvme_bdev_dump_trid_json(trid, w); 3958 spdk_json_write_object_end(w); 3959 3960 path_id = TAILQ_NEXT(path_id, link); 3961 } while (path_id != NULL); 3962 spdk_json_write_array_end(w); 3963 } 3964 3965 cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr); 3966 spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid); 3967 3968 opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr); 3969 spdk_json_write_named_object_begin(w, "host"); 3970 spdk_json_write_named_string(w, "nqn", opts->hostnqn); 3971 spdk_json_write_named_string(w, "addr", opts->src_addr); 3972 spdk_json_write_named_string(w, "svcid", opts->src_svcid); 3973 spdk_json_write_object_end(w); 3974 3975 numa_id = spdk_nvme_ctrlr_get_numa_id(nvme_ctrlr->ctrlr); 3976 if (numa_id != SPDK_ENV_NUMA_ID_ANY) { 3977 spdk_json_write_named_uint32(w, "numa_id", numa_id); 3978 } 3979 spdk_json_write_object_end(w); 3980 } 3981 3982 static void 3983 nvme_namespace_info_json(struct spdk_json_write_ctx *w, 3984 struct nvme_ns *nvme_ns) 3985 { 3986 struct spdk_nvme_ns *ns; 3987 struct spdk_nvme_ctrlr *ctrlr; 3988 const struct spdk_nvme_ctrlr_data *cdata; 3989 const struct spdk_nvme_transport_id *trid; 3990 union spdk_nvme_vs_register vs; 3991 const struct spdk_nvme_ns_data *nsdata; 3992 char buf[128]; 3993 3994 ns = nvme_ns->ns; 3995 if (ns == NULL) { 3996 return; 3997 } 3998 3999 ctrlr = spdk_nvme_ns_get_ctrlr(ns); 4000 4001 cdata = spdk_nvme_ctrlr_get_data(ctrlr); 4002 trid = spdk_nvme_ctrlr_get_transport_id(ctrlr); 4003 vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr); 4004 4005 spdk_json_write_object_begin(w); 4006 4007 if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) { 4008 spdk_json_write_named_string(w, "pci_address", trid->traddr); 4009 } 4010 4011 spdk_json_write_named_object_begin(w, "trid"); 4012 4013 nvme_bdev_dump_trid_json(trid, w); 4014 4015 spdk_json_write_object_end(w); 4016 4017 #ifdef SPDK_CONFIG_NVME_CUSE 4018 size_t cuse_name_size = 128; 4019 char cuse_name[cuse_name_size]; 4020 4021 int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns), 4022 cuse_name, &cuse_name_size); 4023 if (rc == 0) { 4024 spdk_json_write_named_string(w, "cuse_device", cuse_name); 4025 } 4026 #endif 4027 4028 spdk_json_write_named_object_begin(w, "ctrlr_data"); 4029 4030 spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid); 4031 4032 spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid); 4033 4034 snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn); 4035 spdk_str_trim(buf); 4036 spdk_json_write_named_string(w, "model_number", buf); 4037 4038 snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn); 4039 spdk_str_trim(buf); 4040 spdk_json_write_named_string(w, "serial_number", buf); 4041 4042 snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr); 4043 spdk_str_trim(buf); 4044 spdk_json_write_named_string(w, "firmware_revision", buf); 4045 4046 if (cdata->subnqn[0] != '\0') { 4047 spdk_json_write_named_string(w, "subnqn", cdata->subnqn); 4048 } 4049 4050 spdk_json_write_named_object_begin(w, "oacs"); 4051 4052 spdk_json_write_named_uint32(w, "security", cdata->oacs.security); 4053 spdk_json_write_named_uint32(w, "format", cdata->oacs.format); 4054 spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware); 4055 spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage); 4056 4057 spdk_json_write_object_end(w); 4058 4059 spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr); 4060 spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting); 4061 4062 spdk_json_write_object_end(w); 4063 4064 spdk_json_write_named_object_begin(w, "vs"); 4065 4066 spdk_json_write_name(w, "nvme_version"); 4067 if (vs.bits.ter) { 4068 spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter); 4069 } else { 4070 spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr); 4071 } 4072 4073 spdk_json_write_object_end(w); 4074 4075 nsdata = spdk_nvme_ns_get_data(ns); 4076 4077 spdk_json_write_named_object_begin(w, "ns_data"); 4078 4079 spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns)); 4080 4081 if (cdata->cmic.ana_reporting) { 4082 spdk_json_write_named_string(w, "ana_state", 4083 _nvme_ana_state_str(nvme_ns->ana_state)); 4084 } 4085 4086 spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share); 4087 4088 spdk_json_write_object_end(w); 4089 4090 if (cdata->oacs.security) { 4091 spdk_json_write_named_object_begin(w, "security"); 4092 4093 spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal); 4094 4095 spdk_json_write_object_end(w); 4096 } 4097 4098 spdk_json_write_object_end(w); 4099 } 4100 4101 static const char * 4102 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev) 4103 { 4104 switch (nbdev->mp_policy) { 4105 case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE: 4106 return "active_passive"; 4107 case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE: 4108 return "active_active"; 4109 default: 4110 assert(false); 4111 return "invalid"; 4112 } 4113 } 4114 4115 static const char * 4116 nvme_bdev_get_mp_selector_str(struct nvme_bdev *nbdev) 4117 { 4118 switch (nbdev->mp_selector) { 4119 case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN: 4120 return "round_robin"; 4121 case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH: 4122 return "queue_depth"; 4123 default: 4124 assert(false); 4125 return "invalid"; 4126 } 4127 } 4128 4129 static int 4130 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w) 4131 { 4132 struct nvme_bdev *nbdev = ctx; 4133 struct nvme_ns *nvme_ns; 4134 4135 pthread_mutex_lock(&nbdev->mutex); 4136 spdk_json_write_named_array_begin(w, "nvme"); 4137 TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) { 4138 nvme_namespace_info_json(w, nvme_ns); 4139 } 4140 spdk_json_write_array_end(w); 4141 spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nbdev)); 4142 if (nbdev->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) { 4143 spdk_json_write_named_string(w, "selector", nvme_bdev_get_mp_selector_str(nbdev)); 4144 if (nbdev->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) { 4145 spdk_json_write_named_uint32(w, "rr_min_io", nbdev->rr_min_io); 4146 } 4147 } 4148 pthread_mutex_unlock(&nbdev->mutex); 4149 4150 return 0; 4151 } 4152 4153 static void 4154 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w) 4155 { 4156 /* No config per bdev needed */ 4157 } 4158 4159 static uint64_t 4160 bdev_nvme_get_spin_time(struct spdk_io_channel *ch) 4161 { 4162 struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch); 4163 struct nvme_io_path *io_path; 4164 struct nvme_poll_group *group; 4165 uint64_t spin_time = 0; 4166 4167 STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) { 4168 group = io_path->qpair->group; 4169 4170 if (!group || !group->collect_spin_stat) { 4171 continue; 4172 } 4173 4174 if (group->end_ticks != 0) { 4175 group->spin_ticks += (group->end_ticks - group->start_ticks); 4176 group->end_ticks = 0; 4177 } 4178 4179 spin_time += group->spin_ticks; 4180 group->start_ticks = 0; 4181 group->spin_ticks = 0; 4182 } 4183 4184 return (spin_time * 1000000ULL) / spdk_get_ticks_hz(); 4185 } 4186 4187 static void 4188 bdev_nvme_reset_device_stat(void *ctx) 4189 { 4190 struct nvme_bdev *nbdev = ctx; 4191 4192 if (nbdev->err_stat != NULL) { 4193 memset(nbdev->err_stat, 0, sizeof(struct nvme_error_stat)); 4194 } 4195 } 4196 4197 /* JSON string should be lowercases and underscore delimited string. */ 4198 static void 4199 bdev_nvme_format_nvme_status(char *dst, const char *src) 4200 { 4201 char tmp[256]; 4202 4203 spdk_strcpy_replace(dst, 256, src, " - ", "_"); 4204 spdk_strcpy_replace(tmp, 256, dst, "-", "_"); 4205 spdk_strcpy_replace(dst, 256, tmp, " ", "_"); 4206 spdk_strlwr(dst); 4207 } 4208 4209 static void 4210 bdev_nvme_dump_device_stat_json(void *ctx, struct spdk_json_write_ctx *w) 4211 { 4212 struct nvme_bdev *nbdev = ctx; 4213 struct spdk_nvme_status status = {}; 4214 uint16_t sct, sc; 4215 char status_json[256]; 4216 const char *status_str; 4217 4218 if (nbdev->err_stat == NULL) { 4219 return; 4220 } 4221 4222 spdk_json_write_named_object_begin(w, "nvme_error"); 4223 4224 spdk_json_write_named_object_begin(w, "status_type"); 4225 for (sct = 0; sct < 8; sct++) { 4226 if (nbdev->err_stat->status_type[sct] == 0) { 4227 continue; 4228 } 4229 status.sct = sct; 4230 4231 status_str = spdk_nvme_cpl_get_status_type_string(&status); 4232 assert(status_str != NULL); 4233 bdev_nvme_format_nvme_status(status_json, status_str); 4234 4235 spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status_type[sct]); 4236 } 4237 spdk_json_write_object_end(w); 4238 4239 spdk_json_write_named_object_begin(w, "status_code"); 4240 for (sct = 0; sct < 4; sct++) { 4241 status.sct = sct; 4242 for (sc = 0; sc < 256; sc++) { 4243 if (nbdev->err_stat->status[sct][sc] == 0) { 4244 continue; 4245 } 4246 status.sc = sc; 4247 4248 status_str = spdk_nvme_cpl_get_status_string(&status); 4249 assert(status_str != NULL); 4250 bdev_nvme_format_nvme_status(status_json, status_str); 4251 4252 spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status[sct][sc]); 4253 } 4254 } 4255 spdk_json_write_object_end(w); 4256 4257 spdk_json_write_object_end(w); 4258 } 4259 4260 static bool 4261 bdev_nvme_accel_sequence_supported(void *ctx, enum spdk_bdev_io_type type) 4262 { 4263 struct nvme_bdev *nbdev = ctx; 4264 struct nvme_ns *nvme_ns; 4265 struct spdk_nvme_ctrlr *ctrlr; 4266 4267 if (!g_opts.allow_accel_sequence) { 4268 return false; 4269 } 4270 4271 switch (type) { 4272 case SPDK_BDEV_IO_TYPE_WRITE: 4273 case SPDK_BDEV_IO_TYPE_READ: 4274 break; 4275 default: 4276 return false; 4277 } 4278 4279 nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list); 4280 assert(nvme_ns != NULL); 4281 4282 ctrlr = nvme_ns->ctrlr->ctrlr; 4283 assert(ctrlr != NULL); 4284 4285 return spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ACCEL_SEQUENCE_SUPPORTED; 4286 } 4287 4288 static const struct spdk_bdev_fn_table nvmelib_fn_table = { 4289 .destruct = bdev_nvme_destruct, 4290 .submit_request = bdev_nvme_submit_request, 4291 .io_type_supported = bdev_nvme_io_type_supported, 4292 .get_io_channel = bdev_nvme_get_io_channel, 4293 .dump_info_json = bdev_nvme_dump_info_json, 4294 .write_config_json = bdev_nvme_write_config_json, 4295 .get_spin_time = bdev_nvme_get_spin_time, 4296 .get_module_ctx = bdev_nvme_get_module_ctx, 4297 .get_memory_domains = bdev_nvme_get_memory_domains, 4298 .accel_sequence_supported = bdev_nvme_accel_sequence_supported, 4299 .reset_device_stat = bdev_nvme_reset_device_stat, 4300 .dump_device_stat_json = bdev_nvme_dump_device_stat_json, 4301 }; 4302 4303 typedef int (*bdev_nvme_parse_ana_log_page_cb)( 4304 const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg); 4305 4306 static int 4307 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr, 4308 bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg) 4309 { 4310 struct spdk_nvme_ana_group_descriptor *copied_desc; 4311 uint8_t *orig_desc; 4312 uint32_t i, desc_size, copy_len; 4313 int rc = 0; 4314 4315 if (nvme_ctrlr->ana_log_page == NULL) { 4316 return -EINVAL; 4317 } 4318 4319 copied_desc = nvme_ctrlr->copied_ana_desc; 4320 4321 orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page); 4322 copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page); 4323 4324 for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) { 4325 memcpy(copied_desc, orig_desc, copy_len); 4326 4327 rc = cb_fn(copied_desc, cb_arg); 4328 if (rc != 0) { 4329 break; 4330 } 4331 4332 desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) + 4333 copied_desc->num_of_nsid * sizeof(uint32_t); 4334 orig_desc += desc_size; 4335 copy_len -= desc_size; 4336 } 4337 4338 return rc; 4339 } 4340 4341 static int 4342 nvme_ns_ana_transition_timedout(void *ctx) 4343 { 4344 struct nvme_ns *nvme_ns = ctx; 4345 4346 spdk_poller_unregister(&nvme_ns->anatt_timer); 4347 nvme_ns->ana_transition_timedout = true; 4348 4349 return SPDK_POLLER_BUSY; 4350 } 4351 4352 static void 4353 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns, 4354 const struct spdk_nvme_ana_group_descriptor *desc) 4355 { 4356 const struct spdk_nvme_ctrlr_data *cdata; 4357 4358 nvme_ns->ana_group_id = desc->ana_group_id; 4359 nvme_ns->ana_state = desc->ana_state; 4360 nvme_ns->ana_state_updating = false; 4361 4362 switch (nvme_ns->ana_state) { 4363 case SPDK_NVME_ANA_OPTIMIZED_STATE: 4364 case SPDK_NVME_ANA_NON_OPTIMIZED_STATE: 4365 nvme_ns->ana_transition_timedout = false; 4366 spdk_poller_unregister(&nvme_ns->anatt_timer); 4367 break; 4368 4369 case SPDK_NVME_ANA_INACCESSIBLE_STATE: 4370 case SPDK_NVME_ANA_CHANGE_STATE: 4371 if (nvme_ns->anatt_timer != NULL) { 4372 break; 4373 } 4374 4375 cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr); 4376 nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout, 4377 nvme_ns, 4378 cdata->anatt * SPDK_SEC_TO_USEC); 4379 break; 4380 default: 4381 break; 4382 } 4383 } 4384 4385 static int 4386 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg) 4387 { 4388 struct nvme_ns *nvme_ns = cb_arg; 4389 uint32_t i; 4390 4391 assert(nvme_ns->ns != NULL); 4392 4393 for (i = 0; i < desc->num_of_nsid; i++) { 4394 if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) { 4395 continue; 4396 } 4397 4398 _nvme_ns_set_ana_state(nvme_ns, desc); 4399 return 1; 4400 } 4401 4402 return 0; 4403 } 4404 4405 static int 4406 nvme_generate_uuid(const char *sn, uint32_t nsid, struct spdk_uuid *uuid) 4407 { 4408 int rc = 0; 4409 struct spdk_uuid new_uuid, namespace_uuid; 4410 char merged_str[SPDK_NVME_CTRLR_SN_LEN + NSID_STR_LEN + 1] = {'\0'}; 4411 /* This namespace UUID was generated using uuid_generate() method. */ 4412 const char *namespace_str = {"edaed2de-24bc-4b07-b559-f47ecbe730fd"}; 4413 int size; 4414 4415 assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN); 4416 4417 spdk_uuid_set_null(&new_uuid); 4418 spdk_uuid_set_null(&namespace_uuid); 4419 4420 size = snprintf(merged_str, sizeof(merged_str), "%s%"PRIu32, sn, nsid); 4421 if (size <= 0 || (unsigned long)size >= sizeof(merged_str)) { 4422 return -EINVAL; 4423 } 4424 4425 spdk_uuid_parse(&namespace_uuid, namespace_str); 4426 4427 rc = spdk_uuid_generate_sha1(&new_uuid, &namespace_uuid, merged_str, size); 4428 if (rc == 0) { 4429 memcpy(uuid, &new_uuid, sizeof(struct spdk_uuid)); 4430 } 4431 4432 return rc; 4433 } 4434 4435 static int 4436 nbdev_create(struct spdk_bdev *disk, const char *base_name, 4437 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns, 4438 struct spdk_bdev_nvme_ctrlr_opts *bdev_opts, void *ctx) 4439 { 4440 const struct spdk_uuid *uuid; 4441 const uint8_t *nguid; 4442 const struct spdk_nvme_ctrlr_data *cdata; 4443 const struct spdk_nvme_ns_data *nsdata; 4444 const struct spdk_nvme_ctrlr_opts *opts; 4445 enum spdk_nvme_csi csi; 4446 uint32_t atomic_bs, phys_bs, bs; 4447 char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'}; 4448 int rc; 4449 4450 cdata = spdk_nvme_ctrlr_get_data(ctrlr); 4451 csi = spdk_nvme_ns_get_csi(ns); 4452 opts = spdk_nvme_ctrlr_get_opts(ctrlr); 4453 4454 switch (csi) { 4455 case SPDK_NVME_CSI_NVM: 4456 disk->product_name = "NVMe disk"; 4457 break; 4458 case SPDK_NVME_CSI_ZNS: 4459 disk->product_name = "NVMe ZNS disk"; 4460 disk->zoned = true; 4461 disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns); 4462 disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) / 4463 spdk_nvme_ns_get_extended_sector_size(ns); 4464 disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns); 4465 disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns); 4466 break; 4467 default: 4468 if (bdev_opts->allow_unrecognized_csi) { 4469 disk->product_name = "NVMe Passthrough disk"; 4470 break; 4471 } 4472 SPDK_ERRLOG("unsupported CSI: %u\n", csi); 4473 return -ENOTSUP; 4474 } 4475 4476 nguid = spdk_nvme_ns_get_nguid(ns); 4477 if (!nguid) { 4478 uuid = spdk_nvme_ns_get_uuid(ns); 4479 if (uuid) { 4480 disk->uuid = *uuid; 4481 } else if (g_opts.generate_uuids) { 4482 spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0'); 4483 rc = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns), &disk->uuid); 4484 if (rc < 0) { 4485 SPDK_ERRLOG("UUID generation failed (%s)\n", spdk_strerror(-rc)); 4486 return rc; 4487 } 4488 } 4489 } else { 4490 memcpy(&disk->uuid, nguid, sizeof(disk->uuid)); 4491 } 4492 4493 disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns)); 4494 if (!disk->name) { 4495 return -ENOMEM; 4496 } 4497 4498 disk->write_cache = 0; 4499 if (cdata->vwc.present) { 4500 /* Enable if the Volatile Write Cache exists */ 4501 disk->write_cache = 1; 4502 } 4503 if (cdata->oncs.write_zeroes) { 4504 disk->max_write_zeroes = UINT16_MAX + 1; 4505 } 4506 disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns); 4507 disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns); 4508 disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr); 4509 disk->ctratt.raw = cdata->ctratt.raw; 4510 disk->nsid = spdk_nvme_ns_get_id(ns); 4511 /* NVMe driver will split one request into multiple requests 4512 * based on MDTS and stripe boundary, the bdev layer will use 4513 * max_segment_size and max_num_segments to split one big IO 4514 * into multiple requests, then small request can't run out 4515 * of NVMe internal requests data structure. 4516 */ 4517 if (opts && opts->io_queue_requests) { 4518 disk->max_num_segments = opts->io_queue_requests / 2; 4519 } 4520 if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_SGL_SUPPORTED) { 4521 /* The nvme driver will try to split I/O that have too many 4522 * SGEs, but it doesn't work if that last SGE doesn't end on 4523 * an aggregate total that is block aligned. The bdev layer has 4524 * a more robust splitting framework, so use that instead for 4525 * this case. (See issue #3269.) 4526 */ 4527 uint16_t max_sges = spdk_nvme_ctrlr_get_max_sges(ctrlr); 4528 4529 if (disk->max_num_segments == 0) { 4530 disk->max_num_segments = max_sges; 4531 } else { 4532 disk->max_num_segments = spdk_min(disk->max_num_segments, max_sges); 4533 } 4534 } 4535 disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns); 4536 4537 nsdata = spdk_nvme_ns_get_data(ns); 4538 bs = spdk_nvme_ns_get_sector_size(ns); 4539 atomic_bs = bs; 4540 phys_bs = bs; 4541 if (nsdata->nabo == 0) { 4542 if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) { 4543 atomic_bs = bs * (1 + nsdata->nawupf); 4544 } else { 4545 atomic_bs = bs * (1 + cdata->awupf); 4546 } 4547 } 4548 if (nsdata->nsfeat.optperf) { 4549 phys_bs = bs * (1 + nsdata->npwg); 4550 } 4551 disk->phys_blocklen = spdk_min(phys_bs, atomic_bs); 4552 4553 disk->md_len = spdk_nvme_ns_get_md_size(ns); 4554 if (disk->md_len != 0) { 4555 disk->md_interleave = nsdata->flbas.extended; 4556 disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns); 4557 if (disk->dif_type != SPDK_DIF_DISABLE) { 4558 disk->dif_is_head_of_md = nsdata->dps.md_start; 4559 disk->dif_check_flags = bdev_opts->prchk_flags; 4560 disk->dif_pi_format = (enum spdk_dif_pi_format)spdk_nvme_ns_get_pi_format(ns); 4561 } 4562 } 4563 4564 if (!