xref: /spdk/module/bdev/crypto/vbdev_crypto.c (revision 488570ebd418ba07c9e69e65106dcc964f3bb41b)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (c) Intel Corporation.
3  *   All rights reserved.
4  *   Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES.
5  *   All rights reserved.
6  */
7 
8 #include "vbdev_crypto.h"
9 
10 #include "spdk/env.h"
11 #include "spdk/likely.h"
12 #include "spdk/endian.h"
13 #include "spdk/thread.h"
14 #include "spdk/bdev_module.h"
15 #include "spdk/log.h"
16 
17 #include <rte_config.h>
18 #include <rte_bus_vdev.h>
19 #include <rte_crypto.h>
20 #include <rte_cryptodev.h>
21 #include <rte_mbuf_dyn.h>
22 
23 /* Used to store IO context in mbuf */
24 static const struct rte_mbuf_dynfield rte_mbuf_dynfield_io_context = {
25 	.name = "context_bdev_io",
26 	.size = sizeof(uint64_t),
27 	.align = __alignof__(uint64_t),
28 	.flags = 0,
29 };
30 static int g_mbuf_offset;
31 
32 /* To add support for new device types, follow the examples of the following...
33  * Note that the string names are defined by the DPDK PMD in question so be
34  * sure to use the exact names.
35  */
36 #define MAX_NUM_DRV_TYPES 3
37 
38 /* The VF spread is the number of queue pairs between virtual functions, we use this to
39  * load balance the QAT device.
40  */
41 #define QAT_VF_SPREAD 32
42 static uint8_t g_qat_total_qp = 0;
43 static uint8_t g_next_qat_index;
44 
45 const char *g_driver_names[MAX_NUM_DRV_TYPES] = { AESNI_MB, QAT, MLX5 };
46 
47 /* Global list of available crypto devices. */
48 struct vbdev_dev {
49 	struct rte_cryptodev_info	cdev_info;	/* includes device friendly name */
50 	uint8_t				cdev_id;	/* identifier for the device */
51 	TAILQ_ENTRY(vbdev_dev)		link;
52 };
53 static TAILQ_HEAD(, vbdev_dev) g_vbdev_devs = TAILQ_HEAD_INITIALIZER(g_vbdev_devs);
54 
55 /* Global list and lock for unique device/queue pair combos. We keep 1 list per supported PMD
56  * so that we can optimize per PMD where it make sense. For example, with QAT there an optimal
57  * pattern for assigning queue pairs where with AESNI there is not.
58  */
59 struct device_qp {
60 	struct vbdev_dev		*device;	/* ptr to crypto device */
61 	uint8_t				qp;		/* queue pair for this node */
62 	bool				in_use;		/* whether this node is in use or not */
63 	uint8_t				index;		/* used by QAT to load balance placement of qpairs */
64 	TAILQ_ENTRY(device_qp)		link;
65 };
66 static TAILQ_HEAD(, device_qp) g_device_qp_qat = TAILQ_HEAD_INITIALIZER(g_device_qp_qat);
67 static TAILQ_HEAD(, device_qp) g_device_qp_aesni_mb = TAILQ_HEAD_INITIALIZER(g_device_qp_aesni_mb);
68 static TAILQ_HEAD(, device_qp) g_device_qp_mlx5 = TAILQ_HEAD_INITIALIZER(g_device_qp_mlx5);
69 static pthread_mutex_t g_device_qp_lock = PTHREAD_MUTEX_INITIALIZER;
70 
71 
72 /* In order to limit the number of resources we need to do one crypto
73  * operation per LBA (we use LBA as IV), we tell the bdev layer that
74  * our max IO size is something reasonable. Units here are in bytes.
75  */
76 #define CRYPTO_MAX_IO		(64 * 1024)
77 
78 /* This controls how many ops will be dequeued from the crypto driver in one run
79  * of the poller. It is mainly a performance knob as it effectively determines how
80  * much work the poller has to do.  However even that can vary between crypto drivers
81  * as the AESNI_MB driver for example does all the crypto work on dequeue whereas the
82  * QAT driver just dequeues what has been completed already.
83  */
84 #define MAX_DEQUEUE_BURST_SIZE	64
85 
86 /* When enqueueing, we need to supply the crypto driver with an array of pointers to
87  * operation structs. As each of these can be max 512B, we can adjust the CRYPTO_MAX_IO
88  * value in conjunction with the other defines to make sure we're not using crazy amounts
89  * of memory. All of these numbers can and probably should be adjusted based on the
90  * workload. By default we'll use the worst case (smallest) block size for the
91  * minimum number of array entries. As an example, a CRYPTO_MAX_IO size of 64K with 512B
92  * blocks would give us an enqueue array size of 128.
