xref: /spdk/module/bdev/crypto/vbdev_crypto.c (revision 9b32f4858c035134b5680b27678716d63370c678)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUcryptoION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "vbdev_crypto.h"
35 
36 #include "spdk/env.h"
37 #include "spdk/endian.h"
38 #include "spdk/thread.h"
39 #include "spdk/bdev_module.h"
40 #include "spdk/log.h"
41 
42 #include <rte_config.h>
43 #include <rte_version.h>
44 #include <rte_bus_vdev.h>
45 #include <rte_crypto.h>
46 #include <rte_cryptodev.h>
47 #include <rte_cryptodev_pmd.h>
48 
49 /* To add support for new device types, follow the examples of the following...
50  * Note that the string names are defined by the DPDK PMD in question so be
51  * sure to use the exact names.
52  */
53 #define MAX_NUM_DRV_TYPES 2
54 
55 /* The VF spread is the number of queue pairs between virtual functions, we use this to
56  * load balance the QAT device.
57  */
58 #define QAT_VF_SPREAD 32
59 static uint8_t g_qat_total_qp = 0;
60 static uint8_t g_next_qat_index;
61 
62 const char *g_driver_names[MAX_NUM_DRV_TYPES] = { AESNI_MB, QAT };
63 
64 /* Global list of available crypto devices. */
65 struct vbdev_dev {
66 	struct rte_cryptodev_info	cdev_info;	/* includes device friendly name */
67 	uint8_t				cdev_id;	/* identifier for the device */
68 	TAILQ_ENTRY(vbdev_dev)		link;
69 };
70 static TAILQ_HEAD(, vbdev_dev) g_vbdev_devs = TAILQ_HEAD_INITIALIZER(g_vbdev_devs);
71 
72 /* Global list and lock for unique device/queue pair combos. We keep 1 list per supported PMD
73  * so that we can optimize per PMD where it make sense. For example, with QAT there an optimal
74  * pattern for assigning queue pairs where with AESNI there is not.
75  */
76 struct device_qp {
77 	struct vbdev_dev		*device;	/* ptr to crypto device */
78 	uint8_t				qp;		/* queue pair for this node */
79 	bool				in_use;		/* whether this node is in use or not */
80 	uint8_t				index;		/* used by QAT to load balance placement of qpairs */
81 	TAILQ_ENTRY(device_qp)		link;
82 };
83 static TAILQ_HEAD(, device_qp) g_device_qp_qat = TAILQ_HEAD_INITIALIZER(g_device_qp_qat);
84 static TAILQ_HEAD(, device_qp) g_device_qp_aesni_mb = TAILQ_HEAD_INITIALIZER(g_device_qp_aesni_mb);
85 static pthread_mutex_t g_device_qp_lock = PTHREAD_MUTEX_INITIALIZER;
86 
87 
88 /* In order to limit the number of resources we need to do one crypto
89  * operation per LBA (we use LBA as IV), we tell the bdev layer that
90  * our max IO size is something reasonable. Units here are in bytes.
91  */
92 #define CRYPTO_MAX_IO		(64 * 1024)
93 
94 /* This controls how many ops will be dequeued from the crypto driver in one run
95  * of the poller. It is mainly a performance knob as it effectively determines how
96  * much work the poller has to do.  However even that can vary between crypto drivers
97  * as the AESNI_MB driver for example does all the crypto work on dequeue whereas the
98  * QAT driver just dequeues what has been completed already.
99  */
100 #define MAX_DEQUEUE_BURST_SIZE	64
101 
102 /* When enqueueing, we need to supply the crypto driver with an array of pointers to
103  * operation structs. As each of these can be max 512B, we can adjust the CRYPTO_MAX_IO
104  * value in conjunction with the other defines to make sure we're not using crazy amounts
105  * of memory. All of these numbers can and probably should be adjusted based on the
106  * workload. By default we'll use the worst case (smallest) block size for the
107  * minimum number of array entries. As an example, a CRYPTO_MAX_IO size of 64K with 512B
108  * blocks would give us an enqueue array size of 128.
109  */
110 #define MAX_ENQUEUE_ARRAY_SIZE (CRYPTO_MAX_IO / 512)
111 
112 /* The number of MBUFS we need must be a power of two and to support other small IOs
113  * in addition to the limits mentioned above, we go to the next power of two. It is
114  * big number because it is one mempool for source and destination mbufs. It may
115  * need to be bigger to support multiple crypto drivers at once.
116  */
117 #define NUM_MBUFS		32768
118 #define POOL_CACHE_SIZE		256
119 #define MAX_CRYPTO_VOLUMES	128
120 #define NUM_SESSIONS		(2 * MAX_CRYPTO_VOLUMES)
121 #define SESS_MEMPOOL_CACHE_SIZE 0
122 uint8_t g_number_of_claimed_volumes = 0;
123 
124 /* This is the max number of IOs we can supply to any crypto device QP at one time.
125  * It can vary between drivers.
126  */
127 #define CRYPTO_QP_DESCRIPTORS	2048
128 
129 /* Specific to AES_CBC. */
130 #define AES_CBC_IV_LENGTH	16
131 #define AES_CBC_KEY_LENGTH	16
132 #define AES_XTS_KEY_LENGTH	16	/* XTS uses 2 keys, each of this size. */
133 #define AESNI_MB_NUM_QP		64
134 
135 /* Common for suported devices. */
136 #define IV_OFFSET            (sizeof(struct rte_crypto_op) + \
137 				sizeof(struct rte_crypto_sym_op))
138 #define QUEUED_OP_OFFSET (IV_OFFSET + AES_CBC_IV_LENGTH)
139 
140 static void _complete_internal_io(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
141 static void _complete_internal_read(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
142 static void _complete_internal_write(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
143 static void vbdev_crypto_examine(struct spdk_bdev *bdev);
144 static int vbdev_crypto_claim(const char *bdev_name);
145 static void vbdev_crypto_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io);
146 
147 /* List of crypto_bdev names and their base bdevs via configuration file. */
148 struct bdev_names {
149 	char			*vbdev_name;	/* name of the vbdev to create */
150 	char			*bdev_name;	/* base bdev name */
151 
152 	/* Note, for dev/test we allow use of key in the config file, for production
153 	 * use, you must use an RPC to specify the key for security reasons.
154 	 */
155 	uint8_t			*key;		/* key per bdev */
156 	char			*drv_name;	/* name of the crypto device driver */
157 	char			*cipher;	/* AES_CBC or AES_XTS */
158 	uint8_t			*key2;		/* key #2 for AES_XTS, per bdev */
159 	TAILQ_ENTRY(bdev_names)	link;
160 };
161 static TAILQ_HEAD(, bdev_names) g_bdev_names = TAILQ_HEAD_INITIALIZER(g_bdev_names);
162 
163 /* List of virtual bdevs and associated info for each. We keep the device friendly name here even
164  * though its also in the device struct because we use it early on.
165  */
166 struct vbdev_crypto {
167 	struct spdk_bdev		*base_bdev;		/* the thing we're attaching to */
168 	struct spdk_bdev_desc		*base_desc;		/* its descriptor we get from open */
169 	struct spdk_bdev		crypto_bdev;		/* the crypto virtual bdev */
170 	uint8_t				*key;			/* key per bdev */
171 	uint8_t				*key2;			/* for XTS */
172 	uint8_t				*xts_key;		/* key + key 2 */
173 	char				*drv_name;		/* name of the crypto device driver */
174 	char				*cipher;		/* cipher used */
175 	struct rte_cryptodev_sym_session *session_encrypt;	/* encryption session for this bdev */
176 	struct rte_cryptodev_sym_session *session_decrypt;	/* decryption session for this bdev */
177 	struct rte_crypto_sym_xform	cipher_xform;		/* crypto control struct for this bdev */
178 	TAILQ_ENTRY(vbdev_crypto)	link;
179 	struct spdk_thread		*thread;		/* thread where base device is opened */
180 };
181 static TAILQ_HEAD(, vbdev_crypto) g_vbdev_crypto = TAILQ_HEAD_INITIALIZER(g_vbdev_crypto);
182 
183 /* Shared mempools between all devices on this system */
184 static struct rte_mempool *g_session_mp = NULL;
185 static struct rte_mempool *g_session_mp_priv = NULL;
186 static struct spdk_mempool *g_mbuf_mp = NULL;		/* mbuf mempool */
187 static struct rte_mempool *g_crypto_op_mp = NULL;	/* crypto operations, must be rte* mempool */
188 
189 /* For queueing up crypto operations that we can't submit for some reason */
190 struct vbdev_crypto_op {
191 	uint8_t					cdev_id;
192 	uint8_t					qp;
193 	struct rte_crypto_op			*crypto_op;
194 	struct spdk_bdev_io			*bdev_io;
195 	TAILQ_ENTRY(vbdev_crypto_op)		link;
196 };
197 #define QUEUED_OP_LENGTH (sizeof(struct vbdev_crypto_op))
198 
199 /* The crypto vbdev channel struct. It is allocated and freed on my behalf by the io channel code.
200  * We store things in here that are needed on per thread basis like the base_channel for this thread,
201  * and the poller for this thread.
202  */
203 struct crypto_io_channel {
204 	struct spdk_io_channel		*base_ch;		/* IO channel of base device */
205 	struct spdk_poller		*poller;		/* completion poller */
206 	struct device_qp		*device_qp;		/* unique device/qp combination for this channel */
207 	TAILQ_HEAD(, spdk_bdev_io)	pending_cry_ios;	/* outstanding operations to the crypto device */
208 	struct spdk_io_channel_iter	*iter;			/* used with for_each_channel in reset */
209 	TAILQ_HEAD(, vbdev_crypto_op)	queued_cry_ops;		/* queued for re-submission to CryptoDev */
210 };
211 
212 /* This is the crypto per IO context that the bdev layer allocates for us opaquely and attaches to
213  * each IO for us.
214  */
215 struct crypto_bdev_io {
216 	int cryop_cnt_remaining;			/* counter used when completing crypto ops */
217 	struct crypto_io_channel *crypto_ch;		/* need to store for crypto completion handling */
218 	struct vbdev_crypto *crypto_bdev;		/* the crypto node struct associated with this IO */
219 	struct spdk_bdev_io *orig_io;			/* the original IO */
220 	struct spdk_bdev_io *read_io;			/* the read IO we issued */
221 	int8_t bdev_io_status;				/* the status we'll report back on the bdev IO */
222 	bool on_pending_list;
223 	/* Used for the single contiguous buffer that serves as the crypto destination target for writes */
224 	uint64_t aux_num_blocks;			/* num of blocks for the contiguous buffer */
225 	uint64_t aux_offset_blocks;			/* block offset on media */
226 	void *aux_buf_raw;				/* raw buffer that the bdev layer gave us for write buffer */
227 	struct iovec aux_buf_iov;			/* iov representing aligned contig write buffer */
228 
229 	/* for bdev_io_wait */
230 	struct spdk_bdev_io_wait_entry bdev_io_wait;
231 	struct spdk_io_channel *ch;
232 };
233 
234 /* Called by vbdev_crypto_init_crypto_drivers() to init each discovered crypto device */
235 static int
236 create_vbdev_dev(uint8_t index, uint16_t num_lcores)
237 {
238 	struct vbdev_dev *device;
239 	uint8_t j, cdev_id, cdrv_id;
240 	struct device_qp *dev_qp;
241 	struct device_qp *tmp_qp;
242 	int rc;
243 	TAILQ_HEAD(device_qps, device_qp) *dev_qp_head;
244 
245 	device = calloc(1, sizeof(struct vbdev_dev));
246 	if (!device) {
247 		return -ENOMEM;
248 	}
249 
250 	/* Get details about this device. */
251 	rte_cryptodev_info_get(index, &device->cdev_info);
252 	cdrv_id = device->cdev_info.driver_id;
253 	cdev_id = device->cdev_id = index;
254 
255 	/* Before going any further, make sure we have enough resources for this
256 	 * device type to function.  We need a unique queue pair per core accross each
257 	 * device type to remain lockless....