(spdk_nvme_ctrlr_get_flags(ctrlr) & 4565 SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) { 4566 disk->acwu = 0; 4567 } else if (nsdata->nsfeat.ns_atomic_write_unit) { 4568 disk->acwu = nsdata->nacwu + 1; /* 0-based */ 4569 } else { 4570 disk->acwu = cdata->acwu + 1; /* 0-based */ 4571 } 4572 4573 if (cdata->oncs.copy) { 4574 /* For now bdev interface allows only single segment copy */ 4575 disk->max_copy = nsdata->mssrl; 4576 } 4577 4578 disk->ctxt = ctx; 4579 disk->fn_table = &nvmelib_fn_table; 4580 disk->module = &nvme_if; 4581 4582 disk->numa.id_valid = 1; 4583 disk->numa.id = spdk_nvme_ctrlr_get_numa_id(ctrlr); 4584 4585 return 0; 4586 } 4587 4588 static struct nvme_bdev * 4589 nvme_bdev_alloc(void) 4590 { 4591 struct nvme_bdev *nbdev; 4592 int rc; 4593 4594 nbdev = calloc(1, sizeof(*nbdev)); 4595 if (!nbdev) { 4596 SPDK_ERRLOG("nbdev calloc() failed\n"); 4597 return NULL; 4598 } 4599 4600 if (g_opts.nvme_error_stat) { 4601 nbdev->err_stat = calloc(1, sizeof(struct nvme_error_stat)); 4602 if (!nbdev->err_stat) { 4603 SPDK_ERRLOG("err_stat calloc() failed\n"); 4604 free(nbdev); 4605 return NULL; 4606 } 4607 } 4608 4609 rc = pthread_mutex_init(&nbdev->mutex, NULL); 4610 if (rc != 0) { 4611 free(nbdev->err_stat); 4612 free(nbdev); 4613 return NULL; 4614 } 4615 4616 nbdev->ref = 1; 4617 nbdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE; 4618 nbdev->mp_selector = BDEV_NVME_MP_SELECTOR_ROUND_ROBIN; 4619 nbdev->rr_min_io = UINT32_MAX; 4620 TAILQ_INIT(&nbdev->nvme_ns_list); 4621 4622 return nbdev; 4623 } 4624 4625 static int 4626 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns) 4627 { 4628 struct nvme_bdev *nbdev; 4629 struct nvme_bdev_ctrlr *nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr; 4630 int rc; 4631 4632 nbdev = nvme_bdev_alloc(); 4633 if (nbdev == NULL) { 4634 SPDK_ERRLOG("Failed to allocate NVMe bdev\n"); 4635 return -ENOMEM; 4636 } 4637 4638 nbdev->opal = nvme_ctrlr->opal_dev != NULL; 4639 4640 rc = nbdev_create(&nbdev->disk, nbdev_ctrlr->name, nvme_ctrlr->ctrlr, 4641 nvme_ns->ns, &nvme_ctrlr->opts, nbdev); 4642 if (rc != 0) { 4643 SPDK_ERRLOG("Failed to create NVMe disk\n"); 4644 nvme_bdev_free(nbdev); 4645 return rc; 4646 } 4647 4648 spdk_io_device_register(nbdev, 4649 bdev_nvme_create_bdev_channel_cb, 4650 bdev_nvme_destroy_bdev_channel_cb, 4651 sizeof(struct nvme_bdev_channel), 4652 nbdev->disk.name); 4653 4654 nvme_ns->bdev = nbdev; 4655 nbdev->nsid = nvme_ns->id; 4656 TAILQ_INSERT_TAIL(&nbdev->nvme_ns_list, nvme_ns, tailq); 4657 4658 pthread_mutex_lock(&g_bdev_nvme_mutex); 4659 4660 nbdev->nbdev_ctrlr = nbdev_ctrlr; 4661 TAILQ_INSERT_TAIL(&nbdev_ctrlr->bdevs, nbdev, tailq); 4662 4663 rc = spdk_bdev_register(&nbdev->disk); 4664 if (rc != 0) { 4665 SPDK_ERRLOG("spdk_bdev_register() failed\n"); 4666 spdk_io_device_unregister(nbdev, NULL); 4667 nvme_ns->bdev = NULL; 4668 4669 TAILQ_REMOVE(&nbdev_ctrlr->bdevs, nbdev, tailq); 4670 4671 pthread_mutex_unlock(&g_bdev_nvme_mutex); 4672 4673 nvme_bdev_free(nbdev); 4674 return rc; 4675 } 4676 4677 pthread_mutex_unlock(&g_bdev_nvme_mutex); 4678 4679 return 0; 4680 } 4681 4682 static bool 4683 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2) 4684 { 4685 const struct spdk_nvme_ns_data *nsdata1, *nsdata2; 4686 const struct spdk_uuid *uuid1, *uuid2; 4687 4688 nsdata1 = spdk_nvme_ns_get_data(ns1); 4689 nsdata2 = spdk_nvme_ns_get_data(ns2); 4690 uuid1 = spdk_nvme_ns_get_uuid(ns1); 4691 uuid2 = spdk_nvme_ns_get_uuid(ns2); 4692 4693 return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 && 4694 nsdata1->eui64 == nsdata2->eui64 && 4695 ((uuid1 == NULL && uuid2 == NULL) || 4696 (uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) && 4697 spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2); 4698 } 4699 4700 static bool 4701 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, 4702 struct spdk_nvme_ctrlr_opts *opts) 4703 { 4704 struct nvme_probe_skip_entry *entry; 4705 4706 TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) { 4707 if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) { 4708 return false; 4709 } 4710 } 4711 4712 opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst; 4713 opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight; 4714 opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight; 4715 opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight; 4716 opts->disable_read_ana_log_page = true; 4717 4718 SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr); 4719 4720 return true; 4721 } 4722 4723 static void 4724 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl) 4725 { 4726 struct nvme_ctrlr *nvme_ctrlr = ctx; 4727 4728 if (spdk_nvme_cpl_is_error(cpl)) { 4729 NVME_CTRLR_WARNLOG(nvme_ctrlr, "Abort failed. Resetting controller. sc is %u, sct is %u.\n", 4730 cpl->status.sc, cpl->status.sct); 4731 bdev_nvme_reset_ctrlr(nvme_ctrlr); 4732 } else if (cpl->cdw0 & 0x1) { 4733 NVME_CTRLR_WARNLOG(nvme_ctrlr, "Specified command could not be aborted.\n"); 4734 bdev_nvme_reset_ctrlr(nvme_ctrlr); 4735 } 4736 } 4737 4738 static void 4739 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr, 4740 struct spdk_nvme_qpair *qpair, uint16_t cid) 4741 { 4742 struct nvme_ctrlr *nvme_ctrlr = cb_arg; 4743 union spdk_nvme_csts_register csts; 4744 int rc; 4745 4746 assert(nvme_ctrlr->ctrlr == ctrlr); 4747 4748 NVME_CTRLR_WARNLOG(nvme_ctrlr, "Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", 4749 ctrlr, qpair, cid); 4750 4751 /* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O 4752 * queue. (Note: qpair == NULL when there's an admin cmd timeout.) Otherwise we 4753 * would submit another fabrics cmd on the admin queue to read CSTS and check for its 4754 * completion recursively. 4755 */ 4756 if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) { 4757 csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr); 4758 if (csts.bits.cfs) { 4759 NVME_CTRLR_ERRLOG(nvme_ctrlr, "Controller Fatal Status, reset required\n"); 4760 bdev_nvme_reset_ctrlr(nvme_ctrlr); 4761 return; 4762 } 4763 } 4764 4765 switch (g_opts.action_on_timeout) { 4766 case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT: 4767 if (qpair) { 4768 /* Don't send abort to ctrlr when ctrlr is not available. */ 4769 pthread_mutex_lock(&nvme_ctrlr->mutex); 4770 if (!nvme_ctrlr_is_available(nvme_ctrlr)) { 4771 pthread_mutex_unlock(&nvme_ctrlr->mutex); 4772 NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Quit abort. Ctrlr is not available.\n"); 4773 return; 4774 } 4775 pthread_mutex_unlock(&nvme_ctrlr->mutex); 4776 4777 rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid, 4778 nvme_abort_cpl, nvme_ctrlr); 4779 if (rc == 0) { 4780 return; 4781 } 4782 4783 NVME_CTRLR_ERRLOG(nvme_ctrlr, "Unable to send abort. Resetting, rc is %d.\n", rc); 4784 } 4785 4786 /* FALLTHROUGH */ 4787 case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET: 4788 bdev_nvme_reset_ctrlr(nvme_ctrlr); 4789 break; 4790 case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE: 4791 NVME_CTRLR_DEBUGLOG(nvme_ctrlr, "No action for nvme controller timeout.\n"); 4792 break; 4793 default: 4794 NVME_CTRLR_ERRLOG(nvme_ctrlr, "An invalid timeout action value is found.\n"); 4795 break; 4796 } 4797 } 4798 4799 static struct nvme_ns * 4800 nvme_ns_alloc(void) 4801 { 4802 struct nvme_ns *nvme_ns; 4803 4804 nvme_ns = calloc(1, sizeof(struct nvme_ns)); 4805 if (nvme_ns == NULL) { 4806 return NULL; 4807 } 4808 4809 if (g_opts.io_path_stat) { 4810 nvme_ns->stat = calloc(1, sizeof(struct spdk_bdev_io_stat)); 4811 if (nvme_ns->stat == NULL) { 4812 free(nvme_ns); 4813 return NULL; 4814 } 4815 spdk_bdev_reset_io_stat(nvme_ns->stat, SPDK_BDEV_RESET_STAT_MAXMIN); 4816 } 4817 4818 return nvme_ns; 4819 } 4820 4821 static void 4822 nvme_ns_free(struct nvme_ns *nvme_ns) 4823 { 4824 free(nvme_ns->stat); 4825 free(nvme_ns); 4826 } 4827 4828 static void 4829 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc) 4830 { 4831 struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr; 4832 struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx; 4833 4834 if (rc == 0) { 4835 nvme_ns->probe_ctx = NULL; 4836 nvme_ctrlr_get_ref(nvme_ctrlr); 4837 } else { 4838 pthread_mutex_lock(&nvme_ctrlr->mutex); 4839 RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns); 4840 pthread_mutex_unlock(&nvme_ctrlr->mutex); 4841 4842 nvme_ns_free(nvme_ns); 4843 } 4844 4845 if (ctx) { 4846 ctx->populates_in_progress--; 4847 if (ctx->populates_in_progress == 0) { 4848 nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx); 4849 } 4850 } 4851 } 4852 4853 static void 4854 bdev_nvme_add_io_path(struct nvme_bdev_channel_iter *i, 4855 struct nvme_bdev *nbdev, 4856 struct nvme_bdev_channel *nbdev_ch, void *ctx) 4857 { 4858 struct nvme_ns *nvme_ns = ctx; 4859 int rc; 4860 4861 rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns); 4862 if (rc != 0) { 4863 SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n"); 4864 } 4865 4866 nvme_bdev_for_each_channel_continue(i, rc); 4867 } 4868 4869 static void 4870 bdev_nvme_delete_io_path(struct nvme_bdev_channel_iter *i, 4871 struct nvme_bdev *nbdev, 4872 struct nvme_bdev_channel *nbdev_ch, void *ctx) 4873 { 4874 struct nvme_ns *nvme_ns = ctx; 4875 struct nvme_io_path *io_path; 4876 4877 io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns); 4878 if (io_path != NULL) { 4879 _bdev_nvme_delete_io_path(nbdev_ch, io_path); 4880 } 4881 4882 nvme_bdev_for_each_channel_continue(i, 0); 4883 } 4884 4885 static void 4886 bdev_nvme_add_io_path_failed(struct nvme_bdev *nbdev, void *ctx, int status) 4887 { 4888 struct nvme_ns *nvme_ns = ctx; 4889 4890 nvme_ctrlr_populate_namespace_done(nvme_ns, -1); 4891 } 4892 4893 static void 4894 bdev_nvme_add_io_path_done(struct nvme_bdev *nbdev, void *ctx, int status) 4895 { 4896 struct nvme_ns *nvme_ns = ctx; 4897 4898 if (status == 0) { 4899 nvme_ctrlr_populate_namespace_done(nvme_ns, 0); 4900 } else { 4901 /* Delete the added io_paths and fail populating the namespace. */ 4902 nvme_bdev_for_each_channel(nbdev, 4903 bdev_nvme_delete_io_path, 4904 nvme_ns, 4905 bdev_nvme_add_io_path_failed); 4906 } 4907 } 4908 4909 static int 4910 nvme_bdev_add_ns(struct nvme_bdev *nbdev, struct nvme_ns *nvme_ns) 4911 { 4912 struct nvme_ns *tmp_ns; 4913 const struct spdk_nvme_ns_data *nsdata; 4914 4915 nsdata = spdk_nvme_ns_get_data(nvme_ns->ns); 4916 if (!nsdata->nmic.can_share) { 4917 SPDK_ERRLOG("Namespace cannot be shared.\n"); 4918 return -EINVAL; 4919 } 4920 4921 pthread_mutex_lock(&nbdev->mutex); 4922 4923 tmp_ns = TAILQ_FIRST(&nbdev->nvme_ns_list); 4924 assert(tmp_ns != NULL); 4925 4926 if (tmp_ns->ns != NULL && !bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) { 4927 pthread_mutex_unlock(&nbdev->mutex); 4928 SPDK_ERRLOG("Namespaces are not identical.\n"); 4929 return -EINVAL; 4930 } 4931 4932 nbdev->ref++; 4933 TAILQ_INSERT_TAIL(&nbdev->nvme_ns_list, nvme_ns, tailq); 4934 nvme_ns->bdev = nbdev; 4935 4936 pthread_mutex_unlock(&nbdev->mutex); 4937 4938 /* Add nvme_io_path to nvme_bdev_channels dynamically. */ 4939 nvme_bdev_for_each_channel(nbdev, 4940 bdev_nvme_add_io_path, 4941 nvme_ns, 4942 bdev_nvme_add_io_path_done); 4943 4944 return 0; 4945 } 4946 4947 static void 4948 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns) 4949 { 4950 struct spdk_nvme_ns *ns; 4951 struct nvme_bdev *bdev; 4952 int rc = 0; 4953 4954 ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id); 4955 if (!ns) { 4956 NVME_CTRLR_DEBUGLOG(nvme_ctrlr, "Invalid NS %d\n", nvme_ns->id); 4957 rc = -EINVAL; 4958 goto done; 4959 } 4960 4961 nvme_ns->ns = ns; 4962 nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE; 4963 4964 if (nvme_ctrlr->ana_log_page != NULL) { 4965 bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns); 4966 } 4967 4968 bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id); 4969 if (bdev == NULL) { 4970 rc = nvme_bdev_create(nvme_ctrlr, nvme_ns); 4971 } else { 4972 rc = nvme_bdev_add_ns(bdev, nvme_ns); 4973 if (rc == 0) { 4974 return; 4975 } 4976 } 4977 done: 4978 nvme_ctrlr_populate_namespace_done(nvme_ns, rc); 4979 } 4980 4981 static void 4982 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns) 4983 { 4984 struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr; 4985 4986 assert(nvme_ctrlr != NULL); 4987 4988 pthread_mutex_lock(&nvme_ctrlr->mutex); 4989 4990 RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns); 4991 4992 if (nvme_ns->bdev != NULL) { 4993 pthread_mutex_unlock(&nvme_ctrlr->mutex); 4994 return; 4995 } 4996 4997 nvme_ns_free(nvme_ns); 4998 pthread_mutex_unlock(&nvme_ctrlr->mutex); 4999 5000 nvme_ctrlr_put_ref(nvme_ctrlr); 5001 } 5002 5003 static void 5004 bdev_nvme_delete_io_path_done(struct nvme_bdev *nbdev, void *ctx, int status) 5005 { 5006 struct nvme_ns *nvme_ns = ctx; 5007 5008 nvme_ctrlr_depopulate_namespace_done(nvme_ns); 5009 } 5010 5011 static void 5012 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns) 5013 { 5014 struct nvme_bdev *nbdev; 5015 5016 spdk_poller_unregister(&nvme_ns->anatt_timer); 5017 5018 nbdev = nvme_ns->bdev; 5019 if (nbdev != NULL) { 5020 pthread_mutex_lock(&nbdev->mutex); 5021 5022 assert(nbdev->ref > 0); 5023 nbdev->ref--; 5024 if (nbdev->ref == 0) { 5025 pthread_mutex_unlock(&nbdev->mutex); 5026 5027 spdk_bdev_unregister(&nbdev->disk, NULL, NULL); 5028 } else { 5029 /* spdk_bdev_unregister() is not called until the last nvme_ns is 5030 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list 5031 * and clear nvme_ns->bdev here. 5032 */ 5033 TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq); 5034 5035 pthread_mutex_lock(&nvme_ns->ctrlr->mutex); 5036 nvme_ns->bdev = NULL; 5037 pthread_mutex_unlock(&nvme_ns->ctrlr->mutex); 5038 5039 pthread_mutex_unlock(&nbdev->mutex); 5040 5041 /* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that, 5042 * we call depopulate_namespace_done() to avoid use-after-free. 5043 */ 5044 nvme_bdev_for_each_channel(nbdev, 5045 bdev_nvme_delete_io_path, 5046 nvme_ns, 5047 bdev_nvme_delete_io_path_done); 5048 return; 5049 } 5050 } 5051 5052 nvme_ctrlr_depopulate_namespace_done(nvme_ns); 5053 } 5054 5055 static void 5056 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr, 5057 struct nvme_async_probe_ctx *ctx) 5058 { 5059 struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr; 5060 struct nvme_ns *nvme_ns, *next; 5061 struct spdk_nvme_ns *ns; 5062 struct nvme_bdev *nbdev; 5063 uint32_t nsid; 5064 int rc; 5065 uint64_t num_sectors; 5066 5067 if (ctx) { 5068 /* Initialize this count to 1 to handle the populate functions 5069 * calling nvme_ctrlr_populate_namespace_done() immediately. 5070 */ 5071 ctx->populates_in_progress = 1; 5072 } 5073 5074 /* First loop over our existing namespaces and see if they have been 5075 * removed. */ 5076 nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr); 5077 while (nvme_ns != NULL) { 5078 next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns); 5079 5080 if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) { 5081 /* NS is still there or added again. Its attributes may have changed. */ 5082 ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id); 5083 if (nvme_ns->ns != ns) { 5084 assert(nvme_ns->ns == NULL); 5085 nvme_ns->ns = ns; 5086 NVME_CTRLR_DEBUGLOG(nvme_ctrlr, "NSID %u was added\n", nvme_ns->id); 5087 } 5088 5089 num_sectors = spdk_nvme_ns_get_num_sectors(ns); 5090 nbdev = nvme_ns->bdev; 5091 assert(nbdev != NULL); 5092 if (nbdev->disk.blockcnt != num_sectors) { 5093 NVME_CTRLR_NOTICELOG(nvme_ctrlr, 5094 "NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n", 5095 nvme_ns->id, 5096 nbdev->disk.name, 5097 nbdev->disk.blockcnt, 5098 num_sectors); 5099 rc = spdk_bdev_notify_blockcnt_change(&nbdev->disk, num_sectors); 5100 if (rc != 0) { 5101 NVME_CTRLR_ERRLOG(nvme_ctrlr, 5102 "Could not change num blocks for nvme bdev: name %s, errno: %d.\n", 5103 nbdev->disk.name, rc); 5104 } 5105 } 5106 } else { 5107 /* Namespace was removed */ 5108 nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns); 5109 } 5110 5111 nvme_ns = next; 5112 } 5113 5114 /* Loop through all of the namespaces at the nvme level and see if any of them are new */ 5115 nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr); 5116 while (nsid != 0) { 5117 nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid); 5118 5119 if (nvme_ns == NULL) { 5120 /* Found a new one */ 5121 nvme_ns = nvme_ns_alloc(); 5122 if (nvme_ns == NULL) { 5123 NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to allocate namespace\n"); 5124 /* This just fails to attach the namespace. It may work on a future attempt. */ 5125 continue; 5126 } 5127 5128 nvme_ns->id = nsid; 5129 nvme_ns->ctrlr = nvme_ctrlr; 5130 5131 nvme_ns->bdev = NULL; 5132 5133 if (ctx) { 5134 ctx->populates_in_progress++; 5135 } 5136 nvme_ns->probe_ctx = ctx; 5137 5138 pthread_mutex_lock(&nvme_ctrlr->mutex); 5139 RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns); 5140 pthread_mutex_unlock(&nvme_ctrlr->mutex); 5141 5142 nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns); 5143 } 5144 5145 nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid); 5146 } 5147 5148 if (ctx) { 5149 /* Decrement this count now that the loop is over to account 5150 * for the one we started with. If the count is then 0, we 5151 * know any populate_namespace functions completed immediately, 5152 * so we'll kick the callback here. 5153 */ 5154 ctx->populates_in_progress--; 5155 if (ctx->populates_in_progress == 0) { 5156 nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx); 5157 } 5158 } 5159 5160 } 5161 5162 static void 5163 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr) 5164 { 5165 struct nvme_ns *nvme_ns, *tmp; 5166 5167 RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) { 5168 nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns); 5169 } 5170 } 5171 5172 static uint32_t 5173 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr) 5174 { 5175 struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr; 5176 const struct spdk_nvme_ctrlr_data *cdata; 5177 uint32_t nsid, ns_count = 0; 5178 5179 cdata = spdk_nvme_ctrlr_get_data(ctrlr); 5180 5181 for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr); 5182 nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) { 5183 ns_count++; 5184 } 5185 5186 return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid * 5187 sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count * 5188 sizeof(uint32_t); 5189 } 5190 5191 static int 5192 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc, 5193 void *cb_arg) 5194 { 5195 struct nvme_ctrlr *nvme_ctrlr = cb_arg; 5196 struct nvme_ns *nvme_ns; 5197 uint32_t i, nsid; 5198 5199 for (i = 0; i < desc->num_of_nsid; i++) { 5200 nsid = desc->nsid[i]; 5201 if (nsid == 0) { 5202 continue; 5203 } 5204 5205 nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid); 5206 5207 if (nvme_ns == NULL) { 5208 /* Target told us that an inactive namespace had an ANA change */ 5209 continue; 5210 } 5211 5212 _nvme_ns_set_ana_state(nvme_ns, desc); 5213 } 5214 5215 return 0; 5216 } 5217 5218 static void 5219 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr) 5220 { 5221 struct nvme_ns *nvme_ns; 5222 5223 spdk_free(nvme_ctrlr->ana_log_page); 5224 nvme_ctrlr->ana_log_page = NULL; 5225 5226 for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr); 5227 nvme_ns != NULL; 5228 nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) { 5229 nvme_ns->ana_state_updating = false; 5230 nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE; 5231 } 5232 } 5233 5234 static void 5235 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl) 5236 { 5237 struct nvme_ctrlr *nvme_ctrlr = ctx; 5238 5239 if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) { 5240 bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states, 5241 nvme_ctrlr); 5242 } else { 5243 bdev_nvme_disable_read_ana_log_page(nvme_ctrlr); 5244 } 5245 5246 pthread_mutex_lock(&nvme_ctrlr->mutex); 5247 5248 assert(nvme_ctrlr->ana_log_page_updating == true); 5249 nvme_ctrlr->ana_log_page_updating = false; 5250 5251 if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) { 5252 pthread_mutex_unlock(&nvme_ctrlr->mutex); 5253 5254 nvme_ctrlr_unregister(nvme_ctrlr); 5255 } else { 5256 pthread_mutex_unlock(&nvme_ctrlr->mutex); 5257 5258 bdev_nvme_clear_io_path_caches(nvme_ctrlr); 5259 } 5260 } 5261 5262 static int 5263 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr) 5264 { 5265 uint32_t ana_log_page_size; 5266 int rc; 5267 5268 if (nvme_ctrlr->ana_log_page == NULL) { 5269 return -EINVAL; 5270 } 5271 5272 ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr); 5273 5274 if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) { 5275 NVME_CTRLR_ERRLOG(nvme_ctrlr, 5276 "ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n", 5277 ana_log_page_size, nvme_ctrlr->max_ana_log_page_size); 5278 return -EINVAL; 5279 } 5280 5281 pthread_mutex_lock(&nvme_ctrlr->mutex); 5282 if (!nvme_ctrlr_is_available(nvme_ctrlr) || 5283 nvme_ctrlr->ana_log_page_updating) { 5284 pthread_mutex_unlock(&nvme_ctrlr->mutex); 5285 return -EBUSY; 5286 } 5287 5288 nvme_ctrlr->ana_log_page_updating = true; 5289 pthread_mutex_unlock(&nvme_ctrlr->mutex); 5290 5291 rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr, 5292 SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS, 5293 SPDK_NVME_GLOBAL_NS_TAG, 5294 nvme_ctrlr->ana_log_page, 5295 ana_log_page_size, 0, 5296 nvme_ctrlr_read_ana_log_page_done, 5297 nvme_ctrlr); 5298 if (rc != 0) { 5299 nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL); 5300 } 5301 5302 return rc; 5303 } 5304 5305 static void 5306 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx) 5307 { 5308 } 5309 5310 struct bdev_nvme_set_preferred_path_ctx { 5311 struct spdk_bdev_desc *desc; 5312 struct nvme_ns *nvme_ns; 5313 bdev_nvme_set_preferred_path_cb cb_fn; 5314 void *cb_arg; 5315 }; 5316 5317 static void 5318 bdev_nvme_set_preferred_path_done(struct nvme_bdev *nbdev, void *_ctx, int status) 5319 { 5320 struct bdev_nvme_set_preferred_path_ctx *ctx = _ctx; 5321 5322 assert(ctx != NULL); 5323 assert(ctx->desc != NULL); 5324 assert(ctx->cb_fn != NULL); 5325 5326 spdk_bdev_close(ctx->desc); 5327 5328 ctx->cb_fn(ctx->cb_arg, status); 5329 5330 free(ctx); 5331 } 5332 5333 static void 5334 _bdev_nvme_set_preferred_path(struct nvme_bdev_channel_iter *i, 5335 struct nvme_bdev *nbdev, 5336 struct nvme_bdev_channel *nbdev_ch, void *_ctx) 5337 { 5338 struct bdev_nvme_set_preferred_path_ctx *ctx = _ctx; 5339 struct nvme_io_path *io_path, *prev; 5340 5341 prev = NULL; 5342 STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) { 5343 if (io_path->nvme_ns == ctx->nvme_ns) { 5344 break; 5345 } 5346 prev = io_path; 5347 } 5348 5349 if (io_path != NULL) { 5350 if (prev != NULL) { 5351 STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq); 5352 STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq); 5353 } 5354 5355 /* We can set io_path to nbdev_ch->current_io_path directly here. 5356 * However, it needs to be conditional. To simplify the code, 5357 * just clear nbdev_ch->current_io_path and let find_io_path() 5358 * fill it. 5359 * 5360 * Automatic failback may be disabled. Hence even if the io_path is 5361 * already at the head, clear nbdev_ch->current_io_path. 5362 */ 5363 bdev_nvme_clear_current_io_path(nbdev_ch); 5364 } 5365 5366 nvme_bdev_for_each_channel_continue(i, 0); 5367 } 5368 5369 static struct nvme_ns * 5370 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid) 5371 { 5372 struct nvme_ns *nvme_ns, *prev; 5373 const struct spdk_nvme_ctrlr_data *cdata; 5374 5375 prev = NULL; 5376 TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) { 5377 cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr); 5378 5379 if (cdata->cntlid == cntlid) { 5380 break; 5381 } 5382 prev = nvme_ns; 5383 } 5384 5385 if (nvme_ns != NULL && prev != NULL) { 5386 TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq); 5387 TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq); 5388 } 5389 5390 return nvme_ns; 5391 } 5392 5393 /* This function supports only multipath mode. There is only a single I/O path 5394 * for each NVMe-oF controller. Hence, just move the matched I/O path to the 5395 * head of the I/O path list for each NVMe bdev channel. 