xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision 14e26b9d0410a98689caffcba7bfacac8d85c74d)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  *   Copyright (c) 2022 Dell Inc, or its subsidiaries. All rights reserved.
6  */
7 
8 #include "spdk/stdinc.h"
9 
10 #include "bdev_nvme.h"
11 
12 #include "spdk/accel.h"
13 #include "spdk/config.h"
14 #include "spdk/endian.h"
15 #include "spdk/bdev.h"
16 #include "spdk/json.h"
17 #include "spdk/likely.h"
18 #include "spdk/nvme.h"
19 #include "spdk/nvme_ocssd.h"
20 #include "spdk/nvme_zns.h"
21 #include "spdk/opal.h"
22 #include "spdk/thread.h"
23 #include "spdk/trace.h"
24 #include "spdk/string.h"
25 #include "spdk/util.h"
26 #include "spdk/uuid.h"
27 
28 #include "spdk/bdev_module.h"
29 #include "spdk/log.h"
30 
31 #include "spdk_internal/usdt.h"
32 #include "spdk_internal/trace_defs.h"
33 
34 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
35 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
36 
37 #define NSID_STR_LEN 10
38 
39 #define SPDK_CONTROLLER_NAME_MAX 512
40 
41 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
42 
43 struct nvme_bdev_io {
44 	/** array of iovecs to transfer. */
45 	struct iovec *iovs;
46 
47 	/** Number of iovecs in iovs array. */
48 	int iovcnt;
49 
50 	/** Current iovec position. */
51 	int iovpos;
52 
53 	/** Offset in current iovec. */
54 	uint32_t iov_offset;
55 
56 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
57 	 *  being reset in a reset I/O.
58 	 */
59 	struct nvme_io_path *io_path;
60 
61 	/** array of iovecs to transfer. */
62 	struct iovec *fused_iovs;
63 
64 	/** Number of iovecs in iovs array. */
65 	int fused_iovcnt;
66 
67 	/** Current iovec position. */
68 	int fused_iovpos;
69 
70 	/** Offset in current iovec. */
71 	uint32_t fused_iov_offset;
72 
73 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
74 	struct spdk_nvme_cpl cpl;
75 
76 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
77 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
78 
79 	/** Keeps track if first of fused commands was submitted */
80 	bool first_fused_submitted;
81 
82 	/** Keeps track if first of fused commands was completed */
83 	bool first_fused_completed;
84 
85 	/** Temporary pointer to zone report buffer */
86 	struct spdk_nvme_zns_zone_report *zone_report_buf;
87 
88 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
89 	uint64_t handled_zones;
90 
91 	/** Expiration value in ticks to retry the current I/O. */
92 	uint64_t retry_ticks;
93 
94 	/* How many times the current I/O was retried. */
95 	int32_t retry_count;
96 
97 	/* Current tsc at submit time. */
98 	uint64_t submit_tsc;
99 };
100 
101 struct nvme_probe_skip_entry {
102 	struct spdk_nvme_transport_id		trid;
103 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
104 };
105 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
106 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
107 			g_skipped_nvme_ctrlrs);
108 
109 static struct spdk_bdev_nvme_opts g_opts = {
110 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
111 	.timeout_us = 0,
112 	.timeout_admin_us = 0,
113 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
114 	.transport_retry_count = 4,
115 	.arbitration_burst = 0,
116 	.low_priority_weight = 0,
117 	.medium_priority_weight = 0,
118 	.high_priority_weight = 0,
119 	.nvme_adminq_poll_period_us = 10000ULL,
120 	.nvme_ioq_poll_period_us = 0,
121 	.io_queue_requests = 0,
122 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
123 	.bdev_retry_count = 3,
124 	.transport_ack_timeout = 0,
125 	.ctrlr_loss_timeout_sec = 0,
126 	.reconnect_delay_sec = 0,
127 	.fast_io_fail_timeout_sec = 0,
128 	.disable_auto_failback = false,
129 	.generate_uuids = false,
130 	.transport_tos = 0,
131 	.nvme_error_stat = false,
132 	.io_path_stat = false,
133 	.allow_accel_sequence = false,
134 };
135 
136 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
137 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
138 
139 static int g_hot_insert_nvme_controller_index = 0;
140 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
141 static bool g_nvme_hotplug_enabled = false;
142 struct spdk_thread *g_bdev_nvme_init_thread;
143 static struct spdk_poller *g_hotplug_poller;
144 static struct spdk_poller *g_hotplug_probe_poller;
145 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
146 
147 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
148 		struct nvme_async_probe_ctx *ctx);
149 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
150 		struct nvme_async_probe_ctx *ctx);
151 static int bdev_nvme_library_init(void);
152 static void bdev_nvme_library_fini(void);
153 static void _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch,
154 				      struct spdk_bdev_io *bdev_io);
155 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
156 				     struct spdk_bdev_io *bdev_io);
157 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
158 			   void *md, uint64_t lba_count, uint64_t lba,
159 			   uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
160 			   struct spdk_accel_sequence *seq);
161 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
162 				 void *md, uint64_t lba_count, uint64_t lba);
163 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
164 			    void *md, uint64_t lba_count, uint64_t lba,
165 			    uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
166 			    struct spdk_accel_sequence *seq);
167 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
168 				  void *md, uint64_t lba_count,
169 				  uint64_t zslba, uint32_t flags);
170 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
171 			      void *md, uint64_t lba_count, uint64_t lba,
172 			      uint32_t flags);
173 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
174 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
175 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
176 		uint32_t flags);
177 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
178 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
179 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
180 				     enum spdk_bdev_zone_action action);
181 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
182 				     struct nvme_bdev_io *bio,
183 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
184 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
185 				 void *buf, size_t nbytes);
186 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
187 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
188 static int bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
189 				     struct iovec *iov, int iovcnt, size_t nbytes,
190 				     void *md_buf, size_t md_len);
191 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
192 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
193 static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio);
194 static int bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
195 static int bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
196 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
197 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
198 
199 static struct nvme_ns *nvme_ns_alloc(void);
200 static void nvme_ns_free(struct nvme_ns *ns);
201 
202 static int
203 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
204 {
205 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
206 }
207 
208 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
209 
210 struct spdk_nvme_qpair *
211 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
212 {
213 	struct nvme_ctrlr_channel *ctrlr_ch;
214 
215 	assert(ctrlr_io_ch != NULL);
216 
217 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
218 
219 	return ctrlr_ch->qpair->qpair;
220 }
221 
222 static int
223 bdev_nvme_get_ctx_size(void)
224 {
225 	return sizeof(struct nvme_bdev_io);
226 }
227 
228 static struct spdk_bdev_module nvme_if = {
229 	.name = "nvme",
230 	.async_fini = true,
231 	.module_init = bdev_nvme_library_init,
232 	.module_fini = bdev_nvme_library_fini,
233 	.config_json = bdev_nvme_config_json,
234 	.get_ctx_size = bdev_nvme_get_ctx_size,
235 
236 };
237 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
238 
239 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
240 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
241 bool g_bdev_nvme_module_finish;
242 
243 struct nvme_bdev_ctrlr *
244 nvme_bdev_ctrlr_get_by_name(const char *name)
245 {
246 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
247 
248 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
249 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
250 			break;
251 		}
252 	}
253 
254 	return nbdev_ctrlr;
255 }
256 
257 static struct nvme_ctrlr *
258 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
259 			  const struct spdk_nvme_transport_id *trid)
260 {
261 	struct nvme_ctrlr *nvme_ctrlr;
262 
263 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
264 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0) {
265 			break;
266 		}
267 	}
268 
269 	return nvme_ctrlr;
270 }
271 
272 struct nvme_ctrlr *
273 nvme_bdev_ctrlr_get_ctrlr_by_id(struct nvme_bdev_ctrlr *nbdev_ctrlr,
274 				uint16_t cntlid)
275 {
276 	struct nvme_ctrlr *nvme_ctrlr;
277 	const struct spdk_nvme_ctrlr_data *cdata;
278 
279 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
280 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
281 		if (cdata->cntlid == cntlid) {
282 			break;
283 		}
284 	}
285 
286 	return nvme_ctrlr;
287 }
288 
289 static struct nvme_bdev *
290 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
291 {
292 	struct nvme_bdev *bdev;
293 
294 	pthread_mutex_lock(&g_bdev_nvme_mutex);
295 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
296 		if (bdev->nsid == nsid) {
297 			break;
298 		}
299 	}
300 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
301 
302 	return bdev;
303 }
304 
305 struct nvme_ns *
306 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
307 {
308 	struct nvme_ns ns;
309 
310 	assert(nsid > 0);
311 
312 	ns.id = nsid;
313 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
314 }
315 
316 struct nvme_ns *
317 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
318 {
319 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
320 }
321 
322 struct nvme_ns *
323 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
324 {
325 	if (ns == NULL) {
326 		return NULL;
327 	}
328 
329 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
330 }
331 
332 static struct nvme_ctrlr *
333 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid)
334 {
335 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
336 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
337 
338 	pthread_mutex_lock(&g_bdev_nvme_mutex);
339 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
340 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid);
341 		if (nvme_ctrlr != NULL) {
342 			break;
343 		}
344 	}
345 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
346 
347 	return nvme_ctrlr;
348 }
349 
350 struct nvme_ctrlr *
351 nvme_ctrlr_get_by_name(const char *name)
352 {
353 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
354 	struct nvme_ctrlr *nvme_ctrlr = NULL;
355 
356 	if (name == NULL) {
357 		return NULL;
358 	}
359 
360 	pthread_mutex_lock(&g_bdev_nvme_mutex);
361 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
362 	if (nbdev_ctrlr != NULL) {
363 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
364 	}
365 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
366 
367 	return nvme_ctrlr;
368 }
369 
370 void
371 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
372 {
373 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
374 
375 	pthread_mutex_lock(&g_bdev_nvme_mutex);
376 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
377 		fn(nbdev_ctrlr, ctx);
378 	}
379 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
380 }
381 
382 void
383 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
384 {
385 	const char *trtype_str;
386 	const char *adrfam_str;
387 
388 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
389 	if (trtype_str) {
390 		spdk_json_write_named_string(w, "trtype", trtype_str);
391 	}
392 
393 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
394 	if (adrfam_str) {
395 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
396 	}
397 
398 	if (trid->traddr[0] != '\0') {
399 		spdk_json_write_named_string(w, "traddr", trid->traddr);
400 	}
401 
402 	if (trid->trsvcid[0] != '\0') {
403 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
404 	}
405 
406 	if (trid->subnqn[0] != '\0') {
407 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
408 	}
409 }
410 
411 static void
412 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
413 		       struct nvme_ctrlr *nvme_ctrlr)
414 {
415 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
416 	pthread_mutex_lock(&g_bdev_nvme_mutex);
417 
418 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
419 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
420 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
421 
422 		return;
423 	}
424 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
425 
426 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
427 
428 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
429 
430 	free(nbdev_ctrlr->name);
431 	free(nbdev_ctrlr);
432 }
433 
434 static void
435 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
436 {
437 	struct nvme_path_id *path_id, *tmp_path;
438 	struct nvme_ns *ns, *tmp_ns;
439 
440 	free(nvme_ctrlr->copied_ana_desc);
441 	spdk_free(nvme_ctrlr->ana_log_page);
442 
443 	if (nvme_ctrlr->opal_dev) {
444 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
445 		nvme_ctrlr->opal_dev = NULL;
446 	}
447 
448 	if (nvme_ctrlr->nbdev_ctrlr) {
449 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
450 	}
451 
452 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
453 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
454 		nvme_ns_free(ns);
455 	}
456 
457 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
458 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
459 		free(path_id);
460 	}
461 
462 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
463 
464 	free(nvme_ctrlr);
465 
466 	pthread_mutex_lock(&g_bdev_nvme_mutex);
467 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
468 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
469 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
470 		spdk_bdev_module_fini_done();
471 		return;
472 	}
473 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
474 }
475 
476 static int
477 nvme_detach_poller(void *arg)
478 {
479 	struct nvme_ctrlr *nvme_ctrlr = arg;
480 	int rc;
481 
482 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
483 	if (rc != -EAGAIN) {
484 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
485 		_nvme_ctrlr_delete(nvme_ctrlr);
486 	}
487 
488 	return SPDK_POLLER_BUSY;
489 }
490 
491 static void
492 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
493 {
494 	int rc;
495 
496 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
497 
498 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
499 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
500 
501 	/* If we got here, the reset/detach poller cannot be active */
502 	assert(nvme_ctrlr->reset_detach_poller == NULL);
503 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
504 					  nvme_ctrlr, 1000);
505 	if (nvme_ctrlr->reset_detach_poller == NULL) {
506 		SPDK_ERRLOG("Failed to register detach poller\n");
507 		goto error;
508 	}
509 
510 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
511 	if (rc != 0) {
512 		SPDK_ERRLOG("Failed to detach the NVMe controller\n");
513 		goto error;
514 	}
515 
516 	return;
517 error:
518 	/* We don't have a good way to handle errors here, so just do what we can and delete the
519 	 * controller without detaching the underlying NVMe device.
520 	 */
521 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
522 	_nvme_ctrlr_delete(nvme_ctrlr);
523 }
524 
525 static void
526 nvme_ctrlr_unregister_cb(void *io_device)
527 {
528 	struct nvme_ctrlr *nvme_ctrlr = io_device;
529 
530 	nvme_ctrlr_delete(nvme_ctrlr);
531 }
532 
533 static void
534 nvme_ctrlr_unregister(void *ctx)
535 {
536 	struct nvme_ctrlr *nvme_ctrlr = ctx;
537 
538 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
539 }
540 
541 static bool
542 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
543 {
544 	if (!nvme_ctrlr->destruct) {
545 		return false;
546 	}
547 
548 	if (nvme_ctrlr->ref > 0) {
549 		return false;
550 	}
551 
552 	if (nvme_ctrlr->resetting) {
553 		return false;
554 	}
555 
556 	if (nvme_ctrlr->ana_log_page_updating) {
557 		return false;
558 	}
559 
560 	if (nvme_ctrlr->io_path_cache_clearing) {
561 		return false;
562 	}
563 
564 	return true;
565 }
566 
567 static void
568 nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
569 {
570 	pthread_mutex_lock(&nvme_ctrlr->mutex);
571 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
572 
573 	assert(nvme_ctrlr->ref > 0);
574 	nvme_ctrlr->ref--;
575 
576 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
577 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
578 		return;
579 	}
580 
581 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
582 
583 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
584 }
585 
586 static void
587 bdev_nvme_clear_current_io_path(struct nvme_bdev_channel *nbdev_ch)
588 {
589 	nbdev_ch->current_io_path = NULL;
590 	nbdev_ch->rr_counter = 0;
591 }
592 
593 static struct nvme_io_path *
594 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
595 {
596 	struct nvme_io_path *io_path;
597 
598 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
599 		if (io_path->nvme_ns == nvme_ns) {
600 			break;
601 		}
602 	}
603 
604 	return io_path;
605 }
606 
607 static struct nvme_io_path *
608 nvme_io_path_alloc(void)
609 {
610 	struct nvme_io_path *io_path;
611 
612 	io_path = calloc(1, sizeof(*io_path));
613 	if (io_path == NULL) {
614 		SPDK_ERRLOG("Failed to alloc io_path.\n");
615 		return NULL;
616 	}
617 
618 	if (g_opts.io_path_stat) {
619 		io_path->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
620 		if (io_path->stat == NULL) {
621 			free(io_path);
622 			SPDK_ERRLOG("Failed to alloc io_path stat.\n");
623 			return NULL;
624 		}
625 		spdk_bdev_reset_io_stat(io_path->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
626 	}
627 
628 	return io_path;
629 }
630 
631 static void
632 nvme_io_path_free(struct nvme_io_path *io_path)
633 {
634 	free(io_path->stat);
635 	free(io_path);
636 }
637 
638 static int
639 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
640 {
641 	struct nvme_io_path *io_path;
642 	struct spdk_io_channel *ch;
643 	struct nvme_ctrlr_channel *ctrlr_ch;
644 	struct nvme_qpair *nvme_qpair;
645 
646 	io_path = nvme_io_path_alloc();
647 	if (io_path == NULL) {
648 		return -ENOMEM;
649 	}
650 
651 	io_path->nvme_ns = nvme_ns;
652 
653 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
654 	if (ch == NULL) {
655 		nvme_io_path_free(io_path);
656 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
657 		return -ENOMEM;
658 	}
659 
660 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
661 
662 	nvme_qpair = ctrlr_ch->qpair;
663 	assert(nvme_qpair != NULL);
664 
665 	io_path->qpair = nvme_qpair;
666 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
667 
668 	io_path->nbdev_ch = nbdev_ch;
669 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
670 
671 	bdev_nvme_clear_current_io_path(nbdev_ch);
672 
673 	return 0;
674 }
675 
676 static void
677 bdev_nvme_clear_retry_io_path(struct nvme_bdev_channel *nbdev_ch,
678 			      struct nvme_io_path *io_path)
679 {
680 	struct spdk_bdev_io *bdev_io;
681 	struct nvme_bdev_io *bio;
682 
683 	TAILQ_FOREACH(bdev_io, &nbdev_ch->retry_io_list, module_link) {
684 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
685 		if (bio->io_path == io_path) {
686 			bio->io_path = NULL;
687 		}
688 	}
689 }
690 
691 static void
692 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
693 {
694 	struct spdk_io_channel *ch;
695 	struct nvme_qpair *nvme_qpair;
696 	struct nvme_ctrlr_channel *ctrlr_ch;
697 	struct nvme_bdev *nbdev;
698 
699 	nbdev = spdk_io_channel_get_io_device(spdk_io_channel_from_ctx(nbdev_ch));
700 
701 	/* Add the statistics to nvme_ns before this path is destroyed. */
702 	pthread_mutex_lock(&nbdev->mutex);
703 	if (nbdev->ref != 0 && io_path->nvme_ns->stat != NULL && io_path->stat != NULL) {
704 		spdk_bdev_add_io_stat(io_path->nvme_ns->stat, io_path->stat);
705 	}
706 	pthread_mutex_unlock(&nbdev->mutex);
707 
708 	bdev_nvme_clear_current_io_path(nbdev_ch);
709 	bdev_nvme_clear_retry_io_path(nbdev_ch, io_path);
710 
711 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
712 	io_path->nbdev_ch = NULL;
713 
714 	nvme_qpair = io_path->qpair;
715 	assert(nvme_qpair != NULL);
716 
717 	ctrlr_ch = nvme_qpair->ctrlr_ch;
718 	assert(ctrlr_ch != NULL);
719 
720 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
721 	spdk_put_io_channel(ch);
722 
723 	/* After an io_path is removed, I/Os submitted to it may complete and update statistics
724 	 * of the io_path. To avoid heap-use-after-free error from this case, do not free the
725 	 * io_path here but free the io_path when the associated qpair is freed. It is ensured
726 	 * that all I/Os submitted to the io_path are completed when the associated qpair is freed.
727 	 */
728 }
729 
730 static void
731 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
732 {
733 	struct nvme_io_path *io_path, *tmp_io_path;
734 
735 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
736 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
737 	}
738 }
739 
740 static int
741 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
742 {
743 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
744 	struct nvme_bdev *nbdev = io_device;
745 	struct nvme_ns *nvme_ns;
746 	int rc;
747 
748 	STAILQ_INIT(&nbdev_ch->io_path_list);
749 	TAILQ_INIT(&nbdev_ch->retry_io_list);
750 
751 	pthread_mutex_lock(&nbdev->mutex);
752 
753 	nbdev_ch->mp_policy = nbdev->mp_policy;
754 	nbdev_ch->mp_selector = nbdev->mp_selector;
755 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
756 
757 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
758 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
759 		if (rc != 0) {
760 			pthread_mutex_unlock(&nbdev->mutex);
761 
762 			_bdev_nvme_delete_io_paths(nbdev_ch);
763 			return rc;
764 		}
765 	}
766 	pthread_mutex_unlock(&nbdev->mutex);
767 
768 	return 0;
769 }
770 
771 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
772  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
773  */
774 static inline void
775 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
776 			const struct spdk_nvme_cpl *cpl)
777 {
778 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
779 			  (uintptr_t)bdev_io);
780 	if (cpl) {
781 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
782 	} else {
783 		spdk_bdev_io_complete(bdev_io, status);
784 	}
785 }
786 
787 static void bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch);
788 
789 static void
790 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
791 {
792 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
793 
794 	bdev_nvme_abort_retry_ios(nbdev_ch);
795 	_bdev_nvme_delete_io_paths(nbdev_ch);
796 }
797 
798 static inline bool
799 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
800 {
801 	switch (io_type) {
802 	case SPDK_BDEV_IO_TYPE_RESET:
803 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
804 	case SPDK_BDEV_IO_TYPE_ABORT:
805 		return true;
806 	default:
807 		break;
808 	}
809 
810 	return false;
811 }
812 
813 static inline bool
814 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
815 {
816 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
817 		return false;
818 	}
819 
820 	switch (nvme_ns->ana_state) {
821 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
822 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
823 		return true;
824 	default:
825 		break;
826 	}
827 
828 	return false;
829 }
830 
831 static inline bool
832 nvme_qpair_is_connected(struct nvme_qpair *nvme_qpair)
833 {
834 	if (spdk_unlikely(nvme_qpair->qpair == NULL)) {
835 		return false;
836 	}
837 
838 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
839 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
840 		return false;
841 	}
842 
843 	if (spdk_unlikely(nvme_qpair->ctrlr_ch->reset_iter != NULL)) {
844 		return false;
845 	}
846 
847 	return true;
848 }
849 
850 static inline bool
851 nvme_io_path_is_available(struct nvme_io_path *io_path)
852 {
853 	if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
854 		return false;
855 	}
856 
857 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
858 		return false;
859 	}
860 
861 	return true;
862 }
863 
864 static inline bool
865 nvme_ctrlr_is_failed(struct nvme_ctrlr *nvme_ctrlr)
866 {
867 	if (nvme_ctrlr->destruct) {
868 		return true;
869 	}
870 
871 	if (nvme_ctrlr->fast_io_fail_timedout) {
872 		return true;
873 	}
874 
875 	if (nvme_ctrlr->resetting) {
876 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
877 			return false;
878 		} else {
879 			return true;
880 		}
881 	}
882 
883 	if (nvme_ctrlr->reconnect_is_delayed) {
884 		return false;
885 	}
886 
887 	if (nvme_ctrlr->disabled) {
888 		return true;
889 	}
890 
891 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
892 		return true;
893 	} else {
894 		return false;
895 	}
896 }
897 
898 static bool
899 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
900 {
901 	if (nvme_ctrlr->destruct) {
902 		return false;
903 	}
904 
905 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
906 		return false;
907 	}
908 
909 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
910 		return false;
911 	}
912 
913 	if (nvme_ctrlr->disabled) {
914 		return false;
915 	}
916 
917 	return true;
918 }
919 
920 /* Simulate circular linked list. */
921 static inline struct nvme_io_path *
922 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
923 {
924 	struct nvme_io_path *next_path;
925 
926 	if (prev_path != NULL) {
927 		next_path = STAILQ_NEXT(prev_path, stailq);
928 		if (next_path != NULL) {
929 			return next_path;
930 		}
931 	}
932 
933 	return STAILQ_FIRST(&nbdev_ch->io_path_list);
934 }
935 
936 static struct nvme_io_path *
937 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
938 {
939 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
940 
941 	start = nvme_io_path_get_next(nbdev_ch, nbdev_ch->current_io_path);
942 
943 	io_path = start;
944 	do {
945 		if (spdk_likely(nvme_qpair_is_connected(io_path->qpair) &&
946 				!io_path->nvme_ns->ana_state_updating)) {
947 			switch (io_path->nvme_ns->ana_state) {
948 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
949 				nbdev_ch->current_io_path = io_path;
950 				return io_path;
951 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
952 				if (non_optimized == NULL) {
953 					non_optimized = io_path;
954 				}
955 				break;
956 			default:
957 				break;
958 			}
959 		}
960 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
961 	} while (io_path != start);
962 
963 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
964 		/* We come here only if there is no optimized path. Cache even non_optimized
965 		 * path for load balance across multiple non_optimized paths.
966 		 */
967 		nbdev_ch->current_io_path = non_optimized;
968 	}
969 
970 	return non_optimized;
971 }
972 
973 static struct nvme_io_path *
974 _bdev_nvme_find_io_path_min_qd(struct nvme_bdev_channel *nbdev_ch)
975 {
976 	struct nvme_io_path *io_path;
977 	struct nvme_io_path *optimized = NULL, *non_optimized = NULL;
978 	uint32_t opt_min_qd = UINT32_MAX, non_opt_min_qd = UINT32_MAX;
979 	uint32_t num_outstanding_reqs;
980 
981 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
982 		if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
983 			/* The device is currently resetting. */
984 			continue;
985 		}
986 
987 		if (spdk_unlikely(io_path->nvme_ns->ana_state_updating)) {
988 			continue;
989 		}
990 
991 		num_outstanding_reqs = spdk_nvme_qpair_get_num_outstanding_reqs(io_path->qpair->qpair);
992 		switch (io_path->nvme_ns->ana_state) {
993 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
994 			if (num_outstanding_reqs < opt_min_qd) {
995 				opt_min_qd = num_outstanding_reqs;
996 				optimized = io_path;
997 			}
998 			break;
999 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1000 			if (num_outstanding_reqs < non_opt_min_qd) {
1001 				non_opt_min_qd = num_outstanding_reqs;
1002 				non_optimized = io_path;
1003 			}
1004 			break;
1005 		default:
1006 			break;
1007 		}
1008 	}
1009 
1010 	/* don't cache io path for BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH selector */
1011 	if (optimized != NULL) {
1012 		return optimized;
1013 	}
1014 
1015 	return non_optimized;
1016 }
1017 
1018 static inline struct nvme_io_path *
1019 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1020 {
1021 	if (spdk_likely(nbdev_ch->current_io_path != NULL)) {
1022 		if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE) {
1023 			return nbdev_ch->current_io_path;
1024 		} else if (nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1025 			if (++nbdev_ch->rr_counter < nbdev_ch->rr_min_io) {
1026 				return nbdev_ch->current_io_path;
1027 			}
1028 			nbdev_ch->rr_counter = 0;
1029 		}
1030 	}
1031 
1032 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE ||
1033 	    nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1034 		return _bdev_nvme_find_io_path(nbdev_ch);
1035 	} else {
1036 		return _bdev_nvme_find_io_path_min_qd(nbdev_ch);
1037 	}
1038 }
1039 
1040 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
1041  * or false otherwise.
1042  *
1043  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
1044  * is likely to be non-accessible now but may become accessible.
