xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision 1e3d25b901a6b9d2dce4999e2ecbc02f98d79f05)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  *   Copyright (c) 2022 Dell Inc, or its subsidiaries. All rights reserved.
6  */
7 
8 #include "spdk/stdinc.h"
9 
10 #include "bdev_nvme.h"
11 
12 #include "spdk/accel.h"
13 #include "spdk/config.h"
14 #include "spdk/endian.h"
15 #include "spdk/bdev.h"
16 #include "spdk/json.h"
17 #include "spdk/likely.h"
18 #include "spdk/nvme.h"
19 #include "spdk/nvme_ocssd.h"
20 #include "spdk/nvme_zns.h"
21 #include "spdk/opal.h"
22 #include "spdk/thread.h"
23 #include "spdk/trace.h"
24 #include "spdk/string.h"
25 #include "spdk/util.h"
26 #include "spdk/uuid.h"
27 
28 #include "spdk/bdev_module.h"
29 #include "spdk/log.h"
30 
31 #include "spdk_internal/usdt.h"
32 #include "spdk_internal/trace_defs.h"
33 
34 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
35 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
36 
37 #define NSID_STR_LEN 10
38 
39 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
40 
41 struct nvme_bdev_io {
42 	/** array of iovecs to transfer. */
43 	struct iovec *iovs;
44 
45 	/** Number of iovecs in iovs array. */
46 	int iovcnt;
47 
48 	/** Current iovec position. */
49 	int iovpos;
50 
51 	/** Offset in current iovec. */
52 	uint32_t iov_offset;
53 
54 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
55 	 *  being reset in a reset I/O.
56 	 */
57 	struct nvme_io_path *io_path;
58 
59 	/** array of iovecs to transfer. */
60 	struct iovec *fused_iovs;
61 
62 	/** Number of iovecs in iovs array. */
63 	int fused_iovcnt;
64 
65 	/** Current iovec position. */
66 	int fused_iovpos;
67 
68 	/** Offset in current iovec. */
69 	uint32_t fused_iov_offset;
70 
71 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
72 	struct spdk_nvme_cpl cpl;
73 
74 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
75 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
76 
77 	/** Keeps track if first of fused commands was submitted */
78 	bool first_fused_submitted;
79 
80 	/** Keeps track if first of fused commands was completed */
81 	bool first_fused_completed;
82 
83 	/** Temporary pointer to zone report buffer */
84 	struct spdk_nvme_zns_zone_report *zone_report_buf;
85 
86 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
87 	uint64_t handled_zones;
88 
89 	/** Expiration value in ticks to retry the current I/O. */
90 	uint64_t retry_ticks;
91 
92 	/* How many times the current I/O was retried. */
93 	int32_t retry_count;
94 
95 	/* Current tsc at submit time. */
96 	uint64_t submit_tsc;
97 };
98 
99 struct nvme_probe_skip_entry {
100 	struct spdk_nvme_transport_id		trid;
101 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
102 };
103 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
104 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
105 			g_skipped_nvme_ctrlrs);
106 
107 static struct spdk_bdev_nvme_opts g_opts = {
108 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
109 	.timeout_us = 0,
110 	.timeout_admin_us = 0,
111 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
112 	.transport_retry_count = 4,
113 	.arbitration_burst = 0,
114 	.low_priority_weight = 0,
115 	.medium_priority_weight = 0,
116 	.high_priority_weight = 0,
117 	.nvme_adminq_poll_period_us = 10000ULL,
118 	.nvme_ioq_poll_period_us = 0,
119 	.io_queue_requests = 0,
120 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
121 	.bdev_retry_count = 3,
122 	.transport_ack_timeout = 0,
123 	.ctrlr_loss_timeout_sec = 0,
124 	.reconnect_delay_sec = 0,
125 	.fast_io_fail_timeout_sec = 0,
126 	.disable_auto_failback = false,
127 	.generate_uuids = false,
128 	.transport_tos = 0,
129 	.nvme_error_stat = false,
130 	.io_path_stat = false,
131 };
132 
133 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
134 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
135 
136 static int g_hot_insert_nvme_controller_index = 0;
137 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
138 static bool g_nvme_hotplug_enabled = false;
139 struct spdk_thread *g_bdev_nvme_init_thread;
140 static struct spdk_poller *g_hotplug_poller;
141 static struct spdk_poller *g_hotplug_probe_poller;
142 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
143 
144 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
145 		struct nvme_async_probe_ctx *ctx);
146 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
147 		struct nvme_async_probe_ctx *ctx);
148 static int bdev_nvme_library_init(void);
149 static void bdev_nvme_library_fini(void);
150 static void _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch,
151 				      struct spdk_bdev_io *bdev_io);
152 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
153 				     struct spdk_bdev_io *bdev_io);
154 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
155 			   void *md, uint64_t lba_count, uint64_t lba,
156 			   uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
157 			   struct spdk_accel_sequence *seq);
158 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
159 				 void *md, uint64_t lba_count, uint64_t lba);
160 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
161 			    void *md, uint64_t lba_count, uint64_t lba,
162 			    uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
163 			    struct spdk_accel_sequence *seq);
164 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
165 				  void *md, uint64_t lba_count,
166 				  uint64_t zslba, uint32_t flags);
167 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
168 			      void *md, uint64_t lba_count, uint64_t lba,
169 			      uint32_t flags);
170 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
171 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
172 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
173 		uint32_t flags);
174 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
175 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
176 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
177 				     enum spdk_bdev_zone_action action);
178 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
179 				     struct nvme_bdev_io *bio,
180 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
181 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
182 				 void *buf, size_t nbytes);
183 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
184 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
185 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
186 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
187 static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio);
188 static int bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
189 static int bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool remove);
190 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
191 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
192 
193 static struct nvme_ns *nvme_ns_alloc(void);
194 static void nvme_ns_free(struct nvme_ns *ns);
195 
196 static int
197 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
198 {
199 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
200 }
201 
202 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
203 
204 struct spdk_nvme_qpair *
205 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
206 {
207 	struct nvme_ctrlr_channel *ctrlr_ch;
208 
209 	assert(ctrlr_io_ch != NULL);
210 
211 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
212 
213 	return ctrlr_ch->qpair->qpair;
214 }
215 
216 static int
217 bdev_nvme_get_ctx_size(void)
218 {
219 	return sizeof(struct nvme_bdev_io);
220 }
221 
222 static struct spdk_bdev_module nvme_if = {
223 	.name = "nvme",
224 	.async_fini = true,
225 	.module_init = bdev_nvme_library_init,
226 	.module_fini = bdev_nvme_library_fini,
227 	.config_json = bdev_nvme_config_json,
228 	.get_ctx_size = bdev_nvme_get_ctx_size,
229 
230 };
231 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
232 
233 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
234 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
235 bool g_bdev_nvme_module_finish;
236 
237 struct nvme_bdev_ctrlr *
238 nvme_bdev_ctrlr_get_by_name(const char *name)
239 {
240 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
241 
242 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
243 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
244 			break;
245 		}
246 	}
247 
248 	return nbdev_ctrlr;
249 }
250 
251 static struct nvme_ctrlr *
252 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
253 			  const struct spdk_nvme_transport_id *trid)
254 {
255 	struct nvme_ctrlr *nvme_ctrlr;
256 
257 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
258 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0) {
259 			break;
260 		}
261 	}
262 
263 	return nvme_ctrlr;
264 }
265 
266 struct nvme_ctrlr *
267 nvme_bdev_ctrlr_get_ctrlr_by_id(struct nvme_bdev_ctrlr *nbdev_ctrlr,
268 				uint16_t cntlid)
269 {
270 	struct nvme_ctrlr *nvme_ctrlr;
271 	const struct spdk_nvme_ctrlr_data *cdata;
272 
273 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
274 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
275 		if (cdata->cntlid == cntlid) {
276 			break;
277 		}
278 	}
279 
280 	return nvme_ctrlr;
281 }
282 
283 static struct nvme_bdev *
284 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
285 {
286 	struct nvme_bdev *bdev;
287 
288 	pthread_mutex_lock(&g_bdev_nvme_mutex);
289 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
290 		if (bdev->nsid == nsid) {
291 			break;
292 		}
293 	}
294 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
295 
296 	return bdev;
297 }
298 
299 struct nvme_ns *
300 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
301 {
302 	struct nvme_ns ns;
303 
304 	assert(nsid > 0);
305 
306 	ns.id = nsid;
307 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
308 }
309 
310 struct nvme_ns *
311 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
312 {
313 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
314 }
315 
316 struct nvme_ns *
317 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
318 {
319 	if (ns == NULL) {
320 		return NULL;
321 	}
322 
323 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
324 }
325 
326 static struct nvme_ctrlr *
327 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid)
328 {
329 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
330 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
331 
332 	pthread_mutex_lock(&g_bdev_nvme_mutex);
333 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
334 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid);
335 		if (nvme_ctrlr != NULL) {
336 			break;
337 		}
338 	}
339 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
340 
341 	return nvme_ctrlr;
342 }
343 
344 struct nvme_ctrlr *
345 nvme_ctrlr_get_by_name(const char *name)
346 {
347 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
348 	struct nvme_ctrlr *nvme_ctrlr = NULL;
349 
350 	if (name == NULL) {
351 		return NULL;
352 	}
353 
354 	pthread_mutex_lock(&g_bdev_nvme_mutex);
355 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
356 	if (nbdev_ctrlr != NULL) {
357 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
358 	}
359 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
360 
361 	return nvme_ctrlr;
362 }
363 
364 void
365 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
366 {
367 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
368 
369 	pthread_mutex_lock(&g_bdev_nvme_mutex);
370 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
371 		fn(nbdev_ctrlr, ctx);
372 	}
373 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
374 }
375 
376 void
377 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
378 {
379 	const char *trtype_str;
380 	const char *adrfam_str;
381 
382 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
383 	if (trtype_str) {
384 		spdk_json_write_named_string(w, "trtype", trtype_str);
385 	}
386 
387 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
388 	if (adrfam_str) {
389 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
390 	}
391 
392 	if (trid->traddr[0] != '\0') {
393 		spdk_json_write_named_string(w, "traddr", trid->traddr);
394 	}
395 
396 	if (trid->trsvcid[0] != '\0') {
397 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
398 	}
399 
400 	if (trid->subnqn[0] != '\0') {
401 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
402 	}
403 }
404 
405 static void
406 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
407 		       struct nvme_ctrlr *nvme_ctrlr)
408 {
409 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
410 	pthread_mutex_lock(&g_bdev_nvme_mutex);
411 
412 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
413 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
414 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
415 
416 		return;
417 	}
418 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
419 
420 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
421 
422 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
423 
424 	free(nbdev_ctrlr->name);
425 	free(nbdev_ctrlr);
426 }
427 
428 static void
429 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
430 {
431 	struct nvme_path_id *path_id, *tmp_path;
432 	struct nvme_ns *ns, *tmp_ns;
433 
434 	free(nvme_ctrlr->copied_ana_desc);
435 	spdk_free(nvme_ctrlr->ana_log_page);
436 
437 	if (nvme_ctrlr->opal_dev) {
438 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
439 		nvme_ctrlr->opal_dev = NULL;
440 	}
441 
442 	if (nvme_ctrlr->nbdev_ctrlr) {
443 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
444 	}
445 
446 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
447 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
448 		nvme_ns_free(ns);
449 	}
450 
451 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
452 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
453 		free(path_id);
454 	}
455 
456 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
457 
458 	free(nvme_ctrlr);
459 
460 	pthread_mutex_lock(&g_bdev_nvme_mutex);
461 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
462 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
463 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
464 		spdk_bdev_module_fini_done();
465 		return;
466 	}
467 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
468 }
469 
470 static int
471 nvme_detach_poller(void *arg)
472 {
473 	struct nvme_ctrlr *nvme_ctrlr = arg;
474 	int rc;
475 
476 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
477 	if (rc != -EAGAIN) {
478 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
479 		_nvme_ctrlr_delete(nvme_ctrlr);
480 	}
481 
482 	return SPDK_POLLER_BUSY;
483 }
484 
485 static void
486 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
487 {
488 	int rc;
489 
490 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
491 
492 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
493 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
494 
495 	/* If we got here, the reset/detach poller cannot be active */
496 	assert(nvme_ctrlr->reset_detach_poller == NULL);
497 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
498 					  nvme_ctrlr, 1000);
499 	if (nvme_ctrlr->reset_detach_poller == NULL) {
500 		SPDK_ERRLOG("Failed to register detach poller\n");
501 		goto error;
502 	}
503 
504 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
505 	if (rc != 0) {
506 		SPDK_ERRLOG("Failed to detach the NVMe controller\n");
507 		goto error;
508 	}
509 
510 	return;
511 error:
512 	/* We don't have a good way to handle errors here, so just do what we can and delete the
513 	 * controller without detaching the underlying NVMe device.
514 	 */
515 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
516 	_nvme_ctrlr_delete(nvme_ctrlr);
517 }
518 
519 static void
520 nvme_ctrlr_unregister_cb(void *io_device)
521 {
522 	struct nvme_ctrlr *nvme_ctrlr = io_device;
523 
524 	nvme_ctrlr_delete(nvme_ctrlr);
525 }
526 
527 static void
528 nvme_ctrlr_unregister(void *ctx)
529 {
530 	struct nvme_ctrlr *nvme_ctrlr = ctx;
531 
532 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
533 }
534 
535 static bool
536 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
537 {
538 	if (!nvme_ctrlr->destruct) {
539 		return false;
540 	}
541 
542 	if (nvme_ctrlr->ref > 0) {
543 		return false;
544 	}
545 
546 	if (nvme_ctrlr->resetting) {
547 		return false;
548 	}
549 
550 	if (nvme_ctrlr->ana_log_page_updating) {
551 		return false;
552 	}
553 
554 	if (nvme_ctrlr->io_path_cache_clearing) {
555 		return false;
556 	}
557 
558 	return true;
559 }
560 
561 static void
562 nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
563 {
564 	pthread_mutex_lock(&nvme_ctrlr->mutex);
565 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
566 
567 	assert(nvme_ctrlr->ref > 0);
568 	nvme_ctrlr->ref--;
569 
570 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
571 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
572 		return;
573 	}
574 
575 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
576 
577 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
578 }
579 
580 static void
581 bdev_nvme_clear_current_io_path(struct nvme_bdev_channel *nbdev_ch)
582 {
583 	nbdev_ch->current_io_path = NULL;
584 	nbdev_ch->rr_counter = 0;
585 }
586 
587 static struct nvme_io_path *
588 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
589 {
590 	struct nvme_io_path *io_path;
591 
592 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
593 		if (io_path->nvme_ns == nvme_ns) {
594 			break;
595 		}
596 	}
597 
598 	return io_path;
599 }
600 
601 static struct nvme_io_path *
602 nvme_io_path_alloc(void)
603 {
604 	struct nvme_io_path *io_path;
605 
606 	io_path = calloc(1, sizeof(*io_path));
607 	if (io_path == NULL) {
608 		SPDK_ERRLOG("Failed to alloc io_path.\n");
609 		return NULL;
610 	}
611 
612 	if (g_opts.io_path_stat) {
613 		io_path->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
614 		if (io_path->stat == NULL) {
615 			free(io_path);
616 			SPDK_ERRLOG("Failed to alloc io_path stat.\n");
617 			return NULL;
618 		}
619 		spdk_bdev_reset_io_stat(io_path->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
620 	}
621 
622 	return io_path;
623 }
624 
625 static void
626 nvme_io_path_free(struct nvme_io_path *io_path)
627 {
628 	free(io_path->stat);
629 	free(io_path);
630 }
631 
632 static int
633 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
634 {
635 	struct nvme_io_path *io_path;
636 	struct spdk_io_channel *ch;
637 	struct nvme_ctrlr_channel *ctrlr_ch;
638 	struct nvme_qpair *nvme_qpair;
639 
640 	io_path = nvme_io_path_alloc();
641 	if (io_path == NULL) {
642 		return -ENOMEM;
643 	}
644 
645 	io_path->nvme_ns = nvme_ns;
646 
647 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
648 	if (ch == NULL) {
649 		nvme_io_path_free(io_path);
650 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
651 		return -ENOMEM;
652 	}
653 
654 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
655 
656 	nvme_qpair = ctrlr_ch->qpair;
657 	assert(nvme_qpair != NULL);
658 
659 	io_path->qpair = nvme_qpair;
660 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
661 
662 	io_path->nbdev_ch = nbdev_ch;
663 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
664 
665 	bdev_nvme_clear_current_io_path(nbdev_ch);
666 
667 	return 0;
668 }
669 
670 static void
671 bdev_nvme_clear_retry_io_path(struct nvme_bdev_channel *nbdev_ch,
672 			      struct nvme_io_path *io_path)
673 {
674 	struct spdk_bdev_io *bdev_io;
675 	struct nvme_bdev_io *bio;
676 
677 	TAILQ_FOREACH(bdev_io, &nbdev_ch->retry_io_list, module_link) {
678 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
679 		if (bio->io_path == io_path) {
680 			bio->io_path = NULL;
681 		}
682 	}
683 }
684 
685 static void
686 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
687 {
688 	struct spdk_io_channel *ch;
689 	struct nvme_qpair *nvme_qpair;
690 	struct nvme_ctrlr_channel *ctrlr_ch;
691 	struct nvme_bdev *nbdev;
692 
693 	nbdev = spdk_io_channel_get_io_device(spdk_io_channel_from_ctx(nbdev_ch));
694 
695 	/* Add the statistics to nvme_ns before this path is destroyed. */
696 	pthread_mutex_lock(&nbdev->mutex);
697 	if (nbdev->ref != 0 && io_path->nvme_ns->stat != NULL && io_path->stat != NULL) {
698 		spdk_bdev_add_io_stat(io_path->nvme_ns->stat, io_path->stat);
699 	}
700 	pthread_mutex_unlock(&nbdev->mutex);
701 
702 	bdev_nvme_clear_current_io_path(nbdev_ch);
703 	bdev_nvme_clear_retry_io_path(nbdev_ch, io_path);
704 
705 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
706 	io_path->nbdev_ch = NULL;
707 
708 	nvme_qpair = io_path->qpair;
709 	assert(nvme_qpair != NULL);
710 
711 	ctrlr_ch = nvme_qpair->ctrlr_ch;
712 	assert(ctrlr_ch != NULL);
713 
714 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
715 	spdk_put_io_channel(ch);
716 
717 	/* After an io_path is removed, I/Os submitted to it may complete and update statistics
718 	 * of the io_path. To avoid heap-use-after-free error from this case, do not free the
719 	 * io_path here but free the io_path when the associated qpair is freed. It is ensured
720 	 * that all I/Os submitted to the io_path are completed when the associated qpair is freed.
721 	 */
722 }
723 
724 static void
725 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
726 {
727 	struct nvme_io_path *io_path, *tmp_io_path;
728 
729 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
730 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
731 	}
732 }
733 
734 static int
735 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
736 {
737 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
738 	struct nvme_bdev *nbdev = io_device;
739 	struct nvme_ns *nvme_ns;
740 	int rc;
741 
742 	STAILQ_INIT(&nbdev_ch->io_path_list);
743 	TAILQ_INIT(&nbdev_ch->retry_io_list);
744 
745 	pthread_mutex_lock(&nbdev->mutex);
746 
747 	nbdev_ch->mp_policy = nbdev->mp_policy;
748 	nbdev_ch->mp_selector = nbdev->mp_selector;
749 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
750 
751 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
752 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
753 		if (rc != 0) {
754 			pthread_mutex_unlock(&nbdev->mutex);
755 
756 			_bdev_nvme_delete_io_paths(nbdev_ch);
757 			return rc;
758 		}
759 	}
760 	pthread_mutex_unlock(&nbdev->mutex);
761 
762 	return 0;
763 }
764 
765 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
766  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
767  */
768 static inline void
769 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
770 			const struct spdk_nvme_cpl *cpl)
771 {
772 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
773 			  (uintptr_t)bdev_io);
774 	if (cpl) {
775 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
776 	} else {
777 		spdk_bdev_io_complete(bdev_io, status);
778 	}
779 }
780 
781 static void bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch);
782 
783 static void
784 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
785 {
786 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
787 
788 	bdev_nvme_abort_retry_ios(nbdev_ch);
789 	_bdev_nvme_delete_io_paths(nbdev_ch);
790 }
791 
792 static inline bool
793 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
794 {
795 	switch (io_type) {
796 	case SPDK_BDEV_IO_TYPE_RESET:
797 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
798 	case SPDK_BDEV_IO_TYPE_ABORT:
799 		return true;
800 	default:
801 		break;
802 	}
803 
804 	return false;
805 }
806 
807 static inline bool
808 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
809 {
810 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
811 		return false;
812 	}
813 
814 	switch (nvme_ns->ana_state) {
815 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
816 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
817 		return true;
818 	default:
819 		break;
820 	}
821 
822 	return false;
823 }
824 
825 static inline bool
826 nvme_qpair_is_connected(struct nvme_qpair *nvme_qpair)
827 {
828 	if (spdk_unlikely(nvme_qpair->qpair == NULL)) {
829 		return false;
830 	}
831 
832 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
833 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
834 		return false;
835 	}
836 
837 	if (spdk_unlikely(nvme_qpair->ctrlr_ch->reset_iter != NULL)) {
838 		return false;
839 	}
840 
841 	if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_qpair->ctrlr->ctrlr) !=
842 	    SPDK_NVME_QPAIR_FAILURE_NONE) {
843 		return false;
844 	}
845 
846 	return true;
847 }
848 
849 static inline bool
850 nvme_io_path_is_available(struct nvme_io_path *io_path)
851 {
852 	if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
853 		return false;
854 	}
855 
856 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
857 		return false;
858 	}
859 
860 	return true;
861 }
862 
863 static inline bool
864 nvme_ctrlr_is_failed(struct nvme_ctrlr *nvme_ctrlr)
865 {
866 	if (nvme_ctrlr->destruct) {
867 		return true;
868 	}
869 
870 	if (nvme_ctrlr->fast_io_fail_timedout) {
871 		return true;
872 	}
873 
874 	if (nvme_ctrlr->resetting) {
875 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
876 			return false;
877 		} else {
878 			return true;
879 		}
880 	}
881 
882 	if (nvme_ctrlr->reconnect_is_delayed) {
883 		return false;
884 	}
885 
886 	if (nvme_ctrlr->disabled) {
887 		return true;
888 	}
889 
890 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
891 		return true;
892 	} else {
893 		return false;
894 	}
895 }
896 
897 static bool
898 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
899 {
900 	if (nvme_ctrlr->destruct) {
901 		return false;
902 	}
903 
904 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
905 		return false;
906 	}
907 
908 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
909 		return false;
910 	}
911 
912 	if (nvme_ctrlr->disabled) {
913 		return false;
914 	}
915 
916 	return true;
917 }
918 
919 /* Simulate circular linked list. */
920 static inline struct nvme_io_path *
921 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
922 {
923 	struct nvme_io_path *next_path;
924 
925 	if (prev_path != NULL) {
926 		next_path = STAILQ_NEXT(prev_path, stailq);
927 		if (next_path != NULL) {
928 			return next_path;
929 		}
930 	}
931 
932 	return STAILQ_FIRST(&nbdev_ch->io_path_list);
933 }
934 
935 static struct nvme_io_path *
936 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
937 {
938 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
939 
940 	start = nvme_io_path_get_next(nbdev_ch, nbdev_ch->current_io_path);
941 
942 	io_path = start;
943 	do {
944 		if (spdk_likely(nvme_qpair_is_connected(io_path->qpair) &&
945 				!io_path->nvme_ns->ana_state_updating)) {
946 			switch (io_path->nvme_ns->ana_state) {
947 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
948 				nbdev_ch->current_io_path = io_path;
949 				return io_path;
950 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
951 				if (non_optimized == NULL) {
952 					non_optimized = io_path;
953 				}
954 				break;
955 			default:
956 				break;
957 			}
958 		}
959 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
960 	} while (io_path != start);
961 
962 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
963 		/* We come here only if there is no optimized path. Cache even non_optimized
964 		 * path for load balance across multiple non_optimized paths.
965 		 */
966 		nbdev_ch->current_io_path = non_optimized;
967 	}
968 
969 	return non_optimized;
970 }
971 
972 static struct nvme_io_path *
973 _bdev_nvme_find_io_path_min_qd(struct nvme_bdev_channel *nbdev_ch)
974 {
975 	struct nvme_io_path *io_path;
976 	struct nvme_io_path *optimized = NULL, *non_optimized = NULL;
977 	uint32_t opt_min_qd = UINT32_MAX, non_opt_min_qd = UINT32_MAX;
978 	uint32_t num_outstanding_reqs;
979 
980 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
981 		if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
982 			/* The device is currently resetting. */
983 			continue;
984 		}
985 
986 		if (spdk_unlikely(io_path->nvme_ns->ana_state_updating)) {
987 			continue;
988 		}
989 
990 		num_outstanding_reqs = spdk_nvme_qpair_get_num_outstanding_reqs(io_path->qpair->qpair);
991 		switch (io_path->nvme_ns->ana_state) {
992 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
993 			if (num_outstanding_reqs < opt_min_qd) {
994 				opt_min_qd = num_outstanding_reqs;
995 				optimized = io_path;
996 			}
997 			break;
998 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
999 			if (num_outstanding_reqs < non_opt_min_qd) {
1000 				non_opt_min_qd = num_outstanding_reqs;
1001 				non_optimized = io_path;
1002 			}
1003 			break;
1004 		default:
1005 			break;
1006 		}
1007 	}
1008 
1009 	/* don't cache io path for BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH selector */
1010 	if (optimized != NULL) {
1011 		return optimized;
1012 	}
1013 
1014 	return non_optimized;
1015 }
1016 
1017 static inline struct nvme_io_path *
1018 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1019 {
1020 	if (spdk_likely(nbdev_ch->current_io_path != NULL)) {
1021 		if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE) {
1022 			return nbdev_ch->current_io_path;
1023 		} else if (nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1024 			if (++nbdev_ch->rr_counter < nbdev_ch->rr_min_io) {
1025 				return nbdev_ch->current_io_path;
1026 			}
1027 			nbdev_ch->rr_counter = 0;
1028 		}
1029 	}
1030 
1031 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE ||
1032 	    nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1033 		return _bdev_nvme_find_io_path(nbdev_ch);
1034 	} else {
1035 		return _bdev_nvme_find_io_path_min_qd(nbdev_ch);
1036 	}
1037 }
1038 
1039 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
1040  * or false otherwise.
1041  *
1042  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
1043  * is likely to be non-accessible now but may become accessible.
