xref: /spdk/module/bdev/crypto/vbdev_crypto.c (revision e9030f36bc2672216cc333e940696627451aba19)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUcryptoION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "vbdev_crypto.h"
35 
36 #include "spdk/env.h"
37 #include "spdk/endian.h"
38 #include "spdk/thread.h"
39 #include "spdk/bdev_module.h"
40 #include "spdk/log.h"
41 
42 #include <rte_config.h>
43 #include <rte_bus_vdev.h>
44 #include <rte_crypto.h>
45 #include <rte_cryptodev.h>
46 #include <rte_mbuf_dyn.h>
47 
48 /* Used to store IO context in mbuf */
49 static const struct rte_mbuf_dynfield rte_mbuf_dynfield_io_context = {
50 	.name = "context_bdev_io",
51 	.size = sizeof(uint64_t),
52 	.align = __alignof__(uint64_t),
53 	.flags = 0,
54 };
55 static int g_mbuf_offset;
56 
57 /* To add support for new device types, follow the examples of the following...
58  * Note that the string names are defined by the DPDK PMD in question so be
59  * sure to use the exact names.
60  */
61 #define MAX_NUM_DRV_TYPES 2
62 
63 /* The VF spread is the number of queue pairs between virtual functions, we use this to
64  * load balance the QAT device.
65  */
66 #define QAT_VF_SPREAD 32
67 static uint8_t g_qat_total_qp = 0;
68 static uint8_t g_next_qat_index;
69 
70 const char *g_driver_names[MAX_NUM_DRV_TYPES] = { AESNI_MB, QAT };
71 
72 /* Global list of available crypto devices. */
73 struct vbdev_dev {
74 	struct rte_cryptodev_info	cdev_info;	/* includes device friendly name */
75 	uint8_t				cdev_id;	/* identifier for the device */
76 	TAILQ_ENTRY(vbdev_dev)		link;
77 };
78 static TAILQ_HEAD(, vbdev_dev) g_vbdev_devs = TAILQ_HEAD_INITIALIZER(g_vbdev_devs);
79 
80 /* Global list and lock for unique device/queue pair combos. We keep 1 list per supported PMD
81  * so that we can optimize per PMD where it make sense. For example, with QAT there an optimal
82  * pattern for assigning queue pairs where with AESNI there is not.
83  */
84 struct device_qp {
85 	struct vbdev_dev		*device;	/* ptr to crypto device */
86 	uint8_t				qp;		/* queue pair for this node */
87 	bool				in_use;		/* whether this node is in use or not */
88 	uint8_t				index;		/* used by QAT to load balance placement of qpairs */
89 	TAILQ_ENTRY(device_qp)		link;
90 };
91 static TAILQ_HEAD(, device_qp) g_device_qp_qat = TAILQ_HEAD_INITIALIZER(g_device_qp_qat);
92 static TAILQ_HEAD(, device_qp) g_device_qp_aesni_mb = TAILQ_HEAD_INITIALIZER(g_device_qp_aesni_mb);
93 static pthread_mutex_t g_device_qp_lock = PTHREAD_MUTEX_INITIALIZER;
94 
95 
96 /* In order to limit the number of resources we need to do one crypto
97  * operation per LBA (we use LBA as IV), we tell the bdev layer that
98  * our max IO size is something reasonable. Units here are in bytes.
99  */
100 #define CRYPTO_MAX_IO		(64 * 1024)
101 
102 /* This controls how many ops will be dequeued from the crypto driver in one run
103  * of the poller. It is mainly a performance knob as it effectively determines how
104  * much work the poller has to do.  However even that can vary between crypto drivers
105  * as the AESNI_MB driver for example does all the crypto work on dequeue whereas the
106  * QAT driver just dequeues what has been completed already.
107  */
108 #define MAX_DEQUEUE_BURST_SIZE	64
109 
110 /* When enqueueing, we need to supply the crypto driver with an array of pointers to
111  * operation structs. As each of these can be max 512B, we can adjust the CRYPTO_MAX_IO
112  * value in conjunction with the other defines to make sure we're not using crazy amounts
113  * of memory. All of these numbers can and probably should be adjusted based on the
114  * workload. By default we'll use the worst case (smallest) block size for the
115  * minimum number of array entries. As an example, a CRYPTO_MAX_IO size of 64K with 512B
116  * blocks would give us an enqueue array size of 128.
117  */
118 #define MAX_ENQUEUE_ARRAY_SIZE (CRYPTO_MAX_IO / 512)
119 
120 /* The number of MBUFS we need must be a power of two and to support other small IOs
121  * in addition to the limits mentioned above, we go to the next power of two. It is
122  * big number because it is one mempool for source and destination mbufs. It may
123  * need to be bigger to support multiple crypto drivers at once.
124  */
125 #define NUM_MBUFS		32768
126 #define POOL_CACHE_SIZE		256
127 #define MAX_CRYPTO_VOLUMES	128
128 #define NUM_SESSIONS		(2 * MAX_CRYPTO_VOLUMES)
129 #define SESS_MEMPOOL_CACHE_SIZE 0
130 uint8_t g_number_of_claimed_volumes = 0;
131 
132 /* This is the max number of IOs we can supply to any crypto device QP at one time.
133  * It can vary between drivers.
134  */
135 #define CRYPTO_QP_DESCRIPTORS	2048
136 
137 /* Specific to AES_CBC. */
138 #define AES_CBC_IV_LENGTH	16
139 #define AES_CBC_KEY_LENGTH	16
140 #define AES_XTS_KEY_LENGTH	16	/* XTS uses 2 keys, each of this size. */
141 #define AESNI_MB_NUM_QP		64
142 
143 /* Common for suported devices. */
144 #define IV_OFFSET            (sizeof(struct rte_crypto_op) + \
145 				sizeof(struct rte_crypto_sym_op))
146 #define QUEUED_OP_OFFSET (IV_OFFSET + AES_CBC_IV_LENGTH)
147 
148 static void _complete_internal_io(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
149 static void _complete_internal_read(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
150 static void _complete_internal_write(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
151 static void vbdev_crypto_examine(struct spdk_bdev *bdev);
152 static int vbdev_crypto_claim(const char *bdev_name);
153 static void vbdev_crypto_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io);
154 
155 /* List of crypto_bdev names and their base bdevs via configuration file. */
156 struct bdev_names {
157 	char			*vbdev_name;	/* name of the vbdev to create */
158 	char			*bdev_name;	/* base bdev name */
159 
160 	/* Note, for dev/test we allow use of key in the config file, for production
161 	 * use, you must use an RPC to specify the key for security reasons.
162 	 */
163 	uint8_t			*key;		/* key per bdev */
164 	char			*drv_name;	/* name of the crypto device driver */
165 	char			*cipher;	/* AES_CBC or AES_XTS */
166 	uint8_t			*key2;		/* key #2 for AES_XTS, per bdev */
167 	TAILQ_ENTRY(bdev_names)	link;
168 };
169 static TAILQ_HEAD(, bdev_names) g_bdev_names = TAILQ_HEAD_INITIALIZER(g_bdev_names);
170 
171 /* List of virtual bdevs and associated info for each. We keep the device friendly name here even
172  * though its also in the device struct because we use it early on.
173  */
174 struct vbdev_crypto {
175 	struct spdk_bdev		*base_bdev;		/* the thing we're attaching to */
176 	struct spdk_bdev_desc		*base_desc;		/* its descriptor we get from open */
177 	struct spdk_bdev		crypto_bdev;		/* the crypto virtual bdev */
178 	uint8_t				*key;			/* key per bdev */
179 	uint8_t				*key2;			/* for XTS */
180 	uint8_t				*xts_key;		/* key + key 2 */
181 	char				*drv_name;		/* name of the crypto device driver */
182 	char				*cipher;		/* cipher used */
183 	struct rte_cryptodev_sym_session *session_encrypt;	/* encryption session for this bdev */
184 	struct rte_cryptodev_sym_session *session_decrypt;	/* decryption session for this bdev */
185 	struct rte_crypto_sym_xform	cipher_xform;		/* crypto control struct for this bdev */
186 	TAILQ_ENTRY(vbdev_crypto)	link;
187 	struct spdk_thread		*thread;		/* thread where base device is opened */
188 };
189 static TAILQ_HEAD(, vbdev_crypto) g_vbdev_crypto = TAILQ_HEAD_INITIALIZER(g_vbdev_crypto);
190 
191 /* Shared mempools between all devices on this system */
192 static struct rte_mempool *g_session_mp = NULL;
193 static struct rte_mempool *g_session_mp_priv = NULL;
194 static struct spdk_mempool *g_mbuf_mp = NULL;		/* mbuf mempool */
195 static struct rte_mempool *g_crypto_op_mp = NULL;	/* crypto operations, must be rte* mempool */
196 
197 /* For queueing up crypto operations that we can't submit for some reason */
198 struct vbdev_crypto_op {
199 	uint8_t					cdev_id;
200 	uint8_t					qp;
201 	struct rte_crypto_op			*crypto_op;
202 	struct spdk_bdev_io			*bdev_io;
203 	TAILQ_ENTRY(vbdev_crypto_op)		link;
204 };
205 #define QUEUED_OP_LENGTH (sizeof(struct vbdev_crypto_op))
206 
207 /* The crypto vbdev channel struct. It is allocated and freed on my behalf by the io channel code.
208  * We store things in here that are needed on per thread basis like the base_channel for this thread,
209  * and the poller for this thread.
210  */
211 struct crypto_io_channel {
212 	struct spdk_io_channel		*base_ch;		/* IO channel of base device */
213 	struct spdk_poller		*poller;		/* completion poller */
214 	struct device_qp		*device_qp;		/* unique device/qp combination for this channel */
215 	TAILQ_HEAD(, spdk_bdev_io)	pending_cry_ios;	/* outstanding operations to the crypto device */
216 	struct spdk_io_channel_iter	*iter;			/* used with for_each_channel in reset */
217 	TAILQ_HEAD(, vbdev_crypto_op)	queued_cry_ops;		/* queued for re-submission to CryptoDev */
218 };
219 
220 /* This is the crypto per IO context that the bdev layer allocates for us opaquely and attaches to
221  * each IO for us.
