xref: /spdk/module/bdev/crypto/vbdev_crypto.c (revision 9889ab2dc80e40dae92dcef361d53dcba722043d)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUcryptoION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "vbdev_crypto.h"
35 
36 #include "spdk/env.h"
37 #include "spdk/conf.h"
38 #include "spdk/endian.h"
39 #include "spdk/io_channel.h"
40 #include "spdk/bdev_module.h"
41 #include "spdk_internal/log.h"
42 
43 #include <rte_config.h>
44 #include <rte_version.h>
45 #include <rte_bus_vdev.h>
46 #include <rte_crypto.h>
47 #include <rte_cryptodev.h>
48 #include <rte_cryptodev_pmd.h>
49 
50 /* To add support for new device types, follow the examples of the following...
51  * Note that the string names are defined by the DPDK PMD in question so be
52  * sure to use the exact names.
53  */
54 #define MAX_NUM_DRV_TYPES 2
55 #define AESNI_MB "crypto_aesni_mb"
56 #define QAT "crypto_qat"
57 const char *g_driver_names[MAX_NUM_DRV_TYPES] = { AESNI_MB, QAT };
58 
59 /* Global list of available crypto devices. */
60 struct vbdev_dev {
61 	struct rte_cryptodev_info	cdev_info;	/* includes device friendly name */
62 	uint8_t				cdev_id;	/* identifier for the device */
63 	TAILQ_ENTRY(vbdev_dev)		link;
64 };
65 static TAILQ_HEAD(, vbdev_dev) g_vbdev_devs = TAILQ_HEAD_INITIALIZER(g_vbdev_devs);
66 
67 /* Global list and lock for unique device/queue pair combos */
68 struct device_qp {
69 	struct vbdev_dev		*device;	/* ptr to crypto device */
70 	uint8_t				qp;		/* queue pair for this node */
71 	bool				in_use;		/* whether this node is in use or not */
72 	TAILQ_ENTRY(device_qp)		link;
73 };
74 static TAILQ_HEAD(, device_qp) g_device_qp = TAILQ_HEAD_INITIALIZER(g_device_qp);
75 static pthread_mutex_t g_device_qp_lock = PTHREAD_MUTEX_INITIALIZER;
76 
77 
78 /* In order to limit the number of resources we need to do one crypto
79  * operation per LBA (we use LBA as IV), we tell the bdev layer that
80  * our max IO size is something reasonable. Units here are in bytes.
81  */
82 #define CRYPTO_MAX_IO		(64 * 1024)
83 
84 /* This controls how many ops will be dequeued from the crypto driver in one run
85  * of the poller. It is mainly a performance knob as it effectively determines how
86  * much work the poller has to do.  However even that can vary between crypto drivers
87  * as the AESNI_MB driver for example does all the crypto work on dequeue whereas the
88  * QAT driver just dequeues what has been completed already.
89  */
90 #define MAX_DEQUEUE_BURST_SIZE	64
91 
92 /* When enqueueing, we need to supply the crypto driver with an array of pointers to
93  * operation structs. As each of these can be max 512B, we can adjust the CRYPTO_MAX_IO
94  * value in conjunction with the other defines to make sure we're not using crazy amounts
95  * of memory. All of these numbers can and probably should be adjusted based on the
96  * workload. By default we'll use the worst case (smallest) block size for the
97  * minimum number of array entries. As an example, a CRYPTO_MAX_IO size of 64K with 512B
98  * blocks would give us an enqueue array size of 128.
99  */
100 #define MAX_ENQUEUE_ARRAY_SIZE (CRYPTO_MAX_IO / 512)
101 
102 /* The number of MBUFS we need must be a power of two and to support other small IOs
103  * in addition to the limits mentioned above, we go to the next power of two. It is
104  * big number because it is one mempool for source and destination mbufs. It may
105  * need to be bigger to support multiple crypto drivers at once.
106  */
107 #define NUM_MBUFS		32768
108 #define POOL_CACHE_SIZE		256
109 #define NUM_SESSIONS		2
110 #define SESS_MEMPOOL_CACHE_SIZE 0
111 
112 /* This is the max number of IOs we can supply to any crypto device QP at one time.
113  * It can vary between drivers.
114  */
115 #define CRYPTO_QP_DESCRIPTORS	2048
116 
117 /* Specific to AES_CBC. */
118 #define AES_CBC_IV_LENGTH	16
119 #define AES_CBC_KEY_LENGTH	16
120 
121 /* Common for suported devices. */
122 #define IV_OFFSET            (sizeof(struct rte_crypto_op) + \
123 				sizeof(struct rte_crypto_sym_op))
124 
125 static void _complete_internal_io(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
126 static void _complete_internal_read(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
127 static void _complete_internal_write(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
128 static void vbdev_crypto_examine(struct spdk_bdev *bdev);
129 static int vbdev_crypto_claim(struct spdk_bdev *bdev);
130 static void vbdev_crypto_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io);
131 
132 /* List of crypto_bdev names and their base bdevs via configuration file. */
133 struct bdev_names {
134 	char			*vbdev_name;	/* name of the vbdev to create */
135 	char			*bdev_name;	/* base bdev name */
136 
137 	/* Note, for dev/test we allow use of key in the config file, for production
138 	 * use, you must use an RPC to specify the key for security reasons.
139 	 */
140 	uint8_t			*key;		/* key per bdev */
141 	char			*drv_name;	/* name of the crypto device driver */
142 	TAILQ_ENTRY(bdev_names)	link;
143 };
144 static TAILQ_HEAD(, bdev_names) g_bdev_names = TAILQ_HEAD_INITIALIZER(g_bdev_names);
145 
146 /* List of virtual bdevs and associated info for each. We keep the device friendly name here even
147  * though its also in the device struct because we use it early on.
148  */
149 struct vbdev_crypto {
150 	struct spdk_bdev		*base_bdev;		/* the thing we're attaching to */
151 	struct spdk_bdev_desc		*base_desc;		/* its descriptor we get from open */
152 	struct spdk_bdev		crypto_bdev;		/* the crypto virtual bdev */
153 	uint8_t				*key;			/* key per bdev */
154 	char				*drv_name;		/* name of the crypto device driver */
155 	struct rte_cryptodev_sym_session *session_encrypt;	/* encryption session for this bdev */
156 	struct rte_cryptodev_sym_session *session_decrypt;	/* decryption session for this bdev */
157 	struct rte_crypto_sym_xform	cipher_xform;		/* crypto control struct for this bdev */
158 	TAILQ_ENTRY(vbdev_crypto)	link;
159 };
160 static TAILQ_HEAD(, vbdev_crypto) g_vbdev_crypto = TAILQ_HEAD_INITIALIZER(g_vbdev_crypto);
161 
162 /* Shared mempools between all devices on this system */
163 static struct rte_mempool *g_session_mp = NULL;
164 static struct rte_mempool *g_session_mp_priv = NULL;
165 static struct spdk_mempool *g_mbuf_mp = NULL;		/* mbuf mempool */
166 static struct rte_mempool *g_crypto_op_mp = NULL;	/* crypto operations, must be rte* mempool */
167 
168 /* The crypto vbdev channel struct. It is allocated and freed on my behalf by the io channel code.
169  * We store things in here that are needed on per thread basis like the base_channel for this thread,
170  * and the poller for this thread.
171  */
172 struct crypto_io_channel {
173 	struct spdk_io_channel		*base_ch;		/* IO channel of base device */
174 	struct spdk_poller		*poller;		/* completion poller */
175 	struct device_qp		*device_qp;		/* unique device/qp combination for this channel */
176 	TAILQ_HEAD(, spdk_bdev_io)	pending_cry_ios;	/* outstanding operations to the crypto device */
177 	struct spdk_io_channel_iter	*iter;			/* used with for_each_channel in reset */
178 };
179 
180 /* This is the crypto per IO context that the bdev layer allocates for us opaquely and attaches to
181  * each IO for us.
182  */
183 struct crypto_bdev_io {
184 	int cryop_cnt_remaining;			/* counter used when completing crypto ops */
185 	struct crypto_io_channel *crypto_ch;		/* need to store for crypto completion handling */
186 	struct vbdev_crypto *crypto_bdev;		/* the crypto node struct associated with this IO */
187 	struct spdk_bdev_io *orig_io;			/* the original IO */
188 	struct spdk_bdev_io *read_io;			/* the read IO we issued */
189 
190 	/* Used for the single contiguous buffer that serves as the crypto destination target for writes */
191 	uint64_t cry_num_blocks;			/* num of blocks for the contiguous buffer */
192 	uint64_t cry_offset_blocks;			/* block offset on media */
193 	struct iovec cry_iov;				/* iov representing contig write buffer */
194 
195 	/* for bdev_io_wait */
196 	struct spdk_bdev_io_wait_entry bdev_io_wait;
197 	struct spdk_io_channel *ch;
198 };
199 
200 /* Called by vbdev_crypto_init_crypto_drivers() to init each discovered crypto device */
201 static int
202 create_vbdev_dev(uint8_t index, uint16_t num_lcores)
203 {
204 	struct vbdev_dev *device;
205 	uint8_t j, cdev_id, cdrv_id;
206 	struct device_qp *dev_qp;
207 	struct device_qp *tmp_qp;
208 	int rc;
209 
210 	device = calloc(1, sizeof(struct vbdev_dev));
211 	if (!device) {
212 		return -ENOMEM;
213 	}
214 
215 	/* Get details about this device. */
216 	rte_cryptodev_info_get(index, &device->cdev_info);
217 	cdrv_id = device->cdev_info.driver_id;
218 	cdev_id = device->cdev_id = index;
219 
220 	/* Before going any further, make sure we have enough resources for this
221 	 * device type to function.  We need a unique queue pair per core accross each
222 	 * device type to remain lockless....