1045  *
1046  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
1047  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
1048  * when starting to reset it but it is set to failed when the reset failed. Hence, if
1049  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
1050  */
1051 static bool
1052 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
1053 {
1054 	struct nvme_io_path *io_path;
1055 
1056 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1057 		if (io_path->nvme_ns->ana_transition_timedout) {
1058 			continue;
1059 		}
1060 
1061 		if (nvme_qpair_is_connected(io_path->qpair) ||
1062 		    !nvme_ctrlr_is_failed(io_path->qpair->ctrlr)) {
1063 			return true;
1064 		}
1065 	}
1066 
1067 	return false;
1068 }
1069 
1070 static void
1071 bdev_nvme_retry_io(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
1072 {
1073 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1074 	struct spdk_io_channel *ch;
1075 
1076 	if (nbdev_io->io_path != NULL && nvme_io_path_is_available(nbdev_io->io_path)) {
1077 		_bdev_nvme_submit_request(nbdev_ch, bdev_io);
1078 	} else {
1079 		ch = spdk_io_channel_from_ctx(nbdev_ch);
1080 		bdev_nvme_submit_request(ch, bdev_io);
1081 	}
1082 }
1083 
1084 static int
1085 bdev_nvme_retry_ios(void *arg)
1086 {
1087 	struct nvme_bdev_channel *nbdev_ch = arg;
1088 	struct spdk_bdev_io *bdev_io, *tmp_bdev_io;
1089 	struct nvme_bdev_io *bio;
1090 	uint64_t now, delay_us;
1091 
1092 	now = spdk_get_ticks();
1093 
1094 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_bdev_io) {
1095 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1096 		if (bio->retry_ticks > now) {
1097 			break;
1098 		}
1099 
1100 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
1101 
1102 		bdev_nvme_retry_io(nbdev_ch, bdev_io);
1103 	}
1104 
1105 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1106 
1107 	bdev_io = TAILQ_FIRST(&nbdev_ch->retry_io_list);
1108 	if (bdev_io != NULL) {
1109 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1110 
1111 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
1112 
1113 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1114 					    delay_us);
1115 	}
1116 
1117 	return SPDK_POLLER_BUSY;
1118 }
1119 
1120 static void
1121 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
1122 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
1123 {
1124 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1125 	struct spdk_bdev_io *tmp_bdev_io;
1126 	struct nvme_bdev_io *tmp_bio;
1127 
1128 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
1129 
1130 	TAILQ_FOREACH_REVERSE(tmp_bdev_io, &nbdev_ch->retry_io_list, retry_io_head, module_link) {
1131 		tmp_bio = (struct nvme_bdev_io *)tmp_bdev_io->driver_ctx;
1132 
1133 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1134 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bdev_io, bdev_io,
1135 					   module_link);
1136 			return;
1137 		}
1138 	}
1139 
1140 	/* No earlier I/Os were found. This I/O must be the new head. */
1141 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bdev_io, module_link);
1142 
1143 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1144 
1145 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1146 				    delay_ms * 1000ULL);
1147 }
1148 
1149 static void
1150 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
1151 {
1152 	struct spdk_bdev_io *bdev_io, *tmp_io;
1153 
1154 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_io) {
1155 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
1156 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1157 	}
1158 
1159 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1160 }
1161 
1162 static int
1163 bdev_nvme_abort_retry_io(struct nvme_bdev_channel *nbdev_ch,
1164 			 struct nvme_bdev_io *bio_to_abort)
1165 {
1166 	struct spdk_bdev_io *bdev_io_to_abort;
1167 
1168 	TAILQ_FOREACH(bdev_io_to_abort, &nbdev_ch->retry_io_list, module_link) {
1169 		if ((struct nvme_bdev_io *)bdev_io_to_abort->driver_ctx == bio_to_abort) {
1170 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io_to_abort, module_link);
1171 			__bdev_nvme_io_complete(bdev_io_to_abort, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1172 			return 0;
1173 		}
1174 	}
1175 
1176 	return -ENOENT;
1177 }
1178 
1179 static void
1180 bdev_nvme_update_nvme_error_stat(struct spdk_bdev_io *bdev_io, const struct spdk_nvme_cpl *cpl)
1181 {
1182 	struct nvme_bdev *nbdev;
1183 	uint16_t sct, sc;
1184 
1185 	assert(spdk_nvme_cpl_is_error(cpl));
1186 
1187 	nbdev = bdev_io->bdev->ctxt;
1188 
1189 	if (nbdev->err_stat == NULL) {
1190 		return;
1191 	}
1192 
1193 	sct = cpl->status.sct;
1194 	sc = cpl->status.sc;
1195 
1196 	pthread_mutex_lock(&nbdev->mutex);
1197 
1198 	nbdev->err_stat->status_type[sct]++;
1199 	switch (sct) {
1200 	case SPDK_NVME_SCT_GENERIC:
1201 	case SPDK_NVME_SCT_COMMAND_SPECIFIC:
1202 	case SPDK_NVME_SCT_MEDIA_ERROR:
1203 	case SPDK_NVME_SCT_PATH:
1204 		nbdev->err_stat->status[sct][sc]++;
1205 		break;
1206 	default:
1207 		break;
1208 	}
1209 
1210 	pthread_mutex_unlock(&nbdev->mutex);
1211 }
1212 
1213 static inline void
1214 bdev_nvme_update_io_path_stat(struct nvme_bdev_io *bio)
1215 {
1216 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1217 	uint64_t num_blocks = bdev_io->u.bdev.num_blocks;
1218 	uint32_t blocklen = bdev_io->bdev->blocklen;
1219 	struct spdk_bdev_io_stat *stat;
1220 	uint64_t tsc_diff;
1221 
1222 	if (bio->io_path->stat == NULL) {
1223 		return;
1224 	}
1225 
1226 	tsc_diff = spdk_get_ticks() - bio->submit_tsc;
1227 	stat = bio->io_path->stat;
1228 
1229 	switch (bdev_io->type) {
1230 	case SPDK_BDEV_IO_TYPE_READ:
1231 		stat->bytes_read += num_blocks * blocklen;
1232 		stat->num_read_ops++;
1233 		stat->read_latency_ticks += tsc_diff;
1234 		if (stat->max_read_latency_ticks < tsc_diff) {
1235 			stat->max_read_latency_ticks = tsc_diff;
1236 		}
1237 		if (stat->min_read_latency_ticks > tsc_diff) {
1238 			stat->min_read_latency_ticks = tsc_diff;
1239 		}
1240 		break;
1241 	case SPDK_BDEV_IO_TYPE_WRITE:
1242 		stat->bytes_written += num_blocks * blocklen;
1243 		stat->num_write_ops++;
1244 		stat->write_latency_ticks += tsc_diff;
1245 		if (stat->max_write_latency_ticks < tsc_diff) {
1246 			stat->max_write_latency_ticks = tsc_diff;
1247 		}
1248 		if (stat->min_write_latency_ticks > tsc_diff) {
1249 			stat->min_write_latency_ticks = tsc_diff;
1250 		}
1251 		break;
1252 	case SPDK_BDEV_IO_TYPE_UNMAP:
1253 		stat->bytes_unmapped += num_blocks * blocklen;
1254 		stat->num_unmap_ops++;
1255 		stat->unmap_latency_ticks += tsc_diff;
1256 		if (stat->max_unmap_latency_ticks < tsc_diff) {
1257 			stat->max_unmap_latency_ticks = tsc_diff;
1258 		}
1259 		if (stat->min_unmap_latency_ticks > tsc_diff) {
1260 			stat->min_unmap_latency_ticks = tsc_diff;
1261 		}
1262 		break;
1263 	case SPDK_BDEV_IO_TYPE_ZCOPY:
1264 		/* Track the data in the start phase only */
1265 		if (!bdev_io->u.bdev.zcopy.start) {
1266 			break;
1267 		}
1268 		if (bdev_io->u.bdev.zcopy.populate) {
1269 			stat->bytes_read += num_blocks * blocklen;
1270 			stat->num_read_ops++;
1271 			stat->read_latency_ticks += tsc_diff;
1272 			if (stat->max_read_latency_ticks < tsc_diff) {
1273 				stat->max_read_latency_ticks = tsc_diff;
1274 			}
1275 			if (stat->min_read_latency_ticks > tsc_diff) {
1276 				stat->min_read_latency_ticks = tsc_diff;
1277 			}
1278 		} else {
1279 			stat->bytes_written += num_blocks * blocklen;
1280 			stat->num_write_ops++;
1281 			stat->write_latency_ticks += tsc_diff;
1282 			if (stat->max_write_latency_ticks < tsc_diff) {
1283 				stat->max_write_latency_ticks = tsc_diff;
1284 			}
1285 			if (stat->min_write_latency_ticks > tsc_diff) {
1286 				stat->min_write_latency_ticks = tsc_diff;
1287 			}
1288 		}
1289 		break;
1290 	case SPDK_BDEV_IO_TYPE_COPY:
1291 		stat->bytes_copied += num_blocks * blocklen;
1292 		stat->num_copy_ops++;
1293 		stat->copy_latency_ticks += tsc_diff;
1294 		if (stat->max_copy_latency_ticks < tsc_diff) {
1295 			stat->max_copy_latency_ticks = tsc_diff;
1296 		}
1297 		if (stat->min_copy_latency_ticks > tsc_diff) {
1298 			stat->min_copy_latency_ticks = tsc_diff;
1299 		}
1300 		break;
1301 	default:
1302 		break;
1303 	}
1304 }
1305 
1306 static bool
1307 bdev_nvme_check_retry_io(struct nvme_bdev_io *bio,
1308 			 const struct spdk_nvme_cpl *cpl,
1309 			 struct nvme_bdev_channel *nbdev_ch,
1310 			 uint64_t *_delay_ms)
1311 {
1312 	struct nvme_io_path *io_path = bio->io_path;
1313 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1314 	const struct spdk_nvme_ctrlr_data *cdata;
1315 
1316 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1317 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1318 	    !nvme_io_path_is_available(io_path) ||
1319 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1320 		bdev_nvme_clear_current_io_path(nbdev_ch);
1321 		bio->io_path = NULL;
1322 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1323 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1324 				io_path->nvme_ns->ana_state_updating = true;
1325 			}
1326 		}
1327 		if (!any_io_path_may_become_available(nbdev_ch)) {
1328 			return false;
1329 		}
1330 		*_delay_ms = 0;
1331 	} else {
1332 		bio->retry_count++;
1333 
1334 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1335 
1336 		if (cpl->status.crd != 0) {
1337 			*_delay_ms = cdata->crdt[cpl->status.crd] * 100;
1338 		} else {
1339 			*_delay_ms = 0;
1340 		}
1341 	}
1342 
1343 	return true;
1344 }
1345 
1346 static inline void
1347 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1348 				  const struct spdk_nvme_cpl *cpl)
1349 {
1350 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1351 	struct nvme_bdev_channel *nbdev_ch;
1352 	uint64_t delay_ms;
1353 
1354 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1355 
1356 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1357 		bdev_nvme_update_io_path_stat(bio);
1358 		goto complete;
1359 	}
1360 
1361 	/* Update error counts before deciding if retry is needed.
1362 	 * Hence, error counts may be more than the number of I/O errors.
1363 	 */
1364 	bdev_nvme_update_nvme_error_stat(bdev_io, cpl);
1365 
1366 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1367 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1368 		goto complete;
1369 	}
1370 
1371 	/* At this point we don't know whether the sequence was successfully executed or not, so we
1372 	 * cannot retry the IO */
1373 	if (bdev_io->u.bdev.accel_sequence != NULL) {
1374 		goto complete;
1375 	}
1376 
1377 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1378 
1379 	if (bdev_nvme_check_retry_io(bio, cpl, nbdev_ch, &delay_ms)) {
1380 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1381 		return;
1382 	}
1383 
1384 complete:
1385 	bio->retry_count = 0;
1386 	bio->submit_tsc = 0;
1387 	bdev_io->u.bdev.accel_sequence = NULL;
1388 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1389 }
1390 
1391 static inline void
1392 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1393 {
1394 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1395 	struct nvme_bdev_channel *nbdev_ch;
1396 	enum spdk_bdev_io_status io_status;
1397 
1398 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1399 
1400 	switch (rc) {
1401 	case 0:
1402 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1403 		break;
1404 	case -ENOMEM:
1405 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1406 		break;
1407 	case -ENXIO:
1408 		if (g_opts.bdev_retry_count == -1 || bio->retry_count < g_opts.bdev_retry_count) {
1409 			nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1410 
1411 			bdev_nvme_clear_current_io_path(nbdev_ch);
1412 			bio->io_path = NULL;
1413 
1414 			if (any_io_path_may_become_available(nbdev_ch)) {
1415 				bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1416 				return;
1417 			}
1418 		}
1419 
1420 	/* fallthrough */
1421 	default:
1422 		spdk_accel_sequence_abort(bdev_io->u.bdev.accel_sequence);
1423 		bdev_io->u.bdev.accel_sequence = NULL;
1424 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1425 		break;
1426 	}
1427 
1428 	bio->retry_count = 0;
1429 	bio->submit_tsc = 0;
1430 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1431 }
1432 
1433 static inline void
1434 bdev_nvme_admin_complete(struct nvme_bdev_io *bio, int rc)
1435 {
1436 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1437 	enum spdk_bdev_io_status io_status;
1438 
1439 	switch (rc) {
1440 	case 0:
1441 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1442 		break;
1443 	case -ENOMEM:
1444 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1445 		break;
1446 	case -ENXIO:
1447 	/* fallthrough */
1448 	default:
1449 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1450 		break;
1451 	}
1452 
1453 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1454 }
1455 
1456 static void
1457 bdev_nvme_clear_io_path_caches_done(struct spdk_io_channel_iter *i, int status)
1458 {
1459 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1460 
1461 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1462 
1463 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1464 	nvme_ctrlr->io_path_cache_clearing = false;
1465 
1466 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1467 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1468 		return;
1469 	}
1470 
1471 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1472 
1473 	nvme_ctrlr_unregister(nvme_ctrlr);
1474 }
1475 
1476 static void
1477 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1478 {
1479 	struct nvme_io_path *io_path;
1480 
1481 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1482 		if (io_path->nbdev_ch == NULL) {
1483 			continue;
1484 		}
1485 		bdev_nvme_clear_current_io_path(io_path->nbdev_ch);
1486 	}
1487 }
1488 
1489 static void
1490 bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i)
1491 {
1492 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1493 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1494 
1495 	assert(ctrlr_ch->qpair != NULL);
1496 
1497 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1498 
1499 	spdk_for_each_channel_continue(i, 0);
1500 }
1501 
1502 static void
1503 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1504 {
1505 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1506 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1507 	    nvme_ctrlr->io_path_cache_clearing) {
1508 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1509 		return;
1510 	}
1511 
1512 	nvme_ctrlr->io_path_cache_clearing = true;
1513 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1514 
1515 	spdk_for_each_channel(nvme_ctrlr,
1516 			      bdev_nvme_clear_io_path_cache,
1517 			      NULL,
1518 			      bdev_nvme_clear_io_path_caches_done);
1519 }
1520 
1521 static struct nvme_qpair *
1522 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1523 {
1524 	struct nvme_qpair *nvme_qpair;
1525 
1526 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1527 		if (nvme_qpair->qpair == qpair) {
1528 			break;
1529 		}
1530 	}
1531 
1532 	return nvme_qpair;
1533 }
1534 
1535 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1536 
1537 static void
1538 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1539 {
1540 	struct nvme_poll_group *group = poll_group_ctx;
1541 	struct nvme_qpair *nvme_qpair;
1542 	struct nvme_ctrlr_channel *ctrlr_ch;
1543 	int status;
1544 
1545 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1546 	if (nvme_qpair == NULL) {
1547 		return;
1548 	}
1549 
1550 	if (nvme_qpair->qpair != NULL) {
1551 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1552 		nvme_qpair->qpair = NULL;
1553 	}
1554 
1555 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1556 
1557 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1558 
1559 	if (ctrlr_ch != NULL) {
1560 		if (ctrlr_ch->reset_iter != NULL) {
1561 			/* We are in a full reset sequence. */
1562 			if (ctrlr_ch->connect_poller != NULL) {
1563 				/* qpair was failed to connect. Abort the reset sequence. */
1564 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was failed to connect. abort the reset ctrlr sequence.\n",
1565 					      qpair);
1566 				spdk_poller_unregister(&ctrlr_ch->connect_poller);
1567 				status = -1;
1568 			} else {
1569 				/* qpair was completed to disconnect. Just move to the next ctrlr_channel. */
1570 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1571 					      qpair);
1572 				status = 0;
1573 			}
1574 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, status);
1575 			ctrlr_ch->reset_iter = NULL;
1576 		} else {
1577 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1578 			SPDK_NOTICELOG("qpair %p was disconnected and freed. reset controller.\n", qpair);
1579 			bdev_nvme_failover_ctrlr(nvme_qpair->ctrlr);
1580 		}
1581 	} else {
1582 		/* In this case, ctrlr_channel is already deleted. */
1583 		SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed. delete nvme_qpair.\n", qpair);
1584 		nvme_qpair_delete(nvme_qpair);
1585 	}
1586 }
1587 
1588 static void
1589 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1590 {
1591 	struct nvme_qpair *nvme_qpair;
1592 
1593 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1594 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1595 			continue;
1596 		}
1597 
1598 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1599 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1600 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1601 		}
1602 	}
1603 }
1604 
1605 static int
1606 bdev_nvme_poll(void *arg)
1607 {
1608 	struct nvme_poll_group *group = arg;
1609 	int64_t num_completions;
1610 
1611 	if (group->collect_spin_stat && group->start_ticks == 0) {
1612 		group->start_ticks = spdk_get_ticks();
1613 	}
1614 
1615 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1616 			  bdev_nvme_disconnected_qpair_cb);
1617 	if (group->collect_spin_stat) {
1618 		if (num_completions > 0) {
1619 			if (group->end_ticks != 0) {
1620 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1621 				group->end_ticks = 0;
1622 			}
1623 			group->start_ticks = 0;
1624 		} else {
1625 			group->end_ticks = spdk_get_ticks();
1626 		}
1627 	}
1628 
1629 	if (spdk_unlikely(num_completions < 0)) {
1630 		bdev_nvme_check_io_qpairs(group);
1631 	}
1632 
1633 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1634 }
1635 
1636 static int bdev_nvme_poll_adminq(void *arg);
1637 
1638 static void
1639 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1640 {
1641 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1642 
1643 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1644 					  nvme_ctrlr, new_period_us);
1645 }
1646 
1647 static int
1648 bdev_nvme_poll_adminq(void *arg)
1649 {
1650 	int32_t rc;
1651 	struct nvme_ctrlr *nvme_ctrlr = arg;
1652 	nvme_ctrlr_disconnected_cb disconnected_cb;
1653 
1654 	assert(nvme_ctrlr != NULL);
1655 
1656 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1657 	if (rc < 0) {
1658 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1659 		nvme_ctrlr->disconnected_cb = NULL;
1660 
1661 		if (disconnected_cb != NULL) {
1662 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1663 							    g_opts.nvme_adminq_poll_period_us);
1664 			disconnected_cb(nvme_ctrlr);
1665 		} else {
1666 			bdev_nvme_failover_ctrlr(nvme_ctrlr);
1667 		}
1668 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1669 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1670 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1671 	}
1672 
1673 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1674 }
1675 
1676 static void
1677 nvme_bdev_free(void *io_device)
1678 {
1679 	struct nvme_bdev *nvme_disk = io_device;
1680 
1681 	pthread_mutex_destroy(&nvme_disk->mutex);
1682 	free(nvme_disk->disk.name);
1683 	free(nvme_disk->err_stat);
1684 	free(nvme_disk);
1685 }
1686 
1687 static int
1688 bdev_nvme_destruct(void *ctx)
1689 {
1690 	struct nvme_bdev *nvme_disk = ctx;
1691 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1692 
1693 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1694 
1695 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1696 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1697 
1698 		nvme_ns->bdev = NULL;
1699 
1700 		assert(nvme_ns->id > 0);
1701 
1702 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1703 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1704 
1705 			nvme_ctrlr_release(nvme_ns->ctrlr);
1706 			nvme_ns_free(nvme_ns);
1707 		} else {
1708 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1709 		}
1710 	}
1711 
1712 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1713 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1714 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1715 
1716 	spdk_io_device_unregister(nvme_disk, nvme_bdev_free);
1717 
1718 	return 0;
1719 }
1720 
1721 static int
1722 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1723 {
1724 	struct nvme_ctrlr *nvme_ctrlr;
1725 	struct spdk_nvme_io_qpair_opts opts;
1726 	struct spdk_nvme_qpair *qpair;
1727 	int rc;
1728 
1729 	nvme_ctrlr = nvme_qpair->ctrlr;
1730 
1731 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1732 	opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1733 	opts.create_only = true;
1734 	opts.async_mode = true;
1735 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1736 	g_opts.io_queue_requests = opts.io_queue_requests;
1737 
1738 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1739 	if (qpair == NULL) {
1740 		return -1;
1741 	}
1742 
1743 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1744 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1745 
1746 	assert(nvme_qpair->group != NULL);
1747 
1748 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1749 	if (rc != 0) {
1750 		SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
1751 		goto err;
1752 	}
1753 
1754 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1755 	if (rc != 0) {
1756 		SPDK_ERRLOG("Unable to connect I/O qpair.\n");
1757 		goto err;
1758 	}
1759 
1760 	nvme_qpair->qpair = qpair;
1761 
1762 	if (!g_opts.disable_auto_failback) {
1763 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1764 	}
1765 
1766 	return 0;
1767 
1768 err:
1769 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1770 
1771 	return rc;
1772 }
1773 
1774 static void
1775 bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
1776 {
1777 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1778 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1779 	enum spdk_bdev_io_status status = SPDK_BDEV_IO_STATUS_SUCCESS;
1780 	struct spdk_bdev_io *bdev_io;
1781 
1782 	if (spdk_io_channel_iter_get_ctx(i) != NULL) {
1783 		status = SPDK_BDEV_IO_STATUS_FAILED;
1784 	}
1785 
1786 	while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
1787 		bdev_io = TAILQ_FIRST(&ctrlr_ch->pending_resets);
1788 		TAILQ_REMOVE(&ctrlr_ch->pending_resets, bdev_io, module_link);
1789 		__bdev_nvme_io_complete(bdev_io, status, NULL);
1790 	}
1791 
1792 	spdk_for_each_channel_continue(i, 0);
1793 }
1794 
1795 /* This function marks the current trid as failed by storing the current ticks
1796  * and then sets the next trid to the active trid within a controller if exists.
1797  *
1798  * The purpose of the boolean return value is to request the caller to disconnect
1799  * the current trid now to try connecting the next trid.
1800  */
1801 static bool
1802 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove, bool start)
1803 {
1804 	struct nvme_path_id *path_id, *next_path;
1805 	int rc __attribute__((unused));
1806 
1807 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1808 	assert(path_id);
1809 	assert(path_id == nvme_ctrlr->active_path_id);
1810 	next_path = TAILQ_NEXT(path_id, link);
1811 
1812 	/* Update the last failed time. It means the trid is failed if its last
1813 	 * failed time is non-zero.
1814 	 */
1815 	path_id->last_failed_tsc = spdk_get_ticks();
1816 
1817 	if (next_path == NULL) {
1818 		/* There is no alternate trid within a controller. */
1819 		return false;
1820 	}
1821 
1822 	if (!start && nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1823 		/* Connect is not retried in a controller reset sequence. Connecting
1824 		 * the next trid will be done by the next bdev_nvme_failover_ctrlr() call.
1825 		 */
1826 		return false;
1827 	}
1828 
1829 	assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
1830 
1831 	SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr,
1832 		       path_id->trid.trsvcid,	next_path->trid.traddr, next_path->trid.trsvcid);
1833 
1834 	spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
1835 	nvme_ctrlr->active_path_id = next_path;
1836 	rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
1837 	assert(rc == 0);
1838 	TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
1839 	if (!remove) {
1840 		/** Shuffle the old trid to the end of the list and use the new one.
1841 		 * Allows for round robin through multiple connections.
1842 		 */
1843 		TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
1844 	} else {
1845 		free(path_id);
1846 	}
1847 
1848 	if (start || next_path->last_failed_tsc == 0) {
1849 		/* bdev_nvme_failover_ctrlr() is just called or the next trid is not failed
1850 		 * or used yet. Try the next trid now.
1851 		 */
1852 		return true;
1853 	}
1854 
1855 	if (spdk_get_ticks() > next_path->last_failed_tsc + spdk_get_ticks_hz() *
1856 	    nvme_ctrlr->opts.reconnect_delay_sec) {
1857 		/* Enough backoff passed since the next trid failed. Try the next trid now. */
1858 		return true;
1859 	}
1860 
1861 	/* The next trid will be tried after reconnect_delay_sec seconds. */
1862 	return false;
1863 }
1864 
1865 static bool
1866 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
1867 {
1868 	int32_t elapsed;
1869 
1870 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
1871 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
1872 		return false;
1873 	}
1874 
1875 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1876 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
1877 		return true;
1878 	} else {
1879 		return false;
1880 	}
1881 }
1882 
1883 static bool
1884 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
1885 {
1886 	uint32_t elapsed;
1887 
1888 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
1889 		return false;
1890 	}
1891 
1892 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1893 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
1894 		return true;
1895 	} else {
1896 		return false;
1897 	}
1898 }
1899 
1900 static void bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
1901 
1902 static void
1903 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
1904 {
1905 	int rc;
1906 
1907 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
1908 	if (rc != 0) {
1909 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
1910 		 * fail the reset sequence immediately.
1911 		 */
1912 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
1913 		return;
1914 	}
1915 
1916 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
1917 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
1918 	 */
1919 	assert(nvme_ctrlr->disconnected_cb == NULL);
1920 	nvme_ctrlr->disconnected_cb = cb_fn;
1921 
1922 	/* During disconnection, reduce the period to poll adminq more often. */
1923 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
1924 }
1925 
1926 enum bdev_nvme_op_after_reset {
1927 	OP_NONE,
1928 	OP_COMPLETE_PENDING_DESTRUCT,
1929 	OP_DESTRUCT,
1930 	OP_DELAYED_RECONNECT,
1931 	OP_FAILOVER,
1932 };
1933 
1934 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
1935 
1936 static _bdev_nvme_op_after_reset
1937 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
1938 {
1939 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1940 		/* Complete pending destruct after reset completes. */
1941 		return OP_COMPLETE_PENDING_DESTRUCT;
1942 	} else if (nvme_ctrlr->pending_failover) {
1943 		nvme_ctrlr->pending_failover = false;
1944 		nvme_ctrlr->reset_start_tsc = 0;
1945 		return OP_FAILOVER;
1946 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1947 		nvme_ctrlr->reset_start_tsc = 0;
1948 		return OP_NONE;
1949 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1950 		return OP_DESTRUCT;
1951 	} else {
1952 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
1953 			nvme_ctrlr->fast_io_fail_timedout = true;
1954 		}
1955 		return OP_DELAYED_RECONNECT;
1956 	}
1957 }
1958 
1959 static int bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
1960 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
1961 
1962 static int
1963 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
1964 {
1965 	struct nvme_ctrlr *nvme_ctrlr = ctx;
1966 
1967 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
1968 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1969 
1970 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
1971 
1972 	if (!nvme_ctrlr->reconnect_is_delayed) {
1973 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1974 		return SPDK_POLLER_BUSY;
1975 	}
1976 
1977 	nvme_ctrlr->reconnect_is_delayed = false;
1978 
1979 	if (nvme_ctrlr->destruct) {
1980 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1981 		return SPDK_POLLER_BUSY;
1982 	}
1983 
1984 	assert(nvme_ctrlr->resetting == false);
1985 	nvme_ctrlr->resetting = true;
1986 
1987 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1988 
1989 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
1990 
1991 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
1992 	return SPDK_POLLER_BUSY;
1993 }
1994 
1995 static void
1996 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
1997 {
1998 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
1999 
2000 	assert(nvme_ctrlr->reconnect_is_delayed == false);
2001 	nvme_ctrlr->reconnect_is_delayed = true;
2002 
2003 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
2004 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
2005 					    nvme_ctrlr,
2006 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
2007 }
2008 
2009 static void remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr);
2010 
2011 static void
2012 _bdev_nvme_reset_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2013 {
2014 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2015 	bool success = spdk_io_channel_iter_get_ctx(i) == NULL;
2016 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2017 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2018 	enum bdev_nvme_op_after_reset op_after_reset;
2019 
2020 	assert(nvme_ctrlr->thread == spdk_get_thread());
2021 
2022 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2023 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2024 
2025 	if (!success) {
2026 		SPDK_ERRLOG("Resetting controller failed.\n");
2027 	} else {
2028 		SPDK_NOTICELOG("Resetting controller successful.\n");
2029 	}
2030 
2031 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2032 	nvme_ctrlr->resetting = false;
2033 	nvme_ctrlr->dont_retry = false;
2034 	nvme_ctrlr->in_failover = false;
2035 
2036 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
2037 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2038 
2039 	/* Delay callbacks when the next operation is a failover. */
2040 	if (ctrlr_op_cb_fn && op_after_reset != OP_FAILOVER) {
2041 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, success ? 0 : -1);
2042 	}
2043 
2044 	switch (op_after_reset) {
2045 	case OP_COMPLETE_PENDING_DESTRUCT:
2046 		nvme_ctrlr_unregister(nvme_ctrlr);
2047 		break;
2048 	case OP_DESTRUCT:
2049 		bdev_nvme_delete_ctrlr(nvme_ctrlr, false);
2050 		remove_discovery_entry(nvme_ctrlr);
2051 		break;
2052 	case OP_DELAYED_RECONNECT:
2053 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
2054 		break;
2055 	case OP_FAILOVER:
2056 		nvme_ctrlr->ctrlr_op_cb_fn = ctrlr_op_cb_fn;
2057 		nvme_ctrlr->ctrlr_op_cb_arg = ctrlr_op_cb_arg;
2058 		bdev_nvme_failover_ctrlr(nvme_ctrlr);
2059 		break;
2060 	default:
2061 		break;
2062 	}
2063 }
2064 
2065 static void
2066 bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
2067 {
2068 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2069 	if (!success) {
2070 		/* Connecting the active trid failed. Set the next alternate trid to the
2071 		 * active trid if it exists.
2072 		 */
2073 		if (bdev_nvme_failover_trid(nvme_ctrlr, false, false)) {
2074 			/* The next alternate trid exists and is ready to try. Try it now. */
2075 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
2076 
2077 			nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2078 			return;
2079 		}
2080 
2081 		/* We came here if there is no alternate trid or if the next trid exists but
2082 		 * is not ready to try. We will try the active trid after reconnect_delay_sec
2083 		 * seconds if it is non-zero or at the next reset call otherwise.
2084 		 */
2085 	} else {
2086 		/* Connecting the active trid succeeded. Clear the last failed time because it
2087 		 * means the trid is failed if its last failed time is non-zero.
2088 		 */
2089 		nvme_ctrlr->active_path_id->last_failed_tsc = 0;
2090 	}
2091 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2092 
2093 	/* Make sure we clear any pending resets before returning. */
2094 	spdk_for_each_channel(nvme_ctrlr,
2095 			      bdev_nvme_complete_pending_resets,
2096 			      success ? NULL : (void *)0x1,
2097 			      _bdev_nvme_reset_ctrlr_complete);
2098 }
2099 
2100 static void
2101 bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status)
2102 {
2103 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2104 
2105 	bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2106 }
2107 
2108 static void
2109 bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
2110 {
2111 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
2112 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
2113 	struct nvme_qpair *nvme_qpair;
2114 
2115 	nvme_qpair = ctrlr_ch->qpair;
2116 	assert(nvme_qpair != NULL);
2117 
2118 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2119 
2120 	if (nvme_qpair->qpair != NULL) {
2121 		if (nvme_qpair->ctrlr->dont_retry) {
2122 			spdk_nvme_qpair_set_abort_dnr(nvme_qpair->qpair, true);
2123 		}
2124 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
2125 
2126 		/* The current full reset sequence will move to the next
2127 		 * ctrlr_channel after the qpair is actually disconnected.
2128 		 */
2129 		assert(ctrlr_ch->reset_iter == NULL);
2130 		ctrlr_ch->reset_iter = i;
2131 	} else {
2132 		spdk_for_each_channel_continue(i, 0);
2133 	}
2134 }
2135 
2136 static void
2137 bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
2138 {
2139 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2140 
2141 	if (status == 0) {
2142 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, true);
2143 	} else {
2144 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
2145 		spdk_for_each_channel(nvme_ctrlr,
2146 				      bdev_nvme_reset_destroy_qpair,
2147 				      NULL,
2148 				      bdev_nvme_reset_create_qpairs_failed);
2149 	}
2150 }
2151 
2152 static int
2153 bdev_nvme_reset_check_qpair_connected(void *ctx)
2154 {
2155 	struct nvme_ctrlr_channel *ctrlr_ch = ctx;
2156 
2157 	if (ctrlr_ch->reset_iter == NULL) {
2158 		/* qpair was already failed to connect and the reset sequence is being aborted. */
2159 		assert(ctrlr_ch->connect_poller == NULL);
2160 		assert(ctrlr_ch->qpair->qpair == NULL);
2161 		return SPDK_POLLER_BUSY;
2162 	}
2163 
2164 	assert(ctrlr_ch->qpair->qpair != NULL);
2165 
2166 	if (!spdk_nvme_qpair_is_connected(ctrlr_ch->qpair->qpair)) {
2167 		return SPDK_POLLER_BUSY;
2168 	}
2169 
2170 	spdk_poller_unregister(&ctrlr_ch->connect_poller);
2171 
2172 	/* qpair was completed to connect. Move to the next ctrlr_channel */
2173 	spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2174 	ctrlr_ch->reset_iter = NULL;
2175 
2176 	if (!g_opts.disable_auto_failback) {
2177 		_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
2178 	}
2179 
2180 	return SPDK_POLLER_BUSY;
2181 }
2182 
2183 static void
2184 bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
2185 {
2186 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2187 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
2188 	int rc;
2189 
2190 	rc = bdev_nvme_create_qpair(ctrlr_ch->qpair);
2191 	if (rc == 0) {
2192 		ctrlr_ch->connect_poller = SPDK_POLLER_REGISTER(bdev_nvme_reset_check_qpair_connected,
2193 					   ctrlr_ch, 0);
2194 
2195 		/* The current full reset sequence will move to the next
2196 		 * ctrlr_channel after the qpair is actually connected.