93  */
94 #define MAX_ENQUEUE_ARRAY_SIZE (CRYPTO_MAX_IO / 512)
95 
96 /* The number of MBUFS we need must be a power of two and to support other small IOs
97  * in addition to the limits mentioned above, we go to the next power of two. It is
98  * big number because it is one mempool for source and destination mbufs. It may
99  * need to be bigger to support multiple crypto drivers at once.
100  */
101 #define NUM_MBUFS		32768
102 #define POOL_CACHE_SIZE		256
103 #define MAX_CRYPTO_VOLUMES	128
104 #define NUM_SESSIONS		(2 * MAX_CRYPTO_VOLUMES)
105 #define SESS_MEMPOOL_CACHE_SIZE 0
106 uint8_t g_number_of_claimed_volumes = 0;
107 
108 /* This is the max number of IOs we can supply to any crypto device QP at one time.
109  * It can vary between drivers.
110  */
111 #define CRYPTO_QP_DESCRIPTORS	2048
112 
113 /* At this moment DPDK descriptors allocation for mlx5 has some issues. We use 512
114  * as an compromise value between performance and the time spent for initialization. */
115 #define CRYPTO_QP_DESCRIPTORS_MLX5	512
116 
117 #define AESNI_MB_NUM_QP		64
118 
119 /* Common for suported devices. */
120 #define DEFAULT_NUM_XFORMS           2
121 #define IV_OFFSET (sizeof(struct rte_crypto_op) + \
122                 sizeof(struct rte_crypto_sym_op) + \
123                 (DEFAULT_NUM_XFORMS * \
124                  sizeof(struct rte_crypto_sym_xform)))
125 #define IV_LENGTH		     16
126 #define QUEUED_OP_OFFSET (IV_OFFSET + IV_LENGTH)
127 
128 static void _complete_internal_io(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
129 static void _complete_internal_read(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
130 static void _complete_internal_write(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
131 static void vbdev_crypto_examine(struct spdk_bdev *bdev);
132 static int vbdev_crypto_claim(const char *bdev_name);
133 static void vbdev_crypto_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io);
134 
135 struct bdev_names {
136 	struct vbdev_crypto_opts	*opts;
137 	TAILQ_ENTRY(bdev_names)		link;
138 };
139 
140 /* List of crypto_bdev names and their base bdevs via configuration file. */
141 static TAILQ_HEAD(, bdev_names) g_bdev_names = TAILQ_HEAD_INITIALIZER(g_bdev_names);
142 
143 struct vbdev_crypto {
144 	struct spdk_bdev		*base_bdev;		/* the thing we're attaching to */
145 	struct spdk_bdev_desc		*base_desc;		/* its descriptor we get from open */
146 	struct spdk_bdev		crypto_bdev;		/* the crypto virtual bdev */
147 	struct vbdev_crypto_opts	*opts;			/* crypto options such as key, cipher */
148 	uint32_t			qp_desc_nr;             /* number of qp descriptors */
149 	struct rte_cryptodev_sym_session *session_encrypt;	/* encryption session for this bdev */
150 	struct rte_cryptodev_sym_session *session_decrypt;	/* decryption session for this bdev */
151 	struct rte_crypto_sym_xform	cipher_xform;		/* crypto control struct for this bdev */
152 	TAILQ_ENTRY(vbdev_crypto)	link;
153 	struct spdk_thread		*thread;		/* thread where base device is opened */
154 };
155 
156 /* List of virtual bdevs and associated info for each. We keep the device friendly name here even
157  * though its also in the device struct because we use it early on.
158  */
159 static TAILQ_HEAD(, vbdev_crypto) g_vbdev_crypto = TAILQ_HEAD_INITIALIZER(g_vbdev_crypto);
160 
161 /* Shared mempools between all devices on this system */
162 static struct rte_mempool *g_session_mp = NULL;
163 static struct rte_mempool *g_session_mp_priv = NULL;
164 static struct rte_mempool *g_mbuf_mp = NULL;            /* mbuf mempool */
165 static struct rte_mempool *g_crypto_op_mp = NULL;	/* crypto operations, must be rte* mempool */
166 
167 static struct rte_mbuf_ext_shared_info g_shinfo = {};   /* used by DPDK mbuf macro */
168 
169 /* For queueing up crypto operations that we can't submit for some reason */
170 struct vbdev_crypto_op {
171 	uint8_t					cdev_id;
172 	uint8_t					qp;
173 	struct rte_crypto_op			*crypto_op;
174 	struct spdk_bdev_io			*bdev_io;
175 	TAILQ_ENTRY(vbdev_crypto_op)		link;
176 };
177 #define QUEUED_OP_LENGTH (sizeof(struct vbdev_crypto_op))
178 
179 /* The crypto vbdev channel struct. It is allocated and freed on my behalf by the io channel code.