223 	 */
224 	if ((rte_cryptodev_device_count_by_driver(cdrv_id) *
225 	     device->cdev_info.max_nb_queue_pairs) < num_lcores) {
226 		SPDK_ERRLOG("Insufficient unique queue pairs available for %s\n",
227 			    device->cdev_info.driver_name);
228 		SPDK_ERRLOG("Either add more crypto devices or decrease core count\n");
229 		rc = -EINVAL;
230 		goto err;
231 	}
232 
233 	/* Setup queue pairs. */
234 	struct rte_cryptodev_config conf = {
235 		.nb_queue_pairs = device->cdev_info.max_nb_queue_pairs,
236 		.socket_id = SPDK_ENV_SOCKET_ID_ANY
237 	};
238 
239 	rc = rte_cryptodev_configure(cdev_id, &conf);
240 	if (rc < 0) {
241 		SPDK_ERRLOG("Failed to configure cryptodev %u\n", cdev_id);
242 		rc = -EINVAL;
243 		goto err;
244 	}
245 
246 	struct rte_cryptodev_qp_conf qp_conf = {
247 		.nb_descriptors = CRYPTO_QP_DESCRIPTORS,
248 #if RTE_VERSION >= RTE_VERSION_NUM(19, 02, 0, 0)
249 		.mp_session = g_session_mp,
250 		.mp_session_private = g_session_mp_priv,
251 #endif
252 	};
253 
254 	/* Pre-setup all potential qpairs now and assign them in the channel
255 	 * callback. If we were to create them there, we'd have to stop the
256 	 * entire device affecting all other threads that might be using it
257 	 * even on other queue pairs.
258 	 */
259 	for (j = 0; j < device->cdev_info.max_nb_queue_pairs; j++) {
260 #if RTE_VERSION >= RTE_VERSION_NUM(19, 02, 0, 0)
261 		rc = rte_cryptodev_queue_pair_setup(cdev_id, j, &qp_conf, SOCKET_ID_ANY);
262 #else
263 		rc = rte_cryptodev_queue_pair_setup(cdev_id, j, &qp_conf, SOCKET_ID_ANY,
264 						    g_session_mp);
265 #endif
266 
267 		if (rc < 0) {
268 			SPDK_ERRLOG("Failed to setup queue pair %u on "
269 				    "cryptodev %u\n", j, cdev_id);
270 			rc = -EINVAL;
271 			goto err;
272 		}
273 	}
274 
275 	rc = rte_cryptodev_start(cdev_id);
276 	if (rc < 0) {
277 		SPDK_ERRLOG("Failed to start device %u: error %d\n",
278 			    cdev_id, rc);
279 		rc = -EINVAL;
280 		goto err;
281 	}
282 
283 	/* Build up list of device/qp combinations */
284 	for (j = 0; j < device->cdev_info.max_nb_queue_pairs; j++) {
285 		dev_qp = calloc(1, sizeof(struct device_qp));
286 		if (!dev_qp) {
287 			rc = -ENOMEM;
288 			goto err;
289 		}
290 		dev_qp->device = device;
291 		dev_qp->qp = j;
292 		dev_qp->in_use = false;
293 		TAILQ_INSERT_TAIL(&g_device_qp, dev_qp, link);
294 	}
295 
296 	/* Add to our list of available crypto devices. */
297 	TAILQ_INSERT_TAIL(&g_vbdev_devs, device, link);
298 
299 	return 0;
300 err:
301 	TAILQ_FOREACH_SAFE(dev_qp, &g_device_qp, link, tmp_qp) {
302 		TAILQ_REMOVE(&g_device_qp, dev_qp, link);
303 		free(dev_qp);
304 	}
305 	free(device);
306 
307 	return rc;
308 
309 }
310 
311 /* This is called from the module's init function. We setup all crypto devices early on as we are unable
312  * to easily dynamically configure queue pairs after the drivers are up and running.  So, here, we
313  * configure the max capabilities of each device and assign threads to queue pairs as channels are
314  * requested.
315  */
316 static int
317 vbdev_crypto_init_crypto_drivers(void)
318 {
319 	uint8_t cdev_count;
320 	uint8_t cdev_id, i;
321 	int rc = 0;
322 	struct vbdev_dev *device;
323 	struct vbdev_dev *tmp_dev;
324 	unsigned int max_sess_size = 0, sess_size;
325 	uint16_t num_lcores = rte_lcore_count();
326 
327 	/* Only the first call, via RPC or module init should init the crypto drivers. */
328 	if (g_session_mp != NULL) {
329 		return 0;
330 	}
331 
332 	/* We always init AESNI_MB */
333 	rc = rte_vdev_init(AESNI_MB, NULL);
334 	if (rc) {
335 		SPDK_ERRLOG("error creating virtual PMD %s\n", AESNI_MB);
336 		return -EINVAL;
337 	}
338 
339 	/* If we have no crypto devices, there's no reason to continue. */
340 	cdev_count = rte_cryptodev_count();
341 	if (cdev_count == 0) {
342 		return 0;
343 	}
344 
345 	/*
346 	 * Create global mempools, shared by all devices regardless of type.
347 	 */
348 
349 	/* First determine max session size, most pools are shared by all the devices,
350 	 * so we need to find the global max sessions size.
351 	 */
352 	for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) {
353 		sess_size = rte_cryptodev_sym_get_private_session_size(cdev_id);
354 		if (sess_size > max_sess_size) {
355 			max_sess_size = sess_size;
356 		}
357 	}
358 
359 #if RTE_VERSION >= RTE_VERSION_NUM(19, 02, 0, 0)
360 	g_session_mp_priv = rte_mempool_create("session_mp_priv", NUM_SESSIONS, max_sess_size,
361 					       SESS_MEMPOOL_CACHE_SIZE, 0, NULL, NULL, NULL,
362 					       NULL, SOCKET_ID_ANY, 0);
363 	if (g_session_mp_priv == NULL) {
364 		SPDK_ERRLOG("Cannot create private session pool max size 0x%x\n", max_sess_size);
365 		return -ENOMEM;
366 	}
367 
368 	g_session_mp = rte_cryptodev_sym_session_pool_create(
369 			       "session_mp",
370 			       NUM_SESSIONS, 0, SESS_MEMPOOL_CACHE_SIZE, 0,
371 			       SOCKET_ID_ANY);
372 #else
373 	g_session_mp = rte_mempool_create("session_mp", NUM_SESSIONS, max_sess_size,
374 					  SESS_MEMPOOL_CACHE_SIZE,
375 					  0, NULL, NULL, NULL, NULL, SOCKET_ID_ANY, 0);
376 #endif
377 	if (g_session_mp == NULL) {
378 		SPDK_ERRLOG("Cannot create session pool max size 0x%x\n", max_sess_size);
379 		goto error_create_session_mp;
380 		return -ENOMEM;
381 	}
382 
383 	g_mbuf_mp = spdk_mempool_create("mbuf_mp", NUM_MBUFS, sizeof(struct rte_mbuf),
384 					SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
385 					SPDK_ENV_SOCKET_ID_ANY);
386 	if (g_mbuf_mp == NULL) {
387 		SPDK_ERRLOG("Cannot create mbuf pool\n");
388 		rc = -ENOMEM;
389 		goto error_create_mbuf;
390 	}
391 
392 	g_crypto_op_mp = rte_crypto_op_pool_create("op_mp",
393 			 RTE_CRYPTO_OP_TYPE_SYMMETRIC,
394 			 NUM_MBUFS,
395 			 POOL_CACHE_SIZE,
396 			 AES_CBC_IV_LENGTH,
397 			 rte_socket_id());
398 	if (g_crypto_op_mp == NULL) {
399 		SPDK_ERRLOG("Cannot create op pool\n");
400 		rc = -ENOMEM;
401 		goto error_create_op;
402 	}
403 
404 	/* Init all devices */
405 	for (i = 0; i < cdev_count; i++) {
406 		rc = create_vbdev_dev(i, num_lcores);
407 		if (rc) {
408 			goto err;
409 		}
410 	}
411 	return 0;
412 
413 	/* Error cleanup paths. */
414 err:
415 	TAILQ_FOREACH_SAFE(device, &g_vbdev_devs, link, tmp_dev) {
416 		TAILQ_REMOVE(&g_vbdev_devs, device, link);
417 		free(device);
418 	}
419 	rte_mempool_free(g_crypto_op_mp);
420 	g_crypto_op_mp = NULL;
421 error_create_op:
422 	spdk_mempool_free(g_mbuf_mp);
423 	g_mbuf_mp = NULL;
424 error_create_mbuf:
425 	rte_mempool_free(g_session_mp);
426 	g_session_mp = NULL;
427 error_create_session_mp:
428 	if (g_session_mp_priv != NULL) {
429 		rte_mempool_free(g_session_mp_priv);
430 		g_session_mp_priv = NULL;
431 	}
432 	return rc;
433 }
434 
435 /* Following an encrypt or decrypt we need to then either write the encrypted data or finish
436  * the read on decrypted data. Do that here.