258 	 */
259 	if ((rte_cryptodev_device_count_by_driver(cdrv_id) *
260 	     device->cdev_info.max_nb_queue_pairs) < num_lcores) {
261 		SPDK_ERRLOG("Insufficient unique queue pairs available for %s\n",
262 			    device->cdev_info.driver_name);
263 		SPDK_ERRLOG("Either add more crypto devices or decrease core count\n");
264 		rc = -EINVAL;
265 		goto err;
266 	}
267 
268 	/* Setup queue pairs. */
269 	struct rte_cryptodev_config conf = {
270 		.nb_queue_pairs = device->cdev_info.max_nb_queue_pairs,
271 		.socket_id = SPDK_ENV_SOCKET_ID_ANY
272 	};
273 
274 	rc = rte_cryptodev_configure(cdev_id, &conf);
275 	if (rc < 0) {
276 		SPDK_ERRLOG("Failed to configure cryptodev %u\n", cdev_id);
277 		rc = -EINVAL;
278 		goto err;
279 	}
280 
281 	struct rte_cryptodev_qp_conf qp_conf = {
282 		.nb_descriptors = CRYPTO_QP_DESCRIPTORS,
283 #if RTE_VERSION >= RTE_VERSION_NUM(19, 02, 0, 0)
284 		.mp_session = g_session_mp,
285 		.mp_session_private = g_session_mp_priv,
286 #endif
287 	};
288 
289 	/* Pre-setup all potential qpairs now and assign them in the channel
290 	 * callback. If we were to create them there, we'd have to stop the
291 	 * entire device affecting all other threads that might be using it
292 	 * even on other queue pairs.
293 	 */
294 	for (j = 0; j < device->cdev_info.max_nb_queue_pairs; j++) {
295 #if RTE_VERSION >= RTE_VERSION_NUM(19, 02, 0, 0)
296 		rc = rte_cryptodev_queue_pair_setup(cdev_id, j, &qp_conf, SOCKET_ID_ANY);
297 #else
298 		rc = rte_cryptodev_queue_pair_setup(cdev_id, j, &qp_conf, SOCKET_ID_ANY,
299 						    g_session_mp);
300 #endif
301 
302 		if (rc < 0) {
303 			SPDK_ERRLOG("Failed to setup queue pair %u on "
304 				    "cryptodev %u\n", j, cdev_id);
305 			rc = -EINVAL;
306 			goto err;
307 		}
308 	}
309 
310 	rc = rte_cryptodev_start(cdev_id);
311 	if (rc < 0) {
312 		SPDK_ERRLOG("Failed to start device %u: error %d\n",
313 			    cdev_id, rc);
314 		rc = -EINVAL;
315 		goto err;
316 	}
317 
318 	/* Select the right device/qp list based on driver name
319 	 * or error if it does not exist.
320 	 */
321 	if (strcmp(device->cdev_info.driver_name, QAT) == 0) {
322 		dev_qp_head = (struct device_qps *)&g_device_qp_qat;
323 	} else if (strcmp(device->cdev_info.driver_name, AESNI_MB) == 0) {
324 		dev_qp_head = (struct device_qps *)&g_device_qp_aesni_mb;
325 	} else {
326 		rc = -EINVAL;
327 		goto err;
328 	}
329 
330 	/* Build up lists of device/qp combinations per PMD */
331 	for (j = 0; j < device->cdev_info.max_nb_queue_pairs; j++) {
332 		dev_qp = calloc(1, sizeof(struct device_qp));
333 		if (!dev_qp) {
334 			rc = -ENOMEM;
335 			goto err_qp_alloc;
336 		}
337 		dev_qp->device = device;
338 		dev_qp->qp = j;
339 		dev_qp->in_use = false;
340 		if (strcmp(device->cdev_info.driver_name, QAT) == 0) {
341 			g_qat_total_qp++;
342 		}
343 		TAILQ_INSERT_TAIL(dev_qp_head, dev_qp, link);
344 	}
345 
346 	/* Add to our list of available crypto devices. */
347 	TAILQ_INSERT_TAIL(&g_vbdev_devs, device, link);
348 
349 	return 0;
350 err_qp_alloc:
351 	TAILQ_FOREACH_SAFE(dev_qp, dev_qp_head, link, tmp_qp) {
352 		TAILQ_REMOVE(dev_qp_head, dev_qp, link);
353 		free(dev_qp);
354 	}
355 err:
356 	free(device);
357 
358 	return rc;
359 }
360 
361 /* This is called from the module's init function. We setup all crypto devices early on as we are unable
362  * to easily dynamically configure queue pairs after the drivers are up and running.  So, here, we
363  * configure the max capabilities of each device and assign threads to queue pairs as channels are
364  * requested.
365  */
366 static int
367 vbdev_crypto_init_crypto_drivers(void)
368 {
369 	uint8_t cdev_count;
370 	uint8_t cdev_id;
371 	int i, rc = 0;
372 	struct vbdev_dev *device;
373 	struct vbdev_dev *tmp_dev;
374 	struct device_qp *dev_qp;
375 	unsigned int max_sess_size = 0, sess_size;
376 	uint16_t num_lcores = rte_lcore_count();
377 	char aesni_args[32];
378 
379 	/* Only the first call, via RPC or module init should init the crypto drivers. */
380 	if (g_session_mp != NULL) {
381 		return 0;
382 	}
383 
384 	/* We always init AESNI_MB */
385 	snprintf(aesni_args, sizeof(aesni_args), "max_nb_queue_pairs=%d", AESNI_MB_NUM_QP);
386 	rc = rte_vdev_init(AESNI_MB, aesni_args);
387 	if (rc) {
388 		SPDK_ERRLOG("error creating virtual PMD %s\n", AESNI_MB);
389 		return -EINVAL;
390 	}
391 
392 	/* If we have no crypto devices, there's no reason to continue. */
393 	cdev_count = rte_cryptodev_count();
394 	if (cdev_count == 0) {
395 		return 0;
396 	}
397 
398 	/*
399 	 * Create global mempools, shared by all devices regardless of type.
400 	 */
401 
402 	/* First determine max session size, most pools are shared by all the devices,
403 	 * so we need to find the global max sessions size.
404 	 */
405 	for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) {
406 		sess_size = rte_cryptodev_sym_get_private_session_size(cdev_id);
407 		if (sess_size > max_sess_size) {
408 			max_sess_size = sess_size;
409 		}
410 	}
411 
412 #if RTE_VERSION >= RTE_VERSION_NUM(19, 02, 0, 0)
413 	g_session_mp_priv = rte_mempool_create("session_mp_priv", NUM_SESSIONS, max_sess_size,
414 					       SESS_MEMPOOL_CACHE_SIZE, 0, NULL, NULL, NULL,
415 					       NULL, SOCKET_ID_ANY, 0);
416 	if (g_session_mp_priv == NULL) {
417 		SPDK_ERRLOG("Cannot create private session pool max size 0x%x\n", max_sess_size);
418 		return -ENOMEM;
419 	}
420 
421 	g_session_mp = rte_cryptodev_sym_session_pool_create(
422 			       "session_mp",
423 			       NUM_SESSIONS, 0, SESS_MEMPOOL_CACHE_SIZE, 0,
424 			       SOCKET_ID_ANY);
425 #else
426 	g_session_mp = rte_mempool_create("session_mp", NUM_SESSIONS, max_sess_size,
427 					  SESS_MEMPOOL_CACHE_SIZE,
428 					  0, NULL, NULL, NULL, NULL, SOCKET_ID_ANY, 0);
429 #endif
430 	if (g_session_mp == NULL) {
431 		SPDK_ERRLOG("Cannot create session pool max size 0x%x\n", max_sess_size);
432 		goto error_create_session_mp;
433 		return -ENOMEM;
434 	}
435 
436 	g_mbuf_mp = spdk_mempool_create("mbuf_mp", NUM_MBUFS, sizeof(struct rte_mbuf),
437 					SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
438 					SPDK_ENV_SOCKET_ID_ANY);
439 	if (g_mbuf_mp == NULL) {
440 		SPDK_ERRLOG("Cannot create mbuf pool\n");
441 		rc = -ENOMEM;
442 		goto error_create_mbuf;
443 	}
444 
445 	/* We use per op private data to store the IV and our own struct
446 	 * for queueing ops.
447 	 */
448 	g_crypto_op_mp = rte_crypto_op_pool_create("op_mp",
449 			 RTE_CRYPTO_OP_TYPE_SYMMETRIC,
450 			 NUM_MBUFS,
451 			 POOL_CACHE_SIZE,
452 			 AES_CBC_IV_LENGTH + QUEUED_OP_LENGTH,
453 			 rte_socket_id());
454 
455 	if (g_crypto_op_mp == NULL) {
456 		SPDK_ERRLOG("Cannot create op pool\n");
457 		rc = -ENOMEM;
458 		goto error_create_op;
459 	}
460 
461 	/* Init all devices */
462 	for (i = 0; i < cdev_count; i++) {
463 		rc = create_vbdev_dev(i, num_lcores);
464 		if (rc) {
465 			goto err;
466 		}
467 	}
468 
469 	/* Assign index values to the QAT device qp nodes so that we can
470 	 * assign them for optimal performance.
471 	 */
472 	i = 0;
473 	TAILQ_FOREACH(dev_qp, &g_device_qp_qat, link) {
474 		dev_qp->index = i++;
475 	}
476 
477 	return 0;
478 
479 	/* Error cleanup paths. */
480 err:
481 	TAILQ_FOREACH_SAFE(device, &g_vbdev_devs, link, tmp_dev) {
482 		TAILQ_REMOVE(&g_vbdev_devs, device, link);
483 		free(device);
484 	}
485 	rte_mempool_free(g_crypto_op_mp);
486 	g_crypto_op_mp = NULL;
487 error_create_op:
488 	spdk_mempool_free(g_mbuf_mp);
489 	g_mbuf_mp = NULL;
490 error_create_mbuf:
491 	rte_mempool_free(g_session_mp);
492 	g_session_mp = NULL;
493 error_create_session_mp:
494 	if (g_session_mp_priv != NULL) {
495 		rte_mempool_free(g_session_mp_priv);
496 		g_session_mp_priv = NULL;
497 	}
498 	return rc;
499 }
500 
501 /* Following an encrypt or decrypt we need to then either write the encrypted data or finish
502  * the read on decrypted data. Do that here.