180  * We store things in here that are needed on per thread basis like the base_channel for this thread,
181  * and the poller for this thread.
182  */
183 struct crypto_io_channel {
184 	struct spdk_io_channel		*base_ch;		/* IO channel of base device */
185 	struct spdk_poller		*poller;		/* completion poller */
186 	struct device_qp		*device_qp;		/* unique device/qp combination for this channel */
187 	TAILQ_HEAD(, spdk_bdev_io)	pending_cry_ios;	/* outstanding operations to the crypto device */
188 	struct spdk_io_channel_iter	*iter;			/* used with for_each_channel in reset */
189 	TAILQ_HEAD(, vbdev_crypto_op)	queued_cry_ops;		/* queued for re-submission to CryptoDev */
190 };
191 
192 /* This is the crypto per IO context that the bdev layer allocates for us opaquely and attaches to
193  * each IO for us.
194  */
195 struct crypto_bdev_io {
196 	int cryop_cnt_remaining;			/* counter used when completing crypto ops */
197 	struct crypto_io_channel *crypto_ch;		/* need to store for crypto completion handling */
198 	struct vbdev_crypto *crypto_bdev;		/* the crypto node struct associated with this IO */
199 	struct spdk_bdev_io *orig_io;			/* the original IO */
200 	struct spdk_bdev_io *read_io;			/* the read IO we issued */
201 	int8_t bdev_io_status;				/* the status we'll report back on the bdev IO */
202 	bool on_pending_list;
203 	/* Used for the single contiguous buffer that serves as the crypto destination target for writes */
204 	uint64_t aux_num_blocks;			/* num of blocks for the contiguous buffer */
205 	uint64_t aux_offset_blocks;			/* block offset on media */
206 	void *aux_buf_raw;				/* raw buffer that the bdev layer gave us for write buffer */
207 	struct iovec aux_buf_iov;			/* iov representing aligned contig write buffer */
208 
209 	/* for bdev_io_wait */
210 	struct spdk_bdev_io_wait_entry bdev_io_wait;
211 	struct spdk_io_channel *ch;
212 };
213 
214 /* Called by vbdev_crypto_init_crypto_drivers() to init each discovered crypto device */
215 static int
216 create_vbdev_dev(uint8_t index, uint16_t num_lcores)
217 {
218 	struct vbdev_dev *device;
219 	uint8_t j, cdev_id, cdrv_id;
220 	struct device_qp *dev_qp;
221 	struct device_qp *tmp_qp;
222 	uint32_t qp_desc_nr;
223 	int rc;
224 	TAILQ_HEAD(device_qps, device_qp) *dev_qp_head;
225 
226 	device = calloc(1, sizeof(struct vbdev_dev));
227 	if (!device) {
228 		return -ENOMEM;
229 	}
230 
231 	/* Get details about this device. */
232 	rte_cryptodev_info_get(index, &device->cdev_info);
233 	cdrv_id = device->cdev_info.driver_id;
234 	cdev_id = device->cdev_id = index;
235 
236 	/* QAT_ASYM devices are not supported at this time. */
237 	if (strcmp(device->cdev_info.driver_name, QAT_ASYM) == 0) {
238 		free(device);
239 		return 0;
240 	}
241 
242 	/* Before going any further, make sure we have enough resources for this
243 	 * device type to function.  We need a unique queue pair per core accross each
244 	 * device type to remain lockless....
245 	 */
246 	if ((rte_cryptodev_device_count_by_driver(cdrv_id) *
247 	     device->cdev_info.max_nb_queue_pairs) < num_lcores) {
248 		SPDK_ERRLOG("Insufficient unique queue pairs available for %s\n",
249 			    device->cdev_info.driver_name);
250 		SPDK_ERRLOG("Either add more crypto devices or decrease core count\n");
251 		rc = -EINVAL;
252 		goto err;
253 	}
254 
255 	/* Setup queue pairs. */
256 	struct rte_cryptodev_config conf = {
257 		.nb_queue_pairs = device->cdev_info.max_nb_queue_pairs,
258 		.socket_id = SPDK_ENV_SOCKET_ID_ANY
259 	};
260 
261 	rc = rte_cryptodev_configure(cdev_id, &conf);
262 	if (rc < 0) {
263 		SPDK_ERRLOG("Failed to configure cryptodev %u: error %d\n",
264 			    cdev_id, rc);
265 		rc = -EINVAL;
266 		goto err;
267 	}
268 
269 	/* Select the right device/qp list based on driver name
270 	 * or error if it does not exist.