437  */
438 static void
439 _crypto_operation_complete(struct spdk_bdev_io *bdev_io)
440 {
441 	struct vbdev_crypto *crypto_bdev = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_crypto,
442 					   crypto_bdev);
443 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
444 	struct crypto_io_channel *crypto_ch = io_ctx->crypto_ch;
445 	struct spdk_bdev_io *free_me = io_ctx->read_io;
446 	int rc = 0;
447 
448 	TAILQ_REMOVE(&crypto_ch->pending_cry_ios, bdev_io, module_link);
449 
450 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
451 
452 		/* Complete the original IO and then free the one that we created
453 		 * as a result of issuing an IO via submit_request.
454 		 */
455 		if (bdev_io->internal.status != SPDK_BDEV_IO_STATUS_FAILED) {
456 			spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS);
457 		} else {
458 			SPDK_ERRLOG("Issue with decryption on bdev_io %p\n", bdev_io);
459 			rc = -EINVAL;
460 		}
461 		spdk_bdev_free_io(free_me);
462 
463 	} else if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
464 
465 		if (bdev_io->internal.status != SPDK_BDEV_IO_STATUS_FAILED) {
466 			/* Write the encrypted data. */
467 			rc = spdk_bdev_writev_blocks(crypto_bdev->base_desc, crypto_ch->base_ch,
468 						     &io_ctx->cry_iov, 1, io_ctx->cry_offset_blocks,
469 						     io_ctx->cry_num_blocks, _complete_internal_write,
470 						     bdev_io);
471 		} else {
472 			SPDK_ERRLOG("Issue with encryption on bdev_io %p\n", bdev_io);
473 			rc = -EINVAL;
474 		}
475 
476 	} else {
477 		SPDK_ERRLOG("Unknown bdev type %u on crypto operation completion\n",
478 			    bdev_io->type);
479 		rc = -EINVAL;
480 	}
481 
482 	if (rc) {
483 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
484 	}
485 }
486 
487 /* This is the poller for the crypto device. It uses a single API to dequeue whatever is ready at
488  * the device. Then we need to decide if what we've got so far (including previous poller
489  * runs) totals up to one or more complete bdev_ios and if so continue with the bdev_io
490  * accordingly. This means either completing a read or issuing a new write.
491  */
492 static int
493 crypto_dev_poller(void *args)
494 {
495 	struct crypto_io_channel *crypto_ch = args;
496 	uint8_t cdev_id = crypto_ch->device_qp->device->cdev_id;
497 	int i, num_dequeued_ops;
498 	struct spdk_bdev_io *bdev_io = NULL;
499 	struct crypto_bdev_io *io_ctx = NULL;
500 	struct rte_crypto_op *dequeued_ops[MAX_DEQUEUE_BURST_SIZE];
501 	struct rte_crypto_op *mbufs_to_free[2 * MAX_DEQUEUE_BURST_SIZE];
502 	int num_mbufs = 0;
503 
504 	/* Each run of the poller will get just what the device has available
505 	 * at the moment we call it, we don't check again after draining the
506 	 * first batch.
507 	 */
508 	num_dequeued_ops = rte_cryptodev_dequeue_burst(cdev_id, crypto_ch->device_qp->qp,
509 			   dequeued_ops, MAX_DEQUEUE_BURST_SIZE);
510 
511 	/* Check if operation was processed successfully */
512 	for (i = 0; i < num_dequeued_ops; i++) {
513 
514 		/* We don't know the order or association of the crypto ops wrt any
515 		 * partiular bdev_io so need to look at each and determine if it's
516 		 * the last one for it's bdev_io or not.
517 		 */
518 		bdev_io = (struct spdk_bdev_io *)dequeued_ops[i]->sym->m_src->userdata;
519 		assert(bdev_io != NULL);
520 
521 		if (dequeued_ops[i]->status != RTE_CRYPTO_OP_STATUS_SUCCESS) {
522 			SPDK_ERRLOG("error with op %d status %u\n", i,
523 				    dequeued_ops[i]->status);
524 			/* Update the bdev status to error, we'll still process the
525 			 * rest of the crypto ops for this bdev_io though so they
526 			 * aren't left hanging.
527 			 */
528 			bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
529 		}
530 
531 		io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
532 		assert(io_ctx->cryop_cnt_remaining > 0);
533 
534 		/* Return the associated src and dst mbufs by collecting them into
535 		 * an array that we can use the bulk API to free after the loop.
536 		 */
537 		dequeued_ops[i]->sym->m_src->userdata = NULL;
538 		mbufs_to_free[num_mbufs++] = (void *)dequeued_ops[i]->sym->m_src;
539 		if (dequeued_ops[i]->sym->m_dst) {
540 			mbufs_to_free[num_mbufs++] = (void *)dequeued_ops[i]->sym->m_dst;
541 		}
542 
543 		/* done encrypting, complete the bdev_io */
544 		if (--io_ctx->cryop_cnt_remaining == 0) {
545 
546 			/* If we're completing this with an outstanding reset we need
547 			 * to fail it.
548 			 */
549 			if (crypto_ch->iter) {
550 				bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
551 			}
552 
553 			/* Complete the IO */
554 			_crypto_operation_complete(bdev_io);
555 		}
556 	}
557 
558 	/* Now bulk free both mbufs and crypto operations. */
559 	if (num_dequeued_ops > 0) {
560 		rte_mempool_put_bulk(g_crypto_op_mp,
561 				     (void **)dequeued_ops,
562 				     num_dequeued_ops);
563 		assert(num_mbufs > 0);
564 		spdk_mempool_put_bulk(g_mbuf_mp,
565 				      (void **)mbufs_to_free,
566 				      num_mbufs);
567 	}
568 
569 	/* If the channel iter is not NULL, we need to continue to poll
570 	 * until the pending list is empty, then we can move on to the
571 	 * next channel.
572 	 */
573 	if (crypto_ch->iter && TAILQ_EMPTY(&crypto_ch->pending_cry_ios)) {
574 		SPDK_NOTICELOG("Channel %p has been quiesced.\n", crypto_ch);
575 		spdk_for_each_channel_continue(crypto_ch->iter, 0);
576 		crypto_ch->iter = NULL;
577 	}
578 
579 	return num_dequeued_ops;
580 }
581 
582 /* We're either encrypting on the way down or decrypting on the way back. */
583 static int
584 _crypto_operation(struct spdk_bdev_io *bdev_io, enum rte_crypto_cipher_operation crypto_op)
585 {
586 	uint16_t num_enqueued_ops = 0;
587 	uint32_t cryop_cnt = bdev_io->u.bdev.num_blocks;
588 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
589 	struct crypto_io_channel *crypto_ch = io_ctx->crypto_ch;
590 	uint8_t cdev_id = crypto_ch->device_qp->device->cdev_id;
591 	uint32_t crypto_len = io_ctx->crypto_bdev->crypto_bdev.blocklen;
592 	uint64_t total_length = bdev_io->u.bdev.num_blocks * crypto_len;
593 	int rc;
594 	uint32_t enqueued = 0;
595 	uint32_t iov_index = 0;
596 	uint32_t allocated = 0;
597 	uint8_t *current_iov = NULL;
598 	uint64_t total_remaining = 0;
599 	uint64_t updated_length, current_iov_remaining = 0;
600 	int completed = 0;
601 	int crypto_index = 0;
602 	uint32_t en_offset = 0;
603 	struct rte_crypto_op *crypto_ops[MAX_ENQUEUE_ARRAY_SIZE];
604 	struct rte_mbuf *src_mbufs[MAX_ENQUEUE_ARRAY_SIZE];
605 	struct rte_mbuf *dst_mbufs[MAX_ENQUEUE_ARRAY_SIZE];
606 	int burst;
607 
608 	assert((bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen) <= CRYPTO_MAX_IO);
609 
610 	/* Get the number of source mbufs that we need. These will always be 1:1 because we
611 	 * don't support chaining. The reason we don't is because of our decision to use
612 	 * LBA as IV, there can be no case where we'd need >1 mbuf per crypto op or the
613 	 * op would be > 1 LBA.
614 	 */
615 	rc = spdk_mempool_get_bulk(g_mbuf_mp, (void **)&src_mbufs[0], cryop_cnt);
616 	if (rc) {
617 		SPDK_ERRLOG("ERROR trying to get src_mbufs!\n");
618 		return -ENOMEM;
619 	}
620 
621 	/* Get the same amount but these buffers to describe the encrypted data location (dst). */
622 	if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
623 		rc = spdk_mempool_get_bulk(g_mbuf_mp, (void **)&dst_mbufs[0], cryop_cnt);
624 		if (rc) {
625 			SPDK_ERRLOG("ERROR trying to get dst_mbufs!\n");
626 			rc = -ENOMEM;
627 			goto error_get_dst;
628 		}
629 	}
630 
631 #ifdef __clang_analyzer__
632 	/* silence scan-build false positive */
633 	SPDK_CLANG_ANALYZER_PREINIT_PTR_ARRAY(crypto_ops, MAX_ENQUEUE_ARRAY_SIZE, 0x1000);
634 #endif
635 	/* Allocate crypto operations. */
636 	allocated = rte_crypto_op_bulk_alloc(g_crypto_op_mp,
637 					     RTE_CRYPTO_OP_TYPE_SYMMETRIC,
638 					     crypto_ops, cryop_cnt);
639 	if (allocated < cryop_cnt) {
640 		SPDK_ERRLOG("ERROR trying to get crypto ops!\n");
641 		rc = -ENOMEM;
642 		goto error_get_ops;
643 	}
644 
645 	/* For encryption, we need to prepare a single contiguous buffer as the encryption
646 	 * destination, we'll then pass that along for the write after encryption is done.
647 	 * This is done to avoiding encrypting the provided write buffer which may be
648 	 * undesirable in some use cases.