503  */
504 static void
505 _crypto_operation_complete(struct spdk_bdev_io *bdev_io)
506 {
507 	struct vbdev_crypto *crypto_bdev = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_crypto,
508 					   crypto_bdev);
509 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
510 	struct crypto_io_channel *crypto_ch = io_ctx->crypto_ch;
511 	struct spdk_bdev_io *free_me = io_ctx->read_io;
512 	int rc = 0;
513 
514 	TAILQ_REMOVE(&crypto_ch->pending_cry_ios, bdev_io, module_link);
515 
516 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
517 
518 		/* Complete the original IO and then free the one that we created
519 		 * as a result of issuing an IO via submit_request.
520 		 */
521 		if (io_ctx->bdev_io_status != SPDK_BDEV_IO_STATUS_FAILED) {
522 			spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS);
523 		} else {
524 			SPDK_ERRLOG("Issue with decryption on bdev_io %p\n", bdev_io);
525 			rc = -EINVAL;
526 		}
527 		spdk_bdev_free_io(free_me);
528 
529 	} else if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
530 
531 		if (io_ctx->bdev_io_status != SPDK_BDEV_IO_STATUS_FAILED) {
532 			/* Write the encrypted data. */
533 			rc = spdk_bdev_writev_blocks(crypto_bdev->base_desc, crypto_ch->base_ch,
534 						     &io_ctx->aux_buf_iov, 1, io_ctx->aux_offset_blocks,
535 						     io_ctx->aux_num_blocks, _complete_internal_write,
536 						     bdev_io);
537 		} else {
538 			SPDK_ERRLOG("Issue with encryption on bdev_io %p\n", bdev_io);
539 			rc = -EINVAL;
540 		}
541 
542 	} else {
543 		SPDK_ERRLOG("Unknown bdev type %u on crypto operation completion\n",
544 			    bdev_io->type);
545 		rc = -EINVAL;
546 	}
547 
548 	if (rc) {
549 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
550 	}
551 }
552 
553 static int _crypto_operation(struct spdk_bdev_io *bdev_io,
554 			     enum rte_crypto_cipher_operation crypto_op,
555 			     void *aux_buf);
556 
557 /* This is the poller for the crypto device. It uses a single API to dequeue whatever is ready at
558  * the device. Then we need to decide if what we've got so far (including previous poller
559  * runs) totals up to one or more complete bdev_ios and if so continue with the bdev_io
560  * accordingly. This means either completing a read or issuing a new write.
561  */
562 static int
563 crypto_dev_poller(void *args)
564 {
565 	struct crypto_io_channel *crypto_ch = args;
566 	uint8_t cdev_id = crypto_ch->device_qp->device->cdev_id;
567 	int i, num_dequeued_ops, num_enqueued_ops;
568 	struct spdk_bdev_io *bdev_io = NULL;
569 	struct crypto_bdev_io *io_ctx = NULL;
570 	struct rte_crypto_op *dequeued_ops[MAX_DEQUEUE_BURST_SIZE];
571 	struct rte_crypto_op *mbufs_to_free[2 * MAX_DEQUEUE_BURST_SIZE];
572 	int num_mbufs = 0;
573 	struct vbdev_crypto_op *op_to_resubmit;
574 
575 	/* Each run of the poller will get just what the device has available
576 	 * at the moment we call it, we don't check again after draining the
577 	 * first batch.
578 	 */
579 	num_dequeued_ops = rte_cryptodev_dequeue_burst(cdev_id, crypto_ch->device_qp->qp,
580 			   dequeued_ops, MAX_DEQUEUE_BURST_SIZE);
581 
582 	/* Check if operation was processed successfully */
583 	for (i = 0; i < num_dequeued_ops; i++) {
584 
585 		/* We don't know the order or association of the crypto ops wrt any
586 		 * partiular bdev_io so need to look at each and determine if it's
587 		 * the last one for it's bdev_io or not.
588 		 */
589 		bdev_io = (struct spdk_bdev_io *)dequeued_ops[i]->sym->m_src->userdata;
590 		assert(bdev_io != NULL);
591 		io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
592 
593 		if (dequeued_ops[i]->status != RTE_CRYPTO_OP_STATUS_SUCCESS) {
594 			SPDK_ERRLOG("error with op %d status %u\n", i,
595 				    dequeued_ops[i]->status);
596 			/* Update the bdev status to error, we'll still process the
597 			 * rest of the crypto ops for this bdev_io though so they
598 			 * aren't left hanging.
599 			 */
600 			io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_FAILED;
601 		}
602 
603 		assert(io_ctx->cryop_cnt_remaining > 0);
604 
605 		/* Return the associated src and dst mbufs by collecting them into
606 		 * an array that we can use the bulk API to free after the loop.
607 		 */
608 		dequeued_ops[i]->sym->m_src->userdata = NULL;
609 		mbufs_to_free[num_mbufs++] = (void *)dequeued_ops[i]->sym->m_src;
610 		if (dequeued_ops[i]->sym->m_dst) {
611 			mbufs_to_free[num_mbufs++] = (void *)dequeued_ops[i]->sym->m_dst;
612 		}
613 
614 		/* done encrypting, complete the bdev_io */
615 		if (--io_ctx->cryop_cnt_remaining == 0) {
616 
617 			/* If we're completing this with an outstanding reset we need
618 			 * to fail it.
619 			 */
620 			if (crypto_ch->iter) {
621 				io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_FAILED;
622 			}
623 
624 			/* Complete the IO */
625 			_crypto_operation_complete(bdev_io);
626 		}
627 	}
628 
629 	/* Now bulk free both mbufs and crypto operations. */
630 	if (num_dequeued_ops > 0) {
631 		rte_mempool_put_bulk(g_crypto_op_mp,
632 				     (void **)dequeued_ops,
633 				     num_dequeued_ops);
634 		assert(num_mbufs > 0);
635 		spdk_mempool_put_bulk(g_mbuf_mp,
636 				      (void **)mbufs_to_free,
637 				      num_mbufs);
638 	}
639 
640 	/* Check if there are any pending crypto ops to process */
641 	while (!TAILQ_EMPTY(&crypto_ch->queued_cry_ops)) {
642 		op_to_resubmit = TAILQ_FIRST(&crypto_ch->queued_cry_ops);
643 		io_ctx = (struct crypto_bdev_io *)op_to_resubmit->bdev_io->driver_ctx;
644 		num_enqueued_ops = rte_cryptodev_enqueue_burst(op_to_resubmit->cdev_id,
645 				   op_to_resubmit->qp,
646 				   &op_to_resubmit->crypto_op,
647 				   1);
648 		if (num_enqueued_ops == 1) {
649 			/* Make sure we don't put this on twice as one bdev_io is made up
650 			 * of many crypto ops.
651 			 */
652 			if (io_ctx->on_pending_list == false) {
653 				TAILQ_INSERT_TAIL(&crypto_ch->pending_cry_ios, op_to_resubmit->bdev_io, module_link);
654 				io_ctx->on_pending_list = true;
655 			}
656 			TAILQ_REMOVE(&crypto_ch->queued_cry_ops, op_to_resubmit, link);
657 		} else {
658 			/* if we couldn't get one, just break and try again later. */
659 			break;
660 		}
661 	}
662 
663 	/* If the channel iter is not NULL, we need to continue to poll
664 	 * until the pending list is empty, then we can move on to the
665 	 * next channel.
666 	 */
667 	if (crypto_ch->iter && TAILQ_EMPTY(&crypto_ch->pending_cry_ios)) {
668 		SPDK_NOTICELOG("Channel %p has been quiesced.\n", crypto_ch);
669 		spdk_for_each_channel_continue(crypto_ch->iter, 0);
670 		crypto_ch->iter = NULL;
671 	}
672 
673 	return num_dequeued_ops;
674 }
675 
676 /* We're either encrypting on the way down or decrypting on the way back. */
677 static int
678 _crypto_operation(struct spdk_bdev_io *bdev_io, enum rte_crypto_cipher_operation crypto_op,
679 		  void *aux_buf)
680 {
681 	uint16_t num_enqueued_ops = 0;
682 	uint32_t cryop_cnt = bdev_io->u.bdev.num_blocks;
683 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
684 	struct crypto_io_channel *crypto_ch = io_ctx->crypto_ch;
685 	uint8_t cdev_id = crypto_ch->device_qp->device->cdev_id;
686 	uint32_t crypto_len = io_ctx->crypto_bdev->crypto_bdev.blocklen;
687 	uint64_t total_length = bdev_io->u.bdev.num_blocks * crypto_len;
688 	int rc;
689 	uint32_t iov_index = 0;
690 	uint32_t allocated = 0;
691 	uint8_t *current_iov = NULL;
692 	uint64_t total_remaining = 0;
693 	uint64_t updated_length, current_iov_remaining = 0;
694 	uint32_t crypto_index = 0;
695 	uint32_t en_offset = 0;
696 	struct rte_crypto_op *crypto_ops[MAX_ENQUEUE_ARRAY_SIZE];
697 	struct rte_mbuf *src_mbufs[MAX_ENQUEUE_ARRAY_SIZE];
698 	struct rte_mbuf *dst_mbufs[MAX_ENQUEUE_ARRAY_SIZE];
699 	int burst;
700 	struct vbdev_crypto_op *op_to_queue;
701 	uint64_t alignment = spdk_bdev_get_buf_align(&io_ctx->crypto_bdev->crypto_bdev);
702 
703 	assert((bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen) <= CRYPTO_MAX_IO);
704 
705 	/* Get the number of source mbufs that we need. These will always be 1:1 because we
706 	 * don't support chaining. The reason we don't is because of our decision to use
707 	 * LBA as IV, there can be no case where we'd need >1 mbuf per crypto op or the
708 	 * op would be > 1 LBA.
709 	 */
710 	rc = spdk_mempool_get_bulk(g_mbuf_mp, (void **)&src_mbufs[0], cryop_cnt);
711 	if (rc) {
712 		SPDK_ERRLOG("ERROR trying to get src_mbufs!\n");
713 		return -ENOMEM;
714 	}
715 
716 	/* Get the same amount but these buffers to describe the encrypted data location (dst). */
717 	if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
718 		rc = spdk_mempool_get_bulk(g_mbuf_mp, (void **)&dst_mbufs[0], cryop_cnt);
719 		if (rc) {
720 			SPDK_ERRLOG("ERROR trying to get dst_mbufs!\n");
721 			rc = -ENOMEM;
722 			goto error_get_dst;
723 		}
724 	}
725 
726 #ifdef __clang_analyzer__
727 	/* silence scan-build false positive */
728 	SPDK_CLANG_ANALYZER_PREINIT_PTR_ARRAY(crypto_ops, MAX_ENQUEUE_ARRAY_SIZE, 0x1000);
729 #endif
730 	/* Allocate crypto operations. */
731 	allocated = rte_crypto_op_bulk_alloc(g_crypto_op_mp,
732 					     RTE_CRYPTO_OP_TYPE_SYMMETRIC,
733 					     crypto_ops, cryop_cnt);
734 	if (allocated < cryop_cnt) {
735 		SPDK_ERRLOG("ERROR trying to get crypto ops!\n");
736 		rc = -ENOMEM;
737 		goto error_get_ops;
738 	}
739 
740 	/* For encryption, we need to prepare a single contiguous buffer as the encryption
741 	 * destination, we'll then pass that along for the write after encryption is done.
