xref: /spdk/module/bdev/crypto/vbdev_crypto.c (revision 877573897ad52be4fa8989f7617bd655b87e05c4)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2018 Intel Corporation.
3  *   All rights reserved.
4  *   Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES.
5  *   All rights reserved.
6  */
7 
8 #include "vbdev_crypto.h"
9 
10 #include "spdk/env.h"
11 #include "spdk/likely.h"
12 #include "spdk/endian.h"
13 #include "spdk/thread.h"
14 #include "spdk/bdev_module.h"
15 #include "spdk/log.h"
16 #include "spdk/hexlify.h"
17 
18 #include <rte_config.h>
19 #include <rte_bus_vdev.h>
20 #include <rte_crypto.h>
21 #include <rte_cryptodev.h>
22 #include <rte_mbuf_dyn.h>
23 #include <rte_version.h>
24 
25 /* Used to store IO context in mbuf */
26 static const struct rte_mbuf_dynfield rte_mbuf_dynfield_io_context = {
27 	.name = "context_bdev_io",
28 	.size = sizeof(uint64_t),
29 	.align = __alignof__(uint64_t),
30 	.flags = 0,
31 };
32 static int g_mbuf_offset;
33 
34 /* To add support for new device types, follow the examples of the following...
35  * Note that the string names are defined by the DPDK PMD in question so be
36  * sure to use the exact names.
37  */
38 #define MAX_NUM_DRV_TYPES 3
39 
40 /* The VF spread is the number of queue pairs between virtual functions, we use this to
41  * load balance the QAT device.
42  */
43 #define QAT_VF_SPREAD 32
44 static uint8_t g_qat_total_qp = 0;
45 static uint8_t g_next_qat_index;
46 
47 const char *g_driver_names[MAX_NUM_DRV_TYPES] = { AESNI_MB, QAT, MLX5 };
48 
49 /* Global list of available crypto devices. */
50 struct vbdev_dev {
51 	struct rte_cryptodev_info	cdev_info;	/* includes device friendly name */
52 	uint8_t				cdev_id;	/* identifier for the device */
53 	TAILQ_ENTRY(vbdev_dev)		link;
54 };
55 static TAILQ_HEAD(, vbdev_dev) g_vbdev_devs = TAILQ_HEAD_INITIALIZER(g_vbdev_devs);
56 
57 /* Global list and lock for unique device/queue pair combos. We keep 1 list per supported PMD
58  * so that we can optimize per PMD where it make sense. For example, with QAT there an optimal
59  * pattern for assigning queue pairs where with AESNI there is not.
60  */
61 struct device_qp {
62 	struct vbdev_dev		*device;	/* ptr to crypto device */
63 	uint8_t				qp;		/* queue pair for this node */
64 	bool				in_use;		/* whether this node is in use or not */
65 	uint8_t				index;		/* used by QAT to load balance placement of qpairs */
66 	TAILQ_ENTRY(device_qp)		link;
67 };
68 static TAILQ_HEAD(, device_qp) g_device_qp_qat = TAILQ_HEAD_INITIALIZER(g_device_qp_qat);
69 static TAILQ_HEAD(, device_qp) g_device_qp_aesni_mb = TAILQ_HEAD_INITIALIZER(g_device_qp_aesni_mb);
70 static TAILQ_HEAD(, device_qp) g_device_qp_mlx5 = TAILQ_HEAD_INITIALIZER(g_device_qp_mlx5);
71 static pthread_mutex_t g_device_qp_lock = PTHREAD_MUTEX_INITIALIZER;
72 
73 
74 /* In order to limit the number of resources we need to do one crypto
75  * operation per LBA (we use LBA as IV), we tell the bdev layer that
76  * our max IO size is something reasonable. Units here are in bytes.
77  */
78 #define CRYPTO_MAX_IO		(64 * 1024)
79 
80 /* This controls how many ops will be dequeued from the crypto driver in one run
81  * of the poller. It is mainly a performance knob as it effectively determines how
82  * much work the poller has to do.  However even that can vary between crypto drivers
83  * as the AESNI_MB driver for example does all the crypto work on dequeue whereas the
84  * QAT driver just dequeues what has been completed already.
85  */
86 #define MAX_DEQUEUE_BURST_SIZE	64
87 
88 /* When enqueueing, we need to supply the crypto driver with an array of pointers to
89  * operation structs. As each of these can be max 512B, we can adjust the CRYPTO_MAX_IO
90  * value in conjunction with the other defines to make sure we're not using crazy amounts
91  * of memory. All of these numbers can and probably should be adjusted based on the
92  * workload. By default we'll use the worst case (smallest) block size for the
93  * minimum number of array entries. As an example, a CRYPTO_MAX_IO size of 64K with 512B
94  * blocks would give us an enqueue array size of 128.
95  */
96 #define MAX_ENQUEUE_ARRAY_SIZE (CRYPTO_MAX_IO / 512)
97 
98 /* The number of MBUFS we need must be a power of two and to support other small IOs
99  * in addition to the limits mentioned above, we go to the next power of two. It is
100  * big number because it is one mempool for source and destination mbufs. It may
101  * need to be bigger to support multiple crypto drivers at once.
102  */
103 #define NUM_MBUFS		32768
104 #define POOL_CACHE_SIZE		256
105 #define MAX_CRYPTO_VOLUMES	128
106 #define NUM_SESSIONS		(2 * MAX_CRYPTO_VOLUMES)
107 #define SESS_MEMPOOL_CACHE_SIZE 0
108 uint8_t g_number_of_claimed_volumes = 0;
109 
110 /* This is the max number of IOs we can supply to any crypto device QP at one time.
111  * It can vary between drivers.
112  */
113 #define CRYPTO_QP_DESCRIPTORS	2048
114 
115 /* At this moment DPDK descriptors allocation for mlx5 has some issues. We use 512
116  * as an compromise value between performance and the time spent for initialization. */
117 #define CRYPTO_QP_DESCRIPTORS_MLX5	512
118 
119 #define AESNI_MB_NUM_QP		64
120 
121 /* Common for supported devices. */
122 #define DEFAULT_NUM_XFORMS           2
123 #define IV_OFFSET (sizeof(struct rte_crypto_op) + \
124                 sizeof(struct rte_crypto_sym_op) + \
125                 (DEFAULT_NUM_XFORMS * \
126                  sizeof(struct rte_crypto_sym_xform)))
127 #define IV_LENGTH		     16
128 #define QUEUED_OP_OFFSET (IV_OFFSET + IV_LENGTH)
129 
130 static void _complete_internal_io(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
131 static void _complete_internal_read(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
132 static void _complete_internal_write(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
133 static void vbdev_crypto_examine(struct spdk_bdev *bdev);
134 static int vbdev_crypto_claim(const char *bdev_name);
135 static void vbdev_crypto_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io);
136 
137 struct bdev_names {
138 	struct vbdev_crypto_opts	*opts;
139 	TAILQ_ENTRY(bdev_names)		link;
140 };
141 
142 /* List of crypto_bdev names and their base bdevs via configuration file. */
143 static TAILQ_HEAD(, bdev_names) g_bdev_names = TAILQ_HEAD_INITIALIZER(g_bdev_names);
144 
145 struct vbdev_crypto {
146 	struct spdk_bdev		*base_bdev;		/* the thing we're attaching to */
147 	struct spdk_bdev_desc		*base_desc;		/* its descriptor we get from open */
148 	struct spdk_bdev		crypto_bdev;		/* the crypto virtual bdev */
149 	struct vbdev_crypto_opts	*opts;			/* crypto options such as key, cipher */
150 	uint32_t			qp_desc_nr;             /* number of qp descriptors */
151 	void				*session_encrypt;	/* encryption session for this bdev */
152 	void				*session_decrypt;	/* decryption session for this bdev */
153 	struct rte_crypto_sym_xform	cipher_xform;		/* crypto control struct for this bdev */
154 	TAILQ_ENTRY(vbdev_crypto)	link;
155 	struct spdk_thread		*thread;		/* thread where base device is opened */
156 };
157 
158 /* List of virtual bdevs and associated info for each. We keep the device friendly name here even
159  * though its also in the device struct because we use it early on.
160  */
161 static TAILQ_HEAD(, vbdev_crypto) g_vbdev_crypto = TAILQ_HEAD_INITIALIZER(g_vbdev_crypto);
162 
163 /* Shared mempools between all devices on this system */
164 static struct rte_mempool *g_session_mp = NULL;
165 static struct rte_mempool *g_session_mp_priv = NULL;
166 static struct rte_mempool *g_mbuf_mp = NULL;            /* mbuf mempool */
167 static struct rte_mempool *g_crypto_op_mp = NULL;	/* crypto operations, must be rte* mempool */
168 
169 static struct rte_mbuf_ext_shared_info g_shinfo = {};   /* used by DPDK mbuf macro */
170 
171 /* For queueing up crypto operations that we can't submit for some reason */
172 struct vbdev_crypto_op {
173 	uint8_t					cdev_id;
174 	uint8_t					qp;
175 	struct rte_crypto_op			*crypto_op;
176 	struct spdk_bdev_io			*bdev_io;
177 	TAILQ_ENTRY(vbdev_crypto_op)		link;
178 };
179 #define QUEUED_OP_LENGTH (sizeof(struct vbdev_crypto_op))
180 
181 /* The crypto vbdev channel struct. It is allocated and freed on my behalf by the io channel code.
182  * We store things in here that are needed on per thread basis like the base_channel for this thread,
183  * and the poller for this thread.
184  */
185 struct crypto_io_channel {
186 	struct spdk_io_channel		*base_ch;		/* IO channel of base device */
187 	struct spdk_poller		*poller;		/* completion poller */
188 	struct device_qp		*device_qp;		/* unique device/qp combination for this channel */
189 	TAILQ_HEAD(, spdk_bdev_io)	pending_cry_ios;	/* outstanding operations to the crypto device */
190 	struct spdk_io_channel_iter	*iter;			/* used with for_each_channel in reset */
191 	TAILQ_HEAD(, vbdev_crypto_op)	queued_cry_ops;		/* queued for re-submission to CryptoDev */
192 };
193 
194 /* This is the crypto per IO context that the bdev layer allocates for us opaquely and attaches to
195  * each IO for us.
196  */
197 struct crypto_bdev_io {
198 	int cryop_cnt_remaining;			/* counter used when completing crypto ops */
199 	struct crypto_io_channel *crypto_ch;		/* need to store for crypto completion handling */
200 	struct vbdev_crypto *crypto_bdev;		/* the crypto node struct associated with this IO */
201 	struct spdk_bdev_io *orig_io;			/* the original IO */
202 	struct spdk_bdev_io *read_io;			/* the read IO we issued */
203 	int8_t bdev_io_status;				/* the status we'll report back on the bdev IO */
204 	bool on_pending_list;
205 	/* Used for the single contiguous buffer that serves as the crypto destination target for writes */
206 	uint64_t aux_num_blocks;			/* num of blocks for the contiguous buffer */
207 	uint64_t aux_offset_blocks;			/* block offset on media */
208 	void *aux_buf_raw;				/* raw buffer that the bdev layer gave us for write buffer */
209 	struct iovec aux_buf_iov;			/* iov representing aligned contig write buffer */
210 
211 	/* for bdev_io_wait */
212 	struct spdk_bdev_io_wait_entry bdev_io_wait;
213 	struct spdk_io_channel *ch;
214 };
215 
216 /* Called by vbdev_crypto_init_crypto_drivers() to init each discovered crypto device */
217 static int
218 create_vbdev_dev(uint8_t index, uint16_t num_lcores)
219 {
220 	struct vbdev_dev *device;
221 	uint8_t j, cdev_id, cdrv_id;
222 	struct device_qp *dev_qp;
223 	struct device_qp *tmp_qp;
224 	uint32_t qp_desc_nr;
225 	int rc;
226 	TAILQ_HEAD(device_qps, device_qp) *dev_qp_head;
227 
228 	device = calloc(1, sizeof(struct vbdev_dev));
229 	if (!device) {
230 		return -ENOMEM;
231 	}
232 
233 	/* Get details about this device. */
234 	rte_cryptodev_info_get(index, &device->cdev_info);
235 	cdrv_id = device->cdev_info.driver_id;
236 	cdev_id = device->cdev_id = index;
237 
238 	/* QAT_ASYM devices are not supported at this time. */
239 	if (strcmp(device->cdev_info.driver_name, QAT_ASYM) == 0) {
240 		free(device);
241 		return 0;
242 	}
243 
244 	/* Before going any further, make sure we have enough resources for this
245 	 * device type to function.  We need a unique queue pair per core across each
246 	 * device type to remain lockless....