5396 * 5397 * NVMe bdev channel may be acquired after completing this function. move the 5398 * matched namespace to the head of the namespace list for the NVMe bdev too. 5399 */ 5400 void 5401 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid, 5402 bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg) 5403 { 5404 struct bdev_nvme_set_preferred_path_ctx *ctx; 5405 struct spdk_bdev *bdev; 5406 struct nvme_bdev *nbdev; 5407 int rc = 0; 5408 5409 assert(cb_fn != NULL); 5410 5411 ctx = calloc(1, sizeof(*ctx)); 5412 if (ctx == NULL) { 5413 SPDK_ERRLOG("Failed to alloc context.\n"); 5414 rc = -ENOMEM; 5415 goto err_alloc; 5416 } 5417 5418 ctx->cb_fn = cb_fn; 5419 ctx->cb_arg = cb_arg; 5420 5421 rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc); 5422 if (rc != 0) { 5423 SPDK_ERRLOG("Failed to open bdev %s.\n", name); 5424 goto err_open; 5425 } 5426 5427 bdev = spdk_bdev_desc_get_bdev(ctx->desc); 5428 5429 if (bdev->module != &nvme_if) { 5430 SPDK_ERRLOG("bdev %s is not registered in this module.\n", name); 5431 rc = -ENODEV; 5432 goto err_bdev; 5433 } 5434 5435 nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk); 5436 5437 pthread_mutex_lock(&nbdev->mutex); 5438 5439 ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid); 5440 if (ctx->nvme_ns == NULL) { 5441 pthread_mutex_unlock(&nbdev->mutex); 5442 5443 SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid); 5444 rc = -ENODEV; 5445 goto err_bdev; 5446 } 5447 5448 pthread_mutex_unlock(&nbdev->mutex); 5449 5450 nvme_bdev_for_each_channel(nbdev, 5451 _bdev_nvme_set_preferred_path, 5452 ctx, 5453 bdev_nvme_set_preferred_path_done); 5454 return; 5455 5456 err_bdev: 5457 spdk_bdev_close(ctx->desc); 5458 err_open: 5459 free(ctx); 5460 err_alloc: 5461 cb_fn(cb_arg, rc); 5462 } 5463 5464 struct bdev_nvme_set_multipath_policy_ctx { 5465 struct spdk_bdev_desc *desc; 5466 spdk_bdev_nvme_set_multipath_policy_cb cb_fn; 5467 void *cb_arg; 5468 }; 5469 5470 static void 5471 bdev_nvme_set_multipath_policy_done(struct nvme_bdev *nbdev, void *_ctx, int status) 5472 { 5473 struct bdev_nvme_set_multipath_policy_ctx *ctx = _ctx; 5474 5475 assert(ctx != NULL); 5476 assert(ctx->desc != NULL); 5477 assert(ctx->cb_fn != NULL); 5478 5479 spdk_bdev_close(ctx->desc); 5480 5481 ctx->cb_fn(ctx->cb_arg, status); 5482 5483 free(ctx); 5484 } 5485 5486 static void 5487 _bdev_nvme_set_multipath_policy(struct nvme_bdev_channel_iter *i, 5488 struct nvme_bdev *nbdev, 5489 struct nvme_bdev_channel *nbdev_ch, void *ctx) 5490 { 5491 nbdev_ch->mp_policy = nbdev->mp_policy; 5492 nbdev_ch->mp_selector = nbdev->mp_selector; 5493 nbdev_ch->rr_min_io = nbdev->rr_min_io; 5494 bdev_nvme_clear_current_io_path(nbdev_ch); 5495 5496 nvme_bdev_for_each_channel_continue(i, 0); 5497 } 5498 5499 void 5500 spdk_bdev_nvme_set_multipath_policy(const char *name, enum spdk_bdev_nvme_multipath_policy policy, 5501 enum spdk_bdev_nvme_multipath_selector selector, uint32_t rr_min_io, 5502 spdk_bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg) 5503 { 5504 struct bdev_nvme_set_multipath_policy_ctx *ctx; 5505 struct spdk_bdev *bdev; 5506 struct nvme_bdev *nbdev; 5507 int rc; 5508 5509 assert(cb_fn != NULL); 5510 5511 switch (policy) { 5512 case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE: 5513 break; 5514 case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE: 5515 switch (selector) { 5516 case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN: 5517 if (rr_min_io == UINT32_MAX) { 5518 rr_min_io = 1; 5519 } else if (rr_min_io == 0) { 5520 rc = -EINVAL; 5521 goto exit; 5522 } 5523 break; 5524 case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH: 5525 break; 5526 default: 5527 rc = -EINVAL; 5528 goto exit; 5529 } 5530 break; 5531 default: 5532 rc = -EINVAL; 5533 goto exit; 5534 } 5535 5536 ctx = calloc(1, sizeof(*ctx)); 5537 if (ctx == NULL) { 5538 SPDK_ERRLOG("Failed to alloc context.\n"); 5539 rc = -ENOMEM; 5540 goto exit; 5541 } 5542 5543 ctx->cb_fn = cb_fn; 5544 ctx->cb_arg = cb_arg; 5545 5546 rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc); 5547 if (rc != 0) { 5548 SPDK_ERRLOG("Failed to open bdev %s.\n", name); 5549 rc = -ENODEV; 5550 goto err_open; 5551 } 5552 5553 bdev = spdk_bdev_desc_get_bdev(ctx->desc); 5554 if (bdev->module != &nvme_if) { 5555 SPDK_ERRLOG("bdev %s is not registered in this module.\n", name); 5556 rc = -ENODEV; 5557 goto err_module; 5558 } 5559 nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk); 5560 5561 pthread_mutex_lock(&nbdev->mutex); 5562 nbdev->mp_policy = policy; 5563 nbdev->mp_selector = selector; 5564 nbdev->rr_min_io = rr_min_io; 5565 pthread_mutex_unlock(&nbdev->mutex); 5566 5567 nvme_bdev_for_each_channel(nbdev, 5568 _bdev_nvme_set_multipath_policy, 5569 ctx, 5570 bdev_nvme_set_multipath_policy_done); 5571 return; 5572 5573 err_module: 5574 spdk_bdev_close(ctx->desc); 5575 err_open: 5576 free(ctx); 5577 exit: 5578 cb_fn(cb_arg, rc); 5579 } 5580 5581 static void 5582 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl) 5583 { 5584 struct nvme_ctrlr *nvme_ctrlr = arg; 5585 union spdk_nvme_async_event_completion event; 5586 5587 if (spdk_nvme_cpl_is_error(cpl)) { 5588 SPDK_WARNLOG("AER request execute failed\n"); 5589 return; 5590 } 5591 5592 event.raw = cpl->cdw0; 5593 if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) && 5594 (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) { 5595 nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL); 5596 } else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) && 5597 (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) { 5598 nvme_ctrlr_read_ana_log_page(nvme_ctrlr); 5599 } 5600 } 5601 5602 static void 5603 free_nvme_async_probe_ctx(struct nvme_async_probe_ctx *ctx) 5604 { 5605 spdk_keyring_put_key(ctx->drv_opts.tls_psk); 5606 spdk_keyring_put_key(ctx->drv_opts.dhchap_key); 5607 spdk_keyring_put_key(ctx->drv_opts.dhchap_ctrlr_key); 5608 free(ctx->base_name); 5609 free(ctx); 5610 } 5611 5612 static void 5613 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, int rc) 5614 { 5615 if (ctx->cb_fn) { 5616 ctx->cb_fn(ctx->cb_ctx, ctx->reported_bdevs, rc); 5617 } 5618 5619 ctx->namespaces_populated = true; 5620 if (ctx->probe_done) { 5621 /* The probe was already completed, so we need to free the context 5622 * here. This can happen for cases like OCSSD, where we need to 5623 * send additional commands to the SSD after attach. 5624 */ 5625 free_nvme_async_probe_ctx(ctx); 5626 } 5627 } 5628 5629 static int 5630 bdev_nvme_remove_poller(void *ctx) 5631 { 5632 struct spdk_nvme_transport_id trid_pcie; 5633 5634 if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) { 5635 spdk_poller_unregister(&g_hotplug_poller); 5636 return SPDK_POLLER_IDLE; 5637 } 5638 5639 memset(&trid_pcie, 0, sizeof(trid_pcie)); 5640 spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE); 5641 5642 if (spdk_nvme_scan_attached(&trid_pcie)) { 5643 SPDK_ERRLOG_RATELIMIT("spdk_nvme_scan_attached() failed\n"); 5644 } 5645 5646 return SPDK_POLLER_BUSY; 5647 } 5648 5649 static void 5650 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr, 5651 struct nvme_async_probe_ctx *ctx) 5652 { 5653 struct spdk_nvme_transport_id *trid = &nvme_ctrlr->active_path_id->trid; 5654 5655 if (spdk_nvme_trtype_is_fabrics(trid->trtype)) { 5656 NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr was created to %s:%s\n", 5657 trid->traddr, trid->trsvcid); 5658 } else { 5659 NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr was created\n"); 5660 } 5661 5662 spdk_io_device_register(nvme_ctrlr, 5663 bdev_nvme_create_ctrlr_channel_cb, 5664 bdev_nvme_destroy_ctrlr_channel_cb, 5665 sizeof(struct nvme_ctrlr_channel), 5666 nvme_ctrlr->nbdev_ctrlr->name); 5667 5668 nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx); 5669 5670 if (g_hotplug_poller == NULL) { 5671 g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_remove_poller, NULL, 5672 NVME_HOTPLUG_POLL_PERIOD_DEFAULT); 5673 } 5674 } 5675 5676 static void 5677 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl) 5678 { 5679 struct nvme_ctrlr *nvme_ctrlr = _ctx; 5680 struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx; 5681 5682 nvme_ctrlr->probe_ctx = NULL; 5683 5684 if (spdk_nvme_cpl_is_error(cpl)) { 5685 nvme_ctrlr_delete(nvme_ctrlr); 5686 5687 if (ctx != NULL) { 5688 ctx->reported_bdevs = 0; 5689 populate_namespaces_cb(ctx, -1); 5690 } 5691 return; 5692 } 5693 5694 nvme_ctrlr_create_done(nvme_ctrlr, ctx); 5695 } 5696 5697 static int 5698 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr, 5699 struct nvme_async_probe_ctx *ctx) 5700 { 5701 struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr; 5702 const struct spdk_nvme_ctrlr_data *cdata; 5703 uint32_t ana_log_page_size; 5704 5705 cdata = spdk_nvme_ctrlr_get_data(ctrlr); 5706 5707 /* Set buffer size enough to include maximum number of allowed namespaces. */ 5708 ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid * 5709 sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan * 5710 sizeof(uint32_t); 5711 5712 nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL, 5713 SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA); 5714 if (nvme_ctrlr->ana_log_page == NULL) { 5715 NVME_CTRLR_ERRLOG(nvme_ctrlr, "could not allocate ANA log page buffer\n"); 5716 return -ENXIO; 5717 } 5718 5719 /* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned. 5720 * Hence copy each descriptor to a temporary area when parsing it. 5721 * 5722 * Allocate a buffer whose size is as large as ANA log page buffer because 5723 * we do not know the size of a descriptor until actually reading it. 5724 */ 5725 nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size); 5726 if (nvme_ctrlr->copied_ana_desc == NULL) { 5727 NVME_CTRLR_ERRLOG(nvme_ctrlr, "could not allocate a buffer to parse ANA descriptor\n"); 5728 return -ENOMEM; 5729 } 5730 5731 nvme_ctrlr->max_ana_log_page_size = ana_log_page_size; 5732 5733 nvme_ctrlr->probe_ctx = ctx; 5734 5735 /* Then, set the read size only to include the current active namespaces. */ 5736 ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr); 5737 5738 if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) { 5739 NVME_CTRLR_ERRLOG(nvme_ctrlr, "ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n", 5740 ana_log_page_size, nvme_ctrlr->max_ana_log_page_size); 5741 return -EINVAL; 5742 } 5743 5744 return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, 5745 SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS, 5746 SPDK_NVME_GLOBAL_NS_TAG, 5747 nvme_ctrlr->ana_log_page, 5748 ana_log_page_size, 0, 5749 nvme_ctrlr_init_ana_log_page_done, 5750 nvme_ctrlr); 5751 } 5752 5753 /* hostnqn and subnqn were already verified before attaching a controller. 5754 * Hence check only the multipath capability and cntlid here. 5755 */ 5756 static bool 5757 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr) 5758 { 5759 struct nvme_ctrlr *tmp; 5760 const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata; 5761 5762 cdata = spdk_nvme_ctrlr_get_data(ctrlr); 5763 5764 if (!cdata->cmic.multi_ctrlr) { 5765 SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid); 5766 return false; 5767 } 5768 5769 TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) { 5770 tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr); 5771 5772 if (!tmp_cdata->cmic.multi_ctrlr) { 5773 NVME_CTRLR_ERRLOG(tmp, "Ctrlr%u does not support multipath.\n", cdata->cntlid); 5774 return false; 5775 } 5776 if (cdata->cntlid == tmp_cdata->cntlid) { 5777 NVME_CTRLR_ERRLOG(tmp, "cntlid %u are duplicated.\n", tmp_cdata->cntlid); 5778 return false; 5779 } 5780 } 5781 5782 return true; 5783 } 5784 5785 5786 static int 5787 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr) 5788 { 5789 struct nvme_bdev_ctrlr *nbdev_ctrlr; 5790 struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr; 5791 struct nvme_ctrlr *nctrlr; 5792 int rc = 0; 5793 5794 pthread_mutex_lock(&g_bdev_nvme_mutex); 5795 5796 nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name); 5797 if (nbdev_ctrlr != NULL) { 5798 if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) { 5799 rc = -EINVAL; 5800 goto exit; 5801 } 5802 TAILQ_FOREACH(nctrlr, &nbdev_ctrlr->ctrlrs, tailq) { 5803 if (nctrlr->opts.multipath != nvme_ctrlr->opts.multipath) { 5804 /* All controllers with the same name must be configured the same 5805 * way, either for multipath or failover. If the configuration doesn't 5806 * match - report error. 5807 */ 5808 rc = -EINVAL; 5809 goto exit; 5810 } 5811 } 5812 } else { 5813 nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr)); 5814 if (nbdev_ctrlr == NULL) { 5815 NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to allocate nvme_bdev_ctrlr.\n"); 5816 rc = -ENOMEM; 5817 goto exit; 5818 } 5819 nbdev_ctrlr->name = strdup(name); 5820 if (nbdev_ctrlr->name == NULL) { 5821 NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to allocate name of nvme_bdev_ctrlr.\n"); 5822 free(nbdev_ctrlr); 5823 goto exit; 5824 } 5825 TAILQ_INIT(&nbdev_ctrlr->ctrlrs); 5826 TAILQ_INIT(&nbdev_ctrlr->bdevs); 5827 TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq); 5828 } 5829 nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr; 5830 TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq); 5831 exit: 5832 pthread_mutex_unlock(&g_bdev_nvme_mutex); 5833 return rc; 5834 } 5835 5836 static int 5837 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr, 5838 const char *name, 5839 const struct spdk_nvme_transport_id *trid, 5840 struct nvme_async_probe_ctx *ctx) 5841 { 5842 struct nvme_ctrlr *nvme_ctrlr; 5843 struct nvme_path_id *path_id; 5844 const struct spdk_nvme_ctrlr_data *cdata; 5845 struct spdk_event_handler_opts opts = { 5846 .opts_size = SPDK_SIZEOF(&opts, fd_type), 5847 }; 5848 uint64_t period; 5849 int fd, rc; 5850 5851 nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr)); 5852 if (nvme_ctrlr == NULL) { 5853 SPDK_ERRLOG("Failed to allocate device struct\n"); 5854 return -ENOMEM; 5855 } 5856 5857 rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL); 5858 if (rc != 0) { 5859 free(nvme_ctrlr); 5860 return rc; 5861 } 5862 5863 TAILQ_INIT(&nvme_ctrlr->trids); 5864 TAILQ_INIT(&nvme_ctrlr->pending_resets); 5865 RB_INIT(&nvme_ctrlr->namespaces); 5866 5867 /* Get another reference to the key, so the first one can be released from probe_ctx */ 5868 if (ctx != NULL) { 5869 if (ctx->drv_opts.tls_psk != NULL) { 5870 nvme_ctrlr->psk = spdk_keyring_get_key( 5871 spdk_key_get_name(ctx->drv_opts.tls_psk)); 5872 if (nvme_ctrlr->psk == NULL) { 5873 /* Could only happen if the key was removed in the meantime */ 5874 SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n", 5875 spdk_key_get_name(ctx->drv_opts.tls_psk)); 5876 rc = -ENOKEY; 5877 goto err; 5878 } 5879 } 5880 5881 if (ctx->drv_opts.dhchap_key != NULL) { 5882 nvme_ctrlr->dhchap_key = spdk_keyring_get_key( 5883 spdk_key_get_name(ctx->drv_opts.dhchap_key)); 5884 if (nvme_ctrlr->dhchap_key == NULL) { 5885 SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n", 5886 spdk_key_get_name(ctx->drv_opts.dhchap_key)); 5887 rc = -ENOKEY; 5888 goto err; 5889 } 5890 } 5891 5892 if (ctx->drv_opts.dhchap_ctrlr_key != NULL) { 5893 nvme_ctrlr->dhchap_ctrlr_key = 5894 spdk_keyring_get_key( 5895 spdk_key_get_name(ctx->drv_opts.dhchap_ctrlr_key)); 5896 if (nvme_ctrlr->dhchap_ctrlr_key == NULL) { 5897 SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n", 5898 spdk_key_get_name(ctx->drv_opts.dhchap_ctrlr_key)); 5899 rc = -ENOKEY; 5900 goto err; 5901 } 5902 } 5903 } 5904 5905 /* Check if we manage to enable interrupts on the controller. */ 5906 if (spdk_interrupt_mode_is_enabled() && ctx != NULL && !ctx->drv_opts.enable_interrupts) { 5907 SPDK_ERRLOG("Failed to enable interrupts on the controller\n"); 5908 rc = -ENOTSUP; 5909 goto err; 5910 } 5911 5912 path_id = calloc(1, sizeof(*path_id)); 5913 if (path_id == NULL) { 5914 SPDK_ERRLOG("Failed to allocate trid entry pointer\n"); 5915 rc = -ENOMEM; 5916 goto err; 5917 } 5918 5919 path_id->trid = *trid; 5920 if (ctx != NULL) { 5921 memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr)); 5922 memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid)); 5923 } 5924 nvme_ctrlr->active_path_id = path_id; 5925 TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link); 5926 5927 nvme_ctrlr->thread = spdk_get_thread(); 5928 nvme_ctrlr->ctrlr = ctrlr; 5929 nvme_ctrlr->ref = 1; 5930 5931 if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) { 5932 SPDK_ERRLOG("OCSSDs are not supported"); 5933 rc = -ENOTSUP; 5934 goto err; 5935 } 5936 5937 if (ctx != NULL) { 5938 memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts)); 5939 } else { 5940 spdk_bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts); 5941 } 5942 5943 period = spdk_interrupt_mode_is_enabled() ? 0 : g_opts.nvme_adminq_poll_period_us; 5944 5945 nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr, 5946 period); 5947 5948 if (spdk_interrupt_mode_is_enabled()) { 5949 spdk_poller_register_interrupt(nvme_ctrlr->adminq_timer_poller, NULL, NULL); 5950 5951 fd = spdk_nvme_ctrlr_get_admin_qp_fd(nvme_ctrlr->ctrlr, &opts); 5952 if (fd < 0) { 5953 rc = fd; 5954 goto err; 5955 } 5956 5957 nvme_ctrlr->intr = SPDK_INTERRUPT_REGISTER_EXT(fd, bdev_nvme_poll_adminq, 5958 nvme_ctrlr, &opts); 5959 if (!nvme_ctrlr->intr) { 5960 rc = -EINVAL; 5961 goto err; 5962 } 5963 } 5964 5965 if (g_opts.timeout_us > 0) { 5966 /* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */ 5967 /* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */ 5968 uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ? 