649 	 */
650 	if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
651 		io_ctx->cry_iov.iov_len = total_length;
652 		/* For now just allocate in the I/O path, not optimal but the current bdev API
653 		 * for getting a buffer from the pool won't work if the bdev_io passed in
654 		 * has a buffer, which ours always will.  So, until we modify that API
655 		 * or better yet the current ZCOPY work lands, this is the best we can do.
656 		 */
657 		io_ctx->cry_iov.iov_base = spdk_malloc(total_length,
658 						       spdk_bdev_get_buf_align(bdev_io->bdev), NULL,
659 						       SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
660 		if (!io_ctx->cry_iov.iov_base) {
661 			SPDK_ERRLOG("ERROR trying to allocate write buffer for encryption!\n");
662 			rc = -ENOMEM;
663 			goto error_get_write_buffer;
664 		}
665 		io_ctx->cry_offset_blocks = bdev_io->u.bdev.offset_blocks;
666 		io_ctx->cry_num_blocks = bdev_io->u.bdev.num_blocks;
667 	}
668 
669 	/* This value is used in the completion callback to determine when the bdev_io is
670 	 * complete.
671 	 */
672 	io_ctx->cryop_cnt_remaining = cryop_cnt;
673 
674 	/* As we don't support chaining because of a decision to use LBA as IV, construction
675 	 * of crypto operations is straightforward. We build both the op, the mbuf and the
676 	 * dst_mbuf in our local arrays by looping through the length of the bdev IO and
677 	 * picking off LBA sized blocks of memory from the IOVs as we walk through them. Each
678 	 * LBA sized chunk of memory will correspond 1:1 to a crypto operation and a single
679 	 * mbuf per crypto operation.
680 	 */
681 	total_remaining = total_length;
682 	current_iov = bdev_io->u.bdev.iovs[iov_index].iov_base;
683 	current_iov_remaining = bdev_io->u.bdev.iovs[iov_index].iov_len;
684 	do {
685 		uint8_t *iv_ptr;
686 		uint64_t op_block_offset;
687 
688 		/* Set the mbuf elements address and length. Null out the next pointer. */
689 		src_mbufs[crypto_index]->buf_addr = current_iov;
690 		src_mbufs[crypto_index]->data_len = updated_length = crypto_len;
691 		src_mbufs[crypto_index]->buf_iova = spdk_vtophys((void *)current_iov, &updated_length);
692 		assert(updated_length == crypto_len);
693 		src_mbufs[crypto_index]->next = NULL;
694 		/* Store context in every mbuf as we don't know anything about completion order */
695 		src_mbufs[crypto_index]->userdata = bdev_io;
696 
697 		/* Set the IV - we use the LBA of the crypto_op */
698 		iv_ptr = rte_crypto_op_ctod_offset(crypto_ops[crypto_index], uint8_t *,
699 						   IV_OFFSET);
700 		memset(iv_ptr, 0, AES_CBC_IV_LENGTH);
701 		op_block_offset = bdev_io->u.bdev.offset_blocks + crypto_index;
702 		rte_memcpy(iv_ptr, &op_block_offset, sizeof(uint64_t));
703 
704 		/* Set the data to encrypt/decrypt length */
705 		crypto_ops[crypto_index]->sym->cipher.data.length = crypto_len;
706 		crypto_ops[crypto_index]->sym->cipher.data.offset = 0;
707 
708 		/* link the mbuf to the crypto op. */
709 		crypto_ops[crypto_index]->sym->m_src = src_mbufs[crypto_index];
710 		if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
711 			crypto_ops[crypto_index]->sym->m_dst = src_mbufs[crypto_index];
712 		} else {
713 			crypto_ops[crypto_index]->sym->m_dst = NULL;
714 		}
715 
716 		/* For encrypt, point the destination to a buffer we allocate and redirect the bdev_io
717 		 * that will be used to process the write on completion to the same buffer. Setting
718 		 * up the en_buffer is a little simpler as we know the destination buffer is single IOV.
719 		 */
720 		if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
721 
722 			/* Set the relevant destination en_mbuf elements. */
723 			dst_mbufs[crypto_index]->buf_addr = io_ctx->cry_iov.iov_base + en_offset;
724 			dst_mbufs[crypto_index]->data_len = updated_length = crypto_len;
725 			dst_mbufs[crypto_index]->buf_iova = spdk_vtophys(dst_mbufs[crypto_index]->buf_addr,
726 							    &updated_length);
727 			assert(updated_length == crypto_len);
728 			crypto_ops[crypto_index]->sym->m_dst = dst_mbufs[crypto_index];
729 			en_offset += crypto_len;
730 			dst_mbufs[crypto_index]->next = NULL;
731 
732 			/* Attach the crypto session to the operation */
733 			rc = rte_crypto_op_attach_sym_session(crypto_ops[crypto_index],
734 							      io_ctx->crypto_bdev->session_encrypt);
735 			if (rc) {
736 				rc = -EINVAL;
737 				goto error_attach_session;
738 			}
739 
740 		} else {
741 			/* Attach the crypto session to the operation */
742 			rc = rte_crypto_op_attach_sym_session(crypto_ops[crypto_index],
743 							      io_ctx->crypto_bdev->session_decrypt);
744 			if (rc) {
745 				rc = -EINVAL;
746 				goto error_attach_session;
747 			}
748 
749 
750 		}
751 
752 		/* Subtract our running totals for the op in progress and the overall bdev io */
753 		total_remaining -= crypto_len;
754 		current_iov_remaining -= crypto_len;
755 
756 		/* move our current IOV pointer accordingly. */
757 		current_iov += crypto_len;
758 
759 		/* move on to the next crypto operation */
760 		crypto_index++;
761 
762 		/* If we're done with this IOV, move to the next one. */
763 		if (current_iov_remaining == 0 && total_remaining > 0) {
764 			iov_index++;
765 			current_iov = bdev_io->u.bdev.iovs[iov_index].iov_base;
766 			current_iov_remaining = bdev_io->u.bdev.iovs[iov_index].iov_len;
767 		}
768 	} while (total_remaining > 0);
769 
770 	/* Enqueue everything we've got but limit by the max number of descriptors we
771 	 * configured the crypto device for.
772 	 */
773 	do {
774 		burst = spdk_min((cryop_cnt - enqueued), CRYPTO_QP_DESCRIPTORS);
775 		num_enqueued_ops = rte_cryptodev_enqueue_burst(cdev_id, crypto_ch->device_qp->qp,
776 				   &crypto_ops[enqueued],
777 				   burst);
778 		enqueued += num_enqueued_ops;
779 
780 		/* Dequeue all inline if the device is full. We don't defer anything simply
781 		 * because of the complexity involved as we're building 1 or more crypto
782 		 * ops per IO. Dequeue will free up space for more enqueue.
783 		 */
784 		if (enqueued < cryop_cnt) {
785 
786 			/* Dequeue everything, this may include ops that were already
787 			 * in the device before this submission....
788 			 */
789 			do {
790 				completed = crypto_dev_poller(crypto_ch);
791 			} while (completed > 0);
792 		}
793 	} while (enqueued < cryop_cnt);
794 
795 	/* Add this bdev_io to our outstanding list. */
796 	TAILQ_INSERT_TAIL(&crypto_ch->pending_cry_ios, bdev_io, module_link);
797 
798 	return rc;
799 
800 	/* Error cleanup paths. */
801 error_attach_session:
802 error_get_write_buffer:
803 	rte_mempool_put_bulk(g_crypto_op_mp, (void **)crypto_ops, cryop_cnt);
804 	allocated = 0;
805 error_get_ops:
806 	if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
807 		spdk_mempool_put_bulk(g_mbuf_mp, (void **)&dst_mbufs[0],
808 				      cryop_cnt);
809 	}
810 	if (allocated > 0) {
811 		rte_mempool_put_bulk(g_crypto_op_mp, (void **)crypto_ops,
812 				     allocated);
813 	}
814 error_get_dst:
815 	spdk_mempool_put_bulk(g_mbuf_mp, (void **)&src_mbufs[0],
816 			      cryop_cnt);
817 	return rc;
818 }
819 
820 /* This function is called after all channels have been quiesced following
821  * a bdev reset.
822  */
823 static void
824 _ch_quiesce_done(struct spdk_io_channel_iter *i, int status)
825 {
826 	struct crypto_bdev_io *io_ctx = spdk_io_channel_iter_get_ctx(i);
827 
828 	assert(TAILQ_EMPTY(&io_ctx->crypto_ch->pending_cry_ios));
829 	assert(io_ctx->orig_io != NULL);
830 
831 	spdk_bdev_io_complete(io_ctx->orig_io, SPDK_BDEV_IO_STATUS_SUCCESS);
832 }
833 
834 /* This function is called per channel to quiesce IOs before completing a
835  * bdev reset that we received.
836  */
837 static void
838 _ch_quiesce(struct spdk_io_channel_iter *i)
839 {
840 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
841 	struct crypto_io_channel *crypto_ch = spdk_io_channel_get_ctx(ch);
842 
843 	crypto_ch->iter = i;
844 	/* When the poller runs, it will see the non-NULL iter and handle
845 	 * the quiesce.
846 	 */
847 }
848 
849 /* Completion callback for IO that were issued from this bdev other than read/write.
850  * They have their own for readability.