247 	 */
248 	if ((rte_cryptodev_device_count_by_driver(cdrv_id) *
249 	     device->cdev_info.max_nb_queue_pairs) < num_lcores) {
250 		SPDK_ERRLOG("Insufficient unique queue pairs available for %s\n",
251 			    device->cdev_info.driver_name);
252 		SPDK_ERRLOG("Either add more crypto devices or decrease core count\n");
253 		rc = -EINVAL;
254 		goto err;
255 	}
256 
257 	/* Setup queue pairs. */
258 	struct rte_cryptodev_config conf = {
259 		.nb_queue_pairs = device->cdev_info.max_nb_queue_pairs,
260 		.socket_id = SPDK_ENV_SOCKET_ID_ANY
261 	};
262 
263 	rc = rte_cryptodev_configure(cdev_id, &conf);
264 	if (rc < 0) {
265 		SPDK_ERRLOG("Failed to configure cryptodev %u: error %d\n",
266 			    cdev_id, rc);
267 		rc = -EINVAL;
268 		goto err;
269 	}
270 
271 	/* Select the right device/qp list based on driver name
272 	 * or error if it does not exist.
273 	 */
274 	if (strcmp(device->cdev_info.driver_name, QAT) == 0) {
275 		dev_qp_head = (struct device_qps *)&g_device_qp_qat;
276 		qp_desc_nr = CRYPTO_QP_DESCRIPTORS;
277 	} else if (strcmp(device->cdev_info.driver_name, AESNI_MB) == 0) {
278 		dev_qp_head = (struct device_qps *)&g_device_qp_aesni_mb;
279 		qp_desc_nr = CRYPTO_QP_DESCRIPTORS;
280 	} else if (strcmp(device->cdev_info.driver_name, MLX5) == 0) {
281 		dev_qp_head = (struct device_qps *)&g_device_qp_mlx5;
282 		qp_desc_nr = CRYPTO_QP_DESCRIPTORS_MLX5;
283 	} else {
284 		SPDK_ERRLOG("Failed to start device %u. Invalid driver name \"%s\"\n",
285 			    cdev_id, device->cdev_info.driver_name);
286 		rc = -EINVAL;
287 		goto err_qp_setup;
288 	}
289 
290 	struct rte_cryptodev_qp_conf qp_conf = {
291 		.nb_descriptors = qp_desc_nr,
292 		.mp_session = g_session_mp,
293 #if RTE_VERSION < RTE_VERSION_NUM(22, 11, 0, 0)
294 		.mp_session_private = g_session_mp_priv,
295 #endif
296 	};
297 
298 	/* Pre-setup all potential qpairs now and assign them in the channel
299 	 * callback. If we were to create them there, we'd have to stop the
300 	 * entire device affecting all other threads that might be using it
301 	 * even on other queue pairs.
302 	 */
303 	for (j = 0; j < device->cdev_info.max_nb_queue_pairs; j++) {
304 		rc = rte_cryptodev_queue_pair_setup(cdev_id, j, &qp_conf, SOCKET_ID_ANY);
305 		if (rc < 0) {
306 			SPDK_ERRLOG("Failed to setup queue pair %u on "
307 				    "cryptodev %u: error %d\n", j, cdev_id, rc);
308 			rc = -EINVAL;
309 			goto err_qp_setup;
310 		}
311 	}
312 
313 	rc = rte_cryptodev_start(cdev_id);
314 	if (rc < 0) {
315 		SPDK_ERRLOG("Failed to start device %u: error %d\n",
316 			    cdev_id, rc);
317 		rc = -EINVAL;
318 		goto err_dev_start;
319 	}
320 
321 	/* Build up lists of device/qp combinations per PMD */
322 	for (j = 0; j < device->cdev_info.max_nb_queue_pairs; j++) {
323 		dev_qp = calloc(1, sizeof(struct device_qp));
324 		if (!dev_qp) {
325 			rc = -ENOMEM;
326 			goto err_qp_alloc;
327 		}
328 		dev_qp->device = device;
329 		dev_qp->qp = j;
330 		dev_qp->in_use = false;
331 		if (strcmp(device->cdev_info.driver_name, QAT) == 0) {
332 			g_qat_total_qp++;
333 		}
334 		TAILQ_INSERT_TAIL(dev_qp_head, dev_qp, link);
335 	}
336 
337 	/* Add to our list of available crypto devices. */
338 	TAILQ_INSERT_TAIL(&g_vbdev_devs, device, link);
339 
340 	return 0;
341 err_qp_alloc:
342 	TAILQ_FOREACH_SAFE(dev_qp, dev_qp_head, link, tmp_qp) {
343 		if (dev_qp->device->cdev_id != device->cdev_id) {
344 			continue;
345 		}
346 		TAILQ_REMOVE(dev_qp_head, dev_qp, link);
347 		if (dev_qp_head == (struct device_qps *)&g_device_qp_qat) {
348 			g_qat_total_qp--;
349 		}
350 		free(dev_qp);
351 	}
352 	rte_cryptodev_stop(cdev_id);
353 err_dev_start:
354 err_qp_setup:
355 	rte_cryptodev_close(cdev_id);
356 err:
357 	free(device);
358 
359 	return rc;
360 }
361 
362 static void
363 release_vbdev_dev(struct vbdev_dev *device)
364 {
365 	struct device_qp *dev_qp;
366 	struct device_qp *tmp_qp;
367 	TAILQ_HEAD(device_qps, device_qp) *dev_qp_head = NULL;
368 
369 	assert(device);
370 
371 	/* Select the right device/qp list based on driver name. */
372 	if (strcmp(device->cdev_info.driver_name, QAT) == 0) {
373 		dev_qp_head = (struct device_qps *)&g_device_qp_qat;
374 	} else if (strcmp(device->cdev_info.driver_name, AESNI_MB) == 0) {
375 		dev_qp_head = (struct device_qps *)&g_device_qp_aesni_mb;
376 	} else if (strcmp(device->cdev_info.driver_name, MLX5) == 0) {
377 		dev_qp_head = (struct device_qps *)&g_device_qp_mlx5;
378 	}
379 	if (dev_qp_head) {
380 		TAILQ_FOREACH_SAFE(dev_qp, dev_qp_head, link, tmp_qp) {
381 			/* Remove only qps of our device even if the driver names matches. */
382 			if (dev_qp->device->cdev_id != device->cdev_id) {
383 				continue;
384 			}
385 			TAILQ_REMOVE(dev_qp_head, dev_qp, link);
386 			if (dev_qp_head == (struct device_qps *)&g_device_qp_qat) {
387 				g_qat_total_qp--;
388 			}
389 			free(dev_qp);
390 		}
391 	}
392 	rte_cryptodev_stop(device->cdev_id);
393 	rte_cryptodev_close(device->cdev_id);
394 	free(device);
395 }
396 
397 /* Dummy function used by DPDK to free ext attached buffers to mbufs, we free them ourselves but
398  * this callback has to be here. */
399 static void
400 shinfo_free_cb(void *arg1, void *arg2)
401 {
402 }
403 
404 /* This is called from the module's init function. We setup all crypto devices early on as we are unable
405  * to easily dynamically configure queue pairs after the drivers are up and running.  So, here, we
406  * configure the max capabilities of each device and assign threads to queue pairs as channels are
407  * requested.
408  */
409 static int
410 vbdev_crypto_init_crypto_drivers(void)
411 {
412 	uint8_t cdev_count;
413 	uint8_t cdev_id;
414 	int i, rc;
415 	struct vbdev_dev *device;
416 	struct vbdev_dev *tmp_dev;
417 	struct device_qp *dev_qp;
418 	unsigned int max_sess_size = 0, sess_size;
419 	uint16_t num_lcores = rte_lcore_count();
420 	char aesni_args[32];
421 
422 	/* Only the first call, via RPC or module init should init the crypto drivers. */
423 	if (g_session_mp != NULL) {
424 		return 0;
425 	}
426 
427 	/* We always init AESNI_MB */
428 	snprintf(aesni_args, sizeof(aesni_args), "max_nb_queue_pairs=%d", AESNI_MB_NUM_QP);
429 	rc = rte_vdev_init(AESNI_MB, aesni_args);
430 	if (rc) {
431 		SPDK_NOTICELOG("Failed to create virtual PMD %s: error %d. "
432 			       "Possibly %s is not supported by DPDK library. "
433 			       "Keep going...\n", AESNI_MB, rc, AESNI_MB);
434 	}
435 
436 	/* If we have no crypto devices, there's no reason to continue. */
437 	cdev_count = rte_cryptodev_count();
438 	SPDK_NOTICELOG("Found crypto devices: %d\n", (int)cdev_count);
439 	if (cdev_count == 0) {
440 		return 0;
441 	}
442 
443 	g_mbuf_offset = rte_mbuf_dynfield_register(&rte_mbuf_dynfield_io_context);
444 	if (g_mbuf_offset < 0) {
445 		SPDK_ERRLOG("error registering dynamic field with DPDK\n");
446 		return -EINVAL;
447 	}
448 
449 	/*
450 	 * Create global mempools, shared by all devices regardless of type.
451 	 */
452 
453 	/* First determine max session size, most pools are shared by all the devices,
454 	 * so we need to find the global max sessions size.
455 	 */
456 	for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) {
457 		sess_size = rte_cryptodev_sym_get_private_session_size(cdev_id);
458 		if (sess_size > max_sess_size) {
459 			max_sess_size = sess_size;
460 		}
461 	}
462 
463 #if RTE_VERSION < RTE_VERSION_NUM(22, 11, 0, 0)
464 	g_session_mp_priv = rte_mempool_create("session_mp_priv", NUM_SESSIONS, max_sess_size,
465 					       SESS_MEMPOOL_CACHE_SIZE, 0, NULL, NULL, NULL,
466 					       NULL, SOCKET_ID_ANY, 0);
467 	if (g_session_mp_priv == NULL) {
468 		SPDK_ERRLOG("Cannot create private session pool max size 0x%x\n", max_sess_size);
469 		return -ENOMEM;
470 	}
471 	/* When session private data mempool allocated, the element size for the session mempool
472 	 * should be 0. */
473 	max_sess_size = 0;
474 #endif
475 
476 	g_session_mp = rte_cryptodev_sym_session_pool_create(
477 			       "session_mp",
478 			       NUM_SESSIONS, max_sess_size, SESS_MEMPOOL_CACHE_SIZE, 0,
479 			       SOCKET_ID_ANY);
480 	if (g_session_mp == NULL) {
481 		SPDK_ERRLOG("Cannot create session pool max size 0x%x\n", max_sess_size);
482 		rc = -ENOMEM;
483 		goto error_create_session_mp;
484 	}
485 
486 	g_mbuf_mp = rte_pktmbuf_pool_create("mbuf_mp", NUM_MBUFS, POOL_CACHE_SIZE,
487 					    0, 0, SPDK_ENV_SOCKET_ID_ANY);
488 	if (g_mbuf_mp == NULL) {
489 		SPDK_ERRLOG("Cannot create mbuf pool\n");
490 		rc = -ENOMEM;
491 		goto error_create_mbuf;
492 	}
493 
494 	/* We use per op private data as suggested by DPDK and to store the IV and
495 	 * our own struct for queueing ops.