742 	 * This is done to avoiding encrypting the provided write buffer which may be
743 	 * undesirable in some use cases.
744 	 */
745 	if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
746 		io_ctx->aux_buf_iov.iov_len = total_length;
747 		io_ctx->aux_buf_raw = aux_buf;
748 		io_ctx->aux_buf_iov.iov_base  = (void *)(((uintptr_t)aux_buf + (alignment - 1)) & ~(alignment - 1));
749 		io_ctx->aux_offset_blocks = bdev_io->u.bdev.offset_blocks;
750 		io_ctx->aux_num_blocks = bdev_io->u.bdev.num_blocks;
751 	}
752 
753 	/* This value is used in the completion callback to determine when the bdev_io is
754 	 * complete.
755 	 */
756 	io_ctx->cryop_cnt_remaining = cryop_cnt;
757 
758 	/* As we don't support chaining because of a decision to use LBA as IV, construction
759 	 * of crypto operations is straightforward. We build both the op, the mbuf and the
760 	 * dst_mbuf in our local arrays by looping through the length of the bdev IO and
761 	 * picking off LBA sized blocks of memory from the IOVs as we walk through them. Each
762 	 * LBA sized chunk of memory will correspond 1:1 to a crypto operation and a single
763 	 * mbuf per crypto operation.
764 	 */
765 	total_remaining = total_length;
766 	current_iov = bdev_io->u.bdev.iovs[iov_index].iov_base;
767 	current_iov_remaining = bdev_io->u.bdev.iovs[iov_index].iov_len;
768 	do {
769 		uint8_t *iv_ptr;
770 		uint64_t op_block_offset;
771 
772 		/* Set the mbuf elements address and length. Null out the next pointer. */
773 		src_mbufs[crypto_index]->buf_addr = current_iov;
774 		src_mbufs[crypto_index]->data_len = updated_length = crypto_len;
775 		/* TODO: Make this assignment conditional on QAT usage and add an assert. */
776 		src_mbufs[crypto_index]->buf_iova = spdk_vtophys((void *)current_iov, &updated_length);
777 		src_mbufs[crypto_index]->next = NULL;
778 		/* Store context in every mbuf as we don't know anything about completion order */
779 		src_mbufs[crypto_index]->userdata = bdev_io;
780 
781 		/* Set the IV - we use the LBA of the crypto_op */
782 		iv_ptr = rte_crypto_op_ctod_offset(crypto_ops[crypto_index], uint8_t *,
783 						   IV_OFFSET);
784 		memset(iv_ptr, 0, AES_CBC_IV_LENGTH);
785 		op_block_offset = bdev_io->u.bdev.offset_blocks + crypto_index;
786 		rte_memcpy(iv_ptr, &op_block_offset, sizeof(uint64_t));
787 
788 		/* Set the data to encrypt/decrypt length */
789 		crypto_ops[crypto_index]->sym->cipher.data.length = crypto_len;
790 		crypto_ops[crypto_index]->sym->cipher.data.offset = 0;
791 
792 		/* link the mbuf to the crypto op. */
793 		crypto_ops[crypto_index]->sym->m_src = src_mbufs[crypto_index];
794 		if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
795 			crypto_ops[crypto_index]->sym->m_dst = src_mbufs[crypto_index];
796 		} else {
797 			crypto_ops[crypto_index]->sym->m_dst = NULL;
798 		}
799 
800 		/* For encrypt, point the destination to a buffer we allocate and redirect the bdev_io
801 		 * that will be used to process the write on completion to the same buffer. Setting
802 		 * up the en_buffer is a little simpler as we know the destination buffer is single IOV.
803 		 */
804 		if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
805 
806 			/* Set the relevant destination en_mbuf elements. */
807 			dst_mbufs[crypto_index]->buf_addr = io_ctx->aux_buf_iov.iov_base + en_offset;
808 			dst_mbufs[crypto_index]->data_len = updated_length = crypto_len;
809 			/* TODO: Make this assignment conditional on QAT usage and add an assert. */
810 			dst_mbufs[crypto_index]->buf_iova = spdk_vtophys(dst_mbufs[crypto_index]->buf_addr,
811 							    &updated_length);
812 			crypto_ops[crypto_index]->sym->m_dst = dst_mbufs[crypto_index];
813 			en_offset += crypto_len;
814 			dst_mbufs[crypto_index]->next = NULL;
815 
816 			/* Attach the crypto session to the operation */
817 			rc = rte_crypto_op_attach_sym_session(crypto_ops[crypto_index],
818 							      io_ctx->crypto_bdev->session_encrypt);
819 			if (rc) {
820 				rc = -EINVAL;
821 				goto error_attach_session;
822 			}
823 
824 		} else {
825 			/* Attach the crypto session to the operation */
826 			rc = rte_crypto_op_attach_sym_session(crypto_ops[crypto_index],
827 							      io_ctx->crypto_bdev->session_decrypt);
828 			if (rc) {
829 				rc = -EINVAL;
830 				goto error_attach_session;
831 			}
832 
833 
834 		}
835 
836 		/* Subtract our running totals for the op in progress and the overall bdev io */
837 		total_remaining -= crypto_len;
838 		current_iov_remaining -= crypto_len;
839 
840 		/* move our current IOV pointer accordingly. */
841 		current_iov += crypto_len;
842 
843 		/* move on to the next crypto operation */
844 		crypto_index++;
845 
846 		/* If we're done with this IOV, move to the next one. */
847 		if (current_iov_remaining == 0 && total_remaining > 0) {
848 			iov_index++;
849 			current_iov = bdev_io->u.bdev.iovs[iov_index].iov_base;
850 			current_iov_remaining = bdev_io->u.bdev.iovs[iov_index].iov_len;
851 		}
852 	} while (total_remaining > 0);
853 
854 	/* Enqueue everything we've got but limit by the max number of descriptors we
855 	 * configured the crypto device for.
856 	 */
857 	burst = spdk_min(cryop_cnt, CRYPTO_QP_DESCRIPTORS);
858 	num_enqueued_ops = rte_cryptodev_enqueue_burst(cdev_id, crypto_ch->device_qp->qp,
859 			   &crypto_ops[0],
860 			   burst);
861 
862 	/* Add this bdev_io to our outstanding list if any of its crypto ops made it. */
863 	if (num_enqueued_ops > 0) {
864 		TAILQ_INSERT_TAIL(&crypto_ch->pending_cry_ios, bdev_io, module_link);
865 		io_ctx->on_pending_list = true;
866 	}
867 	/* We were unable to enqueue everything but did get some, so need to decide what
868 	 * to do based on the status of the last op.
869 	 */
870 	if (num_enqueued_ops < cryop_cnt) {
871 		switch (crypto_ops[num_enqueued_ops]->status) {
872 		case RTE_CRYPTO_OP_STATUS_NOT_PROCESSED:
873 			/* Queue them up on a linked list to be resubmitted via the poller. */
874 			for (crypto_index = num_enqueued_ops; crypto_index < cryop_cnt; crypto_index++) {
875 				op_to_queue = (struct vbdev_crypto_op *)rte_crypto_op_ctod_offset(crypto_ops[crypto_index],
876 						uint8_t *, QUEUED_OP_OFFSET);
877 				op_to_queue->cdev_id = cdev_id;
878 				op_to_queue->qp = crypto_ch->device_qp->qp;
879 				op_to_queue->crypto_op = crypto_ops[crypto_index];
880 				op_to_queue->bdev_io = bdev_io;
881 				TAILQ_INSERT_TAIL(&crypto_ch->queued_cry_ops,
882 						  op_to_queue,
883 						  link);
884 			}
885 			break;
886 		default:
887 			/* For all other statuses, set the io_ctx bdev_io status so that
888 			 * the poller will pick the failure up for the overall bdev status.
889 			 */
890 			io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_FAILED;
891 			if (num_enqueued_ops == 0) {
892 				/* If nothing was enqueued, but the last one wasn't because of
893 				 * busy, fail it now as the poller won't know anything about it.
894 				 */
895 				_crypto_operation_complete(bdev_io);
896 				rc = -EINVAL;
897 				goto error_attach_session;
898 			}
899 			break;
900 		}
901 	}
902 
903 	return rc;
904 
905 	/* Error cleanup paths. */
906 error_attach_session:
907 error_get_ops:
908 	if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
909 		spdk_mempool_put_bulk(g_mbuf_mp, (void **)&dst_mbufs[0],
910 				      cryop_cnt);
911 	}
912 	if (allocated > 0) {
913 		rte_mempool_put_bulk(g_crypto_op_mp, (void **)crypto_ops,
914 				     allocated);
915 	}
916 error_get_dst:
917 	spdk_mempool_put_bulk(g_mbuf_mp, (void **)&src_mbufs[0],
918 			      cryop_cnt);
919 	return rc;
920 }
921 
922 /* This function is called after all channels have been quiesced following
923  * a bdev reset.
924  */
925 static void
926 _ch_quiesce_done(struct spdk_io_channel_iter *i, int status)
927 {
928 	struct crypto_bdev_io *io_ctx = spdk_io_channel_iter_get_ctx(i);
929 
930 	assert(TAILQ_EMPTY(&io_ctx->crypto_ch->pending_cry_ios));
931 	assert(io_ctx->orig_io != NULL);
932 
933 	spdk_bdev_io_complete(io_ctx->orig_io, SPDK_BDEV_IO_STATUS_SUCCESS);
934 }
935 
936 /* This function is called per channel to quiesce IOs before completing a
937  * bdev reset that we received.
938  */
939 static void
940 _ch_quiesce(struct spdk_io_channel_iter *i)
941 {
942 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
943 	struct crypto_io_channel *crypto_ch = spdk_io_channel_get_ctx(ch);
944 
945 	crypto_ch->iter = i;
946 	/* When the poller runs, it will see the non-NULL iter and handle
947 	 * the quiesce.
948 	 */
949 }
950 
951 /* Completion callback for IO that were issued from this bdev other than read/write.
952  * They have their own for readability.