5969 g_opts.timeout_us : g_opts.timeout_admin_us; 5970 spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us, 5971 adm_timeout_us, timeout_cb, nvme_ctrlr); 5972 } 5973 5974 spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr); 5975 spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr); 5976 5977 if (spdk_nvme_ctrlr_get_flags(ctrlr) & 5978 SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) { 5979 nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr); 5980 } 5981 5982 rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr); 5983 if (rc != 0) { 5984 goto err; 5985 } 5986 5987 cdata = spdk_nvme_ctrlr_get_data(ctrlr); 5988 5989 if (cdata->cmic.ana_reporting) { 5990 rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx); 5991 if (rc == 0) { 5992 return 0; 5993 } 5994 } else { 5995 nvme_ctrlr_create_done(nvme_ctrlr, ctx); 5996 return 0; 5997 } 5998 5999 err: 6000 nvme_ctrlr_delete(nvme_ctrlr); 6001 return rc; 6002 } 6003 6004 void 6005 spdk_bdev_nvme_get_default_ctrlr_opts(struct spdk_bdev_nvme_ctrlr_opts *opts) 6006 { 6007 opts->prchk_flags = 0; 6008 opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec; 6009 opts->reconnect_delay_sec = g_opts.reconnect_delay_sec; 6010 opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec; 6011 opts->multipath = true; 6012 } 6013 6014 static void 6015 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, 6016 struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts) 6017 { 6018 char *name; 6019 6020 name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++); 6021 if (!name) { 6022 SPDK_ERRLOG("Failed to assign name to NVMe device\n"); 6023 return; 6024 } 6025 6026 if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) { 6027 SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name); 6028 } else { 6029 SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name); 6030 } 6031 6032 free(name); 6033 } 6034 6035 static void 6036 _nvme_ctrlr_destruct(void *ctx) 6037 { 6038 struct nvme_ctrlr *nvme_ctrlr = ctx; 6039 6040 nvme_ctrlr_depopulate_namespaces(nvme_ctrlr); 6041 nvme_ctrlr_put_ref(nvme_ctrlr); 6042 } 6043 6044 static int 6045 bdev_nvme_delete_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool hotplug) 6046 { 6047 struct nvme_probe_skip_entry *entry; 6048 6049 /* The controller's destruction was already started */ 6050 if (nvme_ctrlr->destruct) { 6051 return -EALREADY; 6052 } 6053 6054 if (!hotplug && 6055 nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) { 6056 entry = calloc(1, sizeof(*entry)); 6057 if (!entry) { 6058 return -ENOMEM; 6059 } 6060 entry->trid = nvme_ctrlr->active_path_id->trid; 6061 TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq); 6062 } 6063 6064 nvme_ctrlr->destruct = true; 6065 return 0; 6066 } 6067 6068 static int 6069 bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug) 6070 { 6071 int rc; 6072 6073 pthread_mutex_lock(&nvme_ctrlr->mutex); 6074 rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, hotplug); 6075 pthread_mutex_unlock(&nvme_ctrlr->mutex); 6076 6077 if (rc == 0) { 6078 _nvme_ctrlr_destruct(nvme_ctrlr); 6079 } else if (rc == -EALREADY) { 6080 rc = 0; 6081 } 6082 6083 return rc; 6084 } 6085 6086 static void 6087 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr) 6088 { 6089 struct nvme_ctrlr *nvme_ctrlr = cb_ctx; 6090 6091 bdev_nvme_delete_ctrlr(nvme_ctrlr, true); 6092 } 6093 6094 static int 6095 bdev_nvme_hotplug_probe(void *arg) 6096 { 6097 if (g_hotplug_probe_ctx == NULL) { 6098 spdk_poller_unregister(&g_hotplug_probe_poller); 6099 return SPDK_POLLER_IDLE; 6100 } 6101 6102 if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) { 6103 g_hotplug_probe_ctx = NULL; 6104 spdk_poller_unregister(&g_hotplug_probe_poller); 6105 } 6106 6107 return SPDK_POLLER_BUSY; 6108 } 6109 6110 static int 6111 bdev_nvme_hotplug(void *arg) 6112 { 6113 struct spdk_nvme_transport_id trid_pcie; 6114 6115 if (g_hotplug_probe_ctx) { 6116 return SPDK_POLLER_BUSY; 6117 } 6118 6119 memset(&trid_pcie, 0, sizeof(trid_pcie)); 6120 spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE); 6121 6122 g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL, 6123 hotplug_probe_cb, attach_cb, NULL); 6124 6125 if (g_hotplug_probe_ctx) { 6126 assert(g_hotplug_probe_poller == NULL); 6127 g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000); 6128 } 6129 6130 return SPDK_POLLER_BUSY; 6131 } 6132 6133 void 6134 spdk_bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts, size_t opts_size) 6135 { 6136 if (!opts) { 6137 SPDK_ERRLOG("opts should not be NULL\n"); 6138 return; 6139 } 6140 6141 if (!opts_size) { 6142 SPDK_ERRLOG("opts_size should not be zero value\n"); 6143 return; 6144 } 6145 6146 opts->opts_size = opts_size; 6147 6148 #define SET_FIELD(field, defval) \ 6149 opts->field = SPDK_GET_FIELD(&g_opts, field, defval, opts_size); \ 6150 6151 SET_FIELD(action_on_timeout, 0); 6152 SET_FIELD(keep_alive_timeout_ms, 0); 6153 SET_FIELD(timeout_us, 0); 6154 SET_FIELD(timeout_admin_us, 0); 6155 SET_FIELD(transport_retry_count, 0); 6156 SET_FIELD(arbitration_burst, 0); 6157 SET_FIELD(low_priority_weight, 0); 6158 SET_FIELD(medium_priority_weight, 0); 6159 SET_FIELD(high_priority_weight, 0); 6160 SET_FIELD(io_queue_requests, 0); 6161 SET_FIELD(nvme_adminq_poll_period_us, 0); 6162 SET_FIELD(nvme_ioq_poll_period_us, 0); 6163 SET_FIELD(delay_cmd_submit, 0); 6164 SET_FIELD(bdev_retry_count, 0); 6165 SET_FIELD(ctrlr_loss_timeout_sec, 0); 6166 SET_FIELD(reconnect_delay_sec, 0); 6167 SET_FIELD(fast_io_fail_timeout_sec, 0); 6168 SET_FIELD(transport_ack_timeout, 0); 6169 SET_FIELD(disable_auto_failback, false); 6170 SET_FIELD(generate_uuids, false); 6171 SET_FIELD(transport_tos, 0); 6172 SET_FIELD(nvme_error_stat, false); 6173 SET_FIELD(io_path_stat, false); 6174 SET_FIELD(allow_accel_sequence, false); 6175 SET_FIELD(rdma_srq_size, 0); 6176 SET_FIELD(rdma_max_cq_size, 0); 6177 SET_FIELD(rdma_cm_event_timeout_ms, 0); 6178 SET_FIELD(dhchap_digests, 0); 6179 SET_FIELD(dhchap_dhgroups, 0); 6180 6181 #undef SET_FIELD 6182 6183 /* Do not remove this statement, you should always update this statement when you adding a new field, 6184 * and do not forget to add the SET_FIELD statement for your added field. */ 6185 SPDK_STATIC_ASSERT(sizeof(struct spdk_bdev_nvme_opts) == 120, "Incorrect size"); 6186 } 6187 6188 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec, 6189 uint32_t reconnect_delay_sec, 6190 uint32_t fast_io_fail_timeout_sec); 6191 6192 static int 6193 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts) 6194 { 6195 if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) { 6196 /* Can't set timeout_admin_us without also setting timeout_us */ 6197 SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n"); 6198 return -EINVAL; 6199 } 6200 6201 if (opts->bdev_retry_count < -1) { 6202 SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n"); 6203 return -EINVAL; 6204 } 6205 6206 if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec, 6207 opts->reconnect_delay_sec, 6208 opts->fast_io_fail_timeout_sec)) { 6209 return -EINVAL; 6210 } 6211 6212 return 0; 6213 } 6214 6215 int 6216 spdk_bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts) 6217 { 6218 if (!opts) { 6219 SPDK_ERRLOG("opts cannot be NULL\n"); 6220 return -1; 6221 } 6222 6223 if (!opts->opts_size) { 6224 SPDK_ERRLOG("opts_size inside opts cannot be zero value\n"); 6225 return -1; 6226 } 6227 6228 int ret; 6229 6230 ret = bdev_nvme_validate_opts(opts); 6231 if (ret) { 6232 SPDK_WARNLOG("Failed to set nvme opts.\n"); 6233 return ret; 6234 } 6235 6236 if (g_bdev_nvme_init_thread != NULL) { 6237 if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) { 6238 return -EPERM; 6239 } 6240 } 6241 6242 if (opts->rdma_srq_size != 0 || 6243 opts->rdma_max_cq_size != 0 || 6244 opts->rdma_cm_event_timeout_ms != 0) { 6245 struct spdk_nvme_transport_opts drv_opts; 6246 6247 spdk_nvme_transport_get_opts(&drv_opts, sizeof(drv_opts)); 6248 if (opts->rdma_srq_size != 0) { 6249 drv_opts.rdma_srq_size = opts->rdma_srq_size; 6250 } 6251 if (opts->rdma_max_cq_size != 0) { 6252 drv_opts.rdma_max_cq_size = opts->rdma_max_cq_size; 6253 } 6254 if (opts->rdma_cm_event_timeout_ms != 0) { 6255 drv_opts.rdma_cm_event_timeout_ms = opts->rdma_cm_event_timeout_ms; 6256 } 6257 6258 ret = spdk_nvme_transport_set_opts(&drv_opts, sizeof(drv_opts)); 6259 if (ret) { 6260 SPDK_ERRLOG("Failed to set NVMe transport opts.\n"); 6261 return ret; 6262 } 6263 } 6264 6265 #define SET_FIELD(field, defval) \ 6266 g_opts.field = SPDK_GET_FIELD(opts, field, defval, opts->opts_size); \ 6267 6268 SET_FIELD(action_on_timeout, 0); 6269 SET_FIELD(keep_alive_timeout_ms, 0); 6270 SET_FIELD(timeout_us, 0); 6271 SET_FIELD(timeout_admin_us, 0); 6272 SET_FIELD(transport_retry_count, 0); 6273 SET_FIELD(arbitration_burst, 0); 6274 SET_FIELD(low_priority_weight, 0); 6275 SET_FIELD(medium_priority_weight, 0); 6276 SET_FIELD(high_priority_weight, 0); 6277 SET_FIELD(io_queue_requests, 0); 6278 SET_FIELD(nvme_adminq_poll_period_us, 0); 6279 SET_FIELD(nvme_ioq_poll_period_us, 0); 6280 SET_FIELD(delay_cmd_submit, 0); 6281 SET_FIELD(bdev_retry_count, 0); 6282 SET_FIELD(ctrlr_loss_timeout_sec, 0); 6283 SET_FIELD(reconnect_delay_sec, 0); 6284 SET_FIELD(fast_io_fail_timeout_sec, 0); 6285 SET_FIELD(transport_ack_timeout, 0); 6286 SET_FIELD(disable_auto_failback, false); 6287 SET_FIELD(generate_uuids, false); 6288 SET_FIELD(transport_tos, 0); 6289 SET_FIELD(nvme_error_stat, false); 6290 SET_FIELD(io_path_stat, false); 6291 SET_FIELD(allow_accel_sequence, false); 6292 SET_FIELD(rdma_srq_size, 0); 6293 SET_FIELD(rdma_max_cq_size, 0); 6294 SET_FIELD(rdma_cm_event_timeout_ms, 0); 6295 SET_FIELD(dhchap_digests, 0); 6296 SET_FIELD(dhchap_dhgroups, 0); 6297 6298 g_opts.opts_size = opts->opts_size; 6299 6300 #undef SET_FIELD 6301 6302 return 0; 6303 } 6304 6305 struct set_nvme_hotplug_ctx { 6306 uint64_t period_us; 6307 bool enabled; 6308 spdk_msg_fn fn; 6309 void *fn_ctx; 6310 }; 6311 6312 static void 6313 set_nvme_hotplug_period_cb(void *_ctx) 6314 { 6315 struct set_nvme_hotplug_ctx *ctx = _ctx; 6316 6317 spdk_poller_unregister(&g_hotplug_poller); 6318 if (ctx->enabled) { 6319 g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us); 6320 } else { 6321 g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_remove_poller, NULL, 6322 NVME_HOTPLUG_POLL_PERIOD_DEFAULT); 6323 } 6324 6325 g_nvme_hotplug_poll_period_us = ctx->period_us; 6326 g_nvme_hotplug_enabled = ctx->enabled; 6327 if (ctx->fn) { 6328 ctx->fn(ctx->fn_ctx); 6329 } 6330 6331 free(ctx); 6332 } 6333 6334 int 6335 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx) 6336 { 6337 struct set_nvme_hotplug_ctx *ctx; 6338 6339 if (enabled == true && !spdk_process_is_primary()) { 6340 return -EPERM; 6341 } 6342 6343 ctx = calloc(1, sizeof(*ctx)); 6344 if (ctx == NULL) { 6345 return -ENOMEM; 6346 } 6347 6348 period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us; 6349 ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX); 6350 ctx->enabled = enabled; 6351 ctx->fn = cb; 6352 ctx->fn_ctx = cb_ctx; 6353 6354 spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx); 6355 return 0; 6356 } 6357 6358 static void 6359 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr, 6360 struct nvme_async_probe_ctx *ctx) 6361 { 6362 struct nvme_ns *nvme_ns; 6363 struct nvme_bdev *nvme_bdev; 6364 size_t j; 6365 6366 assert(nvme_ctrlr != NULL); 6367 6368 if (ctx->names == NULL) { 6369 ctx->reported_bdevs = 0; 6370 populate_namespaces_cb(ctx, 0); 6371 return; 6372 } 6373 6374 /* 6375 * Report the new bdevs that were created in this call. 6376 * There can be more than one bdev per NVMe controller. 6377 */ 6378 j = 0; 6379 6380 pthread_mutex_lock(&nvme_ctrlr->mutex); 6381 6382 nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr); 6383 while (nvme_ns != NULL) { 6384 nvme_bdev = nvme_ns->bdev; 6385 if (j < ctx->max_bdevs) { 6386 ctx->names[j] = nvme_bdev->disk.name; 6387 j++; 6388 } else { 6389 pthread_mutex_unlock(&nvme_ctrlr->mutex); 6390 6391 NVME_CTRLR_ERRLOG(nvme_ctrlr, 6392 "Maximum number of namespaces supported per NVMe controller is %du. " 6393 "Unable to return all names of created bdevs\n", 6394 ctx->max_bdevs); 6395 ctx->reported_bdevs = 0; 6396 populate_namespaces_cb(ctx, -ERANGE); 6397 return; 6398 } 6399 6400 nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns); 6401 } 6402 6403 pthread_mutex_unlock(&nvme_ctrlr->mutex); 6404 6405 ctx->reported_bdevs = j; 6406 populate_namespaces_cb(ctx, 0); 6407 } 6408 6409 static int 6410 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr, 6411 struct spdk_nvme_ctrlr *new_ctrlr, 6412 struct spdk_nvme_transport_id *trid) 6413 { 6414 struct nvme_path_id *tmp_trid; 6415 6416 if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) { 6417 NVME_CTRLR_ERRLOG(nvme_ctrlr, "PCIe failover is not supported.\n"); 6418 return -ENOTSUP; 6419 } 6420 6421 /* Currently we only support failover to the same transport type. */ 6422 if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) { 6423 NVME_CTRLR_WARNLOG(nvme_ctrlr, 6424 "Failover from trtype: %s to a different trtype: %s is not supported currently\n", 6425 spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype), 6426 spdk_nvme_transport_id_trtype_str(trid->trtype)); 6427 return -EINVAL; 6428 } 6429 6430 6431 /* Currently we only support failover to the same NQN. */ 6432 if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) { 6433 NVME_CTRLR_WARNLOG(nvme_ctrlr, 6434 "Failover from subnqn: %s to a different subnqn: %s is not supported currently\n", 6435 nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn); 6436 return -EINVAL; 6437 } 6438 6439 /* Skip all the other checks if we've already registered this path. */ 6440 TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) { 6441 if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) { 6442 NVME_CTRLR_WARNLOG(nvme_ctrlr, "This path (traddr: %s subnqn: %s) is already registered\n", 6443 trid->traddr, trid->subnqn); 6444 return -EALREADY; 6445 } 6446 } 6447 6448 return 0; 6449 } 6450 6451 static int 6452 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr, 6453 struct spdk_nvme_ctrlr *new_ctrlr) 6454 { 6455 struct nvme_ns *nvme_ns; 6456 struct spdk_nvme_ns *new_ns; 6457 6458 nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr); 6459 while (nvme_ns != NULL) { 6460 new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id); 6461 assert(new_ns != NULL); 6462 6463 if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) { 6464 return -EINVAL; 6465 } 6466 6467 nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns); 6468 } 6469 6470 return 0; 6471 } 6472 6473 static int 6474 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr, 6475 struct spdk_nvme_transport_id *trid) 6476 { 6477 struct nvme_path_id *active_id, *new_trid, *tmp_trid; 6478 6479 new_trid = calloc(1, sizeof(*new_trid)); 6480 if (new_trid == NULL) { 6481 return -ENOMEM; 6482 } 6483 new_trid->trid = *trid; 6484 6485 active_id = nvme_ctrlr->active_path_id; 6486 assert(active_id != NULL); 6487 assert(active_id == TAILQ_FIRST(&nvme_ctrlr->trids)); 6488 6489 /* Skip the active trid not to replace it until it is failed. */ 6490 tmp_trid = TAILQ_NEXT(active_id, link); 6491 if (tmp_trid == NULL) { 6492 goto add_tail; 6493 } 6494 6495 /* It means the trid is faled if its last failed time is non-zero. 6496 * Insert the new alternate trid before any failed trid. 6497 */ 6498 TAILQ_FOREACH_FROM(tmp_trid, &nvme_ctrlr->trids, link) { 6499 if (tmp_trid->last_failed_tsc != 0) { 6500 TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link); 6501 return 0; 6502 } 6503 } 6504 6505 add_tail: 6506 TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link); 6507 return 0; 6508 } 6509 6510 /* This is the case that a secondary path is added to an existing 6511 * nvme_ctrlr for failover. After checking if it can access the same 6512 * namespaces as the primary path, it is disconnected until failover occurs. 6513 */ 6514 static int 6515 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr, 6516 struct spdk_nvme_ctrlr *new_ctrlr, 6517 struct spdk_nvme_transport_id *trid) 6518 { 6519 int rc; 6520 6521 assert(nvme_ctrlr != NULL); 6522 6523 pthread_mutex_lock(&nvme_ctrlr->mutex); 6524 6525 rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid); 6526 if (rc != 0) { 6527 goto exit; 6528 } 6529 6530 rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr); 6531 if (rc != 0) { 6532 goto exit; 6533 } 6534 6535 rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid); 6536 6537 exit: 6538 pthread_mutex_unlock(&nvme_ctrlr->mutex); 6539 6540 spdk_nvme_detach(new_ctrlr); 6541 6542 return rc; 6543 } 6544 6545 static void 6546 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, 6547 struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts) 6548 { 6549 struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx; 6550 struct nvme_async_probe_ctx *ctx; 6551 int rc; 6552 6553 ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts); 6554 ctx->ctrlr_attached = true; 6555 6556 rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx); 6557 if (rc != 0) { 6558 ctx->reported_bdevs = 0; 6559 populate_namespaces_cb(ctx, rc); 6560 } 6561 } 6562 6563 6564 static void 6565 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, 6566 struct spdk_nvme_ctrlr *ctrlr, 6567 const struct spdk_nvme_ctrlr_opts *opts) 6568 { 6569 struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx; 6570 struct nvme_ctrlr *nvme_ctrlr; 6571 struct nvme_async_probe_ctx *ctx; 6572 int rc; 6573 6574 ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts); 6575 ctx->ctrlr_attached = true; 6576 6577 nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name); 6578 if (nvme_ctrlr) { 6579 rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid); 6580 } else { 6581 rc = -ENODEV; 6582 } 6583 6584 ctx->reported_bdevs = 0; 6585 populate_namespaces_cb(ctx, rc); 6586 } 6587 6588 static int 6589 bdev_nvme_async_poll(void *arg) 6590 { 6591 struct nvme_async_probe_ctx *ctx = arg; 6592 int rc; 6593 6594 rc = spdk_nvme_probe_poll_async(ctx->probe_ctx); 6595 if (spdk_unlikely(rc != -EAGAIN)) { 6596 ctx->probe_done = true; 6597 spdk_poller_unregister(&ctx->poller); 6598 if (!ctx->ctrlr_attached) { 6599 /* The probe is done, but no controller was attached. 6600 * That means we had a failure, so report -EIO back to 6601 * the caller (usually the RPC). populate_namespaces_cb() 6602 * will take care of freeing the nvme_async_probe_ctx. 6603 */ 6604 ctx->reported_bdevs = 0; 6605 populate_namespaces_cb(ctx, -EIO); 6606 } else if (ctx->namespaces_populated) { 6607 /* The namespaces for the attached controller were all 6608 * populated and the response was already sent to the 6609 * caller (usually the RPC). So free the context here. 6610 */ 6611 free_nvme_async_probe_ctx(ctx); 6612 } 6613 } 6614 6615 return SPDK_POLLER_BUSY; 6616 } 6617 6618 static bool 6619 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec, 6620 uint32_t reconnect_delay_sec, 6621 uint32_t fast_io_fail_timeout_sec) 6622 { 6623 if (ctrlr_loss_timeout_sec < -1) { 6624 SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n"); 6625 return false; 6626 } else if (ctrlr_loss_timeout_sec == -1) { 6627 if (reconnect_delay_sec == 0) { 6628 SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n"); 6629 return false; 6630 } else if (fast_io_fail_timeout_sec != 0 && 6631 fast_io_fail_timeout_sec < reconnect_delay_sec) { 6632 SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n"); 6633 return false; 6634 } 6635 } else if (ctrlr_loss_timeout_sec != 0) { 6636 if (reconnect_delay_sec == 0) { 6637 SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n"); 6638 return false; 6639 } else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) { 6640 SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n"); 6641 return false; 6642 } else if (fast_io_fail_timeout_sec != 0) { 6643 if (fast_io_fail_timeout_sec < reconnect_delay_sec) { 6644 SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n"); 6645 return false; 6646 } else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) { 6647 SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n"); 6648 return false; 6649 } 6650 } 6651 } else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) { 6652 SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n"); 6653 return false; 6654 } 6655 6656 return true; 6657 } 6658 6659 int 6660 spdk_bdev_nvme_create(struct spdk_nvme_transport_id *trid, 6661 const char *base_name, 6662 const char **names, 6663 uint32_t count, 6664 spdk_bdev_nvme_create_cb cb_fn, 6665 void *cb_ctx, 6666 struct spdk_nvme_ctrlr_opts *drv_opts, 6667 struct spdk_bdev_nvme_ctrlr_opts *bdev_opts) 6668 { 6669 struct nvme_probe_skip_entry *entry, *tmp; 6670 struct nvme_async_probe_ctx *ctx; 6671 spdk_nvme_attach_cb attach_cb; 6672 struct nvme_ctrlr *nvme_ctrlr; 6673 int len; 6674 6675 /* TODO expand this check to include both the host and target TRIDs. 6676 * Only if both are the same should we fail. 6677 */ 6678 if (nvme_ctrlr_get(trid, drv_opts->hostnqn) != NULL) { 6679 SPDK_ERRLOG("A controller with the provided trid (traddr: %s, hostnqn: %s) " 6680 "already exists.\n", trid->traddr, drv_opts->hostnqn); 6681 return -EEXIST; 6682 } 6683 6684 len = strnlen(base_name, SPDK_CONTROLLER_NAME_MAX); 6685 6686 if (len == 0 || len == SPDK_CONTROLLER_NAME_MAX) { 6687 SPDK_ERRLOG("controller name must be between 1 and %d characters\n", SPDK_CONTROLLER_NAME_MAX - 1); 6688 return -EINVAL; 6689 } 6690 6691 if (bdev_opts != NULL && 6692 !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec, 6693 bdev_opts->reconnect_delay_sec, 6694 bdev_opts->fast_io_fail_timeout_sec)) { 6695 return -EINVAL; 6696 } 6697 6698 ctx = calloc(1, sizeof(*ctx)); 6699 if (!ctx) { 6700 return -ENOMEM; 6701 } 6702 ctx->base_name = strdup(base_name); 6703 if (!ctx->base_name) { 6704 free(ctx); 6705 return -ENOMEM; 6706 } 6707 ctx->names = names; 6708 ctx->max_bdevs = count; 6709 ctx->cb_fn = cb_fn; 6710 ctx->cb_ctx = cb_ctx; 6711 ctx->trid = *trid; 6712 6713 if (bdev_opts) { 6714 memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts)); 6715 } else { 6716 spdk_bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts); 6717 } 6718 6719 if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) { 6720 TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) { 6721 if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) { 6722 TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq); 6723 free(entry); 6724 break; 6725 } 6726 } 6727 } 6728 6729 memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts)); 6730 ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count; 6731 ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout; 6732 ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms; 6733 ctx->drv_opts.disable_read_ana_log_page = true; 6734 ctx->drv_opts.transport_tos = g_opts.transport_tos; 6735 6736 if (spdk_interrupt_mode_is_enabled()) { 6737 if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) { 6738 ctx->drv_opts.enable_interrupts = true; 6739 } else { 6740 SPDK_ERRLOG("Interrupt mode is only supported with PCIe transport\n"); 6741 free_nvme_async_probe_ctx(ctx); 6742 return -ENOTSUP; 6743 } 6744 } 6745 6746 if (ctx->bdev_opts.psk != NULL) { 6747 ctx->drv_opts.tls_psk = spdk_keyring_get_key(ctx->bdev_opts.psk); 6748 if (ctx->drv_opts.tls_psk == NULL) { 6749 SPDK_ERRLOG("Could not load PSK: %s\n", ctx->bdev_opts.psk); 6750 free_nvme_async_probe_ctx(ctx); 6751 return -ENOKEY; 6752 } 6753 } 6754 6755 if (ctx->bdev_opts.dhchap_key != NULL) { 6756 ctx->drv_opts.dhchap_key = spdk_keyring_get_key(ctx->bdev_opts.dhchap_key); 6757 if (ctx->drv_opts.dhchap_key == NULL) { 6758 SPDK_ERRLOG("Could not load DH-HMAC-CHAP key: %s\n", 6759 ctx->bdev_opts.dhchap_key); 6760 free_nvme_async_probe_ctx(ctx); 6761 return -ENOKEY; 6762 } 6763 6764 ctx->drv_opts.dhchap_digests = g_opts.dhchap_digests; 6765 ctx->drv_opts.dhchap_dhgroups = g_opts.dhchap_dhgroups; 6766 } 6767 if (ctx->bdev_opts.dhchap_ctrlr_key != NULL) { 6768 ctx->drv_opts.dhchap_ctrlr_key = 6769 spdk_keyring_get_key(ctx->bdev_opts.dhchap_ctrlr_key); 6770 if (ctx->drv_opts.dhchap_ctrlr_key == NULL) { 6771 SPDK_ERRLOG("Could not load DH-HMAC-CHAP controller key: %s\n", 6772 ctx->bdev_opts.dhchap_ctrlr_key); 6773 free_nvme_async_probe_ctx(ctx); 6774 return -ENOKEY; 6775 } 6776 } 6777 6778 if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || ctx->bdev_opts.multipath) { 6779 attach_cb = connect_attach_cb; 6780 } else { 6781 attach_cb = connect_set_failover_cb; 6782 } 6783 6784 nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name); 6785 if (nvme_ctrlr && nvme_ctrlr->opts.multipath != ctx->bdev_opts.multipath) { 6786 /* All controllers with the same name must be configured the same 6787 * way, either for multipath or failover. If the configuration doesn't 6788 * match - report error. 