222  */
223 struct crypto_bdev_io {
224 	int cryop_cnt_remaining;			/* counter used when completing crypto ops */
225 	struct crypto_io_channel *crypto_ch;		/* need to store for crypto completion handling */
226 	struct vbdev_crypto *crypto_bdev;		/* the crypto node struct associated with this IO */
227 	struct spdk_bdev_io *orig_io;			/* the original IO */
228 	struct spdk_bdev_io *read_io;			/* the read IO we issued */
229 	int8_t bdev_io_status;				/* the status we'll report back on the bdev IO */
230 	bool on_pending_list;
231 	/* Used for the single contiguous buffer that serves as the crypto destination target for writes */
232 	uint64_t aux_num_blocks;			/* num of blocks for the contiguous buffer */
233 	uint64_t aux_offset_blocks;			/* block offset on media */
234 	void *aux_buf_raw;				/* raw buffer that the bdev layer gave us for write buffer */
235 	struct iovec aux_buf_iov;			/* iov representing aligned contig write buffer */
236 
237 	/* for bdev_io_wait */
238 	struct spdk_bdev_io_wait_entry bdev_io_wait;
239 	struct spdk_io_channel *ch;
240 };
241 
242 /* Called by vbdev_crypto_init_crypto_drivers() to init each discovered crypto device */
243 static int
244 create_vbdev_dev(uint8_t index, uint16_t num_lcores)
245 {
246 	struct vbdev_dev *device;
247 	uint8_t j, cdev_id, cdrv_id;
248 	struct device_qp *dev_qp;
249 	struct device_qp *tmp_qp;
250 	int rc;
251 	TAILQ_HEAD(device_qps, device_qp) *dev_qp_head;
252 
253 	device = calloc(1, sizeof(struct vbdev_dev));
254 	if (!device) {
255 		return -ENOMEM;
256 	}
257 
258 	/* Get details about this device. */
259 	rte_cryptodev_info_get(index, &device->cdev_info);
260 	cdrv_id = device->cdev_info.driver_id;
261 	cdev_id = device->cdev_id = index;
262 
263 	/* Before going any further, make sure we have enough resources for this
264 	 * device type to function.  We need a unique queue pair per core accross each
265 	 * device type to remain lockless....
266 	 */
267 	if ((rte_cryptodev_device_count_by_driver(cdrv_id) *
268 	     device->cdev_info.max_nb_queue_pairs) < num_lcores) {
269 		SPDK_ERRLOG("Insufficient unique queue pairs available for %s\n",
270 			    device->cdev_info.driver_name);
271 		SPDK_ERRLOG("Either add more crypto devices or decrease core count\n");
272 		rc = -EINVAL;
273 		goto err;
274 	}
275 
276 	/* Setup queue pairs. */
277 	struct rte_cryptodev_config conf = {
278 		.nb_queue_pairs = device->cdev_info.max_nb_queue_pairs,
279 		.socket_id = SPDK_ENV_SOCKET_ID_ANY
280 	};
281 
282 	rc = rte_cryptodev_configure(cdev_id, &conf);
283 	if (rc < 0) {
284 		SPDK_ERRLOG("Failed to configure cryptodev %u\n", cdev_id);
285 		rc = -EINVAL;
286 		goto err;
287 	}
288 
289 	struct rte_cryptodev_qp_conf qp_conf = {
290 		.nb_descriptors = CRYPTO_QP_DESCRIPTORS,
291 		.mp_session = g_session_mp,
292 		.mp_session_private = g_session_mp_priv,
293 	};
294 
295 	/* Pre-setup all potential qpairs now and assign them in the channel
296 	 * callback. If we were to create them there, we'd have to stop the
297 	 * entire device affecting all other threads that might be using it
298 	 * even on other queue pairs.
299 	 */
300 	for (j = 0; j < device->cdev_info.max_nb_queue_pairs; j++) {
301 		rc = rte_cryptodev_queue_pair_setup(cdev_id, j, &qp_conf, SOCKET_ID_ANY);
302 		if (rc < 0) {
303 			SPDK_ERRLOG("Failed to setup queue pair %u on "
304 				    "cryptodev %u\n", j, cdev_id);
305 			rc = -EINVAL;
306 			goto err;
307 		}
308 	}
309 
310 	rc = rte_cryptodev_start(cdev_id);
311 	if (rc < 0) {
312 		SPDK_ERRLOG("Failed to start device %u: error %d\n",
313 			    cdev_id, rc);
314 		rc = -EINVAL;
315 		goto err;
316 	}
317 
318 	/* Select the right device/qp list based on driver name
319 	 * or error if it does not exist.
320 	 */
321 	if (strcmp(device->cdev_info.driver_name, QAT) == 0) {
322 		dev_qp_head = (struct device_qps *)&g_device_qp_qat;
323 	} else if (strcmp(device->cdev_info.driver_name, AESNI_MB) == 0) {
324 		dev_qp_head = (struct device_qps *)&g_device_qp_aesni_mb;
325 	} else {
326 		rc = -EINVAL;
327 		goto err;
328 	}
329 
330 	/* Build up lists of device/qp combinations per PMD */
331 	for (j = 0; j < device->cdev_info.max_nb_queue_pairs; j++) {
332 		dev_qp = calloc(1, sizeof(struct device_qp));
333 		if (!dev_qp) {
334 			rc = -ENOMEM;
335 			goto err_qp_alloc;
336 		}
337 		dev_qp->device = device;
338 		dev_qp->qp = j;
339 		dev_qp->in_use = false;
340 		if (strcmp(device->cdev_info.driver_name, QAT) == 0) {
341 			g_qat_total_qp++;
342 		}
343 		TAILQ_INSERT_TAIL(dev_qp_head, dev_qp, link);
344 	}
345 
346 	/* Add to our list of available crypto devices. */
347 	TAILQ_INSERT_TAIL(&g_vbdev_devs, device, link);
348 
349 	return 0;
350 err_qp_alloc:
351 	TAILQ_FOREACH_SAFE(dev_qp, dev_qp_head, link, tmp_qp) {
352 		TAILQ_REMOVE(dev_qp_head, dev_qp, link);
353 		free(dev_qp);
354 	}
355 err:
356 	free(device);
357 
358 	return rc;
359 }
360 
361 /* This is called from the module's init function. We setup all crypto devices early on as we are unable
362  * to easily dynamically configure queue pairs after the drivers are up and running.  So, here, we
363  * configure the max capabilities of each device and assign threads to queue pairs as channels are
364  * requested.
365  */
366 static int
367 vbdev_crypto_init_crypto_drivers(void)
368 {
369 	uint8_t cdev_count;
370 	uint8_t cdev_id;
371 	int i, rc = 0;
372 	struct vbdev_dev *device;
373 	struct vbdev_dev *tmp_dev;
374 	struct device_qp *dev_qp;
375 	unsigned int max_sess_size = 0, sess_size;
376 	uint16_t num_lcores = rte_lcore_count();
377 	char aesni_args[32];
378 
379 	/* Only the first call, via RPC or module init should init the crypto drivers. */
380 	if (g_session_mp != NULL) {
381 		return 0;
382 	}
383 
384 	/* We always init AESNI_MB */
385 	snprintf(aesni_args, sizeof(aesni_args), "max_nb_queue_pairs=%d", AESNI_MB_NUM_QP);
386 	rc = rte_vdev_init(AESNI_MB, aesni_args);
387 	if (rc) {
388 		SPDK_ERRLOG("error creating virtual PMD %s\n", AESNI_MB);
389 		return -EINVAL;
390 	}
391 
392 	/* If we have no crypto devices, there's no reason to continue. */
393 	cdev_count = rte_cryptodev_count();
394 	if (cdev_count == 0) {
395 		return 0;
396 	}
397 
398 	g_mbuf_offset = rte_mbuf_dynfield_register(&rte_mbuf_dynfield_io_context);
399 	if (g_mbuf_offset < 0) {
400 		SPDK_ERRLOG("error registering dynamic field with DPDK\n");
401 		return -EINVAL;
402 	}
403 
404 	/*
405 	 * Create global mempools, shared by all devices regardless of type.
406 	 */
407 
408 	/* First determine max session size, most pools are shared by all the devices,
409 	 * so we need to find the global max sessions size.
410 	 */
411 	for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) {
412 		sess_size = rte_cryptodev_sym_get_private_session_size(cdev_id);
413 		if (sess_size > max_sess_size) {
414 			max_sess_size = sess_size;
415 		}
416 	}
417 
418 	g_session_mp_priv = rte_mempool_create("session_mp_priv", NUM_SESSIONS, max_sess_size,
419 					       SESS_MEMPOOL_CACHE_SIZE, 0, NULL, NULL, NULL,
420 					       NULL, SOCKET_ID_ANY, 0);
421 	if (g_session_mp_priv == NULL) {
422 		SPDK_ERRLOG("Cannot create private session pool max size 0x%x\n", max_sess_size);
423 		return -ENOMEM;
424 	}
425 
426 	g_session_mp = rte_cryptodev_sym_session_pool_create(
427 			       "session_mp",
428 			       NUM_SESSIONS, 0, SESS_MEMPOOL_CACHE_SIZE, 0,
429 			       SOCKET_ID_ANY);
430 	if (g_session_mp == NULL) {
431 		SPDK_ERRLOG("Cannot create session pool max size 0x%x\n", max_sess_size);
432 		goto error_create_session_mp;
433 		return -ENOMEM;
434 	}
435 
436 	g_mbuf_mp = spdk_mempool_create("mbuf_mp", NUM_MBUFS, sizeof(struct rte_mbuf),
437 					SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
438 					SPDK_ENV_SOCKET_ID_ANY);
439 	if (g_mbuf_mp == NULL) {
440 		SPDK_ERRLOG("Cannot create mbuf pool\n");
441 		rc = -ENOMEM;
442 		goto error_create_mbuf;
443 	}
444 
445 	/* We use per op private data to store the IV and our own struct
446 	 * for queueing ops.
447 	 */
448 	g_crypto_op_mp = rte_crypto_op_pool_create("op_mp",
449 			 RTE_CRYPTO_OP_TYPE_SYMMETRIC,
450 			 NUM_MBUFS,
451 			 POOL_CACHE_SIZE,
452 			 AES_CBC_IV_LENGTH + QUEUED_OP_LENGTH,
453 			 rte_socket_id());
454 
455 	if (g_crypto_op_mp == NULL) {
456 		SPDK_ERRLOG("Cannot create op pool\n");
457 		rc = -ENOMEM;
458 		goto error_create_op;
459 	}
460 
461 	/* Init all devices */
462 	for (i = 0; i < cdev_count; i++) {
463 		rc = create_vbdev_dev(i, num_lcores);
464 		if (rc) {
465 			goto err;
466 		}
467 	}
468 
469 	/* Assign index values to the QAT device qp nodes so that we can
470 	 * assign them for optimal performance.
471 	 */
472 	i = 0;
473 	TAILQ_FOREACH(dev_qp, &g_device_qp_qat, link) {
474 		dev_qp->index = i++;
475 	}
476 
477 	return 0;
478 
479 	/* Error cleanup paths. */
480 err:
481 	TAILQ_FOREACH_SAFE(device, &g_vbdev_devs, link, tmp_dev) {
482 		TAILQ_REMOVE(&g_vbdev_devs, device, link);
483 		free(device);
484 	}
485 	rte_mempool_free(g_crypto_op_mp);
486 	g_crypto_op_mp = NULL;
487 error_create_op:
488 	spdk_mempool_free(g_mbuf_mp);
489 	g_mbuf_mp = NULL;
490 error_create_mbuf:
491 	rte_mempool_free(g_session_mp);
492 	g_session_mp = NULL;
493 error_create_session_mp:
494 	if (g_session_mp_priv != NULL) {
495 		rte_mempool_free(g_session_mp_priv);
496 		g_session_mp_priv = NULL;
497 	}
498 	return rc;
499 }
500 
501 /* Following an encrypt or decrypt we need to then either write the encrypted data or finish
502  * the read on decrypted data. Do that here.