953  */
954 static void
955 _complete_internal_io(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
956 {
957 	struct spdk_bdev_io *orig_io = cb_arg;
958 	int status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
959 
960 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_RESET) {
961 		struct crypto_bdev_io *orig_ctx = (struct crypto_bdev_io *)orig_io->driver_ctx;
962 
963 		assert(orig_io == orig_ctx->orig_io);
964 
965 		spdk_bdev_free_io(bdev_io);
966 
967 		spdk_for_each_channel(orig_ctx->crypto_bdev,
968 				      _ch_quiesce,
969 				      orig_ctx,
970 				      _ch_quiesce_done);
971 		return;
972 	}
973 
974 	spdk_bdev_io_complete(orig_io, status);
975 	spdk_bdev_free_io(bdev_io);
976 }
977 
978 /* Completion callback for writes that were issued from this bdev. */
979 static void
980 _complete_internal_write(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
981 {
982 	struct spdk_bdev_io *orig_io = cb_arg;
983 	int status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
984 	struct crypto_bdev_io *orig_ctx = (struct crypto_bdev_io *)orig_io->driver_ctx;
985 
986 	spdk_bdev_io_put_aux_buf(orig_io, orig_ctx->aux_buf_raw);
987 
988 	spdk_bdev_io_complete(orig_io, status);
989 	spdk_bdev_free_io(bdev_io);
990 }
991 
992 /* Completion callback for reads that were issued from this bdev. */
993 static void
994 _complete_internal_read(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
995 {
996 	struct spdk_bdev_io *orig_io = cb_arg;
997 	struct crypto_bdev_io *orig_ctx = (struct crypto_bdev_io *)orig_io->driver_ctx;
998 
999 	if (success) {
1000 
1001 		/* Save off this bdev_io so it can be freed after decryption. */
1002 		orig_ctx->read_io = bdev_io;
1003 
1004 		if (!_crypto_operation(orig_io, RTE_CRYPTO_CIPHER_OP_DECRYPT, NULL)) {
1005 			return;
1006 		} else {
1007 			SPDK_ERRLOG("ERROR decrypting\n");
1008 		}
1009 	} else {
1010 		SPDK_ERRLOG("ERROR on read prior to decrypting\n");
1011 	}
1012 
1013 	spdk_bdev_io_complete(orig_io, SPDK_BDEV_IO_STATUS_FAILED);
1014 	spdk_bdev_free_io(bdev_io);
1015 }
1016 
1017 static void
1018 vbdev_crypto_resubmit_io(void *arg)
1019 {
1020 	struct spdk_bdev_io *bdev_io = (struct spdk_bdev_io *)arg;
1021 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
1022 
1023 	vbdev_crypto_submit_request(io_ctx->ch, bdev_io);
1024 }
1025 
1026 static void
1027 vbdev_crypto_queue_io(struct spdk_bdev_io *bdev_io)
1028 {
1029 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
1030 	int rc;
1031 
1032 	io_ctx->bdev_io_wait.bdev = bdev_io->bdev;
1033 	io_ctx->bdev_io_wait.cb_fn = vbdev_crypto_resubmit_io;
1034 	io_ctx->bdev_io_wait.cb_arg = bdev_io;
1035 
1036 	rc = spdk_bdev_queue_io_wait(bdev_io->bdev, io_ctx->crypto_ch->base_ch, &io_ctx->bdev_io_wait);
1037 	if (rc != 0) {
1038 		SPDK_ERRLOG("Queue io failed in vbdev_crypto_queue_io, rc=%d.\n", rc);
1039 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1040 	}
1041 }
1042 
1043 /* Callback for getting a buf from the bdev pool in the event that the caller passed
1044  * in NULL, we need to own the buffer so it doesn't get freed by another vbdev module
1045  * beneath us before we're done with it.
1046  */
1047 static void
1048 crypto_read_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
1049 		       bool success)
1050 {
1051 	struct vbdev_crypto *crypto_bdev = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_crypto,
1052 					   crypto_bdev);
1053 	struct crypto_io_channel *crypto_ch = spdk_io_channel_get_ctx(ch);
1054 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
1055 	int rc;
1056 
1057 	if (!success) {
1058 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1059 		return;
1060 	}
1061 
1062 	rc = spdk_bdev_readv_blocks(crypto_bdev->base_desc, crypto_ch->base_ch, bdev_io->u.bdev.iovs,
1063 				    bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.offset_blocks,
1064 				    bdev_io->u.bdev.num_blocks, _complete_internal_read,
1065 				    bdev_io);
1066 	if (rc != 0) {
1067 		if (rc == -ENOMEM) {
1068 			SPDK_DEBUGLOG(vbdev_crypto, "No memory, queue the IO.\n");
1069 			io_ctx->ch = ch;
1070 			vbdev_crypto_queue_io(bdev_io);
1071 		} else {
1072 			SPDK_ERRLOG("ERROR on bdev_io submission!\n");
1073 			spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1074 		}
1075 	}
1076 }
1077 
1078 /* For encryption we don't want to encrypt the data in place as the host isn't
1079  * expecting us to mangle its data buffers so we need to encrypt into the bdev
1080  * aux buffer, then we can use that as the source for the disk data transfer.
1081  */
1082 static void
1083 crypto_write_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
1084 			void *aux_buf)
1085 {
1086 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
1087 	int rc = 0;
1088 
1089 	rc = _crypto_operation(bdev_io, RTE_CRYPTO_CIPHER_OP_ENCRYPT, aux_buf);
1090 	if (rc != 0) {
1091 		spdk_bdev_io_put_aux_buf(bdev_io, aux_buf);
1092 		if (rc == -ENOMEM) {
1093 			SPDK_DEBUGLOG(vbdev_crypto, "No memory, queue the IO.\n");
1094 			io_ctx->ch = ch;
1095 			vbdev_crypto_queue_io(bdev_io);
1096 		} else {
1097 			SPDK_ERRLOG("ERROR on bdev_io submission!\n");
1098 			spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1099 		}
1100 	}
1101 }
1102 
1103 /* Called when someone submits IO to this crypto vbdev. For IO's not relevant to crypto,
1104  * we're simply passing it on here via SPDK IO calls which in turn allocate another bdev IO
1105  * and call our cpl callback provided below along with the original bdev_io so that we can
1106  * complete it once this IO completes. For crypto operations, we'll either encrypt it first
1107  * (writes) then call back into bdev to submit it or we'll submit a read and then catch it
1108  * on the way back for decryption.
1109  */
1110 static void
1111 vbdev_crypto_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
1112 {
1113 	struct vbdev_crypto *crypto_bdev = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_crypto,
1114 					   crypto_bdev);
1115 	struct crypto_io_channel *crypto_ch = spdk_io_channel_get_ctx(ch);
1116 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
1117 	int rc = 0;
1118 
1119 	memset(io_ctx, 0, sizeof(struct crypto_bdev_io));
1120 	io_ctx->crypto_bdev = crypto_bdev;
1121 	io_ctx->crypto_ch = crypto_ch;
1122 	io_ctx->orig_io = bdev_io;
1123 	io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1124 
1125 	switch (bdev_io->type) {
1126 	case SPDK_BDEV_IO_TYPE_READ:
1127 		spdk_bdev_io_get_buf(bdev_io, crypto_read_get_buf_cb,
1128 				     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
1129 		break;
1130 	case SPDK_BDEV_IO_TYPE_WRITE:
1131 		/* Tell the bdev layer that we need an aux buf in addition to the data
1132 		 * buf already associated with the bdev.
1133 		 */
1134 		spdk_bdev_io_get_aux_buf(bdev_io, crypto_write_get_buf_cb);
1135 		break;
1136 	case SPDK_BDEV_IO_TYPE_UNMAP:
1137 		rc = spdk_bdev_unmap_blocks(crypto_bdev->base_desc, crypto_ch->base_ch,
1138 					    bdev_io->u.bdev.offset_blocks,
1139 					    bdev_io->u.bdev.num_blocks,
1140 					    _complete_internal_io, bdev_io);
1141 		break;
1142 	case SPDK_BDEV_IO_TYPE_FLUSH:
1143 		rc = spdk_bdev_flush_blocks(crypto_bdev->base_desc, crypto_ch->base_ch,
1144 					    bdev_io->u.bdev.offset_blocks,
1145 					    bdev_io->u.bdev.num_blocks,
1146 					    _complete_internal_io, bdev_io);
1147 		break;
1148 	case SPDK_BDEV_IO_TYPE_RESET:
1149 		rc = spdk_bdev_reset(crypto_bdev->base_desc, crypto_ch->base_ch,
1150 				     _complete_internal_io, bdev_io);
1151 		break;
1152 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
1153 	default:
1154 		SPDK_ERRLOG("crypto: unknown I/O type %d\n", bdev_io->type);
1155 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1156 		return;
1157 	}
1158 
1159 	if (rc != 0) {
1160 		if (rc == -ENOMEM) {
1161 			SPDK_DEBUGLOG(vbdev_crypto, "No memory, queue the IO.\n");
1162 			io_ctx->ch = ch;
1163 			vbdev_crypto_queue_io(bdev_io);
1164 		} else {
1165 			SPDK_ERRLOG("ERROR on bdev_io submission!\n");
1166 			spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1167 		}
1168 	}
1169 }
1170 
1171 /* We'll just call the base bdev and let it answer except for WZ command which
1172  * we always say we don't support so that the bdev layer will actually send us
1173  * real writes that we can encrypt.
1174  */
1175 static bool
1176 vbdev_crypto_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
1177 {
1178 	struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
1179 
1180 	switch (io_type) {
1181 	case SPDK_BDEV_IO_TYPE_WRITE:
1182 	case SPDK_BDEV_IO_TYPE_UNMAP:
1183 	case SPDK_BDEV_IO_TYPE_RESET:
1184 	case SPDK_BDEV_IO_TYPE_READ:
1185 	case SPDK_BDEV_IO_TYPE_FLUSH:
1186 		return spdk_bdev_io_type_supported(crypto_bdev->base_bdev, io_type);
1187 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
1188 	/* Force the bdev layer to issue actual writes of zeroes so we can
1189 	 * encrypt them as regular writes.
1190 	 */
1191 	default:
1192 		return false;
1193 	}
1194 }
1195 
1196 /* Callback for unregistering the IO device. */
1197 static void
1198 _device_unregister_cb(void *io_device)
1199 {
1200 	struct vbdev_crypto *crypto_bdev = io_device;
1201 
1202 	/* Done with this crypto_bdev. */
1203 	rte_cryptodev_sym_session_free(crypto_bdev->session_decrypt);
1204 	rte_cryptodev_sym_session_free(crypto_bdev->session_encrypt);
1205 	free(crypto_bdev->drv_name);
1206 	if (crypto_bdev->key) {
1207 		memset(crypto_bdev->key, 0, strnlen(crypto_bdev->key, (AES_CBC_KEY_LENGTH + 1)));
1208 		free(crypto_bdev->key);
1209 	}
1210 	if (crypto_bdev->key2) {
1211 		memset(crypto_bdev->key2, 0, strnlen(crypto_bdev->key2, (AES_XTS_KEY_LENGTH + 1)));
1212 		free(crypto_bdev->key2);
1213 	}
1214 	if (crypto_bdev->xts_key) {
1215 		memset(crypto_bdev->xts_key, 0, strnlen(crypto_bdev->xts_key, (AES_XTS_KEY_LENGTH * 2) + 1));
1216 		free(crypto_bdev->xts_key);
1217 	}
1218 	free(crypto_bdev->crypto_bdev.name);
1219 	free(crypto_bdev);
1220 }
1221 
1222 /* Wrapper for the bdev close operation. */
1223 static void
1224 _vbdev_crypto_destruct(void *ctx)
1225 {
1226 	struct spdk_bdev_desc *desc = ctx;
1227 
1228 	spdk_bdev_close(desc);
1229 }
1230 
1231 /* Called after we've unregistered following a hot remove callback.