496 	 */
497 	g_crypto_op_mp = rte_crypto_op_pool_create("op_mp",
498 			 RTE_CRYPTO_OP_TYPE_SYMMETRIC,
499 			 NUM_MBUFS,
500 			 POOL_CACHE_SIZE,
501 			 (DEFAULT_NUM_XFORMS *
502 			  sizeof(struct rte_crypto_sym_xform)) +
503 			 IV_LENGTH + QUEUED_OP_LENGTH,
504 			 rte_socket_id());
505 
506 	if (g_crypto_op_mp == NULL) {
507 		SPDK_ERRLOG("Cannot create op pool\n");
508 		rc = -ENOMEM;
509 		goto error_create_op;
510 	}
511 
512 	/* Init all devices */
513 	for (i = 0; i < cdev_count; i++) {
514 		rc = create_vbdev_dev(i, num_lcores);
515 		if (rc) {
516 			goto err;
517 		}
518 	}
519 
520 	/* Assign index values to the QAT device qp nodes so that we can
521 	 * assign them for optimal performance.
522 	 */
523 	i = 0;
524 	TAILQ_FOREACH(dev_qp, &g_device_qp_qat, link) {
525 		dev_qp->index = i++;
526 	}
527 
528 	g_shinfo.free_cb = shinfo_free_cb;
529 	return 0;
530 
531 	/* Error cleanup paths. */
532 err:
533 	TAILQ_FOREACH_SAFE(device, &g_vbdev_devs, link, tmp_dev) {
534 		TAILQ_REMOVE(&g_vbdev_devs, device, link);
535 		release_vbdev_dev(device);
536 	}
537 	rte_mempool_free(g_crypto_op_mp);
538 	g_crypto_op_mp = NULL;
539 error_create_op:
540 	rte_mempool_free(g_mbuf_mp);
541 	g_mbuf_mp = NULL;
542 error_create_mbuf:
543 	rte_mempool_free(g_session_mp);
544 	g_session_mp = NULL;
545 error_create_session_mp:
546 	if (g_session_mp_priv != NULL) {
547 		rte_mempool_free(g_session_mp_priv);
548 		g_session_mp_priv = NULL;
549 	}
550 	return rc;
551 }
552 
553 /* Following an encrypt or decrypt we need to then either write the encrypted data or finish
554  * the read on decrypted data. Do that here.
555  */
556 static void
557 _crypto_operation_complete(struct spdk_bdev_io *bdev_io)
558 {
559 	struct vbdev_crypto *crypto_bdev = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_crypto,
560 					   crypto_bdev);
561 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
562 	struct crypto_io_channel *crypto_ch = io_ctx->crypto_ch;
563 	struct spdk_bdev_io *free_me = io_ctx->read_io;
564 	int rc = 0;
565 
566 	/* Can also be called from the crypto_dev_poller() to fail the stuck re-enqueue ops IO. */
567 	if (io_ctx->on_pending_list) {
568 		TAILQ_REMOVE(&crypto_ch->pending_cry_ios, bdev_io, module_link);
569 		io_ctx->on_pending_list = false;
570 	}
571 
572 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
573 
574 		/* Complete the original IO and then free the one that we created
575 		 * as a result of issuing an IO via submit_request.
576 		 */
577 		if (io_ctx->bdev_io_status != SPDK_BDEV_IO_STATUS_FAILED) {
578 			spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS);
579 		} else {
580 			SPDK_ERRLOG("Issue with decryption on bdev_io %p\n", bdev_io);
581 			rc = -EINVAL;
582 		}
583 		spdk_bdev_free_io(free_me);
584 
585 	} else if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
586 
587 		if (io_ctx->bdev_io_status != SPDK_BDEV_IO_STATUS_FAILED) {
588 			/* Write the encrypted data. */
589 			rc = spdk_bdev_writev_blocks(crypto_bdev->base_desc, crypto_ch->base_ch,
590 						     &io_ctx->aux_buf_iov, 1, io_ctx->aux_offset_blocks,
591 						     io_ctx->aux_num_blocks, _complete_internal_write,
592 						     bdev_io);
593 		} else {
594 			SPDK_ERRLOG("Issue with encryption on bdev_io %p\n", bdev_io);
595 			rc = -EINVAL;
596 		}
597 
598 	} else {
599 		SPDK_ERRLOG("Unknown bdev type %u on crypto operation completion\n",
600 			    bdev_io->type);
601 		rc = -EINVAL;
602 	}
603 
604 	if (rc) {
605 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
606 	}
607 }
608 
609 static void
610 cancel_queued_crypto_ops(struct crypto_io_channel *crypto_ch, struct spdk_bdev_io *bdev_io)
611 {
612 	struct rte_mbuf *mbufs_to_free[2 * MAX_DEQUEUE_BURST_SIZE];
613 	struct rte_crypto_op *dequeued_ops[MAX_DEQUEUE_BURST_SIZE];
614 	struct vbdev_crypto_op *op_to_cancel, *tmp_op;
615 	struct rte_crypto_op *crypto_op;
616 	int num_mbufs, num_dequeued_ops;
617 
618 	/* Remove all ops from the failed IO. Since we don't know the
619 	 * order we have to check them all. */
620 	num_mbufs = 0;
621 	num_dequeued_ops = 0;
622 	TAILQ_FOREACH_SAFE(op_to_cancel, &crypto_ch->queued_cry_ops, link, tmp_op) {
623 		/* Checking if this is our op. One IO contains multiple ops. */
624 		if (bdev_io == op_to_cancel->bdev_io) {
625 			crypto_op = op_to_cancel->crypto_op;
626 			TAILQ_REMOVE(&crypto_ch->queued_cry_ops, op_to_cancel, link);
627 
628 			/* Populating lists for freeing mbufs and ops. */
629 			mbufs_to_free[num_mbufs++] = (void *)crypto_op->sym->m_src;
630 			if (crypto_op->sym->m_dst) {
631 				mbufs_to_free[num_mbufs++] = (void *)crypto_op->sym->m_dst;
632 			}
633 			dequeued_ops[num_dequeued_ops++] = crypto_op;
634 		}
635 	}
636 
637 	/* Now bulk free both mbufs and crypto operations. */
638 	if (num_dequeued_ops > 0) {
639 		rte_mempool_put_bulk(g_crypto_op_mp, (void **)dequeued_ops,
640 				     num_dequeued_ops);
641 		assert(num_mbufs > 0);
642 		/* This also releases chained mbufs if any. */
643 		rte_pktmbuf_free_bulk(mbufs_to_free, num_mbufs);
644 	}
645 }
646 
647 static int _crypto_operation(struct spdk_bdev_io *bdev_io,
648 			     enum rte_crypto_cipher_operation crypto_op,
649 			     void *aux_buf);
650 
651 /* This is the poller for the crypto device. It uses a single API to dequeue whatever is ready at
652  * the device. Then we need to decide if what we've got so far (including previous poller
653  * runs) totals up to one or more complete bdev_ios and if so continue with the bdev_io
654  * accordingly. This means either completing a read or issuing a new write.
655  */
656 static int
657 crypto_dev_poller(void *args)
658 {
659 	struct crypto_io_channel *crypto_ch = args;
660 	uint8_t cdev_id = crypto_ch->device_qp->device->cdev_id;
661 	int i, num_dequeued_ops, num_enqueued_ops;
662 	struct spdk_bdev_io *bdev_io = NULL;
663 	struct crypto_bdev_io *io_ctx = NULL;
664 	struct rte_crypto_op *dequeued_ops[MAX_DEQUEUE_BURST_SIZE];
665 	struct rte_mbuf *mbufs_to_free[2 * MAX_DEQUEUE_BURST_SIZE];
666 	int num_mbufs = 0;
667 	struct vbdev_crypto_op *op_to_resubmit;
668 
669 	/* Each run of the poller will get just what the device has available
670 	 * at the moment we call it, we don't check again after draining the
671 	 * first batch.
672 	 */
673 	num_dequeued_ops = rte_cryptodev_dequeue_burst(cdev_id, crypto_ch->device_qp->qp,
674 			   dequeued_ops, MAX_DEQUEUE_BURST_SIZE);
675 
676 	/* Check if operation was processed successfully */
677 	for (i = 0; i < num_dequeued_ops; i++) {
678 
679 		/* We don't know the order or association of the crypto ops wrt any
680 		 * particular bdev_io so need to look at each and determine if it's
681 		 * the last one for it's bdev_io or not.
682 		 */
683 		bdev_io = (struct spdk_bdev_io *)*RTE_MBUF_DYNFIELD(dequeued_ops[i]->sym->m_src, g_mbuf_offset,
684 				uint64_t *);
685 		assert(bdev_io != NULL);
686 		io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
687 
688 		if (dequeued_ops[i]->status != RTE_CRYPTO_OP_STATUS_SUCCESS) {
689 			SPDK_ERRLOG("error with op %d status %u\n", i,
690 				    dequeued_ops[i]->status);
691 			/* Update the bdev status to error, we'll still process the
692 			 * rest of the crypto ops for this bdev_io though so they
693 			 * aren't left hanging.
694 			 */
695 			io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_FAILED;
696 		}
697 
698 		assert(io_ctx->cryop_cnt_remaining > 0);
699 
700 		/* Return the associated src and dst mbufs by collecting them into
701 		 * an array that we can use the bulk API to free after the loop.
702 		 */
703 		*RTE_MBUF_DYNFIELD(dequeued_ops[i]->sym->m_src, g_mbuf_offset, uint64_t *) = 0;
704 		mbufs_to_free[num_mbufs++] = (void *)dequeued_ops[i]->sym->m_src;
705 		if (dequeued_ops[i]->sym->m_dst) {
706 			mbufs_to_free[num_mbufs++] = (void *)dequeued_ops[i]->sym->m_dst;
707 		}
708 
709 		/* done encrypting, complete the bdev_io */
710 		if (--io_ctx->cryop_cnt_remaining == 0) {
711 
712 			/* If we're completing this with an outstanding reset we need
713 			 * to fail it.
714 			 */
715 			if (crypto_ch->iter) {
716 				io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_FAILED;
717 			}
718 
719 			/* Complete the IO */
720 			_crypto_operation_complete(bdev_io);
721 		}
722 	}
723 
724 	/* Now bulk free both mbufs and crypto operations. */
725 	if (num_dequeued_ops > 0) {
726 		rte_mempool_put_bulk(g_crypto_op_mp,
727 				     (void **)dequeued_ops,
728 				     num_dequeued_ops);
729 		assert(num_mbufs > 0);
730 		/* This also releases chained mbufs if any. */
731 		rte_pktmbuf_free_bulk(mbufs_to_free, num_mbufs);
732 	}
733 
734 	/* Check if there are any pending crypto ops to process */
735 	while (!TAILQ_EMPTY(&crypto_ch->queued_cry_ops)) {
736 		op_to_resubmit = TAILQ_FIRST(&crypto_ch->queued_cry_ops);
737 		bdev_io = op_to_resubmit->bdev_io;
738 		io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
739 		num_enqueued_ops = rte_cryptodev_enqueue_burst(op_to_resubmit->cdev_id,
740 				   op_to_resubmit->qp,
741 				   &op_to_resubmit->crypto_op,
742 				   1);
743 		if (num_enqueued_ops == 1) {
744 			/* Make sure we don't put this on twice as one bdev_io is made up
745 			 * of many crypto ops.
746 			 */
747 			if (io_ctx->on_pending_list == false) {
748 				TAILQ_INSERT_TAIL(&crypto_ch->pending_cry_ios, bdev_io, module_link);
749 				io_ctx->on_pending_list = true;
750 			}
751 			TAILQ_REMOVE(&crypto_ch->queued_cry_ops, op_to_resubmit, link);
752 		} else {
753 			if (op_to_resubmit->crypto_op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED) {
754 				/* If we couldn't get one, just break and try again later. */
755 				break;
756 			} else {
757 				/* Something is really wrong with the op. Most probably the
758 				 * mbuf is broken or the HW is not able to process the request.
759 				 * Fail the IO and remove its ops from the queued ops list. */
760 				io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_FAILED;
761 
762 				cancel_queued_crypto_ops(crypto_ch, bdev_io);
763 
764 				/* Fail the IO if there is nothing left on device. */
765 				if (--io_ctx->cryop_cnt_remaining == 0) {
766 					_crypto_operation_complete(bdev_io);
767 				}
768 			}
769 
770 		}
771 	}
772 
773 	/* If the channel iter is not NULL, we need to continue to poll
774 	 * until the pending list is empty, then we can move on to the
775 	 * next channel.