503  */
504 static void
505 _crypto_operation_complete(struct spdk_bdev_io *bdev_io)
506 {
507 	struct vbdev_crypto *crypto_bdev = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_crypto,
508 					   crypto_bdev);
509 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
510 	struct crypto_io_channel *crypto_ch = io_ctx->crypto_ch;
511 	struct spdk_bdev_io *free_me = io_ctx->read_io;
512 	int rc = 0;
513 
514 	TAILQ_REMOVE(&crypto_ch->pending_cry_ios, bdev_io, module_link);
515 
516 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
517 
518 		/* Complete the original IO and then free the one that we created
519 		 * as a result of issuing an IO via submit_request.
520 		 */
521 		if (io_ctx->bdev_io_status != SPDK_BDEV_IO_STATUS_FAILED) {
522 			spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS);
523 		} else {
524 			SPDK_ERRLOG("Issue with decryption on bdev_io %p\n", bdev_io);
525 			rc = -EINVAL;
526 		}
527 		spdk_bdev_free_io(free_me);
528 
529 	} else if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
530 
531 		if (io_ctx->bdev_io_status != SPDK_BDEV_IO_STATUS_FAILED) {
532 			/* Write the encrypted data. */
533 			rc = spdk_bdev_writev_blocks(crypto_bdev->base_desc, crypto_ch->base_ch,
534 						     &io_ctx->aux_buf_iov, 1, io_ctx->aux_offset_blocks,
535 						     io_ctx->aux_num_blocks, _complete_internal_write,
536 						     bdev_io);
537 		} else {
538 			SPDK_ERRLOG("Issue with encryption on bdev_io %p\n", bdev_io);
539 			rc = -EINVAL;
540 		}
541 
542 	} else {
543 		SPDK_ERRLOG("Unknown bdev type %u on crypto operation completion\n",
544 			    bdev_io->type);
545 		rc = -EINVAL;
546 	}
547 
548 	if (rc) {
549 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
550 	}
551 }
552 
553 static int _crypto_operation(struct spdk_bdev_io *bdev_io,
554 			     enum rte_crypto_cipher_operation crypto_op,
555 			     void *aux_buf);
556 
557 /* This is the poller for the crypto device. It uses a single API to dequeue whatever is ready at
558  * the device. Then we need to decide if what we've got so far (including previous poller
559  * runs) totals up to one or more complete bdev_ios and if so continue with the bdev_io
560  * accordingly. This means either completing a read or issuing a new write.
561  */
562 static int
563 crypto_dev_poller(void *args)
564 {
565 	struct crypto_io_channel *crypto_ch = args;
566 	uint8_t cdev_id = crypto_ch->device_qp->device->cdev_id;
567 	int i, num_dequeued_ops, num_enqueued_ops;
568 	struct spdk_bdev_io *bdev_io = NULL;
569 	struct crypto_bdev_io *io_ctx = NULL;
570 	struct rte_crypto_op *dequeued_ops[MAX_DEQUEUE_BURST_SIZE];
571 	struct rte_crypto_op *mbufs_to_free[2 * MAX_DEQUEUE_BURST_SIZE];
572 	int num_mbufs = 0;
573 	struct vbdev_crypto_op *op_to_resubmit;
574 
575 	/* Each run of the poller will get just what the device has available
576 	 * at the moment we call it, we don't check again after draining the
577 	 * first batch.
578 	 */
579 	num_dequeued_ops = rte_cryptodev_dequeue_burst(cdev_id, crypto_ch->device_qp->qp,
580 			   dequeued_ops, MAX_DEQUEUE_BURST_SIZE);
581 
582 	/* Check if operation was processed successfully */
583 	for (i = 0; i < num_dequeued_ops; i++) {
584 
585 		/* We don't know the order or association of the crypto ops wrt any
586 		 * partiular bdev_io so need to look at each and determine if it's
587 		 * the last one for it's bdev_io or not.
588 		 */
589 		bdev_io = (struct spdk_bdev_io *)*RTE_MBUF_DYNFIELD(dequeued_ops[i]->sym->m_src, g_mbuf_offset,
590 				uint64_t *);
591 		assert(bdev_io != NULL);
592 		io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
593 
594 		if (dequeued_ops[i]->status != RTE_CRYPTO_OP_STATUS_SUCCESS) {
595 			SPDK_ERRLOG("error with op %d status %u\n", i,
596 				    dequeued_ops[i]->status);
597 			/* Update the bdev status to error, we'll still process the
598 			 * rest of the crypto ops for this bdev_io though so they
599 			 * aren't left hanging.
600 			 */
601 			io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_FAILED;
602 		}
603 
604 		assert(io_ctx->cryop_cnt_remaining > 0);
605 
606 		/* Return the associated src and dst mbufs by collecting them into
607 		 * an array that we can use the bulk API to free after the loop.
608 		 */
609 		*RTE_MBUF_DYNFIELD(dequeued_ops[i]->sym->m_src, g_mbuf_offset, uint64_t *) = 0;
610 		mbufs_to_free[num_mbufs++] = (void *)dequeued_ops[i]->sym->m_src;
611 		if (dequeued_ops[i]->sym->m_dst) {
612 			mbufs_to_free[num_mbufs++] = (void *)dequeued_ops[i]->sym->m_dst;
613 		}
614 
615 		/* done encrypting, complete the bdev_io */
616 		if (--io_ctx->cryop_cnt_remaining == 0) {
617 
618 			/* If we're completing this with an outstanding reset we need
619 			 * to fail it.
620 			 */
621 			if (crypto_ch->iter) {
622 				io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_FAILED;
623 			}
624 
625 			/* Complete the IO */
626 			_crypto_operation_complete(bdev_io);
627 		}
628 	}
629 
630 	/* Now bulk free both mbufs and crypto operations. */
631 	if (num_dequeued_ops > 0) {
632 		rte_mempool_put_bulk(g_crypto_op_mp,
633 				     (void **)dequeued_ops,
634 				     num_dequeued_ops);
635 		assert(num_mbufs > 0);
636 		spdk_mempool_put_bulk(g_mbuf_mp,
637 				      (void **)mbufs_to_free,
638 				      num_mbufs);
639 	}
640 
641 	/* Check if there are any pending crypto ops to process */
642 	while (!TAILQ_EMPTY(&crypto_ch->queued_cry_ops)) {
643 		op_to_resubmit = TAILQ_FIRST(&crypto_ch->queued_cry_ops);
644 		io_ctx = (struct crypto_bdev_io *)op_to_resubmit->bdev_io->driver_ctx;
645 		num_enqueued_ops = rte_cryptodev_enqueue_burst(op_to_resubmit->cdev_id,
646 				   op_to_resubmit->qp,
647 				   &op_to_resubmit->crypto_op,
648 				   1);
649 		if (num_enqueued_ops == 1) {
650 			/* Make sure we don't put this on twice as one bdev_io is made up
651 			 * of many crypto ops.
652 			 */
653 			if (io_ctx->on_pending_list == false) {
654 				TAILQ_INSERT_TAIL(&crypto_ch->pending_cry_ios, op_to_resubmit->bdev_io, module_link);
655 				io_ctx->on_pending_list = true;
656 			}
657 			TAILQ_REMOVE(&crypto_ch->queued_cry_ops, op_to_resubmit, link);
658 		} else {
659 			/* if we couldn't get one, just break and try again later. */
660 			break;
661 		}
662 	}
663 
664 	/* If the channel iter is not NULL, we need to continue to poll
665 	 * until the pending list is empty, then we can move on to the
666 	 * next channel.
667 	 */
668 	if (crypto_ch->iter && TAILQ_EMPTY(&crypto_ch->pending_cry_ios)) {
669 		SPDK_NOTICELOG("Channel %p has been quiesced.\n", crypto_ch);
670 		spdk_for_each_channel_continue(crypto_ch->iter, 0);
671 		crypto_ch->iter = NULL;
672 	}
673 
674 	return num_dequeued_ops;
675 }
676 
677 /* We're either encrypting on the way down or decrypting on the way back. */
678 static int
679 _crypto_operation(struct spdk_bdev_io *bdev_io, enum rte_crypto_cipher_operation crypto_op,
680 		  void *aux_buf)
681 {
682 	uint16_t num_enqueued_ops = 0;
683 	uint32_t cryop_cnt = bdev_io->u.bdev.num_blocks;
684 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
685 	struct crypto_io_channel *crypto_ch = io_ctx->crypto_ch;
686 	uint8_t cdev_id = crypto_ch->device_qp->device->cdev_id;
687 	uint32_t crypto_len = io_ctx->crypto_bdev->crypto_bdev.blocklen;
688 	uint64_t total_length = bdev_io->u.bdev.num_blocks * crypto_len;
689 	int rc;
690 	uint32_t iov_index = 0;
691 	uint32_t allocated = 0;
692 	uint8_t *current_iov = NULL;
693 	uint64_t total_remaining = 0;
694 	uint64_t updated_length, current_iov_remaining = 0;
695 	uint32_t crypto_index = 0;
696 	uint32_t en_offset = 0;
697 	struct rte_crypto_op *crypto_ops[MAX_ENQUEUE_ARRAY_SIZE];
698 	struct rte_mbuf *src_mbufs[MAX_ENQUEUE_ARRAY_SIZE];
699 	struct rte_mbuf *dst_mbufs[MAX_ENQUEUE_ARRAY_SIZE];
700 	int burst;
701 	struct vbdev_crypto_op *op_to_queue;
702 	uint64_t alignment = spdk_bdev_get_buf_align(&io_ctx->crypto_bdev->crypto_bdev);
703 
704 	assert((bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen) <= CRYPTO_MAX_IO);
705 
706 	/* Get the number of source mbufs that we need. These will always be 1:1 because we
707 	 * don't support chaining. The reason we don't is because of our decision to use
708 	 * LBA as IV, there can be no case where we'd need >1 mbuf per crypto op or the
709 	 * op would be > 1 LBA.
710 	 */
711 	rc = spdk_mempool_get_bulk(g_mbuf_mp, (void **)&src_mbufs[0], cryop_cnt);
712 	if (rc) {
713 		SPDK_ERRLOG("ERROR trying to get src_mbufs!\n");
714 		return -ENOMEM;
715 	}
716 
717 	/* Get the same amount but these buffers to describe the encrypted data location (dst). */
718 	if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
719 		rc = spdk_mempool_get_bulk(g_mbuf_mp, (void **)&dst_mbufs[0], cryop_cnt);
720 		if (rc) {
721 			SPDK_ERRLOG("ERROR trying to get dst_mbufs!\n");
722 			rc = -ENOMEM;
723 			goto error_get_dst;
724 		}
725 	}
726 
727 #ifdef __clang_analyzer__
728 	/* silence scan-build false positive */
729 	SPDK_CLANG_ANALYZER_PREINIT_PTR_ARRAY(crypto_ops, MAX_ENQUEUE_ARRAY_SIZE, 0x1000);
730 #endif
731 	/* Allocate crypto operations. */
732 	allocated = rte_crypto_op_bulk_alloc(g_crypto_op_mp,
733 					     RTE_CRYPTO_OP_TYPE_SYMMETRIC,
734 					     crypto_ops, cryop_cnt);
735 	if (allocated < cryop_cnt) {
736 		SPDK_ERRLOG("ERROR trying to get crypto ops!\n");
737 		rc = -ENOMEM;
738 		goto error_get_ops;
739 	}
740 
741 	/* For encryption, we need to prepare a single contiguous buffer as the encryption
742 	 * destination, we'll then pass that along for the write after encryption is done.