2197 		 */
2198 		assert(ctrlr_ch->reset_iter == NULL);
2199 		ctrlr_ch->reset_iter = i;
2200 	} else {
2201 		spdk_for_each_channel_continue(i, rc);
2202 	}
2203 }
2204 
2205 static int
2206 bdev_nvme_reconnect_ctrlr_poll(void *arg)
2207 {
2208 	struct nvme_ctrlr *nvme_ctrlr = arg;
2209 	int rc = -ETIMEDOUT;
2210 
2211 	if (!bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2212 		rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
2213 		if (rc == -EAGAIN) {
2214 			return SPDK_POLLER_BUSY;
2215 		}
2216 	}
2217 
2218 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
2219 	if (rc == 0) {
2220 		/* Recreate all of the I/O queue pairs */
2221 		spdk_for_each_channel(nvme_ctrlr,
2222 				      bdev_nvme_reset_create_qpair,
2223 				      NULL,
2224 				      bdev_nvme_reset_create_qpairs_done);
2225 	} else {
2226 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2227 	}
2228 	return SPDK_POLLER_BUSY;
2229 }
2230 
2231 static void
2232 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2233 {
2234 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
2235 
2236 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
2237 	assert(nvme_ctrlr->reset_detach_poller == NULL);
2238 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
2239 					  nvme_ctrlr, 0);
2240 }
2241 
2242 static void
2243 bdev_nvme_reset_destroy_qpair_done(struct spdk_io_channel_iter *i, int status)
2244 {
2245 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2246 
2247 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
2248 	assert(status == 0);
2249 
2250 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2251 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2252 	} else {
2253 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2254 	}
2255 }
2256 
2257 static void
2258 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2259 {
2260 	spdk_for_each_channel(nvme_ctrlr,
2261 			      bdev_nvme_reset_destroy_qpair,
2262 			      NULL,
2263 			      bdev_nvme_reset_destroy_qpair_done);
2264 }
2265 
2266 static void
2267 bdev_nvme_reconnect_ctrlr_now(void *ctx)
2268 {
2269 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2270 
2271 	assert(nvme_ctrlr->resetting == true);
2272 	assert(nvme_ctrlr->thread == spdk_get_thread());
2273 
2274 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2275 
2276 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2277 
2278 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2279 }
2280 
2281 static void
2282 _bdev_nvme_reset_ctrlr(void *ctx)
2283 {
2284 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2285 
2286 	assert(nvme_ctrlr->resetting == true);
2287 	assert(nvme_ctrlr->thread == spdk_get_thread());
2288 
2289 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2290 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
2291 	} else {
2292 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
2293 	}
2294 }
2295 
2296 static int
2297 bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2298 {
2299 	spdk_msg_fn msg_fn;
2300 
2301 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2302 	if (nvme_ctrlr->destruct) {
2303 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2304 		return -ENXIO;
2305 	}
2306 
2307 	if (nvme_ctrlr->resetting) {
2308 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2309 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
2310 		return -EBUSY;
2311 	}
2312 
2313 	if (nvme_ctrlr->disabled) {
2314 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2315 		SPDK_NOTICELOG("Unable to perform reset. Controller is disabled.\n");
2316 		return -EALREADY;
2317 	}
2318 
2319 	nvme_ctrlr->resetting = true;
2320 	nvme_ctrlr->dont_retry = true;
2321 
2322 	if (nvme_ctrlr->reconnect_is_delayed) {
2323 		SPDK_DEBUGLOG(bdev_nvme, "Reconnect is already scheduled.\n");
2324 		msg_fn = bdev_nvme_reconnect_ctrlr_now;
2325 		nvme_ctrlr->reconnect_is_delayed = false;
2326 	} else {
2327 		msg_fn = _bdev_nvme_reset_ctrlr;
2328 		assert(nvme_ctrlr->reset_start_tsc == 0);
2329 	}
2330 
2331 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2332 
2333 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2334 
2335 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2336 	return 0;
2337 }
2338 
2339 static int
2340 bdev_nvme_enable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2341 {
2342 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2343 	if (nvme_ctrlr->destruct) {
2344 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2345 		return -ENXIO;
2346 	}
2347 
2348 	if (nvme_ctrlr->resetting) {
2349 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2350 		return -EBUSY;
2351 	}
2352 
2353 	if (!nvme_ctrlr->disabled) {
2354 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2355 		return -EALREADY;
2356 	}
2357 
2358 	nvme_ctrlr->disabled = false;
2359 	nvme_ctrlr->resetting = true;
2360 
2361 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2362 
2363 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2364 
2365 	spdk_thread_send_msg(nvme_ctrlr->thread, bdev_nvme_reconnect_ctrlr_now, nvme_ctrlr);
2366 	return 0;
2367 }
2368 
2369 static void
2370 _bdev_nvme_disable_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2371 {
2372 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2373 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2374 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2375 	enum bdev_nvme_op_after_reset op_after_disable;
2376 
2377 	assert(nvme_ctrlr->thread == spdk_get_thread());
2378 
2379 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2380 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2381 
2382 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2383 
2384 	nvme_ctrlr->resetting = false;
2385 	nvme_ctrlr->dont_retry = false;
2386 
2387 	op_after_disable = bdev_nvme_check_op_after_reset(nvme_ctrlr, true);
2388 
2389 	nvme_ctrlr->disabled = true;
2390 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2391 
2392 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2393 
2394 	if (ctrlr_op_cb_fn) {
2395 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, 0);
2396 	}
2397 
2398 	switch (op_after_disable) {
2399 	case OP_COMPLETE_PENDING_DESTRUCT:
2400 		nvme_ctrlr_unregister(nvme_ctrlr);
2401 		break;
2402 	default:
2403 		break;
2404 	}
2405 
2406 }
2407 
2408 static void
2409 bdev_nvme_disable_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr)
2410 {
2411 	/* Make sure we clear any pending resets before returning. */
2412 	spdk_for_each_channel(nvme_ctrlr,
2413 			      bdev_nvme_complete_pending_resets,
2414 			      NULL,
2415 			      _bdev_nvme_disable_ctrlr_complete);
2416 }
2417 
2418 static void
2419 bdev_nvme_disable_destroy_qpairs_done(struct spdk_io_channel_iter *i, int status)
2420 {
2421 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2422 
2423 	assert(status == 0);
2424 
2425 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2426 		bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2427 	} else {
2428 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_ctrlr_complete);
2429 	}
2430 }
2431 
2432 static void
2433 bdev_nvme_disable_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2434 {
2435 	spdk_for_each_channel(nvme_ctrlr,
2436 			      bdev_nvme_reset_destroy_qpair,
2437 			      NULL,
2438 			      bdev_nvme_disable_destroy_qpairs_done);
2439 }
2440 
2441 static void
2442 _bdev_nvme_cancel_reconnect_and_disable_ctrlr(void *ctx)
2443 {
2444 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2445 
2446 	assert(nvme_ctrlr->resetting == true);
2447 	assert(nvme_ctrlr->thread == spdk_get_thread());
2448 
2449 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2450 
2451 	bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2452 }
2453 
2454 static void
2455 _bdev_nvme_disconnect_and_disable_ctrlr(void *ctx)
2456 {
2457 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2458 
2459 	assert(nvme_ctrlr->resetting == true);
2460 	assert(nvme_ctrlr->thread == spdk_get_thread());
2461 
2462 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2463 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_destroy_qpairs);
2464 	} else {
2465 		bdev_nvme_disable_destroy_qpairs(nvme_ctrlr);
2466 	}
2467 }
2468 
2469 static int
2470 bdev_nvme_disable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2471 {
2472 	spdk_msg_fn msg_fn;
2473 
2474 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2475 	if (nvme_ctrlr->destruct) {
2476 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2477 		return -ENXIO;
2478 	}
2479 
2480 	if (nvme_ctrlr->resetting) {
2481 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2482 		return -EBUSY;
2483 	}
2484 
2485 	if (nvme_ctrlr->disabled) {
2486 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2487 		return -EALREADY;
2488 	}
2489 
2490 	nvme_ctrlr->resetting = true;
2491 	nvme_ctrlr->dont_retry = true;
2492 
2493 	if (nvme_ctrlr->reconnect_is_delayed) {
2494 		msg_fn = _bdev_nvme_cancel_reconnect_and_disable_ctrlr;
2495 		nvme_ctrlr->reconnect_is_delayed = false;
2496 	} else {
2497 		msg_fn = _bdev_nvme_disconnect_and_disable_ctrlr;
2498 	}
2499 
2500 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2501 
2502 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2503 
2504 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2505 	return 0;
2506 }
2507 
2508 static int
2509 nvme_ctrlr_op(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2510 	      bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2511 {
2512 	int rc;
2513 
2514 	switch (op) {
2515 	case NVME_CTRLR_OP_RESET:
2516 		rc = bdev_nvme_reset_ctrlr(nvme_ctrlr);
2517 		break;
2518 	case NVME_CTRLR_OP_ENABLE:
2519 		rc = bdev_nvme_enable_ctrlr(nvme_ctrlr);
2520 		break;
2521 	case NVME_CTRLR_OP_DISABLE:
2522 		rc = bdev_nvme_disable_ctrlr(nvme_ctrlr);
2523 		break;
2524 	default:
2525 		rc = -EINVAL;
2526 		break;
2527 	}
2528 
2529 	if (rc == 0) {
2530 		assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL);
2531 		assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL);
2532 		nvme_ctrlr->ctrlr_op_cb_fn = cb_fn;
2533 		nvme_ctrlr->ctrlr_op_cb_arg = cb_arg;
2534 	}
2535 	return rc;
2536 }
2537 
2538 struct nvme_ctrlr_op_rpc_ctx {
2539 	struct nvme_ctrlr *nvme_ctrlr;
2540 	struct spdk_thread *orig_thread;
2541 	enum nvme_ctrlr_op op;
2542 	int rc;
2543 	bdev_nvme_ctrlr_op_cb cb_fn;
2544 	void *cb_arg;
2545 };
2546 
2547 static void
2548 _nvme_ctrlr_op_rpc_complete(void *_ctx)
2549 {
2550 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2551 
2552 	assert(ctx != NULL);
2553 	assert(ctx->cb_fn != NULL);
2554 
2555 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2556 
2557 	free(ctx);
2558 }
2559 
2560 static void
2561 nvme_ctrlr_op_rpc_complete(void *cb_arg, int rc)
2562 {
2563 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2564 
2565 	ctx->rc = rc;
2566 
2567 	spdk_thread_send_msg(ctx->orig_thread, _nvme_ctrlr_op_rpc_complete, ctx);
2568 }
2569 
2570 void
2571 nvme_ctrlr_op_rpc(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2572 		  bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2573 {
2574 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2575 	int rc;
2576 
2577 	assert(cb_fn != NULL);
2578 
2579 	ctx = calloc(1, sizeof(*ctx));
2580 	if (ctx == NULL) {
2581 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2582 		cb_fn(cb_arg, -ENOMEM);
2583 		return;
2584 	}
2585 
2586 	ctx->orig_thread = spdk_get_thread();
2587 	ctx->cb_fn = cb_fn;
2588 	ctx->cb_arg = cb_arg;
2589 
2590 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_ctrlr_op_rpc_complete, ctx);
2591 	if (rc == 0) {
2592 		return;
2593 	} else if (rc == -EALREADY) {
2594 		rc = 0;
2595 	}
2596 
2597 	nvme_ctrlr_op_rpc_complete(ctx, rc);
2598 }
2599 
2600 static void nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc);
2601 
2602 static void
2603 _nvme_bdev_ctrlr_op_rpc_continue(void *_ctx)
2604 {
2605 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2606 	struct nvme_ctrlr *prev_nvme_ctrlr, *next_nvme_ctrlr;
2607 	int rc;
2608 
2609 	prev_nvme_ctrlr = ctx->nvme_ctrlr;
2610 	ctx->nvme_ctrlr = NULL;
2611 
2612 	if (ctx->rc != 0) {
2613 		goto complete;
2614 	}
2615 
2616 	next_nvme_ctrlr = TAILQ_NEXT(prev_nvme_ctrlr, tailq);
2617 	if (next_nvme_ctrlr == NULL) {
2618 		goto complete;
2619 	}
2620 
2621 	rc = nvme_ctrlr_op(next_nvme_ctrlr, ctx->op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2622 	if (rc == 0) {
2623 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2624 		return;
2625 	} else if (rc == -EALREADY) {
2626 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2627 		rc = 0;
2628 	}
2629 
2630 	ctx->rc = rc;
2631 
2632 complete:
2633 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2634 	free(ctx);
2635 }
2636 
2637 static void
2638 nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc)
2639 {
2640 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2641 
2642 	ctx->rc = rc;
2643 
2644 	spdk_thread_send_msg(ctx->orig_thread, _nvme_bdev_ctrlr_op_rpc_continue, ctx);
2645 }
2646 
2647 void
2648 nvme_bdev_ctrlr_op_rpc(struct nvme_bdev_ctrlr *nbdev_ctrlr, enum nvme_ctrlr_op op,
2649 		       bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2650 {
2651 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2652 	struct nvme_ctrlr *nvme_ctrlr;
2653 	int rc;
2654 
2655 	assert(cb_fn != NULL);
2656 
2657 	ctx = calloc(1, sizeof(*ctx));
2658 	if (ctx == NULL) {
2659 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2660 		cb_fn(cb_arg, -ENOMEM);
2661 		return;
2662 	}
2663 
2664 	ctx->orig_thread = spdk_get_thread();
2665 	ctx->op = op;
2666 	ctx->cb_fn = cb_fn;
2667 	ctx->cb_arg = cb_arg;
2668 
2669 	nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
2670 	assert(nvme_ctrlr != NULL);
2671 
2672 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2673 	if (rc == 0) {
2674 		ctx->nvme_ctrlr = nvme_ctrlr;
2675 		return;
2676 	} else if (rc == -EALREADY) {
2677 		ctx->nvme_ctrlr = nvme_ctrlr;
2678 		rc = 0;
2679 	}
2680 
2681 	nvme_bdev_ctrlr_op_rpc_continue(ctx, rc);
2682 }
2683 
2684 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
2685 
2686 static void
2687 _bdev_nvme_reset_io_complete(struct spdk_io_channel_iter *i, int status)
2688 {
2689 	struct nvme_bdev_io *bio = spdk_io_channel_iter_get_ctx(i);
2690 	enum spdk_bdev_io_status io_status;
2691 
2692 	if (bio->cpl.cdw0 == 0) {
2693 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2694 	} else {
2695 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
2696 	}
2697 
2698 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
2699 }
2700 
2701 static void
2702 bdev_nvme_abort_bdev_channel(struct spdk_io_channel_iter *i)
2703 {
2704 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2705 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
2706 
2707 	bdev_nvme_abort_retry_ios(nbdev_ch);
2708 
2709 	spdk_for_each_channel_continue(i, 0);
2710 }
2711 
2712 static void
2713 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
2714 {
2715 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2716 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
2717 
2718 	/* Abort all queued I/Os for retry. */
2719 	spdk_for_each_channel(nbdev,
2720 			      bdev_nvme_abort_bdev_channel,
2721 			      bio,
2722 			      _bdev_nvme_reset_io_complete);
2723 }
2724 
2725 static void
2726 _bdev_nvme_reset_io_continue(void *ctx)
2727 {
2728 	struct nvme_bdev_io *bio = ctx;
2729 	struct nvme_io_path *prev_io_path, *next_io_path;
2730 	int rc;
2731 
2732 	prev_io_path = bio->io_path;
2733 	bio->io_path = NULL;
2734 
2735 	if (bio->cpl.cdw0 != 0) {
2736 		goto complete;
2737 	}
2738 
2739 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
2740 	if (next_io_path == NULL) {
2741 		goto complete;
2742 	}
2743 
2744 	rc = _bdev_nvme_reset_io(next_io_path, bio);
2745 	if (rc == 0) {
2746 		return;
2747 	}
2748 
2749 	bio->cpl.cdw0 = 1;
2750 
2751 complete:
2752 	bdev_nvme_reset_io_complete(bio);
2753 }
2754 
2755 static void
2756 bdev_nvme_reset_io_continue(void *cb_arg, int rc)
2757 {
2758 	struct nvme_bdev_io *bio = cb_arg;
2759 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2760 
2761 	bio->cpl.cdw0 = (rc == 0) ? 0 : 1;
2762 
2763 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), _bdev_nvme_reset_io_continue, bio);
2764 }
2765 
2766 static int
2767 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
2768 {
2769 	struct nvme_ctrlr_channel *ctrlr_ch;
2770 	struct spdk_bdev_io *bdev_io;
2771 	int rc;
2772 
2773 	rc = nvme_ctrlr_op(io_path->qpair->ctrlr, NVME_CTRLR_OP_RESET,
2774 			   bdev_nvme_reset_io_continue, bio);
2775 	if (rc == 0) {
2776 		assert(bio->io_path == NULL);
2777 		bio->io_path = io_path;
2778 	} else if (rc == -EBUSY) {
2779 		ctrlr_ch = io_path->qpair->ctrlr_ch;
2780 		assert(ctrlr_ch != NULL);
2781 		/*
2782 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
2783 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
2784 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
2785 		 */
2786 		bdev_io = spdk_bdev_io_from_ctx(bio);
2787 		TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bdev_io, module_link);
2788 		rc = 0;
2789 	}
2790 
2791 	return rc;
2792 }
2793 
2794 static void
2795 bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio)
2796 {
2797 	struct nvme_io_path *io_path;
2798 	int rc;
2799 
2800 	bio->cpl.cdw0 = 0;
2801 
2802 	/* Reset all nvme_ctrlrs of a bdev controller sequentially. */
2803 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
2804 	assert(io_path != NULL);
2805 
2806 	rc = _bdev_nvme_reset_io(io_path, bio);
2807 	if (rc != 0) {
2808 		/* If the current nvme_ctrlr is disabled, skip it and move to the next nvme_ctrlr. */
2809 		bdev_nvme_reset_io_continue(bio, rc == -EALREADY);
2810 	}
2811 }
2812 
2813 static int
2814 bdev_nvme_failover_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool remove)
2815 {
2816 	if (nvme_ctrlr->destruct) {
2817 		/* Don't bother resetting if the controller is in the process of being destructed. */
2818 		return -ENXIO;
2819 	}
2820 
2821 	if (nvme_ctrlr->resetting) {
2822 		if (!nvme_ctrlr->in_failover) {
2823 			SPDK_NOTICELOG("Reset is already in progress. Defer failover until reset completes.\n");
2824 
2825 			/* Defer failover until reset completes. */
2826 			nvme_ctrlr->pending_failover = true;
2827 			return -EINPROGRESS;
2828 		} else {
2829 			SPDK_NOTICELOG("Unable to perform failover, already in progress.\n");
2830 			return -EBUSY;
2831 		}
2832 	}
2833 
2834 	bdev_nvme_failover_trid(nvme_ctrlr, remove, true);
2835 
2836 	if (nvme_ctrlr->reconnect_is_delayed) {
2837 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
2838 
2839 		/* We rely on the next reconnect for the failover. */
2840 		return -EALREADY;
2841 	}
2842 
2843 	if (nvme_ctrlr->disabled) {
2844 		SPDK_NOTICELOG("Controller is disabled.\n");
2845 
2846 		/* We rely on the enablement for the failover. */
2847 		return -EALREADY;
2848 	}
2849 
2850 	nvme_ctrlr->resetting = true;
2851 	nvme_ctrlr->in_failover = true;
2852 
2853 	assert(nvme_ctrlr->reset_start_tsc == 0);
2854 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2855 
2856 	return 0;
2857 }
2858 
2859 static int
2860 bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2861 {
2862 	int rc;
2863 
2864 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2865 	rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, false);
2866 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2867 
2868 	if (rc == 0) {
2869 		spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset_ctrlr, nvme_ctrlr);
2870 	} else if (rc == -EALREADY) {
2871 		rc = 0;
2872 	}
2873 
2874 	return rc;
2875 }
2876 
2877 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2878 			   uint64_t num_blocks);
2879 
2880 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2881 				  uint64_t num_blocks);
2882 
2883 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks,
2884 			  uint64_t src_offset_blocks,
2885 			  uint64_t num_blocks);
2886 
2887 static void
2888 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
2889 		     bool success)
2890 {
2891 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2892 	int ret;
2893 
2894 	if (!success) {
2895 		ret = -EINVAL;
2896 		goto exit;
2897 	}
2898 
2899 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
2900 		ret = -ENXIO;
2901 		goto exit;
2902 	}
2903 
2904 	ret = bdev_nvme_readv(bio,
2905 			      bdev_io->u.bdev.iovs,
2906 			      bdev_io->u.bdev.iovcnt,
2907 			      bdev_io->u.bdev.md_buf,
2908 			      bdev_io->u.bdev.num_blocks,
2909 			      bdev_io->u.bdev.offset_blocks,
2910 			      bdev_io->u.bdev.dif_check_flags,
2911 			      bdev_io->u.bdev.memory_domain,
2912 			      bdev_io->u.bdev.memory_domain_ctx,
2913 			      bdev_io->u.bdev.accel_sequence);
2914 
2915 exit:
2916 	if (spdk_unlikely(ret != 0)) {
2917 		bdev_nvme_io_complete(bio, ret);
2918 	}
2919 }
2920 
2921 static inline void
2922 _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
2923 {
2924 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2925 	struct spdk_bdev *bdev = bdev_io->bdev;
2926 	struct nvme_bdev_io *nbdev_io_to_abort;
2927 	int rc = 0;
2928 
2929 	switch (bdev_io->type) {
2930 	case SPDK_BDEV_IO_TYPE_READ:
2931 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
2932 
2933 			rc = bdev_nvme_readv(nbdev_io,
2934 					     bdev_io->u.bdev.iovs,
2935 					     bdev_io->u.bdev.iovcnt,
2936 					     bdev_io->u.bdev.md_buf,
2937 					     bdev_io->u.bdev.num_blocks,
2938 					     bdev_io->u.bdev.offset_blocks,
2939 					     bdev_io->u.bdev.dif_check_flags,
2940 					     bdev_io->u.bdev.memory_domain,
2941 					     bdev_io->u.bdev.memory_domain_ctx,
2942 					     bdev_io->u.bdev.accel_sequence);
2943 		} else {
2944 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
2945 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
2946 			rc = 0;
2947 		}
2948 		break;
2949 	case SPDK_BDEV_IO_TYPE_WRITE:
2950 		rc = bdev_nvme_writev(nbdev_io,
2951 				      bdev_io->u.bdev.iovs,
2952 				      bdev_io->u.bdev.iovcnt,
2953 				      bdev_io->u.bdev.md_buf,
2954 				      bdev_io->u.bdev.num_blocks,
2955 				      bdev_io->u.bdev.offset_blocks,
2956 				      bdev_io->u.bdev.dif_check_flags,
2957 				      bdev_io->u.bdev.memory_domain,
2958 				      bdev_io->u.bdev.memory_domain_ctx,
2959 				      bdev_io->u.bdev.accel_sequence);
2960 		break;
2961 	case SPDK_BDEV_IO_TYPE_COMPARE:
2962 		rc = bdev_nvme_comparev(nbdev_io,
2963 					bdev_io->u.bdev.iovs,
2964 					bdev_io->u.bdev.iovcnt,
2965 					bdev_io->u.bdev.md_buf,
2966 					bdev_io->u.bdev.num_blocks,
2967 					bdev_io->u.bdev.offset_blocks,
2968 					bdev_io->u.bdev.dif_check_flags);
2969 		break;
2970 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
2971 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
2972 						   bdev_io->u.bdev.iovs,
2973 						   bdev_io->u.bdev.iovcnt,
2974 						   bdev_io->u.bdev.fused_iovs,
2975 						   bdev_io->u.bdev.fused_iovcnt,
2976 						   bdev_io->u.bdev.md_buf,
2977 						   bdev_io->u.bdev.num_blocks,
2978 						   bdev_io->u.bdev.offset_blocks,
2979 						   bdev_io->u.bdev.dif_check_flags);
2980 		break;
2981 	case SPDK_BDEV_IO_TYPE_UNMAP:
2982 		rc = bdev_nvme_unmap(nbdev_io,
2983 				     bdev_io->u.bdev.offset_blocks,
2984 				     bdev_io->u.bdev.num_blocks);
2985 		break;
2986 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
2987 		rc =  bdev_nvme_write_zeroes(nbdev_io,
2988 					     bdev_io->u.bdev.offset_blocks,
2989 					     bdev_io->u.bdev.num_blocks);
2990 		break;
2991 	case SPDK_BDEV_IO_TYPE_RESET:
2992 		nbdev_io->io_path = NULL;
2993 		bdev_nvme_reset_io(nbdev_ch, nbdev_io);
2994 		return;
2995 
2996 	case SPDK_BDEV_IO_TYPE_FLUSH:
2997 		bdev_nvme_io_complete(nbdev_io, 0);
2998 		return;
2999 
3000 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3001 		rc = bdev_nvme_zone_appendv(nbdev_io,
3002 					    bdev_io->u.bdev.iovs,
3003 					    bdev_io->u.bdev.iovcnt,
3004 					    bdev_io->u.bdev.md_buf,
3005 					    bdev_io->u.bdev.num_blocks,
3006 					    bdev_io->u.bdev.offset_blocks,
3007 					    bdev_io->u.bdev.dif_check_flags);
3008 		break;
3009 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3010 		rc = bdev_nvme_get_zone_info(nbdev_io,
3011 					     bdev_io->u.zone_mgmt.zone_id,
3012 					     bdev_io->u.zone_mgmt.num_zones,
3013 					     bdev_io->u.zone_mgmt.buf);
3014 		break;
3015 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3016 		rc = bdev_nvme_zone_management(nbdev_io,
3017 					       bdev_io->u.zone_mgmt.zone_id,
3018 					       bdev_io->u.zone_mgmt.zone_action);
3019 		break;
3020 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3021 		nbdev_io->io_path = NULL;
3022 		bdev_nvme_admin_passthru(nbdev_ch,
3023 					 nbdev_io,
3024 					 &bdev_io->u.nvme_passthru.cmd,
3025 					 bdev_io->u.nvme_passthru.buf,
3026 					 bdev_io->u.nvme_passthru.nbytes);
3027 		return;
3028 
3029 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3030 		rc = bdev_nvme_io_passthru(nbdev_io,
3031 					   &bdev_io->u.nvme_passthru.cmd,
3032 					   bdev_io->u.nvme_passthru.buf,
3033 					   bdev_io->u.nvme_passthru.nbytes);
3034 		break;
3035 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3036 		rc = bdev_nvme_io_passthru_md(nbdev_io,
3037 					      &bdev_io->u.nvme_passthru.cmd,
3038 					      bdev_io->u.nvme_passthru.buf,
3039 					      bdev_io->u.nvme_passthru.nbytes,
3040 					      bdev_io->u.nvme_passthru.md_buf,
3041 					      bdev_io->u.nvme_passthru.md_len);
3042 		break;
3043 	case SPDK_BDEV_IO_TYPE_NVME_IOV_MD:
3044 		rc = bdev_nvme_iov_passthru_md(nbdev_io,
3045 					       &bdev_io->u.nvme_passthru.cmd,
3046 					       bdev_io->u.nvme_passthru.iovs,
3047 					       bdev_io->u.nvme_passthru.iovcnt,
3048 					       bdev_io->u.nvme_passthru.nbytes,
3049 					       bdev_io->u.nvme_passthru.md_buf,
3050 					       bdev_io->u.nvme_passthru.md_len);
3051 		break;
3052 	case SPDK_BDEV_IO_TYPE_ABORT:
3053 		nbdev_io->io_path = NULL;
3054 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
3055 		bdev_nvme_abort(nbdev_ch,
3056 				nbdev_io,
3057 				nbdev_io_to_abort);
3058 		return;
3059 
3060 	case SPDK_BDEV_IO_TYPE_COPY:
3061 		rc = bdev_nvme_copy(nbdev_io,
3062 				    bdev_io->u.bdev.offset_blocks,
3063 				    bdev_io->u.bdev.copy.src_offset_blocks,
3064 				    bdev_io->u.bdev.num_blocks);
3065 		break;
3066 	default:
3067 		rc = -EINVAL;
3068 		break;
3069 	}
3070 
3071 	if (spdk_unlikely(rc != 0)) {
3072 		bdev_nvme_io_complete(nbdev_io, rc);
3073 	}
3074 }
3075 
3076 static void
3077 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
3078 {
3079 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3080 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3081 
3082 	if (spdk_likely(nbdev_io->submit_tsc == 0)) {
3083 		nbdev_io->submit_tsc = spdk_bdev_io_get_submit_tsc(bdev_io);
3084 	} else {
3085 		/* There are cases where submit_tsc != 0, i.e. retry I/O.
3086 		 * We need to update submit_tsc here.
3087 		 */
3088 		nbdev_io->submit_tsc = spdk_get_ticks();
3089 	}
3090 
3091 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
3092 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
3093 	if (spdk_unlikely(!nbdev_io->io_path)) {
3094 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
3095 			bdev_nvme_io_complete(nbdev_io, -ENXIO);
3096 			return;
3097 		}
3098 
3099 		/* Admin commands do not use the optimal I/O path.
3100 		 * Simply fall through even if it is not found.