6789 */ 6790 free_nvme_async_probe_ctx(ctx); 6791 return -EINVAL; 6792 } 6793 6794 ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb); 6795 if (ctx->probe_ctx == NULL) { 6796 SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr); 6797 free_nvme_async_probe_ctx(ctx); 6798 return -ENODEV; 6799 } 6800 ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000); 6801 6802 return 0; 6803 } 6804 6805 struct bdev_nvme_delete_ctx { 6806 char *name; 6807 struct nvme_path_id path_id; 6808 bdev_nvme_delete_done_fn delete_done; 6809 void *delete_done_ctx; 6810 uint64_t timeout_ticks; 6811 struct spdk_poller *poller; 6812 }; 6813 6814 static void 6815 free_bdev_nvme_delete_ctx(struct bdev_nvme_delete_ctx *ctx) 6816 { 6817 if (ctx != NULL) { 6818 free(ctx->name); 6819 free(ctx); 6820 } 6821 } 6822 6823 static bool 6824 nvme_path_id_compare(struct nvme_path_id *p, const struct nvme_path_id *path_id) 6825 { 6826 if (path_id->trid.trtype != 0) { 6827 if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) { 6828 if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) { 6829 return false; 6830 } 6831 } else { 6832 if (path_id->trid.trtype != p->trid.trtype) { 6833 return false; 6834 } 6835 } 6836 } 6837 6838 if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) { 6839 if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) { 6840 return false; 6841 } 6842 } 6843 6844 if (path_id->trid.adrfam != 0) { 6845 if (path_id->trid.adrfam != p->trid.adrfam) { 6846 return false; 6847 } 6848 } 6849 6850 if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) { 6851 if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) { 6852 return false; 6853 } 6854 } 6855 6856 if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) { 6857 if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) { 6858 return false; 6859 } 6860 } 6861 6862 if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) { 6863 if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) { 6864 return false; 6865 } 6866 } 6867 6868 if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) { 6869 if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) { 6870 return false; 6871 } 6872 } 6873 6874 return true; 6875 } 6876 6877 static bool 6878 nvme_path_id_exists(const char *name, const struct nvme_path_id *path_id) 6879 { 6880 struct nvme_bdev_ctrlr *nbdev_ctrlr; 6881 struct nvme_ctrlr *ctrlr; 6882 struct nvme_path_id *p; 6883 6884 pthread_mutex_lock(&g_bdev_nvme_mutex); 6885 nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name); 6886 if (!nbdev_ctrlr) { 6887 pthread_mutex_unlock(&g_bdev_nvme_mutex); 6888 return false; 6889 } 6890 6891 TAILQ_FOREACH(ctrlr, &nbdev_ctrlr->ctrlrs, tailq) { 6892 pthread_mutex_lock(&ctrlr->mutex); 6893 TAILQ_FOREACH(p, &ctrlr->trids, link) { 6894 if (nvme_path_id_compare(p, path_id)) { 6895 pthread_mutex_unlock(&ctrlr->mutex); 6896 pthread_mutex_unlock(&g_bdev_nvme_mutex); 6897 return true; 6898 } 6899 } 6900 pthread_mutex_unlock(&ctrlr->mutex); 6901 } 6902 pthread_mutex_unlock(&g_bdev_nvme_mutex); 6903 6904 return false; 6905 } 6906 6907 static int 6908 bdev_nvme_delete_complete_poll(void *arg) 6909 { 6910 struct bdev_nvme_delete_ctx *ctx = arg; 6911 int rc = 0; 6912 6913 if (nvme_path_id_exists(ctx->name, &ctx->path_id)) { 6914 if (ctx->timeout_ticks > spdk_get_ticks()) { 6915 return SPDK_POLLER_BUSY; 6916 } 6917 6918 SPDK_ERRLOG("NVMe path '%s' still exists after delete\n", ctx->name); 6919 rc = -ETIMEDOUT; 6920 } 6921 6922 spdk_poller_unregister(&ctx->poller); 6923 6924 ctx->delete_done(ctx->delete_done_ctx, rc); 6925 free_bdev_nvme_delete_ctx(ctx); 6926 6927 return SPDK_POLLER_BUSY; 6928 } 6929 6930 static int 6931 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, const struct nvme_path_id *path_id) 6932 { 6933 struct nvme_path_id *p, *t; 6934 spdk_msg_fn msg_fn; 6935 int rc = -ENXIO; 6936 6937 pthread_mutex_lock(&nvme_ctrlr->mutex); 6938 6939 TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) { 6940 if (p == TAILQ_FIRST(&nvme_ctrlr->trids)) { 6941 break; 6942 } 6943 6944 if (!nvme_path_id_compare(p, path_id)) { 6945 continue; 6946 } 6947 6948 /* We are not using the specified path. */ 6949 TAILQ_REMOVE(&nvme_ctrlr->trids, p, link); 6950 free(p); 6951 rc = 0; 6952 } 6953 6954 if (p == NULL || !nvme_path_id_compare(p, path_id)) { 6955 pthread_mutex_unlock(&nvme_ctrlr->mutex); 6956 return rc; 6957 } 6958 6959 /* If we made it here, then this path is a match! Now we need to remove it. */ 6960 6961 /* This is the active path in use right now. The active path is always the first in the list. */ 6962 assert(p == nvme_ctrlr->active_path_id); 6963 6964 if (!TAILQ_NEXT(p, link)) { 6965 /* The current path is the only path. */ 6966 msg_fn = _nvme_ctrlr_destruct; 6967 rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, false); 6968 } else { 6969 /* There is an alternative path. */ 6970 msg_fn = _bdev_nvme_reset_ctrlr; 6971 rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, true); 6972 } 6973 6974 pthread_mutex_unlock(&nvme_ctrlr->mutex); 6975 6976 if (rc == 0) { 6977 spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr); 6978 } else if (rc == -EALREADY) { 6979 rc = 0; 6980 } 6981 6982 return rc; 6983 } 6984 6985 int 6986 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id, 6987 bdev_nvme_delete_done_fn delete_done, void *delete_done_ctx) 6988 { 6989 struct nvme_bdev_ctrlr *nbdev_ctrlr; 6990 struct nvme_ctrlr *nvme_ctrlr, *tmp_nvme_ctrlr; 6991 struct bdev_nvme_delete_ctx *ctx = NULL; 6992 int rc = -ENXIO, _rc; 6993 6994 if (name == NULL || path_id == NULL) { 6995 rc = -EINVAL; 6996 goto exit; 6997 } 6998 6999 pthread_mutex_lock(&g_bdev_nvme_mutex); 7000 7001 nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name); 7002 if (nbdev_ctrlr == NULL) { 7003 pthread_mutex_unlock(&g_bdev_nvme_mutex); 7004 7005 SPDK_ERRLOG("Failed to find NVMe bdev controller\n"); 7006 rc = -ENODEV; 7007 goto exit; 7008 } 7009 7010 TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) { 7011 _rc = _bdev_nvme_delete(nvme_ctrlr, path_id); 7012 if (_rc < 0 && _rc != -ENXIO) { 7013 pthread_mutex_unlock(&g_bdev_nvme_mutex); 7014 rc = _rc; 7015 goto exit; 7016 } else if (_rc == 0) { 7017 /* We traverse all remaining nvme_ctrlrs even if one nvme_ctrlr 7018 * was deleted successfully. To remember the successful deletion, 7019 * overwrite rc only if _rc is zero. 7020 */ 7021 rc = 0; 7022 } 7023 } 7024 7025 pthread_mutex_unlock(&g_bdev_nvme_mutex); 7026 7027 if (rc != 0 || delete_done == NULL) { 7028 goto exit; 7029 } 7030 7031 ctx = calloc(1, sizeof(*ctx)); 7032 if (ctx == NULL) { 7033 SPDK_ERRLOG("Failed to allocate context for bdev_nvme_delete\n"); 7034 rc = -ENOMEM; 7035 goto exit; 7036 } 7037 7038 ctx->name = strdup(name); 7039 if (ctx->name == NULL) { 7040 SPDK_ERRLOG("Failed to copy controller name for deletion\n"); 7041 rc = -ENOMEM; 7042 goto exit; 7043 } 7044 7045 ctx->delete_done = delete_done; 7046 ctx->delete_done_ctx = delete_done_ctx; 7047 ctx->path_id = *path_id; 7048 ctx->timeout_ticks = spdk_get_ticks() + 10 * spdk_get_ticks_hz(); 7049 ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_delete_complete_poll, ctx, 1000); 7050 if (ctx->poller == NULL) { 7051 SPDK_ERRLOG("Failed to register bdev_nvme_delete poller\n"); 7052 rc = -ENOMEM; 7053 goto exit; 7054 } 7055 7056 exit: 7057 if (rc != 0) { 7058 free_bdev_nvme_delete_ctx(ctx); 7059 } 7060 7061 return rc; 7062 } 7063 7064 #define DISCOVERY_INFOLOG(ctx, format, ...) \ 7065 SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__); 7066 7067 #define DISCOVERY_ERRLOG(ctx, format, ...) \ 7068 SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__); 7069 7070 struct discovery_entry_ctx { 7071 char name[128]; 7072 struct spdk_nvme_transport_id trid; 7073 struct spdk_nvme_ctrlr_opts drv_opts; 7074 struct spdk_nvmf_discovery_log_page_entry entry; 7075 TAILQ_ENTRY(discovery_entry_ctx) tailq; 7076 struct discovery_ctx *ctx; 7077 }; 7078 7079 struct discovery_ctx { 7080 char *name; 7081 spdk_bdev_nvme_start_discovery_fn start_cb_fn; 7082 spdk_bdev_nvme_stop_discovery_fn stop_cb_fn; 7083 void *cb_ctx; 7084 struct spdk_nvme_probe_ctx *probe_ctx; 7085 struct spdk_nvme_detach_ctx *detach_ctx; 7086 struct spdk_nvme_ctrlr *ctrlr; 7087 struct spdk_nvme_transport_id trid; 7088 struct discovery_entry_ctx *entry_ctx_in_use; 7089 struct spdk_poller *poller; 7090 struct spdk_nvme_ctrlr_opts drv_opts; 7091 struct spdk_bdev_nvme_ctrlr_opts bdev_opts; 7092 struct spdk_nvmf_discovery_log_page *log_page; 7093 TAILQ_ENTRY(discovery_ctx) tailq; 7094 TAILQ_HEAD(, discovery_entry_ctx) nvm_entry_ctxs; 7095 TAILQ_HEAD(, discovery_entry_ctx) discovery_entry_ctxs; 7096 int rc; 7097 bool wait_for_attach; 7098 uint64_t timeout_ticks; 7099 /* Denotes that the discovery service is being started. We're waiting 7100 * for the initial connection to the discovery controller to be 7101 * established and attach discovered NVM ctrlrs. 7102 */ 7103 bool initializing; 7104 /* Denotes if a discovery is currently in progress for this context. 7105 * That includes connecting to newly discovered subsystems. Used to 7106 * ensure we do not start a new discovery until an existing one is 7107 * complete. 7108 */ 7109 bool in_progress; 7110 7111 /* Denotes if another discovery is needed after the one in progress 7112 * completes. Set when we receive an AER completion while a discovery 7113 * is already in progress. 7114 */ 7115 bool pending; 7116 7117 /* Signal to the discovery context poller that it should stop the 7118 * discovery service, including detaching from the current discovery 7119 * controller. 7120 */ 7121 bool stop; 7122 7123 struct spdk_thread *calling_thread; 7124 uint32_t index; 7125 uint32_t attach_in_progress; 7126 char *hostnqn; 7127 7128 /* Denotes if the discovery service was started by the mdns discovery. 7129 */ 7130 bool from_mdns_discovery_service; 7131 }; 7132 7133 TAILQ_HEAD(discovery_ctxs, discovery_ctx); 7134 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs); 7135 7136 static void get_discovery_log_page(struct discovery_ctx *ctx); 7137 7138 static void 7139 free_discovery_ctx(struct discovery_ctx *ctx) 7140 { 7141 free(ctx->log_page); 7142 free(ctx->hostnqn); 7143 free(ctx->name); 7144 free(ctx); 7145 } 7146 7147 static void 7148 discovery_complete(struct discovery_ctx *ctx) 7149 { 7150 ctx->initializing = false; 7151 ctx->in_progress = false; 7152 if (ctx->pending) { 7153 ctx->pending = false; 7154 get_discovery_log_page(ctx); 7155 } 7156 } 7157 7158 static void 7159 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid, 7160 struct spdk_nvmf_discovery_log_page_entry *entry) 7161 { 7162 char *space; 7163 7164 trid->trtype = entry->trtype; 7165 trid->adrfam = entry->adrfam; 7166 memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr)); 7167 memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid)); 7168 /* Because the source buffer (entry->subnqn) is longer than trid->subnqn, and 7169 * before call to this function trid->subnqn is zeroed out, we need 7170 * to copy sizeof(trid->subnqn) minus one byte to make sure the last character 7171 * remains 0. Then we can shorten the string (replace ' ' with 0) if required 7172 */ 7173 memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn) - 1); 7174 7175 /* We want the traddr, trsvcid and subnqn fields to be NULL-terminated. 7176 * But the log page entries typically pad them with spaces, not zeroes. 7177 * So add a NULL terminator to each of these fields at the appropriate 7178 * location. 7179 */ 7180 space = strchr(trid->traddr, ' '); 7181 if (space) { 7182 *space = 0; 7183 } 7184 space = strchr(trid->trsvcid, ' '); 7185 if (space) { 7186 *space = 0; 7187 } 7188 space = strchr(trid->subnqn, ' '); 7189 if (space) { 7190 *space = 0; 7191 } 7192 } 7193 7194 static void 7195 _stop_discovery(void *_ctx) 7196 { 7197 struct discovery_ctx *ctx = _ctx; 7198 7199 if (ctx->attach_in_progress > 0) { 7200 spdk_thread_send_msg(spdk_get_thread(), _stop_discovery, ctx); 7201 return; 7202 } 7203 7204 ctx->stop = true; 7205 7206 while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) { 7207 struct discovery_entry_ctx *entry_ctx; 7208 struct nvme_path_id path = {}; 7209 7210 entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs); 7211 path.trid = entry_ctx->trid; 7212 bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL); 7213 TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq); 7214 free(entry_ctx); 7215 } 7216 7217 while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) { 7218 struct discovery_entry_ctx *entry_ctx; 7219 7220 entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs); 7221 TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq); 7222 free(entry_ctx); 7223 } 7224 7225 free(ctx->entry_ctx_in_use); 7226 ctx->entry_ctx_in_use = NULL; 7227 } 7228 7229 static void 7230 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx) 7231 { 7232 ctx->stop_cb_fn = cb_fn; 7233 ctx->cb_ctx = cb_ctx; 7234 7235 if (ctx->attach_in_progress > 0) { 7236 DISCOVERY_INFOLOG(ctx, "stopping discovery with attach_in_progress: %"PRIu32"\n", 7237 ctx->attach_in_progress); 7238 } 7239 7240 _stop_discovery(ctx); 7241 } 7242 7243 static void 7244 remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr) 7245 { 7246 struct discovery_ctx *d_ctx; 7247 struct nvme_path_id *path_id; 7248 struct spdk_nvme_transport_id trid = {}; 7249 struct discovery_entry_ctx *entry_ctx, *tmp; 7250 7251 path_id = TAILQ_FIRST(&nvme_ctrlr->trids); 7252 7253 TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) { 7254 TAILQ_FOREACH_SAFE(entry_ctx, &d_ctx->nvm_entry_ctxs, tailq, tmp) { 7255 build_trid_from_log_page_entry(&trid, &entry_ctx->entry); 7256 if (spdk_nvme_transport_id_compare(&trid, &path_id->trid) != 0) { 7257 continue; 7258 } 7259 7260 TAILQ_REMOVE(&d_ctx->nvm_entry_ctxs, entry_ctx, tailq); 7261 free(entry_ctx); 7262 DISCOVERY_INFOLOG(d_ctx, "Remove discovery entry: %s:%s:%s\n", 7263 trid.subnqn, trid.traddr, trid.trsvcid); 7264 7265 /* Fail discovery ctrlr to force reattach attempt */ 7266 spdk_nvme_ctrlr_fail(d_ctx->ctrlr); 7267 } 7268 } 7269 } 7270 7271 static void 7272 discovery_remove_controllers(struct discovery_ctx *ctx) 7273 { 7274 struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page; 7275 struct discovery_entry_ctx *entry_ctx, *tmp; 7276 struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry; 7277 struct spdk_nvme_transport_id old_trid = {}; 7278 uint64_t numrec, i; 7279 bool found; 7280 7281 numrec = from_le64(&log_page->numrec); 7282 TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) { 7283 found = false; 7284 old_entry = &entry_ctx->entry; 7285 build_trid_from_log_page_entry(&old_trid, old_entry); 7286 for (i = 0; i < numrec; i++) { 7287 new_entry = &log_page->entries[i]; 7288 if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) { 7289 DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n", 7290 old_trid.subnqn, old_trid.traddr, old_trid.trsvcid); 7291 found = true; 7292 break; 7293 } 7294 } 7295 if (!found) { 7296 struct nvme_path_id path = {}; 7297 7298 DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n", 7299 old_trid.subnqn, old_trid.traddr, old_trid.trsvcid); 7300 7301 path.trid = entry_ctx->trid; 7302 bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL); 7303 TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq); 7304 free(entry_ctx); 7305 } 7306 } 7307 free(log_page); 7308 ctx->log_page = NULL; 7309 discovery_complete(ctx); 7310 } 7311 7312 static void 7313 complete_discovery_start(struct discovery_ctx *ctx, int status) 7314 { 7315 ctx->timeout_ticks = 0; 7316 ctx->rc = status; 7317 if (ctx->start_cb_fn) { 7318 ctx->start_cb_fn(ctx->cb_ctx, status); 7319 ctx->start_cb_fn = NULL; 7320 ctx->cb_ctx = NULL; 7321 } 7322 } 7323 7324 static void 7325 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc) 7326 { 7327 struct discovery_entry_ctx *entry_ctx = cb_ctx; 7328 struct discovery_ctx *ctx = entry_ctx->ctx; 7329 7330 DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name); 7331 ctx->attach_in_progress--; 7332 if (ctx->attach_in_progress == 0) { 7333 complete_discovery_start(ctx, ctx->rc); 7334 if (ctx->initializing && ctx->rc != 0) { 7335 DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc); 7336 stop_discovery(ctx, NULL, ctx->cb_ctx); 7337 } else { 7338 discovery_remove_controllers(ctx); 7339 } 7340 } 7341 } 7342 7343 static struct discovery_entry_ctx * 7344 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid) 7345 { 7346 struct discovery_entry_ctx *new_ctx; 7347 7348 new_ctx = calloc(1, sizeof(*new_ctx)); 7349 if (new_ctx == NULL) { 7350 DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n"); 7351 return NULL; 7352 } 7353 7354 new_ctx->ctx = ctx; 7355 memcpy(&new_ctx->trid, trid, sizeof(*trid)); 7356 spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts)); 7357 snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn); 7358 return new_ctx; 7359 } 7360 7361 static void 7362 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl, 7363 struct spdk_nvmf_discovery_log_page *log_page) 7364 { 7365 struct discovery_ctx *ctx = cb_arg; 7366 struct discovery_entry_ctx *entry_ctx, *tmp; 7367 struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry; 7368 uint64_t numrec, i; 7369 bool found; 7370 7371 if (rc || spdk_nvme_cpl_is_error(cpl)) { 7372 DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n"); 7373 return; 7374 } 7375 7376 ctx->log_page = log_page; 7377 assert(ctx->attach_in_progress == 0); 7378 numrec = from_le64(&log_page->numrec); 7379 TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) { 7380 TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq); 7381 free(entry_ctx); 7382 } 7383 for (i = 0; i < numrec; i++) { 7384 found = false; 7385 new_entry = &log_page->entries[i]; 7386 if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY_CURRENT || 7387 new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) { 7388 struct discovery_entry_ctx *new_ctx; 7389 struct spdk_nvme_transport_id trid = {}; 7390 7391 build_trid_from_log_page_entry(&trid, new_entry); 7392 new_ctx = create_discovery_entry_ctx(ctx, &trid); 7393 if (new_ctx == NULL) { 7394 DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n"); 7395 break; 7396 } 7397 7398 TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq); 7399 continue; 7400 } 7401 TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) { 7402 old_entry = &entry_ctx->entry; 7403 if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) { 7404 found = true; 7405 break; 7406 } 7407 } 7408 if (!found) { 7409 struct discovery_entry_ctx *subnqn_ctx = NULL, *new_ctx; 7410 struct discovery_ctx *d_ctx; 7411 7412 TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) { 7413 TAILQ_FOREACH(subnqn_ctx, &d_ctx->nvm_entry_ctxs, tailq) { 7414 if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn, 7415 sizeof(new_entry->subnqn))) { 7416 break; 7417 } 7418 } 7419 if (subnqn_ctx) { 7420 break; 7421 } 7422 } 7423 7424 new_ctx = calloc(1, sizeof(*new_ctx)); 7425 if (new_ctx == NULL) { 7426 DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n"); 7427 break; 7428 } 7429 7430 new_ctx->ctx = ctx; 7431 memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry)); 7432 build_trid_from_log_page_entry(&new_ctx->trid, new_entry); 7433 if (subnqn_ctx) { 7434 snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name); 7435 DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n", 7436 new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid, 7437 new_ctx->name); 7438 } else { 7439 snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++); 7440 DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n", 7441 new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid, 7442 new_ctx->name); 7443 } 7444 spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts)); 7445 snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn); 7446 rc = spdk_bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0, 7447 discovery_attach_controller_done, new_ctx, 7448 &new_ctx->drv_opts, &ctx->bdev_opts); 7449 if (rc == 0) { 7450 TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq); 7451 ctx->attach_in_progress++; 7452 } else { 7453 DISCOVERY_ERRLOG(ctx, "spdk_bdev_nvme_create failed (%s)\n", spdk_strerror(-rc)); 7454 } 7455 } 7456 } 7457 7458 if (ctx->attach_in_progress == 0) { 7459 discovery_remove_controllers(ctx); 7460 } 7461 } 7462 7463 static void 7464 get_discovery_log_page(struct discovery_ctx *ctx) 7465 { 7466 int rc; 7467 7468 assert(ctx->in_progress == false); 7469 ctx->in_progress = true; 7470 rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx); 7471 if (rc != 0) { 7472 DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n"); 7473 } 7474 DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n"); 7475 } 7476 7477 static void 7478 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl) 7479 { 7480 struct discovery_ctx *ctx = arg; 7481 uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16; 7482 7483 if (spdk_nvme_cpl_is_error(cpl)) { 7484 DISCOVERY_ERRLOG(ctx, "aer failed\n"); 7485 return; 7486 } 7487 7488 if (log_page_id != SPDK_NVME_LOG_DISCOVERY) { 7489 DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id); 7490 return; 7491 } 7492 7493 DISCOVERY_INFOLOG(ctx, "got aer\n"); 7494 if (ctx->in_progress) { 7495 ctx->pending = true; 7496 return; 7497 } 7498 7499 get_discovery_log_page(ctx); 7500 } 7501 7502 static void 7503 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, 7504 struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts) 7505 { 7506 struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx; 7507 struct discovery_ctx *ctx; 7508 7509 ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts); 7510 7511 DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n"); 7512 ctx->probe_ctx = NULL; 7513 ctx->ctrlr = ctrlr; 7514 7515 if (ctx->rc != 0) { 7516 DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n", 7517 ctx->rc); 7518 return; 7519 } 7520 7521 spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx); 7522 } 7523 7524 static int 7525 discovery_poller(void *arg) 7526 { 7527 struct discovery_ctx *ctx = arg; 7528 struct spdk_nvme_transport_id *trid; 7529 int rc; 7530 7531 if (ctx->detach_ctx) { 7532 rc = spdk_nvme_detach_poll_async(ctx->detach_ctx); 7533 if (rc != -EAGAIN) { 7534 ctx->detach_ctx = NULL; 7535 ctx->ctrlr = NULL; 7536 } 7537 } else if (ctx->stop) { 7538 if (ctx->ctrlr != NULL) { 7539 rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx); 7540 if (rc == 0) { 7541 return SPDK_POLLER_BUSY; 7542 } 7543 DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n"); 7544 } 7545 spdk_poller_unregister(&ctx->poller); 7546 TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq); 7547 assert(ctx->start_cb_fn == NULL); 7548 if (ctx->stop_cb_fn != NULL) { 7549 ctx->stop_cb_fn(ctx->cb_ctx); 7550 } 7551 free_discovery_ctx(ctx); 7552 } else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) { 7553 if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) { 7554 DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n"); 7555 assert(ctx->initializing); 7556 spdk_poller_unregister(&ctx->poller); 7557 TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq); 7558 complete_discovery_start(ctx, -ETIMEDOUT); 7559 stop_discovery(ctx, NULL, NULL); 7560 free_discovery_ctx(ctx); 7561 return SPDK_POLLER_BUSY; 7562 } 7563 7564 assert(ctx->entry_ctx_in_use == NULL); 7565 ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs); 7566 TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq); 7567 trid = &ctx->entry_ctx_in_use->trid; 7568 7569 /* All controllers must be configured explicitely either for multipath or failover. 7570 * While discovery use multipath mode, we need to set this in bdev options as well. 7571 */ 7572 ctx->bdev_opts.multipath = true; 7573 7574 ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb); 7575 if (ctx->probe_ctx) { 7576 spdk_poller_unregister(&ctx->poller); 7577 ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000); 7578 } else { 7579 DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n"); 7580 TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq); 7581 ctx->entry_ctx_in_use = NULL; 7582 } 7583 } else if (ctx->probe_ctx) { 7584 if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) { 7585 DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n"); 7586 complete_discovery_start(ctx, -ETIMEDOUT); 7587 return SPDK_POLLER_BUSY; 7588 } 7589 7590 rc = spdk_nvme_probe_poll_async(ctx->probe_ctx); 7591 if (rc != -EAGAIN) { 7592 if (ctx->rc != 0) { 7593 assert(ctx->initializing); 7594 stop_discovery(ctx, NULL, ctx->cb_ctx); 7595 } else { 7596 assert(rc == 0); 7597 DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n"); 7598 ctx->rc = rc; 7599 get_discovery_log_page(ctx); 7600 } 7601 } 7602 } else { 7603 if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) { 7604 DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n"); 7605 complete_discovery_start(ctx, -ETIMEDOUT); 7606 /* We need to wait until all NVM ctrlrs are attached before we stop the 7607 * discovery service to make sure we don't detach a ctrlr that is still 7608 * being attached. 7609 */ 7610 if (ctx->attach_in_progress == 0) { 7611 stop_discovery(ctx, NULL, ctx->cb_ctx); 7612 return SPDK_POLLER_BUSY; 7613 } 7614 } 7615 7616 rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr); 7617 if (rc < 0) { 7618 spdk_poller_unregister(&ctx->poller); 7619 ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000); 7620 TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq); 7621 ctx->entry_ctx_in_use = NULL; 7622 7623 rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx); 7624 if (rc != 0) { 7625 DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n"); 7626 ctx->ctrlr = NULL; 7627 } 7628 } 7629 } 7630 7631 return SPDK_POLLER_BUSY; 7632 } 7633 7634 static void 7635 start_discovery_poller(void *arg) 7636 { 7637 struct discovery_ctx *ctx = arg; 7638 7639 TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq); 7640 ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000); 7641 } 7642 7643 int 7644 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid, 7645 const char *base_name, 7646 struct spdk_nvme_ctrlr_opts *drv_opts, 7647 struct spdk_bdev_nvme_ctrlr_opts *bdev_opts, 7648 uint64_t attach_timeout, 7649 bool from_mdns, 7650 spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx) 7651 { 7652 struct discovery_ctx *ctx; 7653 struct discovery_entry_ctx *discovery_entry_ctx; 7654 7655 snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN); 7656 TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) { 7657 if (strcmp(ctx->name, base_name) == 0) { 7658 return -EEXIST; 7659 } 7660 7661 if (ctx->entry_ctx_in_use != NULL) { 7662 if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) { 7663 return -EEXIST; 7664 } 7665 } 7666 7667 TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) { 7668 if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) { 7669 return -EEXIST; 7670 } 7671 } 7672 } 7673 7674 ctx = calloc(1, sizeof(*ctx)); 7675 if (ctx == NULL) { 7676 return -ENOMEM; 7677 } 7678 7679 ctx->name = strdup(base_name); 7680 if (ctx->name == NULL) { 7681 free_discovery_ctx(ctx); 7682 return -ENOMEM; 7683 } 7684 memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts)); 7685 memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts)); 7686 ctx->from_mdns_discovery_service = from_mdns; 7687 ctx->bdev_opts.from_discovery_service = true; 7688 ctx->calling_thread = spdk_get_thread(); 7689 ctx->start_cb_fn = cb_fn; 7690 ctx->cb_ctx = cb_ctx; 7691 ctx->initializing = true; 7692 if (ctx->start_cb_fn) { 7693 /* We can use this when dumping json to denote if this RPC parameter 7694 * was specified or not. 7695 */ 7696 ctx->wait_for_attach = true; 7697 } 7698 if (attach_timeout != 0) { 7699 ctx->timeout_ticks = spdk_get_ticks() + attach_timeout * 7700 spdk_get_ticks_hz() / 1000ull; 7701 } 7702 TAILQ_INIT(&ctx->nvm_entry_ctxs); 7703 TAILQ_INIT(&ctx->discovery_entry_ctxs); 7704 memcpy(&ctx->trid, trid, sizeof(*trid)); 7705 /* Even if user did not specify hostnqn, we can still strdup("\0"); */ 7706 ctx->hostnqn = strdup(ctx->drv_opts.hostnqn); 7707 if (ctx->hostnqn == NULL) { 7708 free_discovery_ctx(ctx); 7709 return -ENOMEM; 7710 } 7711 discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid); 7712 if (discovery_entry_ctx == NULL) { 7713 DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n"); 7714 free_discovery_ctx(ctx); 7715 return -ENOMEM; 7716 } 7717 7718 TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq); 7719 spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx); 7720 return 0; 7721 } 7722 7723 int 7724 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx) 7725 { 7726 struct discovery_ctx *ctx; 7727 7728 TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) { 7729 if (strcmp(name, ctx->name) == 0) { 7730 if (ctx->stop) { 7731 return -EALREADY; 7732 } 7733 /* If we're still starting the discovery service and ->rc is non-zero, we're 7734 * going to stop it as soon as we can 7735 */ 7736 if (ctx->initializing && ctx->rc != 0) { 7737 return -EALREADY; 7738 } 7739 stop_discovery(ctx, cb_fn, cb_ctx); 7740 return 0; 7741 } 7742 } 7743 7744 return -ENOENT; 7745 } 7746 7747 static int 7748 bdev_nvme_library_init(void) 7749 { 7750 g_bdev_nvme_init_thread = spdk_get_thread(); 7751 7752 spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb, 7753 bdev_nvme_destroy_poll_group_cb, 7754 sizeof(struct nvme_poll_group), "nvme_poll_groups"); 7755 7756 return 0; 7757 } 7758 7759 static void 7760 bdev_nvme_fini_destruct_ctrlrs(void) 7761 { 7762 struct nvme_bdev_ctrlr *nbdev_ctrlr; 7763 struct nvme_ctrlr *nvme_ctrlr; 7764 7765 pthread_mutex_lock(&g_bdev_nvme_mutex); 7766 TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) { 7767 TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) { 7768 pthread_mutex_lock(&nvme_ctrlr->mutex); 7769 if (nvme_ctrlr->destruct) { 7770 /* This controller's destruction was already started 7771 * before the application started shutting down 7772 */ 7773 pthread_mutex_unlock(&nvme_ctrlr->mutex); 7774 continue; 7775 } 7776 nvme_ctrlr->destruct = true; 7777 pthread_mutex_unlock(&nvme_ctrlr->mutex); 7778 7779 spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct, 7780 nvme_ctrlr); 7781 } 7782 } 7783 7784 g_bdev_nvme_module_finish = true; 7785 if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) { 7786 pthread_mutex_unlock(&g_bdev_nvme_mutex); 7787 spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL); 7788 spdk_bdev_module_fini_done(); 7789 return; 7790 } 7791 7792 pthread_mutex_unlock(&g_bdev_nvme_mutex); 7793 } 7794 7795 static void 7796 check_discovery_fini(void *arg) 7797 { 7798 if (TAILQ_EMPTY(&g_discovery_ctxs)) { 7799 bdev_nvme_fini_destruct_ctrlrs(); 7800 } 7801 } 7802 7803 static void 7804 bdev_nvme_library_fini(void) 7805 { 7806 struct nvme_probe_skip_entry *entry, *entry_tmp; 7807 struct discovery_ctx *ctx; 7808 7809 spdk_poller_unregister(&g_hotplug_poller); 7810 free(g_hotplug_probe_ctx); 7811 g_hotplug_probe_ctx = NULL; 7812 7813 TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) { 7814 TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq); 7815 free(entry); 7816 } 7817 7818 assert(spdk_get_thread() == g_bdev_nvme_init_thread); 7819 if (TAILQ_EMPTY(&g_discovery_ctxs)) { 7820 bdev_nvme_fini_destruct_ctrlrs(); 7821 } else { 7822 TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) { 7823 stop_discovery(ctx, check_discovery_fini, NULL); 7824 } 7825 } 7826 } 7827 7828 static void 7829 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio) 7830 { 7831 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 7832 struct spdk_bdev *bdev = bdev_io->bdev; 7833 struct spdk_dif_ctx dif_ctx; 7834 struct spdk_dif_error err_blk = {}; 7835 int rc; 7836 struct spdk_dif_ctx_init_ext_opts dif_opts; 7837 7838 dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format); 7839 dif_opts.dif_pi_format = bdev->dif_pi_format; 7840 rc = spdk_dif_ctx_init(&dif_ctx, 7841 bdev->blocklen, bdev->md_len, bdev->md_interleave, 7842 bdev->dif_is_head_of_md, bdev->dif_type, 7843 bdev_io->u.bdev.dif_check_flags, 7844 bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0, &dif_opts); 7845 if (rc != 0) { 7846 SPDK_ERRLOG("Initialization of DIF context failed\n"); 7847 return; 7848 } 7849 7850 if (bdev->md_interleave) { 7851 rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, 7852 bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk); 7853 } else { 7854 struct iovec md_iov = { 7855 .iov_base = bdev_io->u.bdev.md_buf, 7856 .iov_len = bdev_io->u.bdev.num_blocks * bdev->md_len, 7857 }; 7858 7859 rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, 7860 &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk); 7861 } 7862 7863 if (rc != 0) { 7864 SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", 7865 err_blk.err_type, err_blk.err_offset); 7866 } else { 7867 SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n"); 7868 } 7869 } 7870 7871 static void 7872 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl) 7873 { 7874 struct nvme_bdev_io *bio = ref; 7875 7876 if (spdk_nvme_cpl_is_success(cpl)) { 7877 /* Run PI verification for read data buffer. */ 7878 bdev_nvme_verify_pi_error(bio); 7879 } 7880 7881 /* Return original completion status */ 7882 bdev_nvme_io_complete_nvme_status(bio, &bio->cpl); 7883 } 7884 7885 static void 7886 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl) 7887 { 7888 struct nvme_bdev_io *bio = ref; 7889 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 7890 int ret; 7891 7892 if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) { 7893 SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n", 7894 cpl->status.sct, cpl->status.sc); 7895 7896 /* Save completion status to use after verifying PI error. */ 7897 bio->cpl = *cpl; 7898 7899 if (spdk_likely(nvme_io_path_is_available(bio->io_path))) { 7900 /* Read without PI checking to verify PI error. */ 7901 ret = bdev_nvme_no_pi_readv(bio, 7902 bdev_io->u.bdev.iovs, 7903 bdev_io->u.bdev.iovcnt, 7904 bdev_io->u.bdev.md_buf, 7905 bdev_io->u.bdev.num_blocks, 7906 bdev_io->u.bdev.offset_blocks); 7907 if (ret == 0) { 7908 return; 7909 } 7910 } 7911 } 7912 7913 bdev_nvme_io_complete_nvme_status(bio, cpl); 7914 } 7915 7916 static void 7917 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl) 7918 { 7919 struct nvme_bdev_io *bio = ref; 7920 7921 if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) { 7922 SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n", 7923 cpl->status.sct, cpl->status.sc); 7924 /* Run PI verification for write data buffer if PI error is detected. */ 7925 bdev_nvme_verify_pi_error(bio); 7926 } 7927 7928 bdev_nvme_io_complete_nvme_status(bio, cpl); 7929 } 7930 7931 static void 7932 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl) 7933 { 7934 struct nvme_bdev_io *bio = ref; 7935 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 7936 7937 /* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks. 7938 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error(). 7939 */ 7940 bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0; 7941 7942 if (spdk_nvme_cpl_is_pi_error(cpl)) { 7943 SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n", 7944 cpl->status.sct, cpl->status.sc); 7945 /* Run PI verification for zone append data buffer if PI error is detected. */ 7946 bdev_nvme_verify_pi_error(bio); 7947 } 7948 7949 bdev_nvme_io_complete_nvme_status(bio, cpl); 7950 } 7951 7952 static void 7953 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl) 7954 { 7955 struct nvme_bdev_io *bio = ref; 7956 7957 if (spdk_nvme_cpl_is_pi_error(cpl)) { 7958 SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n", 7959 cpl->status.sct, cpl->status.sc); 7960 /* Run PI verification for compare data buffer if PI error is detected. */ 7961 bdev_nvme_verify_pi_error(bio); 7962 } 7963 7964 bdev_nvme_io_complete_nvme_status(bio, cpl); 7965 } 7966 7967 static void 7968 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl) 7969 { 7970 struct nvme_bdev_io *bio = ref; 7971 7972 /* Compare operation completion */ 7973 if (!bio->first_fused_completed) { 7974 /* Save compare result for write callback */ 7975 bio->cpl = *cpl; 7976 bio->first_fused_completed = true; 7977 return; 7978 } 7979 7980 /* Write operation completion */ 7981 if (spdk_nvme_cpl_is_error(&bio->cpl)) { 7982 /* If bio->cpl is already an error, it means the compare operation failed. In that case, 7983 * complete the IO with the compare operation's status. 7984 */ 7985 if (!spdk_nvme_cpl_is_error(cpl)) { 7986 SPDK_ERRLOG("Unexpected write success after compare failure.\n"); 7987 } 7988 7989 bdev_nvme_io_complete_nvme_status(bio, &bio->cpl); 7990 } else { 7991 bdev_nvme_io_complete_nvme_status(bio, cpl); 7992 } 7993 } 7994 7995 static void 7996 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl) 7997 { 7998 struct nvme_bdev_io *bio = ref; 7999 8000 bdev_nvme_io_complete_nvme_status(bio, cpl); 8001 } 8002 8003 static int 8004 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc) 8005 { 8006 switch (desc->zt) { 8007 case SPDK_NVME_ZONE_TYPE_SEQWR: 8008 info->type = SPDK_BDEV_ZONE_TYPE_SEQWR; 8009 break; 8010 default: 8011 SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt); 8012 return -EIO; 8013 } 8014 8015 switch (desc->zs) { 8016 case SPDK_NVME_ZONE_STATE_EMPTY: 8017 info->state = SPDK_BDEV_ZONE_STATE_EMPTY; 8018 break; 8019 case SPDK_NVME_ZONE_STATE_IOPEN: 8020 info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN; 8021 break; 8022 case SPDK_NVME_ZONE_STATE_EOPEN: 8023 info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN; 8024 break; 8025 case SPDK_NVME_ZONE_STATE_CLOSED: 8026 info->state = SPDK_BDEV_ZONE_STATE_CLOSED; 8027 break; 8028 case SPDK_NVME_ZONE_STATE_RONLY: 8029 info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY; 8030 break; 8031 case SPDK_NVME_ZONE_STATE_FULL: 8032 info->state = SPDK_BDEV_ZONE_STATE_FULL; 8033 break; 8034 case SPDK_NVME_ZONE_STATE_OFFLINE: 8035 info->state = SPDK_BDEV_ZONE_STATE_OFFLINE; 8036 break; 8037 default: 8038 SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs); 8039 return -EIO; 8040 } 8041 8042 info->zone_id = desc->zslba; 8043 info->write_pointer = desc->wp; 8044 info->capacity = desc->zcap; 8045 8046 return 0; 8047 } 8048 8049 static void 8050 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl) 8051 { 8052 struct nvme_bdev_io *bio = ref; 8053 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 8054 uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id; 8055 uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones; 8056 struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf; 8057 uint64_t max_zones_per_buf, i; 8058 uint32_t zone_report_bufsize; 8059 struct spdk_nvme_ns *ns; 8060 struct spdk_nvme_qpair *qpair; 8061 int ret; 8062 8063 if (spdk_nvme_cpl_is_error(cpl)) { 8064 goto out_complete_io_nvme_cpl; 8065 } 8066 8067 if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) { 8068 ret = -ENXIO; 8069 goto out_complete_io_ret; 8070 } 8071 8072 ns = bio->io_path->nvme_ns->ns; 8073 qpair = bio->io_path->qpair->qpair; 8074 8075 zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns); 8076 max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) / 8077 sizeof(bio->zone_report_buf->descs[0]); 8078 8079 if (bio->zone_report_buf->nr_zones > max_zones_per_buf) { 8080 ret = -EINVAL; 8081 goto out_complete_io_ret; 8082 } 8083 8084 if (!bio->zone_report_buf->nr_zones) { 8085 ret = -EINVAL; 8086 goto out_complete_io_ret; 8087 } 8088 8089 for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) { 8090 ret = fill_zone_from_report(&info[bio->handled_zones], 8091 &bio->zone_report_buf->descs[i]); 8092 if (ret) { 8093 goto out_complete_io_ret; 8094 } 8095 bio->handled_zones++; 8096 } 8097 8098 if (bio->handled_zones < zones_to_copy) { 8099 uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns); 8100 uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones); 8101 8102 memset(bio->zone_report_buf, 0, zone_report_bufsize); 8103 ret = spdk_nvme_zns_report_zones(ns, qpair, 8104 bio->zone_report_buf, zone_report_bufsize, 8105 slba, SPDK_NVME_ZRA_LIST_ALL, true, 8106 bdev_nvme_get_zone_info_done, bio); 8107 if (!ret) { 8108 return; 8109 } else { 8110 goto out_complete_io_ret; 8111 } 8112 } 8113 8114 out_complete_io_nvme_cpl: 8115 free(bio->zone_report_buf); 8116 bio->zone_report_buf = NULL; 8117 bdev_nvme_io_complete_nvme_status(bio, cpl); 8118 return; 8119 8120 out_complete_io_ret: 8121 free(bio->zone_report_buf); 8122 bio->zone_report_buf = NULL; 8123 bdev_nvme_io_complete(bio, ret); 8124 } 8125 8126 static void 