743 	 * This is done to avoiding encrypting the provided write buffer which may be
744 	 * undesirable in some use cases.
745 	 */
746 	if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
747 		io_ctx->aux_buf_iov.iov_len = total_length;
748 		io_ctx->aux_buf_raw = aux_buf;
749 		io_ctx->aux_buf_iov.iov_base  = (void *)(((uintptr_t)aux_buf + (alignment - 1)) & ~(alignment - 1));
750 		io_ctx->aux_offset_blocks = bdev_io->u.bdev.offset_blocks;
751 		io_ctx->aux_num_blocks = bdev_io->u.bdev.num_blocks;
752 	}
753 
754 	/* This value is used in the completion callback to determine when the bdev_io is
755 	 * complete.
756 	 */
757 	io_ctx->cryop_cnt_remaining = cryop_cnt;
758 
759 	/* As we don't support chaining because of a decision to use LBA as IV, construction
760 	 * of crypto operations is straightforward. We build both the op, the mbuf and the
761 	 * dst_mbuf in our local arrays by looping through the length of the bdev IO and
762 	 * picking off LBA sized blocks of memory from the IOVs as we walk through them. Each
763 	 * LBA sized chunk of memory will correspond 1:1 to a crypto operation and a single
764 	 * mbuf per crypto operation.
765 	 */
766 	total_remaining = total_length;
767 	current_iov = bdev_io->u.bdev.iovs[iov_index].iov_base;
768 	current_iov_remaining = bdev_io->u.bdev.iovs[iov_index].iov_len;
769 	do {
770 		uint8_t *iv_ptr;
771 		uint64_t op_block_offset;
772 
773 		/* Set the mbuf elements address and length. Null out the next pointer. */
774 		src_mbufs[crypto_index]->buf_addr = current_iov;
775 		src_mbufs[crypto_index]->data_len = updated_length = crypto_len;
776 		/* TODO: Make this assignment conditional on QAT usage and add an assert. */
777 		src_mbufs[crypto_index]->buf_iova = spdk_vtophys((void *)current_iov, &updated_length);
778 		src_mbufs[crypto_index]->next = NULL;
779 		/* Store context in every mbuf as we don't know anything about completion order */
780 		*RTE_MBUF_DYNFIELD(src_mbufs[crypto_index], g_mbuf_offset, uint64_t *) = (uint64_t)bdev_io;
781 
782 		/* Set the IV - we use the LBA of the crypto_op */
783 		iv_ptr = rte_crypto_op_ctod_offset(crypto_ops[crypto_index], uint8_t *,
784 						   IV_OFFSET);
785 		memset(iv_ptr, 0, AES_CBC_IV_LENGTH);
786 		op_block_offset = bdev_io->u.bdev.offset_blocks + crypto_index;
787 		rte_memcpy(iv_ptr, &op_block_offset, sizeof(uint64_t));
788 
789 		/* Set the data to encrypt/decrypt length */
790 		crypto_ops[crypto_index]->sym->cipher.data.length = crypto_len;
791 		crypto_ops[crypto_index]->sym->cipher.data.offset = 0;
792 
793 		/* link the mbuf to the crypto op. */
794 		crypto_ops[crypto_index]->sym->m_src = src_mbufs[crypto_index];
795 		if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
796 			crypto_ops[crypto_index]->sym->m_dst = src_mbufs[crypto_index];
797 		} else {
798 			crypto_ops[crypto_index]->sym->m_dst = NULL;
799 		}
800 
801 		/* For encrypt, point the destination to a buffer we allocate and redirect the bdev_io
802 		 * that will be used to process the write on completion to the same buffer. Setting
803 		 * up the en_buffer is a little simpler as we know the destination buffer is single IOV.
804 		 */
805 		if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
806 
807 			/* Set the relevant destination en_mbuf elements. */
808 			dst_mbufs[crypto_index]->buf_addr = io_ctx->aux_buf_iov.iov_base + en_offset;
809 			dst_mbufs[crypto_index]->data_len = updated_length = crypto_len;
810 			/* TODO: Make this assignment conditional on QAT usage and add an assert. */
811 			dst_mbufs[crypto_index]->buf_iova = spdk_vtophys(dst_mbufs[crypto_index]->buf_addr,
812 							    &updated_length);
813 			crypto_ops[crypto_index]->sym->m_dst = dst_mbufs[crypto_index];
814 			en_offset += crypto_len;
815 			dst_mbufs[crypto_index]->next = NULL;
816 
817 			/* Attach the crypto session to the operation */
818 			rc = rte_crypto_op_attach_sym_session(crypto_ops[crypto_index],
819 							      io_ctx->crypto_bdev->session_encrypt);
820 			if (rc) {
821 				rc = -EINVAL;
822 				goto error_attach_session;
823 			}
824 
825 		} else {
826 			/* Attach the crypto session to the operation */
827 			rc = rte_crypto_op_attach_sym_session(crypto_ops[crypto_index],
828 							      io_ctx->crypto_bdev->session_decrypt);
829 			if (rc) {
830 				rc = -EINVAL;
831 				goto error_attach_session;
832 			}
833 
834 
835 		}
836 
837 		/* Subtract our running totals for the op in progress and the overall bdev io */
838 		total_remaining -= crypto_len;
839 		current_iov_remaining -= crypto_len;
840 
841 		/* move our current IOV pointer accordingly. */
842 		current_iov += crypto_len;
843 
844 		/* move on to the next crypto operation */
845 		crypto_index++;
846 
847 		/* If we're done with this IOV, move to the next one. */
848 		if (current_iov_remaining == 0 && total_remaining > 0) {
849 			iov_index++;
850 			current_iov = bdev_io->u.bdev.iovs[iov_index].iov_base;
851 			current_iov_remaining = bdev_io->u.bdev.iovs[iov_index].iov_len;
852 		}
853 	} while (total_remaining > 0);
854 
855 	/* Enqueue everything we've got but limit by the max number of descriptors we
856 	 * configured the crypto device for.
857 	 */
858 	burst = spdk_min(cryop_cnt, CRYPTO_QP_DESCRIPTORS);
859 	num_enqueued_ops = rte_cryptodev_enqueue_burst(cdev_id, crypto_ch->device_qp->qp,
860 			   &crypto_ops[0],
861 			   burst);
862 
863 	/* Add this bdev_io to our outstanding list if any of its crypto ops made it. */
864 	if (num_enqueued_ops > 0) {
865 		TAILQ_INSERT_TAIL(&crypto_ch->pending_cry_ios, bdev_io, module_link);
866 		io_ctx->on_pending_list = true;
867 	}
868 	/* We were unable to enqueue everything but did get some, so need to decide what
869 	 * to do based on the status of the last op.
870 	 */
871 	if (num_enqueued_ops < cryop_cnt) {
872 		switch (crypto_ops[num_enqueued_ops]->status) {
873 		case RTE_CRYPTO_OP_STATUS_NOT_PROCESSED:
874 			/* Queue them up on a linked list to be resubmitted via the poller. */
875 			for (crypto_index = num_enqueued_ops; crypto_index < cryop_cnt; crypto_index++) {
876 				op_to_queue = (struct vbdev_crypto_op *)rte_crypto_op_ctod_offset(crypto_ops[crypto_index],
877 						uint8_t *, QUEUED_OP_OFFSET);
878 				op_to_queue->cdev_id = cdev_id;
879 				op_to_queue->qp = crypto_ch->device_qp->qp;
880 				op_to_queue->crypto_op = crypto_ops[crypto_index];
881 				op_to_queue->bdev_io = bdev_io;
882 				TAILQ_INSERT_TAIL(&crypto_ch->queued_cry_ops,
883 						  op_to_queue,
884 						  link);
885 			}
886 			break;
887 		default:
888 			/* For all other statuses, set the io_ctx bdev_io status so that
889 			 * the poller will pick the failure up for the overall bdev status.
890 			 */
891 			io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_FAILED;
892 			if (num_enqueued_ops == 0) {
893 				/* If nothing was enqueued, but the last one wasn't because of
894 				 * busy, fail it now as the poller won't know anything about it.
895 				 */
896 				_crypto_operation_complete(bdev_io);
897 				rc = -EINVAL;
898 				goto error_attach_session;
899 			}
900 			break;
901 		}
902 	}
903 
904 	return rc;
905 
906 	/* Error cleanup paths. */
907 error_attach_session:
908 error_get_ops:
909 	if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
910 		spdk_mempool_put_bulk(g_mbuf_mp, (void **)&dst_mbufs[0],
911 				      cryop_cnt);
912 	}
913 	if (allocated > 0) {
914 		rte_mempool_put_bulk(g_crypto_op_mp, (void **)crypto_ops,
915 				     allocated);
916 	}
917 error_get_dst:
918 	spdk_mempool_put_bulk(g_mbuf_mp, (void **)&src_mbufs[0],
919 			      cryop_cnt);
920 	return rc;
921 }
922 
923 /* This function is called after all channels have been quiesced following
924  * a bdev reset.
925  */
926 static void
927 _ch_quiesce_done(struct spdk_io_channel_iter *i, int status)
928 {
929 	struct crypto_bdev_io *io_ctx = spdk_io_channel_iter_get_ctx(i);
930 
931 	assert(TAILQ_EMPTY(&io_ctx->crypto_ch->pending_cry_ios));
932 	assert(io_ctx->orig_io != NULL);
933 
934 	spdk_bdev_io_complete(io_ctx->orig_io, SPDK_BDEV_IO_STATUS_SUCCESS);
935 }
936 
937 /* This function is called per channel to quiesce IOs before completing a
938  * bdev reset that we received.
939  */
940 static void
941 _ch_quiesce(struct spdk_io_channel_iter *i)
942 {
943 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
944 	struct crypto_io_channel *crypto_ch = spdk_io_channel_get_ctx(ch);
945 
946 	crypto_ch->iter = i;
947 	/* When the poller runs, it will see the non-NULL iter and handle
948 	 * the quiesce.
949 	 */
950 }
951 
952 /* Completion callback for IO that were issued from this bdev other than read/write.
953  * They have their own for readability.