3101 		 */
3102 	}
3103 
3104 	_bdev_nvme_submit_request(nbdev_ch, bdev_io);
3105 }
3106 
3107 static bool
3108 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
3109 {
3110 	struct nvme_bdev *nbdev = ctx;
3111 	struct nvme_ns *nvme_ns;
3112 	struct spdk_nvme_ns *ns;
3113 	struct spdk_nvme_ctrlr *ctrlr;
3114 	const struct spdk_nvme_ctrlr_data *cdata;
3115 
3116 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
3117 	assert(nvme_ns != NULL);
3118 	ns = nvme_ns->ns;
3119 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3120 
3121 	switch (io_type) {
3122 	case SPDK_BDEV_IO_TYPE_READ:
3123 	case SPDK_BDEV_IO_TYPE_WRITE:
3124 	case SPDK_BDEV_IO_TYPE_RESET:
3125 	case SPDK_BDEV_IO_TYPE_FLUSH:
3126 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3127 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3128 	case SPDK_BDEV_IO_TYPE_ABORT:
3129 		return true;
3130 
3131 	case SPDK_BDEV_IO_TYPE_COMPARE:
3132 		return spdk_nvme_ns_supports_compare(ns);
3133 
3134 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3135 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
3136 
3137 	case SPDK_BDEV_IO_TYPE_UNMAP:
3138 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3139 		return cdata->oncs.dsm;
3140 
3141 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3142 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3143 		return cdata->oncs.write_zeroes;
3144 
3145 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3146 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
3147 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
3148 			return true;
3149 		}
3150 		return false;
3151 
3152 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3153 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3154 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
3155 
3156 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3157 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
3158 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
3159 
3160 	case SPDK_BDEV_IO_TYPE_COPY:
3161 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3162 		return cdata->oncs.copy;
3163 
3164 	default:
3165 		return false;
3166 	}
3167 }
3168 
3169 static int
3170 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
3171 {
3172 	struct nvme_qpair *nvme_qpair;
3173 	struct spdk_io_channel *pg_ch;
3174 	int rc;
3175 
3176 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
3177 	if (!nvme_qpair) {
3178 		SPDK_ERRLOG("Failed to alloc nvme_qpair.\n");
3179 		return -1;
3180 	}
3181 
3182 	TAILQ_INIT(&nvme_qpair->io_path_list);
3183 
3184 	nvme_qpair->ctrlr = nvme_ctrlr;
3185 	nvme_qpair->ctrlr_ch = ctrlr_ch;
3186 
3187 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
3188 	if (!pg_ch) {
3189 		free(nvme_qpair);
3190 		return -1;
3191 	}
3192 
3193 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
3194 
3195 #ifdef SPDK_CONFIG_VTUNE
3196 	nvme_qpair->group->collect_spin_stat = true;
3197 #else
3198 	nvme_qpair->group->collect_spin_stat = false;
3199 #endif
3200 
3201 	if (!nvme_ctrlr->disabled) {
3202 		/* If a nvme_ctrlr is disabled, don't try to create qpair for it. Qpair will
3203 		 * be created when it's enabled.
3204 		 */
3205 		rc = bdev_nvme_create_qpair(nvme_qpair);
3206 		if (rc != 0) {
3207 			/* nvme_ctrlr can't create IO qpair if connection is down.
3208 			 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
3209 			 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
3210 			 * submitted IO will be queued until IO qpair is successfully created.
3211 			 *
3212 			 * Hence, if both are satisfied, ignore the failure.
3213 			 */
3214 			if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
3215 				spdk_put_io_channel(pg_ch);
3216 				free(nvme_qpair);
3217 				return rc;
3218 			}
3219 		}
3220 	}
3221 
3222 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3223 
3224 	ctrlr_ch->qpair = nvme_qpair;
3225 
3226 	pthread_mutex_lock(&nvme_qpair->ctrlr->mutex);
3227 	nvme_qpair->ctrlr->ref++;
3228 	pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex);
3229 
3230 	return 0;
3231 }
3232 
3233 static int
3234 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3235 {
3236 	struct nvme_ctrlr *nvme_ctrlr = io_device;
3237 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3238 
3239 	TAILQ_INIT(&ctrlr_ch->pending_resets);
3240 
3241 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
3242 }
3243 
3244 static void
3245 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
3246 {
3247 	struct nvme_io_path *io_path, *next;
3248 
3249 	assert(nvme_qpair->group != NULL);
3250 
3251 	TAILQ_FOREACH_SAFE(io_path, &nvme_qpair->io_path_list, tailq, next) {
3252 		TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
3253 		nvme_io_path_free(io_path);
3254 	}
3255 
3256 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3257 
3258 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
3259 
3260 	nvme_ctrlr_release(nvme_qpair->ctrlr);
3261 
3262 	free(nvme_qpair);
3263 }
3264 
3265 static void
3266 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3267 {
3268 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3269 	struct nvme_qpair *nvme_qpair;
3270 
3271 	nvme_qpair = ctrlr_ch->qpair;
3272 	assert(nvme_qpair != NULL);
3273 
3274 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
3275 
3276 	if (nvme_qpair->qpair != NULL) {
3277 		if (ctrlr_ch->reset_iter == NULL) {
3278 			spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
3279 		} else {
3280 			/* Skip current ctrlr_channel in a full reset sequence because
3281 			 * it is being deleted now. The qpair is already being disconnected.
3282 			 * We do not have to restart disconnecting it.
3283 			 */
3284 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
3285 		}
3286 
3287 		/* We cannot release a reference to the poll group now.
3288 		 * The qpair may be disconnected asynchronously later.
3289 		 * We need to poll it until it is actually disconnected.
3290 		 * Just detach the qpair from the deleting ctrlr_channel.
3291 		 */
3292 		nvme_qpair->ctrlr_ch = NULL;
3293 	} else {
3294 		assert(ctrlr_ch->reset_iter == NULL);
3295 
3296 		nvme_qpair_delete(nvme_qpair);
3297 	}
3298 }
3299 
3300 static inline struct spdk_io_channel *
3301 bdev_nvme_get_accel_channel(struct nvme_poll_group *group)
3302 {
3303 	if (spdk_unlikely(!group->accel_channel)) {
3304 		group->accel_channel = spdk_accel_get_io_channel();
3305 		if (!group->accel_channel) {
3306 			SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
3307 				    group);
3308 			return NULL;
3309 		}
3310 	}
3311 
3312 	return group->accel_channel;
3313 }
3314 
3315 static void
3316 bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
3317 			      uint32_t iov_cnt, uint32_t seed,
3318 			      spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3319 {
3320 	struct spdk_io_channel *accel_ch;
3321 	struct nvme_poll_group *group = ctx;
3322 	int rc;
3323 
3324 	assert(cb_fn != NULL);
3325 
3326 	accel_ch = bdev_nvme_get_accel_channel(group);
3327 	if (spdk_unlikely(accel_ch == NULL)) {
3328 		cb_fn(cb_arg, -ENOMEM);
3329 		return;
3330 	}
3331 
3332 	rc = spdk_accel_submit_crc32cv(accel_ch, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
3333 	if (rc) {
3334 		/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
3335 		if (rc == -ENOMEM || rc == -EINVAL) {
3336 			cb_fn(cb_arg, rc);
3337 		}
3338 		SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
3339 	}
3340 }
3341 
3342 static void
3343 bdev_nvme_finish_sequence(void *seq, spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3344 {
3345 	spdk_accel_sequence_finish(seq, cb_fn, cb_arg);
3346 }
3347 
3348 static void
3349 bdev_nvme_abort_sequence(void *seq)
3350 {
3351 	spdk_accel_sequence_abort(seq);
3352 }
3353 
3354 static void
3355 bdev_nvme_reverse_sequence(void *seq)
3356 {
3357 	spdk_accel_sequence_reverse(seq);
3358 }
3359 
3360 static int
3361 bdev_nvme_append_crc32c(void *ctx, void **seq, uint32_t *dst, struct iovec *iovs, uint32_t iovcnt,
3362 			struct spdk_memory_domain *domain, void *domain_ctx, uint32_t seed,
3363 			spdk_nvme_accel_step_cb cb_fn, void *cb_arg)
3364 {
3365 	struct spdk_io_channel *ch;
3366 	struct nvme_poll_group *group = ctx;
3367 
3368 	ch = bdev_nvme_get_accel_channel(group);
3369 	if (spdk_unlikely(ch == NULL)) {
3370 		return -ENOMEM;
3371 	}
3372 
3373 	return spdk_accel_append_crc32c((struct spdk_accel_sequence **)seq, ch, dst, iovs, iovcnt,
3374 					domain, domain_ctx, seed, cb_fn, cb_arg);
3375 }
3376 
3377 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
3378 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
3379 	.submit_accel_crc32c	= bdev_nvme_submit_accel_crc32c,
3380 	.append_crc32c		= bdev_nvme_append_crc32c,
3381 	.finish_sequence	= bdev_nvme_finish_sequence,
3382 	.reverse_sequence	= bdev_nvme_reverse_sequence,
3383 	.abort_sequence		= bdev_nvme_abort_sequence,
3384 };
3385 
3386 static int
3387 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
3388 {
3389 	struct nvme_poll_group *group = ctx_buf;
3390 
3391 	TAILQ_INIT(&group->qpair_list);
3392 
3393 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
3394 	if (group->group == NULL) {
3395 		return -1;
3396 	}
3397 
3398 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
3399 
3400 	if (group->poller == NULL) {
3401 		spdk_nvme_poll_group_destroy(group->group);
3402 		return -1;
3403 	}
3404 
3405 	return 0;
3406 }
3407 
3408 static void
3409 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
3410 {
3411 	struct nvme_poll_group *group = ctx_buf;
3412 
3413 	assert(TAILQ_EMPTY(&group->qpair_list));
3414 
3415 	if (group->accel_channel) {
3416 		spdk_put_io_channel(group->accel_channel);
3417 	}
3418 
3419 	spdk_poller_unregister(&group->poller);
3420 	if (spdk_nvme_poll_group_destroy(group->group)) {
3421 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
3422 		assert(false);
3423 	}
3424 }
3425 
3426 static struct spdk_io_channel *
3427 bdev_nvme_get_io_channel(void *ctx)
3428 {
3429 	struct nvme_bdev *nvme_bdev = ctx;
3430 
3431 	return spdk_get_io_channel(nvme_bdev);
3432 }
3433 
3434 static void *
3435 bdev_nvme_get_module_ctx(void *ctx)
3436 {
3437 	struct nvme_bdev *nvme_bdev = ctx;
3438 	struct nvme_ns *nvme_ns;
3439 
3440 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
3441 		return NULL;
3442 	}
3443 
3444 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
3445 	if (!nvme_ns) {
3446 		return NULL;
3447 	}
3448 
3449 	return nvme_ns->ns;
3450 }
3451 
3452 static const char *
3453 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
3454 {
3455 	switch (ana_state) {
3456 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3457 		return "optimized";
3458 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3459 		return "non_optimized";
3460 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3461 		return "inaccessible";
3462 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
3463 		return "persistent_loss";
3464 	case SPDK_NVME_ANA_CHANGE_STATE:
3465 		return "change";
3466 	default:
3467 		return NULL;
3468 	}
3469 }
3470 
3471 static int
3472 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
3473 {
3474 	struct spdk_memory_domain **_domains = NULL;
3475 	struct nvme_bdev *nbdev = ctx;
3476 	struct nvme_ns *nvme_ns;
3477 	int i = 0, _array_size = array_size;
3478 	int rc = 0;
3479 
3480 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3481 		if (domains && array_size >= i) {
3482 			_domains = &domains[i];
3483 		} else {
3484 			_domains = NULL;
3485 		}
3486 		rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size);
3487 		if (rc > 0) {
3488 			i += rc;
3489 			if (_array_size >= rc) {
3490 				_array_size -= rc;
3491 			} else {
3492 				_array_size = 0;
3493 			}
3494 		} else if (rc < 0) {
3495 			return rc;
3496 		}
3497 	}
3498 
3499 	return i;
3500 }
3501 
3502 static const char *
3503 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
3504 {
3505 	if (nvme_ctrlr->destruct) {
3506 		return "deleting";
3507 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
3508 		return "failed";
3509 	} else if (nvme_ctrlr->resetting) {
3510 		return "resetting";
3511 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
3512 		return "reconnect_is_delayed";
3513 	} else if (nvme_ctrlr->disabled) {
3514 		return "disabled";
3515 	} else {
3516 		return "enabled";
3517 	}
3518 }
3519 
3520 void
3521 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
3522 {
3523 	struct spdk_nvme_transport_id *trid;
3524 	const struct spdk_nvme_ctrlr_opts *opts;
3525 	const struct spdk_nvme_ctrlr_data *cdata;
3526 	struct nvme_path_id *path_id;
3527 
3528 	spdk_json_write_object_begin(w);
3529 
3530 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
3531 
3532 #ifdef SPDK_CONFIG_NVME_CUSE
3533 	size_t cuse_name_size = 128;
3534 	char cuse_name[cuse_name_size];
3535 
3536 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
3537 	if (rc == 0) {
3538 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3539 	}
3540 #endif
3541 	trid = &nvme_ctrlr->active_path_id->trid;
3542 	spdk_json_write_named_object_begin(w, "trid");
3543 	nvme_bdev_dump_trid_json(trid, w);
3544 	spdk_json_write_object_end(w);
3545 
3546 	path_id = TAILQ_NEXT(nvme_ctrlr->active_path_id, link);
3547 	if (path_id != NULL) {
3548 		spdk_json_write_named_array_begin(w, "alternate_trids");
3549 		do {
3550 			trid = &path_id->trid;
3551 			spdk_json_write_object_begin(w);
3552 			nvme_bdev_dump_trid_json(trid, w);
3553 			spdk_json_write_object_end(w);
3554 
3555 			path_id = TAILQ_NEXT(path_id, link);
3556 		} while (path_id != NULL);
3557 		spdk_json_write_array_end(w);
3558 	}
3559 
3560 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
3561 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3562 
3563 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
3564 	spdk_json_write_named_object_begin(w, "host");
3565 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
3566 	spdk_json_write_named_string(w, "addr", opts->src_addr);
3567 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
3568 	spdk_json_write_object_end(w);
3569 
3570 	spdk_json_write_object_end(w);
3571 }
3572 
3573 static void
3574 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
3575 			 struct nvme_ns *nvme_ns)
3576 {
3577 	struct spdk_nvme_ns *ns;
3578 	struct spdk_nvme_ctrlr *ctrlr;
3579 	const struct spdk_nvme_ctrlr_data *cdata;
3580 	const struct spdk_nvme_transport_id *trid;
3581 	union spdk_nvme_vs_register vs;
3582 	const struct spdk_nvme_ns_data *nsdata;
3583 	char buf[128];
3584 
3585 	ns = nvme_ns->ns;
3586 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3587 
3588 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3589 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
3590 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
3591 
3592 	spdk_json_write_object_begin(w);
3593 
3594 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
3595 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
3596 	}
3597 
3598 	spdk_json_write_named_object_begin(w, "trid");
3599 
3600 	nvme_bdev_dump_trid_json(trid, w);
3601 
3602 	spdk_json_write_object_end(w);
3603 
3604 #ifdef SPDK_CONFIG_NVME_CUSE
3605 	size_t cuse_name_size = 128;
3606 	char cuse_name[cuse_name_size];
3607 
3608 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
3609 					    cuse_name, &cuse_name_size);
3610 	if (rc == 0) {
3611 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3612 	}
3613 #endif
3614 
3615 	spdk_json_write_named_object_begin(w, "ctrlr_data");
3616 
3617 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3618 
3619 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
3620 
3621 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
3622 	spdk_str_trim(buf);
3623 	spdk_json_write_named_string(w, "model_number", buf);
3624 
3625 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
3626 	spdk_str_trim(buf);
3627 	spdk_json_write_named_string(w, "serial_number", buf);
3628 
3629 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
3630 	spdk_str_trim(buf);
3631 	spdk_json_write_named_string(w, "firmware_revision", buf);
3632 
3633 	if (cdata->subnqn[0] != '\0') {
3634 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
3635 	}
3636 
3637 	spdk_json_write_named_object_begin(w, "oacs");
3638 
3639 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
3640 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
3641 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
3642 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
3643 
3644 	spdk_json_write_object_end(w);
3645 
3646 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
3647 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
3648 
3649 	spdk_json_write_object_end(w);
3650 
3651 	spdk_json_write_named_object_begin(w, "vs");
3652 
3653 	spdk_json_write_name(w, "nvme_version");
3654 	if (vs.bits.ter) {
3655 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
3656 	} else {
3657 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
3658 	}
3659 
3660 	spdk_json_write_object_end(w);
3661 
3662 	nsdata = spdk_nvme_ns_get_data(ns);
3663 
3664 	spdk_json_write_named_object_begin(w, "ns_data");
3665 
3666 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
3667 
3668 	if (cdata->cmic.ana_reporting) {
3669 		spdk_json_write_named_string(w, "ana_state",
3670 					     _nvme_ana_state_str(nvme_ns->ana_state));
3671 	}
3672 
3673 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
3674 
3675 	spdk_json_write_object_end(w);
3676 
3677 	if (cdata->oacs.security) {
3678 		spdk_json_write_named_object_begin(w, "security");
3679 
3680 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
3681 
3682 		spdk_json_write_object_end(w);
3683 	}
3684 
3685 	spdk_json_write_object_end(w);
3686 }
3687 
3688 static const char *
3689 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
3690 {
3691 	switch (nbdev->mp_policy) {
3692 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
3693 		return "active_passive";
3694 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
3695 		return "active_active";
3696 	default:
3697 		assert(false);
3698 		return "invalid";
3699 	}
3700 }
3701 
3702 static int
3703 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
3704 {
3705 	struct nvme_bdev *nvme_bdev = ctx;
3706 	struct nvme_ns *nvme_ns;
3707 
3708 	pthread_mutex_lock(&nvme_bdev->mutex);
3709 	spdk_json_write_named_array_begin(w, "nvme");
3710 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
3711 		nvme_namespace_info_json(w, nvme_ns);
3712 	}
3713 	spdk_json_write_array_end(w);
3714 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
3715 	pthread_mutex_unlock(&nvme_bdev->mutex);
3716 
3717 	return 0;
3718 }
3719 
3720 static void
3721 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
3722 {
3723 	/* No config per bdev needed */
3724 }
3725 
3726 static uint64_t
3727 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
3728 {
3729 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3730 	struct nvme_io_path *io_path;
3731 	struct nvme_poll_group *group;
3732 	uint64_t spin_time = 0;
3733 
3734 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
3735 		group = io_path->qpair->group;
3736 
3737 		if (!group || !group->collect_spin_stat) {
3738 			continue;
3739 		}
3740 
3741 		if (group->end_ticks != 0) {
3742 			group->spin_ticks += (group->end_ticks - group->start_ticks);
3743 			group->end_ticks = 0;
3744 		}
3745 
3746 		spin_time += group->spin_ticks;
3747 		group->start_ticks = 0;
3748 		group->spin_ticks = 0;
3749 	}
3750 
3751 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
3752 }
3753 
3754 static void
3755 bdev_nvme_reset_device_stat(void *ctx)
3756 {
3757 	struct nvme_bdev *nbdev = ctx;
3758 
3759 	if (nbdev->err_stat != NULL) {
3760 		memset(nbdev->err_stat, 0, sizeof(struct nvme_error_stat));
3761 	}
3762 }
3763 
3764 /* JSON string should be lowercases and underscore delimited string. */
3765 static void
3766 bdev_nvme_format_nvme_status(char *dst, const char *src)
3767 {
3768 	char tmp[256];
3769 
3770 	spdk_strcpy_replace(dst, 256, src, " - ", "_");
3771 	spdk_strcpy_replace(tmp, 256, dst, "-", "_");
3772 	spdk_strcpy_replace(dst, 256, tmp, " ", "_");
3773 	spdk_strlwr(dst);
3774 }
3775 
3776 static void
3777 bdev_nvme_dump_device_stat_json(void *ctx, struct spdk_json_write_ctx *w)
3778 {
3779 	struct nvme_bdev *nbdev = ctx;
3780 	struct spdk_nvme_status status = {};
3781 	uint16_t sct, sc;
3782 	char status_json[256];
3783 	const char *status_str;
3784 
3785 	if (nbdev->err_stat == NULL) {
3786 		return;
3787 	}
3788 
3789 	spdk_json_write_named_object_begin(w, "nvme_error");
3790 
3791 	spdk_json_write_named_object_begin(w, "status_type");
3792 	for (sct = 0; sct < 8; sct++) {
3793 		if (nbdev->err_stat->status_type[sct] == 0) {
3794 			continue;
3795 		}
3796 		status.sct = sct;
3797 
3798 		status_str = spdk_nvme_cpl_get_status_type_string(&status);
3799 		assert(status_str != NULL);
3800 		bdev_nvme_format_nvme_status(status_json, status_str);
3801 
3802 		spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status_type[sct]);
3803 	}
3804 	spdk_json_write_object_end(w);
3805 
3806 	spdk_json_write_named_object_begin(w, "status_code");
3807 	for (sct = 0; sct < 4; sct++) {
3808 		status.sct = sct;
3809 		for (sc = 0; sc < 256; sc++) {
3810 			if (nbdev->err_stat->status[sct][sc] == 0) {
3811 				continue;
3812 			}
3813 			status.sc = sc;
3814 
3815 			status_str = spdk_nvme_cpl_get_status_string(&status);
3816 			assert(status_str != NULL);
3817 			bdev_nvme_format_nvme_status(status_json, status_str);
3818 
3819 			spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status[sct][sc]);
3820 		}
3821 	}
3822 	spdk_json_write_object_end(w);
3823 
3824 	spdk_json_write_object_end(w);
3825 }
3826 
3827 static bool
3828 bdev_nvme_accel_sequence_supported(void *ctx, enum spdk_bdev_io_type type)
3829 {
3830 	struct nvme_bdev *nbdev = ctx;
3831 	struct spdk_nvme_ctrlr *ctrlr;
3832 
3833 	if (!g_opts.allow_accel_sequence) {
3834 		return false;
3835 	}
3836 
3837 	switch (type) {
3838 	case SPDK_BDEV_IO_TYPE_WRITE:
3839 	case SPDK_BDEV_IO_TYPE_READ:
3840 		break;
3841 	default:
3842 		return false;
3843 	}
3844 
3845 	ctrlr = bdev_nvme_get_ctrlr(&nbdev->disk);
3846 	assert(ctrlr != NULL);
3847 
3848 	return spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ACCEL_SEQUENCE_SUPPORTED;
3849 }
3850 
3851 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
3852 	.destruct			= bdev_nvme_destruct,
3853 	.submit_request			= bdev_nvme_submit_request,
3854 	.io_type_supported		= bdev_nvme_io_type_supported,
3855 	.get_io_channel			= bdev_nvme_get_io_channel,
3856 	.dump_info_json			= bdev_nvme_dump_info_json,
3857 	.write_config_json		= bdev_nvme_write_config_json,
3858 	.get_spin_time			= bdev_nvme_get_spin_time,
3859 	.get_module_ctx			= bdev_nvme_get_module_ctx,
3860 	.get_memory_domains		= bdev_nvme_get_memory_domains,
3861 	.accel_sequence_supported	= bdev_nvme_accel_sequence_supported,
3862 	.reset_device_stat		= bdev_nvme_reset_device_stat,
3863 	.dump_device_stat_json		= bdev_nvme_dump_device_stat_json,
3864 };
3865 
3866 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
3867 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
3868 
3869 static int
3870 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
3871 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
3872 {
3873 	struct spdk_nvme_ana_group_descriptor *copied_desc;
3874 	uint8_t *orig_desc;
3875 	uint32_t i, desc_size, copy_len;
3876 	int rc = 0;
3877 
3878 	if (nvme_ctrlr->ana_log_page == NULL) {
3879 		return -EINVAL;
3880 	}
3881 
3882 	copied_desc = nvme_ctrlr->copied_ana_desc;
3883 
3884 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
3885 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
3886 
3887 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
3888 		memcpy(copied_desc, orig_desc, copy_len);
3889 
3890 		rc = cb_fn(copied_desc, cb_arg);
3891 		if (rc != 0) {
3892 			break;
3893 		}
3894 
3895 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
3896 			    copied_desc->num_of_nsid * sizeof(uint32_t);
3897 		orig_desc += desc_size;
3898 		copy_len -= desc_size;
3899 	}
3900 
3901 	return rc;
3902 }
3903 
3904 static int
3905 nvme_ns_ana_transition_timedout(void *ctx)
3906 {
3907 	struct nvme_ns *nvme_ns = ctx;
3908 
3909 	spdk_poller_unregister(&nvme_ns->anatt_timer);
3910 	nvme_ns->ana_transition_timedout = true;
3911 
3912 	return SPDK_POLLER_BUSY;
3913 }
3914 
3915 static void
3916 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
3917 		       const struct spdk_nvme_ana_group_descriptor *desc)
3918 {
3919 	const struct spdk_nvme_ctrlr_data *cdata;
3920 
3921 	nvme_ns->ana_group_id = desc->ana_group_id;
3922 	nvme_ns->ana_state = desc->ana_state;
3923 	nvme_ns->ana_state_updating = false;
3924 
3925 	switch (nvme_ns->ana_state) {
3926 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3927 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3928 		nvme_ns->ana_transition_timedout = false;
3929 		spdk_poller_unregister(&nvme_ns->anatt_timer);
3930 		break;
3931 
3932 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3933 	case SPDK_NVME_ANA_CHANGE_STATE:
3934 		if (nvme_ns->anatt_timer != NULL) {
3935 			break;
3936 		}
3937 
3938 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
3939 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
3940 				       nvme_ns,
3941 				       cdata->anatt * SPDK_SEC_TO_USEC);
3942 		break;
3943 	default:
3944 		break;
3945 	}
3946 }
3947 
3948 static int
3949 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
3950 {
3951 	struct nvme_ns *nvme_ns = cb_arg;
3952 	uint32_t i;
3953 
3954 	for (i = 0; i < desc->num_of_nsid; i++) {
3955 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
3956 			continue;
3957 		}
3958 
3959 		_nvme_ns_set_ana_state(nvme_ns, desc);
3960 		return 1;
3961 	}
3962 
3963 	return 0;
3964 }
3965 
3966 static struct spdk_uuid
3967 nvme_generate_uuid(const char *sn, uint32_t nsid)
3968 {
3969 	struct spdk_uuid new_uuid, namespace_uuid;
3970 	char merged_str[SPDK_NVME_CTRLR_SN_LEN + NSID_STR_LEN + 1] = {'\0'};
3971 	/* This namespace UUID was generated using uuid_generate() method. */
3972 	const char *namespace_str = {"edaed2de-24bc-4b07-b559-f47ecbe730fd"};
3973 	int size;
3974 
3975 	assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN);
3976 
3977 	spdk_uuid_set_null(&new_uuid);
3978 	spdk_uuid_set_null(&namespace_uuid);
3979 
3980 	size = snprintf(merged_str, sizeof(merged_str), "%s%"PRIu32, sn, nsid);
3981 	assert(size > 0 && (unsigned long)size < sizeof(merged_str));
3982 
3983 	spdk_uuid_parse(&namespace_uuid, namespace_str);
3984 
3985 	spdk_uuid_generate_sha1(&new_uuid, &namespace_uuid, merged_str, size);
3986 
3987 	return new_uuid;
3988 }
3989 
3990 static int
3991 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
3992 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
3993 		 uint32_t prchk_flags, void *ctx)
3994 {
3995 	const struct spdk_uuid		*uuid;
3996 	const uint8_t *nguid;
3997 	const struct spdk_nvme_ctrlr_data *cdata;
3998 	const struct spdk_nvme_ns_data	*nsdata;
3999 	const struct spdk_nvme_ctrlr_opts *opts;
4000 	enum spdk_nvme_csi		csi;
4001 	uint32_t atomic_bs, phys_bs, bs;
4002 	char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'};
4003 
4004 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4005 	csi = spdk_nvme_ns_get_csi(ns);
4006 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
4007 
4008 	switch (csi) {
4009 	case SPDK_NVME_CSI_NVM:
4010 		disk->product_name = "NVMe disk";
4011 		break;
4012 	case SPDK_NVME_CSI_ZNS:
4013 		disk->product_name = "NVMe ZNS disk";
4014 		disk->zoned = true;
4015 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
4016 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
4017 					     spdk_nvme_ns_get_extended_sector_size(ns);
4018 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
4019 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
4020 		break;
4021 	default:
4022 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
4023 		return -ENOTSUP;
4024 	}
4025 
4026 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
4027 	if (!disk->name) {
4028 		return -ENOMEM;
4029 	}
4030 
4031 	disk->write_cache = 0;
4032 	if (cdata->vwc.present) {
4033 		/* Enable if the Volatile Write Cache exists */
4034 		disk->write_cache = 1;
4035 	}
4036 	if (cdata->oncs.write_zeroes) {
4037 		disk->max_write_zeroes = UINT16_MAX + 1;
4038 	}
4039 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
4040 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
4041 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
4042 	/* NVMe driver will split one request into multiple requests
4043 	 * based on MDTS and stripe boundary, the bdev layer will use
4044 	 * max_segment_size and max_num_segments to split one big IO
4045 	 * into multiple requests, then small request can't run out
4046 	 * of NVMe internal requests data structure.
4047 	 */
4048 	if (opts && opts->io_queue_requests) {
4049 		disk->max_num_segments = opts->io_queue_requests / 2;
4050 	}
4051 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
4052 		/* The nvme driver will try to split I/O that have too many
4053 		 * SGEs, but it doesn't work if that last SGE doesn't end on
4054 		 * an aggregate total that is block aligned. The bdev layer has
4055 		 * a more robust splitting framework, so use that instead for
4056 		 * this case. (See issue #3269.)