776 	 */
777 	if (crypto_ch->iter && TAILQ_EMPTY(&crypto_ch->pending_cry_ios)) {
778 		SPDK_NOTICELOG("Channel %p has been quiesced.\n", crypto_ch);
779 		spdk_for_each_channel_continue(crypto_ch->iter, 0);
780 		crypto_ch->iter = NULL;
781 	}
782 
783 	return num_dequeued_ops;
784 }
785 
786 /* Allocate the new mbuf of @remainder size with data pointed by @addr and attach
787  * it to the @orig_mbuf. */
788 static int
789 mbuf_chain_remainder(struct spdk_bdev_io *bdev_io, struct rte_mbuf *orig_mbuf,
790 		     uint8_t *addr, uint32_t remainder)
791 {
792 	uint64_t phys_addr, phys_len;
793 	struct rte_mbuf *chain_mbuf;
794 	int rc;
795 
796 	phys_len = remainder;
797 	phys_addr = spdk_vtophys((void *)addr, &phys_len);
798 	if (spdk_unlikely(phys_addr == SPDK_VTOPHYS_ERROR || phys_len != remainder)) {
799 		return -EFAULT;
800 	}
801 	rc = rte_pktmbuf_alloc_bulk(g_mbuf_mp, (struct rte_mbuf **)&chain_mbuf, 1);
802 	if (spdk_unlikely(rc)) {
803 		return -ENOMEM;
804 	}
805 	/* Store context in every mbuf as we don't know anything about completion order */
806 	*RTE_MBUF_DYNFIELD(chain_mbuf, g_mbuf_offset, uint64_t *) = (uint64_t)bdev_io;
807 	rte_pktmbuf_attach_extbuf(chain_mbuf, addr, phys_addr, phys_len, &g_shinfo);
808 	rte_pktmbuf_append(chain_mbuf, phys_len);
809 
810 	/* Chained buffer is released by rte_pktbuf_free_bulk() automagicaly. */
811 	rte_pktmbuf_chain(orig_mbuf, chain_mbuf);
812 	return 0;
813 }
814 
815 /* Attach data buffer pointed by @addr to @mbuf. Return utilized len of the
816  * contiguous space that was physically available. */
817 static uint64_t
818 mbuf_attach_buf(struct spdk_bdev_io *bdev_io, struct rte_mbuf *mbuf,
819 		uint8_t *addr, uint32_t len)
820 {
821 	uint64_t phys_addr, phys_len;
822 
823 	/* Store context in every mbuf as we don't know anything about completion order */
824 	*RTE_MBUF_DYNFIELD(mbuf, g_mbuf_offset, uint64_t *) = (uint64_t)bdev_io;
825 
826 	phys_len = len;
827 	phys_addr = spdk_vtophys((void *)addr, &phys_len);
828 	if (spdk_unlikely(phys_addr == SPDK_VTOPHYS_ERROR || phys_len == 0)) {
829 		return 0;
830 	}
831 	assert(phys_len <= len);
832 
833 	/* Set the mbuf elements address and length. */
834 	rte_pktmbuf_attach_extbuf(mbuf, addr, phys_addr, phys_len, &g_shinfo);
835 	rte_pktmbuf_append(mbuf, phys_len);
836 
837 	return phys_len;
838 }
839 
840 /* We're either encrypting on the way down or decrypting on the way back. */
841 static int
842 _crypto_operation(struct spdk_bdev_io *bdev_io, enum rte_crypto_cipher_operation crypto_op,
843 		  void *aux_buf)
844 {
845 	uint16_t num_enqueued_ops = 0;
846 	uint32_t cryop_cnt = bdev_io->u.bdev.num_blocks;
847 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
848 	struct crypto_io_channel *crypto_ch = io_ctx->crypto_ch;
849 	uint8_t cdev_id = crypto_ch->device_qp->device->cdev_id;
850 	uint32_t crypto_len = io_ctx->crypto_bdev->crypto_bdev.blocklen;
851 	uint64_t total_length = bdev_io->u.bdev.num_blocks * crypto_len;
852 	int rc;
853 	uint32_t iov_index = 0;
854 	uint32_t allocated = 0;
855 	uint8_t *current_iov = NULL;
856 	uint64_t total_remaining = 0;
857 	uint64_t current_iov_remaining = 0;
858 	uint32_t crypto_index = 0;
859 	uint32_t en_offset = 0;
860 	struct rte_crypto_op *crypto_ops[MAX_ENQUEUE_ARRAY_SIZE];
861 	struct rte_mbuf *src_mbufs[MAX_ENQUEUE_ARRAY_SIZE];
862 	struct rte_mbuf *dst_mbufs[MAX_ENQUEUE_ARRAY_SIZE];
863 	int burst;
864 	struct vbdev_crypto_op *op_to_queue;
865 	uint64_t alignment = spdk_bdev_get_buf_align(&io_ctx->crypto_bdev->crypto_bdev);
866 
867 	assert((bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen) <= CRYPTO_MAX_IO);
868 
869 	/* Get the number of source mbufs that we need. These will always be 1:1 because we
870 	 * don't support chaining. The reason we don't is because of our decision to use
871 	 * LBA as IV, there can be no case where we'd need >1 mbuf per crypto op or the
872 	 * op would be > 1 LBA.
873 	 */
874 	rc = rte_pktmbuf_alloc_bulk(g_mbuf_mp, src_mbufs, cryop_cnt);
875 	if (rc) {
876 		SPDK_ERRLOG("Failed to get src_mbufs!\n");
877 		return -ENOMEM;
878 	}
879 
880 	/* Get the same amount but these buffers to describe the encrypted data location (dst). */
881 	if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
882 		rc = rte_pktmbuf_alloc_bulk(g_mbuf_mp, dst_mbufs, cryop_cnt);
883 		if (rc) {
884 			SPDK_ERRLOG("Failed to get dst_mbufs!\n");
885 			rc = -ENOMEM;
886 			goto error_get_dst;
887 		}
888 	}
889 
890 #ifdef __clang_analyzer__
891 	/* silence scan-build false positive */
892 	SPDK_CLANG_ANALYZER_PREINIT_PTR_ARRAY(crypto_ops, MAX_ENQUEUE_ARRAY_SIZE, 0x1000);
893 #endif
894 	/* Allocate crypto operations. */
895 	allocated = rte_crypto_op_bulk_alloc(g_crypto_op_mp,
896 					     RTE_CRYPTO_OP_TYPE_SYMMETRIC,
897 					     crypto_ops, cryop_cnt);
898 	if (allocated < cryop_cnt) {
899 		SPDK_ERRLOG("Failed to allocate crypto ops!\n");
900 		rc = -ENOMEM;
901 		goto error_get_ops;
902 	}
903 
904 	/* For encryption, we need to prepare a single contiguous buffer as the encryption
905 	 * destination, we'll then pass that along for the write after encryption is done.
906 	 * This is done to avoiding encrypting the provided write buffer which may be
907 	 * undesirable in some use cases.
908 	 */
909 	if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
910 		io_ctx->aux_buf_iov.iov_len = total_length;
911 		io_ctx->aux_buf_raw = aux_buf;
912 		io_ctx->aux_buf_iov.iov_base  = (void *)(((uintptr_t)aux_buf + (alignment - 1)) & ~(alignment - 1));
913 		io_ctx->aux_offset_blocks = bdev_io->u.bdev.offset_blocks;
914 		io_ctx->aux_num_blocks = bdev_io->u.bdev.num_blocks;
915 	}
916 
917 	/* This value is used in the completion callback to determine when the bdev_io is
918 	 * complete.
919 	 */
920 	io_ctx->cryop_cnt_remaining = cryop_cnt;
921 
922 	/* As we don't support chaining because of a decision to use LBA as IV, construction
923 	 * of crypto operations is straightforward. We build both the op, the mbuf and the
924 	 * dst_mbuf in our local arrays by looping through the length of the bdev IO and
925 	 * picking off LBA sized blocks of memory from the IOVs as we walk through them. Each
926 	 * LBA sized chunk of memory will correspond 1:1 to a crypto operation and a single
927 	 * mbuf per crypto operation.
928 	 */
929 	total_remaining = total_length;
930 	current_iov = bdev_io->u.bdev.iovs[iov_index].iov_base;
931 	current_iov_remaining = bdev_io->u.bdev.iovs[iov_index].iov_len;
932 	do {
933 		uint8_t *iv_ptr;
934 		uint8_t *buf_addr;
935 		uint64_t phys_len;
936 		uint32_t remainder;
937 		uint64_t op_block_offset;
938 
939 		phys_len = mbuf_attach_buf(bdev_io, src_mbufs[crypto_index],
940 					   current_iov, crypto_len);
941 		if (spdk_unlikely(phys_len == 0)) {
942 			goto error_attach_session;
943 			rc = -EFAULT;
944 		}
945 
946 		/* Handle the case of page boundary. */
947 		remainder = crypto_len - phys_len;
948 		if (spdk_unlikely(remainder > 0)) {
949 			rc = mbuf_chain_remainder(bdev_io, src_mbufs[crypto_index],
950 						  current_iov + phys_len, remainder);
951 			if (spdk_unlikely(rc)) {
952 				goto error_attach_session;
953 			}
954 		}
955 
956 		/* Set the IV - we use the LBA of the crypto_op */
957 		iv_ptr = rte_crypto_op_ctod_offset(crypto_ops[crypto_index], uint8_t *,
958 						   IV_OFFSET);
959 		memset(iv_ptr, 0, IV_LENGTH);
960 		op_block_offset = bdev_io->u.bdev.offset_blocks + crypto_index;
961 		rte_memcpy(iv_ptr, &op_block_offset, sizeof(uint64_t));
962 
963 		/* Set the data to encrypt/decrypt length */
964 		crypto_ops[crypto_index]->sym->cipher.data.length = crypto_len;
965 		crypto_ops[crypto_index]->sym->cipher.data.offset = 0;
966 
967 		/* link the mbuf to the crypto op. */
968 		crypto_ops[crypto_index]->sym->m_src = src_mbufs[crypto_index];
969 
970 		/* For encrypt, point the destination to a buffer we allocate and redirect the bdev_io
971 		 * that will be used to process the write on completion to the same buffer. Setting
972 		 * up the en_buffer is a little simpler as we know the destination buffer is single IOV.
973 		 */
974 		if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
975 			buf_addr = io_ctx->aux_buf_iov.iov_base + en_offset;
976 			phys_len = mbuf_attach_buf(bdev_io, dst_mbufs[crypto_index],
977 						   buf_addr, crypto_len);
978 			if (spdk_unlikely(phys_len == 0)) {
979 				rc = -EFAULT;
980 				goto error_attach_session;
981 			}
982 
983 			crypto_ops[crypto_index]->sym->m_dst = dst_mbufs[crypto_index];
984 			en_offset += phys_len;
985 
986 			/* Handle the case of page boundary. */
987 			remainder = crypto_len - phys_len;
988 			if (spdk_unlikely(remainder > 0)) {
989 				rc = mbuf_chain_remainder(bdev_io, dst_mbufs[crypto_index],
990 							  buf_addr + phys_len, remainder);
991 				if (spdk_unlikely(rc)) {
992 					goto error_attach_session;
993 				}
994 				en_offset += remainder;
995 			}
996 
997 			/* Attach the crypto session to the operation */
998 			rc = rte_crypto_op_attach_sym_session(crypto_ops[crypto_index],
999 							      io_ctx->crypto_bdev->session_encrypt);
1000 			if (rc) {
1001 				rc = -EINVAL;
1002 				goto error_attach_session;
1003 			}
1004 		} else {
1005 			crypto_ops[crypto_index]->sym->m_dst = NULL;
1006 
1007 			/* Attach the crypto session to the operation */
1008 			rc = rte_crypto_op_attach_sym_session(crypto_ops[crypto_index],
1009 							      io_ctx->crypto_bdev->session_decrypt);
1010 			if (rc) {
1011 				rc = -EINVAL;
1012 				goto error_attach_session;
1013 			}
1014 		}
1015 
1016 		/* Subtract our running totals for the op in progress and the overall bdev io */
1017 		total_remaining -= crypto_len;
1018 		current_iov_remaining -= crypto_len;
1019 
1020 		/* move our current IOV pointer accordingly. */
1021 		current_iov += crypto_len;
1022 
1023 		/* move on to the next crypto operation */
1024 		crypto_index++;
1025 
1026 		/* If we're done with this IOV, move to the next one. */
1027 		if (current_iov_remaining == 0 && total_remaining > 0) {
1028 			iov_index++;
1029 			current_iov = bdev_io->u.bdev.iovs[iov_index].iov_base;
1030 			current_iov_remaining = bdev_io->u.bdev.iovs[iov_index].iov_len;
1031 		}
1032 	} while (total_remaining > 0);
1033 
1034 	/* Enqueue everything we've got but limit by the max number of descriptors we
1035 	 * configured the crypto device for.