954  */
955 static void
956 _complete_internal_io(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
957 {
958 	struct spdk_bdev_io *orig_io = cb_arg;
959 	int status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
960 
961 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_RESET) {
962 		struct crypto_bdev_io *orig_ctx = (struct crypto_bdev_io *)orig_io->driver_ctx;
963 
964 		assert(orig_io == orig_ctx->orig_io);
965 
966 		spdk_bdev_free_io(bdev_io);
967 
968 		spdk_for_each_channel(orig_ctx->crypto_bdev,
969 				      _ch_quiesce,
970 				      orig_ctx,
971 				      _ch_quiesce_done);
972 		return;
973 	}
974 
975 	spdk_bdev_io_complete(orig_io, status);
976 	spdk_bdev_free_io(bdev_io);
977 }
978 
979 /* Completion callback for writes that were issued from this bdev. */
980 static void
981 _complete_internal_write(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
982 {
983 	struct spdk_bdev_io *orig_io = cb_arg;
984 	int status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
985 	struct crypto_bdev_io *orig_ctx = (struct crypto_bdev_io *)orig_io->driver_ctx;
986 
987 	spdk_bdev_io_put_aux_buf(orig_io, orig_ctx->aux_buf_raw);
988 
989 	spdk_bdev_io_complete(orig_io, status);
990 	spdk_bdev_free_io(bdev_io);
991 }
992 
993 /* Completion callback for reads that were issued from this bdev. */
994 static void
995 _complete_internal_read(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
996 {
997 	struct spdk_bdev_io *orig_io = cb_arg;
998 	struct crypto_bdev_io *orig_ctx = (struct crypto_bdev_io *)orig_io->driver_ctx;
999 
1000 	if (success) {
1001 
1002 		/* Save off this bdev_io so it can be freed after decryption. */
1003 		orig_ctx->read_io = bdev_io;
1004 
1005 		if (!_crypto_operation(orig_io, RTE_CRYPTO_CIPHER_OP_DECRYPT, NULL)) {
1006 			return;
1007 		} else {
1008 			SPDK_ERRLOG("ERROR decrypting\n");
1009 		}
1010 	} else {
1011 		SPDK_ERRLOG("ERROR on read prior to decrypting\n");
1012 	}
1013 
1014 	spdk_bdev_io_complete(orig_io, SPDK_BDEV_IO_STATUS_FAILED);
1015 	spdk_bdev_free_io(bdev_io);
1016 }
1017 
1018 static void
1019 vbdev_crypto_resubmit_io(void *arg)
1020 {
1021 	struct spdk_bdev_io *bdev_io = (struct spdk_bdev_io *)arg;
1022 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
1023 
1024 	vbdev_crypto_submit_request(io_ctx->ch, bdev_io);
1025 }
1026 
1027 static void
1028 vbdev_crypto_queue_io(struct spdk_bdev_io *bdev_io)
1029 {
1030 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
1031 	int rc;
1032 
1033 	io_ctx->bdev_io_wait.bdev = bdev_io->bdev;
1034 	io_ctx->bdev_io_wait.cb_fn = vbdev_crypto_resubmit_io;
1035 	io_ctx->bdev_io_wait.cb_arg = bdev_io;
1036 
1037 	rc = spdk_bdev_queue_io_wait(bdev_io->bdev, io_ctx->crypto_ch->base_ch, &io_ctx->bdev_io_wait);
1038 	if (rc != 0) {
1039 		SPDK_ERRLOG("Queue io failed in vbdev_crypto_queue_io, rc=%d.\n", rc);
1040 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1041 	}
1042 }
1043 
1044 /* Callback for getting a buf from the bdev pool in the event that the caller passed
1045  * in NULL, we need to own the buffer so it doesn't get freed by another vbdev module
1046  * beneath us before we're done with it.
1047  */
1048 static void
1049 crypto_read_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
1050 		       bool success)
1051 {
1052 	struct vbdev_crypto *crypto_bdev = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_crypto,
1053 					   crypto_bdev);
1054 	struct crypto_io_channel *crypto_ch = spdk_io_channel_get_ctx(ch);
1055 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
1056 	int rc;
1057 
1058 	if (!success) {
1059 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1060 		return;
1061 	}
1062 
1063 	rc = spdk_bdev_readv_blocks(crypto_bdev->base_desc, crypto_ch->base_ch, bdev_io->u.bdev.iovs,
1064 				    bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.offset_blocks,
1065 				    bdev_io->u.bdev.num_blocks, _complete_internal_read,
1066 				    bdev_io);
1067 	if (rc != 0) {
1068 		if (rc == -ENOMEM) {
1069 			SPDK_DEBUGLOG(vbdev_crypto, "No memory, queue the IO.\n");
1070 			io_ctx->ch = ch;
1071 			vbdev_crypto_queue_io(bdev_io);
1072 		} else {
1073 			SPDK_ERRLOG("ERROR on bdev_io submission!\n");
1074 			spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1075 		}
1076 	}
1077 }
1078 
1079 /* For encryption we don't want to encrypt the data in place as the host isn't
1080  * expecting us to mangle its data buffers so we need to encrypt into the bdev
1081  * aux buffer, then we can use that as the source for the disk data transfer.
1082  */
1083 static void
1084 crypto_write_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
1085 			void *aux_buf)
1086 {
1087 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
1088 	int rc = 0;
1089 
1090 	rc = _crypto_operation(bdev_io, RTE_CRYPTO_CIPHER_OP_ENCRYPT, aux_buf);
1091 	if (rc != 0) {
1092 		spdk_bdev_io_put_aux_buf(bdev_io, aux_buf);
1093 		if (rc == -ENOMEM) {
1094 			SPDK_DEBUGLOG(vbdev_crypto, "No memory, queue the IO.\n");
1095 			io_ctx->ch = ch;
1096 			vbdev_crypto_queue_io(bdev_io);
1097 		} else {
1098 			SPDK_ERRLOG("ERROR on bdev_io submission!\n");
1099 			spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1100 		}
1101 	}
1102 }
1103 
1104 /* Called when someone submits IO to this crypto vbdev. For IO's not relevant to crypto,
1105  * we're simply passing it on here via SPDK IO calls which in turn allocate another bdev IO
1106  * and call our cpl callback provided below along with the original bdev_io so that we can
1107  * complete it once this IO completes. For crypto operations, we'll either encrypt it first
1108  * (writes) then call back into bdev to submit it or we'll submit a read and then catch it
1109  * on the way back for decryption.
1110  */
1111 static void
1112 vbdev_crypto_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
1113 {
1114 	struct vbdev_crypto *crypto_bdev = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_crypto,
1115 					   crypto_bdev);
1116 	struct crypto_io_channel *crypto_ch = spdk_io_channel_get_ctx(ch);
1117 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
1118 	int rc = 0;
1119 
1120 	memset(io_ctx, 0, sizeof(struct crypto_bdev_io));
1121 	io_ctx->crypto_bdev = crypto_bdev;
1122 	io_ctx->crypto_ch = crypto_ch;
1123 	io_ctx->orig_io = bdev_io;
1124 	io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1125 
1126 	switch (bdev_io->type) {
1127 	case SPDK_BDEV_IO_TYPE_READ:
1128 		spdk_bdev_io_get_buf(bdev_io, crypto_read_get_buf_cb,
1129 				     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
1130 		break;
1131 	case SPDK_BDEV_IO_TYPE_WRITE:
1132 		/* Tell the bdev layer that we need an aux buf in addition to the data
1133 		 * buf already associated with the bdev.
1134 		 */
1135 		spdk_bdev_io_get_aux_buf(bdev_io, crypto_write_get_buf_cb);
1136 		break;
1137 	case SPDK_BDEV_IO_TYPE_UNMAP:
1138 		rc = spdk_bdev_unmap_blocks(crypto_bdev->base_desc, crypto_ch->base_ch,
1139 					    bdev_io->u.bdev.offset_blocks,
1140 					    bdev_io->u.bdev.num_blocks,
1141 					    _complete_internal_io, bdev_io);
1142 		break;
1143 	case SPDK_BDEV_IO_TYPE_FLUSH:
1144 		rc = spdk_bdev_flush_blocks(crypto_bdev->base_desc, crypto_ch->base_ch,
1145 					    bdev_io->u.bdev.offset_blocks,
1146 					    bdev_io->u.bdev.num_blocks,
1147 					    _complete_internal_io, bdev_io);
1148 		break;
1149 	case SPDK_BDEV_IO_TYPE_RESET:
1150 		rc = spdk_bdev_reset(crypto_bdev->base_desc, crypto_ch->base_ch,
1151 				     _complete_internal_io, bdev_io);
1152 		break;
1153 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
1154 	default:
1155 		SPDK_ERRLOG("crypto: unknown I/O type %d\n", bdev_io->type);
1156 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1157 		return;
1158 	}
1159 
1160 	if (rc != 0) {
1161 		if (rc == -ENOMEM) {
1162 			SPDK_DEBUGLOG(vbdev_crypto, "No memory, queue the IO.\n");
1163 			io_ctx->ch = ch;
1164 			vbdev_crypto_queue_io(bdev_io);
1165 		} else {
1166 			SPDK_ERRLOG("ERROR on bdev_io submission!\n");
1167 			spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1168 		}
1169 	}
1170 }
1171 
1172 /* We'll just call the base bdev and let it answer except for WZ command which
1173  * we always say we don't support so that the bdev layer will actually send us
1174  * real writes that we can encrypt.
1175  */
1176 static bool
1177 vbdev_crypto_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
1178 {
1179 	struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
1180 
1181 	switch (io_type) {
1182 	case SPDK_BDEV_IO_TYPE_WRITE:
1183 	case SPDK_BDEV_IO_TYPE_UNMAP:
1184 	case SPDK_BDEV_IO_TYPE_RESET:
1185 	case SPDK_BDEV_IO_TYPE_READ:
1186 	case SPDK_BDEV_IO_TYPE_FLUSH:
1187 		return spdk_bdev_io_type_supported(crypto_bdev->base_bdev, io_type);
1188 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
1189 	/* Force the bdev layer to issue actual writes of zeroes so we can
1190 	 * encrypt them as regular writes.
1191 	 */
1192 	default:
1193 		return false;
1194 	}
1195 }
1196 
1197 /* Callback for unregistering the IO device. */
1198 static void
1199 _device_unregister_cb(void *io_device)
1200 {
1201 	struct vbdev_crypto *crypto_bdev = io_device;
1202 
1203 	/* Done with this crypto_bdev. */
1204 	rte_cryptodev_sym_session_free(crypto_bdev->session_decrypt);
1205 	rte_cryptodev_sym_session_free(crypto_bdev->session_encrypt);
1206 	free(crypto_bdev->drv_name);
1207 	if (crypto_bdev->key) {
1208 		memset(crypto_bdev->key, 0, strnlen(crypto_bdev->key, (AES_CBC_KEY_LENGTH + 1)));
1209 		free(crypto_bdev->key);
1210 	}
1211 	if (crypto_bdev->key2) {
1212 		memset(crypto_bdev->key2, 0, strnlen(crypto_bdev->key2, (AES_XTS_KEY_LENGTH + 1)));
1213 		free(crypto_bdev->key2);
1214 	}
1215 	if (crypto_bdev->xts_key) {
1216 		memset(crypto_bdev->xts_key, 0, strnlen(crypto_bdev->xts_key, (AES_XTS_KEY_LENGTH * 2) + 1));
1217 		free(crypto_bdev->xts_key);
1218 	}
1219 	free(crypto_bdev->crypto_bdev.name);
1220 	free(crypto_bdev);
1221 }
1222 
1223 /* Wrapper for the bdev close operation. */
1224 static void
1225 _vbdev_crypto_destruct(void *ctx)
1226 {
1227 	struct spdk_bdev_desc *desc = ctx;
1228 
1229 	spdk_bdev_close(desc);
1230 }
1231 
1232 /* Called after we've unregistered following a hot remove callback.