1044  *
1045  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
1046  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
1047  * when starting to reset it but it is set to failed when the reset failed. Hence, if
1048  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
1049  */
1050 static bool
1051 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
1052 {
1053 	struct nvme_io_path *io_path;
1054 
1055 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1056 		if (io_path->nvme_ns->ana_transition_timedout) {
1057 			continue;
1058 		}
1059 
1060 		if (nvme_qpair_is_connected(io_path->qpair) ||
1061 		    !nvme_ctrlr_is_failed(io_path->qpair->ctrlr)) {
1062 			return true;
1063 		}
1064 	}
1065 
1066 	return false;
1067 }
1068 
1069 static void
1070 bdev_nvme_retry_io(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
1071 {
1072 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1073 	struct spdk_io_channel *ch;
1074 
1075 	if (nbdev_io->io_path != NULL && nvme_io_path_is_available(nbdev_io->io_path)) {
1076 		_bdev_nvme_submit_request(nbdev_ch, bdev_io);
1077 	} else {
1078 		ch = spdk_io_channel_from_ctx(nbdev_ch);
1079 		bdev_nvme_submit_request(ch, bdev_io);
1080 	}
1081 }
1082 
1083 static int
1084 bdev_nvme_retry_ios(void *arg)
1085 {
1086 	struct nvme_bdev_channel *nbdev_ch = arg;
1087 	struct spdk_bdev_io *bdev_io, *tmp_bdev_io;
1088 	struct nvme_bdev_io *bio;
1089 	uint64_t now, delay_us;
1090 
1091 	now = spdk_get_ticks();
1092 
1093 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_bdev_io) {
1094 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1095 		if (bio->retry_ticks > now) {
1096 			break;
1097 		}
1098 
1099 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
1100 
1101 		bdev_nvme_retry_io(nbdev_ch, bdev_io);
1102 	}
1103 
1104 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1105 
1106 	bdev_io = TAILQ_FIRST(&nbdev_ch->retry_io_list);
1107 	if (bdev_io != NULL) {
1108 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1109 
1110 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
1111 
1112 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1113 					    delay_us);
1114 	}
1115 
1116 	return SPDK_POLLER_BUSY;
1117 }
1118 
1119 static void
1120 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
1121 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
1122 {
1123 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1124 	struct spdk_bdev_io *tmp_bdev_io;
1125 	struct nvme_bdev_io *tmp_bio;
1126 
1127 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
1128 
1129 	TAILQ_FOREACH_REVERSE(tmp_bdev_io, &nbdev_ch->retry_io_list, retry_io_head, module_link) {
1130 		tmp_bio = (struct nvme_bdev_io *)tmp_bdev_io->driver_ctx;
1131 
1132 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1133 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bdev_io, bdev_io,
1134 					   module_link);
1135 			return;
1136 		}
1137 	}
1138 
1139 	/* No earlier I/Os were found. This I/O must be the new head. */
1140 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bdev_io, module_link);
1141 
1142 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1143 
1144 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1145 				    delay_ms * 1000ULL);
1146 }
1147 
1148 static void
1149 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
1150 {
1151 	struct spdk_bdev_io *bdev_io, *tmp_io;
1152 
1153 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_io) {
1154 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
1155 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1156 	}
1157 
1158 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1159 }
1160 
1161 static int
1162 bdev_nvme_abort_retry_io(struct nvme_bdev_channel *nbdev_ch,
1163 			 struct nvme_bdev_io *bio_to_abort)
1164 {
1165 	struct spdk_bdev_io *bdev_io_to_abort;
1166 
1167 	TAILQ_FOREACH(bdev_io_to_abort, &nbdev_ch->retry_io_list, module_link) {
1168 		if ((struct nvme_bdev_io *)bdev_io_to_abort->driver_ctx == bio_to_abort) {
1169 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io_to_abort, module_link);
1170 			__bdev_nvme_io_complete(bdev_io_to_abort, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1171 			return 0;
1172 		}
1173 	}
1174 
1175 	return -ENOENT;
1176 }
1177 
1178 static void
1179 bdev_nvme_update_nvme_error_stat(struct spdk_bdev_io *bdev_io, const struct spdk_nvme_cpl *cpl)
1180 {
1181 	struct nvme_bdev *nbdev;
1182 	uint16_t sct, sc;
1183 
1184 	assert(spdk_nvme_cpl_is_error(cpl));
1185 
1186 	nbdev = bdev_io->bdev->ctxt;
1187 
1188 	if (nbdev->err_stat == NULL) {
1189 		return;
1190 	}
1191 
1192 	sct = cpl->status.sct;
1193 	sc = cpl->status.sc;
1194 
1195 	pthread_mutex_lock(&nbdev->mutex);
1196 
1197 	nbdev->err_stat->status_type[sct]++;
1198 	switch (sct) {
1199 	case SPDK_NVME_SCT_GENERIC:
1200 	case SPDK_NVME_SCT_COMMAND_SPECIFIC:
1201 	case SPDK_NVME_SCT_MEDIA_ERROR:
1202 	case SPDK_NVME_SCT_PATH:
1203 		nbdev->err_stat->status[sct][sc]++;
1204 		break;
1205 	default:
1206 		break;
1207 	}
1208 
1209 	pthread_mutex_unlock(&nbdev->mutex);
1210 }
1211 
1212 static inline void
1213 bdev_nvme_update_io_path_stat(struct nvme_bdev_io *bio)
1214 {
1215 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1216 	uint64_t num_blocks = bdev_io->u.bdev.num_blocks;
1217 	uint32_t blocklen = bdev_io->bdev->blocklen;
1218 	struct spdk_bdev_io_stat *stat;
1219 	uint64_t tsc_diff;
1220 
1221 	if (bio->io_path->stat == NULL) {
1222 		return;
1223 	}
1224 
1225 	tsc_diff = spdk_get_ticks() - bio->submit_tsc;
1226 	stat = bio->io_path->stat;
1227 
1228 	switch (bdev_io->type) {
1229 	case SPDK_BDEV_IO_TYPE_READ:
1230 		stat->bytes_read += num_blocks * blocklen;
1231 		stat->num_read_ops++;
1232 		stat->read_latency_ticks += tsc_diff;
1233 		if (stat->max_read_latency_ticks < tsc_diff) {
1234 			stat->max_read_latency_ticks = tsc_diff;
1235 		}
1236 		if (stat->min_read_latency_ticks > tsc_diff) {
1237 			stat->min_read_latency_ticks = tsc_diff;
1238 		}
1239 		break;
1240 	case SPDK_BDEV_IO_TYPE_WRITE:
1241 		stat->bytes_written += num_blocks * blocklen;
1242 		stat->num_write_ops++;
1243 		stat->write_latency_ticks += tsc_diff;
1244 		if (stat->max_write_latency_ticks < tsc_diff) {
1245 			stat->max_write_latency_ticks = tsc_diff;
1246 		}
1247 		if (stat->min_write_latency_ticks > tsc_diff) {
1248 			stat->min_write_latency_ticks = tsc_diff;
1249 		}
1250 		break;
1251 	case SPDK_BDEV_IO_TYPE_UNMAP:
1252 		stat->bytes_unmapped += num_blocks * blocklen;
1253 		stat->num_unmap_ops++;
1254 		stat->unmap_latency_ticks += tsc_diff;
1255 		if (stat->max_unmap_latency_ticks < tsc_diff) {
1256 			stat->max_unmap_latency_ticks = tsc_diff;
1257 		}
1258 		if (stat->min_unmap_latency_ticks > tsc_diff) {
1259 			stat->min_unmap_latency_ticks = tsc_diff;
1260 		}
1261 		break;
1262 	case SPDK_BDEV_IO_TYPE_ZCOPY:
1263 		/* Track the data in the start phase only */
1264 		if (!bdev_io->u.bdev.zcopy.start) {
1265 			break;
1266 		}
1267 		if (bdev_io->u.bdev.zcopy.populate) {
1268 			stat->bytes_read += num_blocks * blocklen;
1269 			stat->num_read_ops++;
1270 			stat->read_latency_ticks += tsc_diff;
1271 			if (stat->max_read_latency_ticks < tsc_diff) {
1272 				stat->max_read_latency_ticks = tsc_diff;
1273 			}
1274 			if (stat->min_read_latency_ticks > tsc_diff) {
1275 				stat->min_read_latency_ticks = tsc_diff;
1276 			}
1277 		} else {
1278 			stat->bytes_written += num_blocks * blocklen;
1279 			stat->num_write_ops++;
1280 			stat->write_latency_ticks += tsc_diff;
1281 			if (stat->max_write_latency_ticks < tsc_diff) {
1282 				stat->max_write_latency_ticks = tsc_diff;
1283 			}
1284 			if (stat->min_write_latency_ticks > tsc_diff) {
1285 				stat->min_write_latency_ticks = tsc_diff;
1286 			}
1287 		}
1288 		break;
1289 	case SPDK_BDEV_IO_TYPE_COPY:
1290 		stat->bytes_copied += num_blocks * blocklen;
1291 		stat->num_copy_ops++;
1292 		stat->copy_latency_ticks += tsc_diff;
1293 		if (stat->max_copy_latency_ticks < tsc_diff) {
1294 			stat->max_copy_latency_ticks = tsc_diff;
1295 		}
1296 		if (stat->min_copy_latency_ticks > tsc_diff) {
1297 			stat->min_copy_latency_ticks = tsc_diff;
1298 		}
1299 		break;
1300 	default:
1301 		break;
1302 	}
1303 }
1304 
1305 static bool
1306 bdev_nvme_check_retry_io(struct nvme_bdev_io *bio,
1307 			 const struct spdk_nvme_cpl *cpl,
1308 			 struct nvme_bdev_channel *nbdev_ch,
1309 			 uint64_t *_delay_ms)
1310 {
1311 	struct nvme_io_path *io_path = bio->io_path;
1312 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1313 	const struct spdk_nvme_ctrlr_data *cdata;
1314 
1315 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1316 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1317 	    !nvme_io_path_is_available(io_path) ||
1318 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1319 		bdev_nvme_clear_current_io_path(nbdev_ch);
1320 		bio->io_path = NULL;
1321 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1322 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1323 				io_path->nvme_ns->ana_state_updating = true;
1324 			}
1325 		}
1326 		if (!any_io_path_may_become_available(nbdev_ch)) {
1327 			return false;
1328 		}
1329 		*_delay_ms = 0;
1330 	} else {
1331 		bio->retry_count++;
1332 
1333 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1334 
1335 		if (cpl->status.crd != 0) {
1336 			*_delay_ms = cdata->crdt[cpl->status.crd] * 100;
1337 		} else {
1338 			*_delay_ms = 0;
1339 		}
1340 	}
1341 
1342 	return true;
1343 }
1344 
1345 static inline void
1346 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1347 				  const struct spdk_nvme_cpl *cpl)
1348 {
1349 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1350 	struct nvme_bdev_channel *nbdev_ch;
1351 	uint64_t delay_ms;
1352 
1353 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1354 
1355 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1356 		bdev_nvme_update_io_path_stat(bio);
1357 		goto complete;
1358 	}
1359 
1360 	/* Update error counts before deciding if retry is needed.
1361 	 * Hence, error counts may be more than the number of I/O errors.
1362 	 */
1363 	bdev_nvme_update_nvme_error_stat(bdev_io, cpl);
1364 
1365 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1366 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1367 		goto complete;
1368 	}
1369 
1370 	/* At this point we don't know whether the sequence was successfully executed or not, so we
1371 	 * cannot retry the IO */
1372 	if (bdev_io->u.bdev.accel_sequence != NULL) {
1373 		goto complete;
1374 	}
1375 
1376 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1377 
1378 	if (bdev_nvme_check_retry_io(bio, cpl, nbdev_ch, &delay_ms)) {
1379 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1380 		return;
1381 	}
1382 
1383 complete:
1384 	bio->retry_count = 0;
1385 	bio->submit_tsc = 0;
1386 	bdev_io->u.bdev.accel_sequence = NULL;
1387 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1388 }
1389 
1390 static inline void
1391 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1392 {
1393 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1394 	struct nvme_bdev_channel *nbdev_ch;
1395 	enum spdk_bdev_io_status io_status;
1396 
1397 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1398 
1399 	switch (rc) {
1400 	case 0:
1401 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1402 		break;
1403 	case -ENOMEM:
1404 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1405 		break;
1406 	case -ENXIO:
1407 		nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1408 
1409 		bdev_nvme_clear_current_io_path(nbdev_ch);
1410 		bio->io_path = NULL;
1411 
1412 		if (any_io_path_may_become_available(nbdev_ch)) {
1413 			bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1414 			return;
1415 		}
1416 
1417 	/* fallthrough */
1418 	default:
1419 		spdk_accel_sequence_abort(bdev_io->u.bdev.accel_sequence);
1420 		bdev_io->u.bdev.accel_sequence = NULL;
1421 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1422 		break;
1423 	}
1424 
1425 	bio->retry_count = 0;
1426 	bio->submit_tsc = 0;
1427 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1428 }
1429 
1430 static inline void
1431 bdev_nvme_admin_complete(struct nvme_bdev_io *bio, int rc)
1432 {
1433 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1434 	enum spdk_bdev_io_status io_status;
1435 
1436 	switch (rc) {
1437 	case 0:
1438 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1439 		break;
1440 	case -ENOMEM:
1441 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1442 		break;
1443 	case -ENXIO:
1444 	/* fallthrough */
1445 	default:
1446 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1447 		break;
1448 	}
1449 
1450 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1451 }
1452 
1453 static void
1454 bdev_nvme_clear_io_path_caches_done(struct spdk_io_channel_iter *i, int status)
1455 {
1456 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1457 
1458 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1459 
1460 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1461 	nvme_ctrlr->io_path_cache_clearing = false;
1462 
1463 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1464 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1465 		return;
1466 	}
1467 
1468 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1469 
1470 	nvme_ctrlr_unregister(nvme_ctrlr);
1471 }
1472 
1473 static void
1474 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1475 {
1476 	struct nvme_io_path *io_path;
1477 
1478 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1479 		if (io_path->nbdev_ch == NULL) {
1480 			continue;
1481 		}
1482 		bdev_nvme_clear_current_io_path(io_path->nbdev_ch);
1483 	}
1484 }
1485 
1486 static void
1487 bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i)
1488 {
1489 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1490 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1491 
1492 	assert(ctrlr_ch->qpair != NULL);
1493 
1494 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1495 
1496 	spdk_for_each_channel_continue(i, 0);
1497 }
1498 
1499 static void
1500 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1501 {
1502 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1503 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1504 	    nvme_ctrlr->io_path_cache_clearing) {
1505 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1506 		return;
1507 	}
1508 
1509 	nvme_ctrlr->io_path_cache_clearing = true;
1510 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1511 
1512 	spdk_for_each_channel(nvme_ctrlr,
1513 			      bdev_nvme_clear_io_path_cache,
1514 			      NULL,
1515 			      bdev_nvme_clear_io_path_caches_done);
1516 }
1517 
1518 static struct nvme_qpair *
1519 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1520 {
1521 	struct nvme_qpair *nvme_qpair;
1522 
1523 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1524 		if (nvme_qpair->qpair == qpair) {
1525 			break;
1526 		}
1527 	}
1528 
1529 	return nvme_qpair;
1530 }
1531 
1532 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1533 
1534 static void
1535 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1536 {
1537 	struct nvme_poll_group *group = poll_group_ctx;
1538 	struct nvme_qpair *nvme_qpair;
1539 	struct nvme_ctrlr_channel *ctrlr_ch;
1540 	int status;
1541 
1542 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1543 	if (nvme_qpair == NULL) {
1544 		return;
1545 	}
1546 
1547 	if (nvme_qpair->qpair != NULL) {
1548 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1549 		nvme_qpair->qpair = NULL;
1550 	}
1551 
1552 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1553 
1554 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1555 
1556 	if (ctrlr_ch != NULL) {
1557 		if (ctrlr_ch->reset_iter != NULL) {
1558 			/* We are in a full reset sequence. */
1559 			if (ctrlr_ch->connect_poller != NULL) {
1560 				/* qpair was failed to connect. Abort the reset sequence. */
1561 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was failed to connect. abort the reset ctrlr sequence.\n",
1562 					      qpair);
1563 				spdk_poller_unregister(&ctrlr_ch->connect_poller);
1564 				status = -1;
1565 			} else {
1566 				/* qpair was completed to disconnect. Just move to the next ctrlr_channel. */
1567 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1568 					      qpair);
1569 				status = 0;
1570 			}
1571 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, status);
1572 			ctrlr_ch->reset_iter = NULL;
1573 		} else {
1574 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1575 			SPDK_NOTICELOG("qpair %p was disconnected and freed. reset controller.\n", qpair);
1576 			bdev_nvme_failover_ctrlr(nvme_qpair->ctrlr, false);
1577 		}
1578 	} else {
1579 		/* In this case, ctrlr_channel is already deleted. */
1580 		SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed. delete nvme_qpair.\n", qpair);
1581 		nvme_qpair_delete(nvme_qpair);
1582 	}
1583 }
1584 
1585 static void
1586 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1587 {
1588 	struct nvme_qpair *nvme_qpair;
1589 
1590 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1591 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1592 			continue;
1593 		}
1594 
1595 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1596 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1597 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1598 		}
1599 	}
1600 }
1601 
1602 static int
1603 bdev_nvme_poll(void *arg)
1604 {
1605 	struct nvme_poll_group *group = arg;
1606 	int64_t num_completions;
1607 
1608 	if (group->collect_spin_stat && group->start_ticks == 0) {
1609 		group->start_ticks = spdk_get_ticks();
1610 	}
1611 
1612 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1613 			  bdev_nvme_disconnected_qpair_cb);
1614 	if (group->collect_spin_stat) {
1615 		if (num_completions > 0) {
1616 			if (group->end_ticks != 0) {
1617 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1618 				group->end_ticks = 0;
1619 			}
1620 			group->start_ticks = 0;
1621 		} else {
1622 			group->end_ticks = spdk_get_ticks();
1623 		}
1624 	}
1625 
1626 	if (spdk_unlikely(num_completions < 0)) {
1627 		bdev_nvme_check_io_qpairs(group);
1628 	}
1629 
1630 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1631 }
1632 
1633 static int bdev_nvme_poll_adminq(void *arg);
1634 
1635 static void
1636 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1637 {
1638 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1639 
1640 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1641 					  nvme_ctrlr, new_period_us);
1642 }
1643 
1644 static int
1645 bdev_nvme_poll_adminq(void *arg)
1646 {
1647 	int32_t rc;
1648 	struct nvme_ctrlr *nvme_ctrlr = arg;
1649 	nvme_ctrlr_disconnected_cb disconnected_cb;
1650 
1651 	assert(nvme_ctrlr != NULL);
1652 
1653 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1654 	if (rc < 0) {
1655 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1656 		nvme_ctrlr->disconnected_cb = NULL;
1657 
1658 		if (disconnected_cb != NULL) {
1659 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1660 							    g_opts.nvme_adminq_poll_period_us);
1661 			disconnected_cb(nvme_ctrlr);
1662 		} else {
1663 			bdev_nvme_failover_ctrlr(nvme_ctrlr, false);
1664 		}
1665 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1666 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1667 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1668 	}
1669 
1670 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1671 }
1672 
1673 static void
1674 nvme_bdev_free(void *io_device)
1675 {
1676 	struct nvme_bdev *nvme_disk = io_device;
1677 
1678 	pthread_mutex_destroy(&nvme_disk->mutex);
1679 	free(nvme_disk->disk.name);
1680 	free(nvme_disk->err_stat);
1681 	free(nvme_disk);
1682 }
1683 
1684 static int
1685 bdev_nvme_destruct(void *ctx)
1686 {
1687 	struct nvme_bdev *nvme_disk = ctx;
1688 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1689 
1690 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1691 
1692 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1693 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1694 
1695 		nvme_ns->bdev = NULL;
1696 
1697 		assert(nvme_ns->id > 0);
1698 
1699 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1700 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1701 
1702 			nvme_ctrlr_release(nvme_ns->ctrlr);
1703 			nvme_ns_free(nvme_ns);
1704 		} else {
1705 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1706 		}
1707 	}
1708 
1709 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1710 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1711 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1712 
1713 	spdk_io_device_unregister(nvme_disk, nvme_bdev_free);
1714 
1715 	return 0;
1716 }
1717 
1718 static int
1719 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1720 {
1721 	struct nvme_ctrlr *nvme_ctrlr;
1722 	struct spdk_nvme_io_qpair_opts opts;
1723 	struct spdk_nvme_qpair *qpair;
1724 	int rc;
1725 
1726 	nvme_ctrlr = nvme_qpair->ctrlr;
1727 
1728 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1729 	opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1730 	opts.create_only = true;
1731 	opts.async_mode = true;
1732 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1733 	g_opts.io_queue_requests = opts.io_queue_requests;
1734 
1735 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1736 	if (qpair == NULL) {
1737 		return -1;
1738 	}
1739 
1740 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1741 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1742 
1743 	assert(nvme_qpair->group != NULL);
1744 
1745 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1746 	if (rc != 0) {
1747 		SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
1748 		goto err;
1749 	}
1750 
1751 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1752 	if (rc != 0) {
1753 		SPDK_ERRLOG("Unable to connect I/O qpair.\n");
1754 		goto err;
1755 	}
1756 
1757 	nvme_qpair->qpair = qpair;
1758 
1759 	if (!g_opts.disable_auto_failback) {
1760 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1761 	}
1762 
1763 	return 0;
1764 
1765 err:
1766 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1767 
1768 	return rc;
1769 }
1770 
1771 static void
1772 bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
1773 {
1774 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1775 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1776 	enum spdk_bdev_io_status status = SPDK_BDEV_IO_STATUS_SUCCESS;
1777 	struct spdk_bdev_io *bdev_io;
1778 
1779 	if (spdk_io_channel_iter_get_ctx(i) != NULL) {
1780 		status = SPDK_BDEV_IO_STATUS_FAILED;
1781 	}
1782 
1783 	while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
1784 		bdev_io = TAILQ_FIRST(&ctrlr_ch->pending_resets);
1785 		TAILQ_REMOVE(&ctrlr_ch->pending_resets, bdev_io, module_link);
1786 		__bdev_nvme_io_complete(bdev_io, status, NULL);
1787 	}
1788 
1789 	spdk_for_each_channel_continue(i, 0);
1790 }
1791 
1792 /* This function marks the current trid as failed by storing the current ticks
1793  * and then sets the next trid to the active trid within a controller if exists.
1794  *
1795  * The purpose of the boolean return value is to request the caller to disconnect
1796  * the current trid now to try connecting the next trid.
1797  */
1798 static bool
1799 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove, bool start)
1800 {
1801 	struct nvme_path_id *path_id, *next_path;
1802 	int rc __attribute__((unused));
1803 
1804 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1805 	assert(path_id);
1806 	assert(path_id == nvme_ctrlr->active_path_id);
1807 	next_path = TAILQ_NEXT(path_id, link);
1808 
1809 	/* Update the last failed time. It means the trid is failed if its last
1810 	 * failed time is non-zero.
1811 	 */
1812 	path_id->last_failed_tsc = spdk_get_ticks();
1813 
1814 	if (next_path == NULL) {
1815 		/* There is no alternate trid within a controller. */
1816 		return false;
1817 	}
1818 
1819 	if (!start && nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1820 		/* Connect is not retried in a controller reset sequence. Connecting
1821 		 * the next trid will be done by the next bdev_nvme_failover_ctrlr() call.
1822 		 */
1823 		return false;
1824 	}
1825 
1826 	assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
1827 
1828 	SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr,
1829 		       path_id->trid.trsvcid,	next_path->trid.traddr, next_path->trid.trsvcid);
1830 
1831 	spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
1832 	nvme_ctrlr->active_path_id = next_path;
1833 	rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
1834 	assert(rc == 0);
1835 	TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
1836 	if (!remove) {
1837 		/** Shuffle the old trid to the end of the list and use the new one.
1838 		 * Allows for round robin through multiple connections.
1839 		 */
1840 		TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
1841 	} else {
1842 		free(path_id);
1843 	}
1844 
1845 	if (start || next_path->last_failed_tsc == 0) {
1846 		/* bdev_nvme_failover_ctrlr() is just called or the next trid is not failed
1847 		 * or used yet. Try the next trid now.
1848 		 */
1849 		return true;
1850 	}
1851 
1852 	if (spdk_get_ticks() > next_path->last_failed_tsc + spdk_get_ticks_hz() *
1853 	    nvme_ctrlr->opts.reconnect_delay_sec) {
1854 		/* Enough backoff passed since the next trid failed. Try the next trid now. */
1855 		return true;
1856 	}
1857 
1858 	/* The next trid will be tried after reconnect_delay_sec seconds. */
1859 	return false;
1860 }
1861 
1862 static bool
1863 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
1864 {
1865 	int32_t elapsed;
1866 
1867 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
1868 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
1869 		return false;
1870 	}
1871 
1872 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1873 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
1874 		return true;
1875 	} else {
1876 		return false;
1877 	}
1878 }
1879 
1880 static bool
1881 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
1882 {
1883 	uint32_t elapsed;
1884 
1885 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
1886 		return false;
1887 	}
1888 
1889 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1890 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
1891 		return true;
1892 	} else {
1893 		return false;
1894 	}
1895 }
1896 
1897 static void bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
1898 
1899 static void
1900 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
1901 {
1902 	int rc;
1903 
1904 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
1905 	if (rc != 0) {
1906 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
1907 		 * fail the reset sequence immediately.
1908 		 */
1909 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
1910 		return;
1911 	}
1912 
1913 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
1914 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
1915 	 */
1916 	assert(nvme_ctrlr->disconnected_cb == NULL);
1917 	nvme_ctrlr->disconnected_cb = cb_fn;
1918 
1919 	/* During disconnection, reduce the period to poll adminq more often. */
1920 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
1921 }
1922 
1923 enum bdev_nvme_op_after_reset {
1924 	OP_NONE,
1925 	OP_COMPLETE_PENDING_DESTRUCT,
1926 	OP_DESTRUCT,
1927 	OP_DELAYED_RECONNECT,
1928 	OP_FAILOVER,
1929 };
1930 
1931 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
1932 
1933 static _bdev_nvme_op_after_reset
1934 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
1935 {
1936 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1937 		/* Complete pending destruct after reset completes. */
1938 		return OP_COMPLETE_PENDING_DESTRUCT;
1939 	} else if (nvme_ctrlr->pending_failover) {
1940 		nvme_ctrlr->pending_failover = false;
1941 		nvme_ctrlr->reset_start_tsc = 0;
1942 		return OP_FAILOVER;
1943 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1944 		nvme_ctrlr->reset_start_tsc = 0;
1945 		return OP_NONE;
1946 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1947 		return OP_DESTRUCT;
1948 	} else {
1949 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
1950 			nvme_ctrlr->fast_io_fail_timedout = true;
1951 		}
1952 		return OP_DELAYED_RECONNECT;
1953 	}
1954 }
1955 
1956 static int bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
1957 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
1958 
1959 static int
1960 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
1961 {
1962 	struct nvme_ctrlr *nvme_ctrlr = ctx;
1963 
1964 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
1965 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1966 
1967 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
1968 
1969 	if (!nvme_ctrlr->reconnect_is_delayed) {
1970 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1971 		return SPDK_POLLER_BUSY;
1972 	}
1973 
1974 	nvme_ctrlr->reconnect_is_delayed = false;
1975 
1976 	if (nvme_ctrlr->destruct) {
1977 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1978 		return SPDK_POLLER_BUSY;
1979 	}
1980 
1981 	assert(nvme_ctrlr->resetting == false);
1982 	nvme_ctrlr->resetting = true;
1983 
1984 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1985 
1986 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
1987 
1988 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
1989 	return SPDK_POLLER_BUSY;
1990 }
1991 
1992 static void
1993 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
1994 {
1995 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
1996 
1997 	assert(nvme_ctrlr->reconnect_is_delayed == false);
1998 	nvme_ctrlr->reconnect_is_delayed = true;
1999 
2000 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
2001 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
2002 					    nvme_ctrlr,
2003 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
2004 }
2005 
2006 static void remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr);
2007 
2008 static void
2009 _bdev_nvme_reset_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2010 {
2011 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2012 	bool success = spdk_io_channel_iter_get_ctx(i) == NULL;
2013 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2014 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2015 	enum bdev_nvme_op_after_reset op_after_reset;
2016 
2017 	assert(nvme_ctrlr->thread == spdk_get_thread());
2018 
2019 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2020 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2021 
2022 	if (!success) {
2023 		SPDK_ERRLOG("Resetting controller failed.\n");
2024 	} else {
2025 		SPDK_NOTICELOG("Resetting controller successful.\n");
2026 	}
2027 
2028 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2029 	nvme_ctrlr->resetting = false;
2030 	nvme_ctrlr->dont_retry = false;
2031 	nvme_ctrlr->in_failover = false;
2032 
2033 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
2034 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2035 
2036 	if (ctrlr_op_cb_fn) {
2037 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, success ? 0 : -1);
2038 	}
2039 
2040 	switch (op_after_reset) {
2041 	case OP_COMPLETE_PENDING_DESTRUCT:
2042 		nvme_ctrlr_unregister(nvme_ctrlr);
2043 		break;
2044 	case OP_DESTRUCT:
2045 		bdev_nvme_delete_ctrlr(nvme_ctrlr, false);
2046 		remove_discovery_entry(nvme_ctrlr);
2047 		break;
2048 	case OP_DELAYED_RECONNECT:
2049 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
2050 		break;
2051 	case OP_FAILOVER:
2052 		bdev_nvme_failover_ctrlr(nvme_ctrlr, false);
2053 		break;
2054 	default:
2055 		break;
2056 	}
2057 }
2058 
2059 static void
2060 bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
2061 {
2062 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2063 	if (!success) {
2064 		/* Connecting the active trid failed. Set the next alternate trid to the
2065 		 * active trid if it exists.
2066 		 */
2067 		if (bdev_nvme_failover_trid(nvme_ctrlr, false, false)) {
2068 			/* The next alternate trid exists and is ready to try. Try it now. */
2069 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
2070 
2071 			nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2072 			return;
2073 		}
2074 
2075 		/* We came here if there is no alternate trid or if the next trid exists but
2076 		 * is not ready to try. We will try the active trid after reconnect_delay_sec
2077 		 * seconds if it is non-zero or at the next reset call otherwise.
2078 		 */
2079 	} else {
2080 		/* Connecting the active trid succeeded. Clear the last failed time because it
2081 		 * means the trid is failed if its last failed time is non-zero.
2082 		 */
2083 		nvme_ctrlr->active_path_id->last_failed_tsc = 0;
2084 	}
2085 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2086 
2087 	/* Make sure we clear any pending resets before returning. */
2088 	spdk_for_each_channel(nvme_ctrlr,
2089 			      bdev_nvme_complete_pending_resets,
2090 			      success ? NULL : (void *)0x1,
2091 			      _bdev_nvme_reset_ctrlr_complete);
2092 }
2093 
2094 static void
2095 bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status)
2096 {
2097 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2098 
2099 	bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2100 }
2101 
2102 static void
2103 bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
2104 {
2105 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
2106 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
2107 	struct nvme_qpair *nvme_qpair;
2108 
2109 	nvme_qpair = ctrlr_ch->qpair;
2110 	assert(nvme_qpair != NULL);
2111 
2112 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2113 
2114 	if (nvme_qpair->qpair != NULL) {
2115 		if (nvme_qpair->ctrlr->dont_retry) {
2116 			spdk_nvme_qpair_set_abort_dnr(nvme_qpair->qpair, true);
2117 		}
2118 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
2119 
2120 		/* The current full reset sequence will move to the next
2121 		 * ctrlr_channel after the qpair is actually disconnected.