1232  * Our finish entry point will be called next.
1233  */
1234 static int
1235 vbdev_crypto_destruct(void *ctx)
1236 {
1237 	struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
1238 
1239 	/* Remove this device from the internal list */
1240 	TAILQ_REMOVE(&g_vbdev_crypto, crypto_bdev, link);
1241 
1242 	/* Unclaim the underlying bdev. */
1243 	spdk_bdev_module_release_bdev(crypto_bdev->base_bdev);
1244 
1245 	/* Close the underlying bdev on its same opened thread. */
1246 	if (crypto_bdev->thread && crypto_bdev->thread != spdk_get_thread()) {
1247 		spdk_thread_send_msg(crypto_bdev->thread, _vbdev_crypto_destruct, crypto_bdev->base_desc);
1248 	} else {
1249 		spdk_bdev_close(crypto_bdev->base_desc);
1250 	}
1251 
1252 	/* Unregister the io_device. */
1253 	spdk_io_device_unregister(crypto_bdev, _device_unregister_cb);
1254 
1255 	g_number_of_claimed_volumes--;
1256 
1257 	return 0;
1258 }
1259 
1260 /* We supplied this as an entry point for upper layers who want to communicate to this
1261  * bdev.  This is how they get a channel. We are passed the same context we provided when
1262  * we created our crypto vbdev in examine() which, for this bdev, is the address of one of
1263  * our context nodes. From here we'll ask the SPDK channel code to fill out our channel
1264  * struct and we'll keep it in our crypto node.
1265  */
1266 static struct spdk_io_channel *
1267 vbdev_crypto_get_io_channel(void *ctx)
1268 {
1269 	struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
1270 
1271 	/* The IO channel code will allocate a channel for us which consists of
1272 	 * the SPDK channel structure plus the size of our crypto_io_channel struct
1273 	 * that we passed in when we registered our IO device. It will then call
1274 	 * our channel create callback to populate any elements that we need to
1275 	 * update.
1276 	 */
1277 	return spdk_get_io_channel(crypto_bdev);
1278 }
1279 
1280 /* This is the output for bdev_get_bdevs() for this vbdev */
1281 static int
1282 vbdev_crypto_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
1283 {
1284 	struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
1285 
1286 	spdk_json_write_name(w, "crypto");
1287 	spdk_json_write_object_begin(w);
1288 	spdk_json_write_named_string(w, "base_bdev_name", spdk_bdev_get_name(crypto_bdev->base_bdev));
1289 	spdk_json_write_named_string(w, "name", spdk_bdev_get_name(&crypto_bdev->crypto_bdev));
1290 	spdk_json_write_named_string(w, "crypto_pmd", crypto_bdev->drv_name);
1291 	spdk_json_write_named_string(w, "key", crypto_bdev->key);
1292 	if (strcmp(crypto_bdev->cipher, AES_XTS) == 0) {
1293 		spdk_json_write_named_string(w, "key2", crypto_bdev->key);
1294 	}
1295 	spdk_json_write_named_string(w, "cipher", crypto_bdev->cipher);
1296 	spdk_json_write_object_end(w);
1297 	return 0;
1298 }
1299 
1300 static int
1301 vbdev_crypto_config_json(struct spdk_json_write_ctx *w)
1302 {
1303 	struct vbdev_crypto *crypto_bdev;
1304 
1305 	TAILQ_FOREACH(crypto_bdev, &g_vbdev_crypto, link) {
1306 		spdk_json_write_object_begin(w);
1307 		spdk_json_write_named_string(w, "method", "bdev_crypto_create");
1308 		spdk_json_write_named_object_begin(w, "params");
1309 		spdk_json_write_named_string(w, "base_bdev_name", spdk_bdev_get_name(crypto_bdev->base_bdev));
1310 		spdk_json_write_named_string(w, "name", spdk_bdev_get_name(&crypto_bdev->crypto_bdev));
1311 		spdk_json_write_named_string(w, "crypto_pmd", crypto_bdev->drv_name);
1312 		spdk_json_write_named_string(w, "key", crypto_bdev->key);
1313 		if (strcmp(crypto_bdev->cipher, AES_XTS) == 0) {
1314 			spdk_json_write_named_string(w, "key2", crypto_bdev->key);
1315 		}
1316 		spdk_json_write_named_string(w, "cipher", crypto_bdev->cipher);
1317 		spdk_json_write_object_end(w);
1318 		spdk_json_write_object_end(w);
1319 	}
1320 	return 0;
1321 }
1322 
1323 /* Helper function for the channel creation callback. */
1324 static void
1325 _assign_device_qp(struct vbdev_crypto *crypto_bdev, struct device_qp *device_qp,
1326 		  struct crypto_io_channel *crypto_ch)
1327 {
1328 	pthread_mutex_lock(&g_device_qp_lock);
1329 	if (strcmp(crypto_bdev->drv_name, QAT) == 0) {
1330 		/* For some QAT devices, the optimal qp to use is every 32nd as this spreads the
1331 		 * workload out over the multiple virtual functions in the device. For the devices
1332 		 * where this isn't the case, it doesn't hurt.
1333 		 */
1334 		TAILQ_FOREACH(device_qp, &g_device_qp_qat, link) {
1335 			if (device_qp->index != g_next_qat_index) {
1336 				continue;
1337 			}
1338 			if (device_qp->in_use == false) {
1339 				crypto_ch->device_qp = device_qp;
1340 				device_qp->in_use = true;
1341 				g_next_qat_index = (g_next_qat_index + QAT_VF_SPREAD) % g_qat_total_qp;
1342 				break;
1343 			} else {
1344 				/* if the preferred index is used, skip to the next one in this set. */
1345 				g_next_qat_index = (g_next_qat_index + 1) % g_qat_total_qp;
1346 			}
1347 		}
1348 	} else if (strcmp(crypto_bdev->drv_name, AESNI_MB) == 0) {
1349 		TAILQ_FOREACH(device_qp, &g_device_qp_aesni_mb, link) {
1350 			if (device_qp->in_use == false) {
1351 				crypto_ch->device_qp = device_qp;
1352 				device_qp->in_use = true;
1353 				break;
1354 			}
1355 		}
1356 	}
1357 	pthread_mutex_unlock(&g_device_qp_lock);
1358 }
1359 
1360 /* We provide this callback for the SPDK channel code to create a channel using
1361  * the channel struct we provided in our module get_io_channel() entry point. Here
1362  * we get and save off an underlying base channel of the device below us so that
1363  * we can communicate with the base bdev on a per channel basis. We also register the
1364  * poller used to complete crypto operations from the device.
1365  */
1366 static int
1367 crypto_bdev_ch_create_cb(void *io_device, void *ctx_buf)
1368 {
1369 	struct crypto_io_channel *crypto_ch = ctx_buf;
1370 	struct vbdev_crypto *crypto_bdev = io_device;
1371 	struct device_qp *device_qp = NULL;
1372 
1373 	crypto_ch->base_ch = spdk_bdev_get_io_channel(crypto_bdev->base_desc);
1374 	crypto_ch->poller = SPDK_POLLER_REGISTER(crypto_dev_poller, crypto_ch, 0);
1375 	crypto_ch->device_qp = NULL;
1376 
1377 	/* Assign a device/qp combination that is unique per channel per PMD. */
1378 	_assign_device_qp(crypto_bdev, device_qp, crypto_ch);
1379 	assert(crypto_ch->device_qp);
1380 
1381 	/* We use this queue to track outstanding IO in our layer. */
1382 	TAILQ_INIT(&crypto_ch->pending_cry_ios);
1383 
1384 	/* We use this to queue up crypto ops when the device is busy. */
1385 	TAILQ_INIT(&crypto_ch->queued_cry_ops);
1386 
1387 	return 0;
1388 }
1389 
1390 /* We provide this callback for the SPDK channel code to destroy a channel
1391  * created with our create callback. We just need to undo anything we did
1392  * when we created.
1393  */
1394 static void
1395 crypto_bdev_ch_destroy_cb(void *io_device, void *ctx_buf)
1396 {
1397 	struct crypto_io_channel *crypto_ch = ctx_buf;
1398 
1399 	pthread_mutex_lock(&g_device_qp_lock);
1400 	crypto_ch->device_qp->in_use = false;
1401 	pthread_mutex_unlock(&g_device_qp_lock);
1402 
1403 	spdk_poller_unregister(&crypto_ch->poller);
1404 	spdk_put_io_channel(crypto_ch->base_ch);
1405 }
1406 
1407 /* Create the association from the bdev and vbdev name and insert
1408  * on the global list. */
1409 static int
1410 vbdev_crypto_insert_name(const char *bdev_name, const char *vbdev_name,
1411 			 const char *crypto_pmd, const char *key,
1412 			 const char *cipher, const char *key2)
1413 {
1414 	struct bdev_names *name;
1415 	int rc, j;
1416 	bool found = false;
1417 
1418 	TAILQ_FOREACH(name, &g_bdev_names, link) {
1419 		if (strcmp(vbdev_name, name->vbdev_name) == 0) {
1420 			SPDK_ERRLOG("crypto bdev %s already exists\n", vbdev_name);
1421 			return -EEXIST;
1422 		}
1423 	}
1424 
1425 	name = calloc(1, sizeof(struct bdev_names));
1426 	if (!name) {
1427 		SPDK_ERRLOG("could not allocate bdev_names\n");
1428 		return -ENOMEM;
1429 	}
1430 
1431 	name->bdev_name = strdup(bdev_name);
1432 	if (!name->bdev_name) {
1433 		SPDK_ERRLOG("could not allocate name->bdev_name\n");
1434 		rc = -ENOMEM;
1435 		goto error_alloc_bname;
1436 	}
1437 
1438 	name->vbdev_name = strdup(vbdev_name);
1439 	if (!name->vbdev_name) {
1440 		SPDK_ERRLOG("could not allocate name->vbdev_name\n");
1441 		rc = -ENOMEM;
1442 		goto error_alloc_vname;
1443 	}
1444 
1445 	name->drv_name = strdup(crypto_pmd);
1446 	if (!name->drv_name) {
1447 		SPDK_ERRLOG("could not allocate name->drv_name\n");
1448 		rc = -ENOMEM;
1449 		goto error_alloc_dname;
1450 	}
1451 	for (j = 0; j < MAX_NUM_DRV_TYPES ; j++) {
1452 		if (strcmp(crypto_pmd, g_driver_names[j]) == 0) {
1453 			found = true;
1454 			break;
1455 		}
1456 	}
1457 	if (!found) {
1458 		SPDK_ERRLOG("invalid crypto PMD type %s\n", crypto_pmd);
1459 		rc = -EINVAL;
1460 		goto error_invalid_pmd;
1461 	}
1462 
1463 	name->key = strdup(key);
1464 	if (!name->key) {
1465 		SPDK_ERRLOG("could not allocate name->key\n");
1466 		rc = -ENOMEM;
1467 		goto error_alloc_key;
1468 	}
1469 	if (strnlen(name->key, (AES_CBC_KEY_LENGTH + 1)) != AES_CBC_KEY_LENGTH) {
1470 		SPDK_ERRLOG("invalid AES_CBC key length\n");
1471 		rc = -EINVAL;
1472 		goto error_invalid_key;
1473 	}
1474 
1475 	if (strncmp(cipher, AES_XTS, sizeof(AES_XTS)) == 0) {
1476 		/* To please scan-build, input validation makes sure we can't
1477 		 * have this cipher without providing a key2.