4057 		 */
4058 		uint16_t max_sges = spdk_nvme_ctrlr_get_max_sges(ctrlr);
4059 
4060 		if (disk->max_num_segments == 0) {
4061 			disk->max_num_segments = max_sges;
4062 		} else {
4063 			disk->max_num_segments = spdk_min(disk->max_num_segments, max_sges);
4064 		}
4065 	}
4066 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
4067 
4068 	nguid = spdk_nvme_ns_get_nguid(ns);
4069 	if (!nguid) {
4070 		uuid = spdk_nvme_ns_get_uuid(ns);
4071 		if (uuid) {
4072 			disk->uuid = *uuid;
4073 		} else if (g_opts.generate_uuids) {
4074 			spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0');
4075 			disk->uuid = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns));
4076 		}
4077 	} else {
4078 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
4079 	}
4080 
4081 	nsdata = spdk_nvme_ns_get_data(ns);
4082 	bs = spdk_nvme_ns_get_sector_size(ns);
4083 	atomic_bs = bs;
4084 	phys_bs = bs;
4085 	if (nsdata->nabo == 0) {
4086 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
4087 			atomic_bs = bs * (1 + nsdata->nawupf);
4088 		} else {
4089 			atomic_bs = bs * (1 + cdata->awupf);
4090 		}
4091 	}
4092 	if (nsdata->nsfeat.optperf) {
4093 		phys_bs = bs * (1 + nsdata->npwg);
4094 	}
4095 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
4096 
4097 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
4098 	if (disk->md_len != 0) {
4099 		disk->md_interleave = nsdata->flbas.extended;
4100 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
4101 		if (disk->dif_type != SPDK_DIF_DISABLE) {
4102 			disk->dif_is_head_of_md = nsdata->dps.md_start;
4103 			disk->dif_check_flags = prchk_flags;
4104 		}
4105 	}
4106 
4107 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
4108 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
4109 		disk->acwu = 0;
4110 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
4111 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
4112 	} else {
4113 		disk->acwu = cdata->acwu + 1; /* 0-based */
4114 	}
4115 
4116 	if (cdata->oncs.copy) {
4117 		/* For now bdev interface allows only single segment copy */
4118 		disk->max_copy = nsdata->mssrl;
4119 	}
4120 
4121 	disk->ctxt = ctx;
4122 	disk->fn_table = &nvmelib_fn_table;
4123 	disk->module = &nvme_if;
4124 
4125 	return 0;
4126 }
4127 
4128 static struct nvme_bdev *
4129 nvme_bdev_alloc(void)
4130 {
4131 	struct nvme_bdev *bdev;
4132 	int rc;
4133 
4134 	bdev = calloc(1, sizeof(*bdev));
4135 	if (!bdev) {
4136 		SPDK_ERRLOG("bdev calloc() failed\n");
4137 		return NULL;
4138 	}
4139 
4140 	if (g_opts.nvme_error_stat) {
4141 		bdev->err_stat = calloc(1, sizeof(struct nvme_error_stat));
4142 		if (!bdev->err_stat) {
4143 			SPDK_ERRLOG("err_stat calloc() failed\n");
4144 			free(bdev);
4145 			return NULL;
4146 		}
4147 	}
4148 
4149 	rc = pthread_mutex_init(&bdev->mutex, NULL);
4150 	if (rc != 0) {
4151 		free(bdev->err_stat);
4152 		free(bdev);
4153 		return NULL;
4154 	}
4155 
4156 	bdev->ref = 1;
4157 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
4158 	bdev->mp_selector = BDEV_NVME_MP_SELECTOR_ROUND_ROBIN;
4159 	bdev->rr_min_io = UINT32_MAX;
4160 	TAILQ_INIT(&bdev->nvme_ns_list);
4161 
4162 	return bdev;
4163 }
4164 
4165 static int
4166 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4167 {
4168 	struct nvme_bdev *bdev;
4169 	struct nvme_bdev_ctrlr *nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
4170 	int rc;
4171 
4172 	bdev = nvme_bdev_alloc();
4173 	if (bdev == NULL) {
4174 		SPDK_ERRLOG("Failed to allocate NVMe bdev\n");
4175 		return -ENOMEM;
4176 	}
4177 
4178 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
4179 
4180 	rc = nvme_disk_create(&bdev->disk, nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
4181 			      nvme_ns->ns, nvme_ctrlr->opts.prchk_flags, bdev);
4182 	if (rc != 0) {
4183 		SPDK_ERRLOG("Failed to create NVMe disk\n");
4184 		nvme_bdev_free(bdev);
4185 		return rc;
4186 	}
4187 
4188 	spdk_io_device_register(bdev,
4189 				bdev_nvme_create_bdev_channel_cb,
4190 				bdev_nvme_destroy_bdev_channel_cb,
4191 				sizeof(struct nvme_bdev_channel),
4192 				bdev->disk.name);
4193 
4194 	nvme_ns->bdev = bdev;
4195 	bdev->nsid = nvme_ns->id;
4196 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4197 
4198 	bdev->nbdev_ctrlr = nbdev_ctrlr;
4199 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->bdevs, bdev, tailq);
4200 
4201 	rc = spdk_bdev_register(&bdev->disk);
4202 	if (rc != 0) {
4203 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
4204 		spdk_io_device_unregister(bdev, NULL);
4205 		nvme_ns->bdev = NULL;
4206 		TAILQ_REMOVE(&nbdev_ctrlr->bdevs, bdev, tailq);
4207 		nvme_bdev_free(bdev);
4208 		return rc;
4209 	}
4210 
4211 	return 0;
4212 }
4213 
4214 static bool
4215 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
4216 {
4217 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
4218 	const struct spdk_uuid *uuid1, *uuid2;
4219 
4220 	nsdata1 = spdk_nvme_ns_get_data(ns1);
4221 	nsdata2 = spdk_nvme_ns_get_data(ns2);
4222 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
4223 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
4224 
4225 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
4226 	       nsdata1->eui64 == nsdata2->eui64 &&
4227 	       ((uuid1 == NULL && uuid2 == NULL) ||
4228 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
4229 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
4230 }
4231 
4232 static bool
4233 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4234 		 struct spdk_nvme_ctrlr_opts *opts)
4235 {
4236 	struct nvme_probe_skip_entry *entry;
4237 
4238 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
4239 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4240 			return false;
4241 		}
4242 	}
4243 
4244 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
4245 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
4246 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
4247 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
4248 	opts->disable_read_ana_log_page = true;
4249 
4250 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
4251 
4252 	return true;
4253 }
4254 
4255 static void
4256 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
4257 {
4258 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4259 
4260 	if (spdk_nvme_cpl_is_error(cpl)) {
4261 		SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
4262 			     cpl->status.sct);
4263 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4264 	} else if (cpl->cdw0 & 0x1) {
4265 		SPDK_WARNLOG("Specified command could not be aborted.\n");
4266 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4267 	}
4268 }
4269 
4270 static void
4271 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
4272 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
4273 {
4274 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4275 	union spdk_nvme_csts_register csts;
4276 	int rc;
4277 
4278 	assert(nvme_ctrlr->ctrlr == ctrlr);
4279 
4280 	SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
4281 
4282 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
4283 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
4284 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
4285 	 * completion recursively.
4286 	 */
4287 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
4288 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
4289 		if (csts.bits.cfs) {
4290 			SPDK_ERRLOG("Controller Fatal Status, reset required\n");
4291 			bdev_nvme_reset_ctrlr(nvme_ctrlr);
4292 			return;
4293 		}
4294 	}
4295 
4296 	switch (g_opts.action_on_timeout) {
4297 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
4298 		if (qpair) {
4299 			/* Don't send abort to ctrlr when ctrlr is not available. */
4300 			pthread_mutex_lock(&nvme_ctrlr->mutex);
4301 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
4302 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
4303 				SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n");
4304 				return;
4305 			}
4306 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4307 
4308 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
4309 						       nvme_abort_cpl, nvme_ctrlr);
4310 			if (rc == 0) {
4311 				return;
4312 			}
4313 
4314 			SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
4315 		}
4316 
4317 	/* FALLTHROUGH */
4318 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
4319 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4320 		break;
4321 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
4322 		SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
4323 		break;
4324 	default:
4325 		SPDK_ERRLOG("An invalid timeout action value is found.\n");
4326 		break;
4327 	}
4328 }
4329 
4330 static struct nvme_ns *
4331 nvme_ns_alloc(void)
4332 {
4333 	struct nvme_ns *nvme_ns;
4334 
4335 	nvme_ns = calloc(1, sizeof(struct nvme_ns));
4336 	if (nvme_ns == NULL) {
4337 		return NULL;
4338 	}
4339 
4340 	if (g_opts.io_path_stat) {
4341 		nvme_ns->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
4342 		if (nvme_ns->stat == NULL) {
4343 			free(nvme_ns);
4344 			return NULL;
4345 		}
4346 		spdk_bdev_reset_io_stat(nvme_ns->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
4347 	}
4348 
4349 	return nvme_ns;
4350 }
4351 
4352 static void
4353 nvme_ns_free(struct nvme_ns *nvme_ns)
4354 {
4355 	free(nvme_ns->stat);
4356 	free(nvme_ns);
4357 }
4358 
4359 static void
4360 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
4361 {
4362 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4363 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
4364 
4365 	if (rc == 0) {
4366 		nvme_ns->probe_ctx = NULL;
4367 		pthread_mutex_lock(&nvme_ctrlr->mutex);
4368 		nvme_ctrlr->ref++;
4369 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4370 	} else {
4371 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4372 		nvme_ns_free(nvme_ns);
4373 	}
4374 
4375 	if (ctx) {
4376 		ctx->populates_in_progress--;
4377 		if (ctx->populates_in_progress == 0) {
4378 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4379 		}
4380 	}
4381 }
4382 
4383 static void
4384 bdev_nvme_add_io_path(struct spdk_io_channel_iter *i)
4385 {
4386 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4387 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4388 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4389 	int rc;
4390 
4391 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
4392 	if (rc != 0) {
4393 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
4394 	}
4395 
4396 	spdk_for_each_channel_continue(i, rc);
4397 }
4398 
4399 static void
4400 bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i)
4401 {
4402 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4403 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4404 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4405 	struct nvme_io_path *io_path;
4406 
4407 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
4408 	if (io_path != NULL) {
4409 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
4410 	}
4411 
4412 	spdk_for_each_channel_continue(i, 0);
4413 }
4414 
4415 static void
4416 bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status)
4417 {
4418 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4419 
4420 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
4421 }
4422 
4423 static void
4424 bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status)
4425 {
4426 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4427 	struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i);
4428 
4429 	if (status == 0) {
4430 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
4431 	} else {
4432 		/* Delete the added io_paths and fail populating the namespace. */
4433 		spdk_for_each_channel(bdev,
4434 				      bdev_nvme_delete_io_path,
4435 				      nvme_ns,
4436 				      bdev_nvme_add_io_path_failed);
4437 	}
4438 }
4439 
4440 static int
4441 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
4442 {
4443 	struct nvme_ns *tmp_ns;
4444 	const struct spdk_nvme_ns_data *nsdata;
4445 
4446 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
4447 	if (!nsdata->nmic.can_share) {
4448 		SPDK_ERRLOG("Namespace cannot be shared.\n");
4449 		return -EINVAL;
4450 	}
4451 
4452 	pthread_mutex_lock(&bdev->mutex);
4453 
4454 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
4455 	assert(tmp_ns != NULL);
4456 
4457 	if (!bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
4458 		pthread_mutex_unlock(&bdev->mutex);
4459 		SPDK_ERRLOG("Namespaces are not identical.\n");
4460 		return -EINVAL;
4461 	}
4462 
4463 	bdev->ref++;
4464 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4465 	nvme_ns->bdev = bdev;
4466 
4467 	pthread_mutex_unlock(&bdev->mutex);
4468 
4469 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
4470 	spdk_for_each_channel(bdev,
4471 			      bdev_nvme_add_io_path,
4472 			      nvme_ns,
4473 			      bdev_nvme_add_io_path_done);
4474 
4475 	return 0;
4476 }
4477 
4478 static void
4479 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4480 {
4481 	struct spdk_nvme_ns	*ns;
4482 	struct nvme_bdev	*bdev;
4483 	int			rc = 0;
4484 
4485 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
4486 	if (!ns) {
4487 		SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
4488 		rc = -EINVAL;
4489 		goto done;
4490 	}
4491 
4492 	nvme_ns->ns = ns;
4493 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4494 
4495 	if (nvme_ctrlr->ana_log_page != NULL) {
4496 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
4497 	}
4498 
4499 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
4500 	if (bdev == NULL) {
4501 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
4502 	} else {
4503 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
4504 		if (rc == 0) {
4505 			return;
4506 		}
4507 	}
4508 done:
4509 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
4510 }
4511 
4512 static void
4513 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
4514 {
4515 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4516 
4517 	assert(nvme_ctrlr != NULL);
4518 
4519 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4520 
4521 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4522 
4523 	if (nvme_ns->bdev != NULL) {
4524 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4525 		return;
4526 	}
4527 
4528 	nvme_ns_free(nvme_ns);
4529 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4530 
4531 	nvme_ctrlr_release(nvme_ctrlr);
4532 }
4533 
4534 static void
4535 bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status)
4536 {
4537 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4538 
4539 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4540 }
4541 
4542 static void
4543 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4544 {
4545 	struct nvme_bdev *bdev;
4546 
4547 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4548 
4549 	bdev = nvme_ns->bdev;
4550 	if (bdev != NULL) {
4551 		pthread_mutex_lock(&bdev->mutex);
4552 
4553 		assert(bdev->ref > 0);
4554 		bdev->ref--;
4555 		if (bdev->ref == 0) {
4556 			pthread_mutex_unlock(&bdev->mutex);
4557 
4558 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
4559 		} else {
4560 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
4561 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
4562 			 * and clear nvme_ns->bdev here.
4563 			 */
4564 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
4565 			nvme_ns->bdev = NULL;
4566 
4567 			pthread_mutex_unlock(&bdev->mutex);
4568 
4569 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
4570 			 * we call depopulate_namespace_done() to avoid use-after-free.
4571 			 */
4572 			spdk_for_each_channel(bdev,
4573 					      bdev_nvme_delete_io_path,
4574 					      nvme_ns,
4575 					      bdev_nvme_delete_io_path_done);
4576 			return;
4577 		}
4578 	}
4579 
4580 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4581 }
4582 
4583 static void
4584 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
4585 			       struct nvme_async_probe_ctx *ctx)
4586 {
4587 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
4588 	struct nvme_ns	*nvme_ns, *next;
4589 	struct spdk_nvme_ns	*ns;
4590 	struct nvme_bdev	*bdev;
4591 	uint32_t		nsid;
4592 	int			rc;
4593 	uint64_t		num_sectors;
4594 
4595 	if (ctx) {
4596 		/* Initialize this count to 1 to handle the populate functions
4597 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
4598 		 */
4599 		ctx->populates_in_progress = 1;
4600 	}
4601 
4602 	/* First loop over our existing namespaces and see if they have been
4603 	 * removed. */
4604 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4605 	while (nvme_ns != NULL) {
4606 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4607 
4608 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
4609 			/* NS is still there but attributes may have changed */
4610 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
4611 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
4612 			bdev = nvme_ns->bdev;
4613 			assert(bdev != NULL);
4614 			if (bdev->disk.blockcnt != num_sectors) {
4615 				SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
4616 					       nvme_ns->id,
4617 					       bdev->disk.name,
4618 					       bdev->disk.blockcnt,
4619 					       num_sectors);
4620 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
4621 				if (rc != 0) {
4622 					SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
4623 						    bdev->disk.name, rc);
4624 				}
4625 			}
4626 		} else {
4627 			/* Namespace was removed */
4628 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4629 		}
4630 
4631 		nvme_ns = next;
4632 	}
4633 
4634 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
4635 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4636 	while (nsid != 0) {
4637 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4638 
4639 		if (nvme_ns == NULL) {
4640 			/* Found a new one */
4641 			nvme_ns = nvme_ns_alloc();
4642 			if (nvme_ns == NULL) {
4643 				SPDK_ERRLOG("Failed to allocate namespace\n");
4644 				/* This just fails to attach the namespace. It may work on a future attempt. */
4645 				continue;
4646 			}
4647 
4648 			nvme_ns->id = nsid;
4649 			nvme_ns->ctrlr = nvme_ctrlr;
4650 
4651 			nvme_ns->bdev = NULL;
4652 
4653 			if (ctx) {
4654 				ctx->populates_in_progress++;
4655 			}
4656 			nvme_ns->probe_ctx = ctx;
4657 
4658 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4659 
4660 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
4661 		}
4662 
4663 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
4664 	}
4665 
4666 	if (ctx) {
4667 		/* Decrement this count now that the loop is over to account
4668 		 * for the one we started with.  If the count is then 0, we
4669 		 * know any populate_namespace functions completed immediately,
4670 		 * so we'll kick the callback here.
4671 		 */
4672 		ctx->populates_in_progress--;
4673 		if (ctx->populates_in_progress == 0) {
4674 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4675 		}
4676 	}
4677 
4678 }
4679 
4680 static void
4681 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
4682 {
4683 	struct nvme_ns *nvme_ns, *tmp;
4684 
4685 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
4686 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4687 	}
4688 }
4689 
4690 static uint32_t
4691 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
4692 {
4693 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
4694 	const struct spdk_nvme_ctrlr_data *cdata;
4695 	uint32_t nsid, ns_count = 0;
4696 
4697 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4698 
4699 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4700 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
4701 		ns_count++;
4702 	}
4703 
4704 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
4705 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
4706 	       sizeof(uint32_t);
4707 }
4708 
4709 static int
4710 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
4711 			  void *cb_arg)
4712 {
4713 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4714 	struct nvme_ns *nvme_ns;
4715 	uint32_t i, nsid;
4716 
4717 	for (i = 0; i < desc->num_of_nsid; i++) {
4718 		nsid = desc->nsid[i];
4719 		if (nsid == 0) {
4720 			continue;
4721 		}
4722 
4723 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4724 
4725 		assert(nvme_ns != NULL);
4726 		if (nvme_ns == NULL) {
4727 			/* Target told us that an inactive namespace had an ANA change */
4728 			continue;
4729 		}
4730 
4731 		_nvme_ns_set_ana_state(nvme_ns, desc);
4732 	}
4733 
4734 	return 0;
4735 }
4736 
4737 static void
4738 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4739 {
4740 	struct nvme_ns *nvme_ns;
4741 
4742 	spdk_free(nvme_ctrlr->ana_log_page);
4743 	nvme_ctrlr->ana_log_page = NULL;
4744 
4745 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4746 	     nvme_ns != NULL;
4747 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
4748 		nvme_ns->ana_state_updating = false;
4749 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4750 	}
4751 }
4752 
4753 static void
4754 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
4755 {
4756 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4757 
4758 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
4759 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
4760 					     nvme_ctrlr);
4761 	} else {
4762 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
4763 	}
4764 
4765 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4766 
4767 	assert(nvme_ctrlr->ana_log_page_updating == true);
4768 	nvme_ctrlr->ana_log_page_updating = false;
4769 
4770 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
4771 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4772 
4773 		nvme_ctrlr_unregister(nvme_ctrlr);
4774 	} else {
4775 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4776 
4777 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
4778 	}
4779 }
4780 
4781 static int
4782 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4783 {
4784 	uint32_t ana_log_page_size;
4785 	int rc;
4786 
4787 	if (nvme_ctrlr->ana_log_page == NULL) {
4788 		return -EINVAL;
4789 	}
4790 
4791 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
4792 
4793 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
4794 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
4795 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
4796 		return -EINVAL;
4797 	}
4798 
4799 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4800 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
4801 	    nvme_ctrlr->ana_log_page_updating) {
4802 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4803 		return -EBUSY;
4804 	}
4805 
4806 	nvme_ctrlr->ana_log_page_updating = true;
4807 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4808 
4809 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
4810 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
4811 					      SPDK_NVME_GLOBAL_NS_TAG,
4812 					      nvme_ctrlr->ana_log_page,
4813 					      ana_log_page_size, 0,
4814 					      nvme_ctrlr_read_ana_log_page_done,
4815 					      nvme_ctrlr);
4816 	if (rc != 0) {
4817 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
4818 	}
4819 
4820 	return rc;
4821 }
4822 
4823 static void
4824 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
4825 {
4826 }
4827 
4828 struct bdev_nvme_set_preferred_path_ctx {
4829 	struct spdk_bdev_desc *desc;
4830 	struct nvme_ns *nvme_ns;
4831 	bdev_nvme_set_preferred_path_cb cb_fn;
4832 	void *cb_arg;
4833 };
4834 
4835 static void
4836 bdev_nvme_set_preferred_path_done(struct spdk_io_channel_iter *i, int status)
4837 {
4838 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4839 
4840 	assert(ctx != NULL);
4841 	assert(ctx->desc != NULL);
4842 	assert(ctx->cb_fn != NULL);
4843 
4844 	spdk_bdev_close(ctx->desc);
4845 
4846 	ctx->cb_fn(ctx->cb_arg, status);
4847 
4848 	free(ctx);
4849 }
4850 
4851 static void
4852 _bdev_nvme_set_preferred_path(struct spdk_io_channel_iter *i)
4853 {
4854 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4855 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4856 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4857 	struct nvme_io_path *io_path, *prev;
4858 
4859 	prev = NULL;
4860 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
4861 		if (io_path->nvme_ns == ctx->nvme_ns) {
4862 			break;
4863 		}
4864 		prev = io_path;
4865 	}
4866 
4867 	if (io_path != NULL) {
4868 		if (prev != NULL) {
4869 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
4870 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
4871 		}
4872 
4873 		/* We can set io_path to nbdev_ch->current_io_path directly here.
4874 		 * However, it needs to be conditional. To simplify the code,
4875 		 * just clear nbdev_ch->current_io_path and let find_io_path()
4876 		 * fill it.
4877 		 *
4878 		 * Automatic failback may be disabled. Hence even if the io_path is
4879 		 * already at the head, clear nbdev_ch->current_io_path.
4880 		 */
4881 		bdev_nvme_clear_current_io_path(nbdev_ch);
4882 	}
4883 
4884 	spdk_for_each_channel_continue(i, 0);
4885 }
4886 
4887 static struct nvme_ns *
4888 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
4889 {
4890 	struct nvme_ns *nvme_ns, *prev;
4891 	const struct spdk_nvme_ctrlr_data *cdata;
4892 
4893 	prev = NULL;
4894 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
4895 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
4896 
4897 		if (cdata->cntlid == cntlid) {
4898 			break;
4899 		}
4900 		prev = nvme_ns;
4901 	}
4902 
4903 	if (nvme_ns != NULL && prev != NULL) {
4904 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
4905 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
4906 	}
4907 
4908 	return nvme_ns;
4909 }
4910 
4911 /* This function supports only multipath mode. There is only a single I/O path
4912  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
4913  * head of the I/O path list for each NVMe bdev channel.
4914  *
4915  * NVMe bdev channel may be acquired after completing this function. move the
4916  * matched namespace to the head of the namespace list for the NVMe bdev too.
4917  */
4918 void
4919 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
4920 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
4921 {
4922 	struct bdev_nvme_set_preferred_path_ctx *ctx;
4923 	struct spdk_bdev *bdev;
4924 	struct nvme_bdev *nbdev;
4925 	int rc = 0;
4926 
4927 	assert(cb_fn != NULL);
4928 
4929 	ctx = calloc(1, sizeof(*ctx));
4930 	if (ctx == NULL) {
4931 		SPDK_ERRLOG("Failed to alloc context.\n");
4932 		rc = -ENOMEM;
4933 		goto err_alloc;
4934 	}
4935 
4936 	ctx->cb_fn = cb_fn;
4937 	ctx->cb_arg = cb_arg;
4938 
4939 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
4940 	if (rc != 0) {
4941 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
4942 		goto err_open;
4943 	}
4944 
4945 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
4946 
4947 	if (bdev->module != &nvme_if) {
4948 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
4949 		rc = -ENODEV;
4950 		goto err_bdev;
4951 	}
4952 
4953 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
4954 
4955 	pthread_mutex_lock(&nbdev->mutex);
4956 
4957 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
4958 	if (ctx->nvme_ns == NULL) {
4959 		pthread_mutex_unlock(&nbdev->mutex);
4960 
4961 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
4962 		rc = -ENODEV;
4963 		goto err_bdev;
4964 	}
4965 
4966 	pthread_mutex_unlock(&nbdev->mutex);
4967 
4968 	spdk_for_each_channel(nbdev,
4969 			      _bdev_nvme_set_preferred_path,
4970 			      ctx,
4971 			      bdev_nvme_set_preferred_path_done);
4972 	return;
4973 
4974 err_bdev:
4975 	spdk_bdev_close(ctx->desc);
4976 err_open:
4977 	free(ctx);
4978 err_alloc:
4979 	cb_fn(cb_arg, rc);
4980 }
4981 
4982 struct bdev_nvme_set_multipath_policy_ctx {
4983 	struct spdk_bdev_desc *desc;
4984 	bdev_nvme_set_multipath_policy_cb cb_fn;
4985 	void *cb_arg;
4986 };
4987 
4988 static void
4989 bdev_nvme_set_multipath_policy_done(struct spdk_io_channel_iter *i, int status)
4990 {
4991 	struct bdev_nvme_set_multipath_policy_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4992 
4993 	assert(ctx != NULL);
4994 	assert(ctx->desc != NULL);
4995 	assert(ctx->cb_fn != NULL);
4996 
4997 	spdk_bdev_close(ctx->desc);
4998 
4999 	ctx->cb_fn(ctx->cb_arg, status);
5000 
5001 	free(ctx);
5002 }
5003 
5004 static void
5005 _bdev_nvme_set_multipath_policy(struct spdk_io_channel_iter *i)
5006 {
5007 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
5008 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
5009 	struct nvme_bdev *nbdev = spdk_io_channel_get_io_device(_ch);
5010 
5011 	nbdev_ch->mp_policy = nbdev->mp_policy;
5012 	nbdev_ch->mp_selector = nbdev->mp_selector;
5013 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
5014 	bdev_nvme_clear_current_io_path(nbdev_ch);
5015 
5016 	spdk_for_each_channel_continue(i, 0);
5017 }
5018 
5019 void
5020 bdev_nvme_set_multipath_policy(const char *name, enum bdev_nvme_multipath_policy policy,
5021 			       enum bdev_nvme_multipath_selector selector, uint32_t rr_min_io,
5022 			       bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
5023 {
5024 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
5025 	struct spdk_bdev *bdev;
5026 	struct nvme_bdev *nbdev;
5027 	int rc;
5028 
5029 	assert(cb_fn != NULL);
5030 
5031 	if (policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE && selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
5032 		if (rr_min_io == UINT32_MAX) {
5033 			rr_min_io = 1;
5034 		} else if (rr_min_io == 0) {
5035 			rc = -EINVAL;
5036 			goto exit;
5037 		}
5038 	} else if (rr_min_io != UINT32_MAX) {
5039 		rc = -EINVAL;
5040 		goto exit;
5041 	}
5042 
5043 	ctx = calloc(1, sizeof(*ctx));
5044 	if (ctx == NULL) {
5045 		SPDK_ERRLOG("Failed to alloc context.\n");
5046 		rc = -ENOMEM;
5047 		goto exit;
5048 	}
5049 
5050 	ctx->cb_fn = cb_fn;
5051 	ctx->cb_arg = cb_arg;
5052 
5053 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5054 	if (rc != 0) {
5055 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5056 		rc = -ENODEV;
5057 		goto err_open;
5058 	}
5059 
5060 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5061 	if (bdev->module != &nvme_if) {
5062 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5063 		rc = -ENODEV;
5064 		goto err_module;
5065 	}
5066 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5067 
5068 	pthread_mutex_lock(&nbdev->mutex);
5069 	nbdev->mp_policy = policy;
5070 	nbdev->mp_selector = selector;
5071 	nbdev->rr_min_io = rr_min_io;
5072 	pthread_mutex_unlock(&nbdev->mutex);
5073 
5074 	spdk_for_each_channel(nbdev,
5075 			      _bdev_nvme_set_multipath_policy,
5076 			      ctx,
5077 			      bdev_nvme_set_multipath_policy_done);
5078 	return;
5079 
5080 err_module:
5081 	spdk_bdev_close(ctx->desc);
5082 err_open:
5083 	free(ctx);
5084 exit:
5085 	cb_fn(cb_arg, rc);
5086 }
5087 
5088 static void
5089 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5090 {
5091 	struct nvme_ctrlr *nvme_ctrlr		= arg;
5092 	union spdk_nvme_async_event_completion	event;
5093 
5094 	if (spdk_nvme_cpl_is_error(cpl)) {
5095 		SPDK_WARNLOG("AER request execute failed\n");
5096 		return;
5097 	}
5098 
5099 	event.raw = cpl->cdw0;
5100 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5101 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
5102 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
5103 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5104 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
5105 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
5106 	}
5107 }
5108 
5109 static void
5110 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, int rc)
5111 {
5112 	if (ctx->cb_fn) {
5113 		ctx->cb_fn(ctx->cb_ctx, ctx->reported_bdevs, rc);
5114 	}
5115 
5116 	ctx->namespaces_populated = true;
5117 	if (ctx->probe_done) {
5118 		/* The probe was already completed, so we need to free the context
5119 		 * here.  This can happen for cases like OCSSD, where we need to
5120 		 * send additional commands to the SSD after attach.
5121 		 */
5122 		free(ctx);
5123 	}
5124 }
5125 
5126 static void
5127 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
5128 		       struct nvme_async_probe_ctx *ctx)
5129 {
5130 	spdk_io_device_register(nvme_ctrlr,
5131 				bdev_nvme_create_ctrlr_channel_cb,
5132 				bdev_nvme_destroy_ctrlr_channel_cb,
5133 				sizeof(struct nvme_ctrlr_channel),
5134 				nvme_ctrlr->nbdev_ctrlr->name);
5135 
5136 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
5137 }
5138 
5139 static void
5140 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
5141 {
5142 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
5143 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
5144 
5145 	nvme_ctrlr->probe_ctx = NULL;
5146 
5147 	if (spdk_nvme_cpl_is_error(cpl)) {
5148 		nvme_ctrlr_delete(nvme_ctrlr);
5149 
5150 		if (ctx != NULL) {
5151 			ctx->reported_bdevs = 0;
5152 			populate_namespaces_cb(ctx, -1);
5153 		}
5154 		return;
5155 	}
5156 
5157 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5158 }
5159 
5160 static int
5161 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
5162 			     struct nvme_async_probe_ctx *ctx)
5163 {
5164 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5165 	const struct spdk_nvme_ctrlr_data *cdata;
5166 	uint32_t ana_log_page_size;
5167 
5168 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5169 
5170 	/* Set buffer size enough to include maximum number of allowed namespaces. */
5171 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5172 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
5173 			    sizeof(uint32_t);
5174 
5175 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
5176 						SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
5177 	if (nvme_ctrlr->ana_log_page == NULL) {
5178 		SPDK_ERRLOG("could not allocate ANA log page buffer\n");
5179 		return -ENXIO;
5180 	}
5181 
5182 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
5183 	 * Hence copy each descriptor to a temporary area when parsing it.