2122 		 */
2123 		assert(ctrlr_ch->reset_iter == NULL);
2124 		ctrlr_ch->reset_iter = i;
2125 	} else {
2126 		spdk_for_each_channel_continue(i, 0);
2127 	}
2128 }
2129 
2130 static void
2131 bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
2132 {
2133 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2134 
2135 	if (status == 0) {
2136 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, true);
2137 	} else {
2138 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
2139 		spdk_for_each_channel(nvme_ctrlr,
2140 				      bdev_nvme_reset_destroy_qpair,
2141 				      NULL,
2142 				      bdev_nvme_reset_create_qpairs_failed);
2143 	}
2144 }
2145 
2146 static int
2147 bdev_nvme_reset_check_qpair_connected(void *ctx)
2148 {
2149 	struct nvme_ctrlr_channel *ctrlr_ch = ctx;
2150 
2151 	if (ctrlr_ch->reset_iter == NULL) {
2152 		/* qpair was already failed to connect and the reset sequence is being aborted. */
2153 		assert(ctrlr_ch->connect_poller == NULL);
2154 		assert(ctrlr_ch->qpair->qpair == NULL);
2155 		return SPDK_POLLER_BUSY;
2156 	}
2157 
2158 	assert(ctrlr_ch->qpair->qpair != NULL);
2159 
2160 	if (!spdk_nvme_qpair_is_connected(ctrlr_ch->qpair->qpair)) {
2161 		return SPDK_POLLER_BUSY;
2162 	}
2163 
2164 	spdk_poller_unregister(&ctrlr_ch->connect_poller);
2165 
2166 	/* qpair was completed to connect. Move to the next ctrlr_channel */
2167 	spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2168 	ctrlr_ch->reset_iter = NULL;
2169 
2170 	return SPDK_POLLER_BUSY;
2171 }
2172 
2173 static void
2174 bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
2175 {
2176 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2177 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
2178 	int rc;
2179 
2180 	rc = bdev_nvme_create_qpair(ctrlr_ch->qpair);
2181 	if (rc == 0) {
2182 		ctrlr_ch->connect_poller = SPDK_POLLER_REGISTER(bdev_nvme_reset_check_qpair_connected,
2183 					   ctrlr_ch, 0);
2184 
2185 		/* The current full reset sequence will move to the next
2186 		 * ctrlr_channel after the qpair is actually connected.
2187 		 */
2188 		assert(ctrlr_ch->reset_iter == NULL);
2189 		ctrlr_ch->reset_iter = i;
2190 	} else {
2191 		spdk_for_each_channel_continue(i, rc);
2192 	}
2193 }
2194 
2195 static int
2196 bdev_nvme_reconnect_ctrlr_poll(void *arg)
2197 {
2198 	struct nvme_ctrlr *nvme_ctrlr = arg;
2199 	int rc = -ETIMEDOUT;
2200 
2201 	if (!bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2202 		rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
2203 		if (rc == -EAGAIN) {
2204 			return SPDK_POLLER_BUSY;
2205 		}
2206 	}
2207 
2208 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
2209 	if (rc == 0) {
2210 		/* Recreate all of the I/O queue pairs */
2211 		spdk_for_each_channel(nvme_ctrlr,
2212 				      bdev_nvme_reset_create_qpair,
2213 				      NULL,
2214 				      bdev_nvme_reset_create_qpairs_done);
2215 	} else {
2216 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2217 	}
2218 	return SPDK_POLLER_BUSY;
2219 }
2220 
2221 static void
2222 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2223 {
2224 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
2225 
2226 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
2227 	assert(nvme_ctrlr->reset_detach_poller == NULL);
2228 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
2229 					  nvme_ctrlr, 0);
2230 }
2231 
2232 static void
2233 bdev_nvme_reset_destroy_qpair_done(struct spdk_io_channel_iter *i, int status)
2234 {
2235 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2236 
2237 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
2238 	assert(status == 0);
2239 
2240 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2241 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2242 	} else {
2243 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2244 	}
2245 }
2246 
2247 static void
2248 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2249 {
2250 	spdk_for_each_channel(nvme_ctrlr,
2251 			      bdev_nvme_reset_destroy_qpair,
2252 			      NULL,
2253 			      bdev_nvme_reset_destroy_qpair_done);
2254 }
2255 
2256 static void
2257 bdev_nvme_reconnect_ctrlr_now(void *ctx)
2258 {
2259 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2260 
2261 	assert(nvme_ctrlr->resetting == true);
2262 	assert(nvme_ctrlr->thread == spdk_get_thread());
2263 
2264 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2265 
2266 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2267 
2268 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2269 }
2270 
2271 static void
2272 _bdev_nvme_reset_ctrlr(void *ctx)
2273 {
2274 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2275 
2276 	assert(nvme_ctrlr->resetting == true);
2277 	assert(nvme_ctrlr->thread == spdk_get_thread());
2278 
2279 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2280 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
2281 	} else {
2282 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
2283 	}
2284 }
2285 
2286 static int
2287 bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2288 {
2289 	spdk_msg_fn msg_fn;
2290 
2291 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2292 	if (nvme_ctrlr->destruct) {
2293 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2294 		return -ENXIO;
2295 	}
2296 
2297 	if (nvme_ctrlr->resetting) {
2298 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2299 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
2300 		return -EBUSY;
2301 	}
2302 
2303 	if (nvme_ctrlr->disabled) {
2304 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2305 		SPDK_NOTICELOG("Unable to perform reset. Controller is disabled.\n");
2306 		return -EALREADY;
2307 	}
2308 
2309 	nvme_ctrlr->resetting = true;
2310 	nvme_ctrlr->dont_retry = true;
2311 
2312 	if (nvme_ctrlr->reconnect_is_delayed) {
2313 		SPDK_DEBUGLOG(bdev_nvme, "Reconnect is already scheduled.\n");
2314 		msg_fn = bdev_nvme_reconnect_ctrlr_now;
2315 		nvme_ctrlr->reconnect_is_delayed = false;
2316 	} else {
2317 		msg_fn = _bdev_nvme_reset_ctrlr;
2318 		assert(nvme_ctrlr->reset_start_tsc == 0);
2319 	}
2320 
2321 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2322 
2323 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2324 
2325 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2326 	return 0;
2327 }
2328 
2329 static int
2330 bdev_nvme_enable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2331 {
2332 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2333 	if (nvme_ctrlr->destruct) {
2334 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2335 		return -ENXIO;
2336 	}
2337 
2338 	if (nvme_ctrlr->resetting) {
2339 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2340 		return -EBUSY;
2341 	}
2342 
2343 	if (!nvme_ctrlr->disabled) {
2344 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2345 		return -EALREADY;
2346 	}
2347 
2348 	nvme_ctrlr->disabled = false;
2349 	nvme_ctrlr->resetting = true;
2350 
2351 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2352 
2353 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2354 
2355 	spdk_thread_send_msg(nvme_ctrlr->thread, bdev_nvme_reconnect_ctrlr_now, nvme_ctrlr);
2356 	return 0;
2357 }
2358 
2359 static void
2360 _bdev_nvme_disable_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2361 {
2362 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2363 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2364 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2365 	enum bdev_nvme_op_after_reset op_after_disable;
2366 
2367 	assert(nvme_ctrlr->thread == spdk_get_thread());
2368 
2369 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2370 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2371 
2372 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2373 
2374 	nvme_ctrlr->resetting = false;
2375 	nvme_ctrlr->dont_retry = false;
2376 
2377 	op_after_disable = bdev_nvme_check_op_after_reset(nvme_ctrlr, true);
2378 
2379 	nvme_ctrlr->disabled = true;
2380 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2381 
2382 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2383 
2384 	if (ctrlr_op_cb_fn) {
2385 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, 0);
2386 	}
2387 
2388 	switch (op_after_disable) {
2389 	case OP_COMPLETE_PENDING_DESTRUCT:
2390 		nvme_ctrlr_unregister(nvme_ctrlr);
2391 		break;
2392 	default:
2393 		break;
2394 	}
2395 
2396 }
2397 
2398 static void
2399 bdev_nvme_disable_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr)
2400 {
2401 	/* Make sure we clear any pending resets before returning. */
2402 	spdk_for_each_channel(nvme_ctrlr,
2403 			      bdev_nvme_complete_pending_resets,
2404 			      NULL,
2405 			      _bdev_nvme_disable_ctrlr_complete);
2406 }
2407 
2408 static void
2409 bdev_nvme_disable_destroy_qpairs_done(struct spdk_io_channel_iter *i, int status)
2410 {
2411 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2412 
2413 	assert(status == 0);
2414 
2415 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2416 		bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2417 	} else {
2418 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_ctrlr_complete);
2419 	}
2420 }
2421 
2422 static void
2423 bdev_nvme_disable_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2424 {
2425 	spdk_for_each_channel(nvme_ctrlr,
2426 			      bdev_nvme_reset_destroy_qpair,
2427 			      NULL,
2428 			      bdev_nvme_disable_destroy_qpairs_done);
2429 }
2430 
2431 static void
2432 _bdev_nvme_cancel_reconnect_and_disable_ctrlr(void *ctx)
2433 {
2434 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2435 
2436 	assert(nvme_ctrlr->resetting == true);
2437 	assert(nvme_ctrlr->thread == spdk_get_thread());
2438 
2439 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2440 
2441 	bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2442 }
2443 
2444 static void
2445 _bdev_nvme_disconnect_and_disable_ctrlr(void *ctx)
2446 {
2447 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2448 
2449 	assert(nvme_ctrlr->resetting == true);
2450 	assert(nvme_ctrlr->thread == spdk_get_thread());
2451 
2452 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2453 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_destroy_qpairs);
2454 	} else {
2455 		bdev_nvme_disable_destroy_qpairs(nvme_ctrlr);
2456 	}
2457 }
2458 
2459 static int
2460 bdev_nvme_disable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2461 {
2462 	spdk_msg_fn msg_fn;
2463 
2464 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2465 	if (nvme_ctrlr->destruct) {
2466 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2467 		return -ENXIO;
2468 	}
2469 
2470 	if (nvme_ctrlr->resetting) {
2471 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2472 		return -EBUSY;
2473 	}
2474 
2475 	if (nvme_ctrlr->disabled) {
2476 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2477 		return -EALREADY;
2478 	}
2479 
2480 	nvme_ctrlr->resetting = true;
2481 	nvme_ctrlr->dont_retry = true;
2482 
2483 	if (nvme_ctrlr->reconnect_is_delayed) {
2484 		msg_fn = _bdev_nvme_cancel_reconnect_and_disable_ctrlr;
2485 		nvme_ctrlr->reconnect_is_delayed = false;
2486 	} else {
2487 		msg_fn = _bdev_nvme_disconnect_and_disable_ctrlr;
2488 	}
2489 
2490 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2491 
2492 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2493 
2494 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2495 	return 0;
2496 }
2497 
2498 static int
2499 nvme_ctrlr_op(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2500 	      bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2501 {
2502 	int rc;
2503 
2504 	switch (op) {
2505 	case NVME_CTRLR_OP_RESET:
2506 		rc = bdev_nvme_reset_ctrlr(nvme_ctrlr);
2507 		break;
2508 	case NVME_CTRLR_OP_ENABLE:
2509 		rc = bdev_nvme_enable_ctrlr(nvme_ctrlr);
2510 		break;
2511 	case NVME_CTRLR_OP_DISABLE:
2512 		rc = bdev_nvme_disable_ctrlr(nvme_ctrlr);
2513 		break;
2514 	default:
2515 		rc = -EINVAL;
2516 		break;
2517 	}
2518 
2519 	if (rc == 0) {
2520 		assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL);
2521 		assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL);
2522 		nvme_ctrlr->ctrlr_op_cb_fn = cb_fn;
2523 		nvme_ctrlr->ctrlr_op_cb_arg = cb_arg;
2524 	}
2525 	return rc;
2526 }
2527 
2528 struct nvme_ctrlr_op_rpc_ctx {
2529 	struct nvme_ctrlr *nvme_ctrlr;
2530 	struct spdk_thread *orig_thread;
2531 	enum nvme_ctrlr_op op;
2532 	int rc;
2533 	bdev_nvme_ctrlr_op_cb cb_fn;
2534 	void *cb_arg;
2535 };
2536 
2537 static void
2538 _nvme_ctrlr_op_rpc_complete(void *_ctx)
2539 {
2540 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2541 
2542 	assert(ctx != NULL);
2543 	assert(ctx->cb_fn != NULL);
2544 
2545 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2546 
2547 	free(ctx);
2548 }
2549 
2550 static void
2551 nvme_ctrlr_op_rpc_complete(void *cb_arg, int rc)
2552 {
2553 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2554 
2555 	ctx->rc = rc;
2556 
2557 	spdk_thread_send_msg(ctx->orig_thread, _nvme_ctrlr_op_rpc_complete, ctx);
2558 }
2559 
2560 void
2561 nvme_ctrlr_op_rpc(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2562 		  bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2563 {
2564 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2565 	int rc;
2566 
2567 	assert(cb_fn != NULL);
2568 
2569 	ctx = calloc(1, sizeof(*ctx));
2570 	if (ctx == NULL) {
2571 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2572 		cb_fn(cb_arg, -ENOMEM);
2573 		return;
2574 	}
2575 
2576 	ctx->orig_thread = spdk_get_thread();
2577 	ctx->cb_fn = cb_fn;
2578 	ctx->cb_arg = cb_arg;
2579 
2580 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_ctrlr_op_rpc_complete, ctx);
2581 	if (rc == 0) {
2582 		return;
2583 	} else if (rc == -EALREADY) {
2584 		rc = 0;
2585 	}
2586 
2587 	nvme_ctrlr_op_rpc_complete(ctx, rc);
2588 }
2589 
2590 static void nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc);
2591 
2592 static void
2593 _nvme_bdev_ctrlr_op_rpc_continue(void *_ctx)
2594 {
2595 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2596 	struct nvme_ctrlr *prev_nvme_ctrlr, *next_nvme_ctrlr;
2597 	int rc;
2598 
2599 	prev_nvme_ctrlr = ctx->nvme_ctrlr;
2600 	ctx->nvme_ctrlr = NULL;
2601 
2602 	if (ctx->rc != 0) {
2603 		goto complete;
2604 	}
2605 
2606 	next_nvme_ctrlr = TAILQ_NEXT(prev_nvme_ctrlr, tailq);
2607 	if (next_nvme_ctrlr == NULL) {
2608 		goto complete;
2609 	}
2610 
2611 	rc = nvme_ctrlr_op(next_nvme_ctrlr, ctx->op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2612 	if (rc == 0) {
2613 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2614 		return;
2615 	} else if (rc == -EALREADY) {
2616 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2617 		rc = 0;
2618 	}
2619 
2620 	ctx->rc = rc;
2621 
2622 complete:
2623 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2624 	free(ctx);
2625 }
2626 
2627 static void
2628 nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc)
2629 {
2630 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2631 
2632 	ctx->rc = rc;
2633 
2634 	spdk_thread_send_msg(ctx->orig_thread, _nvme_bdev_ctrlr_op_rpc_continue, ctx);
2635 }
2636 
2637 void
2638 nvme_bdev_ctrlr_op_rpc(struct nvme_bdev_ctrlr *nbdev_ctrlr, enum nvme_ctrlr_op op,
2639 		       bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2640 {
2641 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2642 	struct nvme_ctrlr *nvme_ctrlr;
2643 	int rc;
2644 
2645 	assert(cb_fn != NULL);
2646 
2647 	ctx = calloc(1, sizeof(*ctx));
2648 	if (ctx == NULL) {
2649 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2650 		cb_fn(cb_arg, -ENOMEM);
2651 		return;
2652 	}
2653 
2654 	ctx->orig_thread = spdk_get_thread();
2655 	ctx->op = op;
2656 	ctx->cb_fn = cb_fn;
2657 	ctx->cb_arg = cb_arg;
2658 
2659 	nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
2660 	assert(nvme_ctrlr != NULL);
2661 
2662 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2663 	if (rc == 0) {
2664 		ctx->nvme_ctrlr = nvme_ctrlr;
2665 		return;
2666 	} else if (rc == -EALREADY) {
2667 		ctx->nvme_ctrlr = nvme_ctrlr;
2668 		rc = 0;
2669 	}
2670 
2671 	nvme_bdev_ctrlr_op_rpc_continue(ctx, rc);
2672 }
2673 
2674 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
2675 
2676 static void
2677 _bdev_nvme_reset_io_complete(struct spdk_io_channel_iter *i, int status)
2678 {
2679 	struct nvme_bdev_io *bio = spdk_io_channel_iter_get_ctx(i);
2680 	enum spdk_bdev_io_status io_status;
2681 
2682 	if (bio->cpl.cdw0 == 0) {
2683 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2684 	} else {
2685 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
2686 	}
2687 
2688 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
2689 }
2690 
2691 static void
2692 bdev_nvme_abort_bdev_channel(struct spdk_io_channel_iter *i)
2693 {
2694 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2695 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
2696 
2697 	bdev_nvme_abort_retry_ios(nbdev_ch);
2698 
2699 	spdk_for_each_channel_continue(i, 0);
2700 }
2701 
2702 static void
2703 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
2704 {
2705 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2706 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
2707 
2708 	/* Abort all queued I/Os for retry. */
2709 	spdk_for_each_channel(nbdev,
2710 			      bdev_nvme_abort_bdev_channel,
2711 			      bio,
2712 			      _bdev_nvme_reset_io_complete);
2713 }
2714 
2715 static void
2716 _bdev_nvme_reset_io_continue(void *ctx)
2717 {
2718 	struct nvme_bdev_io *bio = ctx;
2719 	struct nvme_io_path *prev_io_path, *next_io_path;
2720 	int rc;
2721 
2722 	prev_io_path = bio->io_path;
2723 	bio->io_path = NULL;
2724 
2725 	if (bio->cpl.cdw0 != 0) {
2726 		goto complete;
2727 	}
2728 
2729 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
2730 	if (next_io_path == NULL) {
2731 		goto complete;
2732 	}
2733 
2734 	rc = _bdev_nvme_reset_io(next_io_path, bio);
2735 	if (rc == 0) {
2736 		return;
2737 	}
2738 
2739 	bio->cpl.cdw0 = 1;
2740 
2741 complete:
2742 	bdev_nvme_reset_io_complete(bio);
2743 }
2744 
2745 static void
2746 bdev_nvme_reset_io_continue(void *cb_arg, int rc)
2747 {
2748 	struct nvme_bdev_io *bio = cb_arg;
2749 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2750 
2751 	bio->cpl.cdw0 = (rc == 0) ? 0 : 1;
2752 
2753 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), _bdev_nvme_reset_io_continue, bio);
2754 }
2755 
2756 static int
2757 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
2758 {
2759 	struct nvme_ctrlr_channel *ctrlr_ch;
2760 	struct spdk_bdev_io *bdev_io;
2761 	int rc;
2762 
2763 	rc = nvme_ctrlr_op(io_path->qpair->ctrlr, NVME_CTRLR_OP_RESET,
2764 			   bdev_nvme_reset_io_continue, bio);
2765 	if (rc == 0) {
2766 		assert(bio->io_path == NULL);
2767 		bio->io_path = io_path;
2768 	} else if (rc == -EBUSY) {
2769 		ctrlr_ch = io_path->qpair->ctrlr_ch;
2770 		assert(ctrlr_ch != NULL);
2771 		/*
2772 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
2773 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
2774 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
2775 		 */
2776 		bdev_io = spdk_bdev_io_from_ctx(bio);
2777 		TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bdev_io, module_link);
2778 		rc = 0;
2779 	}
2780 
2781 	return rc;
2782 }
2783 
2784 static void
2785 bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio)
2786 {
2787 	struct nvme_io_path *io_path;
2788 	int rc;
2789 
2790 	bio->cpl.cdw0 = 0;
2791 
2792 	/* Reset all nvme_ctrlrs of a bdev controller sequentially. */
2793 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
2794 	assert(io_path != NULL);
2795 
2796 	rc = _bdev_nvme_reset_io(io_path, bio);
2797 	if (rc != 0) {
2798 		/* If the current nvme_ctrlr is disabled, skip it and move to the next nvme_ctrlr. */
2799 		bdev_nvme_reset_io_continue(bio, rc == -EALREADY);
2800 	}
2801 }
2802 
2803 static int
2804 bdev_nvme_failover_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool remove)
2805 {
2806 	if (nvme_ctrlr->destruct) {
2807 		/* Don't bother resetting if the controller is in the process of being destructed. */
2808 		return -ENXIO;
2809 	}
2810 
2811 	if (nvme_ctrlr->resetting) {
2812 		if (!nvme_ctrlr->in_failover) {
2813 			SPDK_NOTICELOG("Reset is already in progress. Defer failover until reset completes.\n");
2814 
2815 			/* Defer failover until reset completes. */
2816 			nvme_ctrlr->pending_failover = true;
2817 			return -EINPROGRESS;
2818 		} else {
2819 			SPDK_NOTICELOG("Unable to perform failover, already in progress.\n");
2820 			return -EBUSY;
2821 		}
2822 	}
2823 
2824 	bdev_nvme_failover_trid(nvme_ctrlr, remove, true);
2825 
2826 	if (nvme_ctrlr->reconnect_is_delayed) {
2827 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
2828 
2829 		/* We rely on the next reconnect for the failover. */
2830 		return -EALREADY;
2831 	}
2832 
2833 	if (nvme_ctrlr->disabled) {
2834 		SPDK_NOTICELOG("Controller is disabled.\n");
2835 
2836 		/* We rely on the enablement for the failover. */
2837 		return -EALREADY;
2838 	}
2839 
2840 	nvme_ctrlr->resetting = true;
2841 	nvme_ctrlr->in_failover = true;
2842 
2843 	assert(nvme_ctrlr->reset_start_tsc == 0);
2844 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2845 
2846 	return 0;
2847 }
2848 
2849 static int
2850 bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool remove)
2851 {
2852 	int rc;
2853 
2854 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2855 	rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, remove);
2856 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2857 
2858 	if (rc == 0) {
2859 		spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset_ctrlr, nvme_ctrlr);
2860 	} else if (rc == -EALREADY) {
2861 		rc = 0;
2862 	}
2863 
2864 	return rc;
2865 }
2866 
2867 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2868 			   uint64_t num_blocks);
2869 
2870 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2871 				  uint64_t num_blocks);
2872 
2873 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks,
2874 			  uint64_t src_offset_blocks,
2875 			  uint64_t num_blocks);
2876 
2877 static void
2878 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
2879 		     bool success)
2880 {
2881 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2882 	struct spdk_bdev *bdev = bdev_io->bdev;
2883 	int ret;
2884 
2885 	if (!success) {
2886 		ret = -EINVAL;
2887 		goto exit;
2888 	}
2889 
2890 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
2891 		ret = -ENXIO;
2892 		goto exit;
2893 	}
2894 
2895 	ret = bdev_nvme_readv(bio,
2896 			      bdev_io->u.bdev.iovs,
2897 			      bdev_io->u.bdev.iovcnt,
2898 			      bdev_io->u.bdev.md_buf,
2899 			      bdev_io->u.bdev.num_blocks,
2900 			      bdev_io->u.bdev.offset_blocks,
2901 			      bdev->dif_check_flags,
2902 			      bdev_io->u.bdev.memory_domain,
2903 			      bdev_io->u.bdev.memory_domain_ctx,
2904 			      bdev_io->u.bdev.accel_sequence);
2905 
2906 exit:
2907 	if (spdk_unlikely(ret != 0)) {
2908 		bdev_nvme_io_complete(bio, ret);
2909 	}
2910 }
2911 
2912 static inline void
2913 _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
2914 {
2915 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2916 	struct spdk_bdev *bdev = bdev_io->bdev;
2917 	struct nvme_bdev_io *nbdev_io_to_abort;
2918 	int rc = 0;
2919 
2920 	switch (bdev_io->type) {
2921 	case SPDK_BDEV_IO_TYPE_READ:
2922 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
2923 			rc = bdev_nvme_readv(nbdev_io,
2924 					     bdev_io->u.bdev.iovs,
2925 					     bdev_io->u.bdev.iovcnt,
2926 					     bdev_io->u.bdev.md_buf,
2927 					     bdev_io->u.bdev.num_blocks,
2928 					     bdev_io->u.bdev.offset_blocks,
2929 					     bdev->dif_check_flags,
2930 					     bdev_io->u.bdev.memory_domain,
2931 					     bdev_io->u.bdev.memory_domain_ctx,
2932 					     bdev_io->u.bdev.accel_sequence);
2933 		} else {
2934 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
2935 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
2936 			rc = 0;
2937 		}
2938 		break;
2939 	case SPDK_BDEV_IO_TYPE_WRITE:
2940 		rc = bdev_nvme_writev(nbdev_io,
2941 				      bdev_io->u.bdev.iovs,
2942 				      bdev_io->u.bdev.iovcnt,
2943 				      bdev_io->u.bdev.md_buf,
2944 				      bdev_io->u.bdev.num_blocks,
2945 				      bdev_io->u.bdev.offset_blocks,
2946 				      bdev->dif_check_flags,
2947 				      bdev_io->u.bdev.memory_domain,
2948 				      bdev_io->u.bdev.memory_domain_ctx,
2949 				      bdev_io->u.bdev.accel_sequence);
2950 		break;
2951 	case SPDK_BDEV_IO_TYPE_COMPARE:
2952 		rc = bdev_nvme_comparev(nbdev_io,
2953 					bdev_io->u.bdev.iovs,
2954 					bdev_io->u.bdev.iovcnt,
2955 					bdev_io->u.bdev.md_buf,
2956 					bdev_io->u.bdev.num_blocks,
2957 					bdev_io->u.bdev.offset_blocks,
2958 					bdev->dif_check_flags);
2959 		break;
2960 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
2961 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
2962 						   bdev_io->u.bdev.iovs,
2963 						   bdev_io->u.bdev.iovcnt,
2964 						   bdev_io->u.bdev.fused_iovs,
2965 						   bdev_io->u.bdev.fused_iovcnt,
2966 						   bdev_io->u.bdev.md_buf,
2967 						   bdev_io->u.bdev.num_blocks,
2968 						   bdev_io->u.bdev.offset_blocks,
2969 						   bdev->dif_check_flags);
2970 		break;
2971 	case SPDK_BDEV_IO_TYPE_UNMAP:
2972 		rc = bdev_nvme_unmap(nbdev_io,
2973 				     bdev_io->u.bdev.offset_blocks,
2974 				     bdev_io->u.bdev.num_blocks);
2975 		break;
2976 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
2977 		rc =  bdev_nvme_write_zeroes(nbdev_io,
2978 					     bdev_io->u.bdev.offset_blocks,
2979 					     bdev_io->u.bdev.num_blocks);
2980 		break;
2981 	case SPDK_BDEV_IO_TYPE_RESET:
2982 		nbdev_io->io_path = NULL;
2983 		bdev_nvme_reset_io(nbdev_ch, nbdev_io);
2984 		return;
2985 
2986 	case SPDK_BDEV_IO_TYPE_FLUSH:
2987 		bdev_nvme_io_complete(nbdev_io, 0);
2988 		return;
2989 
2990 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
2991 		rc = bdev_nvme_zone_appendv(nbdev_io,
2992 					    bdev_io->u.bdev.iovs,
2993 					    bdev_io->u.bdev.iovcnt,
2994 					    bdev_io->u.bdev.md_buf,
2995 					    bdev_io->u.bdev.num_blocks,
2996 					    bdev_io->u.bdev.offset_blocks,
2997 					    bdev->dif_check_flags);
2998 		break;
2999 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3000 		rc = bdev_nvme_get_zone_info(nbdev_io,
3001 					     bdev_io->u.zone_mgmt.zone_id,
3002 					     bdev_io->u.zone_mgmt.num_zones,
3003 					     bdev_io->u.zone_mgmt.buf);
3004 		break;
3005 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3006 		rc = bdev_nvme_zone_management(nbdev_io,
3007 					       bdev_io->u.zone_mgmt.zone_id,
3008 					       bdev_io->u.zone_mgmt.zone_action);
3009 		break;
3010 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3011 		nbdev_io->io_path = NULL;
3012 		bdev_nvme_admin_passthru(nbdev_ch,
3013 					 nbdev_io,
3014 					 &bdev_io->u.nvme_passthru.cmd,
3015 					 bdev_io->u.nvme_passthru.buf,
3016 					 bdev_io->u.nvme_passthru.nbytes);
3017 		return;
3018 
3019 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3020 		rc = bdev_nvme_io_passthru(nbdev_io,
3021 					   &bdev_io->u.nvme_passthru.cmd,
3022 					   bdev_io->u.nvme_passthru.buf,
3023 					   bdev_io->u.nvme_passthru.nbytes);
3024 		break;
3025 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3026 		rc = bdev_nvme_io_passthru_md(nbdev_io,
3027 					      &bdev_io->u.nvme_passthru.cmd,
3028 					      bdev_io->u.nvme_passthru.buf,
3029 					      bdev_io->u.nvme_passthru.nbytes,
3030 					      bdev_io->u.nvme_passthru.md_buf,
3031 					      bdev_io->u.nvme_passthru.md_len);
3032 		break;
3033 	case SPDK_BDEV_IO_TYPE_ABORT:
3034 		nbdev_io->io_path = NULL;
3035 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
3036 		bdev_nvme_abort(nbdev_ch,
3037 				nbdev_io,
3038 				nbdev_io_to_abort);
3039 		return;
3040 
3041 	case SPDK_BDEV_IO_TYPE_COPY:
3042 		rc = bdev_nvme_copy(nbdev_io,
3043 				    bdev_io->u.bdev.offset_blocks,
3044 				    bdev_io->u.bdev.copy.src_offset_blocks,
3045 				    bdev_io->u.bdev.num_blocks);
3046 		break;
3047 	default:
3048 		rc = -EINVAL;
3049 		break;
3050 	}
3051 
3052 	if (spdk_unlikely(rc != 0)) {
3053 		bdev_nvme_io_complete(nbdev_io, rc);
3054 	}
3055 }
3056 
3057 static void
3058 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
3059 {
3060 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3061 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3062 
3063 	if (spdk_likely(nbdev_io->submit_tsc == 0)) {
3064 		nbdev_io->submit_tsc = spdk_bdev_io_get_submit_tsc(bdev_io);
3065 	} else {
3066 		/* There are cases where submit_tsc != 0, i.e. retry I/O.