271 	 */
272 	if (strcmp(device->cdev_info.driver_name, QAT) == 0) {
273 		dev_qp_head = (struct device_qps *)&g_device_qp_qat;
274 		qp_desc_nr = CRYPTO_QP_DESCRIPTORS;
275 	} else if (strcmp(device->cdev_info.driver_name, AESNI_MB) == 0) {
276 		dev_qp_head = (struct device_qps *)&g_device_qp_aesni_mb;
277 		qp_desc_nr = CRYPTO_QP_DESCRIPTORS;
278 	} else if (strcmp(device->cdev_info.driver_name, MLX5) == 0) {
279 		dev_qp_head = (struct device_qps *)&g_device_qp_mlx5;
280 		qp_desc_nr = CRYPTO_QP_DESCRIPTORS_MLX5;
281 	} else {
282 		SPDK_ERRLOG("Failed to start device %u. Invalid driver name \"%s\"\n",
283 			    cdev_id, device->cdev_info.driver_name);
284 		rc = -EINVAL;
285 		goto err_qp_setup;
286 	}
287 
288 	struct rte_cryptodev_qp_conf qp_conf = {
289 		.nb_descriptors = qp_desc_nr,
290 		.mp_session = g_session_mp,
291 		.mp_session_private = g_session_mp_priv,
292 	};
293 
294 	/* Pre-setup all potential qpairs now and assign them in the channel
295 	 * callback. If we were to create them there, we'd have to stop the
296 	 * entire device affecting all other threads that might be using it
297 	 * even on other queue pairs.
298 	 */
299 	for (j = 0; j < device->cdev_info.max_nb_queue_pairs; j++) {
300 		rc = rte_cryptodev_queue_pair_setup(cdev_id, j, &qp_conf, SOCKET_ID_ANY);
301 		if (rc < 0) {
302 			SPDK_ERRLOG("Failed to setup queue pair %u on "
303 				    "cryptodev %u: error %d\n", j, cdev_id, rc);
304 			rc = -EINVAL;
305 			goto err_qp_setup;
306 		}
307 	}
308 
309 	rc = rte_cryptodev_start(cdev_id);
310 	if (rc < 0) {
311 		SPDK_ERRLOG("Failed to start device %u: error %d\n",
312 			    cdev_id, rc);
313 		rc = -EINVAL;
314 		goto err_dev_start;
315 	}
316 
317 	/* Build up lists of device/qp combinations per PMD */
318 	for (j = 0; j < device->cdev_info.max_nb_queue_pairs; j++) {
319 		dev_qp = calloc(1, sizeof(struct device_qp));
320 		if (!dev_qp) {
321 			rc = -ENOMEM;
322 			goto err_qp_alloc;
323 		}
324 		dev_qp->device = device;
325 		dev_qp->qp = j;
326 		dev_qp->in_use = false;
327 		if (strcmp(device->cdev_info.driver_name, QAT) == 0) {
328 			g_qat_total_qp++;
329 		}
330 		TAILQ_INSERT_TAIL(dev_qp_head, dev_qp, link);
331 	}
332 
333 	/* Add to our list of available crypto devices. */
334 	TAILQ_INSERT_TAIL(&g_vbdev_devs, device, link);
335 
336 	return 0;
337 err_qp_alloc:
338 	TAILQ_FOREACH_SAFE(dev_qp, dev_qp_head, link, tmp_qp) {
339 		if (dev_qp->device->cdev_id != device->cdev_id) {
340 			continue;
341 		}
342 		TAILQ_REMOVE(dev_qp_head, dev_qp, link);
343 		if (dev_qp_head == (struct device_qps *)&g_device_qp_qat) {
344 			g_qat_total_qp--;
345 		}
346 		free(dev_qp);
347 	}
348 	rte_cryptodev_stop(cdev_id);
349 err_dev_start:
350 err_qp_setup:
351 	rte_cryptodev_close(cdev_id);
352 err:
353 	free(device);
354 
355 	return rc;
356 }
357 
358 static void
359 release_vbdev_dev(struct vbdev_dev *device)
360 {
361 	struct device_qp *dev_qp;
362 	struct device_qp *tmp_qp;
363 	TAILQ_HEAD(device_qps, device_qp) *dev_qp_head = NULL;
364 
365 	assert(device);
366 
367 	/* Select the right device/qp list based on driver name. */
368 	if (strcmp(device->cdev_info.driver_name, QAT) == 0) {
369 		dev_qp_head = (struct device_qps *)&g_device_qp_qat;
370 	} else if (strcmp(device->cdev_info.driver_name, AESNI_MB) == 0) {
371 		dev_qp_head = (struct device_qps *)&g_device_qp_aesni_mb;
372 	} else if (strcmp(device->cdev_info.driver_name, MLX5) == 0) {
373 		dev_qp_head = (struct device_qps *)&g_device_qp_mlx5;
374 	}
375 	if (dev_qp_head) {
376 		TAILQ_FOREACH_SAFE(dev_qp, dev_qp_head, link, tmp_qp) {
377 			/* Remove only qps of our device even if the driver names matches. */
378 			if (dev_qp->device->cdev_id != device->cdev_id) {
379 				continue;
380 			}
381 			TAILQ_REMOVE(dev_qp_head, dev_qp, link);
382 			if (dev_qp_head == (struct device_qps *)&g_device_qp_qat) {
383 				g_qat_total_qp--;
384 			}
385 			free(dev_qp);
386 		}
387 	}
388 	rte_cryptodev_stop(device->cdev_id);
389 	rte_cryptodev_close(device->cdev_id);
390 	free(device);
391 }
392 
393 /* Dummy function used by DPDK to free ext attached buffers to mbufs, we free them ourselves but
394  * this callback has to be here. */
395 static void shinfo_free_cb(void *arg1, void *arg2)
396 {
397 }
398 
399 /* This is called from the module's init function. We setup all crypto devices early on as we are unable
400  * to easily dynamically configure queue pairs after the drivers are up and running.  So, here, we
401  * configure the max capabilities of each device and assign threads to queue pairs as channels are
402  * requested.