1233  * Our finish entry point will be called next.
1234  */
1235 static int
1236 vbdev_crypto_destruct(void *ctx)
1237 {
1238 	struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
1239 
1240 	/* Remove this device from the internal list */
1241 	TAILQ_REMOVE(&g_vbdev_crypto, crypto_bdev, link);
1242 
1243 	/* Unclaim the underlying bdev. */
1244 	spdk_bdev_module_release_bdev(crypto_bdev->base_bdev);
1245 
1246 	/* Close the underlying bdev on its same opened thread. */
1247 	if (crypto_bdev->thread && crypto_bdev->thread != spdk_get_thread()) {
1248 		spdk_thread_send_msg(crypto_bdev->thread, _vbdev_crypto_destruct, crypto_bdev->base_desc);
1249 	} else {
1250 		spdk_bdev_close(crypto_bdev->base_desc);
1251 	}
1252 
1253 	/* Unregister the io_device. */
1254 	spdk_io_device_unregister(crypto_bdev, _device_unregister_cb);
1255 
1256 	g_number_of_claimed_volumes--;
1257 
1258 	return 0;
1259 }
1260 
1261 /* We supplied this as an entry point for upper layers who want to communicate to this
1262  * bdev.  This is how they get a channel. We are passed the same context we provided when
1263  * we created our crypto vbdev in examine() which, for this bdev, is the address of one of
1264  * our context nodes. From here we'll ask the SPDK channel code to fill out our channel
1265  * struct and we'll keep it in our crypto node.
1266  */
1267 static struct spdk_io_channel *
1268 vbdev_crypto_get_io_channel(void *ctx)
1269 {
1270 	struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
1271 
1272 	/* The IO channel code will allocate a channel for us which consists of
1273 	 * the SPDK channel structure plus the size of our crypto_io_channel struct
1274 	 * that we passed in when we registered our IO device. It will then call
1275 	 * our channel create callback to populate any elements that we need to
1276 	 * update.
1277 	 */
1278 	return spdk_get_io_channel(crypto_bdev);
1279 }
1280 
1281 /* This is the output for bdev_get_bdevs() for this vbdev */
1282 static int
1283 vbdev_crypto_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
1284 {
1285 	struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
1286 
1287 	spdk_json_write_name(w, "crypto");
1288 	spdk_json_write_object_begin(w);
1289 	spdk_json_write_named_string(w, "base_bdev_name", spdk_bdev_get_name(crypto_bdev->base_bdev));
1290 	spdk_json_write_named_string(w, "name", spdk_bdev_get_name(&crypto_bdev->crypto_bdev));
1291 	spdk_json_write_named_string(w, "crypto_pmd", crypto_bdev->drv_name);
1292 	spdk_json_write_named_string(w, "key", crypto_bdev->key);
1293 	if (strcmp(crypto_bdev->cipher, AES_XTS) == 0) {
1294 		spdk_json_write_named_string(w, "key2", crypto_bdev->key);
1295 	}
1296 	spdk_json_write_named_string(w, "cipher", crypto_bdev->cipher);
1297 	spdk_json_write_object_end(w);
1298 	return 0;
1299 }
1300 
1301 static int
1302 vbdev_crypto_config_json(struct spdk_json_write_ctx *w)
1303 {
1304 	struct vbdev_crypto *crypto_bdev;
1305 
1306 	TAILQ_FOREACH(crypto_bdev, &g_vbdev_crypto, link) {
1307 		spdk_json_write_object_begin(w);
1308 		spdk_json_write_named_string(w, "method", "bdev_crypto_create");
1309 		spdk_json_write_named_object_begin(w, "params");
1310 		spdk_json_write_named_string(w, "base_bdev_name", spdk_bdev_get_name(crypto_bdev->base_bdev));
1311 		spdk_json_write_named_string(w, "name", spdk_bdev_get_name(&crypto_bdev->crypto_bdev));
1312 		spdk_json_write_named_string(w, "crypto_pmd", crypto_bdev->drv_name);
1313 		spdk_json_write_named_string(w, "key", crypto_bdev->key);
1314 		if (strcmp(crypto_bdev->cipher, AES_XTS) == 0) {
1315 			spdk_json_write_named_string(w, "key2", crypto_bdev->key);
1316 		}
1317 		spdk_json_write_named_string(w, "cipher", crypto_bdev->cipher);
1318 		spdk_json_write_object_end(w);
1319 		spdk_json_write_object_end(w);
1320 	}
1321 	return 0;
1322 }
1323 
1324 /* Helper function for the channel creation callback. */
1325 static void
1326 _assign_device_qp(struct vbdev_crypto *crypto_bdev, struct device_qp *device_qp,
1327 		  struct crypto_io_channel *crypto_ch)
1328 {
1329 	pthread_mutex_lock(&g_device_qp_lock);
1330 	if (strcmp(crypto_bdev->drv_name, QAT) == 0) {
1331 		/* For some QAT devices, the optimal qp to use is every 32nd as this spreads the
1332 		 * workload out over the multiple virtual functions in the device. For the devices
1333 		 * where this isn't the case, it doesn't hurt.
1334 		 */
1335 		TAILQ_FOREACH(device_qp, &g_device_qp_qat, link) {
1336 			if (device_qp->index != g_next_qat_index) {
1337 				continue;
1338 			}
1339 			if (device_qp->in_use == false) {
1340 				crypto_ch->device_qp = device_qp;
1341 				device_qp->in_use = true;
1342 				g_next_qat_index = (g_next_qat_index + QAT_VF_SPREAD) % g_qat_total_qp;
1343 				break;
1344 			} else {
1345 				/* if the preferred index is used, skip to the next one in this set. */
1346 				g_next_qat_index = (g_next_qat_index + 1) % g_qat_total_qp;
1347 			}
1348 		}
1349 	} else if (strcmp(crypto_bdev->drv_name, AESNI_MB) == 0) {
1350 		TAILQ_FOREACH(device_qp, &g_device_qp_aesni_mb, link) {
1351 			if (device_qp->in_use == false) {
1352 				crypto_ch->device_qp = device_qp;
1353 				device_qp->in_use = true;
1354 				break;
1355 			}
1356 		}
1357 	}
1358 	pthread_mutex_unlock(&g_device_qp_lock);
1359 }
1360 
1361 /* We provide this callback for the SPDK channel code to create a channel using
1362  * the channel struct we provided in our module get_io_channel() entry point. Here
1363  * we get and save off an underlying base channel of the device below us so that
1364  * we can communicate with the base bdev on a per channel basis. We also register the
1365  * poller used to complete crypto operations from the device.
1366  */
1367 static int
1368 crypto_bdev_ch_create_cb(void *io_device, void *ctx_buf)
1369 {
1370 	struct crypto_io_channel *crypto_ch = ctx_buf;
1371 	struct vbdev_crypto *crypto_bdev = io_device;
1372 	struct device_qp *device_qp = NULL;
1373 
1374 	crypto_ch->base_ch = spdk_bdev_get_io_channel(crypto_bdev->base_desc);
1375 	crypto_ch->poller = SPDK_POLLER_REGISTER(crypto_dev_poller, crypto_ch, 0);
1376 	crypto_ch->device_qp = NULL;
1377 
1378 	/* Assign a device/qp combination that is unique per channel per PMD. */
1379 	_assign_device_qp(crypto_bdev, device_qp, crypto_ch);
1380 	assert(crypto_ch->device_qp);
1381 
1382 	/* We use this queue to track outstanding IO in our layer. */
1383 	TAILQ_INIT(&crypto_ch->pending_cry_ios);
1384 
1385 	/* We use this to queue up crypto ops when the device is busy. */
1386 	TAILQ_INIT(&crypto_ch->queued_cry_ops);
1387 
1388 	return 0;
1389 }
1390 
1391 /* We provide this callback for the SPDK channel code to destroy a channel
1392  * created with our create callback. We just need to undo anything we did
1393  * when we created.
1394  */
1395 static void
1396 crypto_bdev_ch_destroy_cb(void *io_device, void *ctx_buf)
1397 {
1398 	struct crypto_io_channel *crypto_ch = ctx_buf;
1399 
1400 	pthread_mutex_lock(&g_device_qp_lock);
1401 	crypto_ch->device_qp->in_use = false;
1402 	pthread_mutex_unlock(&g_device_qp_lock);
1403 
1404 	spdk_poller_unregister(&crypto_ch->poller);
1405 	spdk_put_io_channel(crypto_ch->base_ch);
1406 }
1407 
1408 /* Create the association from the bdev and vbdev name and insert
1409  * on the global list. */
1410 static int
1411 vbdev_crypto_insert_name(const char *bdev_name, const char *vbdev_name,
1412 			 const char *crypto_pmd, const char *key,
1413 			 const char *cipher, const char *key2)
1414 {
1415 	struct bdev_names *name;
1416 	int rc, j;
1417 	bool found = false;
1418 
1419 	TAILQ_FOREACH(name, &g_bdev_names, link) {
1420 		if (strcmp(vbdev_name, name->vbdev_name) == 0) {
1421 			SPDK_ERRLOG("crypto bdev %s already exists\n", vbdev_name);
1422 			return -EEXIST;
1423 		}
1424 	}
1425 
1426 	name = calloc(1, sizeof(struct bdev_names));
1427 	if (!name) {
1428 		SPDK_ERRLOG("could not allocate bdev_names\n");
1429 		return -ENOMEM;
1430 	}
1431 
1432 	name->bdev_name = strdup(bdev_name);
1433 	if (!name->bdev_name) {
1434 		SPDK_ERRLOG("could not allocate name->bdev_name\n");
1435 		rc = -ENOMEM;
1436 		goto error_alloc_bname;
1437 	}
1438 
1439 	name->vbdev_name = strdup(vbdev_name);
1440 	if (!name->vbdev_name) {
1441 		SPDK_ERRLOG("could not allocate name->vbdev_name\n");
1442 		rc = -ENOMEM;
1443 		goto error_alloc_vname;
1444 	}
1445 
1446 	name->drv_name = strdup(crypto_pmd);
1447 	if (!name->drv_name) {
1448 		SPDK_ERRLOG("could not allocate name->drv_name\n");
1449 		rc = -ENOMEM;
1450 		goto error_alloc_dname;
1451 	}
1452 	for (j = 0; j < MAX_NUM_DRV_TYPES ; j++) {
1453 		if (strcmp(crypto_pmd, g_driver_names[j]) == 0) {
1454 			found = true;
1455 			break;
1456 		}
1457 	}
1458 	if (!found) {
1459 		SPDK_ERRLOG("invalid crypto PMD type %s\n", crypto_pmd);
1460 		rc = -EINVAL;
1461 		goto error_invalid_pmd;
1462 	}
1463 
1464 	name->key = strdup(key);
1465 	if (!name->key) {
1466 		SPDK_ERRLOG("could not allocate name->key\n");
1467 		rc = -ENOMEM;
1468 		goto error_alloc_key;
1469 	}
1470 	if (strnlen(name->key, (AES_CBC_KEY_LENGTH + 1)) != AES_CBC_KEY_LENGTH) {
1471 		SPDK_ERRLOG("invalid AES_CBC key length\n");
1472 		rc = -EINVAL;
1473 		goto error_invalid_key;
1474 	}
1475 
1476 	if (strncmp(cipher, AES_XTS, sizeof(AES_XTS)) == 0) {
1477 		/* To please scan-build, input validation makes sure we can't
1478 		 * have this cipher without providing a key2.