3067 		 * We need to update submit_tsc here.
3068 		 */
3069 		nbdev_io->submit_tsc = spdk_get_ticks();
3070 	}
3071 
3072 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
3073 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
3074 	if (spdk_unlikely(!nbdev_io->io_path)) {
3075 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
3076 			bdev_nvme_io_complete(nbdev_io, -ENXIO);
3077 			return;
3078 		}
3079 
3080 		/* Admin commands do not use the optimal I/O path.
3081 		 * Simply fall through even if it is not found.
3082 		 */
3083 	}
3084 
3085 	_bdev_nvme_submit_request(nbdev_ch, bdev_io);
3086 }
3087 
3088 static bool
3089 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
3090 {
3091 	struct nvme_bdev *nbdev = ctx;
3092 	struct nvme_ns *nvme_ns;
3093 	struct spdk_nvme_ns *ns;
3094 	struct spdk_nvme_ctrlr *ctrlr;
3095 	const struct spdk_nvme_ctrlr_data *cdata;
3096 
3097 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
3098 	assert(nvme_ns != NULL);
3099 	ns = nvme_ns->ns;
3100 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3101 
3102 	switch (io_type) {
3103 	case SPDK_BDEV_IO_TYPE_READ:
3104 	case SPDK_BDEV_IO_TYPE_WRITE:
3105 	case SPDK_BDEV_IO_TYPE_RESET:
3106 	case SPDK_BDEV_IO_TYPE_FLUSH:
3107 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3108 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3109 	case SPDK_BDEV_IO_TYPE_ABORT:
3110 		return true;
3111 
3112 	case SPDK_BDEV_IO_TYPE_COMPARE:
3113 		return spdk_nvme_ns_supports_compare(ns);
3114 
3115 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3116 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
3117 
3118 	case SPDK_BDEV_IO_TYPE_UNMAP:
3119 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3120 		return cdata->oncs.dsm;
3121 
3122 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3123 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3124 		return cdata->oncs.write_zeroes;
3125 
3126 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3127 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
3128 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
3129 			return true;
3130 		}
3131 		return false;
3132 
3133 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3134 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3135 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
3136 
3137 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3138 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
3139 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
3140 
3141 	case SPDK_BDEV_IO_TYPE_COPY:
3142 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3143 		return cdata->oncs.copy;
3144 
3145 	default:
3146 		return false;
3147 	}
3148 }
3149 
3150 static int
3151 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
3152 {
3153 	struct nvme_qpair *nvme_qpair;
3154 	struct spdk_io_channel *pg_ch;
3155 	int rc;
3156 
3157 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
3158 	if (!nvme_qpair) {
3159 		SPDK_ERRLOG("Failed to alloc nvme_qpair.\n");
3160 		return -1;
3161 	}
3162 
3163 	TAILQ_INIT(&nvme_qpair->io_path_list);
3164 
3165 	nvme_qpair->ctrlr = nvme_ctrlr;
3166 	nvme_qpair->ctrlr_ch = ctrlr_ch;
3167 
3168 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
3169 	if (!pg_ch) {
3170 		free(nvme_qpair);
3171 		return -1;
3172 	}
3173 
3174 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
3175 
3176 #ifdef SPDK_CONFIG_VTUNE
3177 	nvme_qpair->group->collect_spin_stat = true;
3178 #else
3179 	nvme_qpair->group->collect_spin_stat = false;
3180 #endif
3181 
3182 	if (!nvme_ctrlr->disabled) {
3183 		/* If a nvme_ctrlr is disabled, don't try to create qpair for it. Qpair will
3184 		 * be created when it's enabled.
3185 		 */
3186 		rc = bdev_nvme_create_qpair(nvme_qpair);
3187 		if (rc != 0) {
3188 			/* nvme_ctrlr can't create IO qpair if connection is down.
3189 			 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
3190 			 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
3191 			 * submitted IO will be queued until IO qpair is successfully created.
3192 			 *
3193 			 * Hence, if both are satisfied, ignore the failure.
3194 			 */
3195 			if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
3196 				spdk_put_io_channel(pg_ch);
3197 				free(nvme_qpair);
3198 				return rc;
3199 			}
3200 		}
3201 	}
3202 
3203 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3204 
3205 	ctrlr_ch->qpair = nvme_qpair;
3206 
3207 	pthread_mutex_lock(&nvme_qpair->ctrlr->mutex);
3208 	nvme_qpair->ctrlr->ref++;
3209 	pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex);
3210 
3211 	return 0;
3212 }
3213 
3214 static int
3215 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3216 {
3217 	struct nvme_ctrlr *nvme_ctrlr = io_device;
3218 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3219 
3220 	TAILQ_INIT(&ctrlr_ch->pending_resets);
3221 
3222 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
3223 }
3224 
3225 static void
3226 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
3227 {
3228 	struct nvme_io_path *io_path, *next;
3229 
3230 	assert(nvme_qpair->group != NULL);
3231 
3232 	TAILQ_FOREACH_SAFE(io_path, &nvme_qpair->io_path_list, tailq, next) {
3233 		TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
3234 		nvme_io_path_free(io_path);
3235 	}
3236 
3237 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3238 
3239 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
3240 
3241 	nvme_ctrlr_release(nvme_qpair->ctrlr);
3242 
3243 	free(nvme_qpair);
3244 }
3245 
3246 static void
3247 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3248 {
3249 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3250 	struct nvme_qpair *nvme_qpair;
3251 
3252 	nvme_qpair = ctrlr_ch->qpair;
3253 	assert(nvme_qpair != NULL);
3254 
3255 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
3256 
3257 	if (nvme_qpair->qpair != NULL) {
3258 		if (ctrlr_ch->reset_iter == NULL) {
3259 			spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
3260 		} else {
3261 			/* Skip current ctrlr_channel in a full reset sequence because
3262 			 * it is being deleted now. The qpair is already being disconnected.
3263 			 * We do not have to restart disconnecting it.
3264 			 */
3265 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
3266 		}
3267 
3268 		/* We cannot release a reference to the poll group now.
3269 		 * The qpair may be disconnected asynchronously later.
3270 		 * We need to poll it until it is actually disconnected.
3271 		 * Just detach the qpair from the deleting ctrlr_channel.
3272 		 */
3273 		nvme_qpair->ctrlr_ch = NULL;
3274 	} else {
3275 		assert(ctrlr_ch->reset_iter == NULL);
3276 
3277 		nvme_qpair_delete(nvme_qpair);
3278 	}
3279 }
3280 
3281 static inline struct spdk_io_channel *
3282 bdev_nvme_get_accel_channel(struct nvme_poll_group *group)
3283 {
3284 	if (spdk_unlikely(!group->accel_channel)) {
3285 		group->accel_channel = spdk_accel_get_io_channel();
3286 		if (!group->accel_channel) {
3287 			SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
3288 				    group);
3289 			return NULL;
3290 		}
3291 	}
3292 
3293 	return group->accel_channel;
3294 }
3295 
3296 static void
3297 bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
3298 			      uint32_t iov_cnt, uint32_t seed,
3299 			      spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3300 {
3301 	struct spdk_io_channel *accel_ch;
3302 	struct nvme_poll_group *group = ctx;
3303 	int rc;
3304 
3305 	assert(cb_fn != NULL);
3306 
3307 	accel_ch = bdev_nvme_get_accel_channel(group);
3308 	if (spdk_unlikely(accel_ch == NULL)) {
3309 		cb_fn(cb_arg, -ENOMEM);
3310 		return;
3311 	}
3312 
3313 	rc = spdk_accel_submit_crc32cv(accel_ch, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
3314 	if (rc) {
3315 		/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
3316 		if (rc == -ENOMEM || rc == -EINVAL) {
3317 			cb_fn(cb_arg, rc);
3318 		}
3319 		SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
3320 	}
3321 }
3322 
3323 static void
3324 bdev_nvme_finish_sequence(void *seq, spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3325 {
3326 	spdk_accel_sequence_finish(seq, cb_fn, cb_arg);
3327 }
3328 
3329 static void
3330 bdev_nvme_abort_sequence(void *seq)
3331 {
3332 	spdk_accel_sequence_abort(seq);
3333 }
3334 
3335 static void
3336 bdev_nvme_reverse_sequence(void *seq)
3337 {
3338 	spdk_accel_sequence_reverse(seq);
3339 }
3340 
3341 static int
3342 bdev_nvme_append_crc32c(void *ctx, void **seq, uint32_t *dst, struct iovec *iovs, uint32_t iovcnt,
3343 			struct spdk_memory_domain *domain, void *domain_ctx, uint32_t seed,
3344 			spdk_nvme_accel_step_cb cb_fn, void *cb_arg)
3345 {
3346 	struct spdk_io_channel *ch;
3347 	struct nvme_poll_group *group = ctx;
3348 
3349 	ch = bdev_nvme_get_accel_channel(group);
3350 	if (spdk_unlikely(ch == NULL)) {
3351 		return -ENOMEM;
3352 	}
3353 
3354 	return spdk_accel_append_crc32c((struct spdk_accel_sequence **)seq, ch, dst, iovs, iovcnt,
3355 					domain, domain_ctx, seed, cb_fn, cb_arg);
3356 }
3357 
3358 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
3359 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
3360 	.submit_accel_crc32c	= bdev_nvme_submit_accel_crc32c,
3361 	.append_crc32c		= bdev_nvme_append_crc32c,
3362 	.finish_sequence	= bdev_nvme_finish_sequence,
3363 	.reverse_sequence	= bdev_nvme_reverse_sequence,
3364 	.abort_sequence		= bdev_nvme_abort_sequence,
3365 };
3366 
3367 static int
3368 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
3369 {
3370 	struct nvme_poll_group *group = ctx_buf;
3371 
3372 	TAILQ_INIT(&group->qpair_list);
3373 
3374 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
3375 	if (group->group == NULL) {
3376 		return -1;
3377 	}
3378 
3379 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
3380 
3381 	if (group->poller == NULL) {
3382 		spdk_nvme_poll_group_destroy(group->group);
3383 		return -1;
3384 	}
3385 
3386 	return 0;
3387 }
3388 
3389 static void
3390 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
3391 {
3392 	struct nvme_poll_group *group = ctx_buf;
3393 
3394 	assert(TAILQ_EMPTY(&group->qpair_list));
3395 
3396 	if (group->accel_channel) {
3397 		spdk_put_io_channel(group->accel_channel);
3398 	}
3399 
3400 	spdk_poller_unregister(&group->poller);
3401 	if (spdk_nvme_poll_group_destroy(group->group)) {
3402 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
3403 		assert(false);
3404 	}
3405 }
3406 
3407 static struct spdk_io_channel *
3408 bdev_nvme_get_io_channel(void *ctx)
3409 {
3410 	struct nvme_bdev *nvme_bdev = ctx;
3411 
3412 	return spdk_get_io_channel(nvme_bdev);
3413 }
3414 
3415 static void *
3416 bdev_nvme_get_module_ctx(void *ctx)
3417 {
3418 	struct nvme_bdev *nvme_bdev = ctx;
3419 	struct nvme_ns *nvme_ns;
3420 
3421 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
3422 		return NULL;
3423 	}
3424 
3425 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
3426 	if (!nvme_ns) {
3427 		return NULL;
3428 	}
3429 
3430 	return nvme_ns->ns;
3431 }
3432 
3433 static const char *
3434 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
3435 {
3436 	switch (ana_state) {
3437 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3438 		return "optimized";
3439 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3440 		return "non_optimized";
3441 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3442 		return "inaccessible";
3443 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
3444 		return "persistent_loss";
3445 	case SPDK_NVME_ANA_CHANGE_STATE:
3446 		return "change";
3447 	default:
3448 		return NULL;
3449 	}
3450 }
3451 
3452 static int
3453 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
3454 {
3455 	struct spdk_memory_domain **_domains = NULL;
3456 	struct nvme_bdev *nbdev = ctx;
3457 	struct nvme_ns *nvme_ns;
3458 	int i = 0, _array_size = array_size;
3459 	int rc = 0;
3460 
3461 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3462 		if (domains && array_size >= i) {
3463 			_domains = &domains[i];
3464 		} else {
3465 			_domains = NULL;
3466 		}
3467 		rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size);
3468 		if (rc > 0) {
3469 			i += rc;
3470 			if (_array_size >= rc) {
3471 				_array_size -= rc;
3472 			} else {
3473 				_array_size = 0;
3474 			}
3475 		} else if (rc < 0) {
3476 			return rc;
3477 		}
3478 	}
3479 
3480 	return i;
3481 }
3482 
3483 static const char *
3484 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
3485 {
3486 	if (nvme_ctrlr->destruct) {
3487 		return "deleting";
3488 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
3489 		return "failed";
3490 	} else if (nvme_ctrlr->resetting) {
3491 		return "resetting";
3492 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
3493 		return "reconnect_is_delayed";
3494 	} else if (nvme_ctrlr->disabled) {
3495 		return "disabled";
3496 	} else {
3497 		return "enabled";
3498 	}
3499 }
3500 
3501 void
3502 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
3503 {
3504 	struct spdk_nvme_transport_id *trid;
3505 	const struct spdk_nvme_ctrlr_opts *opts;
3506 	const struct spdk_nvme_ctrlr_data *cdata;
3507 	struct nvme_path_id *path_id;
3508 
3509 	spdk_json_write_object_begin(w);
3510 
3511 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
3512 
3513 #ifdef SPDK_CONFIG_NVME_CUSE
3514 	size_t cuse_name_size = 128;
3515 	char cuse_name[cuse_name_size];
3516 
3517 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
3518 	if (rc == 0) {
3519 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3520 	}
3521 #endif
3522 	trid = &nvme_ctrlr->active_path_id->trid;
3523 	spdk_json_write_named_object_begin(w, "trid");
3524 	nvme_bdev_dump_trid_json(trid, w);
3525 	spdk_json_write_object_end(w);
3526 
3527 	path_id = TAILQ_NEXT(nvme_ctrlr->active_path_id, link);
3528 	if (path_id != NULL) {
3529 		spdk_json_write_named_array_begin(w, "alternate_trids");
3530 		do {
3531 			trid = &path_id->trid;
3532 			spdk_json_write_object_begin(w);
3533 			nvme_bdev_dump_trid_json(trid, w);
3534 			spdk_json_write_object_end(w);
3535 
3536 			path_id = TAILQ_NEXT(path_id, link);
3537 		} while (path_id != NULL);
3538 		spdk_json_write_array_end(w);
3539 	}
3540 
3541 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
3542 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3543 
3544 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
3545 	spdk_json_write_named_object_begin(w, "host");
3546 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
3547 	spdk_json_write_named_string(w, "addr", opts->src_addr);
3548 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
3549 	spdk_json_write_object_end(w);
3550 
3551 	spdk_json_write_object_end(w);
3552 }
3553 
3554 static void
3555 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
3556 			 struct nvme_ns *nvme_ns)
3557 {
3558 	struct spdk_nvme_ns *ns;
3559 	struct spdk_nvme_ctrlr *ctrlr;
3560 	const struct spdk_nvme_ctrlr_data *cdata;
3561 	const struct spdk_nvme_transport_id *trid;
3562 	union spdk_nvme_vs_register vs;
3563 	const struct spdk_nvme_ns_data *nsdata;
3564 	char buf[128];
3565 
3566 	ns = nvme_ns->ns;
3567 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3568 
3569 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3570 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
3571 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
3572 
3573 	spdk_json_write_object_begin(w);
3574 
3575 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
3576 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
3577 	}
3578 
3579 	spdk_json_write_named_object_begin(w, "trid");
3580 
3581 	nvme_bdev_dump_trid_json(trid, w);
3582 
3583 	spdk_json_write_object_end(w);
3584 
3585 #ifdef SPDK_CONFIG_NVME_CUSE
3586 	size_t cuse_name_size = 128;
3587 	char cuse_name[cuse_name_size];
3588 
3589 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
3590 					    cuse_name, &cuse_name_size);
3591 	if (rc == 0) {
3592 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3593 	}
3594 #endif
3595 
3596 	spdk_json_write_named_object_begin(w, "ctrlr_data");
3597 
3598 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3599 
3600 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
3601 
3602 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
3603 	spdk_str_trim(buf);
3604 	spdk_json_write_named_string(w, "model_number", buf);
3605 
3606 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
3607 	spdk_str_trim(buf);
3608 	spdk_json_write_named_string(w, "serial_number", buf);
3609 
3610 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
3611 	spdk_str_trim(buf);
3612 	spdk_json_write_named_string(w, "firmware_revision", buf);
3613 
3614 	if (cdata->subnqn[0] != '\0') {
3615 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
3616 	}
3617 
3618 	spdk_json_write_named_object_begin(w, "oacs");
3619 
3620 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
3621 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
3622 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
3623 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
3624 
3625 	spdk_json_write_object_end(w);
3626 
3627 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
3628 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
3629 
3630 	spdk_json_write_object_end(w);
3631 
3632 	spdk_json_write_named_object_begin(w, "vs");
3633 
3634 	spdk_json_write_name(w, "nvme_version");
3635 	if (vs.bits.ter) {
3636 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
3637 	} else {
3638 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
3639 	}
3640 
3641 	spdk_json_write_object_end(w);
3642 
3643 	nsdata = spdk_nvme_ns_get_data(ns);
3644 
3645 	spdk_json_write_named_object_begin(w, "ns_data");
3646 
3647 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
3648 
3649 	if (cdata->cmic.ana_reporting) {
3650 		spdk_json_write_named_string(w, "ana_state",
3651 					     _nvme_ana_state_str(nvme_ns->ana_state));
3652 	}
3653 
3654 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
3655 
3656 	spdk_json_write_object_end(w);
3657 
3658 	if (cdata->oacs.security) {
3659 		spdk_json_write_named_object_begin(w, "security");
3660 
3661 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
3662 
3663 		spdk_json_write_object_end(w);
3664 	}
3665 
3666 	spdk_json_write_object_end(w);
3667 }
3668 
3669 static const char *
3670 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
3671 {
3672 	switch (nbdev->mp_policy) {
3673 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
3674 		return "active_passive";
3675 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
3676 		return "active_active";
3677 	default:
3678 		assert(false);
3679 		return "invalid";
3680 	}
3681 }
3682 
3683 static int
3684 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
3685 {
3686 	struct nvme_bdev *nvme_bdev = ctx;
3687 	struct nvme_ns *nvme_ns;
3688 
3689 	pthread_mutex_lock(&nvme_bdev->mutex);
3690 	spdk_json_write_named_array_begin(w, "nvme");
3691 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
3692 		nvme_namespace_info_json(w, nvme_ns);
3693 	}
3694 	spdk_json_write_array_end(w);
3695 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
3696 	pthread_mutex_unlock(&nvme_bdev->mutex);
3697 
3698 	return 0;
3699 }
3700 
3701 static void
3702 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
3703 {
3704 	/* No config per bdev needed */
3705 }
3706 
3707 static uint64_t
3708 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
3709 {
3710 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3711 	struct nvme_io_path *io_path;
3712 	struct nvme_poll_group *group;
3713 	uint64_t spin_time = 0;
3714 
3715 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
3716 		group = io_path->qpair->group;
3717 
3718 		if (!group || !group->collect_spin_stat) {
3719 			continue;
3720 		}
3721 
3722 		if (group->end_ticks != 0) {
3723 			group->spin_ticks += (group->end_ticks - group->start_ticks);
3724 			group->end_ticks = 0;
3725 		}
3726 
3727 		spin_time += group->spin_ticks;
3728 		group->start_ticks = 0;
3729 		group->spin_ticks = 0;
3730 	}
3731 
3732 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
3733 }
3734 
3735 static void
3736 bdev_nvme_reset_device_stat(void *ctx)
3737 {
3738 	struct nvme_bdev *nbdev = ctx;
3739 
3740 	if (nbdev->err_stat != NULL) {
3741 		memset(nbdev->err_stat, 0, sizeof(struct nvme_error_stat));
3742 	}
3743 }
3744 
3745 /* JSON string should be lowercases and underscore delimited string. */
3746 static void
3747 bdev_nvme_format_nvme_status(char *dst, const char *src)
3748 {
3749 	char tmp[256];
3750 
3751 	spdk_strcpy_replace(dst, 256, src, " - ", "_");
3752 	spdk_strcpy_replace(tmp, 256, dst, "-", "_");
3753 	spdk_strcpy_replace(dst, 256, tmp, " ", "_");
3754 	spdk_strlwr(dst);
3755 }
3756 
3757 static void
3758 bdev_nvme_dump_device_stat_json(void *ctx, struct spdk_json_write_ctx *w)
3759 {
3760 	struct nvme_bdev *nbdev = ctx;
3761 	struct spdk_nvme_status status = {};
3762 	uint16_t sct, sc;
3763 	char status_json[256];
3764 	const char *status_str;
3765 
3766 	if (nbdev->err_stat == NULL) {
3767 		return;
3768 	}
3769 
3770 	spdk_json_write_named_object_begin(w, "nvme_error");
3771 
3772 	spdk_json_write_named_object_begin(w, "status_type");
3773 	for (sct = 0; sct < 8; sct++) {
3774 		if (nbdev->err_stat->status_type[sct] == 0) {
3775 			continue;
3776 		}
3777 		status.sct = sct;
3778 
3779 		status_str = spdk_nvme_cpl_get_status_type_string(&status);
3780 		assert(status_str != NULL);
3781 		bdev_nvme_format_nvme_status(status_json, status_str);
3782 
3783 		spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status_type[sct]);
3784 	}
3785 	spdk_json_write_object_end(w);
3786 
3787 	spdk_json_write_named_object_begin(w, "status_code");
3788 	for (sct = 0; sct < 4; sct++) {
3789 		status.sct = sct;
3790 		for (sc = 0; sc < 256; sc++) {
3791 			if (nbdev->err_stat->status[sct][sc] == 0) {
3792 				continue;
3793 			}
3794 			status.sc = sc;
3795 
3796 			status_str = spdk_nvme_cpl_get_status_string(&status);
3797 			assert(status_str != NULL);
3798 			bdev_nvme_format_nvme_status(status_json, status_str);
3799 
3800 			spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status[sct][sc]);
3801 		}
3802 	}
3803 	spdk_json_write_object_end(w);
3804 
3805 	spdk_json_write_object_end(w);
3806 }
3807 
3808 static bool
3809 bdev_nvme_accel_sequence_supported(void *ctx, enum spdk_bdev_io_type type)
3810 {
3811 	struct nvme_bdev *nbdev = ctx;
3812 	struct spdk_nvme_ctrlr *ctrlr;
3813 
3814 	switch (type) {
3815 	case SPDK_BDEV_IO_TYPE_WRITE:
3816 	case SPDK_BDEV_IO_TYPE_READ:
3817 		break;
3818 	default:
3819 		return false;
3820 	}
3821 
3822 	ctrlr = bdev_nvme_get_ctrlr(&nbdev->disk);
3823 	assert(ctrlr != NULL);
3824 
3825 	return spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ACCEL_SEQUENCE_SUPPORTED;
3826 }
3827 
3828 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
3829 	.destruct			= bdev_nvme_destruct,
3830 	.submit_request			= bdev_nvme_submit_request,
3831 	.io_type_supported		= bdev_nvme_io_type_supported,
3832 	.get_io_channel			= bdev_nvme_get_io_channel,
3833 	.dump_info_json			= bdev_nvme_dump_info_json,
3834 	.write_config_json		= bdev_nvme_write_config_json,
3835 	.get_spin_time			= bdev_nvme_get_spin_time,
3836 	.get_module_ctx			= bdev_nvme_get_module_ctx,
3837 	.get_memory_domains		= bdev_nvme_get_memory_domains,
3838 	.accel_sequence_supported	= bdev_nvme_accel_sequence_supported,
3839 	.reset_device_stat		= bdev_nvme_reset_device_stat,
3840 	.dump_device_stat_json		= bdev_nvme_dump_device_stat_json,
3841 };
3842 
3843 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
3844 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
3845 
3846 static int
3847 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
3848 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
3849 {
3850 	struct spdk_nvme_ana_group_descriptor *copied_desc;
3851 	uint8_t *orig_desc;
3852 	uint32_t i, desc_size, copy_len;
3853 	int rc = 0;
3854 
3855 	if (nvme_ctrlr->ana_log_page == NULL) {
3856 		return -EINVAL;
3857 	}
3858 
3859 	copied_desc = nvme_ctrlr->copied_ana_desc;
3860 
3861 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
3862 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
3863 
3864 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
3865 		memcpy(copied_desc, orig_desc, copy_len);
3866 
3867 		rc = cb_fn(copied_desc, cb_arg);
3868 		if (rc != 0) {
3869 			break;
3870 		}
3871 
3872 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
3873 			    copied_desc->num_of_nsid * sizeof(uint32_t);
3874 		orig_desc += desc_size;
3875 		copy_len -= desc_size;
3876 	}
3877 
3878 	return rc;
3879 }
3880 
3881 static int
3882 nvme_ns_ana_transition_timedout(void *ctx)
3883 {
3884 	struct nvme_ns *nvme_ns = ctx;
3885 
3886 	spdk_poller_unregister(&nvme_ns->anatt_timer);
3887 	nvme_ns->ana_transition_timedout = true;
3888 
3889 	return SPDK_POLLER_BUSY;
3890 }
3891 
3892 static void
3893 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
3894 		       const struct spdk_nvme_ana_group_descriptor *desc)
3895 {
3896 	const struct spdk_nvme_ctrlr_data *cdata;
3897 
3898 	nvme_ns->ana_group_id = desc->ana_group_id;
3899 	nvme_ns->ana_state = desc->ana_state;
3900 	nvme_ns->ana_state_updating = false;
3901 
3902 	switch (nvme_ns->ana_state) {
3903 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3904 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3905 		nvme_ns->ana_transition_timedout = false;
3906 		spdk_poller_unregister(&nvme_ns->anatt_timer);
3907 		break;
3908 
3909 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3910 	case SPDK_NVME_ANA_CHANGE_STATE:
3911 		if (nvme_ns->anatt_timer != NULL) {
3912 			break;
3913 		}
3914 
3915 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
3916 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
3917 				       nvme_ns,
3918 				       cdata->anatt * SPDK_SEC_TO_USEC);
3919 		break;
3920 	default:
3921 		break;
3922 	}
3923 }
3924 
3925 static int
3926 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
3927 {
3928 	struct nvme_ns *nvme_ns = cb_arg;
3929 	uint32_t i;
3930 
3931 	for (i = 0; i < desc->num_of_nsid; i++) {
3932 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
3933 			continue;
3934 		}
3935 
3936 		_nvme_ns_set_ana_state(nvme_ns, desc);
3937 		return 1;
3938 	}
3939 
3940 	return 0;
3941 }
3942 
3943 static struct spdk_uuid
3944 nvme_generate_uuid(const char *sn, uint32_t nsid)
3945 {
3946 	struct spdk_uuid new_uuid, namespace_uuid;
3947 	char merged_str[SPDK_NVME_CTRLR_SN_LEN + NSID_STR_LEN + 1] = {'\0'};
3948 	/* This namespace UUID was generated using uuid_generate() method. */
3949 	const char *namespace_str = {"edaed2de-24bc-4b07-b559-f47ecbe730fd"};
3950 	int size;
3951 
3952 	assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN);
3953 
3954 	spdk_uuid_set_null(&new_uuid);
3955 	spdk_uuid_set_null(&namespace_uuid);
3956 
3957 	size = snprintf(merged_str, sizeof(merged_str), "%s%"PRIu32, sn, nsid);
3958 	assert(size > 0 && (unsigned long)size < sizeof(merged_str));
3959 
3960 	spdk_uuid_parse(&namespace_uuid, namespace_str);
3961 
3962 	spdk_uuid_generate_sha1(&new_uuid, &namespace_uuid, merged_str, size);
3963 
3964 	return new_uuid;
3965 }
3966 
3967 static int
3968 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
3969 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
3970 		 uint32_t prchk_flags, void *ctx)
3971 {
3972 	const struct spdk_uuid		*uuid;
3973 	const uint8_t *nguid;
3974 	const struct spdk_nvme_ctrlr_data *cdata;
3975 	const struct spdk_nvme_ns_data	*nsdata;
3976 	const struct spdk_nvme_ctrlr_opts *opts;
3977 	enum spdk_nvme_csi		csi;
3978 	uint32_t atomic_bs, phys_bs, bs;
3979 	char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'};
3980 
3981 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3982 	csi = spdk_nvme_ns_get_csi(ns);
3983 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
3984 
3985 	switch (csi) {
3986 	case SPDK_NVME_CSI_NVM:
3987 		disk->product_name = "NVMe disk";
3988 		break;
3989 	case SPDK_NVME_CSI_ZNS:
3990 		disk->product_name = "NVMe ZNS disk";
3991 		disk->zoned = true;
3992 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
3993 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
3994 					     spdk_nvme_ns_get_extended_sector_size(ns);
3995 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
3996 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
3997 		break;
3998 	default:
3999 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
4000 		return -ENOTSUP;
4001 	}
4002 
4003 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
4004 	if (!disk->name) {
4005 		return -ENOMEM;
4006 	}
4007 
4008 	disk->write_cache = 0;
4009 	if (cdata->vwc.present) {
4010 		/* Enable if the Volatile Write Cache exists */
4011 		disk->write_cache = 1;
4012 	}
4013 	if (cdata->oncs.write_zeroes) {
4014 		disk->max_write_zeroes = UINT16_MAX + 1;
4015 	}
4016 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
4017 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
4018 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
4019 	/* NVMe driver will split one request into multiple requests
4020 	 * based on MDTS and stripe boundary, the bdev layer will use
4021 	 * max_segment_size and max_num_segments to split one big IO
4022 	 * into multiple requests, then small request can't run out
4023 	 * of NVMe internal requests data structure.