403  */
404 static int
405 vbdev_crypto_init_crypto_drivers(void)
406 {
407 	uint8_t cdev_count;
408 	uint8_t cdev_id;
409 	int i, rc;
410 	struct vbdev_dev *device;
411 	struct vbdev_dev *tmp_dev;
412 	struct device_qp *dev_qp;
413 	unsigned int max_sess_size = 0, sess_size;
414 	uint16_t num_lcores = rte_lcore_count();
415 	char aesni_args[32];
416 
417 	/* Only the first call, via RPC or module init should init the crypto drivers. */
418 	if (g_session_mp != NULL) {
419 		return 0;
420 	}
421 
422 	/* We always init AESNI_MB */
423 	snprintf(aesni_args, sizeof(aesni_args), "max_nb_queue_pairs=%d", AESNI_MB_NUM_QP);
424 	rc = rte_vdev_init(AESNI_MB, aesni_args);
425 	if (rc) {
426 		SPDK_NOTICELOG("Failed to create virtual PMD %s: error %d. "
427 			       "Possibly %s is not supported by DPDK library. "
428 			       "Keep going...\n", AESNI_MB, rc, AESNI_MB);
429 	}
430 
431 	/* If we have no crypto devices, there's no reason to continue. */
432 	cdev_count = rte_cryptodev_count();
433 	SPDK_NOTICELOG("Found crypto devices: %d\n", (int)cdev_count);
434 	if (cdev_count == 0) {
435 		return 0;
436 	}
437 
438 	g_mbuf_offset = rte_mbuf_dynfield_register(&rte_mbuf_dynfield_io_context);
439 	if (g_mbuf_offset < 0) {
440 		SPDK_ERRLOG("error registering dynamic field with DPDK\n");
441 		return -EINVAL;
442 	}
443 
444 	/*
445 	 * Create global mempools, shared by all devices regardless of type.
446 	 */
447 
448 	/* First determine max session size, most pools are shared by all the devices,
449 	 * so we need to find the global max sessions size.
450 	 */
451 	for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) {
452 		sess_size = rte_cryptodev_sym_get_private_session_size(cdev_id);
453 		if (sess_size > max_sess_size) {
454 			max_sess_size = sess_size;
455 		}
456 	}
457 
458 	g_session_mp_priv = rte_mempool_create("session_mp_priv", NUM_SESSIONS, max_sess_size,
459 					       SESS_MEMPOOL_CACHE_SIZE, 0, NULL, NULL, NULL,
460 					       NULL, SOCKET_ID_ANY, 0);
461 	if (g_session_mp_priv == NULL) {
462 		SPDK_ERRLOG("Cannot create private session pool max size 0x%x\n", max_sess_size);
463 		return -ENOMEM;
464 	}
465 
466 	g_session_mp = rte_cryptodev_sym_session_pool_create(
467 			       "session_mp",
468 			       NUM_SESSIONS, 0, SESS_MEMPOOL_CACHE_SIZE, 0,
469 			       SOCKET_ID_ANY);
470 	if (g_session_mp == NULL) {
471 		SPDK_ERRLOG("Cannot create session pool max size 0x%x\n", max_sess_size);
472 		rc = -ENOMEM;
473 		goto error_create_session_mp;
474 	}
475 
476 	g_mbuf_mp = rte_pktmbuf_pool_create("mbuf_mp", NUM_MBUFS, POOL_CACHE_SIZE,
477 					    0, 0, SPDK_ENV_SOCKET_ID_ANY);
478 	if (g_mbuf_mp == NULL) {
479 		SPDK_ERRLOG("Cannot create mbuf pool\n");
480 		rc = -ENOMEM;
481 		goto error_create_mbuf;
482 	}
483 
484 	/* We use per op private data as suggested by DPDK and to store the IV and
485 	 * our own struct for queueing ops.