8127 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl) 8128 { 8129 struct nvme_bdev_io *bio = ref; 8130 8131 bdev_nvme_io_complete_nvme_status(bio, cpl); 8132 } 8133 8134 static void 8135 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx) 8136 { 8137 struct nvme_bdev_io *bio = ctx; 8138 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 8139 const struct spdk_nvme_cpl *cpl = &bio->cpl; 8140 8141 assert(bdev_nvme_io_type_is_admin(bdev_io->type)); 8142 8143 __bdev_nvme_io_complete(bdev_io, 0, cpl); 8144 } 8145 8146 static void 8147 bdev_nvme_abort_complete(void *ctx) 8148 { 8149 struct nvme_bdev_io *bio = ctx; 8150 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 8151 8152 if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) { 8153 __bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL); 8154 } else { 8155 __bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL); 8156 } 8157 } 8158 8159 static void 8160 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl) 8161 { 8162 struct nvme_bdev_io *bio = ref; 8163 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 8164 8165 bio->cpl = *cpl; 8166 spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), bdev_nvme_abort_complete, bio); 8167 } 8168 8169 static void 8170 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl) 8171 { 8172 struct nvme_bdev_io *bio = ref; 8173 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 8174 8175 bio->cpl = *cpl; 8176 spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), 8177 bdev_nvme_admin_passthru_complete_nvme_status, bio); 8178 } 8179 8180 static void 8181 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset) 8182 { 8183 struct nvme_bdev_io *bio = ref; 8184 struct iovec *iov; 8185 8186 bio->iov_offset = sgl_offset; 8187 for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) { 8188 iov = &bio->iovs[bio->iovpos]; 8189 if (bio->iov_offset < iov->iov_len) { 8190 break; 8191 } 8192 8193 bio->iov_offset -= iov->iov_len; 8194 } 8195 } 8196 8197 static int 8198 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length) 8199 { 8200 struct nvme_bdev_io *bio = ref; 8201 struct iovec *iov; 8202 8203 assert(bio->iovpos < bio->iovcnt); 8204 8205 iov = &bio->iovs[bio->iovpos]; 8206 8207 *address = iov->iov_base; 8208 *length = iov->iov_len; 8209 8210 if (bio->iov_offset) { 8211 assert(bio->iov_offset <= iov->iov_len); 8212 *address += bio->iov_offset; 8213 *length -= bio->iov_offset; 8214 } 8215 8216 bio->iov_offset += *length; 8217 if (bio->iov_offset == iov->iov_len) { 8218 bio->iovpos++; 8219 bio->iov_offset = 0; 8220 } 8221 8222 return 0; 8223 } 8224 8225 static void 8226 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset) 8227 { 8228 struct nvme_bdev_io *bio = ref; 8229 struct iovec *iov; 8230 8231 bio->fused_iov_offset = sgl_offset; 8232 for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) { 8233 iov = &bio->fused_iovs[bio->fused_iovpos]; 8234 if (bio->fused_iov_offset < iov->iov_len) { 8235 break; 8236 } 8237 8238 bio->fused_iov_offset -= iov->iov_len; 8239 } 8240 } 8241 8242 static int 8243 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length) 8244 { 8245 struct nvme_bdev_io *bio = ref; 8246 struct iovec *iov; 8247 8248 assert(bio->fused_iovpos < bio->fused_iovcnt); 8249 8250 iov = &bio->fused_iovs[bio->fused_iovpos]; 8251 8252 *address = iov->iov_base; 8253 *length = iov->iov_len; 8254 8255 if (bio->fused_iov_offset) { 8256 assert(bio->fused_iov_offset <= iov->iov_len); 8257 *address += bio->fused_iov_offset; 8258 *length -= bio->fused_iov_offset; 8259 } 8260 8261 bio->fused_iov_offset += *length; 8262 if (bio->fused_iov_offset == iov->iov_len) { 8263 bio->fused_iovpos++; 8264 bio->fused_iov_offset = 0; 8265 } 8266 8267 return 0; 8268 } 8269 8270 static int 8271 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, 8272 void *md, uint64_t lba_count, uint64_t lba) 8273 { 8274 int rc; 8275 8276 SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n", 8277 lba_count, lba); 8278 8279 bio->iovs = iov; 8280 bio->iovcnt = iovcnt; 8281 bio->iovpos = 0; 8282 bio->iov_offset = 0; 8283 8284 rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns, 8285 bio->io_path->qpair->qpair, 8286 lba, lba_count, 8287 bdev_nvme_no_pi_readv_done, bio, 0, 8288 bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, 8289 md, 0, 0); 8290 8291 if (rc != 0 && rc != -ENOMEM) { 8292 SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc); 8293 } 8294 return rc; 8295 } 8296 8297 static int 8298 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, 8299 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags, 8300 struct spdk_memory_domain *domain, void *domain_ctx, 8301 struct spdk_accel_sequence *seq) 8302 { 8303 struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns; 8304 struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair; 8305 int rc; 8306 8307 SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n", 8308 lba_count, lba); 8309 8310 bio->iovs = iov; 8311 bio->iovcnt = iovcnt; 8312 bio->iovpos = 0; 8313 bio->iov_offset = 0; 8314 8315 if (domain != NULL || seq != NULL) { 8316 bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence); 8317 bio->ext_opts.memory_domain = domain; 8318 bio->ext_opts.memory_domain_ctx = domain_ctx; 8319 bio->ext_opts.io_flags = flags; 8320 bio->ext_opts.metadata = md; 8321 bio->ext_opts.accel_sequence = seq; 8322 8323 if (iovcnt == 1) { 8324 rc = spdk_nvme_ns_cmd_read_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_readv_done, 8325 bio, &bio->ext_opts); 8326 } else { 8327 rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count, 8328 bdev_nvme_readv_done, bio, 8329 bdev_nvme_queued_reset_sgl, 8330 bdev_nvme_queued_next_sge, 8331 &bio->ext_opts); 8332 } 8333 } else if (iovcnt == 1) { 8334 rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base, 8335 md, lba, lba_count, bdev_nvme_readv_done, 8336 bio, flags, 0, 0); 8337 } else { 8338 rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count, 8339 bdev_nvme_readv_done, bio, flags, 8340 bdev_nvme_queued_reset_sgl, 8341 bdev_nvme_queued_next_sge, md, 0, 0); 8342 } 8343 8344 if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) { 8345 SPDK_ERRLOG("readv failed: rc = %d\n", rc); 8346 } 8347 return rc; 8348 } 8349 8350 static int 8351 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, 8352 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags, 8353 struct spdk_memory_domain *domain, void *domain_ctx, 8354 struct spdk_accel_sequence *seq, 8355 union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13) 8356 { 8357 struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns; 8358 struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair; 8359 int rc; 8360 8361 SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n", 8362 lba_count, lba); 8363 8364 bio->iovs = iov; 8365 bio->iovcnt = iovcnt; 8366 bio->iovpos = 0; 8367 bio->iov_offset = 0; 8368 8369 if (domain != NULL || seq != NULL) { 8370 bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence); 8371 bio->ext_opts.memory_domain = domain; 8372 bio->ext_opts.memory_domain_ctx = domain_ctx; 8373 bio->ext_opts.io_flags = flags | SPDK_NVME_IO_FLAGS_DIRECTIVE(cdw12.write.dtype); 8374 bio->ext_opts.cdw13 = cdw13.raw; 8375 bio->ext_opts.metadata = md; 8376 bio->ext_opts.accel_sequence = seq; 8377 8378 if (iovcnt == 1) { 8379 rc = spdk_nvme_ns_cmd_write_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_writev_done, 8380 bio, &bio->ext_opts); 8381 } else { 8382 rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count, 8383 bdev_nvme_writev_done, bio, 8384 bdev_nvme_queued_reset_sgl, 8385 bdev_nvme_queued_next_sge, 8386 &bio->ext_opts); 8387 } 8388 } else if (iovcnt == 1) { 8389 rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base, 8390 md, lba, lba_count, bdev_nvme_writev_done, 8391 bio, flags, 0, 0); 8392 } else { 8393 rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count, 8394 bdev_nvme_writev_done, bio, flags, 8395 bdev_nvme_queued_reset_sgl, 8396 bdev_nvme_queued_next_sge, md, 0, 0); 8397 } 8398 8399 if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) { 8400 SPDK_ERRLOG("writev failed: rc = %d\n", rc); 8401 } 8402 return rc; 8403 } 8404 8405 static int 8406 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, 8407 void *md, uint64_t lba_count, uint64_t zslba, 8408 uint32_t flags) 8409 { 8410 struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns; 8411 struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair; 8412 int rc; 8413 8414 SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n", 8415 lba_count, zslba); 8416 8417 bio->iovs = iov; 8418 bio->iovcnt = iovcnt; 8419 bio->iovpos = 0; 8420 bio->iov_offset = 0; 8421 8422 if (iovcnt == 1) { 8423 rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba, 8424 lba_count, 8425 bdev_nvme_zone_appendv_done, bio, 8426 flags, 8427 0, 0); 8428 } else { 8429 rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count, 8430 bdev_nvme_zone_appendv_done, bio, flags, 8431 bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, 8432 md, 0, 0); 8433 } 8434 8435 if (rc != 0 && rc != -ENOMEM) { 8436 SPDK_ERRLOG("zone append failed: rc = %d\n", rc); 8437 } 8438 return rc; 8439 } 8440 8441 static int 8442 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, 8443 void *md, uint64_t lba_count, uint64_t lba, 8444 uint32_t flags) 8445 { 8446 int rc; 8447 8448 SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n", 8449 lba_count, lba); 8450 8451 bio->iovs = iov; 8452 bio->iovcnt = iovcnt; 8453 bio->iovpos = 0; 8454 bio->iov_offset = 0; 8455 8456 rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns, 8457 bio->io_path->qpair->qpair, 8458 lba, lba_count, 8459 bdev_nvme_comparev_done, bio, flags, 8460 bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, 8461 md, 0, 0); 8462 8463 if (rc != 0 && rc != -ENOMEM) { 8464 SPDK_ERRLOG("comparev failed: rc = %d\n", rc); 8465 } 8466 return rc; 8467 } 8468 8469 static int 8470 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt, 8471 struct iovec *write_iov, int write_iovcnt, 8472 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags) 8473 { 8474 struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns; 8475 struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair; 8476 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 8477 int rc; 8478 8479 SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n", 8480 lba_count, lba); 8481 8482 bio->iovs = cmp_iov; 8483 bio->iovcnt = cmp_iovcnt; 8484 bio->iovpos = 0; 8485 bio->iov_offset = 0; 8486 bio->fused_iovs = write_iov; 8487 bio->fused_iovcnt = write_iovcnt; 8488 bio->fused_iovpos = 0; 8489 bio->fused_iov_offset = 0; 8490 8491 if (bdev_io->num_retries == 0) { 8492 bio->first_fused_submitted = false; 8493 bio->first_fused_completed = false; 8494 } 8495 8496 if (!bio->first_fused_submitted) { 8497 flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST; 8498 memset(&bio->cpl, 0, sizeof(bio->cpl)); 8499 8500 rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count, 8501 bdev_nvme_comparev_and_writev_done, bio, flags, 8502 bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0); 8503 if (rc == 0) { 8504 bio->first_fused_submitted = true; 8505 flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST; 8506 } else { 8507 if (rc != -ENOMEM) { 8508 SPDK_ERRLOG("compare failed: rc = %d\n", rc); 8509 } 8510 return rc; 8511 } 8512 } 8513 8514 flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND; 8515 8516 rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count, 8517 bdev_nvme_comparev_and_writev_done, bio, flags, 8518 bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0); 8519 if (rc != 0 && rc != -ENOMEM) { 8520 SPDK_ERRLOG("write failed: rc = %d\n", rc); 8521 rc = 0; 8522 } 8523 8524 return rc; 8525 } 8526 8527 static int 8528 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks) 8529 { 8530 struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES]; 8531 struct spdk_nvme_dsm_range *range; 8532 uint64_t offset, remaining; 8533 uint64_t num_ranges_u64; 8534 uint16_t num_ranges; 8535 int rc; 8536 8537 num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) / 8538 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS; 8539 if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) { 8540 SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks); 8541 return -EINVAL; 8542 } 8543 num_ranges = (uint16_t)num_ranges_u64; 8544 8545 offset = offset_blocks; 8546 remaining = num_blocks; 8547 range = &dsm_ranges[0]; 8548 8549 /* Fill max-size ranges until the remaining blocks fit into one range */ 8550 while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) { 8551 range->attributes.raw = 0; 8552 range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS; 8553 range->starting_lba = offset; 8554 8555 offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS; 8556 remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS; 8557 range++; 8558 } 8559 8560 /* Final range describes the remaining blocks */ 8561 range->attributes.raw = 0; 8562 range->length = remaining; 8563 range->starting_lba = offset; 8564 8565 rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns, 8566 bio->io_path->qpair->qpair, 8567 SPDK_NVME_DSM_ATTR_DEALLOCATE, 8568 dsm_ranges, num_ranges, 8569 bdev_nvme_queued_done, bio); 8570 8571 return rc; 8572 } 8573 8574 static int 8575 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks) 8576 { 8577 if (num_blocks > UINT16_MAX + 1) { 8578 SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n"); 8579 return -EINVAL; 8580 } 8581 8582 return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns, 8583 bio->io_path->qpair->qpair, 8584 offset_blocks, num_blocks, 8585 bdev_nvme_queued_done, bio, 8586 0); 8587 } 8588 8589 static int 8590 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones, 8591 struct spdk_bdev_zone_info *info) 8592 { 8593 struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns; 8594 struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair; 8595 uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns); 8596 uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns); 8597 uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns); 8598 8599 if (zone_id % zone_size != 0) { 8600 return -EINVAL; 8601 } 8602 8603 if (num_zones > total_zones || !num_zones) { 8604 return -EINVAL; 8605 } 8606 8607 assert(!bio->zone_report_buf); 8608 bio->zone_report_buf = calloc(1, zone_report_bufsize); 8609 if (!bio->zone_report_buf) { 8610 return -ENOMEM; 8611 } 8612 8613 bio->handled_zones = 0; 8614 8615 return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize, 8616 zone_id, SPDK_NVME_ZRA_LIST_ALL, true, 8617 bdev_nvme_get_zone_info_done, bio); 8618 } 8619 8620 static int 8621 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id, 8622 enum spdk_bdev_zone_action action) 8623 { 8624 struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns; 8625 struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair; 8626 8627 switch (action) { 8628 case SPDK_BDEV_ZONE_CLOSE: 8629 return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false, 8630 bdev_nvme_zone_management_done, bio); 8631 case SPDK_BDEV_ZONE_FINISH: 8632 return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false, 8633 bdev_nvme_zone_management_done, bio); 8634 case SPDK_BDEV_ZONE_OPEN: 8635 return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false, 8636 bdev_nvme_zone_management_done, bio); 8637 case SPDK_BDEV_ZONE_RESET: 8638 return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false, 8639 bdev_nvme_zone_management_done, bio); 8640 case SPDK_BDEV_ZONE_OFFLINE: 8641 return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false, 8642 bdev_nvme_zone_management_done, bio); 8643 default: 8644 return -EINVAL; 8645 } 8646 } 8647 8648 static void 8649 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio, 8650 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes) 8651 { 8652 struct nvme_io_path *io_path; 8653 struct nvme_ctrlr *nvme_ctrlr; 8654 uint32_t max_xfer_size; 8655 int rc = -ENXIO; 8656 8657 /* Choose the first ctrlr which is not failed. */ 8658 STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) { 8659 nvme_ctrlr = io_path->qpair->ctrlr; 8660 8661 /* We should skip any unavailable nvme_ctrlr rather than checking 8662 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO. 8663 */ 8664 if (!nvme_ctrlr_is_available(nvme_ctrlr)) { 8665 continue; 8666 } 8667 8668 max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr); 8669 8670 if (nbytes > max_xfer_size) { 8671 SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size); 8672 rc = -EINVAL; 8673 goto err; 8674 } 8675 8676 rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes, 8677 bdev_nvme_admin_passthru_done, bio); 8678 if (rc == 0) { 8679 return; 8680 } 8681 } 8682 8683 err: 8684 bdev_nvme_admin_complete(bio, rc); 8685 } 8686 8687 static int 8688 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd, 8689 void *buf, size_t nbytes) 8690 { 8691 struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns; 8692 struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair; 8693 uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns); 8694 struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns); 8695 8696 if (nbytes > max_xfer_size) { 8697 SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size); 8698 return -EINVAL; 8699 } 8700 8701 /* 8702 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid, 8703 * so fill it out automatically. 8704 */ 8705 cmd->nsid = spdk_nvme_ns_get_id(ns); 8706 8707 return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf, 8708 (uint32_t)nbytes, bdev_nvme_queued_done, bio); 8709 } 8710 8711 static int 8712 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd, 8713 void *buf, size_t nbytes, void *md_buf, size_t md_len) 8714 { 8715 struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns; 8716 struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair; 8717 size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns); 8718 uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns); 8719 struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns); 8720 8721 if (nbytes > max_xfer_size) { 8722 SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size); 8723 return -EINVAL; 8724 } 8725 8726 if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) { 8727 SPDK_ERRLOG("invalid meta data buffer size\n"); 8728 return -EINVAL; 8729 } 8730 8731 /* 8732 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid, 8733 * so fill it out automatically. 8734 */ 8735 cmd->nsid = spdk_nvme_ns_get_id(ns); 8736 8737 return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf, 8738 (uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio); 8739 } 8740 8741 static int 8742 bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio, 8743 struct spdk_nvme_cmd *cmd, struct iovec *iov, int iovcnt, 8744 size_t nbytes, void *md_buf, size_t md_len) 8745 { 8746 struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns; 8747 struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair; 8748 size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns); 8749 uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns); 8750 struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns); 8751 8752 bio->iovs = iov; 8753 bio->iovcnt = iovcnt; 8754 bio->iovpos = 0; 8755 bio->iov_offset = 0; 8756 8757 if (nbytes > max_xfer_size) { 8758 SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size); 8759 return -EINVAL; 8760 } 8761 8762 if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) { 8763 SPDK_ERRLOG("invalid meta data buffer size\n"); 8764 return -EINVAL; 8765 } 8766 8767 /* 8768 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands 8769 * require a nsid, so fill it out automatically. 8770 */ 8771 cmd->nsid = spdk_nvme_ns_get_id(ns); 8772 8773 return spdk_nvme_ctrlr_cmd_iov_raw_with_md( 8774 ctrlr, qpair, cmd, (uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio, 8775 bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge); 8776 } 8777 8778 static void 8779 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio, 8780 struct nvme_bdev_io *bio_to_abort) 8781 { 8782 struct nvme_io_path *io_path; 8783 int rc = 0; 8784 8785 rc = bdev_nvme_abort_retry_io(nbdev_ch, bio_to_abort); 8786 if (rc == 0) { 8787 bdev_nvme_admin_complete(bio, 0); 8788 return; 8789 } 8790 8791 io_path = bio_to_abort->io_path; 8792 if (io_path != NULL) { 8793 rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr, 8794 io_path->qpair->qpair, 8795 bio_to_abort, 8796 bdev_nvme_abort_done, bio); 8797 } else { 8798 STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) { 8799 rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr, 8800 NULL, 8801 bio_to_abort, 8802 bdev_nvme_abort_done, bio); 8803 8804 if (rc != -ENOENT) { 8805 break; 8806 } 8807 } 8808 } 8809 8810 if (rc != 0) { 8811 /* If no command was found or there was any error, complete the abort 8812 * request with failure. 