4024 	 */
4025 	if (opts && opts->io_queue_requests) {
4026 		disk->max_num_segments = opts->io_queue_requests / 2;
4027 	}
4028 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
4029 
4030 	nguid = spdk_nvme_ns_get_nguid(ns);
4031 	if (!nguid) {
4032 		uuid = spdk_nvme_ns_get_uuid(ns);
4033 		if (uuid) {
4034 			disk->uuid = *uuid;
4035 		} else if (g_opts.generate_uuids) {
4036 			spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0');
4037 			disk->uuid = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns));
4038 		}
4039 	} else {
4040 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
4041 	}
4042 
4043 	nsdata = spdk_nvme_ns_get_data(ns);
4044 	bs = spdk_nvme_ns_get_sector_size(ns);
4045 	atomic_bs = bs;
4046 	phys_bs = bs;
4047 	if (nsdata->nabo == 0) {
4048 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
4049 			atomic_bs = bs * (1 + nsdata->nawupf);
4050 		} else {
4051 			atomic_bs = bs * (1 + cdata->awupf);
4052 		}
4053 	}
4054 	if (nsdata->nsfeat.optperf) {
4055 		phys_bs = bs * (1 + nsdata->npwg);
4056 	}
4057 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
4058 
4059 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
4060 	if (disk->md_len != 0) {
4061 		disk->md_interleave = nsdata->flbas.extended;
4062 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
4063 		if (disk->dif_type != SPDK_DIF_DISABLE) {
4064 			disk->dif_is_head_of_md = nsdata->dps.md_start;
4065 			disk->dif_check_flags = prchk_flags;
4066 		}
4067 	}
4068 
4069 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
4070 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
4071 		disk->acwu = 0;
4072 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
4073 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
4074 	} else {
4075 		disk->acwu = cdata->acwu + 1; /* 0-based */
4076 	}
4077 
4078 	if (cdata->oncs.copy) {
4079 		/* For now bdev interface allows only single segment copy */
4080 		disk->max_copy = nsdata->mssrl;
4081 	}
4082 
4083 	disk->ctxt = ctx;
4084 	disk->fn_table = &nvmelib_fn_table;
4085 	disk->module = &nvme_if;
4086 
4087 	return 0;
4088 }
4089 
4090 static struct nvme_bdev *
4091 nvme_bdev_alloc(void)
4092 {
4093 	struct nvme_bdev *bdev;
4094 	int rc;
4095 
4096 	bdev = calloc(1, sizeof(*bdev));
4097 	if (!bdev) {
4098 		SPDK_ERRLOG("bdev calloc() failed\n");
4099 		return NULL;
4100 	}
4101 
4102 	if (g_opts.nvme_error_stat) {
4103 		bdev->err_stat = calloc(1, sizeof(struct nvme_error_stat));
4104 		if (!bdev->err_stat) {
4105 			SPDK_ERRLOG("err_stat calloc() failed\n");
4106 			free(bdev);
4107 			return NULL;
4108 		}
4109 	}
4110 
4111 	rc = pthread_mutex_init(&bdev->mutex, NULL);
4112 	if (rc != 0) {
4113 		free(bdev->err_stat);
4114 		free(bdev);
4115 		return NULL;
4116 	}
4117 
4118 	bdev->ref = 1;
4119 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
4120 	bdev->mp_selector = BDEV_NVME_MP_SELECTOR_ROUND_ROBIN;
4121 	bdev->rr_min_io = UINT32_MAX;
4122 	TAILQ_INIT(&bdev->nvme_ns_list);
4123 
4124 	return bdev;
4125 }
4126 
4127 static int
4128 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4129 {
4130 	struct nvme_bdev *bdev;
4131 	struct nvme_bdev_ctrlr *nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
4132 	int rc;
4133 
4134 	bdev = nvme_bdev_alloc();
4135 	if (bdev == NULL) {
4136 		SPDK_ERRLOG("Failed to allocate NVMe bdev\n");
4137 		return -ENOMEM;
4138 	}
4139 
4140 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
4141 
4142 	rc = nvme_disk_create(&bdev->disk, nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
4143 			      nvme_ns->ns, nvme_ctrlr->opts.prchk_flags, bdev);
4144 	if (rc != 0) {
4145 		SPDK_ERRLOG("Failed to create NVMe disk\n");
4146 		nvme_bdev_free(bdev);
4147 		return rc;
4148 	}
4149 
4150 	spdk_io_device_register(bdev,
4151 				bdev_nvme_create_bdev_channel_cb,
4152 				bdev_nvme_destroy_bdev_channel_cb,
4153 				sizeof(struct nvme_bdev_channel),
4154 				bdev->disk.name);
4155 
4156 	nvme_ns->bdev = bdev;
4157 	bdev->nsid = nvme_ns->id;
4158 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4159 
4160 	bdev->nbdev_ctrlr = nbdev_ctrlr;
4161 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->bdevs, bdev, tailq);
4162 
4163 	rc = spdk_bdev_register(&bdev->disk);
4164 	if (rc != 0) {
4165 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
4166 		spdk_io_device_unregister(bdev, NULL);
4167 		nvme_ns->bdev = NULL;
4168 		TAILQ_REMOVE(&nbdev_ctrlr->bdevs, bdev, tailq);
4169 		nvme_bdev_free(bdev);
4170 		return rc;
4171 	}
4172 
4173 	return 0;
4174 }
4175 
4176 static bool
4177 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
4178 {
4179 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
4180 	const struct spdk_uuid *uuid1, *uuid2;
4181 
4182 	nsdata1 = spdk_nvme_ns_get_data(ns1);
4183 	nsdata2 = spdk_nvme_ns_get_data(ns2);
4184 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
4185 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
4186 
4187 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
4188 	       nsdata1->eui64 == nsdata2->eui64 &&
4189 	       ((uuid1 == NULL && uuid2 == NULL) ||
4190 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
4191 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
4192 }
4193 
4194 static bool
4195 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4196 		 struct spdk_nvme_ctrlr_opts *opts)
4197 {
4198 	struct nvme_probe_skip_entry *entry;
4199 
4200 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
4201 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4202 			return false;
4203 		}
4204 	}
4205 
4206 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
4207 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
4208 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
4209 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
4210 	opts->disable_read_ana_log_page = true;
4211 
4212 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
4213 
4214 	return true;
4215 }
4216 
4217 static void
4218 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
4219 {
4220 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4221 
4222 	if (spdk_nvme_cpl_is_error(cpl)) {
4223 		SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
4224 			     cpl->status.sct);
4225 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4226 	} else if (cpl->cdw0 & 0x1) {
4227 		SPDK_WARNLOG("Specified command could not be aborted.\n");
4228 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4229 	}
4230 }
4231 
4232 static void
4233 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
4234 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
4235 {
4236 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4237 	union spdk_nvme_csts_register csts;
4238 	int rc;
4239 
4240 	assert(nvme_ctrlr->ctrlr == ctrlr);
4241 
4242 	SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
4243 
4244 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
4245 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
4246 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
4247 	 * completion recursively.
4248 	 */
4249 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
4250 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
4251 		if (csts.bits.cfs) {
4252 			SPDK_ERRLOG("Controller Fatal Status, reset required\n");
4253 			bdev_nvme_reset_ctrlr(nvme_ctrlr);
4254 			return;
4255 		}
4256 	}
4257 
4258 	switch (g_opts.action_on_timeout) {
4259 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
4260 		if (qpair) {
4261 			/* Don't send abort to ctrlr when ctrlr is not available. */
4262 			pthread_mutex_lock(&nvme_ctrlr->mutex);
4263 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
4264 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
4265 				SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n");
4266 				return;
4267 			}
4268 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4269 
4270 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
4271 						       nvme_abort_cpl, nvme_ctrlr);
4272 			if (rc == 0) {
4273 				return;
4274 			}
4275 
4276 			SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
4277 		}
4278 
4279 	/* FALLTHROUGH */
4280 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
4281 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4282 		break;
4283 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
4284 		SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
4285 		break;
4286 	default:
4287 		SPDK_ERRLOG("An invalid timeout action value is found.\n");
4288 		break;
4289 	}
4290 }
4291 
4292 static struct nvme_ns *
4293 nvme_ns_alloc(void)
4294 {
4295 	struct nvme_ns *nvme_ns;
4296 
4297 	nvme_ns = calloc(1, sizeof(struct nvme_ns));
4298 	if (nvme_ns == NULL) {
4299 		return NULL;
4300 	}
4301 
4302 	if (g_opts.io_path_stat) {
4303 		nvme_ns->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
4304 		if (nvme_ns->stat == NULL) {
4305 			free(nvme_ns);
4306 			return NULL;
4307 		}
4308 		spdk_bdev_reset_io_stat(nvme_ns->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
4309 	}
4310 
4311 	return nvme_ns;
4312 }
4313 
4314 static void
4315 nvme_ns_free(struct nvme_ns *nvme_ns)
4316 {
4317 	free(nvme_ns->stat);
4318 	free(nvme_ns);
4319 }
4320 
4321 static void
4322 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
4323 {
4324 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4325 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
4326 
4327 	if (rc == 0) {
4328 		nvme_ns->probe_ctx = NULL;
4329 		pthread_mutex_lock(&nvme_ctrlr->mutex);
4330 		nvme_ctrlr->ref++;
4331 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4332 	} else {
4333 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4334 		nvme_ns_free(nvme_ns);
4335 	}
4336 
4337 	if (ctx) {
4338 		ctx->populates_in_progress--;
4339 		if (ctx->populates_in_progress == 0) {
4340 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4341 		}
4342 	}
4343 }
4344 
4345 static void
4346 bdev_nvme_add_io_path(struct spdk_io_channel_iter *i)
4347 {
4348 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4349 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4350 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4351 	int rc;
4352 
4353 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
4354 	if (rc != 0) {
4355 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
4356 	}
4357 
4358 	spdk_for_each_channel_continue(i, rc);
4359 }
4360 
4361 static void
4362 bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i)
4363 {
4364 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4365 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4366 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4367 	struct nvme_io_path *io_path;
4368 
4369 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
4370 	if (io_path != NULL) {
4371 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
4372 	}
4373 
4374 	spdk_for_each_channel_continue(i, 0);
4375 }
4376 
4377 static void
4378 bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status)
4379 {
4380 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4381 
4382 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
4383 }
4384 
4385 static void
4386 bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status)
4387 {
4388 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4389 	struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i);
4390 
4391 	if (status == 0) {
4392 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
4393 	} else {
4394 		/* Delete the added io_paths and fail populating the namespace. */
4395 		spdk_for_each_channel(bdev,
4396 				      bdev_nvme_delete_io_path,
4397 				      nvme_ns,
4398 				      bdev_nvme_add_io_path_failed);
4399 	}
4400 }
4401 
4402 static int
4403 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
4404 {
4405 	struct nvme_ns *tmp_ns;
4406 	const struct spdk_nvme_ns_data *nsdata;
4407 
4408 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
4409 	if (!nsdata->nmic.can_share) {
4410 		SPDK_ERRLOG("Namespace cannot be shared.\n");
4411 		return -EINVAL;
4412 	}
4413 
4414 	pthread_mutex_lock(&bdev->mutex);
4415 
4416 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
4417 	assert(tmp_ns != NULL);
4418 
4419 	if (!bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
4420 		pthread_mutex_unlock(&bdev->mutex);
4421 		SPDK_ERRLOG("Namespaces are not identical.\n");
4422 		return -EINVAL;
4423 	}
4424 
4425 	bdev->ref++;
4426 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4427 	nvme_ns->bdev = bdev;
4428 
4429 	pthread_mutex_unlock(&bdev->mutex);
4430 
4431 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
4432 	spdk_for_each_channel(bdev,
4433 			      bdev_nvme_add_io_path,
4434 			      nvme_ns,
4435 			      bdev_nvme_add_io_path_done);
4436 
4437 	return 0;
4438 }
4439 
4440 static void
4441 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4442 {
4443 	struct spdk_nvme_ns	*ns;
4444 	struct nvme_bdev	*bdev;
4445 	int			rc = 0;
4446 
4447 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
4448 	if (!ns) {
4449 		SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
4450 		rc = -EINVAL;
4451 		goto done;
4452 	}
4453 
4454 	nvme_ns->ns = ns;
4455 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4456 
4457 	if (nvme_ctrlr->ana_log_page != NULL) {
4458 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
4459 	}
4460 
4461 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
4462 	if (bdev == NULL) {
4463 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
4464 	} else {
4465 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
4466 		if (rc == 0) {
4467 			return;
4468 		}
4469 	}
4470 done:
4471 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
4472 }
4473 
4474 static void
4475 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
4476 {
4477 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4478 
4479 	assert(nvme_ctrlr != NULL);
4480 
4481 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4482 
4483 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4484 
4485 	if (nvme_ns->bdev != NULL) {
4486 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4487 		return;
4488 	}
4489 
4490 	nvme_ns_free(nvme_ns);
4491 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4492 
4493 	nvme_ctrlr_release(nvme_ctrlr);
4494 }
4495 
4496 static void
4497 bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status)
4498 {
4499 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4500 
4501 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4502 }
4503 
4504 static void
4505 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4506 {
4507 	struct nvme_bdev *bdev;
4508 
4509 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4510 
4511 	bdev = nvme_ns->bdev;
4512 	if (bdev != NULL) {
4513 		pthread_mutex_lock(&bdev->mutex);
4514 
4515 		assert(bdev->ref > 0);
4516 		bdev->ref--;
4517 		if (bdev->ref == 0) {
4518 			pthread_mutex_unlock(&bdev->mutex);
4519 
4520 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
4521 		} else {
4522 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
4523 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
4524 			 * and clear nvme_ns->bdev here.
4525 			 */
4526 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
4527 			nvme_ns->bdev = NULL;
4528 
4529 			pthread_mutex_unlock(&bdev->mutex);
4530 
4531 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
4532 			 * we call depopulate_namespace_done() to avoid use-after-free.
4533 			 */
4534 			spdk_for_each_channel(bdev,
4535 					      bdev_nvme_delete_io_path,
4536 					      nvme_ns,
4537 					      bdev_nvme_delete_io_path_done);
4538 			return;
4539 		}
4540 	}
4541 
4542 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4543 }
4544 
4545 static void
4546 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
4547 			       struct nvme_async_probe_ctx *ctx)
4548 {
4549 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
4550 	struct nvme_ns	*nvme_ns, *next;
4551 	struct spdk_nvme_ns	*ns;
4552 	struct nvme_bdev	*bdev;
4553 	uint32_t		nsid;
4554 	int			rc;
4555 	uint64_t		num_sectors;
4556 
4557 	if (ctx) {
4558 		/* Initialize this count to 1 to handle the populate functions
4559 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
4560 		 */
4561 		ctx->populates_in_progress = 1;
4562 	}
4563 
4564 	/* First loop over our existing namespaces and see if they have been
4565 	 * removed. */
4566 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4567 	while (nvme_ns != NULL) {
4568 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4569 
4570 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
4571 			/* NS is still there but attributes may have changed */
4572 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
4573 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
4574 			bdev = nvme_ns->bdev;
4575 			assert(bdev != NULL);
4576 			if (bdev->disk.blockcnt != num_sectors) {
4577 				SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
4578 					       nvme_ns->id,
4579 					       bdev->disk.name,
4580 					       bdev->disk.blockcnt,
4581 					       num_sectors);
4582 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
4583 				if (rc != 0) {
4584 					SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
4585 						    bdev->disk.name, rc);
4586 				}
4587 			}
4588 		} else {
4589 			/* Namespace was removed */
4590 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4591 		}
4592 
4593 		nvme_ns = next;
4594 	}
4595 
4596 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
4597 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4598 	while (nsid != 0) {
4599 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4600 
4601 		if (nvme_ns == NULL) {
4602 			/* Found a new one */
4603 			nvme_ns = nvme_ns_alloc();
4604 			if (nvme_ns == NULL) {
4605 				SPDK_ERRLOG("Failed to allocate namespace\n");
4606 				/* This just fails to attach the namespace. It may work on a future attempt. */
4607 				continue;
4608 			}
4609 
4610 			nvme_ns->id = nsid;
4611 			nvme_ns->ctrlr = nvme_ctrlr;
4612 
4613 			nvme_ns->bdev = NULL;
4614 
4615 			if (ctx) {
4616 				ctx->populates_in_progress++;
4617 			}
4618 			nvme_ns->probe_ctx = ctx;
4619 
4620 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4621 
4622 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
4623 		}
4624 
4625 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
4626 	}
4627 
4628 	if (ctx) {
4629 		/* Decrement this count now that the loop is over to account
4630 		 * for the one we started with.  If the count is then 0, we
4631 		 * know any populate_namespace functions completed immediately,
4632 		 * so we'll kick the callback here.
4633 		 */
4634 		ctx->populates_in_progress--;
4635 		if (ctx->populates_in_progress == 0) {
4636 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4637 		}
4638 	}
4639 
4640 }
4641 
4642 static void
4643 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
4644 {
4645 	struct nvme_ns *nvme_ns, *tmp;
4646 
4647 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
4648 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4649 	}
4650 }
4651 
4652 static uint32_t
4653 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
4654 {
4655 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
4656 	const struct spdk_nvme_ctrlr_data *cdata;
4657 	uint32_t nsid, ns_count = 0;
4658 
4659 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4660 
4661 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4662 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
4663 		ns_count++;
4664 	}
4665 
4666 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
4667 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
4668 	       sizeof(uint32_t);
4669 }
4670 
4671 static int
4672 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
4673 			  void *cb_arg)
4674 {
4675 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4676 	struct nvme_ns *nvme_ns;
4677 	uint32_t i, nsid;
4678 
4679 	for (i = 0; i < desc->num_of_nsid; i++) {
4680 		nsid = desc->nsid[i];
4681 		if (nsid == 0) {
4682 			continue;
4683 		}
4684 
4685 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4686 
4687 		assert(nvme_ns != NULL);
4688 		if (nvme_ns == NULL) {
4689 			/* Target told us that an inactive namespace had an ANA change */
4690 			continue;
4691 		}
4692 
4693 		_nvme_ns_set_ana_state(nvme_ns, desc);
4694 	}
4695 
4696 	return 0;
4697 }
4698 
4699 static void
4700 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4701 {
4702 	struct nvme_ns *nvme_ns;
4703 
4704 	spdk_free(nvme_ctrlr->ana_log_page);
4705 	nvme_ctrlr->ana_log_page = NULL;
4706 
4707 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4708 	     nvme_ns != NULL;
4709 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
4710 		nvme_ns->ana_state_updating = false;
4711 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4712 	}
4713 }
4714 
4715 static void
4716 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
4717 {
4718 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4719 
4720 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
4721 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
4722 					     nvme_ctrlr);
4723 	} else {
4724 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
4725 	}
4726 
4727 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4728 
4729 	assert(nvme_ctrlr->ana_log_page_updating == true);
4730 	nvme_ctrlr->ana_log_page_updating = false;
4731 
4732 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
4733 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4734 
4735 		nvme_ctrlr_unregister(nvme_ctrlr);
4736 	} else {
4737 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4738 
4739 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
4740 	}
4741 }
4742 
4743 static int
4744 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4745 {
4746 	uint32_t ana_log_page_size;
4747 	int rc;
4748 
4749 	if (nvme_ctrlr->ana_log_page == NULL) {
4750 		return -EINVAL;
4751 	}
4752 
4753 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
4754 
4755 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
4756 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
4757 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
4758 		return -EINVAL;
4759 	}
4760 
4761 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4762 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
4763 	    nvme_ctrlr->ana_log_page_updating) {
4764 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4765 		return -EBUSY;
4766 	}
4767 
4768 	nvme_ctrlr->ana_log_page_updating = true;
4769 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4770 
4771 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
4772 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
4773 					      SPDK_NVME_GLOBAL_NS_TAG,
4774 					      nvme_ctrlr->ana_log_page,
4775 					      ana_log_page_size, 0,
4776 					      nvme_ctrlr_read_ana_log_page_done,
4777 					      nvme_ctrlr);
4778 	if (rc != 0) {
4779 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
4780 	}
4781 
4782 	return rc;
4783 }
4784 
4785 static void
4786 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
4787 {
4788 }
4789 
4790 struct bdev_nvme_set_preferred_path_ctx {
4791 	struct spdk_bdev_desc *desc;
4792 	struct nvme_ns *nvme_ns;
4793 	bdev_nvme_set_preferred_path_cb cb_fn;
4794 	void *cb_arg;
4795 };
4796 
4797 static void
4798 bdev_nvme_set_preferred_path_done(struct spdk_io_channel_iter *i, int status)
4799 {
4800 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4801 
4802 	assert(ctx != NULL);
4803 	assert(ctx->desc != NULL);
4804 	assert(ctx->cb_fn != NULL);
4805 
4806 	spdk_bdev_close(ctx->desc);
4807 
4808 	ctx->cb_fn(ctx->cb_arg, status);
4809 
4810 	free(ctx);
4811 }
4812 
4813 static void
4814 _bdev_nvme_set_preferred_path(struct spdk_io_channel_iter *i)
4815 {
4816 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4817 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4818 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4819 	struct nvme_io_path *io_path, *prev;
4820 
4821 	prev = NULL;
4822 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
4823 		if (io_path->nvme_ns == ctx->nvme_ns) {
4824 			break;
4825 		}
4826 		prev = io_path;
4827 	}
4828 
4829 	if (io_path != NULL) {
4830 		if (prev != NULL) {
4831 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
4832 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
4833 		}
4834 
4835 		/* We can set io_path to nbdev_ch->current_io_path directly here.
4836 		 * However, it needs to be conditional. To simplify the code,
4837 		 * just clear nbdev_ch->current_io_path and let find_io_path()
4838 		 * fill it.
4839 		 *
4840 		 * Automatic failback may be disabled. Hence even if the io_path is
4841 		 * already at the head, clear nbdev_ch->current_io_path.
4842 		 */
4843 		bdev_nvme_clear_current_io_path(nbdev_ch);
4844 	}
4845 
4846 	spdk_for_each_channel_continue(i, 0);
4847 }
4848 
4849 static struct nvme_ns *
4850 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
4851 {
4852 	struct nvme_ns *nvme_ns, *prev;
4853 	const struct spdk_nvme_ctrlr_data *cdata;
4854 
4855 	prev = NULL;
4856 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
4857 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
4858 
4859 		if (cdata->cntlid == cntlid) {
4860 			break;
4861 		}
4862 		prev = nvme_ns;
4863 	}
4864 
4865 	if (nvme_ns != NULL && prev != NULL) {
4866 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
4867 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
4868 	}
4869 
4870 	return nvme_ns;
4871 }
4872 
4873 /* This function supports only multipath mode. There is only a single I/O path
4874  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
4875  * head of the I/O path list for each NVMe bdev channel.
4876  *
4877  * NVMe bdev channel may be acquired after completing this function. move the
4878  * matched namespace to the head of the namespace list for the NVMe bdev too.
4879  */
4880 void
4881 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
4882 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
4883 {
4884 	struct bdev_nvme_set_preferred_path_ctx *ctx;
4885 	struct spdk_bdev *bdev;
4886 	struct nvme_bdev *nbdev;
4887 	int rc = 0;
4888 
4889 	assert(cb_fn != NULL);
4890 
4891 	ctx = calloc(1, sizeof(*ctx));
4892 	if (ctx == NULL) {
4893 		SPDK_ERRLOG("Failed to alloc context.\n");
4894 		rc = -ENOMEM;
4895 		goto err_alloc;
4896 	}
4897 
4898 	ctx->cb_fn = cb_fn;
4899 	ctx->cb_arg = cb_arg;
4900 
4901 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
4902 	if (rc != 0) {
4903 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
4904 		goto err_open;
4905 	}
4906 
4907 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
4908 
4909 	if (bdev->module != &nvme_if) {
4910 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
4911 		rc = -ENODEV;
4912 		goto err_bdev;
4913 	}
4914 
4915 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
4916 
4917 	pthread_mutex_lock(&nbdev->mutex);
4918 
4919 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
4920 	if (ctx->nvme_ns == NULL) {
4921 		pthread_mutex_unlock(&nbdev->mutex);
4922 
4923 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
4924 		rc = -ENODEV;
4925 		goto err_bdev;
4926 	}
4927 
4928 	pthread_mutex_unlock(&nbdev->mutex);
4929 
4930 	spdk_for_each_channel(nbdev,
4931 			      _bdev_nvme_set_preferred_path,
4932 			      ctx,
4933 			      bdev_nvme_set_preferred_path_done);
4934 	return;
4935 
4936 err_bdev:
4937 	spdk_bdev_close(ctx->desc);
4938 err_open:
4939 	free(ctx);
4940 err_alloc:
4941 	cb_fn(cb_arg, rc);
4942 }
4943 
4944 struct bdev_nvme_set_multipath_policy_ctx {
4945 	struct spdk_bdev_desc *desc;
4946 	bdev_nvme_set_multipath_policy_cb cb_fn;
4947 	void *cb_arg;
4948 };
4949 
4950 static void
4951 bdev_nvme_set_multipath_policy_done(struct spdk_io_channel_iter *i, int status)
4952 {
4953 	struct bdev_nvme_set_multipath_policy_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4954 
4955 	assert(ctx != NULL);
4956 	assert(ctx->desc != NULL);
4957 	assert(ctx->cb_fn != NULL);
4958 
4959 	spdk_bdev_close(ctx->desc);
4960 
4961 	ctx->cb_fn(ctx->cb_arg, status);
4962 
4963 	free(ctx);
4964 }
4965 
4966 static void
4967 _bdev_nvme_set_multipath_policy(struct spdk_io_channel_iter *i)
4968 {
4969 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4970 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4971 	struct nvme_bdev *nbdev = spdk_io_channel_get_io_device(_ch);
4972 
4973 	nbdev_ch->mp_policy = nbdev->mp_policy;
4974 	nbdev_ch->mp_selector = nbdev->mp_selector;
4975 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
4976 	bdev_nvme_clear_current_io_path(nbdev_ch);
4977 
4978 	spdk_for_each_channel_continue(i, 0);
4979 }
4980 
4981 void
4982 bdev_nvme_set_multipath_policy(const char *name, enum bdev_nvme_multipath_policy policy,
4983 			       enum bdev_nvme_multipath_selector selector, uint32_t rr_min_io,
4984 			       bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
4985 {
4986 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
4987 	struct spdk_bdev *bdev;
4988 	struct nvme_bdev *nbdev;
4989 	int rc;
4990 
4991 	assert(cb_fn != NULL);
4992 
4993 	if (policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE && selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
4994 		if (rr_min_io == UINT32_MAX) {
4995 			rr_min_io = 1;
4996 		} else if (rr_min_io == 0) {
4997 			rc = -EINVAL;
4998 			goto exit;
4999 		}
5000 	} else if (rr_min_io != UINT32_MAX) {
5001 		rc = -EINVAL;
5002 		goto exit;
5003 	}
5004 
5005 	ctx = calloc(1, sizeof(*ctx));
5006 	if (ctx == NULL) {
5007 		SPDK_ERRLOG("Failed to alloc context.\n");
5008 		rc = -ENOMEM;
5009 		goto exit;
5010 	}
5011 
5012 	ctx->cb_fn = cb_fn;
5013 	ctx->cb_arg = cb_arg;
5014 
5015 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5016 	if (rc != 0) {
5017 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5018 		rc = -ENODEV;
5019 		goto err_open;
5020 	}
5021 
5022 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5023 	if (bdev->module != &nvme_if) {
5024 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5025 		rc = -ENODEV;
5026 		goto err_module;
5027 	}
5028 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5029 
5030 	pthread_mutex_lock(&nbdev->mutex);
5031 	nbdev->mp_policy = policy;
5032 	nbdev->mp_selector = selector;
5033 	nbdev->rr_min_io = rr_min_io;
5034 	pthread_mutex_unlock(&nbdev->mutex);
5035 
5036 	spdk_for_each_channel(nbdev,
5037 			      _bdev_nvme_set_multipath_policy,
5038 			      ctx,
5039 			      bdev_nvme_set_multipath_policy_done);
5040 	return;
5041 
5042 err_module:
5043 	spdk_bdev_close(ctx->desc);
5044 err_open:
5045 	free(ctx);
5046 exit:
5047 	cb_fn(cb_arg, rc);
5048 }
5049 
5050 static void
5051 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5052 {
5053 	struct nvme_ctrlr *nvme_ctrlr		= arg;
5054 	union spdk_nvme_async_event_completion	event;
5055 
5056 	if (spdk_nvme_cpl_is_error(cpl)) {
5057 		SPDK_WARNLOG("AER request execute failed\n");
5058 		return;
5059 	}
5060 
5061 	event.raw = cpl->cdw0;
5062 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5063 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
5064 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
5065 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5066 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
5067 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
5068 	}
5069 }
5070 
5071 static void
5072 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, int rc)
5073 {
5074 	if (ctx->cb_fn) {
5075 		ctx->cb_fn(ctx->cb_ctx, ctx->reported_bdevs, rc);
5076 	}
5077 
5078 	ctx->namespaces_populated = true;
5079 	if (ctx->probe_done) {
5080 		/* The probe was already completed, so we need to free the context
5081 		 * here.  This can happen for cases like OCSSD, where we need to
5082 		 * send additional commands to the SSD after attach.