486 	 */
487 	g_crypto_op_mp = rte_crypto_op_pool_create("op_mp",
488 			 RTE_CRYPTO_OP_TYPE_SYMMETRIC,
489 			 NUM_MBUFS,
490 			 POOL_CACHE_SIZE,
491 			 (DEFAULT_NUM_XFORMS *
492 			  sizeof(struct rte_crypto_sym_xform)) +
493 			 IV_LENGTH + QUEUED_OP_LENGTH,
494 			 rte_socket_id());
495 
496 	if (g_crypto_op_mp == NULL) {
497 		SPDK_ERRLOG("Cannot create op pool\n");
498 		rc = -ENOMEM;
499 		goto error_create_op;
500 	}
501 
502 	/* Init all devices */
503 	for (i = 0; i < cdev_count; i++) {
504 		rc = create_vbdev_dev(i, num_lcores);
505 		if (rc) {
506 			goto err;
507 		}
508 	}
509 
510 	/* Assign index values to the QAT device qp nodes so that we can
511 	 * assign them for optimal performance.
512 	 */
513 	i = 0;
514 	TAILQ_FOREACH(dev_qp, &g_device_qp_qat, link) {
515 		dev_qp->index = i++;
516 	}
517 
518 	g_shinfo.free_cb = shinfo_free_cb;
519 	return 0;
520 
521 	/* Error cleanup paths. */
522 err:
523 	TAILQ_FOREACH_SAFE(device, &g_vbdev_devs, link, tmp_dev) {
524 		TAILQ_REMOVE(&g_vbdev_devs, device, link);
525 		release_vbdev_dev(device);
526 	}
527 	rte_mempool_free(g_crypto_op_mp);
528 	g_crypto_op_mp = NULL;
529 error_create_op:
530 	rte_mempool_free(g_mbuf_mp);
531 	g_mbuf_mp = NULL;
532 error_create_mbuf:
533 	rte_mempool_free(g_session_mp);
534 	g_session_mp = NULL;
535 error_create_session_mp:
536 	if (g_session_mp_priv != NULL) {
537 		rte_mempool_free(g_session_mp_priv);
538 		g_session_mp_priv = NULL;
539 	}
540 	return rc;
541 }
542 
543 /* Following an encrypt or decrypt we need to then either write the encrypted data or finish
544  * the read on decrypted data. Do that here.
545  */
546 static void
547 _crypto_operation_complete(struct spdk_bdev_io *bdev_io)
548 {
549 	struct vbdev_crypto *crypto_bdev = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_crypto,
550 					   crypto_bdev);
551 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
552 	struct crypto_io_channel *crypto_ch = io_ctx->crypto_ch;
553 	struct spdk_bdev_io *free_me = io_ctx->read_io;
554 	int rc = 0;
555 
556 	/* Can also be called from the crypto_dev_poller() to fail the stuck re-enqueue ops IO. */
557 	if (io_ctx->on_pending_list) {
558 		TAILQ_REMOVE(&crypto_ch->pending_cry_ios, bdev_io, module_link);
559 		io_ctx->on_pending_list = false;
560 	}
561 
562 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
563 
564 		/* Complete the original IO and then free the one that we created
565 		 * as a result of issuing an IO via submit_request.
566 		 */
567 		if (io_ctx->bdev_io_status != SPDK_BDEV_IO_STATUS_FAILED) {
568 			spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS);
569 		} else {
570 			SPDK_ERRLOG("Issue with decryption on bdev_io %p\n", bdev_io);
571 			rc = -EINVAL;
572 		}
573 		spdk_bdev_free_io(free_me);
574 
575 	} else if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
576 
577 		if (io_ctx->bdev_io_status != SPDK_BDEV_IO_STATUS_FAILED) {
578 			/* Write the encrypted data. */
579 			rc = spdk_bdev_writev_blocks(crypto_bdev->base_desc, crypto_ch->base_ch,
580 						     &io_ctx->aux_buf_iov, 1, io_ctx->aux_offset_blocks,
581 						     io_ctx->aux_num_blocks, _complete_internal_write,
582 						     bdev_io);
583 		} else {
584 			SPDK_ERRLOG("Issue with encryption on bdev_io %p\n", bdev_io);
585 			rc = -EINVAL;
586 		}
587 
588 	} else {
589 		SPDK_ERRLOG("Unknown bdev type %u on crypto operation completion\n",
590 			    bdev_io->type);
591 		rc = -EINVAL;
592 	}
593 
594 	if (rc) {
595 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
596 	}
597 }
598 
599 static void
600 cancel_queued_crypto_ops(struct crypto_io_channel *crypto_ch, struct spdk_bdev_io *bdev_io)
601 {
602 	struct rte_mbuf *mbufs_to_free[2 * MAX_DEQUEUE_BURST_SIZE];
603 	struct rte_crypto_op *dequeued_ops[MAX_DEQUEUE_BURST_SIZE];