1479 		 */
1480 		name->cipher = AES_XTS;
1481 		assert(key2);
1482 		if (strnlen(key2, (AES_XTS_KEY_LENGTH + 1)) != AES_XTS_KEY_LENGTH) {
1483 			SPDK_ERRLOG("invalid AES_XTS key length\n");
1484 			rc = -EINVAL;
1485 			goto error_invalid_key2;
1486 		}
1487 
1488 		name->key2 = strdup(key2);
1489 		if (!name->key2) {
1490 			SPDK_ERRLOG("could not allocate name->key2\n");
1491 			rc = -ENOMEM;
1492 			goto error_alloc_key2;
1493 		}
1494 	} else if (strncmp(cipher, AES_CBC, sizeof(AES_CBC)) == 0) {
1495 		name->cipher = AES_CBC;
1496 	} else {
1497 		SPDK_ERRLOG("Invalid cipher: %s\n", cipher);
1498 		rc = -EINVAL;
1499 		goto error_cipher;
1500 	}
1501 
1502 	TAILQ_INSERT_TAIL(&g_bdev_names, name, link);
1503 
1504 	return 0;
1505 
1506 	/* Error cleanup paths. */
1507 error_cipher:
1508 	free(name->key2);
1509 error_alloc_key2:
1510 error_invalid_key2:
1511 error_invalid_key:
1512 	free(name->key);
1513 error_alloc_key:
1514 error_invalid_pmd:
1515 	free(name->drv_name);
1516 error_alloc_dname:
1517 	free(name->vbdev_name);
1518 error_alloc_vname:
1519 	free(name->bdev_name);
1520 error_alloc_bname:
1521 	free(name);
1522 	return rc;
1523 }
1524 
1525 /* RPC entry point for crypto creation. */
1526 int
1527 create_crypto_disk(const char *bdev_name, const char *vbdev_name,
1528 		   const char *crypto_pmd, const char *key,
1529 		   const char *cipher, const char *key2)
1530 {
1531 	int rc;
1532 
1533 	rc = vbdev_crypto_insert_name(bdev_name, vbdev_name, crypto_pmd, key, cipher, key2);
1534 	if (rc) {
1535 		return rc;
1536 	}
1537 
1538 	rc = vbdev_crypto_claim(bdev_name);
1539 	if (rc == -ENODEV) {
1540 		SPDK_NOTICELOG("vbdev creation deferred pending base bdev arrival\n");
1541 		rc = 0;
1542 	}
1543 
1544 	return rc;
1545 }
1546 
1547 /* Called at driver init time, parses config file to prepare for examine calls,
1548  * also fully initializes the crypto drivers.
1549  */
1550 static int
1551 vbdev_crypto_init(void)
1552 {
1553 	int rc = 0;
1554 
1555 	/* Fully configure both SW and HW drivers. */
1556 	rc = vbdev_crypto_init_crypto_drivers();
1557 	if (rc) {
1558 		SPDK_ERRLOG("Error setting up crypto devices\n");
1559 	}
1560 
1561 	return rc;
1562 }
1563 
1564 /* Called when the entire module is being torn down. */
1565 static void
1566 vbdev_crypto_finish(void)
1567 {
1568 	struct bdev_names *name;
1569 	struct vbdev_dev *device;
1570 	struct device_qp *dev_qp;
1571 	int rc;
1572 
1573 	while ((name = TAILQ_FIRST(&g_bdev_names))) {
1574 		TAILQ_REMOVE(&g_bdev_names, name, link);
1575 		free(name->drv_name);
1576 		free(name->key);
1577 		free(name->bdev_name);
1578 		free(name->vbdev_name);
1579 		free(name->key2);
1580 		free(name);
1581 	}
1582 
1583 	while ((device = TAILQ_FIRST(&g_vbdev_devs))) {
1584 		TAILQ_REMOVE(&g_vbdev_devs, device, link);
1585 		rte_cryptodev_stop(device->cdev_id);
1586 		rc = rte_cryptodev_close(device->cdev_id);
1587 		assert(rc == 0);
1588 		free(device);
1589 	}
1590 
1591 	rc = rte_vdev_uninit(AESNI_MB);
1592 	if (rc) {
1593 		SPDK_ERRLOG("%d from rte_vdev_uninit\n", rc);
1594 	}
1595 
1596 	while ((dev_qp = TAILQ_FIRST(&g_device_qp_qat))) {
1597 		TAILQ_REMOVE(&g_device_qp_qat, dev_qp, link);
1598 		free(dev_qp);
1599 	}
1600 
1601 	while ((dev_qp = TAILQ_FIRST(&g_device_qp_aesni_mb))) {
1602 		TAILQ_REMOVE(&g_device_qp_aesni_mb, dev_qp, link);
1603 		free(dev_qp);
1604 	}
1605 
1606 	rte_mempool_free(g_crypto_op_mp);
1607 	spdk_mempool_free(g_mbuf_mp);
1608 	rte_mempool_free(g_session_mp);
1609 	if (g_session_mp_priv != NULL) {
1610 		rte_mempool_free(g_session_mp_priv);
1611 	}
1612 }
1613 
1614 /* During init we'll be asked how much memory we'd like passed to us
1615  * in bev_io structures as context. Here's where we specify how
1616  * much context we want per IO.
1617  */
1618 static int
1619 vbdev_crypto_get_ctx_size(void)
1620 {
1621 	return sizeof(struct crypto_bdev_io);
1622 }
1623 
1624 static void
1625 vbdev_crypto_base_bdev_hotremove_cb(struct spdk_bdev *bdev_find)
1626 {
1627 	struct vbdev_crypto *crypto_bdev, *tmp;
1628 
1629 	TAILQ_FOREACH_SAFE(crypto_bdev, &g_vbdev_crypto, link, tmp) {
1630 		if (bdev_find == crypto_bdev->base_bdev) {
1631 			spdk_bdev_unregister(&crypto_bdev->crypto_bdev, NULL, NULL);
1632 		}
1633 	}
1634 }
1635 
1636 /* Called when the underlying base bdev triggers asynchronous event such as bdev removal. */
1637 static void
1638 vbdev_crypto_base_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev,
1639 				void *event_ctx)
1640 {
1641 	switch (type) {
1642 	case SPDK_BDEV_EVENT_REMOVE:
1643 		vbdev_crypto_base_bdev_hotremove_cb(bdev);
1644 		break;
1645 	default:
1646 		SPDK_NOTICELOG("Unsupported bdev event: type %d\n", type);
1647 		break;
1648 	}
1649 }
1650 
1651 static void
1652 vbdev_crypto_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
1653 {
1654 	/* No config per bdev needed */
1655 }
1656 
1657 /* When we register our bdev this is how we specify our entry points. */
1658 static const struct spdk_bdev_fn_table vbdev_crypto_fn_table = {
1659 	.destruct		= vbdev_crypto_destruct,
1660 	.submit_request		= vbdev_crypto_submit_request,
1661 	.io_type_supported	= vbdev_crypto_io_type_supported,
1662 	.get_io_channel		= vbdev_crypto_get_io_channel,
1663 	.dump_info_json		= vbdev_crypto_dump_info_json,
1664 	.write_config_json	= vbdev_crypto_write_config_json
1665 };
1666 
1667 static struct spdk_bdev_module crypto_if = {
1668 	.name = "crypto",
1669 	.module_init = vbdev_crypto_init,
1670 	.get_ctx_size = vbdev_crypto_get_ctx_size,
1671 	.examine_config = vbdev_crypto_examine,
1672 	.module_fini = vbdev_crypto_finish,
1673 	.config_json = vbdev_crypto_config_json
1674 };
1675 
1676 SPDK_BDEV_MODULE_REGISTER(crypto, &crypto_if)
1677 
1678 static int
1679 vbdev_crypto_claim(const char *bdev_name)
1680 {
1681 	struct bdev_names *name;
1682 	struct vbdev_crypto *vbdev;
1683 	struct vbdev_dev *device;
1684 	struct spdk_bdev *bdev;
1685 	bool found = false;
1686 	int rc = 0;
1687 
1688 	if (g_number_of_claimed_volumes >= MAX_CRYPTO_VOLUMES) {
1689 		SPDK_DEBUGLOG(vbdev_crypto, "Reached max number of claimed volumes\n");
1690 		rc = -EINVAL;
1691 		goto error_vbdev_alloc;
1692 	}
1693 	g_number_of_claimed_volumes++;
1694 
1695 	/* Check our list of names from config versus this bdev and if
1696 	 * there's a match, create the crypto_bdev & bdev accordingly.