5083 		 */
5084 		free(ctx);
5085 	}
5086 }
5087 
5088 static void
5089 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
5090 		       struct nvme_async_probe_ctx *ctx)
5091 {
5092 	spdk_io_device_register(nvme_ctrlr,
5093 				bdev_nvme_create_ctrlr_channel_cb,
5094 				bdev_nvme_destroy_ctrlr_channel_cb,
5095 				sizeof(struct nvme_ctrlr_channel),
5096 				nvme_ctrlr->nbdev_ctrlr->name);
5097 
5098 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
5099 }
5100 
5101 static void
5102 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
5103 {
5104 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
5105 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
5106 
5107 	nvme_ctrlr->probe_ctx = NULL;
5108 
5109 	if (spdk_nvme_cpl_is_error(cpl)) {
5110 		nvme_ctrlr_delete(nvme_ctrlr);
5111 
5112 		if (ctx != NULL) {
5113 			ctx->reported_bdevs = 0;
5114 			populate_namespaces_cb(ctx, -1);
5115 		}
5116 		return;
5117 	}
5118 
5119 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5120 }
5121 
5122 static int
5123 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
5124 			     struct nvme_async_probe_ctx *ctx)
5125 {
5126 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5127 	const struct spdk_nvme_ctrlr_data *cdata;
5128 	uint32_t ana_log_page_size;
5129 
5130 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5131 
5132 	/* Set buffer size enough to include maximum number of allowed namespaces. */
5133 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5134 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
5135 			    sizeof(uint32_t);
5136 
5137 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
5138 						SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
5139 	if (nvme_ctrlr->ana_log_page == NULL) {
5140 		SPDK_ERRLOG("could not allocate ANA log page buffer\n");
5141 		return -ENXIO;
5142 	}
5143 
5144 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
5145 	 * Hence copy each descriptor to a temporary area when parsing it.
5146 	 *
5147 	 * Allocate a buffer whose size is as large as ANA log page buffer because
5148 	 * we do not know the size of a descriptor until actually reading it.
5149 	 */
5150 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
5151 	if (nvme_ctrlr->copied_ana_desc == NULL) {
5152 		SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
5153 		return -ENOMEM;
5154 	}
5155 
5156 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
5157 
5158 	nvme_ctrlr->probe_ctx = ctx;
5159 
5160 	/* Then, set the read size only to include the current active namespaces. */
5161 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5162 
5163 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5164 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5165 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5166 		return -EINVAL;
5167 	}
5168 
5169 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
5170 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5171 						SPDK_NVME_GLOBAL_NS_TAG,
5172 						nvme_ctrlr->ana_log_page,
5173 						ana_log_page_size, 0,
5174 						nvme_ctrlr_init_ana_log_page_done,
5175 						nvme_ctrlr);
5176 }
5177 
5178 /* hostnqn and subnqn were already verified before attaching a controller.
5179  * Hence check only the multipath capability and cntlid here.
5180  */
5181 static bool
5182 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
5183 {
5184 	struct nvme_ctrlr *tmp;
5185 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
5186 
5187 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5188 
5189 	if (!cdata->cmic.multi_ctrlr) {
5190 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5191 		return false;
5192 	}
5193 
5194 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
5195 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
5196 
5197 		if (!tmp_cdata->cmic.multi_ctrlr) {
5198 			SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5199 			return false;
5200 		}
5201 		if (cdata->cntlid == tmp_cdata->cntlid) {
5202 			SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid);
5203 			return false;
5204 		}
5205 	}
5206 
5207 	return true;
5208 }
5209 
5210 static int
5211 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
5212 {
5213 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5214 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5215 	int rc = 0;
5216 
5217 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5218 
5219 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
5220 	if (nbdev_ctrlr != NULL) {
5221 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
5222 			rc = -EINVAL;
5223 			goto exit;
5224 		}
5225 	} else {
5226 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
5227 		if (nbdev_ctrlr == NULL) {
5228 			SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n");
5229 			rc = -ENOMEM;
5230 			goto exit;
5231 		}
5232 		nbdev_ctrlr->name = strdup(name);
5233 		if (nbdev_ctrlr->name == NULL) {
5234 			SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n");
5235 			free(nbdev_ctrlr);
5236 			goto exit;
5237 		}
5238 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
5239 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
5240 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
5241 	}
5242 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
5243 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
5244 exit:
5245 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5246 	return rc;
5247 }
5248 
5249 static int
5250 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
5251 		  const char *name,
5252 		  const struct spdk_nvme_transport_id *trid,
5253 		  struct nvme_async_probe_ctx *ctx)
5254 {
5255 	struct nvme_ctrlr *nvme_ctrlr;
5256 	struct nvme_path_id *path_id;
5257 	const struct spdk_nvme_ctrlr_data *cdata;
5258 	int rc;
5259 
5260 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
5261 	if (nvme_ctrlr == NULL) {
5262 		SPDK_ERRLOG("Failed to allocate device struct\n");
5263 		return -ENOMEM;
5264 	}
5265 
5266 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
5267 	if (rc != 0) {
5268 		free(nvme_ctrlr);
5269 		return rc;
5270 	}
5271 
5272 	TAILQ_INIT(&nvme_ctrlr->trids);
5273 
5274 	RB_INIT(&nvme_ctrlr->namespaces);
5275 
5276 	path_id = calloc(1, sizeof(*path_id));
5277 	if (path_id == NULL) {
5278 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
5279 		rc = -ENOMEM;
5280 		goto err;
5281 	}
5282 
5283 	path_id->trid = *trid;
5284 	if (ctx != NULL) {
5285 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
5286 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
5287 	}
5288 	nvme_ctrlr->active_path_id = path_id;
5289 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
5290 
5291 	nvme_ctrlr->thread = spdk_get_thread();
5292 	nvme_ctrlr->ctrlr = ctrlr;
5293 	nvme_ctrlr->ref = 1;
5294 
5295 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
5296 		SPDK_ERRLOG("OCSSDs are not supported");
5297 		rc = -ENOTSUP;
5298 		goto err;
5299 	}
5300 
5301 	if (ctx != NULL) {
5302 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
5303 	} else {
5304 		bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
5305 	}
5306 
5307 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
5308 					  g_opts.nvme_adminq_poll_period_us);
5309 
5310 	if (g_opts.timeout_us > 0) {
5311 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
5312 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
5313 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
5314 					  g_opts.timeout_us : g_opts.timeout_admin_us;
5315 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
5316 				adm_timeout_us, timeout_cb, nvme_ctrlr);
5317 	}
5318 
5319 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
5320 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
5321 
5322 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
5323 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
5324 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
5325 	}
5326 
5327 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
5328 	if (rc != 0) {
5329 		goto err;
5330 	}
5331 
5332 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5333 
5334 	if (cdata->cmic.ana_reporting) {
5335 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
5336 		if (rc == 0) {
5337 			return 0;
5338 		}
5339 	} else {
5340 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5341 		return 0;
5342 	}
5343 
5344 err:
5345 	nvme_ctrlr_delete(nvme_ctrlr);
5346 	return rc;
5347 }
5348 
5349 void
5350 bdev_nvme_get_default_ctrlr_opts(struct nvme_ctrlr_opts *opts)
5351 {
5352 	opts->prchk_flags = 0;
5353 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
5354 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
5355 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
5356 }
5357 
5358 static void
5359 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5360 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
5361 {
5362 	char *name;
5363 
5364 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
5365 	if (!name) {
5366 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
5367 		return;
5368 	}
5369 
5370 	if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) {
5371 		SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
5372 	} else {
5373 		SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name);
5374 	}
5375 
5376 	free(name);
5377 }
5378 
5379 static void
5380 _nvme_ctrlr_destruct(void *ctx)
5381 {
5382 	struct nvme_ctrlr *nvme_ctrlr = ctx;
5383 
5384 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
5385 	nvme_ctrlr_release(nvme_ctrlr);
5386 }
5387 
5388 static int
5389 bdev_nvme_delete_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5390 {
5391 	struct nvme_probe_skip_entry *entry;
5392 
5393 	/* The controller's destruction was already started */
5394 	if (nvme_ctrlr->destruct) {
5395 		return -EALREADY;
5396 	}
5397 
5398 	if (!hotplug &&
5399 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
5400 		entry = calloc(1, sizeof(*entry));
5401 		if (!entry) {
5402 			return -ENOMEM;
5403 		}
5404 		entry->trid = nvme_ctrlr->active_path_id->trid;
5405 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
5406 	}
5407 
5408 	nvme_ctrlr->destruct = true;
5409 	return 0;
5410 }
5411 
5412 static int
5413 bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5414 {
5415 	int rc;
5416 
5417 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5418 	rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, hotplug);
5419 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5420 
5421 	if (rc == 0) {
5422 		_nvme_ctrlr_destruct(nvme_ctrlr);
5423 	} else if (rc == -EALREADY) {
5424 		rc = 0;
5425 	}
5426 
5427 	return rc;
5428 }
5429 
5430 static void
5431 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
5432 {
5433 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
5434 
5435 	bdev_nvme_delete_ctrlr(nvme_ctrlr, true);
5436 }
5437 
5438 static int
5439 bdev_nvme_hotplug_probe(void *arg)
5440 {
5441 	if (g_hotplug_probe_ctx == NULL) {
5442 		spdk_poller_unregister(&g_hotplug_probe_poller);
5443 		return SPDK_POLLER_IDLE;
5444 	}
5445 
5446 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
5447 		g_hotplug_probe_ctx = NULL;
5448 		spdk_poller_unregister(&g_hotplug_probe_poller);
5449 	}
5450 
5451 	return SPDK_POLLER_BUSY;
5452 }
5453 
5454 static int
5455 bdev_nvme_hotplug(void *arg)
5456 {
5457 	struct spdk_nvme_transport_id trid_pcie;
5458 
5459 	if (g_hotplug_probe_ctx) {
5460 		return SPDK_POLLER_BUSY;
5461 	}
5462 
5463 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5464 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5465 
5466 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
5467 			      hotplug_probe_cb, attach_cb, NULL);
5468 
5469 	if (g_hotplug_probe_ctx) {
5470 		assert(g_hotplug_probe_poller == NULL);
5471 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
5472 	}
5473 
5474 	return SPDK_POLLER_BUSY;
5475 }
5476 
5477 void
5478 bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
5479 {
5480 	*opts = g_opts;
5481 }
5482 
5483 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5484 		uint32_t reconnect_delay_sec,
5485 		uint32_t fast_io_fail_timeout_sec);
5486 
5487 static int
5488 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
5489 {
5490 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
5491 		/* Can't set timeout_admin_us without also setting timeout_us */
5492 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
5493 		return -EINVAL;
5494 	}
5495 
5496 	if (opts->bdev_retry_count < -1) {
5497 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
5498 		return -EINVAL;
5499 	}
5500 
5501 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
5502 			opts->reconnect_delay_sec,
5503 			opts->fast_io_fail_timeout_sec)) {
5504 		return -EINVAL;
5505 	}
5506 
5507 	return 0;
5508 }
5509 
5510 int
5511 bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
5512 {
5513 	int ret;
5514 
5515 	ret = bdev_nvme_validate_opts(opts);
5516 	if (ret) {
5517 		SPDK_WARNLOG("Failed to set nvme opts.\n");
5518 		return ret;
5519 	}
5520 
5521 	if (g_bdev_nvme_init_thread != NULL) {
5522 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5523 			return -EPERM;
5524 		}
5525 	}
5526 
5527 	if (opts->rdma_srq_size != 0) {
5528 		struct spdk_nvme_transport_opts drv_opts;
5529 
5530 		spdk_nvme_transport_get_opts(&drv_opts, sizeof(drv_opts));
5531 		drv_opts.rdma_srq_size = opts->rdma_srq_size;
5532 
5533 		ret = spdk_nvme_transport_set_opts(&drv_opts, sizeof(drv_opts));
5534 		if (ret) {
5535 			SPDK_ERRLOG("Failed to set NVMe transport opts.\n");
5536 			return ret;
5537 		}
5538 	}
5539 
5540 	g_opts = *opts;
5541 
5542 	return 0;
5543 }
5544 
5545 struct set_nvme_hotplug_ctx {
5546 	uint64_t period_us;
5547 	bool enabled;
5548 	spdk_msg_fn fn;
5549 	void *fn_ctx;
5550 };
5551 
5552 static void
5553 set_nvme_hotplug_period_cb(void *_ctx)
5554 {
5555 	struct set_nvme_hotplug_ctx *ctx = _ctx;
5556 
5557 	spdk_poller_unregister(&g_hotplug_poller);
5558 	if (ctx->enabled) {
5559 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
5560 	}
5561 
5562 	g_nvme_hotplug_poll_period_us = ctx->period_us;
5563 	g_nvme_hotplug_enabled = ctx->enabled;
5564 	if (ctx->fn) {
5565 		ctx->fn(ctx->fn_ctx);
5566 	}
5567 
5568 	free(ctx);
5569 }
5570 
5571 int
5572 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
5573 {
5574 	struct set_nvme_hotplug_ctx *ctx;
5575 
5576 	if (enabled == true && !spdk_process_is_primary()) {
5577 		return -EPERM;
5578 	}
5579 
5580 	ctx = calloc(1, sizeof(*ctx));
5581 	if (ctx == NULL) {
5582 		return -ENOMEM;
5583 	}
5584 
5585 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
5586 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
5587 	ctx->enabled = enabled;
5588 	ctx->fn = cb;
5589 	ctx->fn_ctx = cb_ctx;
5590 
5591 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
5592 	return 0;
5593 }
5594 
5595 static void
5596 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
5597 				    struct nvme_async_probe_ctx *ctx)
5598 {
5599 	struct nvme_ns	*nvme_ns;
5600 	struct nvme_bdev	*nvme_bdev;
5601 	size_t			j;
5602 
5603 	assert(nvme_ctrlr != NULL);
5604 
5605 	if (ctx->names == NULL) {
5606 		ctx->reported_bdevs = 0;
5607 		populate_namespaces_cb(ctx, 0);
5608 		return;
5609 	}
5610 
5611 	/*
5612 	 * Report the new bdevs that were created in this call.
5613 	 * There can be more than one bdev per NVMe controller.
5614 	 */
5615 	j = 0;
5616 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5617 	while (nvme_ns != NULL) {
5618 		nvme_bdev = nvme_ns->bdev;
5619 		if (j < ctx->max_bdevs) {
5620 			ctx->names[j] = nvme_bdev->disk.name;
5621 			j++;
5622 		} else {
5623 			SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
5624 				    ctx->max_bdevs);
5625 			ctx->reported_bdevs = 0;
5626 			populate_namespaces_cb(ctx, -ERANGE);
5627 			return;
5628 		}
5629 
5630 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5631 	}
5632 
5633 	ctx->reported_bdevs = j;
5634 	populate_namespaces_cb(ctx, 0);
5635 }
5636 
5637 static int
5638 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5639 			       struct spdk_nvme_ctrlr *new_ctrlr,
5640 			       struct spdk_nvme_transport_id *trid)
5641 {
5642 	struct nvme_path_id *tmp_trid;
5643 
5644 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
5645 		SPDK_ERRLOG("PCIe failover is not supported.\n");
5646 		return -ENOTSUP;
5647 	}
5648 
5649 	/* Currently we only support failover to the same transport type. */
5650 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
5651 		SPDK_WARNLOG("Failover from trtype: %s to a different trtype: %s is not supported currently\n",
5652 			     spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
5653 			     spdk_nvme_transport_id_trtype_str(trid->trtype));
5654 		return -EINVAL;
5655 	}
5656 
5657 
5658 	/* Currently we only support failover to the same NQN. */
5659 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
5660 		SPDK_WARNLOG("Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
5661 			     nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
5662 		return -EINVAL;
5663 	}
5664 
5665 	/* Skip all the other checks if we've already registered this path. */
5666 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
5667 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
5668 			SPDK_WARNLOG("This path (traddr: %s subnqn: %s) is already registered\n", trid->traddr,
5669 				     trid->subnqn);
5670 			return -EEXIST;
5671 		}
5672 	}
5673 
5674 	return 0;
5675 }
5676 
5677 static int
5678 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
5679 				    struct spdk_nvme_ctrlr *new_ctrlr)
5680 {
5681 	struct nvme_ns *nvme_ns;
5682 	struct spdk_nvme_ns *new_ns;
5683 
5684 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5685 	while (nvme_ns != NULL) {
5686 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
5687 		assert(new_ns != NULL);
5688 
5689 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
5690 			return -EINVAL;
5691 		}
5692 
5693 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5694 	}
5695 
5696 	return 0;
5697 }
5698 
5699 static int
5700 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5701 			      struct spdk_nvme_transport_id *trid)
5702 {
5703 	struct nvme_path_id *active_id, *new_trid, *tmp_trid;
5704 
5705 	new_trid = calloc(1, sizeof(*new_trid));
5706 	if (new_trid == NULL) {
5707 		return -ENOMEM;
5708 	}
5709 	new_trid->trid = *trid;
5710 
5711 	active_id = nvme_ctrlr->active_path_id;
5712 	assert(active_id != NULL);
5713 	assert(active_id == TAILQ_FIRST(&nvme_ctrlr->trids));
5714 
5715 	/* Skip the active trid not to replace it until it is failed. */
5716 	tmp_trid = TAILQ_NEXT(active_id, link);
5717 	if (tmp_trid == NULL) {
5718 		goto add_tail;
5719 	}
5720 
5721 	/* It means the trid is faled if its last failed time is non-zero.
5722 	 * Insert the new alternate trid before any failed trid.
5723 	 */
5724 	TAILQ_FOREACH_FROM(tmp_trid, &nvme_ctrlr->trids, link) {
5725 		if (tmp_trid->last_failed_tsc != 0) {
5726 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
5727 			return 0;
5728 		}
5729 	}
5730 
5731 add_tail:
5732 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
5733 	return 0;
5734 }
5735 
5736 /* This is the case that a secondary path is added to an existing
5737  * nvme_ctrlr for failover. After checking if it can access the same
5738  * namespaces as the primary path, it is disconnected until failover occurs.
5739  */
5740 static int
5741 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5742 			     struct spdk_nvme_ctrlr *new_ctrlr,
5743 			     struct spdk_nvme_transport_id *trid)
5744 {
5745 	int rc;
5746 
5747 	assert(nvme_ctrlr != NULL);
5748 
5749 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5750 
5751 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
5752 	if (rc != 0) {
5753 		goto exit;
5754 	}
5755 
5756 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
5757 	if (rc != 0) {
5758 		goto exit;
5759 	}
5760 
5761 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
5762 
5763 exit:
5764 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5765 
5766 	spdk_nvme_detach(new_ctrlr);
5767 
5768 	return rc;
5769 }
5770 
5771 static void
5772 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5773 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
5774 {
5775 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5776 	struct nvme_async_probe_ctx *ctx;
5777 	int rc;
5778 
5779 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
5780 	ctx->ctrlr_attached = true;
5781 
5782 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
5783 	if (rc != 0) {
5784 		ctx->reported_bdevs = 0;
5785 		populate_namespaces_cb(ctx, rc);
5786 	}
5787 }
5788 
5789 static void
5790 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5791 			struct spdk_nvme_ctrlr *ctrlr,
5792 			const struct spdk_nvme_ctrlr_opts *opts)
5793 {
5794 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5795 	struct nvme_ctrlr *nvme_ctrlr;
5796 	struct nvme_async_probe_ctx *ctx;
5797 	int rc;
5798 
5799 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
5800 	ctx->ctrlr_attached = true;
5801 
5802 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
5803 	if (nvme_ctrlr) {
5804 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
5805 	} else {
5806 		rc = -ENODEV;
5807 	}
5808 
5809 	ctx->reported_bdevs = 0;
5810 	populate_namespaces_cb(ctx, rc);
5811 }
5812 
5813 static int
5814 bdev_nvme_async_poll(void *arg)
5815 {
5816 	struct nvme_async_probe_ctx	*ctx = arg;
5817 	int				rc;
5818 
5819 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
5820 	if (spdk_unlikely(rc != -EAGAIN)) {
5821 		ctx->probe_done = true;
5822 		spdk_poller_unregister(&ctx->poller);
5823 		if (!ctx->ctrlr_attached) {
5824 			/* The probe is done, but no controller was attached.
5825 			 * That means we had a failure, so report -EIO back to
5826 			 * the caller (usually the RPC). populate_namespaces_cb()
5827 			 * will take care of freeing the nvme_async_probe_ctx.
5828 			 */
5829 			ctx->reported_bdevs = 0;
5830 			populate_namespaces_cb(ctx, -EIO);
5831 		} else if (ctx->namespaces_populated) {
5832 			/* The namespaces for the attached controller were all
5833 			 * populated and the response was already sent to the
5834 			 * caller (usually the RPC).  So free the context here.
5835 			 */
5836 			free(ctx);
5837 		}
5838 	}
5839 
5840 	return SPDK_POLLER_BUSY;
5841 }
5842 
5843 static bool
5844 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5845 		uint32_t reconnect_delay_sec,
5846 		uint32_t fast_io_fail_timeout_sec)
5847 {
5848 	if (ctrlr_loss_timeout_sec < -1) {
5849 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
5850 		return false;
5851 	} else if (ctrlr_loss_timeout_sec == -1) {
5852 		if (reconnect_delay_sec == 0) {
5853 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
5854 			return false;
5855 		} else if (fast_io_fail_timeout_sec != 0 &&
5856 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
5857 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
5858 			return false;
5859 		}
5860 	} else if (ctrlr_loss_timeout_sec != 0) {
5861 		if (reconnect_delay_sec == 0) {
5862 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
5863 			return false;
5864 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
5865 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
5866 			return false;
5867 		} else if (fast_io_fail_timeout_sec != 0) {
5868 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
5869 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
5870 				return false;
5871 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
5872 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
5873 				return false;
5874 			}
5875 		}
5876 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
5877 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
5878 		return false;
5879 	}
5880 
5881 	return true;
5882 }
5883 
5884 int
5885 bdev_nvme_create(struct spdk_nvme_transport_id *trid,
5886 		 const char *base_name,
5887 		 const char **names,
5888 		 uint32_t count,
5889 		 spdk_bdev_create_nvme_fn cb_fn,
5890 		 void *cb_ctx,
5891 		 struct spdk_nvme_ctrlr_opts *drv_opts,
5892 		 struct nvme_ctrlr_opts *bdev_opts,
5893 		 bool multipath)
5894 {
5895 	struct nvme_probe_skip_entry	*entry, *tmp;
5896 	struct nvme_async_probe_ctx	*ctx;
5897 	spdk_nvme_attach_cb attach_cb;
5898 
5899 	/* TODO expand this check to include both the host and target TRIDs.
5900 	 * Only if both are the same should we fail.
5901 	 */
5902 	if (nvme_ctrlr_get(trid) != NULL) {
5903 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr);
5904 		return -EEXIST;
5905 	}
5906 
5907 	if (bdev_opts != NULL &&
5908 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
5909 			    bdev_opts->reconnect_delay_sec,
5910 			    bdev_opts->fast_io_fail_timeout_sec)) {
5911 		return -EINVAL;
5912 	}
5913 
5914 	ctx = calloc(1, sizeof(*ctx));
5915 	if (!ctx) {
5916 		return -ENOMEM;
5917 	}
5918 	ctx->base_name = base_name;
5919 	ctx->names = names;
5920 	ctx->max_bdevs = count;
5921 	ctx->cb_fn = cb_fn;
5922 	ctx->cb_ctx = cb_ctx;
5923 	ctx->trid = *trid;
5924 
5925 	if (bdev_opts) {
5926 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
5927 	} else {
5928 		bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
5929 	}
5930 
5931 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
5932 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
5933 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
5934 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
5935 				free(entry);
5936 				break;
5937 			}
5938 		}
5939 	}
5940 
5941 	if (drv_opts) {
5942 		memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
5943 	} else {
5944 		spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->drv_opts, sizeof(ctx->drv_opts));
5945 	}
5946 
5947 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
5948 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
5949 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
5950 	ctx->drv_opts.disable_read_ana_log_page = true;
5951 	ctx->drv_opts.transport_tos = g_opts.transport_tos;
5952 
5953 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) {
5954 		attach_cb = connect_attach_cb;
5955 	} else {
5956 		attach_cb = connect_set_failover_cb;
5957 	}
5958 
5959 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
5960 	if (ctx->probe_ctx == NULL) {
5961 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
5962 		free(ctx);
5963 		return -ENODEV;
5964 	}
5965 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
5966 
5967 	return 0;
5968 }
5969 
5970 static bool
5971 nvme_path_should_delete(struct nvme_path_id *p, const struct nvme_path_id *path_id)
5972 {
5973 	if (path_id->trid.trtype != 0) {
5974 		if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
5975 			if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
5976 				return false;
5977 			}
5978 		} else {
5979 			if (path_id->trid.trtype != p->trid.trtype) {
5980 				return false;
5981 			}
5982 		}
5983 	}
5984 
5985 	if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
5986 		if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
5987 			return false;
5988 		}
5989 	}
5990 
5991 	if (path_id->trid.adrfam != 0) {
5992 		if (path_id->trid.adrfam != p->trid.adrfam) {
5993 			return false;
5994 		}
5995 	}
5996 
5997 	if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
5998 		if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
5999 			return false;
6000 		}
6001 	}
6002 
6003 	if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
6004 		if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
6005 			return false;
6006 		}
6007 	}
6008 
6009 	if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
6010 		if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
6011 			return false;
6012 		}
6013 	}
6014 
6015 	if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
6016 		if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
6017 			return false;
6018 		}
6019 	}
6020 
6021 	return true;
6022 }
6023 
6024 static int
6025 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, const struct nvme_path_id *path_id)
6026 {
6027 	struct nvme_path_id	*p, *t;
6028 	spdk_msg_fn		msg_fn;
6029 	int			rc = -ENXIO;
6030 
6031 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6032 
6033 	TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
6034 		if (p == TAILQ_FIRST(&nvme_ctrlr->trids)) {
6035 			break;
6036 		}
6037 
6038 		if (!nvme_path_should_delete(p, path_id)) {
6039 			continue;
6040 		}
6041 
6042 		/* We are not using the specified path. */
6043 		TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
6044 		free(p);
6045 		rc = 0;
6046 	}
6047 
6048 	if (p == NULL || !nvme_path_should_delete(p, path_id)) {
6049 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
6050 		return rc;
6051 	}
6052 
6053 	/* If we made it here, then this path is a match! Now we need to remove it. */
6054 
6055 	/* This is the active path in use right now. The active path is always the first in the list. */
6056 	assert(p == nvme_ctrlr->active_path_id);
6057 
6058 	if (!TAILQ_NEXT(p, link)) {
6059 		/* The current path is the only path. */
6060 		msg_fn = _nvme_ctrlr_destruct;
6061 		rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, false);
6062 	} else {
6063 		/* There is an alternative path. */
6064 		msg_fn = _bdev_nvme_reset_ctrlr;
6065 		rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, true);
6066 	}
6067 
6068 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6069 
6070 	if (rc == 0) {
6071 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
6072 	} else if (rc == -EALREADY) {
6073 		rc = 0;
6074 	}
6075 
6076 	return rc;
6077 }
6078 
6079 int
6080 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id)
6081 {
6082 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
6083 	struct nvme_ctrlr	*nvme_ctrlr, *tmp_nvme_ctrlr;
6084 	int			rc = -ENXIO, _rc;
6085 
6086 	if (name == NULL || path_id == NULL) {
6087 		return -EINVAL;
6088 	}
6089 
6090 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6091 
6092 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6093 	if (nbdev_ctrlr == NULL) {
6094 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6095 
6096 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
6097 		return -ENODEV;
6098 	}
6099 
6100 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
6101 		_rc = _bdev_nvme_delete(nvme_ctrlr, path_id);
6102 		if (_rc < 0 && _rc != -ENXIO) {
6103 			pthread_mutex_unlock(&g_bdev_nvme_mutex);
6104 
6105 			return _rc;
6106 		} else if (_rc == 0) {
6107 			/* We traverse all remaining nvme_ctrlrs even if one nvme_ctrlr
6108 			 * was deleted successfully. To remember the successful deletion,
6109 			 * overwrite rc only if _rc is zero.