1036 	 */
1037 	burst = spdk_min(cryop_cnt, io_ctx->crypto_bdev->qp_desc_nr);
1038 	num_enqueued_ops = rte_cryptodev_enqueue_burst(cdev_id, crypto_ch->device_qp->qp,
1039 			   &crypto_ops[0],
1040 			   burst);
1041 
1042 	/* Add this bdev_io to our outstanding list if any of its crypto ops made it. */
1043 	if (num_enqueued_ops > 0) {
1044 		TAILQ_INSERT_TAIL(&crypto_ch->pending_cry_ios, bdev_io, module_link);
1045 		io_ctx->on_pending_list = true;
1046 	}
1047 	/* We were unable to enqueue everything but did get some, so need to decide what
1048 	 * to do based on the status of the last op.
1049 	 */
1050 	if (num_enqueued_ops < cryop_cnt) {
1051 		switch (crypto_ops[num_enqueued_ops]->status) {
1052 		case RTE_CRYPTO_OP_STATUS_NOT_PROCESSED:
1053 			/* Queue them up on a linked list to be resubmitted via the poller. */
1054 			for (crypto_index = num_enqueued_ops; crypto_index < cryop_cnt; crypto_index++) {
1055 				op_to_queue = (struct vbdev_crypto_op *)rte_crypto_op_ctod_offset(crypto_ops[crypto_index],
1056 						uint8_t *, QUEUED_OP_OFFSET);
1057 				op_to_queue->cdev_id = cdev_id;
1058 				op_to_queue->qp = crypto_ch->device_qp->qp;
1059 				op_to_queue->crypto_op = crypto_ops[crypto_index];
1060 				op_to_queue->bdev_io = bdev_io;
1061 				TAILQ_INSERT_TAIL(&crypto_ch->queued_cry_ops,
1062 						  op_to_queue,
1063 						  link);
1064 			}
1065 			break;
1066 		default:
1067 			/* For all other statuses, set the io_ctx bdev_io status so that
1068 			 * the poller will pick the failure up for the overall bdev status.
1069 			 */
1070 			io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_FAILED;
1071 			if (num_enqueued_ops == 0) {
1072 				/* If nothing was enqueued, but the last one wasn't because of
1073 				 * busy, fail it now as the poller won't know anything about it.
1074 				 */
1075 				rc = -EINVAL;
1076 				goto error_attach_session;
1077 			}
1078 			break;
1079 		}
1080 	}
1081 
1082 	return rc;
1083 
1084 	/* Error cleanup paths. */
1085 error_attach_session:
1086 error_get_ops:
1087 	if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
1088 		/* This also releases chained mbufs if any. */
1089 		rte_pktmbuf_free_bulk(dst_mbufs, cryop_cnt);
1090 	}
1091 	if (allocated > 0) {
1092 		rte_mempool_put_bulk(g_crypto_op_mp, (void **)crypto_ops,
1093 				     allocated);
1094 	}
1095 error_get_dst:
1096 	/* This also releases chained mbufs if any. */
1097 	rte_pktmbuf_free_bulk(src_mbufs, cryop_cnt);
1098 	return rc;
1099 }
1100 
1101 /* This function is called after all channels have been quiesced following
1102  * a bdev reset.
1103  */
1104 static void
1105 _ch_quiesce_done(struct spdk_io_channel_iter *i, int status)
1106 {
1107 	struct crypto_bdev_io *io_ctx = spdk_io_channel_iter_get_ctx(i);
1108 
1109 	assert(TAILQ_EMPTY(&io_ctx->crypto_ch->pending_cry_ios));
1110 	assert(io_ctx->orig_io != NULL);
1111 
1112 	spdk_bdev_io_complete(io_ctx->orig_io, SPDK_BDEV_IO_STATUS_SUCCESS);
1113 }
1114 
1115 /* This function is called per channel to quiesce IOs before completing a
1116  * bdev reset that we received.
1117  */
1118 static void
1119 _ch_quiesce(struct spdk_io_channel_iter *i)
1120 {
1121 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
1122 	struct crypto_io_channel *crypto_ch = spdk_io_channel_get_ctx(ch);
1123 
1124 	crypto_ch->iter = i;
1125 	/* When the poller runs, it will see the non-NULL iter and handle
1126 	 * the quiesce.
1127 	 */
1128 }
1129 
1130 /* Completion callback for IO that were issued from this bdev other than read/write.
1131  * They have their own for readability.
1132  */
1133 static void
1134 _complete_internal_io(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
1135 {
1136 	struct spdk_bdev_io *orig_io = cb_arg;
1137 	int status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
1138 
1139 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_RESET) {
1140 		struct crypto_bdev_io *orig_ctx = (struct crypto_bdev_io *)orig_io->driver_ctx;
1141 
1142 		assert(orig_io == orig_ctx->orig_io);
1143 
1144 		spdk_bdev_free_io(bdev_io);
1145 
1146 		spdk_for_each_channel(orig_ctx->crypto_bdev,
1147 				      _ch_quiesce,
1148 				      orig_ctx,
1149 				      _ch_quiesce_done);
1150 		return;
1151 	}
1152 
1153 	spdk_bdev_io_complete(orig_io, status);
1154 	spdk_bdev_free_io(bdev_io);
1155 }
1156 
1157 /* Completion callback for writes that were issued from this bdev. */
1158 static void
1159 _complete_internal_write(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
1160 {
1161 	struct spdk_bdev_io *orig_io = cb_arg;
1162 	int status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
1163 	struct crypto_bdev_io *orig_ctx = (struct crypto_bdev_io *)orig_io->driver_ctx;
1164 
1165 	spdk_bdev_io_put_aux_buf(orig_io, orig_ctx->aux_buf_raw);
1166 
1167 	spdk_bdev_io_complete(orig_io, status);
1168 	spdk_bdev_free_io(bdev_io);
1169 }
1170 
1171 /* Completion callback for reads that were issued from this bdev. */
1172 static void
1173 _complete_internal_read(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
1174 {
1175 	struct spdk_bdev_io *orig_io = cb_arg;
1176 	struct crypto_bdev_io *orig_ctx = (struct crypto_bdev_io *)orig_io->driver_ctx;
1177 
1178 	if (success) {
1179 
1180 		/* Save off this bdev_io so it can be freed after decryption. */
1181 		orig_ctx->read_io = bdev_io;
1182 
1183 		if (!_crypto_operation(orig_io, RTE_CRYPTO_CIPHER_OP_DECRYPT, NULL)) {
1184 			return;
1185 		} else {
1186 			SPDK_ERRLOG("Failed to decrypt!\n");
1187 		}
1188 	} else {
1189 		SPDK_ERRLOG("Failed to read prior to decrypting!\n");
1190 	}
1191 
1192 	spdk_bdev_io_complete(orig_io, SPDK_BDEV_IO_STATUS_FAILED);
1193 	spdk_bdev_free_io(bdev_io);
1194 }
1195 
1196 static void
1197 vbdev_crypto_resubmit_io(void *arg)
1198 {
1199 	struct spdk_bdev_io *bdev_io = (struct spdk_bdev_io *)arg;
1200 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
1201 
1202 	vbdev_crypto_submit_request(io_ctx->ch, bdev_io);
1203 }
1204 
1205 static void
1206 vbdev_crypto_queue_io(struct spdk_bdev_io *bdev_io)
1207 {
1208 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
1209 	int rc;
1210 
1211 	io_ctx->bdev_io_wait.bdev = bdev_io->bdev;
1212 	io_ctx->bdev_io_wait.cb_fn = vbdev_crypto_resubmit_io;
1213 	io_ctx->bdev_io_wait.cb_arg = bdev_io;
1214 
1215 	rc = spdk_bdev_queue_io_wait(bdev_io->bdev, io_ctx->crypto_ch->base_ch, &io_ctx->bdev_io_wait);
1216 	if (rc != 0) {
1217 		SPDK_ERRLOG("Queue io failed in vbdev_crypto_queue_io, rc=%d.\n", rc);
1218 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1219 	}
1220 }
1221 
1222 /* Callback for getting a buf from the bdev pool in the event that the caller passed
1223  * in NULL, we need to own the buffer so it doesn't get freed by another vbdev module
1224  * beneath us before we're done with it.
1225  */
1226 static void
1227 crypto_read_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
1228 		       bool success)
1229 {
1230 	struct vbdev_crypto *crypto_bdev = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_crypto,
1231 					   crypto_bdev);
1232 	struct crypto_io_channel *crypto_ch = spdk_io_channel_get_ctx(ch);
1233 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
1234 	int rc;
1235 
1236 	if (!success) {
1237 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1238 		return;
1239 	}
1240 
1241 	rc = spdk_bdev_readv_blocks(crypto_bdev->base_desc, crypto_ch->base_ch, bdev_io->u.bdev.iovs,
1242 				    bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.offset_blocks,
1243 				    bdev_io->u.bdev.num_blocks, _complete_internal_read,
1244 				    bdev_io);
1245 	if (rc != 0) {
1246 		if (rc == -ENOMEM) {
1247 			SPDK_DEBUGLOG(vbdev_crypto, "No memory, queue the IO.\n");
1248 			io_ctx->ch = ch;
1249 			vbdev_crypto_queue_io(bdev_io);
1250 		} else {
1251 			SPDK_ERRLOG("Failed to submit bdev_io!\n");
1252 			spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1253 		}
1254 	}
1255 }
1256 
1257 /* For encryption we don't want to encrypt the data in place as the host isn't
1258  * expecting us to mangle its data buffers so we need to encrypt into the bdev
1259  * aux buffer, then we can use that as the source for the disk data transfer.
1260  */
1261 static void
1262 crypto_write_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
1263 			void *aux_buf)
1264 {
1265 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
1266 	int rc = 0;
1267 
1268 	rc = _crypto_operation(bdev_io, RTE_CRYPTO_CIPHER_OP_ENCRYPT, aux_buf);
1269 	if (rc != 0) {
1270 		spdk_bdev_io_put_aux_buf(bdev_io, aux_buf);
1271 		if (rc == -ENOMEM) {
1272 			SPDK_DEBUGLOG(vbdev_crypto, "No memory, queue the IO.\n");
1273 			io_ctx->ch = ch;
1274 			vbdev_crypto_queue_io(bdev_io);
1275 		} else {
1276 			SPDK_ERRLOG("Failed to submit bdev_io!\n");
1277 			spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1278 		}
1279 	}
1280 }
1281 
1282 /* Called when someone submits IO to this crypto vbdev. For IO's not relevant to crypto,
1283  * we're simply passing it on here via SPDK IO calls which in turn allocate another bdev IO
1284  * and call our cpl callback provided below along with the original bdev_io so that we can
1285  * complete it once this IO completes. For crypto operations, we'll either encrypt it first
1286  * (writes) then call back into bdev to submit it or we'll submit a read and then catch it
1287  * on the way back for decryption.
1288  */
1289 static void
1290 vbdev_crypto_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
1291 {
1292 	struct vbdev_crypto *crypto_bdev = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_crypto,
1293 					   crypto_bdev);
1294 	struct crypto_io_channel *crypto_ch = spdk_io_channel_get_ctx(ch);
1295 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
1296 	int rc = 0;
1297 
1298 	memset(io_ctx, 0, sizeof(struct crypto_bdev_io));
1299 	io_ctx->crypto_bdev = crypto_bdev;
1300 	io_ctx->crypto_ch = crypto_ch;
1301 	io_ctx->orig_io = bdev_io;
1302 	io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1303 
1304 	switch (bdev_io->type) {
1305 	case SPDK_BDEV_IO_TYPE_READ:
1306 		spdk_bdev_io_get_buf(bdev_io, crypto_read_get_buf_cb,
1307 				     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
1308 		break;
1309 	case SPDK_BDEV_IO_TYPE_WRITE:
1310 		/* Tell the bdev layer that we need an aux buf in addition to the data
1311 		 * buf already associated with the bdev.