851  */
852 static void
853 _complete_internal_io(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
854 {
855 	struct spdk_bdev_io *orig_io = cb_arg;
856 	int status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
857 
858 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_RESET) {
859 		struct crypto_bdev_io *orig_ctx = (struct crypto_bdev_io *)orig_io->driver_ctx;
860 
861 		assert(orig_io == orig_ctx->orig_io);
862 
863 		spdk_bdev_free_io(bdev_io);
864 
865 		spdk_for_each_channel(orig_ctx->crypto_bdev,
866 				      _ch_quiesce,
867 				      orig_ctx,
868 				      _ch_quiesce_done);
869 		return;
870 	}
871 
872 	spdk_bdev_io_complete(orig_io, status);
873 	spdk_bdev_free_io(bdev_io);
874 }
875 
876 /* Completion callback for writes that were issued from this bdev. */
877 static void
878 _complete_internal_write(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
879 {
880 	struct spdk_bdev_io *orig_io = cb_arg;
881 	int status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
882 	struct crypto_bdev_io *orig_ctx = (struct crypto_bdev_io *)orig_io->driver_ctx;
883 
884 	spdk_free(orig_ctx->cry_iov.iov_base);
885 	spdk_bdev_io_complete(orig_io, status);
886 	spdk_bdev_free_io(bdev_io);
887 }
888 
889 /* Completion callback for reads that were issued from this bdev. */
890 static void
891 _complete_internal_read(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
892 {
893 	struct spdk_bdev_io *orig_io = cb_arg;
894 	struct crypto_bdev_io *orig_ctx = (struct crypto_bdev_io *)orig_io->driver_ctx;
895 
896 	if (success) {
897 
898 		/* Save off this bdev_io so it can be freed after decryption. */
899 		orig_ctx->read_io = bdev_io;
900 
901 		if (!_crypto_operation(orig_io, RTE_CRYPTO_CIPHER_OP_DECRYPT)) {
902 			return;
903 		} else {
904 			SPDK_ERRLOG("ERROR decrypting\n");
905 		}
906 	} else {
907 		SPDK_ERRLOG("ERROR on read prior to decrypting\n");
908 	}
909 
910 	spdk_bdev_io_complete(orig_io, SPDK_BDEV_IO_STATUS_FAILED);
911 	spdk_bdev_free_io(bdev_io);
912 }
913 
914 static void
915 vbdev_crypto_resubmit_io(void *arg)
916 {
917 	struct spdk_bdev_io *bdev_io = (struct spdk_bdev_io *)arg;
918 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
919 
920 	vbdev_crypto_submit_request(io_ctx->ch, bdev_io);
921 }
922 
923 static void
924 vbdev_crypto_queue_io(struct spdk_bdev_io *bdev_io)
925 {
926 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
927 	int rc;
928 
929 	io_ctx->bdev_io_wait.bdev = bdev_io->bdev;
930 	io_ctx->bdev_io_wait.cb_fn = vbdev_crypto_resubmit_io;
931 	io_ctx->bdev_io_wait.cb_arg = bdev_io;
932 
933 	rc = spdk_bdev_queue_io_wait(bdev_io->bdev, io_ctx->ch, &io_ctx->bdev_io_wait);
934 	if (rc != 0) {
935 		SPDK_ERRLOG("Queue io failed in vbdev_crypto_queue_io, rc=%d.\n", rc);
936 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
937 	}
938 }
939 
940 /* Callback for getting a buf from the bdev pool in the event that the caller passed
941  * in NULL, we need to own the buffer so it doesn't get freed by another vbdev module
942  * beneath us before we're done with it.
943  */
944 static void
945 crypto_read_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
946 		       bool success)
947 {
948 	struct vbdev_crypto *crypto_bdev = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_crypto,
949 					   crypto_bdev);
950 	struct crypto_io_channel *crypto_ch = spdk_io_channel_get_ctx(ch);
951 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
952 	int rc;
953 
954 	if (!success) {
955 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
956 		return;
957 	}
958 
959 	rc = spdk_bdev_readv_blocks(crypto_bdev->base_desc, crypto_ch->base_ch, bdev_io->u.bdev.iovs,
960 				    bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.offset_blocks,
961 				    bdev_io->u.bdev.num_blocks, _complete_internal_read,
962 				    bdev_io);
963 	if (rc != 0) {
964 		if (rc == -ENOMEM) {
965 			SPDK_DEBUGLOG(SPDK_LOG_CRYPTO, "No memory, queue the IO.\n");
966 			io_ctx->ch = ch;
967 			vbdev_crypto_queue_io(bdev_io);
968 		} else {
969 			SPDK_ERRLOG("ERROR on bdev_io submission!\n");
970 			spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
971 		}
972 	}
973 }
974 
975 /* Called when someone submits IO to this crypto vbdev. For IO's not relevant to crypto,
976  * we're simply passing it on here via SPDK IO calls which in turn allocate another bdev IO
977  * and call our cpl callback provided below along with the original bdev_io so that we can
978  * complete it once this IO completes. For crypto operations, we'll either encrypt it first
979  * (writes) then call back into bdev to submit it or we'll submit a read and then catch it
980  * on the way back for decryption.
981  */
982 static void
983 vbdev_crypto_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
984 {
985 	struct vbdev_crypto *crypto_bdev = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_crypto,
986 					   crypto_bdev);
987 	struct crypto_io_channel *crypto_ch = spdk_io_channel_get_ctx(ch);
988 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
989 	int rc = 0;
990 
991 	memset(io_ctx, 0, sizeof(struct crypto_bdev_io));
992 	io_ctx->crypto_bdev = crypto_bdev;
993 	io_ctx->crypto_ch = crypto_ch;
994 	io_ctx->orig_io = bdev_io;
995 
996 	switch (bdev_io->type) {
997 	case SPDK_BDEV_IO_TYPE_READ:
998 		spdk_bdev_io_get_buf(bdev_io, crypto_read_get_buf_cb,
999 				     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
1000 		break;
1001 	case SPDK_BDEV_IO_TYPE_WRITE:
1002 		rc = _crypto_operation(bdev_io, RTE_CRYPTO_CIPHER_OP_ENCRYPT);
1003 		break;
1004 	case SPDK_BDEV_IO_TYPE_UNMAP:
1005 		rc = spdk_bdev_unmap_blocks(crypto_bdev->base_desc, crypto_ch->base_ch,
1006 					    bdev_io->u.bdev.offset_blocks,
1007 					    bdev_io->u.bdev.num_blocks,
1008 					    _complete_internal_io, bdev_io);
1009 		break;
1010 	case SPDK_BDEV_IO_TYPE_FLUSH:
1011 		rc = spdk_bdev_flush_blocks(crypto_bdev->base_desc, crypto_ch->base_ch,
1012 					    bdev_io->u.bdev.offset_blocks,
1013 					    bdev_io->u.bdev.num_blocks,
1014 					    _complete_internal_io, bdev_io);
1015 		break;
1016 	case SPDK_BDEV_IO_TYPE_RESET:
1017 		rc = spdk_bdev_reset(crypto_bdev->base_desc, crypto_ch->base_ch,
1018 				     _complete_internal_io, bdev_io);
1019 		break;
1020 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
1021 	default:
1022 		SPDK_ERRLOG("crypto: unknown I/O type %d\n", bdev_io->type);
1023 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1024 		return;
1025 	}
1026 
1027 	if (rc != 0) {
1028 		if (rc == -ENOMEM) {
1029 			SPDK_DEBUGLOG(SPDK_LOG_CRYPTO, "No memory, queue the IO.\n");
1030 			io_ctx->ch = ch;
1031 			vbdev_crypto_queue_io(bdev_io);
1032 		} else {
1033 			SPDK_ERRLOG("ERROR on bdev_io submission!\n");
1034 			spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1035 		}
1036 	}
1037 }
1038 
1039 /* We'll just call the base bdev and let it answer except for WZ command which
1040  * we always say we don't support so that the bdev layer will actually send us
1041  * real writes that we can encrypt.
1042  */
1043 static bool
1044 vbdev_crypto_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
1045 {
1046 	struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
1047 
1048 	switch (io_type) {
1049 	case SPDK_BDEV_IO_TYPE_WRITE:
1050 	case SPDK_BDEV_IO_TYPE_UNMAP:
1051 	case SPDK_BDEV_IO_TYPE_RESET:
1052 	case SPDK_BDEV_IO_TYPE_READ:
1053 	case SPDK_BDEV_IO_TYPE_FLUSH:
1054 		return spdk_bdev_io_type_supported(crypto_bdev->base_bdev, io_type);
1055 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
1056 	/* Force the bdev layer to issue actual writes of zeroes so we can
1057 	 * encrypt them as regular writes.
1058 	 */
1059 	default:
1060 		return false;
1061 	}
1062 }
1063 
1064 /* Callback for unregistering the IO device. */
1065 static void
1066 _device_unregister_cb(void *io_device)
1067 {
1068 	struct vbdev_crypto *crypto_bdev = io_device;
1069 
1070 	/* Done with this crypto_bdev. */
1071 	rte_cryptodev_sym_session_free(crypto_bdev->session_decrypt);
1072 	rte_cryptodev_sym_session_free(crypto_bdev->session_encrypt);
1073 	free(crypto_bdev->drv_name);
1074 	free(crypto_bdev->key);
1075 	free(crypto_bdev->crypto_bdev.name);
1076 	free(crypto_bdev);
1077 }
1078 
1079 /* Called after we've unregistered following a hot remove callback.
1080  * Our finish entry point will be called next.