1478 		 */
1479 		name->cipher = AES_XTS;
1480 		assert(key2);
1481 		if (strnlen(key2, (AES_XTS_KEY_LENGTH + 1)) != AES_XTS_KEY_LENGTH) {
1482 			SPDK_ERRLOG("invalid AES_XTS key length\n");
1483 			rc = -EINVAL;
1484 			goto error_invalid_key2;
1485 		}
1486 
1487 		name->key2 = strdup(key2);
1488 		if (!name->key2) {
1489 			SPDK_ERRLOG("could not allocate name->key2\n");
1490 			rc = -ENOMEM;
1491 			goto error_alloc_key2;
1492 		}
1493 	} else if (strncmp(cipher, AES_CBC, sizeof(AES_CBC)) == 0) {
1494 		name->cipher = AES_CBC;
1495 	} else {
1496 		SPDK_ERRLOG("Invalid cipher: %s\n", cipher);
1497 		rc = -EINVAL;
1498 		goto error_cipher;
1499 	}
1500 
1501 	TAILQ_INSERT_TAIL(&g_bdev_names, name, link);
1502 
1503 	return 0;
1504 
1505 	/* Error cleanup paths. */
1506 error_cipher:
1507 	free(name->key2);
1508 error_alloc_key2:
1509 error_invalid_key2:
1510 error_invalid_key:
1511 	free(name->key);
1512 error_alloc_key:
1513 error_invalid_pmd:
1514 	free(name->drv_name);
1515 error_alloc_dname:
1516 	free(name->vbdev_name);
1517 error_alloc_vname:
1518 	free(name->bdev_name);
1519 error_alloc_bname:
1520 	free(name);
1521 	return rc;
1522 }
1523 
1524 /* RPC entry point for crypto creation. */
1525 int
1526 create_crypto_disk(const char *bdev_name, const char *vbdev_name,
1527 		   const char *crypto_pmd, const char *key,
1528 		   const char *cipher, const char *key2)
1529 {
1530 	int rc;
1531 
1532 	rc = vbdev_crypto_insert_name(bdev_name, vbdev_name, crypto_pmd, key, cipher, key2);
1533 	if (rc) {
1534 		return rc;
1535 	}
1536 
1537 	rc = vbdev_crypto_claim(bdev_name);
1538 	if (rc == -ENODEV) {
1539 		SPDK_NOTICELOG("vbdev creation deferred pending base bdev arrival\n");
1540 		rc = 0;
1541 	}
1542 
1543 	return rc;
1544 }
1545 
1546 /* Called at driver init time, parses config file to prepare for examine calls,
1547  * also fully initializes the crypto drivers.
1548  */
1549 static int
1550 vbdev_crypto_init(void)
1551 {
1552 	int rc = 0;
1553 
1554 	/* Fully configure both SW and HW drivers. */
1555 	rc = vbdev_crypto_init_crypto_drivers();
1556 	if (rc) {
1557 		SPDK_ERRLOG("Error setting up crypto devices\n");
1558 	}
1559 
1560 	return rc;
1561 }
1562 
1563 /* Called when the entire module is being torn down. */
1564 static void
1565 vbdev_crypto_finish(void)
1566 {
1567 	struct bdev_names *name;
1568 	struct vbdev_dev *device;
1569 	struct device_qp *dev_qp;
1570 	unsigned i;
1571 	int rc;
1572 
1573 	while ((name = TAILQ_FIRST(&g_bdev_names))) {
1574 		TAILQ_REMOVE(&g_bdev_names, name, link);
1575 		free(name->drv_name);
1576 		free(name->key);
1577 		free(name->bdev_name);
1578 		free(name->vbdev_name);
1579 		free(name->key2);
1580 		free(name);
1581 	}
1582 
1583 	while ((device = TAILQ_FIRST(&g_vbdev_devs))) {
1584 		struct rte_cryptodev *rte_dev;
1585 
1586 		TAILQ_REMOVE(&g_vbdev_devs, device, link);
1587 		rte_cryptodev_stop(device->cdev_id);
1588 
1589 		assert(device->cdev_id < RTE_CRYPTO_MAX_DEVS);
1590 		rte_dev = &rte_cryptodevs[device->cdev_id];
1591 
1592 		if (rte_dev->dev_ops->queue_pair_release != NULL) {
1593 			for (i = 0; i < device->cdev_info.max_nb_queue_pairs; i++) {
1594 				rte_dev->dev_ops->queue_pair_release(rte_dev, i);
1595 			}
1596 		}
1597 		free(device);
1598 	}
1599 	rc = rte_vdev_uninit(AESNI_MB);
1600 	if (rc) {
1601 		SPDK_ERRLOG("%d from rte_vdev_uninit\n", rc);
1602 	}
1603 
1604 	while ((dev_qp = TAILQ_FIRST(&g_device_qp_qat))) {
1605 		TAILQ_REMOVE(&g_device_qp_qat, dev_qp, link);
1606 		free(dev_qp);
1607 	}
1608 
1609 	while ((dev_qp = TAILQ_FIRST(&g_device_qp_aesni_mb))) {
1610 		TAILQ_REMOVE(&g_device_qp_aesni_mb, dev_qp, link);
1611 		free(dev_qp);
1612 	}
1613 
1614 	rte_mempool_free(g_crypto_op_mp);
1615 	spdk_mempool_free(g_mbuf_mp);
1616 	rte_mempool_free(g_session_mp);
1617 	if (g_session_mp_priv != NULL) {
1618 		rte_mempool_free(g_session_mp_priv);
1619 	}
1620 }
1621 
1622 /* During init we'll be asked how much memory we'd like passed to us
1623  * in bev_io structures as context. Here's where we specify how
1624  * much context we want per IO.
1625  */
1626 static int
1627 vbdev_crypto_get_ctx_size(void)
1628 {
1629 	return sizeof(struct crypto_bdev_io);
1630 }
1631 
1632 static void
1633 vbdev_crypto_base_bdev_hotremove_cb(struct spdk_bdev *bdev_find)
1634 {
1635 	struct vbdev_crypto *crypto_bdev, *tmp;
1636 
1637 	TAILQ_FOREACH_SAFE(crypto_bdev, &g_vbdev_crypto, link, tmp) {
1638 		if (bdev_find == crypto_bdev->base_bdev) {
1639 			spdk_bdev_unregister(&crypto_bdev->crypto_bdev, NULL, NULL);
1640 		}
1641 	}
1642 }
1643 
1644 /* Called when the underlying base bdev triggers asynchronous event such as bdev removal. */
1645 static void
1646 vbdev_crypto_base_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev,
1647 				void *event_ctx)
1648 {
1649 	switch (type) {
1650 	case SPDK_BDEV_EVENT_REMOVE:
1651 		vbdev_crypto_base_bdev_hotremove_cb(bdev);
1652 		break;
1653 	default:
1654 		SPDK_NOTICELOG("Unsupported bdev event: type %d\n", type);
1655 		break;
1656 	}
1657 }
1658 
1659 static void
1660 vbdev_crypto_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
1661 {
1662 	/* No config per bdev needed */
1663 }
1664 
1665 /* When we register our bdev this is how we specify our entry points. */
1666 static const struct spdk_bdev_fn_table vbdev_crypto_fn_table = {
1667 	.destruct		= vbdev_crypto_destruct,
1668 	.submit_request		= vbdev_crypto_submit_request,
1669 	.io_type_supported	= vbdev_crypto_io_type_supported,
1670 	.get_io_channel		= vbdev_crypto_get_io_channel,
1671 	.dump_info_json		= vbdev_crypto_dump_info_json,
1672 	.write_config_json	= vbdev_crypto_write_config_json
1673 };
1674 
1675 static struct spdk_bdev_module crypto_if = {
1676 	.name = "crypto",
1677 	.module_init = vbdev_crypto_init,
1678 	.get_ctx_size = vbdev_crypto_get_ctx_size,
1679 	.examine_config = vbdev_crypto_examine,
1680 	.module_fini = vbdev_crypto_finish,
1681 	.config_json = vbdev_crypto_config_json
1682 };
1683 
1684 SPDK_BDEV_MODULE_REGISTER(crypto, &crypto_if)
1685 
1686 static int
1687 vbdev_crypto_claim(const char *bdev_name)
1688 {
1689 	struct bdev_names *name;
1690 	struct vbdev_crypto *vbdev;
1691 	struct vbdev_dev *device;
1692 	struct spdk_bdev *bdev;
1693 	bool found = false;
1694 	int rc = 0;
1695 
1696 	if (g_number_of_claimed_volumes >= MAX_CRYPTO_VOLUMES) {
1697 		SPDK_DEBUGLOG(vbdev_crypto, "Reached max number of claimed volumes\n");
1698 		rc = -EINVAL;
1699 		goto error_vbdev_alloc;
1700 	}
1701 	g_number_of_claimed_volumes++;
1702 
1703 	/* Check our list of names from config versus this bdev and if
1704 	 * there's a match, create the crypto_bdev & bdev accordingly.