5184 	 *
5185 	 * Allocate a buffer whose size is as large as ANA log page buffer because
5186 	 * we do not know the size of a descriptor until actually reading it.
5187 	 */
5188 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
5189 	if (nvme_ctrlr->copied_ana_desc == NULL) {
5190 		SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
5191 		return -ENOMEM;
5192 	}
5193 
5194 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
5195 
5196 	nvme_ctrlr->probe_ctx = ctx;
5197 
5198 	/* Then, set the read size only to include the current active namespaces. */
5199 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5200 
5201 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5202 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5203 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5204 		return -EINVAL;
5205 	}
5206 
5207 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
5208 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5209 						SPDK_NVME_GLOBAL_NS_TAG,
5210 						nvme_ctrlr->ana_log_page,
5211 						ana_log_page_size, 0,
5212 						nvme_ctrlr_init_ana_log_page_done,
5213 						nvme_ctrlr);
5214 }
5215 
5216 /* hostnqn and subnqn were already verified before attaching a controller.
5217  * Hence check only the multipath capability and cntlid here.
5218  */
5219 static bool
5220 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
5221 {
5222 	struct nvme_ctrlr *tmp;
5223 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
5224 
5225 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5226 
5227 	if (!cdata->cmic.multi_ctrlr) {
5228 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5229 		return false;
5230 	}
5231 
5232 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
5233 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
5234 
5235 		if (!tmp_cdata->cmic.multi_ctrlr) {
5236 			SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5237 			return false;
5238 		}
5239 		if (cdata->cntlid == tmp_cdata->cntlid) {
5240 			SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid);
5241 			return false;
5242 		}
5243 	}
5244 
5245 	return true;
5246 }
5247 
5248 static int
5249 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
5250 {
5251 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5252 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5253 	int rc = 0;
5254 
5255 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5256 
5257 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
5258 	if (nbdev_ctrlr != NULL) {
5259 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
5260 			rc = -EINVAL;
5261 			goto exit;
5262 		}
5263 	} else {
5264 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
5265 		if (nbdev_ctrlr == NULL) {
5266 			SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n");
5267 			rc = -ENOMEM;
5268 			goto exit;
5269 		}
5270 		nbdev_ctrlr->name = strdup(name);
5271 		if (nbdev_ctrlr->name == NULL) {
5272 			SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n");
5273 			free(nbdev_ctrlr);
5274 			goto exit;
5275 		}
5276 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
5277 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
5278 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
5279 	}
5280 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
5281 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
5282 exit:
5283 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5284 	return rc;
5285 }
5286 
5287 static int
5288 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
5289 		  const char *name,
5290 		  const struct spdk_nvme_transport_id *trid,
5291 		  struct nvme_async_probe_ctx *ctx)
5292 {
5293 	struct nvme_ctrlr *nvme_ctrlr;
5294 	struct nvme_path_id *path_id;
5295 	const struct spdk_nvme_ctrlr_data *cdata;
5296 	int rc;
5297 
5298 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
5299 	if (nvme_ctrlr == NULL) {
5300 		SPDK_ERRLOG("Failed to allocate device struct\n");
5301 		return -ENOMEM;
5302 	}
5303 
5304 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
5305 	if (rc != 0) {
5306 		free(nvme_ctrlr);
5307 		return rc;
5308 	}
5309 
5310 	TAILQ_INIT(&nvme_ctrlr->trids);
5311 
5312 	RB_INIT(&nvme_ctrlr->namespaces);
5313 
5314 	path_id = calloc(1, sizeof(*path_id));
5315 	if (path_id == NULL) {
5316 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
5317 		rc = -ENOMEM;
5318 		goto err;
5319 	}
5320 
5321 	path_id->trid = *trid;
5322 	if (ctx != NULL) {
5323 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
5324 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
5325 	}
5326 	nvme_ctrlr->active_path_id = path_id;
5327 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
5328 
5329 	nvme_ctrlr->thread = spdk_get_thread();
5330 	nvme_ctrlr->ctrlr = ctrlr;
5331 	nvme_ctrlr->ref = 1;
5332 
5333 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
5334 		SPDK_ERRLOG("OCSSDs are not supported");
5335 		rc = -ENOTSUP;
5336 		goto err;
5337 	}
5338 
5339 	if (ctx != NULL) {
5340 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
5341 	} else {
5342 		bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
5343 	}
5344 
5345 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
5346 					  g_opts.nvme_adminq_poll_period_us);
5347 
5348 	if (g_opts.timeout_us > 0) {
5349 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
5350 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
5351 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
5352 					  g_opts.timeout_us : g_opts.timeout_admin_us;
5353 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
5354 				adm_timeout_us, timeout_cb, nvme_ctrlr);
5355 	}
5356 
5357 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
5358 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
5359 
5360 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
5361 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
5362 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
5363 	}
5364 
5365 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
5366 	if (rc != 0) {
5367 		goto err;
5368 	}
5369 
5370 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5371 
5372 	if (cdata->cmic.ana_reporting) {
5373 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
5374 		if (rc == 0) {
5375 			return 0;
5376 		}
5377 	} else {
5378 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5379 		return 0;
5380 	}
5381 
5382 err:
5383 	nvme_ctrlr_delete(nvme_ctrlr);
5384 	return rc;
5385 }
5386 
5387 void
5388 bdev_nvme_get_default_ctrlr_opts(struct nvme_ctrlr_opts *opts)
5389 {
5390 	opts->prchk_flags = 0;
5391 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
5392 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
5393 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
5394 }
5395 
5396 static void
5397 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5398 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
5399 {
5400 	char *name;
5401 
5402 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
5403 	if (!name) {
5404 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
5405 		return;
5406 	}
5407 
5408 	if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) {
5409 		SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
5410 	} else {
5411 		SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name);
5412 	}
5413 
5414 	free(name);
5415 }
5416 
5417 static void
5418 _nvme_ctrlr_destruct(void *ctx)
5419 {
5420 	struct nvme_ctrlr *nvme_ctrlr = ctx;
5421 
5422 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
5423 	nvme_ctrlr_release(nvme_ctrlr);
5424 }
5425 
5426 static int
5427 bdev_nvme_delete_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5428 {
5429 	struct nvme_probe_skip_entry *entry;
5430 
5431 	/* The controller's destruction was already started */
5432 	if (nvme_ctrlr->destruct) {
5433 		return -EALREADY;
5434 	}
5435 
5436 	if (!hotplug &&
5437 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
5438 		entry = calloc(1, sizeof(*entry));
5439 		if (!entry) {
5440 			return -ENOMEM;
5441 		}
5442 		entry->trid = nvme_ctrlr->active_path_id->trid;
5443 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
5444 	}
5445 
5446 	nvme_ctrlr->destruct = true;
5447 	return 0;
5448 }
5449 
5450 static int
5451 bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5452 {
5453 	int rc;
5454 
5455 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5456 	rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, hotplug);
5457 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5458 
5459 	if (rc == 0) {
5460 		_nvme_ctrlr_destruct(nvme_ctrlr);
5461 	} else if (rc == -EALREADY) {
5462 		rc = 0;
5463 	}
5464 
5465 	return rc;
5466 }
5467 
5468 static void
5469 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
5470 {
5471 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
5472 
5473 	bdev_nvme_delete_ctrlr(nvme_ctrlr, true);
5474 }
5475 
5476 static int
5477 bdev_nvme_hotplug_probe(void *arg)
5478 {
5479 	if (g_hotplug_probe_ctx == NULL) {
5480 		spdk_poller_unregister(&g_hotplug_probe_poller);
5481 		return SPDK_POLLER_IDLE;
5482 	}
5483 
5484 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
5485 		g_hotplug_probe_ctx = NULL;
5486 		spdk_poller_unregister(&g_hotplug_probe_poller);
5487 	}
5488 
5489 	return SPDK_POLLER_BUSY;
5490 }
5491 
5492 static int
5493 bdev_nvme_hotplug(void *arg)
5494 {
5495 	struct spdk_nvme_transport_id trid_pcie;
5496 
5497 	if (g_hotplug_probe_ctx) {
5498 		return SPDK_POLLER_BUSY;
5499 	}
5500 
5501 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5502 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5503 
5504 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
5505 			      hotplug_probe_cb, attach_cb, NULL);
5506 
5507 	if (g_hotplug_probe_ctx) {
5508 		assert(g_hotplug_probe_poller == NULL);
5509 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
5510 	}
5511 
5512 	return SPDK_POLLER_BUSY;
5513 }
5514 
5515 void
5516 bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
5517 {
5518 	*opts = g_opts;
5519 }
5520 
5521 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5522 		uint32_t reconnect_delay_sec,
5523 		uint32_t fast_io_fail_timeout_sec);
5524 
5525 static int
5526 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
5527 {
5528 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
5529 		/* Can't set timeout_admin_us without also setting timeout_us */
5530 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
5531 		return -EINVAL;
5532 	}
5533 
5534 	if (opts->bdev_retry_count < -1) {
5535 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
5536 		return -EINVAL;
5537 	}
5538 
5539 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
5540 			opts->reconnect_delay_sec,
5541 			opts->fast_io_fail_timeout_sec)) {
5542 		return -EINVAL;
5543 	}
5544 
5545 	return 0;
5546 }
5547 
5548 int
5549 bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
5550 {
5551 	int ret;
5552 
5553 	ret = bdev_nvme_validate_opts(opts);
5554 	if (ret) {
5555 		SPDK_WARNLOG("Failed to set nvme opts.\n");
5556 		return ret;
5557 	}
5558 
5559 	if (g_bdev_nvme_init_thread != NULL) {
5560 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5561 			return -EPERM;
5562 		}
5563 	}
5564 
5565 	if (opts->rdma_srq_size != 0 ||
5566 	    opts->rdma_max_cq_size != 0 ||
5567 	    opts->rdma_cm_event_timeout_ms != 0) {
5568 		struct spdk_nvme_transport_opts drv_opts;
5569 
5570 		spdk_nvme_transport_get_opts(&drv_opts, sizeof(drv_opts));
5571 		if (opts->rdma_srq_size != 0) {
5572 			drv_opts.rdma_srq_size = opts->rdma_srq_size;
5573 		}
5574 		if (opts->rdma_max_cq_size != 0) {
5575 			drv_opts.rdma_max_cq_size = opts->rdma_max_cq_size;
5576 		}
5577 		if (opts->rdma_cm_event_timeout_ms != 0) {
5578 			drv_opts.rdma_cm_event_timeout_ms = opts->rdma_cm_event_timeout_ms;
5579 		}
5580 
5581 		ret = spdk_nvme_transport_set_opts(&drv_opts, sizeof(drv_opts));
5582 		if (ret) {
5583 			SPDK_ERRLOG("Failed to set NVMe transport opts.\n");
5584 			return ret;
5585 		}
5586 	}
5587 
5588 	g_opts = *opts;
5589 
5590 	return 0;
5591 }
5592 
5593 struct set_nvme_hotplug_ctx {
5594 	uint64_t period_us;
5595 	bool enabled;
5596 	spdk_msg_fn fn;
5597 	void *fn_ctx;
5598 };
5599 
5600 static void
5601 set_nvme_hotplug_period_cb(void *_ctx)
5602 {
5603 	struct set_nvme_hotplug_ctx *ctx = _ctx;
5604 
5605 	spdk_poller_unregister(&g_hotplug_poller);
5606 	if (ctx->enabled) {
5607 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
5608 	}
5609 
5610 	g_nvme_hotplug_poll_period_us = ctx->period_us;
5611 	g_nvme_hotplug_enabled = ctx->enabled;
5612 	if (ctx->fn) {
5613 		ctx->fn(ctx->fn_ctx);
5614 	}
5615 
5616 	free(ctx);
5617 }
5618 
5619 int
5620 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
5621 {
5622 	struct set_nvme_hotplug_ctx *ctx;
5623 
5624 	if (enabled == true && !spdk_process_is_primary()) {
5625 		return -EPERM;
5626 	}
5627 
5628 	ctx = calloc(1, sizeof(*ctx));
5629 	if (ctx == NULL) {
5630 		return -ENOMEM;
5631 	}
5632 
5633 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
5634 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
5635 	ctx->enabled = enabled;
5636 	ctx->fn = cb;
5637 	ctx->fn_ctx = cb_ctx;
5638 
5639 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
5640 	return 0;
5641 }
5642 
5643 static void
5644 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
5645 				    struct nvme_async_probe_ctx *ctx)
5646 {
5647 	struct nvme_ns	*nvme_ns;
5648 	struct nvme_bdev	*nvme_bdev;
5649 	size_t			j;
5650 
5651 	assert(nvme_ctrlr != NULL);
5652 
5653 	if (ctx->names == NULL) {
5654 		ctx->reported_bdevs = 0;
5655 		populate_namespaces_cb(ctx, 0);
5656 		return;
5657 	}
5658 
5659 	/*
5660 	 * Report the new bdevs that were created in this call.
5661 	 * There can be more than one bdev per NVMe controller.
5662 	 */
5663 	j = 0;
5664 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5665 	while (nvme_ns != NULL) {
5666 		nvme_bdev = nvme_ns->bdev;
5667 		if (j < ctx->max_bdevs) {
5668 			ctx->names[j] = nvme_bdev->disk.name;
5669 			j++;
5670 		} else {
5671 			SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
5672 				    ctx->max_bdevs);
5673 			ctx->reported_bdevs = 0;
5674 			populate_namespaces_cb(ctx, -ERANGE);
5675 			return;
5676 		}
5677 
5678 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5679 	}
5680 
5681 	ctx->reported_bdevs = j;
5682 	populate_namespaces_cb(ctx, 0);
5683 }
5684 
5685 static int
5686 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5687 			       struct spdk_nvme_ctrlr *new_ctrlr,
5688 			       struct spdk_nvme_transport_id *trid)
5689 {
5690 	struct nvme_path_id *tmp_trid;
5691 
5692 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
5693 		SPDK_ERRLOG("PCIe failover is not supported.\n");
5694 		return -ENOTSUP;
5695 	}
5696 
5697 	/* Currently we only support failover to the same transport type. */
5698 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
5699 		SPDK_WARNLOG("Failover from trtype: %s to a different trtype: %s is not supported currently\n",
5700 			     spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
5701 			     spdk_nvme_transport_id_trtype_str(trid->trtype));
5702 		return -EINVAL;
5703 	}
5704 
5705 
5706 	/* Currently we only support failover to the same NQN. */
5707 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
5708 		SPDK_WARNLOG("Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
5709 			     nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
5710 		return -EINVAL;
5711 	}
5712 
5713 	/* Skip all the other checks if we've already registered this path. */
5714 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
5715 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
5716 			SPDK_WARNLOG("This path (traddr: %s subnqn: %s) is already registered\n", trid->traddr,
5717 				     trid->subnqn);
5718 			return -EEXIST;
5719 		}
5720 	}
5721 
5722 	return 0;
5723 }
5724 
5725 static int
5726 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
5727 				    struct spdk_nvme_ctrlr *new_ctrlr)
5728 {
5729 	struct nvme_ns *nvme_ns;
5730 	struct spdk_nvme_ns *new_ns;
5731 
5732 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5733 	while (nvme_ns != NULL) {
5734 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
5735 		assert(new_ns != NULL);
5736 
5737 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
5738 			return -EINVAL;
5739 		}
5740 
5741 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5742 	}
5743 
5744 	return 0;
5745 }
5746 
5747 static int
5748 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5749 			      struct spdk_nvme_transport_id *trid)
5750 {
5751 	struct nvme_path_id *active_id, *new_trid, *tmp_trid;
5752 
5753 	new_trid = calloc(1, sizeof(*new_trid));
5754 	if (new_trid == NULL) {
5755 		return -ENOMEM;
5756 	}
5757 	new_trid->trid = *trid;
5758 
5759 	active_id = nvme_ctrlr->active_path_id;
5760 	assert(active_id != NULL);
5761 	assert(active_id == TAILQ_FIRST(&nvme_ctrlr->trids));
5762 
5763 	/* Skip the active trid not to replace it until it is failed. */
5764 	tmp_trid = TAILQ_NEXT(active_id, link);
5765 	if (tmp_trid == NULL) {
5766 		goto add_tail;
5767 	}
5768 
5769 	/* It means the trid is faled if its last failed time is non-zero.
5770 	 * Insert the new alternate trid before any failed trid.
5771 	 */
5772 	TAILQ_FOREACH_FROM(tmp_trid, &nvme_ctrlr->trids, link) {
5773 		if (tmp_trid->last_failed_tsc != 0) {
5774 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
5775 			return 0;
5776 		}
5777 	}
5778 
5779 add_tail:
5780 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
5781 	return 0;
5782 }
5783 
5784 /* This is the case that a secondary path is added to an existing
5785  * nvme_ctrlr for failover. After checking if it can access the same
5786  * namespaces as the primary path, it is disconnected until failover occurs.
5787  */
5788 static int
5789 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5790 			     struct spdk_nvme_ctrlr *new_ctrlr,
5791 			     struct spdk_nvme_transport_id *trid)
5792 {
5793 	int rc;
5794 
5795 	assert(nvme_ctrlr != NULL);
5796 
5797 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5798 
5799 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
5800 	if (rc != 0) {
5801 		goto exit;
5802 	}
5803 
5804 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
5805 	if (rc != 0) {
5806 		goto exit;
5807 	}
5808 
5809 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
5810 
5811 exit:
5812 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5813 
5814 	spdk_nvme_detach(new_ctrlr);
5815 
5816 	return rc;
5817 }
5818 
5819 static void
5820 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5821 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
5822 {
5823 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5824 	struct nvme_async_probe_ctx *ctx;
5825 	int rc;
5826 
5827 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
5828 	ctx->ctrlr_attached = true;
5829 
5830 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
5831 	if (rc != 0) {
5832 		ctx->reported_bdevs = 0;
5833 		populate_namespaces_cb(ctx, rc);
5834 	}
5835 }
5836 
5837 static void
5838 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5839 			struct spdk_nvme_ctrlr *ctrlr,
5840 			const struct spdk_nvme_ctrlr_opts *opts)
5841 {
5842 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5843 	struct nvme_ctrlr *nvme_ctrlr;
5844 	struct nvme_async_probe_ctx *ctx;
5845 	int rc;
5846 
5847 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
5848 	ctx->ctrlr_attached = true;
5849 
5850 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
5851 	if (nvme_ctrlr) {
5852 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
5853 	} else {
5854 		rc = -ENODEV;
5855 	}
5856 
5857 	ctx->reported_bdevs = 0;
5858 	populate_namespaces_cb(ctx, rc);
5859 }
5860 
5861 static int
5862 bdev_nvme_async_poll(void *arg)
5863 {
5864 	struct nvme_async_probe_ctx	*ctx = arg;
5865 	int				rc;
5866 
5867 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
5868 	if (spdk_unlikely(rc != -EAGAIN)) {
5869 		ctx->probe_done = true;
5870 		spdk_poller_unregister(&ctx->poller);
5871 		if (!ctx->ctrlr_attached) {
5872 			/* The probe is done, but no controller was attached.
5873 			 * That means we had a failure, so report -EIO back to
5874 			 * the caller (usually the RPC). populate_namespaces_cb()
5875 			 * will take care of freeing the nvme_async_probe_ctx.
5876 			 */
5877 			ctx->reported_bdevs = 0;
5878 			populate_namespaces_cb(ctx, -EIO);
5879 		} else if (ctx->namespaces_populated) {
5880 			/* The namespaces for the attached controller were all
5881 			 * populated and the response was already sent to the
5882 			 * caller (usually the RPC).  So free the context here.
5883 			 */
5884 			free(ctx);
5885 		}
5886 	}
5887 
5888 	return SPDK_POLLER_BUSY;
5889 }
5890 
5891 static bool
5892 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5893 		uint32_t reconnect_delay_sec,
5894 		uint32_t fast_io_fail_timeout_sec)
5895 {
5896 	if (ctrlr_loss_timeout_sec < -1) {
5897 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
5898 		return false;
5899 	} else if (ctrlr_loss_timeout_sec == -1) {
5900 		if (reconnect_delay_sec == 0) {
5901 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
5902 			return false;
5903 		} else if (fast_io_fail_timeout_sec != 0 &&
5904 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
5905 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
5906 			return false;
5907 		}
5908 	} else if (ctrlr_loss_timeout_sec != 0) {
5909 		if (reconnect_delay_sec == 0) {
5910 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
5911 			return false;
5912 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
5913 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
5914 			return false;
5915 		} else if (fast_io_fail_timeout_sec != 0) {
5916 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
5917 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
5918 				return false;
5919 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
5920 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
5921 				return false;
5922 			}
5923 		}
5924 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
5925 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
5926 		return false;
5927 	}
5928 
5929 	return true;
5930 }
5931 
5932 int
5933 bdev_nvme_create(struct spdk_nvme_transport_id *trid,
5934 		 const char *base_name,
5935 		 const char **names,
5936 		 uint32_t count,
5937 		 spdk_bdev_create_nvme_fn cb_fn,
5938 		 void *cb_ctx,
5939 		 struct spdk_nvme_ctrlr_opts *drv_opts,
5940 		 struct nvme_ctrlr_opts *bdev_opts,
5941 		 bool multipath)
5942 {
5943 	struct nvme_probe_skip_entry	*entry, *tmp;
5944 	struct nvme_async_probe_ctx	*ctx;
5945 	spdk_nvme_attach_cb attach_cb;
5946 	int len;
5947 
5948 	/* TODO expand this check to include both the host and target TRIDs.
5949 	 * Only if both are the same should we fail.
5950 	 */
5951 	if (nvme_ctrlr_get(trid) != NULL) {
5952 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr);
5953 		return -EEXIST;
5954 	}
5955 
5956 	len = strnlen(base_name, SPDK_CONTROLLER_NAME_MAX);
5957 
5958 	if (len == 0 || len == SPDK_CONTROLLER_NAME_MAX) {
5959 		SPDK_ERRLOG("controller name must be between 1 and %d characters\n", SPDK_CONTROLLER_NAME_MAX - 1);
5960 		return -EINVAL;
5961 	}
5962 
5963 	if (bdev_opts != NULL &&
5964 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
5965 			    bdev_opts->reconnect_delay_sec,
5966 			    bdev_opts->fast_io_fail_timeout_sec)) {
5967 		return -EINVAL;
5968 	}
5969 
5970 	ctx = calloc(1, sizeof(*ctx));
5971 	if (!ctx) {
5972 		return -ENOMEM;
5973 	}
5974 	ctx->base_name = base_name;
5975 	ctx->names = names;
5976 	ctx->max_bdevs = count;
5977 	ctx->cb_fn = cb_fn;
5978 	ctx->cb_ctx = cb_ctx;
5979 	ctx->trid = *trid;
5980 
5981 	if (bdev_opts) {
5982 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
5983 	} else {
5984 		bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
5985 	}
5986 
5987 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
5988 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
5989 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
5990 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
5991 				free(entry);
5992 				break;
5993 			}
5994 		}
5995 	}
5996 
5997 	if (drv_opts) {
5998 		memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
5999 	} else {
6000 		spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->drv_opts, sizeof(ctx->drv_opts));
6001 	}
6002 
6003 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
6004 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
6005 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
6006 	ctx->drv_opts.disable_read_ana_log_page = true;
6007 	ctx->drv_opts.transport_tos = g_opts.transport_tos;
6008 
6009 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) {
6010 		attach_cb = connect_attach_cb;
6011 	} else {
6012 		attach_cb = connect_set_failover_cb;
6013 	}
6014 
6015 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
6016 	if (ctx->probe_ctx == NULL) {
6017 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
6018 		free(ctx);
6019 		return -ENODEV;
6020 	}
6021 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
6022 
6023 	return 0;
6024 }
6025 
6026 struct bdev_nvme_delete_ctx {
6027 	char                        *name;
6028 	struct nvme_path_id         path_id;
6029 	bdev_nvme_delete_done_fn    delete_done;
6030 	void                        *delete_done_ctx;
6031 	uint64_t                    timeout_ticks;
6032 	struct spdk_poller          *poller;
6033 };
6034 
6035 static void
6036 free_bdev_nvme_delete_ctx(struct bdev_nvme_delete_ctx *ctx)
6037 {
6038 	if (ctx != NULL) {
6039 		free(ctx->name);
6040 		free(ctx);
6041 	}
6042 }
6043 
6044 static bool
6045 nvme_path_id_compare(struct nvme_path_id *p, const struct nvme_path_id *path_id)
6046 {
6047 	if (path_id->trid.trtype != 0) {
6048 		if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
6049 			if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
6050 				return false;
6051 			}
6052 		} else {
6053 			if (path_id->trid.trtype != p->trid.trtype) {
6054 				return false;
6055 			}
6056 		}
6057 	}
6058 
6059 	if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
6060 		if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
6061 			return false;
6062 		}
6063 	}
6064 
6065 	if (path_id->trid.adrfam != 0) {
6066 		if (path_id->trid.adrfam != p->trid.adrfam) {
6067 			return false;
6068 		}
6069 	}
6070 
6071 	if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
6072 		if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
6073 			return false;
6074 		}
6075 	}
6076 
6077 	if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
6078 		if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
6079 			return false;
6080 		}
6081 	}
6082 
6083 	if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
6084 		if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
6085 			return false;
6086 		}
6087 	}
6088 
6089 	if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
6090 		if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
6091 			return false;
6092 		}
6093 	}
6094 
6095 	return true;
6096 }
6097 
6098 static bool
6099 nvme_path_id_exists(const char *name, const struct nvme_path_id *path_id)
6100 {
6101 	struct nvme_bdev_ctrlr  *nbdev_ctrlr;
6102 	struct nvme_ctrlr       *ctrlr;
6103 	struct nvme_path_id     *p;
6104 
6105 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6106 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6107 	if (!nbdev_ctrlr) {
6108 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6109 		return false;
6110 	}
6111 
6112 	TAILQ_FOREACH(ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6113 		pthread_mutex_lock(&ctrlr->mutex);
6114 		TAILQ_FOREACH(p, &ctrlr->trids, link) {
6115 			if (nvme_path_id_compare(p, path_id)) {
6116 				pthread_mutex_unlock(&ctrlr->mutex);
6117 				pthread_mutex_unlock(&g_bdev_nvme_mutex);
6118 				return true;
6119 			}
6120 		}
6121 		pthread_mutex_unlock(&ctrlr->mutex);
6122 	}
6123 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6124 
6125 	return false;
6126 }
6127 
6128 static int
6129 bdev_nvme_delete_complete_poll(void *arg)
6130 {
6131 	struct bdev_nvme_delete_ctx     *ctx = arg;
6132 	int                             rc = 0;
6133 
6134 	if (nvme_path_id_exists(ctx->name, &ctx->path_id)) {
6135 		if (ctx->timeout_ticks > spdk_get_ticks()) {
6136 			return SPDK_POLLER_BUSY;
6137 		}
6138 
6139 		SPDK_ERRLOG("NVMe path '%s' still exists after delete\n", ctx->name);
6140 		rc = -ETIMEDOUT;
6141 	}
6142 
6143 	spdk_poller_unregister(&ctx->poller);
6144 
6145 	ctx->delete_done(ctx->delete_done_ctx, rc);
6146 	free_bdev_nvme_delete_ctx(ctx);
6147 
6148 	return SPDK_POLLER_BUSY;
6149 }
6150 
6151 static int
6152 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, const struct nvme_path_id *path_id)
6153 {
6154 	struct nvme_path_id	*p, *t;
6155 	spdk_msg_fn		msg_fn;
6156 	int			rc = -ENXIO;
6157 
6158 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6159 
6160 	TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
6161 		if (p == TAILQ_FIRST(&nvme_ctrlr->trids)) {
6162 			break;
6163 		}
6164 
6165 		if (!nvme_path_id_compare(p, path_id)) {
6166 			continue;
6167 		}
6168 
6169 		/* We are not using the specified path. */
6170 		TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
6171 		free(p);
6172 		rc = 0;
6173 	}
6174 
6175 	if (p == NULL || !nvme_path_id_compare(p, path_id)) {
6176 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
6177 		return rc;
6178 	}
6179 
6180 	/* If we made it here, then this path is a match! Now we need to remove it. */
6181 
6182 	/* This is the active path in use right now. The active path is always the first in the list. */
6183 	assert(p == nvme_ctrlr->active_path_id);
6184 
6185 	if (!TAILQ_NEXT(p, link)) {
6186 		/* The current path is the only path. */
6187 		msg_fn = _nvme_ctrlr_destruct;
6188 		rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, false);
6189 	} else {
6190 		/* There is an alternative path. */
6191 		msg_fn = _bdev_nvme_reset_ctrlr;
6192 		rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, true);
6193 	}
6194 
6195 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6196 
6197 	if (rc == 0) {
6198 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
6199 	} else if (rc == -EALREADY) {
6200 		rc = 0;
6201 	}
6202 
6203 	return rc;
6204 }
6205 
6206 int
6207 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id,
6208 		 bdev_nvme_delete_done_fn delete_done, void *delete_done_ctx)
6209 {
6210 	struct nvme_bdev_ctrlr		*nbdev_ctrlr;
6211 	struct nvme_ctrlr		*nvme_ctrlr, *tmp_nvme_ctrlr;
6212 	struct bdev_nvme_delete_ctx     *ctx = NULL;
6213 	int				rc = -ENXIO, _rc;
6214 
6215 	if (name == NULL || path_id == NULL) {
6216 		rc = -EINVAL;
6217 		goto exit;
6218 	}
6219 
6220 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6221 
6222 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6223 	if (nbdev_ctrlr == NULL) {
6224 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6225 
6226 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
6227 		rc = -ENODEV;
6228 		goto exit;
6229 	}
6230 
6231 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
6232 		_rc = _bdev_nvme_delete(nvme_ctrlr, path_id);
6233 		if (_rc < 0 && _rc != -ENXIO) {
6234 			pthread_mutex_unlock(&g_bdev_nvme_mutex);
6235 			rc = _rc;
6236 			goto exit;
6237 		} else if (_rc == 0) {
6238 			/* We traverse all remaining nvme_ctrlrs even if one nvme_ctrlr
6239 			 * was deleted successfully. To remember the successful deletion,
6240 			 * overwrite rc only if _rc is zero.