1081  */
1082 static int
1083 vbdev_crypto_destruct(void *ctx)
1084 {
1085 	struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
1086 
1087 	/* Remove this device from the internal list */
1088 	TAILQ_REMOVE(&g_vbdev_crypto, crypto_bdev, link);
1089 
1090 	/* Unclaim the underlying bdev. */
1091 	spdk_bdev_module_release_bdev(crypto_bdev->base_bdev);
1092 
1093 	/* Close the underlying bdev. */
1094 	spdk_bdev_close(crypto_bdev->base_desc);
1095 
1096 	/* Unregister the io_device. */
1097 	spdk_io_device_unregister(crypto_bdev, _device_unregister_cb);
1098 
1099 	return 0;
1100 }
1101 
1102 /* We supplied this as an entry point for upper layers who want to communicate to this
1103  * bdev.  This is how they get a channel. We are passed the same context we provided when
1104  * we created our crypto vbdev in examine() which, for this bdev, is the address of one of
1105  * our context nodes. From here we'll ask the SPDK channel code to fill out our channel
1106  * struct and we'll keep it in our crypto node.
1107  */
1108 static struct spdk_io_channel *
1109 vbdev_crypto_get_io_channel(void *ctx)
1110 {
1111 	struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
1112 
1113 	/* The IO channel code will allocate a channel for us which consists of
1114 	 * the SPDK channel structure plus the size of our crypto_io_channel struct
1115 	 * that we passed in when we registered our IO device. It will then call
1116 	 * our channel create callback to populate any elements that we need to
1117 	 * update.
1118 	 */
1119 	return spdk_get_io_channel(crypto_bdev);
1120 }
1121 
1122 /* This is the output for bdev_get_bdevs() for this vbdev */
1123 static int
1124 vbdev_crypto_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
1125 {
1126 	struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
1127 
1128 	spdk_json_write_name(w, "crypto");
1129 	spdk_json_write_object_begin(w);
1130 	spdk_json_write_named_string(w, "base_bdev_name", spdk_bdev_get_name(crypto_bdev->base_bdev));
1131 	spdk_json_write_named_string(w, "name", spdk_bdev_get_name(&crypto_bdev->crypto_bdev));
1132 	spdk_json_write_named_string(w, "crypto_pmd", crypto_bdev->drv_name);
1133 	spdk_json_write_named_string(w, "key", crypto_bdev->key);
1134 	spdk_json_write_object_end(w);
1135 	return 0;
1136 }
1137 
1138 static int
1139 vbdev_crypto_config_json(struct spdk_json_write_ctx *w)
1140 {
1141 	struct vbdev_crypto *crypto_bdev;
1142 
1143 	TAILQ_FOREACH(crypto_bdev, &g_vbdev_crypto, link) {
1144 		spdk_json_write_object_begin(w);
1145 		spdk_json_write_named_string(w, "method", "bdev_crypto_create");
1146 		spdk_json_write_named_object_begin(w, "params");
1147 		spdk_json_write_named_string(w, "base_bdev_name", spdk_bdev_get_name(crypto_bdev->base_bdev));
1148 		spdk_json_write_named_string(w, "name", spdk_bdev_get_name(&crypto_bdev->crypto_bdev));
1149 		spdk_json_write_named_string(w, "crypto_pmd", crypto_bdev->drv_name);
1150 		spdk_json_write_named_string(w, "key", crypto_bdev->key);
1151 		spdk_json_write_object_end(w);
1152 		spdk_json_write_object_end(w);
1153 	}
1154 	return 0;
1155 }
1156 
1157 /* We provide this callback for the SPDK channel code to create a channel using
1158  * the channel struct we provided in our module get_io_channel() entry point. Here
1159  * we get and save off an underlying base channel of the device below us so that
1160  * we can communicate with the base bdev on a per channel basis. We also register the
1161  * poller used to complete crypto operations from the device.
1162  */
1163 static int
1164 crypto_bdev_ch_create_cb(void *io_device, void *ctx_buf)
1165 {
1166 	struct crypto_io_channel *crypto_ch = ctx_buf;
1167 	struct vbdev_crypto *crypto_bdev = io_device;
1168 	struct device_qp *device_qp;
1169 
1170 	crypto_ch->base_ch = spdk_bdev_get_io_channel(crypto_bdev->base_desc);
1171 	crypto_ch->poller = spdk_poller_register(crypto_dev_poller, crypto_ch, 0);
1172 	crypto_ch->device_qp = NULL;
1173 
1174 	pthread_mutex_lock(&g_device_qp_lock);
1175 	TAILQ_FOREACH(device_qp, &g_device_qp, link) {
1176 		if ((strcmp(device_qp->device->cdev_info.driver_name, crypto_bdev->drv_name) == 0) &&
1177 		    (device_qp->in_use == false)) {
1178 			crypto_ch->device_qp = device_qp;
1179 			device_qp->in_use = true;
1180 			break;
1181 		}
1182 	}
1183 	pthread_mutex_unlock(&g_device_qp_lock);
1184 	assert(crypto_ch->device_qp);
1185 
1186 	/* We use this queue to track outstanding IO in our layer. */
1187 	TAILQ_INIT(&crypto_ch->pending_cry_ios);
1188 
1189 	return 0;
1190 }
1191 
1192 /* We provide this callback for the SPDK channel code to destroy a channel
1193  * created with our create callback. We just need to undo anything we did
1194  * when we created.
1195  */
1196 static void
1197 crypto_bdev_ch_destroy_cb(void *io_device, void *ctx_buf)
1198 {
1199 	struct crypto_io_channel *crypto_ch = ctx_buf;
1200 
1201 	pthread_mutex_lock(&g_device_qp_lock);
1202 	crypto_ch->device_qp->in_use = false;
1203 	pthread_mutex_unlock(&g_device_qp_lock);
1204 
1205 	spdk_poller_unregister(&crypto_ch->poller);
1206 	spdk_put_io_channel(crypto_ch->base_ch);
1207 }
1208 
1209 /* Create the association from the bdev and vbdev name and insert
1210  * on the global list. */
1211 static int
1212 vbdev_crypto_insert_name(const char *bdev_name, const char *vbdev_name,
1213 			 const char *crypto_pmd, const char *key)
1214 {
1215 	struct bdev_names *name;
1216 	int rc, j;
1217 	bool found = false;
1218 
1219 	TAILQ_FOREACH(name, &g_bdev_names, link) {
1220 		if (strcmp(vbdev_name, name->vbdev_name) == 0) {
1221 			SPDK_ERRLOG("crypto bdev %s already exists\n", vbdev_name);
1222 			return -EEXIST;
1223 		}
1224 	}
1225 
1226 	name = calloc(1, sizeof(struct bdev_names));
1227 	if (!name) {
1228 		SPDK_ERRLOG("could not allocate bdev_names\n");
1229 		return -ENOMEM;
1230 	}
1231 
1232 	name->bdev_name = strdup(bdev_name);
1233 	if (!name->bdev_name) {
1234 		SPDK_ERRLOG("could not allocate name->bdev_name\n");
1235 		rc = -ENOMEM;
1236 		goto error_alloc_bname;
1237 	}
1238 
1239 	name->vbdev_name = strdup(vbdev_name);
1240 	if (!name->vbdev_name) {
1241 		SPDK_ERRLOG("could not allocate name->vbdev_name\n");
1242 		rc = -ENOMEM;
1243 		goto error_alloc_vname;
1244 	}
1245 
1246 	name->drv_name = strdup(crypto_pmd);
1247 	if (!name->drv_name) {
1248 		SPDK_ERRLOG("could not allocate name->drv_name\n");
1249 		rc = -ENOMEM;
1250 		goto error_alloc_dname;
1251 	}
1252 	for (j = 0; j < MAX_NUM_DRV_TYPES ; j++) {
1253 		if (strcmp(crypto_pmd, g_driver_names[j]) == 0) {
1254 			found = true;
1255 			break;
1256 		}
1257 	}
1258 	if (!found) {
1259 		SPDK_ERRLOG("invalid crypto PMD type %s\n", crypto_pmd);
1260 		rc = -EINVAL;
1261 		goto error_invalid_pmd;
1262 	}
1263 
1264 	name->key = strdup(key);
1265 	if (!name->key) {
1266 		SPDK_ERRLOG("could not allocate name->key\n");
1267 		rc = -ENOMEM;
1268 		goto error_alloc_key;
1269 	}
1270 	if (strlen(name->key) != AES_CBC_KEY_LENGTH) {
1271 		SPDK_ERRLOG("invalid AES_CCB key length\n");
1272 		rc = -EINVAL;
1273 		goto error_invalid_key;
1274 	}
1275 
1276 	TAILQ_INSERT_TAIL(&g_bdev_names, name, link);
1277 
1278 	return 0;
1279 
1280 	/* Error cleanup paths. */
1281 error_invalid_key:
1282 error_alloc_key:
1283 error_invalid_pmd:
1284 	free(name->drv_name);
1285 error_alloc_dname:
1286 	free(name->vbdev_name);
1287 error_alloc_vname:
1288 	free(name->bdev_name);
1289 error_alloc_bname:
1290 	free(name);
1291 	return rc;
1292 }
1293 
1294 /* RPC entry point for crypto creation. */
1295 int
1296 create_crypto_disk(const char *bdev_name, const char *vbdev_name,
1297 		   const char *crypto_pmd, const char *key)
1298 {
1299 	struct spdk_bdev *bdev = NULL;
1300 	int rc = 0;
1301 
1302 	bdev = spdk_bdev_get_by_name(bdev_name);
1303 
1304 	rc = vbdev_crypto_insert_name(bdev_name, vbdev_name, crypto_pmd, key);
1305 	if (rc) {
1306 		return rc;
1307 	}
1308 
1309 	if (!bdev) {
1310 		SPDK_NOTICELOG("vbdev creation deferred pending base bdev arrival\n");
1311 		return 0;
1312 	}
1313 
1314 	rc = vbdev_crypto_claim(bdev);
1315 	if (rc) {
1316 		return rc;
1317 	}
1318 
1319 	return rc;
1320 }
1321 
1322 /* Called at driver init time, parses config file to prepare for examine calls,
1323  * also fully initializes the crypto drivers.