604 	struct vbdev_crypto_op *op_to_cancel, *tmp_op;
605 	struct rte_crypto_op *crypto_op;
606 	int num_mbufs, num_dequeued_ops;
607 
608 	/* Remove all ops from the failed IO. Since we don't know the
609 	 * order we have to check them all. */
610 	num_mbufs = 0;
611 	num_dequeued_ops = 0;
612 	TAILQ_FOREACH_SAFE(op_to_cancel, &crypto_ch->queued_cry_ops, link, tmp_op) {
613 		/* Checking if this is our op. One IO contains multiple ops. */
614 		if (bdev_io == op_to_cancel->bdev_io) {
615 			crypto_op = op_to_cancel->crypto_op;
616 			TAILQ_REMOVE(&crypto_ch->queued_cry_ops, op_to_cancel, link);
617 
618 			/* Populating lists for freeing mbufs and ops. */
619 			mbufs_to_free[num_mbufs++] = (void *)crypto_op->sym->m_src;
620 			if (crypto_op->sym->m_dst) {
621 				mbufs_to_free[num_mbufs++] = (void *)crypto_op->sym->m_dst;
622 			}
623 			dequeued_ops[num_dequeued_ops++] = crypto_op;
624 		}
625 	}
626 
627 	/* Now bulk free both mbufs and crypto operations. */
628 	if (num_dequeued_ops > 0) {
629 		rte_mempool_put_bulk(g_crypto_op_mp, (void **)dequeued_ops,
630 				     num_dequeued_ops);
631 		assert(num_mbufs > 0);
632 		/* This also releases chained mbufs if any. */
633 		rte_pktmbuf_free_bulk(mbufs_to_free, num_mbufs);
634 	}
635 }
636 
637 static int _crypto_operation(struct spdk_bdev_io *bdev_io,
638 			     enum rte_crypto_cipher_operation crypto_op,
639 			     void *aux_buf);
640 
641 /* This is the poller for the crypto device. It uses a single API to dequeue whatever is ready at
642  * the device. Then we need to decide if what we've got so far (including previous poller
643  * runs) totals up to one or more complete bdev_ios and if so continue with the bdev_io
644  * accordingly. This means either completing a read or issuing a new write.
645  */
646 static int
647 crypto_dev_poller(void *args)
648 {
649 	struct crypto_io_channel *crypto_ch = args;
650 	uint8_t cdev_id = crypto_ch->device_qp->device->cdev_id;
651 	int i, num_dequeued_ops, num_enqueued_ops;
652 	struct spdk_bdev_io *bdev_io = NULL;
653 	struct crypto_bdev_io *io_ctx = NULL;
654 	struct rte_crypto_op *dequeued_ops[MAX_DEQUEUE_BURST_SIZE];
655 	struct rte_mbuf *mbufs_to_free[2 * MAX_DEQUEUE_BURST_SIZE];
656 	int num_mbufs = 0;
657 	struct vbdev_crypto_op *op_to_resubmit;
658 
659 	/* Each run of the poller will get just what the device has available
660 	 * at the moment we call it, we don't check again after draining the
661 	 * first batch.
662 	 */
663 	num_dequeued_ops = rte_cryptodev_dequeue_burst(cdev_id, crypto_ch->device_qp->qp,
664 			   dequeued_ops, MAX_DEQUEUE_BURST_SIZE);
665 
666 	/* Check if operation was processed successfully */
667 	for (i = 0; i < num_dequeued_ops; i++) {
668 
669 		/* We don't know the order or association of the crypto ops wrt any
670 		 * particular bdev_io so need to look at each and determine if it's
671 		 * the last one for it's bdev_io or not.
672 		 */
673 		bdev_io = (struct spdk_bdev_io *)*RTE_MBUF_DYNFIELD(dequeued_ops[i]->sym->m_src, g_mbuf_offset,
674 				uint64_t *);
675 		assert(bdev_io != NULL);
676 		io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
677 
678 		if (dequeued_ops[i]->status != RTE_CRYPTO_OP_STATUS_SUCCESS) {
679 			SPDK_ERRLOG("error with op %d status %u\n", i,
680 				    dequeued_ops[i]->status);
681 			/* Update the bdev status to error, we'll still process the
682 			 * rest of the crypto ops for this bdev_io though so they
683 			 * aren't left hanging.
684 			 */
685 			io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_FAILED;
686 		}
687 
688 		assert(io_ctx->cryop_cnt_remaining > 0);
689 
690 		/* Return the associated src and dst mbufs by collecting them into
691 		 * an array that we can use the bulk API to free after the loop.