6241 			 */
6242 			rc = 0;
6243 		}
6244 	}
6245 
6246 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6247 
6248 	if (rc != 0 || delete_done == NULL) {
6249 		goto exit;
6250 	}
6251 
6252 	ctx = calloc(1, sizeof(*ctx));
6253 	if (ctx == NULL) {
6254 		SPDK_ERRLOG("Failed to allocate context for bdev_nvme_delete\n");
6255 		rc = -ENOMEM;
6256 		goto exit;
6257 	}
6258 
6259 	ctx->name = strdup(name);
6260 	if (ctx->name == NULL) {
6261 		SPDK_ERRLOG("Failed to copy controller name for deletion\n");
6262 		rc = -ENOMEM;
6263 		goto exit;
6264 	}
6265 
6266 	ctx->delete_done = delete_done;
6267 	ctx->delete_done_ctx = delete_done_ctx;
6268 	ctx->path_id = *path_id;
6269 	ctx->timeout_ticks = spdk_get_ticks() + 10 * spdk_get_ticks_hz();
6270 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_delete_complete_poll, ctx, 1000);
6271 	if (ctx->poller == NULL) {
6272 		SPDK_ERRLOG("Failed to register bdev_nvme_delete poller\n");
6273 		rc = -ENOMEM;
6274 		goto exit;
6275 	}
6276 
6277 exit:
6278 	if (rc != 0) {
6279 		free_bdev_nvme_delete_ctx(ctx);
6280 	}
6281 
6282 	return rc;
6283 }
6284 
6285 #define DISCOVERY_INFOLOG(ctx, format, ...) \
6286 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6287 
6288 #define DISCOVERY_ERRLOG(ctx, format, ...) \
6289 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6290 
6291 struct discovery_entry_ctx {
6292 	char						name[128];
6293 	struct spdk_nvme_transport_id			trid;
6294 	struct spdk_nvme_ctrlr_opts			drv_opts;
6295 	struct spdk_nvmf_discovery_log_page_entry	entry;
6296 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
6297 	struct discovery_ctx				*ctx;
6298 };
6299 
6300 struct discovery_ctx {
6301 	char					*name;
6302 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
6303 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
6304 	void					*cb_ctx;
6305 	struct spdk_nvme_probe_ctx		*probe_ctx;
6306 	struct spdk_nvme_detach_ctx		*detach_ctx;
6307 	struct spdk_nvme_ctrlr			*ctrlr;
6308 	struct spdk_nvme_transport_id		trid;
6309 	struct discovery_entry_ctx		*entry_ctx_in_use;
6310 	struct spdk_poller			*poller;
6311 	struct spdk_nvme_ctrlr_opts		drv_opts;
6312 	struct nvme_ctrlr_opts			bdev_opts;
6313 	struct spdk_nvmf_discovery_log_page	*log_page;
6314 	TAILQ_ENTRY(discovery_ctx)		tailq;
6315 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
6316 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
6317 	int					rc;
6318 	bool					wait_for_attach;
6319 	uint64_t				timeout_ticks;
6320 	/* Denotes that the discovery service is being started. We're waiting
6321 	 * for the initial connection to the discovery controller to be
6322 	 * established and attach discovered NVM ctrlrs.
6323 	 */
6324 	bool					initializing;
6325 	/* Denotes if a discovery is currently in progress for this context.
6326 	 * That includes connecting to newly discovered subsystems.  Used to
6327 	 * ensure we do not start a new discovery until an existing one is
6328 	 * complete.
6329 	 */
6330 	bool					in_progress;
6331 
6332 	/* Denotes if another discovery is needed after the one in progress
6333 	 * completes.  Set when we receive an AER completion while a discovery
6334 	 * is already in progress.
6335 	 */
6336 	bool					pending;
6337 
6338 	/* Signal to the discovery context poller that it should stop the
6339 	 * discovery service, including detaching from the current discovery
6340 	 * controller.
6341 	 */
6342 	bool					stop;
6343 
6344 	struct spdk_thread			*calling_thread;
6345 	uint32_t				index;
6346 	uint32_t				attach_in_progress;
6347 	char					*hostnqn;
6348 
6349 	/* Denotes if the discovery service was started by the mdns discovery.
6350 	 */
6351 	bool					from_mdns_discovery_service;
6352 };
6353 
6354 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
6355 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
6356 
6357 static void get_discovery_log_page(struct discovery_ctx *ctx);
6358 
6359 static void
6360 free_discovery_ctx(struct discovery_ctx *ctx)
6361 {
6362 	free(ctx->log_page);
6363 	free(ctx->hostnqn);
6364 	free(ctx->name);
6365 	free(ctx);
6366 }
6367 
6368 static void
6369 discovery_complete(struct discovery_ctx *ctx)
6370 {
6371 	ctx->initializing = false;
6372 	ctx->in_progress = false;
6373 	if (ctx->pending) {
6374 		ctx->pending = false;
6375 		get_discovery_log_page(ctx);
6376 	}
6377 }
6378 
6379 static void
6380 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
6381 			       struct spdk_nvmf_discovery_log_page_entry *entry)
6382 {
6383 	char *space;
6384 
6385 	trid->trtype = entry->trtype;
6386 	trid->adrfam = entry->adrfam;
6387 	memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr));
6388 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid));
6389 	/* Because the source buffer (entry->subnqn) is longer than trid->subnqn, and
6390 	 * before call to this function trid->subnqn is zeroed out, we need
6391 	 * to copy sizeof(trid->subnqn) minus one byte to make sure the last character
6392 	 * remains 0. Then we can shorten the string (replace ' ' with 0) if required
6393 	 */
6394 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn) - 1);
6395 
6396 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
6397 	 * But the log page entries typically pad them with spaces, not zeroes.
6398 	 * So add a NULL terminator to each of these fields at the appropriate
6399 	 * location.
6400 	 */
6401 	space = strchr(trid->traddr, ' ');
6402 	if (space) {
6403 		*space = 0;
6404 	}
6405 	space = strchr(trid->trsvcid, ' ');
6406 	if (space) {
6407 		*space = 0;
6408 	}
6409 	space = strchr(trid->subnqn, ' ');
6410 	if (space) {
6411 		*space = 0;
6412 	}
6413 }
6414 
6415 static void
6416 _stop_discovery(void *_ctx)
6417 {
6418 	struct discovery_ctx *ctx = _ctx;
6419 
6420 	if (ctx->attach_in_progress > 0) {
6421 		spdk_thread_send_msg(spdk_get_thread(), _stop_discovery, ctx);
6422 		return;
6423 	}
6424 
6425 	ctx->stop = true;
6426 
6427 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
6428 		struct discovery_entry_ctx *entry_ctx;
6429 		struct nvme_path_id path = {};
6430 
6431 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
6432 		path.trid = entry_ctx->trid;
6433 		bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6434 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6435 		free(entry_ctx);
6436 	}
6437 
6438 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
6439 		struct discovery_entry_ctx *entry_ctx;
6440 
6441 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6442 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6443 		free(entry_ctx);
6444 	}
6445 
6446 	free(ctx->entry_ctx_in_use);
6447 	ctx->entry_ctx_in_use = NULL;
6448 }
6449 
6450 static void
6451 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
6452 {
6453 	ctx->stop_cb_fn = cb_fn;
6454 	ctx->cb_ctx = cb_ctx;
6455 
6456 	if (ctx->attach_in_progress > 0) {
6457 		DISCOVERY_INFOLOG(ctx, "stopping discovery with attach_in_progress: %"PRIu32"\n",
6458 				  ctx->attach_in_progress);
6459 	}
6460 
6461 	_stop_discovery(ctx);
6462 }
6463 
6464 static void
6465 remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr)
6466 {
6467 	struct discovery_ctx *d_ctx;
6468 	struct nvme_path_id *path_id;
6469 	struct spdk_nvme_transport_id trid = {};
6470 	struct discovery_entry_ctx *entry_ctx, *tmp;
6471 
6472 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
6473 
6474 	TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6475 		TAILQ_FOREACH_SAFE(entry_ctx, &d_ctx->nvm_entry_ctxs, tailq, tmp) {
6476 			build_trid_from_log_page_entry(&trid, &entry_ctx->entry);
6477 			if (spdk_nvme_transport_id_compare(&trid, &path_id->trid) != 0) {
6478 				continue;
6479 			}
6480 
6481 			TAILQ_REMOVE(&d_ctx->nvm_entry_ctxs, entry_ctx, tailq);
6482 			free(entry_ctx);
6483 			DISCOVERY_INFOLOG(d_ctx, "Remove discovery entry: %s:%s:%s\n",
6484 					  trid.subnqn, trid.traddr, trid.trsvcid);
6485 
6486 			/* Fail discovery ctrlr to force reattach attempt */
6487 			spdk_nvme_ctrlr_fail(d_ctx->ctrlr);
6488 		}
6489 	}
6490 }
6491 
6492 static void
6493 discovery_remove_controllers(struct discovery_ctx *ctx)
6494 {
6495 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
6496 	struct discovery_entry_ctx *entry_ctx, *tmp;
6497 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6498 	struct spdk_nvme_transport_id old_trid = {};
6499 	uint64_t numrec, i;
6500 	bool found;
6501 
6502 	numrec = from_le64(&log_page->numrec);
6503 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
6504 		found = false;
6505 		old_entry = &entry_ctx->entry;
6506 		build_trid_from_log_page_entry(&old_trid, old_entry);
6507 		for (i = 0; i < numrec; i++) {
6508 			new_entry = &log_page->entries[i];
6509 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
6510 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
6511 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6512 				found = true;
6513 				break;
6514 			}
6515 		}
6516 		if (!found) {
6517 			struct nvme_path_id path = {};
6518 
6519 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
6520 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6521 
6522 			path.trid = entry_ctx->trid;
6523 			bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6524 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6525 			free(entry_ctx);
6526 		}
6527 	}
6528 	free(log_page);
6529 	ctx->log_page = NULL;
6530 	discovery_complete(ctx);
6531 }
6532 
6533 static void
6534 complete_discovery_start(struct discovery_ctx *ctx, int status)
6535 {
6536 	ctx->timeout_ticks = 0;
6537 	ctx->rc = status;
6538 	if (ctx->start_cb_fn) {
6539 		ctx->start_cb_fn(ctx->cb_ctx, status);
6540 		ctx->start_cb_fn = NULL;
6541 		ctx->cb_ctx = NULL;
6542 	}
6543 }
6544 
6545 static void
6546 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
6547 {
6548 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
6549 	struct discovery_ctx *ctx = entry_ctx->ctx;
6550 
6551 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
6552 	ctx->attach_in_progress--;
6553 	if (ctx->attach_in_progress == 0) {
6554 		complete_discovery_start(ctx, ctx->rc);
6555 		if (ctx->initializing && ctx->rc != 0) {
6556 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
6557 			stop_discovery(ctx, NULL, ctx->cb_ctx);
6558 		} else {
6559 			discovery_remove_controllers(ctx);
6560 		}
6561 	}
6562 }
6563 
6564 static struct discovery_entry_ctx *
6565 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
6566 {
6567 	struct discovery_entry_ctx *new_ctx;
6568 
6569 	new_ctx = calloc(1, sizeof(*new_ctx));
6570 	if (new_ctx == NULL) {
6571 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6572 		return NULL;
6573 	}
6574 
6575 	new_ctx->ctx = ctx;
6576 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
6577 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6578 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6579 	return new_ctx;
6580 }
6581 
6582 static void
6583 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
6584 		      struct spdk_nvmf_discovery_log_page *log_page)
6585 {
6586 	struct discovery_ctx *ctx = cb_arg;
6587 	struct discovery_entry_ctx *entry_ctx, *tmp;
6588 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6589 	uint64_t numrec, i;
6590 	bool found;
6591 
6592 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
6593 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6594 		return;
6595 	}
6596 
6597 	ctx->log_page = log_page;
6598 	assert(ctx->attach_in_progress == 0);
6599 	numrec = from_le64(&log_page->numrec);
6600 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
6601 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6602 		free(entry_ctx);
6603 	}
6604 	for (i = 0; i < numrec; i++) {
6605 		found = false;
6606 		new_entry = &log_page->entries[i];
6607 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY_CURRENT ||
6608 		    new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
6609 			struct discovery_entry_ctx *new_ctx;
6610 			struct spdk_nvme_transport_id trid = {};
6611 
6612 			build_trid_from_log_page_entry(&trid, new_entry);
6613 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
6614 			if (new_ctx == NULL) {
6615 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6616 				break;
6617 			}
6618 
6619 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
6620 			continue;
6621 		}
6622 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
6623 			old_entry = &entry_ctx->entry;
6624 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
6625 				found = true;
6626 				break;
6627 			}
6628 		}
6629 		if (!found) {
6630 			struct discovery_entry_ctx *subnqn_ctx = NULL, *new_ctx;
6631 			struct discovery_ctx *d_ctx;
6632 
6633 			TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6634 				TAILQ_FOREACH(subnqn_ctx, &d_ctx->nvm_entry_ctxs, tailq) {
6635 					if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
6636 						    sizeof(new_entry->subnqn))) {
6637 						break;
6638 					}
6639 				}
6640 				if (subnqn_ctx) {
6641 					break;
6642 				}
6643 			}
6644 
6645 			new_ctx = calloc(1, sizeof(*new_ctx));
6646 			if (new_ctx == NULL) {
6647 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6648 				break;
6649 			}
6650 
6651 			new_ctx->ctx = ctx;
6652 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
6653 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
6654 			if (subnqn_ctx) {
6655 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
6656 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
6657 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6658 						  new_ctx->name);
6659 			} else {
6660 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
6661 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
6662 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6663 						  new_ctx->name);
6664 			}
6665 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6666 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6667 			rc = bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
6668 					      discovery_attach_controller_done, new_ctx,
6669 					      &new_ctx->drv_opts, &ctx->bdev_opts, true);
6670 			if (rc == 0) {
6671 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
6672 				ctx->attach_in_progress++;
6673 			} else {
6674 				DISCOVERY_ERRLOG(ctx, "bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
6675 			}
6676 		}
6677 	}
6678 
6679 	if (ctx->attach_in_progress == 0) {
6680 		discovery_remove_controllers(ctx);
6681 	}
6682 }
6683 
6684 static void
6685 get_discovery_log_page(struct discovery_ctx *ctx)
6686 {
6687 	int rc;
6688 
6689 	assert(ctx->in_progress == false);
6690 	ctx->in_progress = true;
6691 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
6692 	if (rc != 0) {
6693 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6694 	}
6695 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
6696 }
6697 
6698 static void
6699 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
6700 {
6701 	struct discovery_ctx *ctx = arg;
6702 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
6703 
6704 	if (spdk_nvme_cpl_is_error(cpl)) {
6705 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
6706 		return;
6707 	}
6708 
6709 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
6710 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
6711 		return;
6712 	}
6713 
6714 	DISCOVERY_INFOLOG(ctx, "got aer\n");
6715 	if (ctx->in_progress) {
6716 		ctx->pending = true;
6717 		return;
6718 	}
6719 
6720 	get_discovery_log_page(ctx);
6721 }
6722 
6723 static void
6724 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6725 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
6726 {
6727 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6728 	struct discovery_ctx *ctx;
6729 
6730 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
6731 
6732 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
6733 	ctx->probe_ctx = NULL;
6734 	ctx->ctrlr = ctrlr;
6735 
6736 	if (ctx->rc != 0) {
6737 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
6738 				 ctx->rc);
6739 		return;
6740 	}
6741 
6742 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
6743 }
6744 
6745 static int
6746 discovery_poller(void *arg)
6747 {
6748 	struct discovery_ctx *ctx = arg;
6749 	struct spdk_nvme_transport_id *trid;
6750 	int rc;
6751 
6752 	if (ctx->detach_ctx) {
6753 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
6754 		if (rc != -EAGAIN) {
6755 			ctx->detach_ctx = NULL;
6756 			ctx->ctrlr = NULL;
6757 		}
6758 	} else if (ctx->stop) {
6759 		if (ctx->ctrlr != NULL) {
6760 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
6761 			if (rc == 0) {
6762 				return SPDK_POLLER_BUSY;
6763 			}
6764 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
6765 		}
6766 		spdk_poller_unregister(&ctx->poller);
6767 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
6768 		assert(ctx->start_cb_fn == NULL);
6769 		if (ctx->stop_cb_fn != NULL) {
6770 			ctx->stop_cb_fn(ctx->cb_ctx);
6771 		}
6772 		free_discovery_ctx(ctx);
6773 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
6774 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6775 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
6776 			assert(ctx->initializing);
6777 			spdk_poller_unregister(&ctx->poller);
6778 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
6779 			complete_discovery_start(ctx, -ETIMEDOUT);
6780 			stop_discovery(ctx, NULL, NULL);
6781 			free_discovery_ctx(ctx);
6782 			return SPDK_POLLER_BUSY;
6783 		}
6784 
6785 		assert(ctx->entry_ctx_in_use == NULL);
6786 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6787 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6788 		trid = &ctx->entry_ctx_in_use->trid;
6789 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
6790 		if (ctx->probe_ctx) {
6791 			spdk_poller_unregister(&ctx->poller);
6792 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
6793 		} else {
6794 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
6795 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6796 			ctx->entry_ctx_in_use = NULL;
6797 		}
6798 	} else if (ctx->probe_ctx) {
6799 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6800 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
6801 			complete_discovery_start(ctx, -ETIMEDOUT);
6802 			return SPDK_POLLER_BUSY;
6803 		}
6804 
6805 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
6806 		if (rc != -EAGAIN) {
6807 			if (ctx->rc != 0) {
6808 				assert(ctx->initializing);
6809 				stop_discovery(ctx, NULL, ctx->cb_ctx);
6810 			} else {
6811 				assert(rc == 0);
6812 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
6813 				ctx->rc = rc;
6814 				get_discovery_log_page(ctx);
6815 			}
6816 		}
6817 	} else {
6818 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6819 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
6820 			complete_discovery_start(ctx, -ETIMEDOUT);
6821 			/* We need to wait until all NVM ctrlrs are attached before we stop the
6822 			 * discovery service to make sure we don't detach a ctrlr that is still
6823 			 * being attached.
6824 			 */
6825 			if (ctx->attach_in_progress == 0) {
6826 				stop_discovery(ctx, NULL, ctx->cb_ctx);
6827 				return SPDK_POLLER_BUSY;
6828 			}
6829 		}
6830 
6831 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
6832 		if (rc < 0) {
6833 			spdk_poller_unregister(&ctx->poller);
6834 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
6835 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6836 			ctx->entry_ctx_in_use = NULL;
6837 
6838 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
6839 			if (rc != 0) {
6840 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
6841 				ctx->ctrlr = NULL;
6842 			}
6843 		}
6844 	}
6845 
6846 	return SPDK_POLLER_BUSY;
6847 }
6848 
6849 static void
6850 start_discovery_poller(void *arg)
6851 {
6852 	struct discovery_ctx *ctx = arg;
6853 
6854 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
6855 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
6856 }
6857 
6858 int
6859 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
6860 			  const char *base_name,
6861 			  struct spdk_nvme_ctrlr_opts *drv_opts,
6862 			  struct nvme_ctrlr_opts *bdev_opts,
6863 			  uint64_t attach_timeout,
6864 			  bool from_mdns,
6865 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
6866 {
6867 	struct discovery_ctx *ctx;
6868 	struct discovery_entry_ctx *discovery_entry_ctx;
6869 
6870 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
6871 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6872 		if (strcmp(ctx->name, base_name) == 0) {
6873 			return -EEXIST;
6874 		}
6875 
6876 		if (ctx->entry_ctx_in_use != NULL) {
6877 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
6878 				return -EEXIST;
6879 			}
6880 		}
6881 
6882 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
6883 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
6884 				return -EEXIST;
6885 			}
6886 		}
6887 	}
6888 
6889 	ctx = calloc(1, sizeof(*ctx));
6890 	if (ctx == NULL) {
6891 		return -ENOMEM;
6892 	}
6893 
6894 	ctx->name = strdup(base_name);
6895 	if (ctx->name == NULL) {
6896 		free_discovery_ctx(ctx);
6897 		return -ENOMEM;
6898 	}
6899 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
6900 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
6901 	ctx->from_mdns_discovery_service = from_mdns;
6902 	ctx->bdev_opts.from_discovery_service = true;
6903 	ctx->calling_thread = spdk_get_thread();
6904 	ctx->start_cb_fn = cb_fn;
6905 	ctx->cb_ctx = cb_ctx;
6906 	ctx->initializing = true;
6907 	if (ctx->start_cb_fn) {
6908 		/* We can use this when dumping json to denote if this RPC parameter
6909 		 * was specified or not.
6910 		 */
6911 		ctx->wait_for_attach = true;
6912 	}
6913 	if (attach_timeout != 0) {
6914 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
6915 				     spdk_get_ticks_hz() / 1000ull;
6916 	}
6917 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
6918 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
6919 	memcpy(&ctx->trid, trid, sizeof(*trid));
6920 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
6921 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
6922 	if (ctx->hostnqn == NULL) {
6923 		free_discovery_ctx(ctx);
6924 		return -ENOMEM;
6925 	}
6926 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
6927 	if (discovery_entry_ctx == NULL) {
6928 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6929 		free_discovery_ctx(ctx);
6930 		return -ENOMEM;
6931 	}
6932 
6933 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
6934 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
6935 	return 0;
6936 }
6937 
6938 int
6939 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
6940 {
6941 	struct discovery_ctx *ctx;
6942 
6943 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6944 		if (strcmp(name, ctx->name) == 0) {
6945 			if (ctx->stop) {
6946 				return -EALREADY;
6947 			}
6948 			/* If we're still starting the discovery service and ->rc is non-zero, we're
6949 			 * going to stop it as soon as we can
6950 			 */
6951 			if (ctx->initializing && ctx->rc != 0) {
6952 				return -EALREADY;
6953 			}
6954 			stop_discovery(ctx, cb_fn, cb_ctx);
6955 			return 0;
6956 		}
6957 	}
6958 
6959 	return -ENOENT;
6960 }
6961 
6962 static int
6963 bdev_nvme_library_init(void)
6964 {
6965 	g_bdev_nvme_init_thread = spdk_get_thread();
6966 
6967 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
6968 				bdev_nvme_destroy_poll_group_cb,
6969 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
6970 
6971 	return 0;
6972 }
6973 
6974 static void
6975 bdev_nvme_fini_destruct_ctrlrs(void)
6976 {
6977 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
6978 	struct nvme_ctrlr *nvme_ctrlr;
6979 
6980 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6981 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
6982 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6983 			pthread_mutex_lock(&nvme_ctrlr->mutex);
6984 			if (nvme_ctrlr->destruct) {
6985 				/* This controller's destruction was already started
6986 				 * before the application started shutting down
6987 				 */
6988 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
6989 				continue;
6990 			}
6991 			nvme_ctrlr->destruct = true;
6992 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
6993 
6994 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
6995 					     nvme_ctrlr);
6996 		}
6997 	}
6998 
6999 	g_bdev_nvme_module_finish = true;
7000 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
7001 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
7002 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
7003 		spdk_bdev_module_fini_done();
7004 		return;
7005 	}
7006 
7007 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
7008 }
7009 
7010 static void
7011 check_discovery_fini(void *arg)
7012 {
7013 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7014 		bdev_nvme_fini_destruct_ctrlrs();
7015 	}
7016 }
7017 
7018 static void
7019 bdev_nvme_library_fini(void)
7020 {
7021 	struct nvme_probe_skip_entry *entry, *entry_tmp;
7022 	struct discovery_ctx *ctx;
7023 
7024 	spdk_poller_unregister(&g_hotplug_poller);
7025 	free(g_hotplug_probe_ctx);
7026 	g_hotplug_probe_ctx = NULL;
7027 
7028 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
7029 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
7030 		free(entry);
7031 	}
7032 
7033 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
7034 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7035 		bdev_nvme_fini_destruct_ctrlrs();
7036 	} else {
7037 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7038 			stop_discovery(ctx, check_discovery_fini, NULL);
7039 		}
7040 	}
7041 }
7042 
7043 static void
7044 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
7045 {
7046 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7047 	struct spdk_bdev *bdev = bdev_io->bdev;
7048 	struct spdk_dif_ctx dif_ctx;
7049 	struct spdk_dif_error err_blk = {};
7050 	int rc;
7051 	struct spdk_dif_ctx_init_ext_opts dif_opts;
7052 
7053 	dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format);
7054 	dif_opts.dif_pi_format = SPDK_DIF_PI_FORMAT_16;
7055 	rc = spdk_dif_ctx_init(&dif_ctx,
7056 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
7057 			       bdev->dif_is_head_of_md, bdev->dif_type,
7058 			       bdev_io->u.bdev.dif_check_flags,
7059 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0, &dif_opts);
7060 	if (rc != 0) {
7061 		SPDK_ERRLOG("Initialization of DIF context failed\n");
7062 		return;
7063 	}
7064 
7065 	if (bdev->md_interleave) {
7066 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7067 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7068 	} else {
7069 		struct iovec md_iov = {
7070 			.iov_base	= bdev_io->u.bdev.md_buf,
7071 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
7072 		};
7073 
7074 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7075 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7076 	}
7077 
7078 	if (rc != 0) {
7079 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
7080 			    err_blk.err_type, err_blk.err_offset);
7081 	} else {
7082 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
7083 	}
7084 }
7085 
7086 static void
7087 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7088 {
7089 	struct nvme_bdev_io *bio = ref;
7090 
7091 	if (spdk_nvme_cpl_is_success(cpl)) {
7092 		/* Run PI verification for read data buffer. */
7093 		bdev_nvme_verify_pi_error(bio);
7094 	}
7095 
7096 	/* Return original completion status */
7097 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7098 }
7099 
7100 static void
7101 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7102 {
7103 	struct nvme_bdev_io *bio = ref;
7104 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7105 	int ret;
7106 
7107 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7108 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
7109 			    cpl->status.sct, cpl->status.sc);
7110 
7111 		/* Save completion status to use after verifying PI error. */
7112 		bio->cpl = *cpl;
7113 
7114 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
7115 			/* Read without PI checking to verify PI error. */
7116 			ret = bdev_nvme_no_pi_readv(bio,
7117 						    bdev_io->u.bdev.iovs,
7118 						    bdev_io->u.bdev.iovcnt,
7119 						    bdev_io->u.bdev.md_buf,
7120 						    bdev_io->u.bdev.num_blocks,
7121 						    bdev_io->u.bdev.offset_blocks);
7122 			if (ret == 0) {
7123 				return;
7124 			}
7125 		}
7126 	}
7127 
7128 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7129 }
7130 
7131 static void
7132 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7133 {
7134 	struct nvme_bdev_io *bio = ref;
7135 
7136 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7137 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
7138 			    cpl->status.sct, cpl->status.sc);
7139 		/* Run PI verification for write data buffer if PI error is detected. */
7140 		bdev_nvme_verify_pi_error(bio);
7141 	}
7142 
7143 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7144 }
7145 
7146 static void
7147 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7148 {
7149 	struct nvme_bdev_io *bio = ref;
7150 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7151 
7152 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
7153 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
7154 	 */
7155 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
7156 
7157 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7158 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
7159 			    cpl->status.sct, cpl->status.sc);
7160 		/* Run PI verification for zone append data buffer if PI error is detected. */
7161 		bdev_nvme_verify_pi_error(bio);
7162 	}
7163 
7164 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7165 }
7166 
7167 static void
7168 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7169 {
7170 	struct nvme_bdev_io *bio = ref;
7171 
7172 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7173 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
7174 			    cpl->status.sct, cpl->status.sc);
7175 		/* Run PI verification for compare data buffer if PI error is detected. */
7176 		bdev_nvme_verify_pi_error(bio);
7177 	}
7178 
7179 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7180 }
7181 
7182 static void
7183 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7184 {
7185 	struct nvme_bdev_io *bio = ref;
7186 
7187 	/* Compare operation completion */
7188 	if (!bio->first_fused_completed) {
7189 		/* Save compare result for write callback */
7190 		bio->cpl = *cpl;
7191 		bio->first_fused_completed = true;
7192 		return;
7193 	}
7194 
7195 	/* Write operation completion */
7196 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
7197 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
7198 		 * complete the IO with the compare operation's status.