1312 		 */
1313 		spdk_bdev_io_get_aux_buf(bdev_io, crypto_write_get_buf_cb);
1314 		break;
1315 	case SPDK_BDEV_IO_TYPE_UNMAP:
1316 		rc = spdk_bdev_unmap_blocks(crypto_bdev->base_desc, crypto_ch->base_ch,
1317 					    bdev_io->u.bdev.offset_blocks,
1318 					    bdev_io->u.bdev.num_blocks,
1319 					    _complete_internal_io, bdev_io);
1320 		break;
1321 	case SPDK_BDEV_IO_TYPE_FLUSH:
1322 		rc = spdk_bdev_flush_blocks(crypto_bdev->base_desc, crypto_ch->base_ch,
1323 					    bdev_io->u.bdev.offset_blocks,
1324 					    bdev_io->u.bdev.num_blocks,
1325 					    _complete_internal_io, bdev_io);
1326 		break;
1327 	case SPDK_BDEV_IO_TYPE_RESET:
1328 		rc = spdk_bdev_reset(crypto_bdev->base_desc, crypto_ch->base_ch,
1329 				     _complete_internal_io, bdev_io);
1330 		break;
1331 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
1332 	default:
1333 		SPDK_ERRLOG("crypto: unknown I/O type %d\n", bdev_io->type);
1334 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1335 		return;
1336 	}
1337 
1338 	if (rc != 0) {
1339 		if (rc == -ENOMEM) {
1340 			SPDK_DEBUGLOG(vbdev_crypto, "No memory, queue the IO.\n");
1341 			io_ctx->ch = ch;
1342 			vbdev_crypto_queue_io(bdev_io);
1343 		} else {
1344 			SPDK_ERRLOG("Failed to submit bdev_io!\n");
1345 			spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1346 		}
1347 	}
1348 }
1349 
1350 /* We'll just call the base bdev and let it answer except for WZ command which
1351  * we always say we don't support so that the bdev layer will actually send us
1352  * real writes that we can encrypt.
1353  */
1354 static bool
1355 vbdev_crypto_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
1356 {
1357 	struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
1358 
1359 	switch (io_type) {
1360 	case SPDK_BDEV_IO_TYPE_WRITE:
1361 	case SPDK_BDEV_IO_TYPE_UNMAP:
1362 	case SPDK_BDEV_IO_TYPE_RESET:
1363 	case SPDK_BDEV_IO_TYPE_READ:
1364 	case SPDK_BDEV_IO_TYPE_FLUSH:
1365 		return spdk_bdev_io_type_supported(crypto_bdev->base_bdev, io_type);
1366 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
1367 	/* Force the bdev layer to issue actual writes of zeroes so we can
1368 	 * encrypt them as regular writes.
1369 	 */
1370 	default:
1371 		return false;
1372 	}
1373 }
1374 
1375 static struct vbdev_dev *
1376 _vdev_dev_get(struct vbdev_crypto *vbdev)
1377 {
1378 	struct vbdev_dev *device;
1379 
1380 	TAILQ_FOREACH(device, &g_vbdev_devs, link) {
1381 		if (strcmp(device->cdev_info.driver_name, vbdev->opts->drv_name) == 0) {
1382 			return device;
1383 		}
1384 	}
1385 	return NULL;
1386 }
1387 
1388 static void
1389 _cryptodev_sym_session_free(struct vbdev_crypto *vbdev, void *session)
1390 {
1391 #if RTE_VERSION >= RTE_VERSION_NUM(22, 11, 0, 0)
1392 	struct vbdev_dev *device = _vdev_dev_get(vbdev);
1393 
1394 	assert(device != NULL);
1395 
1396 	rte_cryptodev_sym_session_free(device->cdev_id, session);
1397 #else
1398 	rte_cryptodev_sym_session_free(session);
1399 #endif
1400 }
1401 
1402 static void *
1403 _cryptodev_sym_session_create(struct vbdev_crypto *vbdev, struct rte_crypto_sym_xform *xforms)
1404 {
1405 	void *session;
1406 	struct vbdev_dev *device;
1407 
1408 	device = _vdev_dev_get(vbdev);
1409 	if (!device) {
1410 		SPDK_ERRLOG("Failed to match crypto device driver to crypto vbdev.\n");
1411 		return NULL;
1412 	}
1413 
1414 #if RTE_VERSION >= RTE_VERSION_NUM(22, 11, 0, 0)
1415 	session = rte_cryptodev_sym_session_create(device->cdev_id, xforms, g_session_mp);
1416 #else
1417 	session = rte_cryptodev_sym_session_create(g_session_mp);
1418 	if (!session) {
1419 		return NULL;
1420 	}
1421 
1422 	if (rte_cryptodev_sym_session_init(device->cdev_id, session, xforms, g_session_mp_priv) < 0) {
1423 		_cryptodev_sym_session_free(vbdev, session);
1424 		return NULL;
1425 	}
1426 #endif
1427 
1428 	return session;
1429 }
1430 
1431 /* Callback for unregistering the IO device. */
1432 static void
1433 _device_unregister_cb(void *io_device)
1434 {
1435 	struct vbdev_crypto *crypto_bdev = io_device;
1436 
1437 	/* Done with this crypto_bdev. */
1438 	_cryptodev_sym_session_free(crypto_bdev, crypto_bdev->session_decrypt);
1439 	_cryptodev_sym_session_free(crypto_bdev, crypto_bdev->session_encrypt);
1440 	crypto_bdev->opts = NULL;
1441 	free(crypto_bdev->crypto_bdev.name);
1442 	free(crypto_bdev);
1443 }
1444 
1445 /* Wrapper for the bdev close operation. */
1446 static void
1447 _vbdev_crypto_destruct(void *ctx)
1448 {
1449 	struct spdk_bdev_desc *desc = ctx;
1450 
1451 	spdk_bdev_close(desc);
1452 }
1453 
1454 /* Called after we've unregistered following a hot remove callback.
1455  * Our finish entry point will be called next.
1456  */
1457 static int
1458 vbdev_crypto_destruct(void *ctx)
1459 {
1460 	struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
1461 
1462 	/* Remove this device from the internal list */
1463 	TAILQ_REMOVE(&g_vbdev_crypto, crypto_bdev, link);
1464 
1465 	/* Unclaim the underlying bdev. */
1466 	spdk_bdev_module_release_bdev(crypto_bdev->base_bdev);
1467 
1468 	/* Close the underlying bdev on its same opened thread. */
1469 	if (crypto_bdev->thread && crypto_bdev->thread != spdk_get_thread()) {
1470 		spdk_thread_send_msg(crypto_bdev->thread, _vbdev_crypto_destruct, crypto_bdev->base_desc);
1471 	} else {
1472 		spdk_bdev_close(crypto_bdev->base_desc);
1473 	}
1474 
1475 	/* Unregister the io_device. */
1476 	spdk_io_device_unregister(crypto_bdev, _device_unregister_cb);
1477 
1478 	g_number_of_claimed_volumes--;
1479 
1480 	return 0;
1481 }
1482 
1483 /* We supplied this as an entry point for upper layers who want to communicate to this
1484  * bdev.  This is how they get a channel. We are passed the same context we provided when
1485  * we created our crypto vbdev in examine() which, for this bdev, is the address of one of
1486  * our context nodes. From here we'll ask the SPDK channel code to fill out our channel
1487  * struct and we'll keep it in our crypto node.
1488  */
1489 static struct spdk_io_channel *
1490 vbdev_crypto_get_io_channel(void *ctx)
1491 {
1492 	struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
1493 
1494 	/* The IO channel code will allocate a channel for us which consists of
1495 	 * the SPDK channel structure plus the size of our crypto_io_channel struct
1496 	 * that we passed in when we registered our IO device. It will then call
1497 	 * our channel create callback to populate any elements that we need to
1498 	 * update.
1499 	 */
1500 	return spdk_get_io_channel(crypto_bdev);
1501 }
1502 
1503 /* This is the output for bdev_get_bdevs() for this vbdev */
1504 static int
1505 vbdev_crypto_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
1506 {
1507 	struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
1508 	char *hexkey = NULL, *hexkey2 = NULL;
1509 	int rc = 0;
1510 
1511 	hexkey = spdk_hexlify(crypto_bdev->opts->key,
1512 			      crypto_bdev->opts->key_size);
1513 	if (!hexkey) {
1514 		return -ENOMEM;
1515 	}
1516 
1517 	if (crypto_bdev->opts->key2) {
1518 		hexkey2 = spdk_hexlify(crypto_bdev->opts->key2,
1519 				       crypto_bdev->opts->key2_size);
1520 		if (!hexkey2) {
1521 			rc = -ENOMEM;
1522 			goto out_err;
1523 		}
1524 	}
1525 
1526 	spdk_json_write_name(w, "crypto");
1527 	spdk_json_write_object_begin(w);
1528 	spdk_json_write_named_string(w, "base_bdev_name", spdk_bdev_get_name(crypto_bdev->base_bdev));
1529 	spdk_json_write_named_string(w, "name", spdk_bdev_get_name(&crypto_bdev->crypto_bdev));
1530 	spdk_json_write_named_string(w, "crypto_pmd", crypto_bdev->opts->drv_name);
1531 	spdk_json_write_named_string(w, "key", hexkey);
1532 	if (hexkey2) {
1533 		spdk_json_write_named_string(w, "key2", hexkey2);
1534 	}
1535 	spdk_json_write_named_string(w, "cipher", crypto_bdev->opts->cipher);
1536 	spdk_json_write_object_end(w);
1537 out_err:
1538 	if (hexkey) {
1539 		memset(hexkey, 0, strlen(hexkey));
1540 		free(hexkey);
1541 	}
1542 	if (hexkey2) {
1543 		memset(hexkey2, 0, strlen(hexkey2));
1544 		free(hexkey2);
1545 	}
1546 	return rc;
1547 }
1548 
1549 static int
1550 vbdev_crypto_config_json(struct spdk_json_write_ctx *w)
1551 {
1552 	struct vbdev_crypto *crypto_bdev;
1553 
1554 	TAILQ_FOREACH(crypto_bdev, &g_vbdev_crypto, link) {
1555 		char *hexkey = NULL, *hexkey2 = NULL;
1556 
1557 		hexkey = spdk_hexlify(crypto_bdev->opts->key,
1558 				      crypto_bdev->opts->key_size);
1559 		if (!hexkey) {
1560 			return -ENOMEM;
1561 		}
1562 
1563 		if (crypto_bdev->opts->key2) {
1564 			hexkey2 = spdk_hexlify(crypto_bdev->opts->key2,
1565 					       crypto_bdev->opts->key2_size);
1566 			if (!hexkey2) {
1567 				memset(hexkey, 0, strlen(hexkey));
1568 				free(hexkey);
1569 				return -ENOMEM;
1570 			}
1571 		}
1572 
1573 		spdk_json_write_object_begin(w);
1574 		spdk_json_write_named_string(w, "method", "bdev_crypto_create");
1575 		spdk_json_write_named_object_begin(w, "params");
1576 		spdk_json_write_named_string(w, "base_bdev_name", spdk_bdev_get_name(crypto_bdev->base_bdev));
1577 		spdk_json_write_named_string(w, "name", spdk_bdev_get_name(&crypto_bdev->crypto_bdev));
1578 		spdk_json_write_named_string(w, "crypto_pmd", crypto_bdev->opts->drv_name);
1579 		spdk_json_write_named_string(w, "key", hexkey);
1580 		if (hexkey2) {
1581 			spdk_json_write_named_string(w, "key2", hexkey2);
1582 		}
1583 		spdk_json_write_named_string(w, "cipher", crypto_bdev->opts->cipher);
1584 		spdk_json_write_object_end(w);
1585 		spdk_json_write_object_end(w);
1586 
1587 		if (hexkey) {
1588 			memset(hexkey, 0, strlen(hexkey));
1589 			free(hexkey);
1590 		}
1591 		if (hexkey2) {
1592 			memset(hexkey2, 0, strlen(hexkey2));
1593 			free(hexkey2);
1594 		}
1595 	}
1596 	return 0;
1597 }
1598 
1599 /* Helper function for the channel creation callback. */
1600 static void
1601 _assign_device_qp(struct vbdev_crypto *crypto_bdev, struct device_qp *device_qp,
1602 		  struct crypto_io_channel *crypto_ch)
1603 {
1604 	pthread_mutex_lock(&g_device_qp_lock);
1605 	if (strcmp(crypto_bdev->opts->drv_name, QAT) == 0) {
1606 		/* For some QAT devices, the optimal qp to use is every 32nd as this spreads the
1607 		 * workload out over the multiple virtual functions in the device. For the devices
1608 		 * where this isn't the case, it doesn't hurt.