1697 	 */
1698 	TAILQ_FOREACH(name, &g_bdev_names, link) {
1699 		if (strcmp(name->bdev_name, bdev_name) != 0) {
1700 			continue;
1701 		}
1702 		SPDK_DEBUGLOG(vbdev_crypto, "Match on %s\n", bdev_name);
1703 
1704 		vbdev = calloc(1, sizeof(struct vbdev_crypto));
1705 		if (!vbdev) {
1706 			SPDK_ERRLOG("could not allocate crypto_bdev\n");
1707 			rc = -ENOMEM;
1708 			goto error_vbdev_alloc;
1709 		}
1710 
1711 		vbdev->crypto_bdev.name = strdup(name->vbdev_name);
1712 		if (!vbdev->crypto_bdev.name) {
1713 			SPDK_ERRLOG("could not allocate crypto_bdev name\n");
1714 			rc = -ENOMEM;
1715 			goto error_bdev_name;
1716 		}
1717 
1718 		vbdev->key = strdup(name->key);
1719 		if (!vbdev->key) {
1720 			SPDK_ERRLOG("could not allocate crypto_bdev key\n");
1721 			rc = -ENOMEM;
1722 			goto error_alloc_key;
1723 		}
1724 
1725 		if (name->key2) {
1726 			vbdev->key2 = strdup(name->key2);
1727 			if (!vbdev->key2) {
1728 				SPDK_ERRLOG("could not allocate crypto_bdev key2\n");
1729 				rc = -ENOMEM;
1730 				goto error_alloc_key2;
1731 			}
1732 		}
1733 
1734 		vbdev->drv_name = strdup(name->drv_name);
1735 		if (!vbdev->drv_name) {
1736 			SPDK_ERRLOG("could not allocate crypto_bdev drv_name\n");
1737 			rc = -ENOMEM;
1738 			goto error_drv_name;
1739 		}
1740 
1741 		vbdev->crypto_bdev.product_name = "crypto";
1742 
1743 		rc = spdk_bdev_open_ext(bdev_name, true, vbdev_crypto_base_bdev_event_cb,
1744 					NULL, &vbdev->base_desc);
1745 		if (rc) {
1746 			if (rc != -ENODEV) {
1747 				SPDK_ERRLOG("could not open bdev %s\n", bdev_name);
1748 			}
1749 			goto error_open;
1750 		}
1751 
1752 		bdev = spdk_bdev_desc_get_bdev(vbdev->base_desc);
1753 		vbdev->base_bdev = bdev;
1754 
1755 		vbdev->crypto_bdev.write_cache = bdev->write_cache;
1756 		vbdev->cipher = AES_CBC;
1757 		if (strcmp(vbdev->drv_name, QAT) == 0) {
1758 			vbdev->crypto_bdev.required_alignment =
1759 				spdk_max(spdk_u32log2(bdev->blocklen), bdev->required_alignment);
1760 			SPDK_NOTICELOG("QAT in use: Required alignment set to %u\n",
1761 				       vbdev->crypto_bdev.required_alignment);
1762 			if (strcmp(name->cipher, AES_CBC) == 0) {
1763 				SPDK_NOTICELOG("QAT using cipher: AES_CBC\n");
1764 			} else {
1765 				SPDK_NOTICELOG("QAT using cipher: AES_XTS\n");
1766 				vbdev->cipher = AES_XTS;
1767 				/* DPDK expects they keys to be concatenated together. */
1768 				vbdev->xts_key = calloc(1, (AES_XTS_KEY_LENGTH * 2) + 1);
1769 				if (vbdev->xts_key == NULL) {
1770 					SPDK_ERRLOG("could not allocate memory for XTS key\n");
1771 					rc = -ENOMEM;
1772 					goto error_xts_key;
1773 				}
1774 				memcpy(vbdev->xts_key, vbdev->key, AES_XTS_KEY_LENGTH);
1775 				assert(name->key2);
1776 				memcpy(vbdev->xts_key + AES_XTS_KEY_LENGTH, name->key2, AES_XTS_KEY_LENGTH + 1);
1777 			}
1778 		} else {
1779 			vbdev->crypto_bdev.required_alignment = bdev->required_alignment;
1780 		}
1781 		/* Note: CRYPTO_MAX_IO is in units of bytes, optimal_io_boundary is
1782 		 * in units of blocks.
1783 		 */
1784 		if (bdev->optimal_io_boundary > 0) {
1785 			vbdev->crypto_bdev.optimal_io_boundary =
1786 				spdk_min((CRYPTO_MAX_IO / bdev->blocklen), bdev->optimal_io_boundary);
1787 		} else {
1788 			vbdev->crypto_bdev.optimal_io_boundary = (CRYPTO_MAX_IO / bdev->blocklen);
1789 		}
1790 		vbdev->crypto_bdev.split_on_optimal_io_boundary = true;
1791 		vbdev->crypto_bdev.blocklen = bdev->blocklen;
1792 		vbdev->crypto_bdev.blockcnt = bdev->blockcnt;
1793 
1794 		/* This is the context that is passed to us when the bdev
1795 		 * layer calls in so we'll save our crypto_bdev node here.
1796 		 */
1797 		vbdev->crypto_bdev.ctxt = vbdev;
1798 		vbdev->crypto_bdev.fn_table = &vbdev_crypto_fn_table;
1799 		vbdev->crypto_bdev.module = &crypto_if;
1800 		TAILQ_INSERT_TAIL(&g_vbdev_crypto, vbdev, link);
1801 
1802 		spdk_io_device_register(vbdev, crypto_bdev_ch_create_cb, crypto_bdev_ch_destroy_cb,
1803 					sizeof(struct crypto_io_channel), vbdev->crypto_bdev.name);
1804 
1805 		/* Save the thread where the base device is opened */
1806 		vbdev->thread = spdk_get_thread();
1807 
1808 		rc = spdk_bdev_module_claim_bdev(bdev, vbdev->base_desc, vbdev->crypto_bdev.module);
1809 		if (rc) {
1810 			SPDK_ERRLOG("could not claim bdev %s\n", spdk_bdev_get_name(bdev));
1811 			goto error_claim;
1812 		}
1813 
1814 		/* To init the session we have to get the cryptoDev device ID for this vbdev */
1815 		TAILQ_FOREACH(device, &g_vbdev_devs, link) {
1816 			if (strcmp(device->cdev_info.driver_name, vbdev->drv_name) == 0) {
1817 				found = true;
1818 				break;
1819 			}
1820 		}
1821 		if (found == false) {
1822 			SPDK_ERRLOG("ERROR can't match crypto device driver to crypto vbdev!\n");
1823 			rc = -EINVAL;
1824 			goto error_cant_find_devid;
1825 		}
1826 
1827 		/* Get sessions. */
1828 		vbdev->session_encrypt = rte_cryptodev_sym_session_create(g_session_mp);
1829 		if (NULL == vbdev->session_encrypt) {
1830 			SPDK_ERRLOG("ERROR trying to create crypto session!\n");
1831 			rc = -EINVAL;
1832 			goto error_session_en_create;
1833 		}
1834 
1835 		vbdev->session_decrypt = rte_cryptodev_sym_session_create(g_session_mp);
1836 		if (NULL == vbdev->session_decrypt) {
1837 			SPDK_ERRLOG("ERROR trying to create crypto session!\n");
1838 			rc = -EINVAL;
1839 			goto error_session_de_create;
1840 		}
1841 
1842 		/* Init our per vbdev xform with the desired cipher options. */
1843 		vbdev->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
1844 		vbdev->cipher_xform.cipher.iv.offset = IV_OFFSET;
1845 		if (strcmp(name->cipher, AES_CBC) == 0) {
1846 			vbdev->cipher_xform.cipher.key.data = vbdev->key;
1847 			vbdev->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC;
1848 			vbdev->cipher_xform.cipher.key.length = AES_CBC_KEY_LENGTH;
1849 		} else {
1850 			vbdev->cipher_xform.cipher.key.data = vbdev->xts_key;
1851 			vbdev->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_XTS;
1852 			vbdev->cipher_xform.cipher.key.length = AES_XTS_KEY_LENGTH * 2;
1853 		}
1854 		vbdev->cipher_xform.cipher.iv.length = AES_CBC_IV_LENGTH;
1855 
1856 		vbdev->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
1857 		rc = rte_cryptodev_sym_session_init(device->cdev_id, vbdev->session_encrypt,
1858 						    &vbdev->cipher_xform,
1859 						    g_session_mp_priv ? g_session_mp_priv : g_session_mp);
1860 		if (rc < 0) {
1861 			SPDK_ERRLOG("ERROR trying to init encrypt session!\n");
1862 			rc = -EINVAL;
1863 			goto error_session_init;
1864 		}
1865 
1866 		vbdev->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_DECRYPT;
1867 		rc = rte_cryptodev_sym_session_init(device->cdev_id, vbdev->session_decrypt,
1868 						    &vbdev->cipher_xform,
1869 						    g_session_mp_priv ? g_session_mp_priv : g_session_mp);
1870 		if (rc < 0) {
1871 			SPDK_ERRLOG("ERROR trying to init decrypt session!\n");
1872 			rc = -EINVAL;
1873 			goto error_session_init;
1874 		}
1875 
1876 		rc = spdk_bdev_register(&vbdev->crypto_bdev);
1877 		if (rc < 0) {
1878 			SPDK_ERRLOG("ERROR trying to register bdev\n");
1879 			rc = -EINVAL;
1880 			goto error_bdev_register;
1881 		}
1882 		SPDK_DEBUGLOG(vbdev_crypto, "registered io_device and virtual bdev for: %s\n",
1883 			      name->vbdev_name);
1884 		break;
1885 	}
1886 
1887 	return rc;
1888 
1889 	/* Error cleanup paths. */
1890 error_bdev_register:
1891 error_session_init:
1892 	rte_cryptodev_sym_session_free(vbdev->session_decrypt);
1893 error_session_de_create:
1894 	rte_cryptodev_sym_session_free(vbdev->session_encrypt);
1895 error_session_en_create:
1896 error_cant_find_devid:
1897 error_claim:
1898 	spdk_bdev_close(vbdev->base_desc);
1899 	TAILQ_REMOVE(&g_vbdev_crypto, vbdev, link);
1900 	spdk_io_device_unregister(vbdev, NULL);
1901 	free(vbdev->xts_key);
1902 error_xts_key:
1903 error_open:
1904 	free(vbdev->drv_name);
1905 error_drv_name:
1906 	free(vbdev->key2);
1907 error_alloc_key2:
1908 	free(vbdev->key);
1909 error_alloc_key:
1910 	free(vbdev->crypto_bdev.name);
1911 error_bdev_name:
1912 	free(vbdev);
1913 error_vbdev_alloc:
1914 	g_number_of_claimed_volumes--;
1915 	return rc;
1916 }
1917 
1918 /* RPC entry for deleting a crypto vbdev. */
1919 void
1920 delete_crypto_disk(struct spdk_bdev *bdev, spdk_delete_crypto_complete cb_fn,
1921 		   void *cb_arg)
1922 {
1923 	struct bdev_names *name;
1924 
1925 	if (!bdev || bdev->module != &crypto_if) {
1926 		cb_fn(cb_arg, -ENODEV);
1927 		return;
1928 	}
1929 
1930 	/* Remove the association (vbdev, bdev) from g_bdev_names. This is required so that the
1931 	 * vbdev does not get re-created if the same bdev is constructed at some other time,
1932 	 * unless the underlying bdev was hot-removed.
1933 	 */
1934 	TAILQ_FOREACH(name, &g_bdev_names, link) {
1935 		if (strcmp(name->vbdev_name, bdev->name) == 0) {
1936 			TAILQ_REMOVE(&g_bdev_names, name, link);
1937 			free(name->bdev_name);
1938 			free(name->vbdev_name);
1939 			free(name->drv_name);
1940 			free(name->key);
1941 			free(name->key2);
1942 			free(name);
1943 			break;
1944 		}
1945 	}
1946 
1947 	/* Additional cleanup happens in the destruct callback. */
1948 	spdk_bdev_unregister(bdev, cb_fn, cb_arg);
1949 }
1950 
1951 /* Because we specified this function in our crypto bdev function table when we
1952  * registered our crypto bdev, we'll get this call anytime a new bdev shows up.
1953  * Here we need to decide if we care about it and if so what to do. We
1954  * parsed the config file at init so we check the new bdev against the list
1955  * we built up at that time and if the user configured us to attach to this
1956  * bdev, here's where we do it.
1957  */
1958 static void
1959 vbdev_crypto_examine(struct spdk_bdev *bdev)
1960 {
1961 	vbdev_crypto_claim(spdk_bdev_get_name(bdev));
1962 	spdk_bdev_module_examine_done(&crypto_if);
1963 }
1964 
1965 SPDK_LOG_REGISTER_COMPONENT(vbdev_crypto)
1966