6110 			 */
6111 			rc = 0;
6112 		}
6113 	}
6114 
6115 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6116 
6117 	/* All nvme_ctrlrs were deleted or no nvme_ctrlr which had the trid was found. */
6118 	return rc;
6119 }
6120 
6121 #define DISCOVERY_INFOLOG(ctx, format, ...) \
6122 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6123 
6124 #define DISCOVERY_ERRLOG(ctx, format, ...) \
6125 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6126 
6127 struct discovery_entry_ctx {
6128 	char						name[128];
6129 	struct spdk_nvme_transport_id			trid;
6130 	struct spdk_nvme_ctrlr_opts			drv_opts;
6131 	struct spdk_nvmf_discovery_log_page_entry	entry;
6132 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
6133 	struct discovery_ctx				*ctx;
6134 };
6135 
6136 struct discovery_ctx {
6137 	char					*name;
6138 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
6139 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
6140 	void					*cb_ctx;
6141 	struct spdk_nvme_probe_ctx		*probe_ctx;
6142 	struct spdk_nvme_detach_ctx		*detach_ctx;
6143 	struct spdk_nvme_ctrlr			*ctrlr;
6144 	struct spdk_nvme_transport_id		trid;
6145 	struct discovery_entry_ctx		*entry_ctx_in_use;
6146 	struct spdk_poller			*poller;
6147 	struct spdk_nvme_ctrlr_opts		drv_opts;
6148 	struct nvme_ctrlr_opts			bdev_opts;
6149 	struct spdk_nvmf_discovery_log_page	*log_page;
6150 	TAILQ_ENTRY(discovery_ctx)		tailq;
6151 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
6152 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
6153 	int					rc;
6154 	bool					wait_for_attach;
6155 	uint64_t				timeout_ticks;
6156 	/* Denotes that the discovery service is being started. We're waiting
6157 	 * for the initial connection to the discovery controller to be
6158 	 * established and attach discovered NVM ctrlrs.
6159 	 */
6160 	bool					initializing;
6161 	/* Denotes if a discovery is currently in progress for this context.
6162 	 * That includes connecting to newly discovered subsystems.  Used to
6163 	 * ensure we do not start a new discovery until an existing one is
6164 	 * complete.
6165 	 */
6166 	bool					in_progress;
6167 
6168 	/* Denotes if another discovery is needed after the one in progress
6169 	 * completes.  Set when we receive an AER completion while a discovery
6170 	 * is already in progress.
6171 	 */
6172 	bool					pending;
6173 
6174 	/* Signal to the discovery context poller that it should stop the
6175 	 * discovery service, including detaching from the current discovery
6176 	 * controller.
6177 	 */
6178 	bool					stop;
6179 
6180 	struct spdk_thread			*calling_thread;
6181 	uint32_t				index;
6182 	uint32_t				attach_in_progress;
6183 	char					*hostnqn;
6184 
6185 	/* Denotes if the discovery service was started by the mdns discovery.
6186 	 */
6187 	bool					from_mdns_discovery_service;
6188 };
6189 
6190 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
6191 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
6192 
6193 static void get_discovery_log_page(struct discovery_ctx *ctx);
6194 
6195 static void
6196 free_discovery_ctx(struct discovery_ctx *ctx)
6197 {
6198 	free(ctx->log_page);
6199 	free(ctx->hostnqn);
6200 	free(ctx->name);
6201 	free(ctx);
6202 }
6203 
6204 static void
6205 discovery_complete(struct discovery_ctx *ctx)
6206 {
6207 	ctx->initializing = false;
6208 	ctx->in_progress = false;
6209 	if (ctx->pending) {
6210 		ctx->pending = false;
6211 		get_discovery_log_page(ctx);
6212 	}
6213 }
6214 
6215 static void
6216 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
6217 			       struct spdk_nvmf_discovery_log_page_entry *entry)
6218 {
6219 	char *space;
6220 
6221 	trid->trtype = entry->trtype;
6222 	trid->adrfam = entry->adrfam;
6223 	memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr));
6224 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid));
6225 	/* Because the source buffer (entry->subnqn) is longer than trid->subnqn, and
6226 	 * before call to this function trid->subnqn is zeroed out, we need
6227 	 * to copy sizeof(trid->subnqn) minus one byte to make sure the last character
6228 	 * remains 0. Then we can shorten the string (replace ' ' with 0) if required
6229 	 */
6230 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn) - 1);
6231 
6232 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
6233 	 * But the log page entries typically pad them with spaces, not zeroes.
6234 	 * So add a NULL terminator to each of these fields at the appropriate
6235 	 * location.
6236 	 */
6237 	space = strchr(trid->traddr, ' ');
6238 	if (space) {
6239 		*space = 0;
6240 	}
6241 	space = strchr(trid->trsvcid, ' ');
6242 	if (space) {
6243 		*space = 0;
6244 	}
6245 	space = strchr(trid->subnqn, ' ');
6246 	if (space) {
6247 		*space = 0;
6248 	}
6249 }
6250 
6251 static void
6252 _stop_discovery(void *_ctx)
6253 {
6254 	struct discovery_ctx *ctx = _ctx;
6255 
6256 	if (ctx->attach_in_progress > 0) {
6257 		spdk_thread_send_msg(spdk_get_thread(), _stop_discovery, ctx);
6258 		return;
6259 	}
6260 
6261 	ctx->stop = true;
6262 
6263 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
6264 		struct discovery_entry_ctx *entry_ctx;
6265 		struct nvme_path_id path = {};
6266 
6267 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
6268 		path.trid = entry_ctx->trid;
6269 		bdev_nvme_delete(entry_ctx->name, &path);
6270 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6271 		free(entry_ctx);
6272 	}
6273 
6274 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
6275 		struct discovery_entry_ctx *entry_ctx;
6276 
6277 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6278 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6279 		free(entry_ctx);
6280 	}
6281 
6282 	free(ctx->entry_ctx_in_use);
6283 	ctx->entry_ctx_in_use = NULL;
6284 }
6285 
6286 static void
6287 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
6288 {
6289 	ctx->stop_cb_fn = cb_fn;
6290 	ctx->cb_ctx = cb_ctx;
6291 
6292 	if (ctx->attach_in_progress > 0) {
6293 		DISCOVERY_INFOLOG(ctx, "stopping discovery with attach_in_progress: %"PRIu32"\n",
6294 				  ctx->attach_in_progress);
6295 	}
6296 
6297 	_stop_discovery(ctx);
6298 }
6299 
6300 static void
6301 remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr)
6302 {
6303 	struct discovery_ctx *d_ctx;
6304 	struct nvme_path_id *path_id;
6305 	struct spdk_nvme_transport_id trid = {};
6306 	struct discovery_entry_ctx *entry_ctx, *tmp;
6307 
6308 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
6309 
6310 	TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6311 		TAILQ_FOREACH_SAFE(entry_ctx, &d_ctx->nvm_entry_ctxs, tailq, tmp) {
6312 			build_trid_from_log_page_entry(&trid, &entry_ctx->entry);
6313 			if (spdk_nvme_transport_id_compare(&trid, &path_id->trid) != 0) {
6314 				continue;
6315 			}
6316 
6317 			TAILQ_REMOVE(&d_ctx->nvm_entry_ctxs, entry_ctx, tailq);
6318 			free(entry_ctx);
6319 			DISCOVERY_INFOLOG(d_ctx, "Remove discovery entry: %s:%s:%s\n",
6320 					  trid.subnqn, trid.traddr, trid.trsvcid);
6321 
6322 			/* Fail discovery ctrlr to force reattach attempt */
6323 			spdk_nvme_ctrlr_fail(d_ctx->ctrlr);
6324 		}
6325 	}
6326 }
6327 
6328 static void
6329 discovery_remove_controllers(struct discovery_ctx *ctx)
6330 {
6331 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
6332 	struct discovery_entry_ctx *entry_ctx, *tmp;
6333 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6334 	struct spdk_nvme_transport_id old_trid = {};
6335 	uint64_t numrec, i;
6336 	bool found;
6337 
6338 	numrec = from_le64(&log_page->numrec);
6339 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
6340 		found = false;
6341 		old_entry = &entry_ctx->entry;
6342 		build_trid_from_log_page_entry(&old_trid, old_entry);
6343 		for (i = 0; i < numrec; i++) {
6344 			new_entry = &log_page->entries[i];
6345 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
6346 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
6347 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6348 				found = true;
6349 				break;
6350 			}
6351 		}
6352 		if (!found) {
6353 			struct nvme_path_id path = {};
6354 
6355 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
6356 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6357 
6358 			path.trid = entry_ctx->trid;
6359 			bdev_nvme_delete(entry_ctx->name, &path);
6360 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6361 			free(entry_ctx);
6362 		}
6363 	}
6364 	free(log_page);
6365 	ctx->log_page = NULL;
6366 	discovery_complete(ctx);
6367 }
6368 
6369 static void
6370 complete_discovery_start(struct discovery_ctx *ctx, int status)
6371 {
6372 	ctx->timeout_ticks = 0;
6373 	ctx->rc = status;
6374 	if (ctx->start_cb_fn) {
6375 		ctx->start_cb_fn(ctx->cb_ctx, status);
6376 		ctx->start_cb_fn = NULL;
6377 		ctx->cb_ctx = NULL;
6378 	}
6379 }
6380 
6381 static void
6382 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
6383 {
6384 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
6385 	struct discovery_ctx *ctx = entry_ctx->ctx;
6386 
6387 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
6388 	ctx->attach_in_progress--;
6389 	if (ctx->attach_in_progress == 0) {
6390 		complete_discovery_start(ctx, ctx->rc);
6391 		if (ctx->initializing && ctx->rc != 0) {
6392 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
6393 			stop_discovery(ctx, NULL, ctx->cb_ctx);
6394 		} else {
6395 			discovery_remove_controllers(ctx);
6396 		}
6397 	}
6398 }
6399 
6400 static struct discovery_entry_ctx *
6401 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
6402 {
6403 	struct discovery_entry_ctx *new_ctx;
6404 
6405 	new_ctx = calloc(1, sizeof(*new_ctx));
6406 	if (new_ctx == NULL) {
6407 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6408 		return NULL;
6409 	}
6410 
6411 	new_ctx->ctx = ctx;
6412 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
6413 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6414 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6415 	return new_ctx;
6416 }
6417 
6418 static void
6419 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
6420 		      struct spdk_nvmf_discovery_log_page *log_page)
6421 {
6422 	struct discovery_ctx *ctx = cb_arg;
6423 	struct discovery_entry_ctx *entry_ctx, *tmp;
6424 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6425 	uint64_t numrec, i;
6426 	bool found;
6427 
6428 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
6429 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6430 		return;
6431 	}
6432 
6433 	ctx->log_page = log_page;
6434 	assert(ctx->attach_in_progress == 0);
6435 	numrec = from_le64(&log_page->numrec);
6436 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
6437 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6438 		free(entry_ctx);
6439 	}
6440 	for (i = 0; i < numrec; i++) {
6441 		found = false;
6442 		new_entry = &log_page->entries[i];
6443 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
6444 			struct discovery_entry_ctx *new_ctx;
6445 			struct spdk_nvme_transport_id trid = {};
6446 
6447 			build_trid_from_log_page_entry(&trid, new_entry);
6448 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
6449 			if (new_ctx == NULL) {
6450 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6451 				break;
6452 			}
6453 
6454 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
6455 			continue;
6456 		}
6457 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
6458 			old_entry = &entry_ctx->entry;
6459 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
6460 				found = true;
6461 				break;
6462 			}
6463 		}
6464 		if (!found) {
6465 			struct discovery_entry_ctx *subnqn_ctx = NULL, *new_ctx;
6466 			struct discovery_ctx *d_ctx;
6467 
6468 			TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6469 				TAILQ_FOREACH(subnqn_ctx, &d_ctx->nvm_entry_ctxs, tailq) {
6470 					if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
6471 						    sizeof(new_entry->subnqn))) {
6472 						break;
6473 					}
6474 				}
6475 				if (subnqn_ctx) {
6476 					break;
6477 				}
6478 			}
6479 
6480 			new_ctx = calloc(1, sizeof(*new_ctx));
6481 			if (new_ctx == NULL) {
6482 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6483 				break;
6484 			}
6485 
6486 			new_ctx->ctx = ctx;
6487 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
6488 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
6489 			if (subnqn_ctx) {
6490 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
6491 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
6492 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6493 						  new_ctx->name);
6494 			} else {
6495 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
6496 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
6497 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6498 						  new_ctx->name);
6499 			}
6500 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6501 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6502 			rc = bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
6503 					      discovery_attach_controller_done, new_ctx,
6504 					      &new_ctx->drv_opts, &ctx->bdev_opts, true);
6505 			if (rc == 0) {
6506 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
6507 				ctx->attach_in_progress++;
6508 			} else {
6509 				DISCOVERY_ERRLOG(ctx, "bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
6510 			}
6511 		}
6512 	}
6513 
6514 	if (ctx->attach_in_progress == 0) {
6515 		discovery_remove_controllers(ctx);
6516 	}
6517 }
6518 
6519 static void
6520 get_discovery_log_page(struct discovery_ctx *ctx)
6521 {
6522 	int rc;
6523 
6524 	assert(ctx->in_progress == false);
6525 	ctx->in_progress = true;
6526 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
6527 	if (rc != 0) {
6528 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6529 	}
6530 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
6531 }
6532 
6533 static void
6534 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
6535 {
6536 	struct discovery_ctx *ctx = arg;
6537 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
6538 
6539 	if (spdk_nvme_cpl_is_error(cpl)) {
6540 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
6541 		return;
6542 	}
6543 
6544 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
6545 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
6546 		return;
6547 	}
6548 
6549 	DISCOVERY_INFOLOG(ctx, "got aer\n");
6550 	if (ctx->in_progress) {
6551 		ctx->pending = true;
6552 		return;
6553 	}
6554 
6555 	get_discovery_log_page(ctx);
6556 }
6557 
6558 static void
6559 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6560 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
6561 {
6562 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6563 	struct discovery_ctx *ctx;
6564 
6565 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
6566 
6567 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
6568 	ctx->probe_ctx = NULL;
6569 	ctx->ctrlr = ctrlr;
6570 
6571 	if (ctx->rc != 0) {
6572 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
6573 				 ctx->rc);
6574 		return;
6575 	}
6576 
6577 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
6578 }
6579 
6580 static int
6581 discovery_poller(void *arg)
6582 {
6583 	struct discovery_ctx *ctx = arg;
6584 	struct spdk_nvme_transport_id *trid;
6585 	int rc;
6586 
6587 	if (ctx->detach_ctx) {
6588 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
6589 		if (rc != -EAGAIN) {
6590 			ctx->detach_ctx = NULL;
6591 			ctx->ctrlr = NULL;
6592 		}
6593 	} else if (ctx->stop) {
6594 		if (ctx->ctrlr != NULL) {
6595 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
6596 			if (rc == 0) {
6597 				return SPDK_POLLER_BUSY;
6598 			}
6599 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
6600 		}
6601 		spdk_poller_unregister(&ctx->poller);
6602 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
6603 		assert(ctx->start_cb_fn == NULL);
6604 		if (ctx->stop_cb_fn != NULL) {
6605 			ctx->stop_cb_fn(ctx->cb_ctx);
6606 		}
6607 		free_discovery_ctx(ctx);
6608 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
6609 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6610 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
6611 			assert(ctx->initializing);
6612 			spdk_poller_unregister(&ctx->poller);
6613 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
6614 			complete_discovery_start(ctx, -ETIMEDOUT);
6615 			stop_discovery(ctx, NULL, NULL);
6616 			free_discovery_ctx(ctx);
6617 			return SPDK_POLLER_BUSY;
6618 		}
6619 
6620 		assert(ctx->entry_ctx_in_use == NULL);
6621 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6622 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6623 		trid = &ctx->entry_ctx_in_use->trid;
6624 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
6625 		if (ctx->probe_ctx) {
6626 			spdk_poller_unregister(&ctx->poller);
6627 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
6628 		} else {
6629 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
6630 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6631 			ctx->entry_ctx_in_use = NULL;
6632 		}
6633 	} else if (ctx->probe_ctx) {
6634 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6635 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
6636 			complete_discovery_start(ctx, -ETIMEDOUT);
6637 			return SPDK_POLLER_BUSY;
6638 		}
6639 
6640 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
6641 		if (rc != -EAGAIN) {
6642 			if (ctx->rc != 0) {
6643 				assert(ctx->initializing);
6644 				stop_discovery(ctx, NULL, ctx->cb_ctx);
6645 			} else {
6646 				assert(rc == 0);
6647 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
6648 				ctx->rc = rc;
6649 				get_discovery_log_page(ctx);
6650 			}
6651 		}
6652 	} else {
6653 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6654 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
6655 			complete_discovery_start(ctx, -ETIMEDOUT);
6656 			/* We need to wait until all NVM ctrlrs are attached before we stop the
6657 			 * discovery service to make sure we don't detach a ctrlr that is still
6658 			 * being attached.
6659 			 */
6660 			if (ctx->attach_in_progress == 0) {
6661 				stop_discovery(ctx, NULL, ctx->cb_ctx);
6662 				return SPDK_POLLER_BUSY;
6663 			}
6664 		}
6665 
6666 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
6667 		if (rc < 0) {
6668 			spdk_poller_unregister(&ctx->poller);
6669 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
6670 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6671 			ctx->entry_ctx_in_use = NULL;
6672 
6673 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
6674 			if (rc != 0) {
6675 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
6676 				ctx->ctrlr = NULL;
6677 			}
6678 		}
6679 	}
6680 
6681 	return SPDK_POLLER_BUSY;
6682 }
6683 
6684 static void
6685 start_discovery_poller(void *arg)
6686 {
6687 	struct discovery_ctx *ctx = arg;
6688 
6689 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
6690 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
6691 }
6692 
6693 int
6694 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
6695 			  const char *base_name,
6696 			  struct spdk_nvme_ctrlr_opts *drv_opts,
6697 			  struct nvme_ctrlr_opts *bdev_opts,
6698 			  uint64_t attach_timeout,
6699 			  bool from_mdns,
6700 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
6701 {
6702 	struct discovery_ctx *ctx;
6703 	struct discovery_entry_ctx *discovery_entry_ctx;
6704 
6705 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
6706 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6707 		if (strcmp(ctx->name, base_name) == 0) {
6708 			return -EEXIST;
6709 		}
6710 
6711 		if (ctx->entry_ctx_in_use != NULL) {
6712 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
6713 				return -EEXIST;
6714 			}
6715 		}
6716 
6717 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
6718 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
6719 				return -EEXIST;
6720 			}
6721 		}
6722 	}
6723 
6724 	ctx = calloc(1, sizeof(*ctx));
6725 	if (ctx == NULL) {
6726 		return -ENOMEM;
6727 	}
6728 
6729 	ctx->name = strdup(base_name);
6730 	if (ctx->name == NULL) {
6731 		free_discovery_ctx(ctx);
6732 		return -ENOMEM;
6733 	}
6734 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
6735 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
6736 	ctx->from_mdns_discovery_service = from_mdns;
6737 	ctx->bdev_opts.from_discovery_service = true;
6738 	ctx->calling_thread = spdk_get_thread();
6739 	ctx->start_cb_fn = cb_fn;
6740 	ctx->cb_ctx = cb_ctx;
6741 	ctx->initializing = true;
6742 	if (ctx->start_cb_fn) {
6743 		/* We can use this when dumping json to denote if this RPC parameter
6744 		 * was specified or not.
6745 		 */
6746 		ctx->wait_for_attach = true;
6747 	}
6748 	if (attach_timeout != 0) {
6749 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
6750 				     spdk_get_ticks_hz() / 1000ull;
6751 	}
6752 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
6753 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
6754 	memcpy(&ctx->trid, trid, sizeof(*trid));
6755 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
6756 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
6757 	if (ctx->hostnqn == NULL) {
6758 		free_discovery_ctx(ctx);
6759 		return -ENOMEM;
6760 	}
6761 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
6762 	if (discovery_entry_ctx == NULL) {
6763 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6764 		free_discovery_ctx(ctx);
6765 		return -ENOMEM;
6766 	}
6767 
6768 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
6769 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
6770 	return 0;
6771 }
6772 
6773 int
6774 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
6775 {
6776 	struct discovery_ctx *ctx;
6777 
6778 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6779 		if (strcmp(name, ctx->name) == 0) {
6780 			if (ctx->stop) {
6781 				return -EALREADY;
6782 			}
6783 			/* If we're still starting the discovery service and ->rc is non-zero, we're
6784 			 * going to stop it as soon as we can
6785 			 */
6786 			if (ctx->initializing && ctx->rc != 0) {
6787 				return -EALREADY;
6788 			}
6789 			stop_discovery(ctx, cb_fn, cb_ctx);
6790 			return 0;
6791 		}
6792 	}
6793 
6794 	return -ENOENT;
6795 }
6796 
6797 static int
6798 bdev_nvme_library_init(void)
6799 {
6800 	g_bdev_nvme_init_thread = spdk_get_thread();
6801 
6802 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
6803 				bdev_nvme_destroy_poll_group_cb,
6804 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
6805 
6806 	return 0;
6807 }
6808 
6809 static void
6810 bdev_nvme_fini_destruct_ctrlrs(void)
6811 {
6812 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
6813 	struct nvme_ctrlr *nvme_ctrlr;
6814 
6815 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6816 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
6817 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6818 			pthread_mutex_lock(&nvme_ctrlr->mutex);
6819 			if (nvme_ctrlr->destruct) {
6820 				/* This controller's destruction was already started
6821 				 * before the application started shutting down
6822 				 */
6823 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
6824 				continue;
6825 			}
6826 			nvme_ctrlr->destruct = true;
6827 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
6828 
6829 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
6830 					     nvme_ctrlr);
6831 		}
6832 	}
6833 
6834 	g_bdev_nvme_module_finish = true;
6835 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
6836 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6837 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
6838 		spdk_bdev_module_fini_done();
6839 		return;
6840 	}
6841 
6842 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6843 }
6844 
6845 static void
6846 check_discovery_fini(void *arg)
6847 {
6848 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
6849 		bdev_nvme_fini_destruct_ctrlrs();
6850 	}
6851 }
6852 
6853 static void
6854 bdev_nvme_library_fini(void)
6855 {
6856 	struct nvme_probe_skip_entry *entry, *entry_tmp;
6857 	struct discovery_ctx *ctx;
6858 
6859 	spdk_poller_unregister(&g_hotplug_poller);
6860 	free(g_hotplug_probe_ctx);
6861 	g_hotplug_probe_ctx = NULL;
6862 
6863 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
6864 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
6865 		free(entry);
6866 	}
6867 
6868 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
6869 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
6870 		bdev_nvme_fini_destruct_ctrlrs();
6871 	} else {
6872 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6873 			stop_discovery(ctx, check_discovery_fini, NULL);
6874 		}
6875 	}
6876 }
6877 
6878 static void
6879 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
6880 {
6881 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6882 	struct spdk_bdev *bdev = bdev_io->bdev;
6883 	struct spdk_dif_ctx dif_ctx;
6884 	struct spdk_dif_error err_blk = {};
6885 	int rc;
6886 	struct spdk_dif_ctx_init_ext_opts dif_opts;
6887 
6888 	dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format);
6889 	dif_opts.dif_pi_format = SPDK_DIF_PI_FORMAT_16;
6890 	rc = spdk_dif_ctx_init(&dif_ctx,
6891 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
6892 			       bdev->dif_is_head_of_md, bdev->dif_type, bdev->dif_check_flags,
6893 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0, &dif_opts);
6894 	if (rc != 0) {
6895 		SPDK_ERRLOG("Initialization of DIF context failed\n");
6896 		return;
6897 	}
6898 
6899 	if (bdev->md_interleave) {
6900 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
6901 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
6902 	} else {
6903 		struct iovec md_iov = {
6904 			.iov_base	= bdev_io->u.bdev.md_buf,
6905 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
6906 		};
6907 
6908 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
6909 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
6910 	}
6911 
6912 	if (rc != 0) {
6913 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
6914 			    err_blk.err_type, err_blk.err_offset);
6915 	} else {
6916 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
6917 	}
6918 }
6919 
6920 static void
6921 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
6922 {
6923 	struct nvme_bdev_io *bio = ref;
6924 
6925 	if (spdk_nvme_cpl_is_success(cpl)) {
6926 		/* Run PI verification for read data buffer. */
6927 		bdev_nvme_verify_pi_error(bio);
6928 	}
6929 
6930 	/* Return original completion status */
6931 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
6932 }
6933 
6934 static void
6935 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
6936 {
6937 	struct nvme_bdev_io *bio = ref;
6938 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6939 	int ret;
6940 
6941 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
6942 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
6943 			    cpl->status.sct, cpl->status.sc);
6944 
6945 		/* Save completion status to use after verifying PI error. */
6946 		bio->cpl = *cpl;
6947 
6948 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
6949 			/* Read without PI checking to verify PI error. */
6950 			ret = bdev_nvme_no_pi_readv(bio,
6951 						    bdev_io->u.bdev.iovs,
6952 						    bdev_io->u.bdev.iovcnt,
6953 						    bdev_io->u.bdev.md_buf,
6954 						    bdev_io->u.bdev.num_blocks,
6955 						    bdev_io->u.bdev.offset_blocks);
6956 			if (ret == 0) {
6957 				return;
6958 			}
6959 		}
6960 	}
6961 
6962 	bdev_nvme_io_complete_nvme_status(bio, cpl);
6963 }
6964 
6965 static void
6966 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
6967 {
6968 	struct nvme_bdev_io *bio = ref;
6969 
6970 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
6971 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
6972 			    cpl->status.sct, cpl->status.sc);
6973 		/* Run PI verification for write data buffer if PI error is detected. */
6974 		bdev_nvme_verify_pi_error(bio);
6975 	}
6976 
6977 	bdev_nvme_io_complete_nvme_status(bio, cpl);
6978 }
6979 
6980 static void
6981 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
6982 {
6983 	struct nvme_bdev_io *bio = ref;
6984 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6985 
6986 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
6987 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
6988 	 */
6989 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
6990 
6991 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
6992 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
6993 			    cpl->status.sct, cpl->status.sc);
6994 		/* Run PI verification for zone append data buffer if PI error is detected. */
6995 		bdev_nvme_verify_pi_error(bio);
6996 	}
6997 
6998 	bdev_nvme_io_complete_nvme_status(bio, cpl);
6999 }
7000 
7001 static void
7002 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7003 {
7004 	struct nvme_bdev_io *bio = ref;
7005 
7006 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7007 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
7008 			    cpl->status.sct, cpl->status.sc);
7009 		/* Run PI verification for compare data buffer if PI error is detected. */
7010 		bdev_nvme_verify_pi_error(bio);
7011 	}
7012 
7013 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7014 }
7015 
7016 static void
7017 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7018 {
7019 	struct nvme_bdev_io *bio = ref;
7020 
7021 	/* Compare operation completion */
7022 	if (!bio->first_fused_completed) {
7023 		/* Save compare result for write callback */
7024 		bio->cpl = *cpl;
7025 		bio->first_fused_completed = true;
7026 		return;
7027 	}
7028 
7029 	/* Write operation completion */
7030 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
7031 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
7032 		 * complete the IO with the compare operation's status.