1609 		 */
1610 		TAILQ_FOREACH(device_qp, &g_device_qp_qat, link) {
1611 			if (device_qp->index != g_next_qat_index) {
1612 				continue;
1613 			}
1614 			if (device_qp->in_use == false) {
1615 				crypto_ch->device_qp = device_qp;
1616 				device_qp->in_use = true;
1617 				g_next_qat_index = (g_next_qat_index + QAT_VF_SPREAD) % g_qat_total_qp;
1618 				break;
1619 			} else {
1620 				/* if the preferred index is used, skip to the next one in this set. */
1621 				g_next_qat_index = (g_next_qat_index + 1) % g_qat_total_qp;
1622 			}
1623 		}
1624 	} else if (strcmp(crypto_bdev->opts->drv_name, AESNI_MB) == 0) {
1625 		TAILQ_FOREACH(device_qp, &g_device_qp_aesni_mb, link) {
1626 			if (device_qp->in_use == false) {
1627 				crypto_ch->device_qp = device_qp;
1628 				device_qp->in_use = true;
1629 				break;
1630 			}
1631 		}
1632 	} else if (strcmp(crypto_bdev->opts->drv_name, MLX5) == 0) {
1633 		TAILQ_FOREACH(device_qp, &g_device_qp_mlx5, link) {
1634 			if (device_qp->in_use == false) {
1635 				crypto_ch->device_qp = device_qp;
1636 				device_qp->in_use = true;
1637 				break;
1638 			}
1639 		}
1640 	}
1641 	pthread_mutex_unlock(&g_device_qp_lock);
1642 }
1643 
1644 /* We provide this callback for the SPDK channel code to create a channel using
1645  * the channel struct we provided in our module get_io_channel() entry point. Here
1646  * we get and save off an underlying base channel of the device below us so that
1647  * we can communicate with the base bdev on a per channel basis. We also register the
1648  * poller used to complete crypto operations from the device.
1649  */
1650 static int
1651 crypto_bdev_ch_create_cb(void *io_device, void *ctx_buf)
1652 {
1653 	struct crypto_io_channel *crypto_ch = ctx_buf;
1654 	struct vbdev_crypto *crypto_bdev = io_device;
1655 	struct device_qp *device_qp = NULL;
1656 
1657 	crypto_ch->base_ch = spdk_bdev_get_io_channel(crypto_bdev->base_desc);
1658 	crypto_ch->poller = SPDK_POLLER_REGISTER(crypto_dev_poller, crypto_ch, 0);
1659 	crypto_ch->device_qp = NULL;
1660 
1661 	/* Assign a device/qp combination that is unique per channel per PMD. */
1662 	_assign_device_qp(crypto_bdev, device_qp, crypto_ch);
1663 	assert(crypto_ch->device_qp);
1664 
1665 	/* We use this queue to track outstanding IO in our layer. */
1666 	TAILQ_INIT(&crypto_ch->pending_cry_ios);
1667 
1668 	/* We use this to queue up crypto ops when the device is busy. */
1669 	TAILQ_INIT(&crypto_ch->queued_cry_ops);
1670 
1671 	return 0;
1672 }
1673 
1674 /* We provide this callback for the SPDK channel code to destroy a channel
1675  * created with our create callback. We just need to undo anything we did
1676  * when we created.
1677  */
1678 static void
1679 crypto_bdev_ch_destroy_cb(void *io_device, void *ctx_buf)
1680 {
1681 	struct crypto_io_channel *crypto_ch = ctx_buf;
1682 
1683 	pthread_mutex_lock(&g_device_qp_lock);
1684 	crypto_ch->device_qp->in_use = false;
1685 	pthread_mutex_unlock(&g_device_qp_lock);
1686 
1687 	spdk_poller_unregister(&crypto_ch->poller);
1688 	spdk_put_io_channel(crypto_ch->base_ch);
1689 }
1690 
1691 /* Create the association from the bdev and vbdev name and insert
1692  * on the global list. */
1693 static int
1694 vbdev_crypto_insert_name(struct vbdev_crypto_opts *opts, struct bdev_names **out)
1695 {
1696 	struct bdev_names *name;
1697 	bool found = false;
1698 	int j;
1699 
1700 	assert(opts);
1701 	assert(out);
1702 
1703 	TAILQ_FOREACH(name, &g_bdev_names, link) {
1704 		if (strcmp(opts->vbdev_name, name->opts->vbdev_name) == 0) {
1705 			SPDK_ERRLOG("Crypto bdev %s already exists\n", opts->vbdev_name);
1706 			return -EEXIST;
1707 		}
1708 	}
1709 
1710 	for (j = 0; j < MAX_NUM_DRV_TYPES ; j++) {
1711 		if (strcmp(opts->drv_name, g_driver_names[j]) == 0) {
1712 			found = true;
1713 			break;
1714 		}
1715 	}
1716 	if (!found) {
1717 		SPDK_ERRLOG("Crypto PMD type %s is not supported.\n", opts->drv_name);
1718 		return -EINVAL;
1719 	}
1720 
1721 	name = calloc(1, sizeof(struct bdev_names));
1722 	if (!name) {
1723 		SPDK_ERRLOG("Failed to allocate memory for bdev_names.\n");
1724 		return -ENOMEM;
1725 	}
1726 
1727 	name->opts = opts;
1728 	TAILQ_INSERT_TAIL(&g_bdev_names, name, link);
1729 	*out = name;
1730 
1731 	return 0;
1732 }
1733 
1734 void
1735 free_crypto_opts(struct vbdev_crypto_opts *opts)
1736 {
1737 	free(opts->bdev_name);
1738 	free(opts->vbdev_name);
1739 	free(opts->drv_name);
1740 	if (opts->xts_key) {
1741 		memset(opts->xts_key, 0,
1742 		       opts->key_size + opts->key2_size);
1743 		free(opts->xts_key);
1744 	}
1745 	memset(opts->key, 0, opts->key_size);
1746 	free(opts->key);
1747 	opts->key_size = 0;
1748 	if (opts->key2) {
1749 		memset(opts->key2, 0, opts->key2_size);
1750 		free(opts->key2);
1751 	}
1752 	opts->key2_size = 0;
1753 	free(opts);
1754 }
1755 
1756 static void
1757 vbdev_crypto_delete_name(struct bdev_names *name)
1758 {
1759 	TAILQ_REMOVE(&g_bdev_names, name, link);
1760 	if (name->opts) {
1761 		free_crypto_opts(name->opts);
1762 		name->opts = NULL;
1763 	}
1764 	free(name);
1765 }
1766 
1767 /* RPC entry point for crypto creation. */
1768 int
1769 create_crypto_disk(struct vbdev_crypto_opts *opts)
1770 {
1771 	struct bdev_names *name = NULL;
1772 	int rc;
1773 
1774 	rc = vbdev_crypto_insert_name(opts, &name);
1775 	if (rc) {
1776 		return rc;
1777 	}
1778 
1779 	rc = vbdev_crypto_claim(opts->bdev_name);
1780 	if (rc == -ENODEV) {
1781 		SPDK_NOTICELOG("vbdev creation deferred pending base bdev arrival\n");
1782 		rc = 0;
1783 	}
1784 
1785 	if (rc) {
1786 		assert(name != NULL);
1787 		/* In case of error we let the caller function to deallocate @opts
1788 		 * since it is its responsibiltiy. Setting name->opts = NULL let's
1789 		 * vbdev_crypto_delete_name() know it does not have to do anything
1790 		 * about @opts.
1791 		 */
1792 		name->opts = NULL;
1793 		vbdev_crypto_delete_name(name);
1794 	}
1795 	return rc;
1796 }
1797 
1798 /* Called at driver init time, parses config file to prepare for examine calls,
1799  * also fully initializes the crypto drivers.
1800  */
1801 static int
1802 vbdev_crypto_init(void)
1803 {
1804 	int rc = 0;
1805 
1806 	/* Fully configure both SW and HW drivers. */
1807 	rc = vbdev_crypto_init_crypto_drivers();
1808 	if (rc) {
1809 		SPDK_ERRLOG("Error setting up crypto devices\n");
1810 	}
1811 
1812 	return rc;
1813 }
1814 
1815 /* Called when the entire module is being torn down. */
1816 static void
1817 vbdev_crypto_finish(void)
1818 {
1819 	struct bdev_names *name;
1820 	struct vbdev_dev *device;
1821 
1822 	while ((name = TAILQ_FIRST(&g_bdev_names))) {
1823 		vbdev_crypto_delete_name(name);
1824 	}
1825 
1826 	while ((device = TAILQ_FIRST(&g_vbdev_devs))) {
1827 		TAILQ_REMOVE(&g_vbdev_devs, device, link);
1828 		release_vbdev_dev(device);
1829 	}
1830 	rte_vdev_uninit(AESNI_MB);
1831 
1832 	/* These are removed in release_vbdev_dev() */
1833 	assert(TAILQ_EMPTY(&g_device_qp_qat));
1834 	assert(TAILQ_EMPTY(&g_device_qp_aesni_mb));
1835 	assert(TAILQ_EMPTY(&g_device_qp_mlx5));
1836 
1837 	rte_mempool_free(g_crypto_op_mp);
1838 	rte_mempool_free(g_mbuf_mp);
1839 	rte_mempool_free(g_session_mp);
1840 	if (g_session_mp_priv != NULL) {
1841 		rte_mempool_free(g_session_mp_priv);
1842 	}
1843 }
1844 
1845 /* During init we'll be asked how much memory we'd like passed to us
1846  * in bev_io structures as context. Here's where we specify how
1847  * much context we want per IO.