1324  */
1325 static int
1326 vbdev_crypto_init(void)
1327 {
1328 	struct spdk_conf_section *sp = NULL;
1329 	const char *conf_bdev_name = NULL;
1330 	const char *conf_vbdev_name = NULL;
1331 	const char *crypto_pmd = NULL;
1332 	int i;
1333 	int rc = 0;
1334 	const char *key = NULL;
1335 
1336 	/* Fully configure both SW and HW drivers. */
1337 	rc = vbdev_crypto_init_crypto_drivers();
1338 	if (rc) {
1339 		SPDK_ERRLOG("Error setting up crypto devices\n");
1340 		return rc;
1341 	}
1342 
1343 	sp = spdk_conf_find_section(NULL, "crypto");
1344 	if (sp == NULL) {
1345 		return 0;
1346 	}
1347 
1348 	for (i = 0; ; i++) {
1349 
1350 		if (!spdk_conf_section_get_nval(sp, "CRY", i)) {
1351 			break;
1352 		}
1353 
1354 		conf_bdev_name = spdk_conf_section_get_nmval(sp, "CRY", i, 0);
1355 		if (!conf_bdev_name) {
1356 			SPDK_ERRLOG("crypto configuration missing bdev name\n");
1357 			return -EINVAL;
1358 		}
1359 
1360 		conf_vbdev_name = spdk_conf_section_get_nmval(sp, "CRY", i, 1);
1361 		if (!conf_vbdev_name) {
1362 			SPDK_ERRLOG("crypto configuration missing crypto_bdev name\n");
1363 			return -EINVAL;
1364 		}
1365 
1366 		key = spdk_conf_section_get_nmval(sp, "CRY", i, 2);
1367 		if (!key) {
1368 			SPDK_ERRLOG("crypto configuration missing crypto_bdev key\n");
1369 			return -EINVAL;
1370 		}
1371 		SPDK_NOTICELOG("WARNING: You are storing your key in a plain text file!!\n");
1372 
1373 		crypto_pmd = spdk_conf_section_get_nmval(sp, "CRY", i, 3);
1374 		if (!crypto_pmd) {
1375 			SPDK_ERRLOG("crypto configuration missing driver type\n");
1376 			return -EINVAL;
1377 		}
1378 
1379 		rc = vbdev_crypto_insert_name(conf_bdev_name, conf_vbdev_name,
1380 					      crypto_pmd, key);
1381 		if (rc != 0) {
1382 			return rc;
1383 		}
1384 	}
1385 
1386 	return rc;
1387 }
1388 
1389 /* Called when the entire module is being torn down. */
1390 static void
1391 vbdev_crypto_finish(void)
1392 {
1393 	struct bdev_names *name;
1394 	struct vbdev_dev *device;
1395 	struct device_qp *dev_qp;
1396 	unsigned i;
1397 	int rc;
1398 
1399 	while ((name = TAILQ_FIRST(&g_bdev_names))) {
1400 		TAILQ_REMOVE(&g_bdev_names, name, link);
1401 		free(name->drv_name);
1402 		free(name->key);
1403 		free(name->bdev_name);
1404 		free(name->vbdev_name);
1405 		free(name);
1406 	}
1407 
1408 	while ((device = TAILQ_FIRST(&g_vbdev_devs))) {
1409 		struct rte_cryptodev *rte_dev;
1410 
1411 		TAILQ_REMOVE(&g_vbdev_devs, device, link);
1412 		rte_cryptodev_stop(device->cdev_id);
1413 
1414 		assert(device->cdev_id < RTE_CRYPTO_MAX_DEVS);
1415 		rte_dev = &rte_cryptodevs[device->cdev_id];
1416 
1417 		if (rte_dev->dev_ops->queue_pair_release != NULL) {
1418 			for (i = 0; i < device->cdev_info.max_nb_queue_pairs; i++) {
1419 				rte_dev->dev_ops->queue_pair_release(rte_dev, i);
1420 			}
1421 		}
1422 		free(device);
1423 	}
1424 	rc = rte_vdev_uninit(AESNI_MB);
1425 	if (rc) {
1426 		SPDK_ERRLOG("%d from rte_vdev_uninit\n", rc);
1427 	}
1428 
1429 	while ((dev_qp = TAILQ_FIRST(&g_device_qp))) {
1430 		TAILQ_REMOVE(&g_device_qp, dev_qp, link);
1431 		free(dev_qp);
1432 	}
1433 
1434 	rte_mempool_free(g_crypto_op_mp);
1435 	spdk_mempool_free(g_mbuf_mp);
1436 	rte_mempool_free(g_session_mp);
1437 	if (g_session_mp_priv != NULL) {
1438 		rte_mempool_free(g_session_mp_priv);
1439 	}
1440 }
1441 
1442 /* During init we'll be asked how much memory we'd like passed to us
1443  * in bev_io structures as context. Here's where we specify how
1444  * much context we want per IO.
1445  */
1446 static int
1447 vbdev_crypto_get_ctx_size(void)
1448 {
1449 	return sizeof(struct crypto_bdev_io);
1450 }
1451 
1452 /* Called when SPDK wants to save the current config of this vbdev module to
1453  * a file.
1454  */
1455 static void
1456 vbdev_crypto_get_spdk_running_config(FILE *fp)
1457 {
1458 	struct bdev_names *names = NULL;
1459 	fprintf(fp, "\n[crypto]\n");
1460 	TAILQ_FOREACH(names, &g_bdev_names, link) {
1461 		fprintf(fp, "  crypto %s %s ", names->bdev_name, names->vbdev_name);
1462 		fprintf(fp, "\n");
1463 	}
1464 
1465 	fprintf(fp, "\n");
1466 }
1467 
1468 /* Called when the underlying base bdev goes away. */
1469 static void
1470 vbdev_crypto_examine_hotremove_cb(void *ctx)
1471 {
1472 	struct vbdev_crypto *crypto_bdev, *tmp;
1473 	struct spdk_bdev *bdev_find = ctx;
1474 
1475 	TAILQ_FOREACH_SAFE(crypto_bdev, &g_vbdev_crypto, link, tmp) {
1476 		if (bdev_find == crypto_bdev->base_bdev) {
1477 			spdk_bdev_unregister(&crypto_bdev->crypto_bdev, NULL, NULL);
1478 		}
1479 	}
1480 }
1481 
1482 static void
1483 vbdev_crypto_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
1484 {
1485 	/* No config per bdev needed */
1486 }
1487 
1488 /* When we register our bdev this is how we specify our entry points. */
1489 static const struct spdk_bdev_fn_table vbdev_crypto_fn_table = {
1490 	.destruct		= vbdev_crypto_destruct,
1491 	.submit_request		= vbdev_crypto_submit_request,
1492 	.io_type_supported	= vbdev_crypto_io_type_supported,
1493 	.get_io_channel		= vbdev_crypto_get_io_channel,
1494 	.dump_info_json		= vbdev_crypto_dump_info_json,
1495 	.write_config_json	= vbdev_crypto_write_config_json
1496 };
1497 
1498 static struct spdk_bdev_module crypto_if = {
1499 	.name = "crypto",
1500 	.module_init = vbdev_crypto_init,
1501 	.config_text = vbdev_crypto_get_spdk_running_config,
1502 	.get_ctx_size = vbdev_crypto_get_ctx_size,
1503 	.examine_config = vbdev_crypto_examine,
1504 	.module_fini = vbdev_crypto_finish,
1505 	.config_json = vbdev_crypto_config_json
1506 };
1507 
1508 SPDK_BDEV_MODULE_REGISTER(crypto, &crypto_if)
1509 
1510 static int
1511 vbdev_crypto_claim(struct spdk_bdev *bdev)
1512 {
1513 	struct bdev_names *name;
1514 	struct vbdev_crypto *vbdev;
1515 	struct vbdev_dev *device;
1516 	bool found = false;
1517 	int rc = 0;
1518 
1519 	/* Check our list of names from config versus this bdev and if
1520 	 * there's a match, create the crypto_bdev & bdev accordingly.
1521 	 */
1522 	TAILQ_FOREACH(name, &g_bdev_names, link) {
1523 		if (strcmp(name->bdev_name, bdev->name) != 0) {
1524 			continue;
1525 		}
1526 		SPDK_DEBUGLOG(SPDK_LOG_CRYPTO, "Match on %s\n", bdev->name);
1527 
1528 		vbdev = calloc(1, sizeof(struct vbdev_crypto));
1529 		if (!vbdev) {
1530 			SPDK_ERRLOG("could not allocate crypto_bdev\n");
1531 			rc = -ENOMEM;
1532 			goto error_vbdev_alloc;
1533 		}
1534 
1535 		/* The base bdev that we're attaching to. */
1536 		vbdev->base_bdev = bdev;
1537 		vbdev->crypto_bdev.name = strdup(name->vbdev_name);
1538 		if (!vbdev->crypto_bdev.name) {
1539 			SPDK_ERRLOG("could not allocate crypto_bdev name\n");
1540 			rc = -ENOMEM;
1541 			goto error_bdev_name;
1542 		}
1543 
1544 		vbdev->key = strdup(name->key);
1545 		if (!vbdev->key) {
1546 			SPDK_ERRLOG("could not allocate crypto_bdev key\n");
1547 			rc = -ENOMEM;
1548 			goto error_alloc_key;
1549 		}
1550 
1551 		vbdev->drv_name = strdup(name->drv_name);
1552 		if (!vbdev->drv_name) {
1553 			SPDK_ERRLOG("could not allocate crypto_bdev drv_name\n");
1554 			rc = -ENOMEM;
1555 			goto error_drv_name;
1556 		}
1557 
1558 		vbdev->crypto_bdev.product_name = "crypto";
1559 		vbdev->crypto_bdev.write_cache = bdev->write_cache;
1560 		if (strcmp(vbdev->drv_name, QAT) == 0) {
1561 			vbdev->crypto_bdev.required_alignment =
1562 				spdk_max(spdk_u32log2(bdev->blocklen), bdev->required_alignment);
1563 			SPDK_NOTICELOG("QAT in use: Required alignment set to %u\n",
1564 				       vbdev->crypto_bdev.required_alignment);
1565 		} else {
1566 			vbdev->crypto_bdev.required_alignment = bdev->required_alignment;
1567 		}
1568 		/* Note: CRYPTO_MAX_IO is in units of bytes, optimal_io_boundary is
1569 		 * in units of blocks.