7033 		 */
7034 		if (!spdk_nvme_cpl_is_error(cpl)) {
7035 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
7036 		}
7037 
7038 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7039 	} else {
7040 		bdev_nvme_io_complete_nvme_status(bio, cpl);
7041 	}
7042 }
7043 
7044 static void
7045 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
7046 {
7047 	struct nvme_bdev_io *bio = ref;
7048 
7049 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7050 }
7051 
7052 static int
7053 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
7054 {
7055 	switch (desc->zt) {
7056 	case SPDK_NVME_ZONE_TYPE_SEQWR:
7057 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
7058 		break;
7059 	default:
7060 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
7061 		return -EIO;
7062 	}
7063 
7064 	switch (desc->zs) {
7065 	case SPDK_NVME_ZONE_STATE_EMPTY:
7066 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
7067 		break;
7068 	case SPDK_NVME_ZONE_STATE_IOPEN:
7069 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
7070 		break;
7071 	case SPDK_NVME_ZONE_STATE_EOPEN:
7072 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
7073 		break;
7074 	case SPDK_NVME_ZONE_STATE_CLOSED:
7075 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
7076 		break;
7077 	case SPDK_NVME_ZONE_STATE_RONLY:
7078 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
7079 		break;
7080 	case SPDK_NVME_ZONE_STATE_FULL:
7081 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
7082 		break;
7083 	case SPDK_NVME_ZONE_STATE_OFFLINE:
7084 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
7085 		break;
7086 	default:
7087 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
7088 		return -EIO;
7089 	}
7090 
7091 	info->zone_id = desc->zslba;
7092 	info->write_pointer = desc->wp;
7093 	info->capacity = desc->zcap;
7094 
7095 	return 0;
7096 }
7097 
7098 static void
7099 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
7100 {
7101 	struct nvme_bdev_io *bio = ref;
7102 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7103 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
7104 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
7105 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
7106 	uint64_t max_zones_per_buf, i;
7107 	uint32_t zone_report_bufsize;
7108 	struct spdk_nvme_ns *ns;
7109 	struct spdk_nvme_qpair *qpair;
7110 	int ret;
7111 
7112 	if (spdk_nvme_cpl_is_error(cpl)) {
7113 		goto out_complete_io_nvme_cpl;
7114 	}
7115 
7116 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
7117 		ret = -ENXIO;
7118 		goto out_complete_io_ret;
7119 	}
7120 
7121 	ns = bio->io_path->nvme_ns->ns;
7122 	qpair = bio->io_path->qpair->qpair;
7123 
7124 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7125 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
7126 			    sizeof(bio->zone_report_buf->descs[0]);
7127 
7128 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
7129 		ret = -EINVAL;
7130 		goto out_complete_io_ret;
7131 	}
7132 
7133 	if (!bio->zone_report_buf->nr_zones) {
7134 		ret = -EINVAL;
7135 		goto out_complete_io_ret;
7136 	}
7137 
7138 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
7139 		ret = fill_zone_from_report(&info[bio->handled_zones],
7140 					    &bio->zone_report_buf->descs[i]);
7141 		if (ret) {
7142 			goto out_complete_io_ret;
7143 		}
7144 		bio->handled_zones++;
7145 	}
7146 
7147 	if (bio->handled_zones < zones_to_copy) {
7148 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7149 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
7150 
7151 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
7152 		ret = spdk_nvme_zns_report_zones(ns, qpair,
7153 						 bio->zone_report_buf, zone_report_bufsize,
7154 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
7155 						 bdev_nvme_get_zone_info_done, bio);
7156 		if (!ret) {
7157 			return;
7158 		} else {
7159 			goto out_complete_io_ret;
7160 		}
7161 	}
7162 
7163 out_complete_io_nvme_cpl:
7164 	free(bio->zone_report_buf);
7165 	bio->zone_report_buf = NULL;
7166 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7167 	return;
7168 
7169 out_complete_io_ret:
7170 	free(bio->zone_report_buf);
7171 	bio->zone_report_buf = NULL;
7172 	bdev_nvme_io_complete(bio, ret);
7173 }
7174 
7175 static void
7176 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
7177 {
7178 	struct nvme_bdev_io *bio = ref;
7179 
7180 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7181 }
7182 
7183 static void
7184 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
7185 {
7186 	struct nvme_bdev_io *bio = ctx;
7187 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7188 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
7189 
7190 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
7191 
7192 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
7193 }
7194 
7195 static void
7196 bdev_nvme_abort_complete(void *ctx)
7197 {
7198 	struct nvme_bdev_io *bio = ctx;
7199 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7200 
7201 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
7202 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
7203 	} else {
7204 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
7205 	}
7206 }
7207 
7208 static void
7209 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
7210 {
7211 	struct nvme_bdev_io *bio = ref;
7212 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7213 
7214 	bio->cpl = *cpl;
7215 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), bdev_nvme_abort_complete, bio);
7216 }
7217 
7218 static void
7219 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
7220 {
7221 	struct nvme_bdev_io *bio = ref;
7222 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7223 
7224 	bio->cpl = *cpl;
7225 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io),
7226 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
7227 }
7228 
7229 static void
7230 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
7231 {
7232 	struct nvme_bdev_io *bio = ref;
7233 	struct iovec *iov;
7234 
7235 	bio->iov_offset = sgl_offset;
7236 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
7237 		iov = &bio->iovs[bio->iovpos];
7238 		if (bio->iov_offset < iov->iov_len) {
7239 			break;
7240 		}
7241 
7242 		bio->iov_offset -= iov->iov_len;
7243 	}
7244 }
7245 
7246 static int
7247 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
7248 {
7249 	struct nvme_bdev_io *bio = ref;
7250 	struct iovec *iov;
7251 
7252 	assert(bio->iovpos < bio->iovcnt);
7253 
7254 	iov = &bio->iovs[bio->iovpos];
7255 
7256 	*address = iov->iov_base;
7257 	*length = iov->iov_len;
7258 
7259 	if (bio->iov_offset) {
7260 		assert(bio->iov_offset <= iov->iov_len);
7261 		*address += bio->iov_offset;
7262 		*length -= bio->iov_offset;
7263 	}
7264 
7265 	bio->iov_offset += *length;
7266 	if (bio->iov_offset == iov->iov_len) {
7267 		bio->iovpos++;
7268 		bio->iov_offset = 0;
7269 	}
7270 
7271 	return 0;
7272 }
7273 
7274 static void
7275 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
7276 {
7277 	struct nvme_bdev_io *bio = ref;
7278 	struct iovec *iov;
7279 
7280 	bio->fused_iov_offset = sgl_offset;
7281 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
7282 		iov = &bio->fused_iovs[bio->fused_iovpos];
7283 		if (bio->fused_iov_offset < iov->iov_len) {
7284 			break;
7285 		}
7286 
7287 		bio->fused_iov_offset -= iov->iov_len;
7288 	}
7289 }
7290 
7291 static int
7292 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
7293 {
7294 	struct nvme_bdev_io *bio = ref;
7295 	struct iovec *iov;
7296 
7297 	assert(bio->fused_iovpos < bio->fused_iovcnt);
7298 
7299 	iov = &bio->fused_iovs[bio->fused_iovpos];
7300 
7301 	*address = iov->iov_base;
7302 	*length = iov->iov_len;
7303 
7304 	if (bio->fused_iov_offset) {
7305 		assert(bio->fused_iov_offset <= iov->iov_len);
7306 		*address += bio->fused_iov_offset;
7307 		*length -= bio->fused_iov_offset;
7308 	}
7309 
7310 	bio->fused_iov_offset += *length;
7311 	if (bio->fused_iov_offset == iov->iov_len) {
7312 		bio->fused_iovpos++;
7313 		bio->fused_iov_offset = 0;
7314 	}
7315 
7316 	return 0;
7317 }
7318 
7319 static int
7320 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7321 		      void *md, uint64_t lba_count, uint64_t lba)
7322 {
7323 	int rc;
7324 
7325 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
7326 		      lba_count, lba);
7327 
7328 	bio->iovs = iov;
7329 	bio->iovcnt = iovcnt;
7330 	bio->iovpos = 0;
7331 	bio->iov_offset = 0;
7332 
7333 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
7334 					    bio->io_path->qpair->qpair,
7335 					    lba, lba_count,
7336 					    bdev_nvme_no_pi_readv_done, bio, 0,
7337 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7338 					    md, 0, 0);
7339 
7340 	if (rc != 0 && rc != -ENOMEM) {
7341 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
7342 	}
7343 	return rc;
7344 }
7345 
7346 static int
7347 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7348 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7349 		struct spdk_memory_domain *domain, void *domain_ctx,
7350 		struct spdk_accel_sequence *seq)
7351 {
7352 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7353 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7354 	int rc;
7355 
7356 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7357 		      lba_count, lba);
7358 
7359 	bio->iovs = iov;
7360 	bio->iovcnt = iovcnt;
7361 	bio->iovpos = 0;
7362 	bio->iov_offset = 0;
7363 
7364 	if (domain != NULL || seq != NULL) {
7365 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7366 		bio->ext_opts.memory_domain = domain;
7367 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7368 		bio->ext_opts.io_flags = flags;
7369 		bio->ext_opts.metadata = md;
7370 		bio->ext_opts.accel_sequence = seq;
7371 
7372 		rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
7373 						bdev_nvme_readv_done, bio,
7374 						bdev_nvme_queued_reset_sgl,
7375 						bdev_nvme_queued_next_sge,
7376 						&bio->ext_opts);
7377 	} else if (iovcnt == 1) {
7378 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base,
7379 						   md, lba, lba_count, bdev_nvme_readv_done,
7380 						   bio, flags, 0, 0);
7381 	} else {
7382 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
7383 						    bdev_nvme_readv_done, bio, flags,
7384 						    bdev_nvme_queued_reset_sgl,
7385 						    bdev_nvme_queued_next_sge, md, 0, 0);
7386 	}
7387 
7388 	if (rc != 0 && rc != -ENOMEM) {
7389 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
7390 	}
7391 	return rc;
7392 }
7393 
7394 static int
7395 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7396 		 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7397 		 struct spdk_memory_domain *domain, void *domain_ctx,
7398 		 struct spdk_accel_sequence *seq)
7399 {
7400 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7401 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7402 	int rc;
7403 
7404 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7405 		      lba_count, lba);
7406 
7407 	bio->iovs = iov;
7408 	bio->iovcnt = iovcnt;
7409 	bio->iovpos = 0;
7410 	bio->iov_offset = 0;
7411 
7412 	if (domain != NULL || seq != NULL) {
7413 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7414 		bio->ext_opts.memory_domain = domain;
7415 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7416 		bio->ext_opts.io_flags = flags;
7417 		bio->ext_opts.metadata = md;
7418 		bio->ext_opts.accel_sequence = seq;
7419 
7420 		rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
7421 						 bdev_nvme_writev_done, bio,
7422 						 bdev_nvme_queued_reset_sgl,
7423 						 bdev_nvme_queued_next_sge,
7424 						 &bio->ext_opts);
7425 	} else if (iovcnt == 1) {
7426 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base,
7427 						    md, lba, lba_count, bdev_nvme_writev_done,
7428 						    bio, flags, 0, 0);
7429 	} else {
7430 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7431 						     bdev_nvme_writev_done, bio, flags,
7432 						     bdev_nvme_queued_reset_sgl,
7433 						     bdev_nvme_queued_next_sge, md, 0, 0);
7434 	}
7435 
7436 	if (rc != 0 && rc != -ENOMEM) {
7437 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
7438 	}
7439 	return rc;
7440 }
7441 
7442 static int
7443 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7444 		       void *md, uint64_t lba_count, uint64_t zslba,
7445 		       uint32_t flags)
7446 {
7447 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7448 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7449 	int rc;
7450 
7451 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
7452 		      lba_count, zslba);
7453 
7454 	bio->iovs = iov;
7455 	bio->iovcnt = iovcnt;
7456 	bio->iovpos = 0;
7457 	bio->iov_offset = 0;
7458 
7459 	if (iovcnt == 1) {
7460 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
7461 						       lba_count,
7462 						       bdev_nvme_zone_appendv_done, bio,
7463 						       flags,
7464 						       0, 0);
7465 	} else {
7466 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
7467 							bdev_nvme_zone_appendv_done, bio, flags,
7468 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7469 							md, 0, 0);
7470 	}
7471 
7472 	if (rc != 0 && rc != -ENOMEM) {
7473 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
7474 	}
7475 	return rc;
7476 }
7477 
7478 static int
7479 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7480 		   void *md, uint64_t lba_count, uint64_t lba,
7481 		   uint32_t flags)
7482 {
7483 	int rc;
7484 
7485 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7486 		      lba_count, lba);
7487 
7488 	bio->iovs = iov;
7489 	bio->iovcnt = iovcnt;
7490 	bio->iovpos = 0;
7491 	bio->iov_offset = 0;
7492 
7493 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
7494 					       bio->io_path->qpair->qpair,
7495 					       lba, lba_count,
7496 					       bdev_nvme_comparev_done, bio, flags,
7497 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7498 					       md, 0, 0);
7499 
7500 	if (rc != 0 && rc != -ENOMEM) {
7501 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
7502 	}
7503 	return rc;
7504 }
7505 
7506 static int
7507 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
7508 			      struct iovec *write_iov, int write_iovcnt,
7509 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
7510 {
7511 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7512 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7513 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7514 	int rc;
7515 
7516 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7517 		      lba_count, lba);
7518 
7519 	bio->iovs = cmp_iov;
7520 	bio->iovcnt = cmp_iovcnt;
7521 	bio->iovpos = 0;
7522 	bio->iov_offset = 0;
7523 	bio->fused_iovs = write_iov;
7524 	bio->fused_iovcnt = write_iovcnt;
7525 	bio->fused_iovpos = 0;
7526 	bio->fused_iov_offset = 0;
7527 
7528 	if (bdev_io->num_retries == 0) {
7529 		bio->first_fused_submitted = false;
7530 		bio->first_fused_completed = false;
7531 	}
7532 
7533 	if (!bio->first_fused_submitted) {
7534 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7535 		memset(&bio->cpl, 0, sizeof(bio->cpl));
7536 
7537 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
7538 						       bdev_nvme_comparev_and_writev_done, bio, flags,
7539 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
7540 		if (rc == 0) {
7541 			bio->first_fused_submitted = true;
7542 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7543 		} else {
7544 			if (rc != -ENOMEM) {
7545 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
7546 			}
7547 			return rc;
7548 		}
7549 	}
7550 
7551 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
7552 
7553 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7554 					     bdev_nvme_comparev_and_writev_done, bio, flags,
7555 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
7556 	if (rc != 0 && rc != -ENOMEM) {
7557 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
7558 		rc = 0;
7559 	}
7560 
7561 	return rc;
7562 }
7563 
7564 static int
7565 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
7566 {
7567 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
7568 	struct spdk_nvme_dsm_range *range;
7569 	uint64_t offset, remaining;
7570 	uint64_t num_ranges_u64;
7571 	uint16_t num_ranges;
7572 	int rc;
7573 
7574 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
7575 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7576 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
7577 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
7578 		return -EINVAL;
7579 	}
7580 	num_ranges = (uint16_t)num_ranges_u64;
7581 
7582 	offset = offset_blocks;
7583 	remaining = num_blocks;
7584 	range = &dsm_ranges[0];
7585 
7586 	/* Fill max-size ranges until the remaining blocks fit into one range */
7587 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
7588 		range->attributes.raw = 0;
7589 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7590 		range->starting_lba = offset;
7591 
7592 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7593 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7594 		range++;
7595 	}
7596 
7597 	/* Final range describes the remaining blocks */
7598 	range->attributes.raw = 0;
7599 	range->length = remaining;
7600 	range->starting_lba = offset;
7601 
7602 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
7603 			bio->io_path->qpair->qpair,
7604 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
7605 			dsm_ranges, num_ranges,
7606 			bdev_nvme_queued_done, bio);
7607 
7608 	return rc;
7609 }
7610 
7611 static int
7612 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
7613 {
7614 	if (num_blocks > UINT16_MAX + 1) {
7615 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
7616 		return -EINVAL;
7617 	}
7618 
7619 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
7620 					     bio->io_path->qpair->qpair,
7621 					     offset_blocks, num_blocks,
7622 					     bdev_nvme_queued_done, bio,
7623 					     0);
7624 }
7625 
7626 static int
7627 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
7628 			struct spdk_bdev_zone_info *info)
7629 {
7630 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7631 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7632 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7633 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7634 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
7635 
7636 	if (zone_id % zone_size != 0) {
7637 		return -EINVAL;
7638 	}
7639 
7640 	if (num_zones > total_zones || !num_zones) {
7641 		return -EINVAL;
7642 	}
7643 
7644 	assert(!bio->zone_report_buf);
7645 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
7646 	if (!bio->zone_report_buf) {
7647 		return -ENOMEM;
7648 	}
7649 
7650 	bio->handled_zones = 0;
7651 
7652 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
7653 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
7654 					  bdev_nvme_get_zone_info_done, bio);
7655 }
7656 
7657 static int
7658 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
7659 			  enum spdk_bdev_zone_action action)
7660 {
7661 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7662 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7663 
7664 	switch (action) {
7665 	case SPDK_BDEV_ZONE_CLOSE:
7666 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
7667 						bdev_nvme_zone_management_done, bio);
7668 	case SPDK_BDEV_ZONE_FINISH:
7669 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
7670 						 bdev_nvme_zone_management_done, bio);
7671 	case SPDK_BDEV_ZONE_OPEN:
7672 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
7673 					       bdev_nvme_zone_management_done, bio);
7674 	case SPDK_BDEV_ZONE_RESET:
7675 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
7676 						bdev_nvme_zone_management_done, bio);
7677 	case SPDK_BDEV_ZONE_OFFLINE:
7678 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
7679 						  bdev_nvme_zone_management_done, bio);
7680 	default:
7681 		return -EINVAL;
7682 	}
7683 }
7684 
7685 static void
7686 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
7687 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
7688 {
7689 	struct nvme_io_path *io_path;
7690 	struct nvme_ctrlr *nvme_ctrlr;
7691 	uint32_t max_xfer_size;
7692 	int rc = -ENXIO;
7693 
7694 	/* Choose the first ctrlr which is not failed. */
7695 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
7696 		nvme_ctrlr = io_path->qpair->ctrlr;
7697 
7698 		/* We should skip any unavailable nvme_ctrlr rather than checking
7699 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
7700 		 */
7701 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
7702 			continue;
7703 		}
7704 
7705 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
7706 
7707 		if (nbytes > max_xfer_size) {
7708 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
7709 			rc = -EINVAL;
7710 			goto err;
7711 		}
7712 
7713 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
7714 						   bdev_nvme_admin_passthru_done, bio);
7715 		if (rc == 0) {
7716 			return;
7717 		}
7718 	}
7719 
7720 err:
7721 	bdev_nvme_admin_complete(bio, rc);
7722 }
7723 
7724 static int
7725 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
7726 		      void *buf, size_t nbytes)
7727 {
7728 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7729 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7730 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
7731 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
7732 
7733 	if (nbytes > max_xfer_size) {
7734 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
7735 		return -EINVAL;
7736 	}
7737 
7738 	/*
7739 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
7740 	 * so fill it out automatically.
7741 	 */
7742 	cmd->nsid = spdk_nvme_ns_get_id(ns);
7743 
7744 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
7745 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
7746 }
7747 
7748 static int
7749 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
7750 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
7751 {
7752 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7753 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7754 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
7755 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
7756 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
7757 
7758 	if (nbytes > max_xfer_size) {
7759 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
7760 		return -EINVAL;
7761 	}
7762 
7763 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
7764 		SPDK_ERRLOG("invalid meta data buffer size\n");
7765 		return -EINVAL;
7766 	}
7767 
7768 	/*
7769 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
7770 	 * so fill it out automatically.
7771 	 */
7772 	cmd->nsid = spdk_nvme_ns_get_id(ns);
7773 
7774 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
7775 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
7776 }
7777 
7778 static void
7779 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
7780 		struct nvme_bdev_io *bio_to_abort)
7781 {
7782 	struct nvme_io_path *io_path;
7783 	int rc = 0;
7784 
7785 	rc = bdev_nvme_abort_retry_io(nbdev_ch, bio_to_abort);
7786 	if (rc == 0) {
7787 		bdev_nvme_admin_complete(bio, 0);
7788 		return;
7789 	}
7790 
7791 	io_path = bio_to_abort->io_path;
7792 	if (io_path != NULL) {
7793 		rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
7794 						   io_path->qpair->qpair,
7795 						   bio_to_abort,
7796 						   bdev_nvme_abort_done, bio);
7797 	} else {
7798 		STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
7799 			rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
7800 							   NULL,
7801 							   bio_to_abort,
7802 							   bdev_nvme_abort_done, bio);
7803 
7804 			if (rc != -ENOENT) {
7805 				break;
7806 			}
7807 		}
7808 	}
7809 
7810 	if (rc != 0) {
7811 		/* If no command was found or there was any error, complete the abort
7812 		 * request with failure.
7813 		 */
7814 		bdev_nvme_admin_complete(bio, rc);
7815 	}
7816 }
7817 
7818 static int
7819 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks,
7820 	       uint64_t num_blocks)
7821 {
7822 	struct spdk_nvme_scc_source_range range = {
7823 		.slba = src_offset_blocks,
7824 		.nlb = num_blocks - 1
7825 	};
7826 
7827 	return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns,
7828 				     bio->io_path->qpair->qpair,
7829 				     &range, 1, dst_offset_blocks,
7830 				     bdev_nvme_queued_done, bio);
7831 }
7832 
7833 static void
7834 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
7835 {
7836 	const char	*action;
7837 
7838 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
7839 		action = "reset";
7840 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
7841 		action = "abort";
7842 	} else {
7843 		action = "none";
7844 	}
7845 
7846 	spdk_json_write_object_begin(w);
7847 
7848 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
7849 
7850 	spdk_json_write_named_object_begin(w, "params");
7851 	spdk_json_write_named_string(w, "action_on_timeout", action);
7852 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
7853 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
7854 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
7855 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
7856 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
7857 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
7858 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
7859 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
7860 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
7861 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
7862 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
7863 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
7864 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
7865 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
7866 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
7867 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
7868 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
7869 	spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids);
7870 	spdk_json_write_named_uint8(w, "transport_tos", g_opts.transport_tos);
7871 	spdk_json_write_named_bool(w, "io_path_stat", g_opts.io_path_stat);
7872 	spdk_json_write_object_end(w);
7873 
7874 	spdk_json_write_object_end(w);
7875 }
7876 
7877 static void
7878 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
7879 {
7880 	struct spdk_nvme_transport_id trid;
7881 
7882 	spdk_json_write_object_begin(w);
7883 
7884 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
7885 
7886 	spdk_json_write_named_object_begin(w, "params");
7887 	spdk_json_write_named_string(w, "name", ctx->name);
7888 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
7889 
7890 	trid = ctx->trid;
7891 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
7892 	nvme_bdev_dump_trid_json(&trid, w);
7893 
7894 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
7895 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
7896 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
7897 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
7898 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
7899 	spdk_json_write_object_end(w);
7900 
7901 	spdk_json_write_object_end(w);
7902 }
7903 
7904 static void
7905 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
7906 		       struct nvme_ctrlr *nvme_ctrlr)
7907 {
7908 	struct spdk_nvme_transport_id	*trid;
7909 	const struct spdk_nvme_ctrlr_opts *opts;
7910 
7911 	if (nvme_ctrlr->opts.from_discovery_service) {
7912 		/* Do not emit an RPC for this - it will be implicitly
7913 		 * covered by a separate bdev_nvme_start_discovery or
7914 		 * bdev_nvme_start_mdns_discovery RPC.
7915 		 */
7916 		return;
7917 	}
7918 
7919 	trid = &nvme_ctrlr->active_path_id->trid;
7920 
7921 	spdk_json_write_object_begin(w);
7922 
7923 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
7924 
7925 	spdk_json_write_named_object_begin(w, "params");
7926 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
7927 	nvme_bdev_dump_trid_json(trid, w);
7928 	spdk_json_write_named_bool(w, "prchk_reftag",
7929 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
7930 	spdk_json_write_named_bool(w, "prchk_guard",
7931 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
7932 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
7933 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
7934 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
7935 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
7936 	if (nvme_ctrlr->opts.psk_path[0] != '\0') {
7937 		spdk_json_write_named_string(w, "psk", nvme_ctrlr->opts.psk_path);
7938 	}
7939 
7940 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
7941 	spdk_json_write_named_string(w, "hostnqn", opts->hostnqn);
7942 	spdk_json_write_named_bool(w, "hdgst", opts->header_digest);
7943 	spdk_json_write_named_bool(w, "ddgst", opts->data_digest);
7944 
7945 	spdk_json_write_object_end(w);
7946 
7947 	spdk_json_write_object_end(w);
7948 }
7949 
7950 static void
7951 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
7952 {
7953 	spdk_json_write_object_begin(w);
7954 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
7955 
7956 	spdk_json_write_named_object_begin(w, "params");
7957 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
7958 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
7959 	spdk_json_write_object_end(w);
7960 
7961 	spdk_json_write_object_end(w);
7962 }
7963 
7964 static int
7965 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
7966 {
7967 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
7968 	struct nvme_ctrlr	*nvme_ctrlr;
7969 	struct discovery_ctx	*ctx;
7970 
7971 	bdev_nvme_opts_config_json(w);
7972 
7973 	pthread_mutex_lock(&g_bdev_nvme_mutex);
7974 
7975 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
7976 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
7977 			nvme_ctrlr_config_json(w, nvme_ctrlr);
7978 		}
7979 	}
7980 
7981 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7982 		if (!ctx->from_mdns_discovery_service) {
7983 			bdev_nvme_discovery_config_json(w, ctx);
7984 		}
7985 	}
7986 
7987 	bdev_nvme_mdns_discovery_config_json(w);
7988 
7989 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
7990 	 * before enabling hotplug poller.
7991 	 */
7992 	bdev_nvme_hotplug_config_json(w);
7993 
7994 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
7995 	return 0;
7996 }
7997 
7998 struct spdk_nvme_ctrlr *
7999 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
8000 {
8001 	struct nvme_bdev *nbdev;
8002 	struct nvme_ns *nvme_ns;
8003 
8004 	if (!bdev || bdev->module != &nvme_if) {
8005 		return NULL;
8006 	}
8007 
8008 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
8009 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
8010 	assert(nvme_ns != NULL);
8011 
8012 	return nvme_ns->ctrlr->ctrlr;
8013 }
8014 
8015 void
8016 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
8017 {
8018 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
8019 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
8020 	const struct spdk_nvme_ctrlr_data *cdata;
8021 	const struct spdk_nvme_transport_id *trid;
8022 	const char *adrfam_str;
8023 
8024 	spdk_json_write_object_begin(w);
8025 
8026 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
8027 
8028 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
8029 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
8030 
8031 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
8032 	spdk_json_write_named_bool(w, "current", io_path->nbdev_ch != NULL &&
8033 				   io_path == io_path->nbdev_ch->current_io_path);
8034 	spdk_json_write_named_bool(w, "connected", nvme_qpair_is_connected(io_path->qpair));
8035 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
8036 
8037 	spdk_json_write_named_object_begin(w, "transport");
8038 	spdk_json_write_named_string(w, "trtype", trid->trstring);
8039 	spdk_json_write_named_string(w, "traddr", trid->traddr);
8040 	if (trid->trsvcid[0] != '\0') {
8041 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
8042 	}
8043 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
8044 	if (adrfam_str) {
8045 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
8046 	}
8047 	spdk_json_write_object_end(w);
8048 
8049 	spdk_json_write_object_end(w);
8050 }
8051 
8052 void
8053 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
8054 {
8055 	struct discovery_ctx *ctx;
8056 	struct discovery_entry_ctx *entry_ctx;
8057 
8058 	spdk_json_write_array_begin(w);
8059 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8060 		spdk_json_write_object_begin(w);
8061 		spdk_json_write_named_string(w, "name", ctx->name);
8062 
8063 		spdk_json_write_named_object_begin(w, "trid");
8064 		nvme_bdev_dump_trid_json(&ctx->trid, w);
8065 		spdk_json_write_object_end(w);
8066 
8067 		spdk_json_write_named_array_begin(w, "referrals");
8068 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
8069 			spdk_json_write_object_begin(w);
8070 			spdk_json_write_named_object_begin(w, "trid");
8071 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
8072 			spdk_json_write_object_end(w);
8073 			spdk_json_write_object_end(w);
8074 		}
8075 		spdk_json_write_array_end(w);
8076 
8077 		spdk_json_write_object_end(w);
8078 	}
8079 	spdk_json_write_array_end(w);
8080 }
8081 
8082 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
8083 
8084 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
8085 {
8086 	struct spdk_trace_tpoint_opts opts[] = {
8087 		{
8088 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
8089 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 1,
8090 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8091 		},
8092 		{
8093 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
8094 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 0,
8095 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8096 		}
8097 	};
8098 
8099 
8100 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
8101 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
8102 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8103 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8104 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8105 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8106 }
8107