1848  */
1849 static int
1850 vbdev_crypto_get_ctx_size(void)
1851 {
1852 	return sizeof(struct crypto_bdev_io);
1853 }
1854 
1855 static void
1856 vbdev_crypto_base_bdev_hotremove_cb(struct spdk_bdev *bdev_find)
1857 {
1858 	struct vbdev_crypto *crypto_bdev, *tmp;
1859 
1860 	TAILQ_FOREACH_SAFE(crypto_bdev, &g_vbdev_crypto, link, tmp) {
1861 		if (bdev_find == crypto_bdev->base_bdev) {
1862 			spdk_bdev_unregister(&crypto_bdev->crypto_bdev, NULL, NULL);
1863 		}
1864 	}
1865 }
1866 
1867 /* Called when the underlying base bdev triggers asynchronous event such as bdev removal. */
1868 static void
1869 vbdev_crypto_base_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev,
1870 				void *event_ctx)
1871 {
1872 	switch (type) {
1873 	case SPDK_BDEV_EVENT_REMOVE:
1874 		vbdev_crypto_base_bdev_hotremove_cb(bdev);
1875 		break;
1876 	default:
1877 		SPDK_NOTICELOG("Unsupported bdev event: type %d\n", type);
1878 		break;
1879 	}
1880 }
1881 
1882 static void
1883 vbdev_crypto_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
1884 {
1885 	/* No config per bdev needed */
1886 }
1887 
1888 /* When we register our bdev this is how we specify our entry points. */
1889 static const struct spdk_bdev_fn_table vbdev_crypto_fn_table = {
1890 	.destruct		= vbdev_crypto_destruct,
1891 	.submit_request		= vbdev_crypto_submit_request,
1892 	.io_type_supported	= vbdev_crypto_io_type_supported,
1893 	.get_io_channel		= vbdev_crypto_get_io_channel,
1894 	.dump_info_json		= vbdev_crypto_dump_info_json,
1895 	.write_config_json	= vbdev_crypto_write_config_json
1896 };
1897 
1898 static struct spdk_bdev_module crypto_if = {
1899 	.name = "crypto",
1900 	.module_init = vbdev_crypto_init,
1901 	.get_ctx_size = vbdev_crypto_get_ctx_size,
1902 	.examine_config = vbdev_crypto_examine,
1903 	.module_fini = vbdev_crypto_finish,
1904 	.config_json = vbdev_crypto_config_json
1905 };
1906 
1907 SPDK_BDEV_MODULE_REGISTER(crypto, &crypto_if)
1908 
1909 static int
1910 vbdev_crypto_claim(const char *bdev_name)
1911 {
1912 	struct bdev_names *name;
1913 	struct vbdev_crypto *vbdev;
1914 	struct spdk_bdev *bdev;
1915 	uint8_t key_size;
1916 	int rc = 0;
1917 
1918 	if (g_number_of_claimed_volumes >= MAX_CRYPTO_VOLUMES) {
1919 		SPDK_DEBUGLOG(vbdev_crypto, "Reached max number of claimed volumes\n");
1920 		return -EINVAL;
1921 	}
1922 	g_number_of_claimed_volumes++;
1923 
1924 	/* Check our list of names from config versus this bdev and if
1925 	 * there's a match, create the crypto_bdev & bdev accordingly.
1926 	 */
1927 	TAILQ_FOREACH(name, &g_bdev_names, link) {
1928 		if (strcmp(name->opts->bdev_name, bdev_name) != 0) {
1929 			continue;
1930 		}
1931 		SPDK_DEBUGLOG(vbdev_crypto, "Match on %s\n", bdev_name);
1932 
1933 		vbdev = calloc(1, sizeof(struct vbdev_crypto));
1934 		if (!vbdev) {
1935 			SPDK_ERRLOG("Failed to allocate memory for crypto_bdev.\n");
1936 			rc = -ENOMEM;
1937 			goto error_vbdev_alloc;
1938 		}
1939 		vbdev->crypto_bdev.product_name = "crypto";
1940 
1941 		vbdev->crypto_bdev.name = strdup(name->opts->vbdev_name);
1942 		if (!vbdev->crypto_bdev.name) {
1943 			SPDK_ERRLOG("Failed to allocate memory for crypto_bdev name.\n");
1944 			rc = -ENOMEM;
1945 			goto error_bdev_name;
1946 		}
1947 
1948 		rc = spdk_bdev_open_ext(bdev_name, true, vbdev_crypto_base_bdev_event_cb,
1949 					NULL, &vbdev->base_desc);
1950 		if (rc) {
1951 			if (rc != -ENODEV) {
1952 				SPDK_ERRLOG("Failed to open bdev %s: error %d\n", bdev_name, rc);
1953 			}
1954 			goto error_open;
1955 		}
1956 
1957 		bdev = spdk_bdev_desc_get_bdev(vbdev->base_desc);
1958 		vbdev->base_bdev = bdev;
1959 
1960 		if (strcmp(name->opts->drv_name, MLX5) == 0) {
1961 			vbdev->qp_desc_nr = CRYPTO_QP_DESCRIPTORS_MLX5;
1962 		} else {
1963 			vbdev->qp_desc_nr = CRYPTO_QP_DESCRIPTORS;
1964 		}
1965 
1966 		vbdev->crypto_bdev.write_cache = bdev->write_cache;
1967 		if (strcmp(name->opts->drv_name, QAT) == 0) {
1968 			vbdev->crypto_bdev.required_alignment =
1969 				spdk_max(spdk_u32log2(bdev->blocklen), bdev->required_alignment);
1970 			SPDK_NOTICELOG("QAT in use: Required alignment set to %u\n",
1971 				       vbdev->crypto_bdev.required_alignment);
1972 			SPDK_NOTICELOG("QAT using cipher: %s\n", name->opts->cipher);
1973 		} else if (strcmp(name->opts->drv_name, MLX5) == 0) {
1974 			vbdev->crypto_bdev.required_alignment = bdev->required_alignment;
1975 			SPDK_NOTICELOG("MLX5 using cipher: %s\n", name->opts->cipher);
1976 		} else {
1977 			vbdev->crypto_bdev.required_alignment = bdev->required_alignment;
1978 			SPDK_NOTICELOG("AESNI_MB using cipher: %s\n", name->opts->cipher);
1979 		}
1980 		vbdev->cipher_xform.cipher.iv.length = IV_LENGTH;
1981 
1982 		/* Note: CRYPTO_MAX_IO is in units of bytes, optimal_io_boundary is
1983 		 * in units of blocks.
1984 		 */
1985 		if (bdev->optimal_io_boundary > 0) {
1986 			vbdev->crypto_bdev.optimal_io_boundary =
1987 				spdk_min((CRYPTO_MAX_IO / bdev->blocklen), bdev->optimal_io_boundary);
1988 		} else {
1989 			vbdev->crypto_bdev.optimal_io_boundary = (CRYPTO_MAX_IO / bdev->blocklen);
1990 		}
1991 		vbdev->crypto_bdev.split_on_optimal_io_boundary = true;
1992 		vbdev->crypto_bdev.blocklen = bdev->blocklen;
1993 		vbdev->crypto_bdev.blockcnt = bdev->blockcnt;
1994 
1995 		/* This is the context that is passed to us when the bdev
1996 		 * layer calls in so we'll save our crypto_bdev node here.
1997 		 */
1998 		vbdev->crypto_bdev.ctxt = vbdev;
1999 		vbdev->crypto_bdev.fn_table = &vbdev_crypto_fn_table;
2000 		vbdev->crypto_bdev.module = &crypto_if;
2001 
2002 		/* Assign crypto opts from the name. The pointer is valid up to the point
2003 		 * the module is unloaded and all names removed from the list. */
2004 		vbdev->opts = name->opts;
2005 
2006 		TAILQ_INSERT_TAIL(&g_vbdev_crypto, vbdev, link);
2007 
2008 		spdk_io_device_register(vbdev, crypto_bdev_ch_create_cb, crypto_bdev_ch_destroy_cb,
2009 					sizeof(struct crypto_io_channel), vbdev->crypto_bdev.name);
2010 
2011 		/* Save the thread where the base device is opened */
2012 		vbdev->thread = spdk_get_thread();
2013 
2014 		rc = spdk_bdev_module_claim_bdev(bdev, vbdev->base_desc, vbdev->crypto_bdev.module);
2015 		if (rc) {
2016 			SPDK_ERRLOG("Failed to claim bdev %s\n", spdk_bdev_get_name(bdev));
2017 			goto error_claim;
2018 		}
2019 
2020 		/* Init our per vbdev xform with the desired cipher options. */
2021 		vbdev->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
2022 		vbdev->cipher_xform.cipher.iv.offset = IV_OFFSET;
2023 		if (strcmp(vbdev->opts->cipher, AES_CBC) == 0) {
2024 			vbdev->cipher_xform.cipher.key.data = vbdev->opts->key;
2025 			vbdev->cipher_xform.cipher.key.length = vbdev->opts->key_size;
2026 			vbdev->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC;
2027 		} else if (strcmp(vbdev->opts->cipher, AES_XTS) == 0) {
2028 			key_size = vbdev->opts->key_size + vbdev->opts->key2_size;
2029 			vbdev->cipher_xform.cipher.key.data = vbdev->opts->xts_key;
2030 			vbdev->cipher_xform.cipher.key.length = key_size;
2031 			vbdev->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_XTS;
2032 		} else {
2033 			SPDK_ERRLOG("Invalid cipher name %s.\n", vbdev->opts->cipher);
2034 			rc = -EINVAL;
2035 			goto error_session_de_create;
2036 		}
2037 		vbdev->cipher_xform.cipher.iv.length = IV_LENGTH;
2038 
2039 		vbdev->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
2040 		vbdev->session_encrypt = _cryptodev_sym_session_create(vbdev, &vbdev->cipher_xform);
2041 		if (NULL == vbdev->session_encrypt) {
2042 			SPDK_ERRLOG("Failed to create encrypt crypto session.\n");
2043 			rc = -EINVAL;
2044 			goto error_session_en_create;
2045 		}
2046 
2047 		vbdev->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_DECRYPT;
2048 		vbdev->session_decrypt = _cryptodev_sym_session_create(vbdev, &vbdev->cipher_xform);
2049 		if (NULL == vbdev->session_decrypt) {
2050 			SPDK_ERRLOG("Failed to create decrypt crypto session.\n");
2051 			rc = -EINVAL;
2052 			goto error_session_de_create;
2053 		}
2054 
2055 		rc = spdk_bdev_register(&vbdev->crypto_bdev);
2056 		if (rc < 0) {
2057 			SPDK_ERRLOG("Failed to register vbdev: error %d\n", rc);
2058 			rc = -EINVAL;
2059 			goto error_bdev_register;
2060 		}
2061 		SPDK_DEBUGLOG(vbdev_crypto, "Registered io_device and virtual bdev for: %s\n",
2062 			      vbdev->opts->vbdev_name);
2063 		break;
2064 	}
2065 
2066 	return rc;
2067 
2068 	/* Error cleanup paths. */
2069 error_bdev_register:
2070 	_cryptodev_sym_session_free(vbdev, vbdev->session_decrypt);
2071 error_session_de_create:
2072 	_cryptodev_sym_session_free(vbdev, vbdev->session_encrypt);
2073 error_session_en_create:
2074 	spdk_bdev_module_release_bdev(vbdev->base_bdev);
2075 error_claim:
2076 	TAILQ_REMOVE(&g_vbdev_crypto, vbdev, link);
2077 	spdk_io_device_unregister(vbdev, NULL);
2078 	spdk_bdev_close(vbdev->base_desc);
2079 error_open:
2080 	free(vbdev->crypto_bdev.name);
2081 error_bdev_name:
2082 	free(vbdev);
2083 error_vbdev_alloc:
2084 	g_number_of_claimed_volumes--;
2085 	return rc;
2086 }
2087 
2088 /* RPC entry for deleting a crypto vbdev. */
2089 void
2090 delete_crypto_disk(const char *bdev_name, spdk_delete_crypto_complete cb_fn,
2091 		   void *cb_arg)
2092 {
2093 	struct bdev_names *name;
2094 	int rc;
2095 
2096 	/* Some cleanup happens in the destruct callback. */
2097 	rc = spdk_bdev_unregister_by_name(bdev_name, &crypto_if, cb_fn, cb_arg);
2098 	if (rc == 0) {
2099 		/* Remove the association (vbdev, bdev) from g_bdev_names. This is required so that the
2100 		 * vbdev does not get re-created if the same bdev is constructed at some other time,
2101 		 * unless the underlying bdev was hot-removed.
2102 		 */
2103 		TAILQ_FOREACH(name, &g_bdev_names, link) {
2104 			if (strcmp(name->opts->vbdev_name, bdev_name) == 0) {
2105 				vbdev_crypto_delete_name(name);
2106 				break;
2107 			}
2108 		}
2109 	} else {
2110 		cb_fn(cb_arg, rc);
2111 	}
2112 }
2113 
2114 /* Because we specified this function in our crypto bdev function table when we
2115  * registered our crypto bdev, we'll get this call anytime a new bdev shows up.
2116  * Here we need to decide if we care about it and if so what to do. We
2117  * parsed the config file at init so we check the new bdev against the list
2118  * we built up at that time and if the user configured us to attach to this
2119  * bdev, here's where we do it.
2120  */
2121 static void
2122 vbdev_crypto_examine(struct spdk_bdev *bdev)
2123 {
2124 	vbdev_crypto_claim(spdk_bdev_get_name(bdev));
2125 	spdk_bdev_module_examine_done(&crypto_if);
2126 }
2127 
2128 SPDK_LOG_REGISTER_COMPONENT(vbdev_crypto)
2129