8813 */ 8814 bdev_nvme_admin_complete(bio, rc); 8815 } 8816 } 8817 8818 static int 8819 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks, 8820 uint64_t num_blocks) 8821 { 8822 struct spdk_nvme_scc_source_range range = { 8823 .slba = src_offset_blocks, 8824 .nlb = num_blocks - 1 8825 }; 8826 8827 return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns, 8828 bio->io_path->qpair->qpair, 8829 &range, 1, dst_offset_blocks, 8830 bdev_nvme_queued_done, bio); 8831 } 8832 8833 static void 8834 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w) 8835 { 8836 const char *action; 8837 uint32_t i; 8838 8839 if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) { 8840 action = "reset"; 8841 } else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) { 8842 action = "abort"; 8843 } else { 8844 action = "none"; 8845 } 8846 8847 spdk_json_write_object_begin(w); 8848 8849 spdk_json_write_named_string(w, "method", "bdev_nvme_set_options"); 8850 8851 spdk_json_write_named_object_begin(w, "params"); 8852 spdk_json_write_named_string(w, "action_on_timeout", action); 8853 spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us); 8854 spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us); 8855 spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms); 8856 spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst); 8857 spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight); 8858 spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight); 8859 spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight); 8860 spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us); 8861 spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us); 8862 spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests); 8863 spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit); 8864 spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count); 8865 spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count); 8866 spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout); 8867 spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec); 8868 spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec); 8869 spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec); 8870 spdk_json_write_named_bool(w, "disable_auto_failback", g_opts.disable_auto_failback); 8871 spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids); 8872 spdk_json_write_named_uint8(w, "transport_tos", g_opts.transport_tos); 8873 spdk_json_write_named_bool(w, "nvme_error_stat", g_opts.nvme_error_stat); 8874 spdk_json_write_named_uint32(w, "rdma_srq_size", g_opts.rdma_srq_size); 8875 spdk_json_write_named_bool(w, "io_path_stat", g_opts.io_path_stat); 8876 spdk_json_write_named_bool(w, "allow_accel_sequence", g_opts.allow_accel_sequence); 8877 spdk_json_write_named_uint32(w, "rdma_max_cq_size", g_opts.rdma_max_cq_size); 8878 spdk_json_write_named_uint16(w, "rdma_cm_event_timeout_ms", g_opts.rdma_cm_event_timeout_ms); 8879 spdk_json_write_named_array_begin(w, "dhchap_digests"); 8880 for (i = 0; i < 32; ++i) { 8881 if (g_opts.dhchap_digests & SPDK_BIT(i)) { 8882 spdk_json_write_string(w, spdk_nvme_dhchap_get_digest_name(i)); 8883 } 8884 } 8885 spdk_json_write_array_end(w); 8886 spdk_json_write_named_array_begin(w, "dhchap_dhgroups"); 8887 for (i = 0; i < 32; ++i) { 8888 if (g_opts.dhchap_dhgroups & SPDK_BIT(i)) { 8889 spdk_json_write_string(w, spdk_nvme_dhchap_get_dhgroup_name(i)); 8890 } 8891 } 8892 8893 spdk_json_write_array_end(w); 8894 spdk_json_write_object_end(w); 8895 8896 spdk_json_write_object_end(w); 8897 } 8898 8899 static void 8900 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx) 8901 { 8902 struct spdk_nvme_transport_id trid; 8903 8904 spdk_json_write_object_begin(w); 8905 8906 spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery"); 8907 8908 spdk_json_write_named_object_begin(w, "params"); 8909 spdk_json_write_named_string(w, "name", ctx->name); 8910 spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn); 8911 8912 trid = ctx->trid; 8913 memset(trid.subnqn, 0, sizeof(trid.subnqn)); 8914 nvme_bdev_dump_trid_json(&trid, w); 8915 8916 spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach); 8917 spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec); 8918 spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec); 8919 spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", 8920 ctx->bdev_opts.fast_io_fail_timeout_sec); 8921 spdk_json_write_object_end(w); 8922 8923 spdk_json_write_object_end(w); 8924 } 8925 8926 #ifdef SPDK_CONFIG_NVME_CUSE 8927 static void 8928 nvme_ctrlr_cuse_config_json(struct spdk_json_write_ctx *w, 8929 struct nvme_ctrlr *nvme_ctrlr) 8930 { 8931 size_t cuse_name_size = 128; 8932 char cuse_name[cuse_name_size]; 8933 8934 if (spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, 8935 cuse_name, &cuse_name_size) != 0) { 8936 return; 8937 } 8938 8939 spdk_json_write_object_begin(w); 8940 8941 spdk_json_write_named_string(w, "method", "bdev_nvme_cuse_register"); 8942 8943 spdk_json_write_named_object_begin(w, "params"); 8944 spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name); 8945 spdk_json_write_object_end(w); 8946 8947 spdk_json_write_object_end(w); 8948 } 8949 #endif 8950 8951 static void 8952 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w, 8953 struct nvme_ctrlr *nvme_ctrlr, 8954 struct nvme_path_id *path_id) 8955 { 8956 struct spdk_nvme_transport_id *trid; 8957 const struct spdk_nvme_ctrlr_opts *opts; 8958 8959 if (nvme_ctrlr->opts.from_discovery_service) { 8960 /* Do not emit an RPC for this - it will be implicitly 8961 * covered by a separate bdev_nvme_start_discovery or 8962 * bdev_nvme_start_mdns_discovery RPC. 8963 */ 8964 return; 8965 } 8966 8967 trid = &path_id->trid; 8968 8969 spdk_json_write_object_begin(w); 8970 8971 spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller"); 8972 8973 spdk_json_write_named_object_begin(w, "params"); 8974 spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name); 8975 nvme_bdev_dump_trid_json(trid, w); 8976 spdk_json_write_named_bool(w, "prchk_reftag", 8977 (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0); 8978 spdk_json_write_named_bool(w, "prchk_guard", 8979 (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0); 8980 spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec); 8981 spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec); 8982 spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", 8983 nvme_ctrlr->opts.fast_io_fail_timeout_sec); 8984 if (nvme_ctrlr->psk != NULL) { 8985 spdk_json_write_named_string(w, "psk", spdk_key_get_name(nvme_ctrlr->psk)); 8986 } 8987 if (nvme_ctrlr->dhchap_key != NULL) { 8988 spdk_json_write_named_string(w, "dhchap_key", 8989 spdk_key_get_name(nvme_ctrlr->dhchap_key)); 8990 } 8991 if (nvme_ctrlr->dhchap_ctrlr_key != NULL) { 8992 spdk_json_write_named_string(w, "dhchap_ctrlr_key", 8993 spdk_key_get_name(nvme_ctrlr->dhchap_ctrlr_key)); 8994 } 8995 opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr); 8996 spdk_json_write_named_string(w, "hostnqn", opts->hostnqn); 8997 spdk_json_write_named_bool(w, "hdgst", opts->header_digest); 8998 spdk_json_write_named_bool(w, "ddgst", opts->data_digest); 8999 if (opts->src_addr[0] != '\0') { 9000 spdk_json_write_named_string(w, "hostaddr", opts->src_addr); 9001 } 9002 if (opts->src_svcid[0] != '\0') { 9003 spdk_json_write_named_string(w, "hostsvcid", opts->src_svcid); 9004 } 9005 9006 if (nvme_ctrlr->opts.multipath) { 9007 spdk_json_write_named_string(w, "multipath", "multipath"); 9008 } 9009 spdk_json_write_object_end(w); 9010 9011 spdk_json_write_object_end(w); 9012 } 9013 9014 static void 9015 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w) 9016 { 9017 spdk_json_write_object_begin(w); 9018 spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug"); 9019 9020 spdk_json_write_named_object_begin(w, "params"); 9021 spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us); 9022 spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled); 9023 spdk_json_write_object_end(w); 9024 9025 spdk_json_write_object_end(w); 9026 } 9027 9028 static int 9029 bdev_nvme_config_json(struct spdk_json_write_ctx *w) 9030 { 9031 struct nvme_bdev_ctrlr *nbdev_ctrlr; 9032 struct nvme_ctrlr *nvme_ctrlr; 9033 struct discovery_ctx *ctx; 9034 struct nvme_path_id *path_id; 9035 9036 bdev_nvme_opts_config_json(w); 9037 9038 pthread_mutex_lock(&g_bdev_nvme_mutex); 9039 9040 TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) { 9041 TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) { 9042 path_id = nvme_ctrlr->active_path_id; 9043 assert(path_id == TAILQ_FIRST(&nvme_ctrlr->trids)); 9044 nvme_ctrlr_config_json(w, nvme_ctrlr, path_id); 9045 9046 path_id = TAILQ_NEXT(path_id, link); 9047 while (path_id != NULL) { 9048 nvme_ctrlr_config_json(w, nvme_ctrlr, path_id); 9049 path_id = TAILQ_NEXT(path_id, link); 9050 } 9051 9052 #ifdef SPDK_CONFIG_NVME_CUSE 9053 nvme_ctrlr_cuse_config_json(w, nvme_ctrlr); 9054 #endif 9055 } 9056 } 9057 9058 TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) { 9059 if (!ctx->from_mdns_discovery_service) { 9060 bdev_nvme_discovery_config_json(w, ctx); 9061 } 9062 } 9063 9064 bdev_nvme_mdns_discovery_config_json(w); 9065 9066 /* Dump as last parameter to give all NVMe bdevs chance to be constructed 9067 * before enabling hotplug poller. 9068 */ 9069 bdev_nvme_hotplug_config_json(w); 9070 9071 pthread_mutex_unlock(&g_bdev_nvme_mutex); 9072 return 0; 9073 } 9074 9075 struct spdk_nvme_ctrlr * 9076 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev) 9077 { 9078 struct nvme_bdev *nbdev; 9079 struct nvme_ns *nvme_ns; 9080 9081 if (!bdev || bdev->module != &nvme_if) { 9082 return NULL; 9083 } 9084 9085 nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk); 9086 nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list); 9087 assert(nvme_ns != NULL); 9088 9089 return nvme_ns->ctrlr->ctrlr; 9090 } 9091 9092 static bool 9093 nvme_io_path_is_current(struct nvme_io_path *io_path) 9094 { 9095 const struct nvme_bdev_channel *nbdev_ch; 9096 bool current; 9097 9098 if (!nvme_io_path_is_available(io_path)) { 9099 return false; 9100 } 9101 9102 nbdev_ch = io_path->nbdev_ch; 9103 if (nbdev_ch == NULL) { 9104 current = false; 9105 } else if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) { 9106 struct nvme_io_path *optimized_io_path = NULL; 9107 9108 STAILQ_FOREACH(optimized_io_path, &nbdev_ch->io_path_list, stailq) { 9109 if (optimized_io_path->nvme_ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE) { 9110 break; 9111 } 9112 } 9113 9114 /* A non-optimized path is only current if there are no optimized paths. */ 9115 current = (io_path->nvme_ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE) || 9116 (optimized_io_path == NULL); 9117 } else { 9118 if (nbdev_ch->current_io_path) { 9119 current = (io_path == nbdev_ch->current_io_path); 9120 } else { 9121 struct nvme_io_path *first_path; 9122 9123 /* We arrived here as there are no optimized paths for active-passive 9124 * mode. Check if this io_path is the first one available on the list. 9125 */ 9126 current = false; 9127 STAILQ_FOREACH(first_path, &nbdev_ch->io_path_list, stailq) { 9128 if (nvme_io_path_is_available(first_path)) { 9129 current = (io_path == first_path); 9130 break; 9131 } 9132 } 9133 } 9134 } 9135 9136 return current; 9137 } 9138 9139 static struct nvme_ctrlr * 9140 bdev_nvme_next_ctrlr_unsafe(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct nvme_ctrlr *prev) 9141 { 9142 struct nvme_ctrlr *next; 9143 9144 /* Must be called under g_bdev_nvme_mutex */ 9145 next = prev != NULL ? TAILQ_NEXT(prev, tailq) : TAILQ_FIRST(&nbdev_ctrlr->ctrlrs); 9146 while (next != NULL) { 9147 /* ref can be 0 when the ctrlr was released, but hasn't been detached yet */ 9148 pthread_mutex_lock(&next->mutex); 9149 if (next->ref > 0) { 9150 next->ref++; 9151 pthread_mutex_unlock(&next->mutex); 9152 return next; 9153 } 9154 9155 pthread_mutex_unlock(&next->mutex); 9156 next = TAILQ_NEXT(next, tailq); 9157 } 9158 9159 return NULL; 9160 } 9161 9162 struct bdev_nvme_set_keys_ctx { 9163 struct nvme_ctrlr *nctrlr; 9164 struct spdk_key *dhchap_key; 9165 struct spdk_key *dhchap_ctrlr_key; 9166 struct spdk_thread *thread; 9167 bdev_nvme_set_keys_cb cb_fn; 9168 void *cb_ctx; 9169 int status; 9170 }; 9171 9172 static void 9173 bdev_nvme_free_set_keys_ctx(struct bdev_nvme_set_keys_ctx *ctx) 9174 { 9175 if (ctx == NULL) { 9176 return; 9177 } 9178 9179 spdk_keyring_put_key(ctx->dhchap_key); 9180 spdk_keyring_put_key(ctx->dhchap_ctrlr_key); 9181 free(ctx); 9182 } 9183 9184 static void 9185 _bdev_nvme_set_keys_done(void *_ctx) 9186 { 9187 struct bdev_nvme_set_keys_ctx *ctx = _ctx; 9188 9189 ctx->cb_fn(ctx->cb_ctx, ctx->status); 9190 9191 if (ctx->nctrlr != NULL) { 9192 nvme_ctrlr_put_ref(ctx->nctrlr); 9193 } 9194 bdev_nvme_free_set_keys_ctx(ctx); 9195 } 9196 9197 static void 9198 bdev_nvme_set_keys_done(struct bdev_nvme_set_keys_ctx *ctx, int status) 9199 { 9200 ctx->status = status; 9201 spdk_thread_exec_msg(ctx->thread, _bdev_nvme_set_keys_done, ctx); 9202 } 9203 9204 static void bdev_nvme_authenticate_ctrlr(struct bdev_nvme_set_keys_ctx *ctx); 9205 9206 static void 9207 bdev_nvme_authenticate_ctrlr_continue(struct bdev_nvme_set_keys_ctx *ctx) 9208 { 9209 struct nvme_ctrlr *next; 9210 9211 pthread_mutex_lock(&g_bdev_nvme_mutex); 9212 next = bdev_nvme_next_ctrlr_unsafe(NULL, ctx->nctrlr); 9213 pthread_mutex_unlock(&g_bdev_nvme_mutex); 9214 9215 nvme_ctrlr_put_ref(ctx->nctrlr); 9216 ctx->nctrlr = next; 9217 9218 if (next == NULL) { 9219 bdev_nvme_set_keys_done(ctx, 0); 9220 } else { 9221 bdev_nvme_authenticate_ctrlr(ctx); 9222 } 9223 } 9224 9225 static void 9226 bdev_nvme_authenticate_qpairs_done(struct spdk_io_channel_iter *i, int status) 9227 { 9228 struct bdev_nvme_set_keys_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 9229 9230 if (status != 0) { 9231 bdev_nvme_set_keys_done(ctx, status); 9232 return; 9233 } 9234 bdev_nvme_authenticate_ctrlr_continue(ctx); 9235 } 9236 9237 static void 9238 bdev_nvme_authenticate_qpair_done(void *ctx, int status) 9239 { 9240 spdk_for_each_channel_continue(ctx, status); 9241 } 9242 9243 static void 9244 bdev_nvme_authenticate_qpair(struct spdk_io_channel_iter *i) 9245 { 9246 struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i); 9247 struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch); 9248 struct nvme_qpair *qpair = ctrlr_ch->qpair; 9249 int rc; 9250 9251 if (!nvme_qpair_is_connected(qpair)) { 9252 spdk_for_each_channel_continue(i, 0); 9253 return; 9254 } 9255 9256 rc = spdk_nvme_qpair_authenticate(qpair->qpair, bdev_nvme_authenticate_qpair_done, i); 9257 if (rc != 0) { 9258 spdk_for_each_channel_continue(i, rc); 9259 } 9260 } 9261 9262 static void 9263 bdev_nvme_authenticate_ctrlr_done(void *_ctx, int status) 9264 { 9265 struct bdev_nvme_set_keys_ctx *ctx = _ctx; 9266 9267 if (status != 0) { 9268 bdev_nvme_set_keys_done(ctx, status); 9269 return; 9270 } 9271 9272 spdk_for_each_channel(ctx->nctrlr, bdev_nvme_authenticate_qpair, ctx, 9273 bdev_nvme_authenticate_qpairs_done); 9274 } 9275 9276 static void 9277 bdev_nvme_authenticate_ctrlr(struct bdev_nvme_set_keys_ctx *ctx) 9278 { 9279 struct spdk_nvme_ctrlr_key_opts opts = {}; 9280 struct nvme_ctrlr *nctrlr = ctx->nctrlr; 9281 int rc; 9282 9283 opts.size = SPDK_SIZEOF(&opts, dhchap_ctrlr_key); 9284 opts.dhchap_key = ctx->dhchap_key; 9285 opts.dhchap_ctrlr_key = ctx->dhchap_ctrlr_key; 9286 rc = spdk_nvme_ctrlr_set_keys(nctrlr->ctrlr, &opts); 9287 if (rc != 0) { 9288 bdev_nvme_set_keys_done(ctx, rc); 9289 return; 9290 } 9291 9292 if (ctx->dhchap_key != NULL) { 9293 rc = spdk_nvme_ctrlr_authenticate(nctrlr->ctrlr, 9294 bdev_nvme_authenticate_ctrlr_done, ctx); 9295 if (rc != 0) { 9296 bdev_nvme_set_keys_done(ctx, rc); 9297 } 9298 } else { 9299 bdev_nvme_authenticate_ctrlr_continue(ctx); 9300 } 9301 } 9302 9303 int 9304 bdev_nvme_set_keys(const char *name, const char *dhchap_key, const char *dhchap_ctrlr_key, 9305 bdev_nvme_set_keys_cb cb_fn, void *cb_ctx) 9306 { 9307 struct bdev_nvme_set_keys_ctx *ctx; 9308 struct nvme_bdev_ctrlr *nbdev_ctrlr; 9309 struct nvme_ctrlr *nctrlr; 9310 9311 ctx = calloc(1, sizeof(*ctx)); 9312 if (ctx == NULL) { 9313 return -ENOMEM; 9314 } 9315 9316 if (dhchap_key != NULL) { 9317 ctx->dhchap_key = spdk_keyring_get_key(dhchap_key); 9318 if (ctx->dhchap_key == NULL) { 9319 SPDK_ERRLOG("Could not find key %s for bdev %s\n", dhchap_key, name); 9320 bdev_nvme_free_set_keys_ctx(ctx); 9321 return -ENOKEY; 9322 } 9323 } 9324 if (dhchap_ctrlr_key != NULL) { 9325 ctx->dhchap_ctrlr_key = spdk_keyring_get_key(dhchap_ctrlr_key); 9326 if (ctx->dhchap_ctrlr_key == NULL) { 9327 SPDK_ERRLOG("Could not find key %s for bdev %s\n", dhchap_ctrlr_key, name); 9328 bdev_nvme_free_set_keys_ctx(ctx); 9329 return -ENOKEY; 9330 } 9331 } 9332 9333 pthread_mutex_lock(&g_bdev_nvme_mutex); 9334 nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name); 9335 if (nbdev_ctrlr == NULL) { 9336 SPDK_ERRLOG("Could not find bdev_ctrlr %s\n", name); 9337 pthread_mutex_unlock(&g_bdev_nvme_mutex); 9338 bdev_nvme_free_set_keys_ctx(ctx); 9339 return -ENODEV; 9340 } 9341 nctrlr = bdev_nvme_next_ctrlr_unsafe(nbdev_ctrlr, NULL); 9342 if (nctrlr == NULL) { 9343 SPDK_ERRLOG("Could not find any nvme_ctrlrs on bdev_ctrlr %s\n", name); 9344 pthread_mutex_unlock(&g_bdev_nvme_mutex); 9345 bdev_nvme_free_set_keys_ctx(ctx); 9346 return -ENODEV; 9347 } 9348 pthread_mutex_unlock(&g_bdev_nvme_mutex); 9349 9350 ctx->nctrlr = nctrlr; 9351 ctx->cb_fn = cb_fn; 9352 ctx->cb_ctx = cb_ctx; 9353 ctx->thread = spdk_get_thread(); 9354 9355 bdev_nvme_authenticate_ctrlr(ctx); 9356 9357 return 0; 9358 } 9359 9360 void 9361 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path) 9362 { 9363 struct nvme_ns *nvme_ns = io_path->nvme_ns; 9364 struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr; 9365 const struct spdk_nvme_ctrlr_data *cdata; 9366 const struct spdk_nvme_transport_id *trid; 9367 const char *adrfam_str; 9368 9369 spdk_json_write_object_begin(w); 9370 9371 spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name); 9372 9373 cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr); 9374 trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr); 9375 9376 spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid); 9377 spdk_json_write_named_bool(w, "current", nvme_io_path_is_current(io_path)); 9378 spdk_json_write_named_bool(w, "connected", nvme_qpair_is_connected(io_path->qpair)); 9379 spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns)); 9380 9381 spdk_json_write_named_object_begin(w, "transport"); 9382 spdk_json_write_named_string(w, "trtype", trid->trstring); 9383 spdk_json_write_named_string(w, "traddr", trid->traddr); 9384 if (trid->trsvcid[0] != '\0') { 9385 spdk_json_write_named_string(w, "trsvcid", trid->trsvcid); 9386 } 9387 adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam); 9388 if (adrfam_str) { 9389 spdk_json_write_named_string(w, "adrfam", adrfam_str); 9390 } 9391 spdk_json_write_object_end(w); 9392 9393 spdk_json_write_object_end(w); 9394 } 9395 9396 void 9397 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w) 9398 { 9399 struct discovery_ctx *ctx; 9400 struct discovery_entry_ctx *entry_ctx; 9401 9402 spdk_json_write_array_begin(w); 9403 TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) { 9404 spdk_json_write_object_begin(w); 9405 spdk_json_write_named_string(w, "name", ctx->name); 9406 9407 spdk_json_write_named_object_begin(w, "trid"); 9408 nvme_bdev_dump_trid_json(&ctx->trid, w); 9409 spdk_json_write_object_end(w); 9410 9411 spdk_json_write_named_array_begin(w, "referrals"); 9412 TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) { 9413 spdk_json_write_object_begin(w); 9414 spdk_json_write_named_object_begin(w, "trid"); 9415 nvme_bdev_dump_trid_json(&entry_ctx->trid, w); 9416 spdk_json_write_object_end(w); 9417 spdk_json_write_object_end(w); 9418 } 9419 spdk_json_write_array_end(w); 9420 9421 spdk_json_write_object_end(w); 9422 } 9423 spdk_json_write_array_end(w); 9424 } 9425 9426 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme) 9427 9428 static void 9429 bdev_nvme_trace(void) 9430 { 9431 struct spdk_trace_tpoint_opts opts[] = { 9432 { 9433 "BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START, 9434 OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 1, 9435 {{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }} 9436 }, 9437 { 9438 "BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE, 9439 OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 0, 9440 {{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }} 9441 } 9442 }; 9443 9444 9445 spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N'); 9446 spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts)); 9447 spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0); 9448 spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0); 9449 spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0); 9450 spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0); 9451 } 9452 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME) 9453