1570 		 */
1571 		if (bdev->optimal_io_boundary > 0) {
1572 			vbdev->crypto_bdev.optimal_io_boundary =
1573 				spdk_min((CRYPTO_MAX_IO / bdev->blocklen), bdev->optimal_io_boundary);
1574 		} else {
1575 			vbdev->crypto_bdev.optimal_io_boundary = (CRYPTO_MAX_IO / bdev->blocklen);
1576 		}
1577 		vbdev->crypto_bdev.split_on_optimal_io_boundary = true;
1578 		vbdev->crypto_bdev.blocklen = bdev->blocklen;
1579 		vbdev->crypto_bdev.blockcnt = bdev->blockcnt;
1580 
1581 		/* This is the context that is passed to us when the bdev
1582 		 * layer calls in so we'll save our crypto_bdev node here.
1583 		 */
1584 		vbdev->crypto_bdev.ctxt = vbdev;
1585 		vbdev->crypto_bdev.fn_table = &vbdev_crypto_fn_table;
1586 		vbdev->crypto_bdev.module = &crypto_if;
1587 		TAILQ_INSERT_TAIL(&g_vbdev_crypto, vbdev, link);
1588 
1589 		spdk_io_device_register(vbdev, crypto_bdev_ch_create_cb, crypto_bdev_ch_destroy_cb,
1590 					sizeof(struct crypto_io_channel), vbdev->crypto_bdev.name);
1591 
1592 		rc = spdk_bdev_open(bdev, true, vbdev_crypto_examine_hotremove_cb,
1593 				    bdev, &vbdev->base_desc);
1594 		if (rc) {
1595 			SPDK_ERRLOG("could not open bdev %s\n", spdk_bdev_get_name(bdev));
1596 			goto error_open;
1597 		}
1598 
1599 		rc = spdk_bdev_module_claim_bdev(bdev, vbdev->base_desc, vbdev->crypto_bdev.module);
1600 		if (rc) {
1601 			SPDK_ERRLOG("could not claim bdev %s\n", spdk_bdev_get_name(bdev));
1602 			goto error_claim;
1603 		}
1604 
1605 		/* To init the session we have to get the cryptoDev device ID for this vbdev */
1606 		TAILQ_FOREACH(device, &g_vbdev_devs, link) {
1607 			if (strcmp(device->cdev_info.driver_name, vbdev->drv_name) == 0) {
1608 				found = true;
1609 				break;
1610 			}
1611 		}
1612 		if (found == false) {
1613 			SPDK_ERRLOG("ERROR can't match crypto device driver to crypto vbdev!\n");
1614 			rc = -EINVAL;
1615 			goto error_cant_find_devid;
1616 		}
1617 
1618 		/* Get sessions. */
1619 		vbdev->session_encrypt = rte_cryptodev_sym_session_create(g_session_mp);
1620 		if (NULL == vbdev->session_encrypt) {
1621 			SPDK_ERRLOG("ERROR trying to create crypto session!\n");
1622 			rc = -EINVAL;
1623 			goto error_session_en_create;
1624 		}
1625 
1626 		vbdev->session_decrypt = rte_cryptodev_sym_session_create(g_session_mp);
1627 		if (NULL == vbdev->session_decrypt) {
1628 			SPDK_ERRLOG("ERROR trying to create crypto session!\n");
1629 			rc = -EINVAL;
1630 			goto error_session_de_create;
1631 		}
1632 
1633 		/* Init our per vbdev xform with the desired cipher options. */
1634 		vbdev->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
1635 		vbdev->cipher_xform.cipher.key.data = vbdev->key;
1636 		vbdev->cipher_xform.cipher.iv.offset = IV_OFFSET;
1637 		vbdev->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC;
1638 		vbdev->cipher_xform.cipher.key.length = AES_CBC_KEY_LENGTH;
1639 		vbdev->cipher_xform.cipher.iv.length = AES_CBC_IV_LENGTH;
1640 
1641 		vbdev->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
1642 		rc = rte_cryptodev_sym_session_init(device->cdev_id, vbdev->session_encrypt,
1643 						    &vbdev->cipher_xform,
1644 						    g_session_mp_priv ? g_session_mp_priv : g_session_mp);
1645 		if (rc < 0) {
1646 			SPDK_ERRLOG("ERROR trying to init encrypt session!\n");
1647 			rc = -EINVAL;
1648 			goto error_session_init;
1649 		}
1650 
1651 		vbdev->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_DECRYPT;
1652 		rc = rte_cryptodev_sym_session_init(device->cdev_id, vbdev->session_decrypt,
1653 						    &vbdev->cipher_xform,
1654 						    g_session_mp_priv ? g_session_mp_priv : g_session_mp);
1655 		if (rc < 0) {
1656 			SPDK_ERRLOG("ERROR trying to init decrypt session!\n");
1657 			rc = -EINVAL;
1658 			goto error_session_init;
1659 		}
1660 
1661 		rc = spdk_bdev_register(&vbdev->crypto_bdev);
1662 		if (rc < 0) {
1663 			SPDK_ERRLOG("ERROR trying to register bdev\n");
1664 			rc = -EINVAL;
1665 			goto error_bdev_register;
1666 		}
1667 		SPDK_DEBUGLOG(SPDK_LOG_CRYPTO, "registered io_device and virtual bdev for: %s\n",
1668 			      name->vbdev_name);
1669 		break;
1670 	}
1671 
1672 	return rc;
1673 
1674 	/* Error cleanup paths. */
1675 error_bdev_register:
1676 error_session_init:
1677 	rte_cryptodev_sym_session_free(vbdev->session_decrypt);
1678 error_session_de_create:
1679 	rte_cryptodev_sym_session_free(vbdev->session_encrypt);
1680 error_session_en_create:
1681 error_cant_find_devid:
1682 error_claim:
1683 	spdk_bdev_close(vbdev->base_desc);
1684 error_open:
1685 	TAILQ_REMOVE(&g_vbdev_crypto, vbdev, link);
1686 	spdk_io_device_unregister(vbdev, NULL);
1687 	free(vbdev->drv_name);
1688 error_drv_name:
1689 	free(vbdev->key);
1690 error_alloc_key:
1691 	free(vbdev->crypto_bdev.name);
1692 error_bdev_name:
1693 	free(vbdev);
1694 error_vbdev_alloc:
1695 	return rc;
1696 }
1697 
1698 /* RPC entry for deleting a crypto vbdev. */
1699 void
1700 delete_crypto_disk(struct spdk_bdev *bdev, spdk_delete_crypto_complete cb_fn,
1701 		   void *cb_arg)
1702 {
1703 	struct bdev_names *name;
1704 
1705 	if (!bdev || bdev->module != &crypto_if) {
1706 		cb_fn(cb_arg, -ENODEV);
1707 		return;
1708 	}
1709 
1710 	/* Remove the association (vbdev, bdev) from g_bdev_names. This is required so that the
1711 	 * vbdev does not get re-created if the same bdev is constructed at some other time,
1712 	 * unless the underlying bdev was hot-removed.
1713 	 */
1714 	TAILQ_FOREACH(name, &g_bdev_names, link) {
1715 		if (strcmp(name->vbdev_name, bdev->name) == 0) {
1716 			TAILQ_REMOVE(&g_bdev_names, name, link);
1717 			free(name->bdev_name);
1718 			free(name->vbdev_name);
1719 			free(name->drv_name);
1720 			free(name->key);
1721 			free(name);
1722 			break;
1723 		}
1724 	}
1725 
1726 	/* Additional cleanup happens in the destruct callback. */
1727 	spdk_bdev_unregister(bdev, cb_fn, cb_arg);
1728 }
1729 
1730 /* Because we specified this function in our crypto bdev function table when we
1731  * registered our crypto bdev, we'll get this call anytime a new bdev shows up.
1732  * Here we need to decide if we care about it and if so what to do. We
1733  * parsed the config file at init so we check the new bdev against the list
1734  * we built up at that time and if the user configured us to attach to this
1735  * bdev, here's where we do it.
1736  */
1737 static void
1738 vbdev_crypto_examine(struct spdk_bdev *bdev)
1739 {
1740 	vbdev_crypto_claim(bdev);
1741 	spdk_bdev_module_examine_done(&crypto_if);
1742 }
1743 
1744 SPDK_LOG_REGISTER_COMPONENT("vbdev_crypto", SPDK_LOG_CRYPTO)
1745