7199 		 */
7200 		if (!spdk_nvme_cpl_is_error(cpl)) {
7201 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
7202 		}
7203 
7204 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7205 	} else {
7206 		bdev_nvme_io_complete_nvme_status(bio, cpl);
7207 	}
7208 }
7209 
7210 static void
7211 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
7212 {
7213 	struct nvme_bdev_io *bio = ref;
7214 
7215 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7216 }
7217 
7218 static int
7219 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
7220 {
7221 	switch (desc->zt) {
7222 	case SPDK_NVME_ZONE_TYPE_SEQWR:
7223 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
7224 		break;
7225 	default:
7226 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
7227 		return -EIO;
7228 	}
7229 
7230 	switch (desc->zs) {
7231 	case SPDK_NVME_ZONE_STATE_EMPTY:
7232 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
7233 		break;
7234 	case SPDK_NVME_ZONE_STATE_IOPEN:
7235 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
7236 		break;
7237 	case SPDK_NVME_ZONE_STATE_EOPEN:
7238 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
7239 		break;
7240 	case SPDK_NVME_ZONE_STATE_CLOSED:
7241 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
7242 		break;
7243 	case SPDK_NVME_ZONE_STATE_RONLY:
7244 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
7245 		break;
7246 	case SPDK_NVME_ZONE_STATE_FULL:
7247 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
7248 		break;
7249 	case SPDK_NVME_ZONE_STATE_OFFLINE:
7250 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
7251 		break;
7252 	default:
7253 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
7254 		return -EIO;
7255 	}
7256 
7257 	info->zone_id = desc->zslba;
7258 	info->write_pointer = desc->wp;
7259 	info->capacity = desc->zcap;
7260 
7261 	return 0;
7262 }
7263 
7264 static void
7265 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
7266 {
7267 	struct nvme_bdev_io *bio = ref;
7268 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7269 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
7270 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
7271 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
7272 	uint64_t max_zones_per_buf, i;
7273 	uint32_t zone_report_bufsize;
7274 	struct spdk_nvme_ns *ns;
7275 	struct spdk_nvme_qpair *qpair;
7276 	int ret;
7277 
7278 	if (spdk_nvme_cpl_is_error(cpl)) {
7279 		goto out_complete_io_nvme_cpl;
7280 	}
7281 
7282 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
7283 		ret = -ENXIO;
7284 		goto out_complete_io_ret;
7285 	}
7286 
7287 	ns = bio->io_path->nvme_ns->ns;
7288 	qpair = bio->io_path->qpair->qpair;
7289 
7290 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7291 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
7292 			    sizeof(bio->zone_report_buf->descs[0]);
7293 
7294 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
7295 		ret = -EINVAL;
7296 		goto out_complete_io_ret;
7297 	}
7298 
7299 	if (!bio->zone_report_buf->nr_zones) {
7300 		ret = -EINVAL;
7301 		goto out_complete_io_ret;
7302 	}
7303 
7304 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
7305 		ret = fill_zone_from_report(&info[bio->handled_zones],
7306 					    &bio->zone_report_buf->descs[i]);
7307 		if (ret) {
7308 			goto out_complete_io_ret;
7309 		}
7310 		bio->handled_zones++;
7311 	}
7312 
7313 	if (bio->handled_zones < zones_to_copy) {
7314 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7315 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
7316 
7317 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
7318 		ret = spdk_nvme_zns_report_zones(ns, qpair,
7319 						 bio->zone_report_buf, zone_report_bufsize,
7320 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
7321 						 bdev_nvme_get_zone_info_done, bio);
7322 		if (!ret) {
7323 			return;
7324 		} else {
7325 			goto out_complete_io_ret;
7326 		}
7327 	}
7328 
7329 out_complete_io_nvme_cpl:
7330 	free(bio->zone_report_buf);
7331 	bio->zone_report_buf = NULL;
7332 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7333 	return;
7334 
7335 out_complete_io_ret:
7336 	free(bio->zone_report_buf);
7337 	bio->zone_report_buf = NULL;
7338 	bdev_nvme_io_complete(bio, ret);
7339 }
7340 
7341 static void
7342 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
7343 {
7344 	struct nvme_bdev_io *bio = ref;
7345 
7346 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7347 }
7348 
7349 static void
7350 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
7351 {
7352 	struct nvme_bdev_io *bio = ctx;
7353 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7354 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
7355 
7356 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
7357 
7358 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
7359 }
7360 
7361 static void
7362 bdev_nvme_abort_complete(void *ctx)
7363 {
7364 	struct nvme_bdev_io *bio = ctx;
7365 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7366 
7367 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
7368 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
7369 	} else {
7370 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
7371 	}
7372 }
7373 
7374 static void
7375 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
7376 {
7377 	struct nvme_bdev_io *bio = ref;
7378 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7379 
7380 	bio->cpl = *cpl;
7381 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), bdev_nvme_abort_complete, bio);
7382 }
7383 
7384 static void
7385 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
7386 {
7387 	struct nvme_bdev_io *bio = ref;
7388 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7389 
7390 	bio->cpl = *cpl;
7391 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io),
7392 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
7393 }
7394 
7395 static void
7396 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
7397 {
7398 	struct nvme_bdev_io *bio = ref;
7399 	struct iovec *iov;
7400 
7401 	bio->iov_offset = sgl_offset;
7402 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
7403 		iov = &bio->iovs[bio->iovpos];
7404 		if (bio->iov_offset < iov->iov_len) {
7405 			break;
7406 		}
7407 
7408 		bio->iov_offset -= iov->iov_len;
7409 	}
7410 }
7411 
7412 static int
7413 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
7414 {
7415 	struct nvme_bdev_io *bio = ref;
7416 	struct iovec *iov;
7417 
7418 	assert(bio->iovpos < bio->iovcnt);
7419 
7420 	iov = &bio->iovs[bio->iovpos];
7421 
7422 	*address = iov->iov_base;
7423 	*length = iov->iov_len;
7424 
7425 	if (bio->iov_offset) {
7426 		assert(bio->iov_offset <= iov->iov_len);
7427 		*address += bio->iov_offset;
7428 		*length -= bio->iov_offset;
7429 	}
7430 
7431 	bio->iov_offset += *length;
7432 	if (bio->iov_offset == iov->iov_len) {
7433 		bio->iovpos++;
7434 		bio->iov_offset = 0;
7435 	}
7436 
7437 	return 0;
7438 }
7439 
7440 static void
7441 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
7442 {
7443 	struct nvme_bdev_io *bio = ref;
7444 	struct iovec *iov;
7445 
7446 	bio->fused_iov_offset = sgl_offset;
7447 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
7448 		iov = &bio->fused_iovs[bio->fused_iovpos];
7449 		if (bio->fused_iov_offset < iov->iov_len) {
7450 			break;
7451 		}
7452 
7453 		bio->fused_iov_offset -= iov->iov_len;
7454 	}
7455 }
7456 
7457 static int
7458 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
7459 {
7460 	struct nvme_bdev_io *bio = ref;
7461 	struct iovec *iov;
7462 
7463 	assert(bio->fused_iovpos < bio->fused_iovcnt);
7464 
7465 	iov = &bio->fused_iovs[bio->fused_iovpos];
7466 
7467 	*address = iov->iov_base;
7468 	*length = iov->iov_len;
7469 
7470 	if (bio->fused_iov_offset) {
7471 		assert(bio->fused_iov_offset <= iov->iov_len);
7472 		*address += bio->fused_iov_offset;
7473 		*length -= bio->fused_iov_offset;
7474 	}
7475 
7476 	bio->fused_iov_offset += *length;
7477 	if (bio->fused_iov_offset == iov->iov_len) {
7478 		bio->fused_iovpos++;
7479 		bio->fused_iov_offset = 0;
7480 	}
7481 
7482 	return 0;
7483 }
7484 
7485 static int
7486 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7487 		      void *md, uint64_t lba_count, uint64_t lba)
7488 {
7489 	int rc;
7490 
7491 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
7492 		      lba_count, lba);
7493 
7494 	bio->iovs = iov;
7495 	bio->iovcnt = iovcnt;
7496 	bio->iovpos = 0;
7497 	bio->iov_offset = 0;
7498 
7499 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
7500 					    bio->io_path->qpair->qpair,
7501 					    lba, lba_count,
7502 					    bdev_nvme_no_pi_readv_done, bio, 0,
7503 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7504 					    md, 0, 0);
7505 
7506 	if (rc != 0 && rc != -ENOMEM) {
7507 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
7508 	}
7509 	return rc;
7510 }
7511 
7512 static int
7513 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7514 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7515 		struct spdk_memory_domain *domain, void *domain_ctx,
7516 		struct spdk_accel_sequence *seq)
7517 {
7518 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7519 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7520 	int rc;
7521 
7522 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7523 		      lba_count, lba);
7524 
7525 	bio->iovs = iov;
7526 	bio->iovcnt = iovcnt;
7527 	bio->iovpos = 0;
7528 	bio->iov_offset = 0;
7529 
7530 	if (domain != NULL || seq != NULL) {
7531 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7532 		bio->ext_opts.memory_domain = domain;
7533 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7534 		bio->ext_opts.io_flags = flags;
7535 		bio->ext_opts.metadata = md;
7536 		bio->ext_opts.accel_sequence = seq;
7537 
7538 		if (iovcnt == 1) {
7539 			rc = spdk_nvme_ns_cmd_read_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_readv_done,
7540 						       bio, &bio->ext_opts);
7541 		} else {
7542 			rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
7543 							bdev_nvme_readv_done, bio,
7544 							bdev_nvme_queued_reset_sgl,
7545 							bdev_nvme_queued_next_sge,
7546 							&bio->ext_opts);
7547 		}
7548 	} else if (iovcnt == 1) {
7549 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base,
7550 						   md, lba, lba_count, bdev_nvme_readv_done,
7551 						   bio, flags, 0, 0);
7552 	} else {
7553 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
7554 						    bdev_nvme_readv_done, bio, flags,
7555 						    bdev_nvme_queued_reset_sgl,
7556 						    bdev_nvme_queued_next_sge, md, 0, 0);
7557 	}
7558 
7559 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
7560 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
7561 	}
7562 	return rc;
7563 }
7564 
7565 static int
7566 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7567 		 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7568 		 struct spdk_memory_domain *domain, void *domain_ctx,
7569 		 struct spdk_accel_sequence *seq)
7570 {
7571 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7572 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7573 	int rc;
7574 
7575 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7576 		      lba_count, lba);
7577 
7578 	bio->iovs = iov;
7579 	bio->iovcnt = iovcnt;
7580 	bio->iovpos = 0;
7581 	bio->iov_offset = 0;
7582 
7583 	if (domain != NULL || seq != NULL) {
7584 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7585 		bio->ext_opts.memory_domain = domain;
7586 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7587 		bio->ext_opts.io_flags = flags;
7588 		bio->ext_opts.metadata = md;
7589 		bio->ext_opts.accel_sequence = seq;
7590 
7591 		if (iovcnt == 1) {
7592 			rc = spdk_nvme_ns_cmd_write_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_writev_done,
7593 							bio, &bio->ext_opts);
7594 		} else {
7595 			rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
7596 							 bdev_nvme_writev_done, bio,
7597 							 bdev_nvme_queued_reset_sgl,
7598 							 bdev_nvme_queued_next_sge,
7599 							 &bio->ext_opts);
7600 		}
7601 	} else if (iovcnt == 1) {
7602 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base,
7603 						    md, lba, lba_count, bdev_nvme_writev_done,
7604 						    bio, flags, 0, 0);
7605 	} else {
7606 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7607 						     bdev_nvme_writev_done, bio, flags,
7608 						     bdev_nvme_queued_reset_sgl,
7609 						     bdev_nvme_queued_next_sge, md, 0, 0);
7610 	}
7611 
7612 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
7613 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
7614 	}
7615 	return rc;
7616 }
7617 
7618 static int
7619 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7620 		       void *md, uint64_t lba_count, uint64_t zslba,
7621 		       uint32_t flags)
7622 {
7623 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7624 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7625 	int rc;
7626 
7627 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
7628 		      lba_count, zslba);
7629 
7630 	bio->iovs = iov;
7631 	bio->iovcnt = iovcnt;
7632 	bio->iovpos = 0;
7633 	bio->iov_offset = 0;
7634 
7635 	if (iovcnt == 1) {
7636 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
7637 						       lba_count,
7638 						       bdev_nvme_zone_appendv_done, bio,
7639 						       flags,
7640 						       0, 0);
7641 	} else {
7642 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
7643 							bdev_nvme_zone_appendv_done, bio, flags,
7644 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7645 							md, 0, 0);
7646 	}
7647 
7648 	if (rc != 0 && rc != -ENOMEM) {
7649 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
7650 	}
7651 	return rc;
7652 }
7653 
7654 static int
7655 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7656 		   void *md, uint64_t lba_count, uint64_t lba,
7657 		   uint32_t flags)
7658 {
7659 	int rc;
7660 
7661 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7662 		      lba_count, lba);
7663 
7664 	bio->iovs = iov;
7665 	bio->iovcnt = iovcnt;
7666 	bio->iovpos = 0;
7667 	bio->iov_offset = 0;
7668 
7669 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
7670 					       bio->io_path->qpair->qpair,
7671 					       lba, lba_count,
7672 					       bdev_nvme_comparev_done, bio, flags,
7673 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7674 					       md, 0, 0);
7675 
7676 	if (rc != 0 && rc != -ENOMEM) {
7677 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
7678 	}
7679 	return rc;
7680 }
7681 
7682 static int
7683 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
7684 			      struct iovec *write_iov, int write_iovcnt,
7685 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
7686 {
7687 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7688 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7689 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7690 	int rc;
7691 
7692 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7693 		      lba_count, lba);
7694 
7695 	bio->iovs = cmp_iov;
7696 	bio->iovcnt = cmp_iovcnt;
7697 	bio->iovpos = 0;
7698 	bio->iov_offset = 0;
7699 	bio->fused_iovs = write_iov;
7700 	bio->fused_iovcnt = write_iovcnt;
7701 	bio->fused_iovpos = 0;
7702 	bio->fused_iov_offset = 0;
7703 
7704 	if (bdev_io->num_retries == 0) {
7705 		bio->first_fused_submitted = false;
7706 		bio->first_fused_completed = false;
7707 	}
7708 
7709 	if (!bio->first_fused_submitted) {
7710 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7711 		memset(&bio->cpl, 0, sizeof(bio->cpl));
7712 
7713 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
7714 						       bdev_nvme_comparev_and_writev_done, bio, flags,
7715 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
7716 		if (rc == 0) {
7717 			bio->first_fused_submitted = true;
7718 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7719 		} else {
7720 			if (rc != -ENOMEM) {
7721 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
7722 			}
7723 			return rc;
7724 		}
7725 	}
7726 
7727 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
7728 
7729 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7730 					     bdev_nvme_comparev_and_writev_done, bio, flags,
7731 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
7732 	if (rc != 0 && rc != -ENOMEM) {
7733 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
7734 		rc = 0;
7735 	}
7736 
7737 	return rc;
7738 }
7739 
7740 static int
7741 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
7742 {
7743 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
7744 	struct spdk_nvme_dsm_range *range;
7745 	uint64_t offset, remaining;
7746 	uint64_t num_ranges_u64;
7747 	uint16_t num_ranges;
7748 	int rc;
7749 
7750 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
7751 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7752 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
7753 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
7754 		return -EINVAL;
7755 	}
7756 	num_ranges = (uint16_t)num_ranges_u64;
7757 
7758 	offset = offset_blocks;
7759 	remaining = num_blocks;
7760 	range = &dsm_ranges[0];
7761 
7762 	/* Fill max-size ranges until the remaining blocks fit into one range */
7763 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
7764 		range->attributes.raw = 0;
7765 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7766 		range->starting_lba = offset;
7767 
7768 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7769 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7770 		range++;
7771 	}
7772 
7773 	/* Final range describes the remaining blocks */
7774 	range->attributes.raw = 0;
7775 	range->length = remaining;
7776 	range->starting_lba = offset;
7777 
7778 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
7779 			bio->io_path->qpair->qpair,
7780 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
7781 			dsm_ranges, num_ranges,
7782 			bdev_nvme_queued_done, bio);
7783 
7784 	return rc;
7785 }
7786 
7787 static int
7788 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
7789 {
7790 	if (num_blocks > UINT16_MAX + 1) {
7791 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
7792 		return -EINVAL;
7793 	}
7794 
7795 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
7796 					     bio->io_path->qpair->qpair,
7797 					     offset_blocks, num_blocks,
7798 					     bdev_nvme_queued_done, bio,
7799 					     0);
7800 }
7801 
7802 static int
7803 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
7804 			struct spdk_bdev_zone_info *info)
7805 {
7806 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7807 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7808 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7809 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7810 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
7811 
7812 	if (zone_id % zone_size != 0) {
7813 		return -EINVAL;
7814 	}
7815 
7816 	if (num_zones > total_zones || !num_zones) {
7817 		return -EINVAL;
7818 	}
7819 
7820 	assert(!bio->zone_report_buf);
7821 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
7822 	if (!bio->zone_report_buf) {
7823 		return -ENOMEM;
7824 	}
7825 
7826 	bio->handled_zones = 0;
7827 
7828 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
7829 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
7830 					  bdev_nvme_get_zone_info_done, bio);
7831 }
7832 
7833 static int
7834 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
7835 			  enum spdk_bdev_zone_action action)
7836 {
7837 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7838 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7839 
7840 	switch (action) {
7841 	case SPDK_BDEV_ZONE_CLOSE:
7842 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
7843 						bdev_nvme_zone_management_done, bio);
7844 	case SPDK_BDEV_ZONE_FINISH:
7845 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
7846 						 bdev_nvme_zone_management_done, bio);
7847 	case SPDK_BDEV_ZONE_OPEN:
7848 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
7849 					       bdev_nvme_zone_management_done, bio);
7850 	case SPDK_BDEV_ZONE_RESET:
7851 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
7852 						bdev_nvme_zone_management_done, bio);
7853 	case SPDK_BDEV_ZONE_OFFLINE:
7854 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
7855 						  bdev_nvme_zone_management_done, bio);
7856 	default:
7857 		return -EINVAL;
7858 	}
7859 }
7860 
7861 static void
7862 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
7863 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
7864 {
7865 	struct nvme_io_path *io_path;
7866 	struct nvme_ctrlr *nvme_ctrlr;
7867 	uint32_t max_xfer_size;
7868 	int rc = -ENXIO;
7869 
7870 	/* Choose the first ctrlr which is not failed. */
7871 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
7872 		nvme_ctrlr = io_path->qpair->ctrlr;
7873 
7874 		/* We should skip any unavailable nvme_ctrlr rather than checking
7875 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
7876 		 */
7877 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
7878 			continue;
7879 		}
7880 
7881 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
7882 
7883 		if (nbytes > max_xfer_size) {
7884 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
7885 			rc = -EINVAL;
7886 			goto err;
7887 		}
7888 
7889 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
7890 						   bdev_nvme_admin_passthru_done, bio);
7891 		if (rc == 0) {
7892 			return;
7893 		}
7894 	}
7895 
7896 err:
7897 	bdev_nvme_admin_complete(bio, rc);
7898 }
7899 
7900 static int
7901 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
7902 		      void *buf, size_t nbytes)
7903 {
7904 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7905 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7906 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
7907 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
7908 
7909 	if (nbytes > max_xfer_size) {
7910 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
7911 		return -EINVAL;
7912 	}
7913 
7914 	/*
7915 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
7916 	 * so fill it out automatically.
7917 	 */
7918 	cmd->nsid = spdk_nvme_ns_get_id(ns);
7919 
7920 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
7921 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
7922 }
7923 
7924 static int
7925 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
7926 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
7927 {
7928 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7929 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7930 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
7931 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
7932 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
7933 
7934 	if (nbytes > max_xfer_size) {
7935 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
7936 		return -EINVAL;
7937 	}
7938 
7939 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
7940 		SPDK_ERRLOG("invalid meta data buffer size\n");
7941 		return -EINVAL;
7942 	}
7943 
7944 	/*
7945 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
7946 	 * so fill it out automatically.
7947 	 */
7948 	cmd->nsid = spdk_nvme_ns_get_id(ns);
7949 
7950 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
7951 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
7952 }
7953 
7954 static int
7955 bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio,
7956 			  struct spdk_nvme_cmd *cmd, struct iovec *iov, int iovcnt,
7957 			  size_t nbytes, void *md_buf, size_t md_len)
7958 {
7959 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7960 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7961 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
7962 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
7963 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
7964 
7965 	bio->iovs = iov;
7966 	bio->iovcnt = iovcnt;
7967 	bio->iovpos = 0;
7968 	bio->iov_offset = 0;
7969 
7970 	if (nbytes > max_xfer_size) {
7971 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
7972 		return -EINVAL;
7973 	}
7974 
7975 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
7976 		SPDK_ERRLOG("invalid meta data buffer size\n");
7977 		return -EINVAL;
7978 	}
7979 
7980 	/*
7981 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands
7982 	 * require a nsid, so fill it out automatically.
7983 	 */
7984 	cmd->nsid = spdk_nvme_ns_get_id(ns);
7985 
7986 	return spdk_nvme_ctrlr_cmd_iov_raw_with_md(
7987 		       ctrlr, qpair, cmd, (uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio,
7988 		       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge);
7989 }
7990 
7991 static void
7992 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
7993 		struct nvme_bdev_io *bio_to_abort)
7994 {
7995 	struct nvme_io_path *io_path;
7996 	int rc = 0;
7997 
7998 	rc = bdev_nvme_abort_retry_io(nbdev_ch, bio_to_abort);
7999 	if (rc == 0) {
8000 		bdev_nvme_admin_complete(bio, 0);
8001 		return;
8002 	}
8003 
8004 	io_path = bio_to_abort->io_path;
8005 	if (io_path != NULL) {
8006 		rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8007 						   io_path->qpair->qpair,
8008 						   bio_to_abort,
8009 						   bdev_nvme_abort_done, bio);
8010 	} else {
8011 		STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8012 			rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8013 							   NULL,
8014 							   bio_to_abort,
8015 							   bdev_nvme_abort_done, bio);
8016 
8017 			if (rc != -ENOENT) {
8018 				break;
8019 			}
8020 		}
8021 	}
8022 
8023 	if (rc != 0) {
8024 		/* If no command was found or there was any error, complete the abort
8025 		 * request with failure.
8026 		 */
8027 		bdev_nvme_admin_complete(bio, rc);
8028 	}
8029 }
8030 
8031 static int
8032 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks,
8033 	       uint64_t num_blocks)
8034 {
8035 	struct spdk_nvme_scc_source_range range = {
8036 		.slba = src_offset_blocks,
8037 		.nlb = num_blocks - 1
8038 	};
8039 
8040 	return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns,
8041 				     bio->io_path->qpair->qpair,
8042 				     &range, 1, dst_offset_blocks,
8043 				     bdev_nvme_queued_done, bio);
8044 }
8045 
8046 static void
8047 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
8048 {
8049 	const char	*action;
8050 
8051 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
8052 		action = "reset";
8053 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
8054 		action = "abort";
8055 	} else {
8056 		action = "none";
8057 	}
8058 
8059 	spdk_json_write_object_begin(w);
8060 
8061 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
8062 
8063 	spdk_json_write_named_object_begin(w, "params");
8064 	spdk_json_write_named_string(w, "action_on_timeout", action);
8065 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
8066 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
8067 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
8068 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
8069 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
8070 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
8071 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
8072 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
8073 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
8074 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
8075 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
8076 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
8077 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
8078 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
8079 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
8080 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
8081 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
8082 	spdk_json_write_named_bool(w, "disable_auto_failback", g_opts.disable_auto_failback);
8083 	spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids);
8084 	spdk_json_write_named_uint8(w, "transport_tos", g_opts.transport_tos);
8085 	spdk_json_write_named_bool(w, "nvme_error_stat", g_opts.nvme_error_stat);
8086 	spdk_json_write_named_uint32(w, "rdma_srq_size", g_opts.rdma_srq_size);
8087 	spdk_json_write_named_bool(w, "io_path_stat", g_opts.io_path_stat);
8088 	spdk_json_write_named_bool(w, "allow_accel_sequence", g_opts.allow_accel_sequence);
8089 	spdk_json_write_named_uint32(w, "rdma_max_cq_size", g_opts.rdma_max_cq_size);
8090 	spdk_json_write_named_uint16(w, "rdma_cm_event_timeout_ms", g_opts.rdma_cm_event_timeout_ms);
8091 	spdk_json_write_object_end(w);
8092 
8093 	spdk_json_write_object_end(w);
8094 }
8095 
8096 static void
8097 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
8098 {
8099 	struct spdk_nvme_transport_id trid;
8100 
8101 	spdk_json_write_object_begin(w);
8102 
8103 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
8104 
8105 	spdk_json_write_named_object_begin(w, "params");
8106 	spdk_json_write_named_string(w, "name", ctx->name);
8107 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
8108 
8109 	trid = ctx->trid;
8110 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
8111 	nvme_bdev_dump_trid_json(&trid, w);
8112 
8113 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
8114 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
8115 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
8116 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8117 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
8118 	spdk_json_write_object_end(w);
8119 
8120 	spdk_json_write_object_end(w);
8121 }
8122 
8123 #ifdef SPDK_CONFIG_NVME_CUSE
8124 static void
8125 nvme_ctrlr_cuse_config_json(struct spdk_json_write_ctx *w,
8126 			    struct nvme_ctrlr *nvme_ctrlr)
8127 {
8128 	size_t cuse_name_size = 128;
8129 	char cuse_name[cuse_name_size];
8130 
8131 	if (spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr,
8132 					  cuse_name, &cuse_name_size) != 0) {
8133 		return;
8134 	}
8135 
8136 	spdk_json_write_object_begin(w);
8137 
8138 	spdk_json_write_named_string(w, "method", "bdev_nvme_cuse_register");
8139 
8140 	spdk_json_write_named_object_begin(w, "params");
8141 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8142 	spdk_json_write_object_end(w);
8143 
8144 	spdk_json_write_object_end(w);
8145 }
8146 #endif
8147 
8148 static void
8149 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
8150 		       struct nvme_ctrlr *nvme_ctrlr)
8151 {
8152 	struct spdk_nvme_transport_id	*trid;
8153 	const struct spdk_nvme_ctrlr_opts *opts;
8154 
8155 	if (nvme_ctrlr->opts.from_discovery_service) {
8156 		/* Do not emit an RPC for this - it will be implicitly
8157 		 * covered by a separate bdev_nvme_start_discovery or
8158 		 * bdev_nvme_start_mdns_discovery RPC.
8159 		 */
8160 		return;
8161 	}
8162 
8163 	trid = &nvme_ctrlr->active_path_id->trid;
8164 
8165 	spdk_json_write_object_begin(w);
8166 
8167 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
8168 
8169 	spdk_json_write_named_object_begin(w, "params");
8170 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8171 	nvme_bdev_dump_trid_json(trid, w);
8172 	spdk_json_write_named_bool(w, "prchk_reftag",
8173 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
8174 	spdk_json_write_named_bool(w, "prchk_guard",
8175 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
8176 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
8177 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
8178 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8179 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
8180 	if (nvme_ctrlr->opts.psk_path[0] != '\0') {
8181 		spdk_json_write_named_string(w, "psk", nvme_ctrlr->opts.psk_path);
8182 	}
8183 
8184 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
8185 	spdk_json_write_named_string(w, "hostnqn", opts->hostnqn);
8186 	spdk_json_write_named_bool(w, "hdgst", opts->header_digest);
8187 	spdk_json_write_named_bool(w, "ddgst", opts->data_digest);
8188 	if (opts->src_addr[0] != '\0') {
8189 		spdk_json_write_named_string(w, "hostaddr", opts->src_addr);
8190 	}
8191 	if (opts->src_svcid[0] != '\0') {
8192 		spdk_json_write_named_string(w, "hostsvcid", opts->src_svcid);
8193 	}
8194 
8195 	spdk_json_write_object_end(w);
8196 
8197 	spdk_json_write_object_end(w);
8198 }
8199 
8200 static void
8201 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
8202 {
8203 	spdk_json_write_object_begin(w);
8204 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
8205 
8206 	spdk_json_write_named_object_begin(w, "params");
8207 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
8208 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
8209 	spdk_json_write_object_end(w);
8210 
8211 	spdk_json_write_object_end(w);
8212 }
8213 
8214 static int
8215 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
8216 {
8217 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
8218 	struct nvme_ctrlr	*nvme_ctrlr;
8219 	struct discovery_ctx	*ctx;
8220 
8221 	bdev_nvme_opts_config_json(w);
8222 
8223 	pthread_mutex_lock(&g_bdev_nvme_mutex);
8224 
8225 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
8226 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
8227 			nvme_ctrlr_config_json(w, nvme_ctrlr);
8228 
8229 #ifdef SPDK_CONFIG_NVME_CUSE
8230 			nvme_ctrlr_cuse_config_json(w, nvme_ctrlr);
8231 #endif
8232 		}
8233 	}
8234 
8235 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8236 		if (!ctx->from_mdns_discovery_service) {
8237 			bdev_nvme_discovery_config_json(w, ctx);
8238 		}
8239 	}
8240 
8241 	bdev_nvme_mdns_discovery_config_json(w);
8242 
8243 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
8244 	 * before enabling hotplug poller.
8245 	 */
8246 	bdev_nvme_hotplug_config_json(w);
8247 
8248 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
8249 	return 0;
8250 }
8251 
8252 struct spdk_nvme_ctrlr *
8253 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
8254 {
8255 	struct nvme_bdev *nbdev;
8256 	struct nvme_ns *nvme_ns;
8257 
8258 	if (!bdev || bdev->module != &nvme_if) {
8259 		return NULL;
8260 	}
8261 
8262 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
8263 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
8264 	assert(nvme_ns != NULL);
8265 
8266 	return nvme_ns->ctrlr->ctrlr;
8267 }
8268 
8269 void
8270 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
8271 {
8272 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
8273 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
8274 	const struct spdk_nvme_ctrlr_data *cdata;
8275 	const struct spdk_nvme_transport_id *trid;
8276 	const char *adrfam_str;
8277 
8278 	spdk_json_write_object_begin(w);
8279 
8280 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
8281 
8282 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
8283 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
8284 
8285 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
8286 	spdk_json_write_named_bool(w, "current", io_path->nbdev_ch != NULL &&
8287 				   io_path == io_path->nbdev_ch->current_io_path);
8288 	spdk_json_write_named_bool(w, "connected", nvme_qpair_is_connected(io_path->qpair));
8289 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
8290 
8291 	spdk_json_write_named_object_begin(w, "transport");
8292 	spdk_json_write_named_string(w, "trtype", trid->trstring);
8293 	spdk_json_write_named_string(w, "traddr", trid->traddr);
8294 	if (trid->trsvcid[0] != '\0') {
8295 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
8296 	}
8297 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
8298 	if (adrfam_str) {
8299 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
8300 	}
8301 	spdk_json_write_object_end(w);
8302 
8303 	spdk_json_write_object_end(w);
8304 }
8305 
8306 void
8307 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
8308 {
8309 	struct discovery_ctx *ctx;
8310 	struct discovery_entry_ctx *entry_ctx;
8311 
8312 	spdk_json_write_array_begin(w);
8313 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8314 		spdk_json_write_object_begin(w);
8315 		spdk_json_write_named_string(w, "name", ctx->name);
8316 
8317 		spdk_json_write_named_object_begin(w, "trid");
8318 		nvme_bdev_dump_trid_json(&ctx->trid, w);
8319 		spdk_json_write_object_end(w);
8320 
8321 		spdk_json_write_named_array_begin(w, "referrals");
8322 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
8323 			spdk_json_write_object_begin(w);
8324 			spdk_json_write_named_object_begin(w, "trid");
8325 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
8326 			spdk_json_write_object_end(w);
8327 			spdk_json_write_object_end(w);
8328 		}
8329 		spdk_json_write_array_end(w);
8330 
8331 		spdk_json_write_object_end(w);
8332 	}
8333 	spdk_json_write_array_end(w);
8334 }
8335 
8336 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
8337 
8338 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
8339 {
8340 	struct spdk_trace_tpoint_opts opts[] = {
8341 		{
8342 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
8343 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 1,
8344 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8345 		},
8346 		{
8347 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
8348 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 0,
8349 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8350 		}
8351 	};
8352 
8353 
8354 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
8355 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
8356 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8357 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8358 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8359 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8360 }
8361