1705 	 */
1706 	TAILQ_FOREACH(name, &g_bdev_names, link) {
1707 		if (strcmp(name->bdev_name, bdev_name) != 0) {
1708 			continue;
1709 		}
1710 		SPDK_DEBUGLOG(vbdev_crypto, "Match on %s\n", bdev_name);
1711 
1712 		vbdev = calloc(1, sizeof(struct vbdev_crypto));
1713 		if (!vbdev) {
1714 			SPDK_ERRLOG("could not allocate crypto_bdev\n");
1715 			rc = -ENOMEM;
1716 			goto error_vbdev_alloc;
1717 		}
1718 
1719 		vbdev->crypto_bdev.name = strdup(name->vbdev_name);
1720 		if (!vbdev->crypto_bdev.name) {
1721 			SPDK_ERRLOG("could not allocate crypto_bdev name\n");
1722 			rc = -ENOMEM;
1723 			goto error_bdev_name;
1724 		}
1725 
1726 		vbdev->key = strdup(name->key);
1727 		if (!vbdev->key) {
1728 			SPDK_ERRLOG("could not allocate crypto_bdev key\n");
1729 			rc = -ENOMEM;
1730 			goto error_alloc_key;
1731 		}
1732 
1733 		if (name->key2) {
1734 			vbdev->key2 = strdup(name->key2);
1735 			if (!vbdev->key2) {
1736 				SPDK_ERRLOG("could not allocate crypto_bdev key2\n");
1737 				rc = -ENOMEM;
1738 				goto error_alloc_key2;
1739 			}
1740 		}
1741 
1742 		vbdev->drv_name = strdup(name->drv_name);
1743 		if (!vbdev->drv_name) {
1744 			SPDK_ERRLOG("could not allocate crypto_bdev drv_name\n");
1745 			rc = -ENOMEM;
1746 			goto error_drv_name;
1747 		}
1748 
1749 		vbdev->crypto_bdev.product_name = "crypto";
1750 
1751 		rc = spdk_bdev_open_ext(bdev_name, true, vbdev_crypto_base_bdev_event_cb,
1752 					NULL, &vbdev->base_desc);
1753 		if (rc) {
1754 			if (rc != -ENODEV) {
1755 				SPDK_ERRLOG("could not open bdev %s\n", bdev_name);
1756 			}
1757 			goto error_open;
1758 		}
1759 
1760 		bdev = spdk_bdev_desc_get_bdev(vbdev->base_desc);
1761 		vbdev->base_bdev = bdev;
1762 
1763 		vbdev->crypto_bdev.write_cache = bdev->write_cache;
1764 		vbdev->cipher = AES_CBC;
1765 		if (strcmp(vbdev->drv_name, QAT) == 0) {
1766 			vbdev->crypto_bdev.required_alignment =
1767 				spdk_max(spdk_u32log2(bdev->blocklen), bdev->required_alignment);
1768 			SPDK_NOTICELOG("QAT in use: Required alignment set to %u\n",
1769 				       vbdev->crypto_bdev.required_alignment);
1770 			if (strcmp(name->cipher, AES_CBC) == 0) {
1771 				SPDK_NOTICELOG("QAT using cipher: AES_CBC\n");
1772 			} else {
1773 				SPDK_NOTICELOG("QAT using cipher: AES_XTS\n");
1774 				vbdev->cipher = AES_XTS;
1775 				/* DPDK expects they keys to be concatenated together. */
1776 				vbdev->xts_key = calloc(1, (AES_XTS_KEY_LENGTH * 2) + 1);
1777 				if (vbdev->xts_key == NULL) {
1778 					SPDK_ERRLOG("could not allocate memory for XTS key\n");
1779 					rc = -ENOMEM;
1780 					goto error_xts_key;
1781 				}
1782 				memcpy(vbdev->xts_key, vbdev->key, AES_XTS_KEY_LENGTH);
1783 				assert(name->key2);
1784 				memcpy(vbdev->xts_key + AES_XTS_KEY_LENGTH, name->key2, AES_XTS_KEY_LENGTH + 1);
1785 			}
1786 		} else {
1787 			vbdev->crypto_bdev.required_alignment = bdev->required_alignment;
1788 		}
1789 		/* Note: CRYPTO_MAX_IO is in units of bytes, optimal_io_boundary is
1790 		 * in units of blocks.
1791 		 */
1792 		if (bdev->optimal_io_boundary > 0) {
1793 			vbdev->crypto_bdev.optimal_io_boundary =
1794 				spdk_min((CRYPTO_MAX_IO / bdev->blocklen), bdev->optimal_io_boundary);
1795 		} else {
1796 			vbdev->crypto_bdev.optimal_io_boundary = (CRYPTO_MAX_IO / bdev->blocklen);
1797 		}
1798 		vbdev->crypto_bdev.split_on_optimal_io_boundary = true;
1799 		vbdev->crypto_bdev.blocklen = bdev->blocklen;
1800 		vbdev->crypto_bdev.blockcnt = bdev->blockcnt;
1801 
1802 		/* This is the context that is passed to us when the bdev
1803 		 * layer calls in so we'll save our crypto_bdev node here.
1804 		 */
1805 		vbdev->crypto_bdev.ctxt = vbdev;
1806 		vbdev->crypto_bdev.fn_table = &vbdev_crypto_fn_table;
1807 		vbdev->crypto_bdev.module = &crypto_if;
1808 		TAILQ_INSERT_TAIL(&g_vbdev_crypto, vbdev, link);
1809 
1810 		spdk_io_device_register(vbdev, crypto_bdev_ch_create_cb, crypto_bdev_ch_destroy_cb,
1811 					sizeof(struct crypto_io_channel), vbdev->crypto_bdev.name);
1812 
1813 		/* Save the thread where the base device is opened */
1814 		vbdev->thread = spdk_get_thread();
1815 
1816 		rc = spdk_bdev_module_claim_bdev(bdev, vbdev->base_desc, vbdev->crypto_bdev.module);
1817 		if (rc) {
1818 			SPDK_ERRLOG("could not claim bdev %s\n", spdk_bdev_get_name(bdev));
1819 			goto error_claim;
1820 		}
1821 
1822 		/* To init the session we have to get the cryptoDev device ID for this vbdev */
1823 		TAILQ_FOREACH(device, &g_vbdev_devs, link) {
1824 			if (strcmp(device->cdev_info.driver_name, vbdev->drv_name) == 0) {
1825 				found = true;
1826 				break;
1827 			}
1828 		}
1829 		if (found == false) {
1830 			SPDK_ERRLOG("ERROR can't match crypto device driver to crypto vbdev!\n");
1831 			rc = -EINVAL;
1832 			goto error_cant_find_devid;
1833 		}
1834 
1835 		/* Get sessions. */
1836 		vbdev->session_encrypt = rte_cryptodev_sym_session_create(g_session_mp);
1837 		if (NULL == vbdev->session_encrypt) {
1838 			SPDK_ERRLOG("ERROR trying to create crypto session!\n");
1839 			rc = -EINVAL;
1840 			goto error_session_en_create;
1841 		}
1842 
1843 		vbdev->session_decrypt = rte_cryptodev_sym_session_create(g_session_mp);
1844 		if (NULL == vbdev->session_decrypt) {
1845 			SPDK_ERRLOG("ERROR trying to create crypto session!\n");
1846 			rc = -EINVAL;
1847 			goto error_session_de_create;
1848 		}
1849 
1850 		/* Init our per vbdev xform with the desired cipher options. */
1851 		vbdev->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
1852 		vbdev->cipher_xform.cipher.iv.offset = IV_OFFSET;
1853 		if (strcmp(name->cipher, AES_CBC) == 0) {
1854 			vbdev->cipher_xform.cipher.key.data = vbdev->key;
1855 			vbdev->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC;
1856 			vbdev->cipher_xform.cipher.key.length = AES_CBC_KEY_LENGTH;
1857 		} else {
1858 			vbdev->cipher_xform.cipher.key.data = vbdev->xts_key;
1859 			vbdev->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_XTS;
1860 			vbdev->cipher_xform.cipher.key.length = AES_XTS_KEY_LENGTH * 2;
1861 		}
1862 		vbdev->cipher_xform.cipher.iv.length = AES_CBC_IV_LENGTH;
1863 
1864 		vbdev->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
1865 		rc = rte_cryptodev_sym_session_init(device->cdev_id, vbdev->session_encrypt,
1866 						    &vbdev->cipher_xform,
1867 						    g_session_mp_priv ? g_session_mp_priv : g_session_mp);
1868 		if (rc < 0) {
1869 			SPDK_ERRLOG("ERROR trying to init encrypt session!\n");
1870 			rc = -EINVAL;
1871 			goto error_session_init;
1872 		}
1873 
1874 		vbdev->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_DECRYPT;
1875 		rc = rte_cryptodev_sym_session_init(device->cdev_id, vbdev->session_decrypt,
1876 						    &vbdev->cipher_xform,
1877 						    g_session_mp_priv ? g_session_mp_priv : g_session_mp);
1878 		if (rc < 0) {
1879 			SPDK_ERRLOG("ERROR trying to init decrypt session!\n");
1880 			rc = -EINVAL;
1881 			goto error_session_init;
1882 		}
1883 
1884 		rc = spdk_bdev_register(&vbdev->crypto_bdev);
1885 		if (rc < 0) {
1886 			SPDK_ERRLOG("ERROR trying to register bdev\n");
1887 			rc = -EINVAL;
1888 			goto error_bdev_register;
1889 		}
1890 		SPDK_DEBUGLOG(vbdev_crypto, "registered io_device and virtual bdev for: %s\n",
1891 			      name->vbdev_name);
1892 		break;
1893 	}
1894 
1895 	return rc;
1896 
1897 	/* Error cleanup paths. */
1898 error_bdev_register:
1899 error_session_init:
1900 	rte_cryptodev_sym_session_free(vbdev->session_decrypt);
1901 error_session_de_create:
1902 	rte_cryptodev_sym_session_free(vbdev->session_encrypt);
1903 error_session_en_create:
1904 error_cant_find_devid:
1905 error_claim:
1906 	spdk_bdev_close(vbdev->base_desc);
1907 	TAILQ_REMOVE(&g_vbdev_crypto, vbdev, link);
1908 	spdk_io_device_unregister(vbdev, NULL);
1909 	free(vbdev->xts_key);
1910 error_xts_key:
1911 error_open:
1912 	free(vbdev->drv_name);
1913 error_drv_name:
1914 	free(vbdev->key2);
1915 error_alloc_key2:
1916 	free(vbdev->key);
1917 error_alloc_key:
1918 	free(vbdev->crypto_bdev.name);
1919 error_bdev_name:
1920 	free(vbdev);
1921 error_vbdev_alloc:
1922 	g_number_of_claimed_volumes--;
1923 	return rc;
1924 }
1925 
1926 /* RPC entry for deleting a crypto vbdev. */
1927 void
1928 delete_crypto_disk(struct spdk_bdev *bdev, spdk_delete_crypto_complete cb_fn,
1929 		   void *cb_arg)
1930 {
1931 	struct bdev_names *name;
1932 
1933 	if (!bdev || bdev->module != &crypto_if) {
1934 		cb_fn(cb_arg, -ENODEV);
1935 		return;
1936 	}
1937 
1938 	/* Remove the association (vbdev, bdev) from g_bdev_names. This is required so that the
1939 	 * vbdev does not get re-created if the same bdev is constructed at some other time,
1940 	 * unless the underlying bdev was hot-removed.
1941 	 */
1942 	TAILQ_FOREACH(name, &g_bdev_names, link) {
1943 		if (strcmp(name->vbdev_name, bdev->name) == 0) {
1944 			TAILQ_REMOVE(&g_bdev_names, name, link);
1945 			free(name->bdev_name);
1946 			free(name->vbdev_name);
1947 			free(name->drv_name);
1948 			free(name->key);
1949 			free(name->key2);
1950 			free(name);
1951 			break;
1952 		}
1953 	}
1954 
1955 	/* Additional cleanup happens in the destruct callback. */
1956 	spdk_bdev_unregister(bdev, cb_fn, cb_arg);
1957 }
1958 
1959 /* Because we specified this function in our crypto bdev function table when we
1960  * registered our crypto bdev, we'll get this call anytime a new bdev shows up.
1961  * Here we need to decide if we care about it and if so what to do. We
1962  * parsed the config file at init so we check the new bdev against the list
1963  * we built up at that time and if the user configured us to attach to this
1964  * bdev, here's where we do it.
1965  */
1966 static void
1967 vbdev_crypto_examine(struct spdk_bdev *bdev)
1968 {
1969 	vbdev_crypto_claim(spdk_bdev_get_name(bdev));
1970 	spdk_bdev_module_examine_done(&crypto_if);
1971 }
1972 
1973 SPDK_LOG_REGISTER_COMPONENT(vbdev_crypto)
1974