692 		 */
693 		*RTE_MBUF_DYNFIELD(dequeued_ops[i]->sym->m_src, g_mbuf_offset, uint64_t *) = 0;
694 		mbufs_to_free[num_mbufs++] = (void *)dequeued_ops[i]->sym->m_src;
695 		if (dequeued_ops[i]->sym->m_dst) {
696 			mbufs_to_free[num_mbufs++] = (void *)dequeued_ops[i]->sym->m_dst;
697 		}
698 
699 		/* done encrypting, complete the bdev_io */
700 		if (--io_ctx->cryop_cnt_remaining == 0) {
701 
702 			/* If we're completing this with an outstanding reset we need
703 			 * to fail it.
704 			 */
705 			if (crypto_ch->iter) {
706 				io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_FAILED;
707 			}
708 
709 			/* Complete the IO */
710 			_crypto_operation_complete(bdev_io);
711 		}
712 	}
713 
714 	/* Now bulk free both mbufs and crypto operations. */
715 	if (num_dequeued_ops > 0) {
716 		rte_mempool_put_bulk(g_crypto_op_mp,
717 				     (void **)dequeued_ops,
718 				     num_dequeued_ops);
719 		assert(num_mbufs > 0);
720 		/* This also releases chained mbufs if any. */
721 		rte_pktmbuf_free_bulk(mbufs_to_free, num_mbufs);
722 	}
723 
724 	/* Check if there are any pending crypto ops to process */
725 	while (!TAILQ_EMPTY(&crypto_ch->queued_cry_ops)) {
726 		op_to_resubmit = TAILQ_FIRST(&crypto_ch->queued_cry_ops);
727 		bdev_io = op_to_resubmit->bdev_io;
728 		io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
729 		num_enqueued_ops = rte_cryptodev_enqueue_burst(op_to_resubmit->cdev_id,
730 				   op_to_resubmit->qp,
731 				   &op_to_resubmit->crypto_op,
732 				   1);
733 		if (num_enqueued_ops == 1) {
734 			/* Make sure we don't put this on twice as one bdev_io is made up
735 			 * of many crypto ops.
736 			 */
737 			if (io_ctx->on_pending_list == false) {
738 				TAILQ_INSERT_TAIL(&crypto_ch->pending_cry_ios, bdev_io, module_link);
739 				io_ctx->on_pending_list = true;
740 			}
741 			TAILQ_REMOVE(&crypto_ch->queued_cry_ops, op_to_resubmit, link);
742 		} else {
743 			if (op_to_resubmit->crypto_op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED) {
744 				/* If we couldn't get one, just break and try again later. */
745 				break;
746 			} else {
747 				/* Something is really wrong with the op. Most probably the
748 				 * mbuf is broken or the HW is not able to process the request.
749 				 * Fail the IO and remove its ops from the queued ops list. */
750 				io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_FAILED;
751 
752 				cancel_queued_crypto_ops(crypto_ch, bdev_io);
753 
754 				/* Fail the IO if there is nothing left on device. */
755 				if (--io_ctx->cryop_cnt_remaining == 0) {
756 					_crypto_operation_complete(bdev_io);
757 				}
758 			}
759 
760 		}
761 	}
762 
763 	/* If the channel iter is not NULL, we need to continue to poll
764 	 * until the pending list is empty, then we can move on to the
765 	 * next channel.
766 	 */
767 	if (crypto_ch->iter && TAILQ_EMPTY(&crypto_ch->pending_cry_ios)) {
768 		SPDK_NOTICELOG("Channel %p has been quiesced.\n", crypto_ch);
769 		spdk_for_each_channel_continue(crypto_ch->iter, 0);
770 		crypto_ch->iter = NULL;
771 	}
772 
773 	return num_dequeued_ops;
774 }
775 
776 /* Allocate the new mbuf of @remainder size with data pointed by @addr and attach
777  * it to the @orig_mbuf. */
778 static int
779 mbuf_chain_remainder(struct spdk_bdev_io *bdev_io, struct rte_mbuf *orig_mbuf,
780 		     uint8_t *addr, uint32_t remainder)
781 {
782 	uint64_t phys_addr, phys_len;
783 	struct rte_mbuf *chain_mbuf;
784 	int rc;
785 
786 	phys_len = remainder;
787 	phys_addr = spdk_vtophys((void *)addr, &phys_len);
788 	if (spdk_unlikely(phys_addr == SPDK_VTOPHYS_ERROR || phys_len != remainder)) {
789 		return -EFAULT;
790 	}
791 	rc = rte_pktmbuf_alloc_bulk(g_mbuf_mp, (struct rte_mbuf **)&chain_mbuf, 1);
792 	if (spdk_unlikely(rc)) {
793 		return -ENOMEM;
794 	}
795 	/* Store context in every mbuf as we don't know anything about completion order */
796 	*RTE_MBUF_DYNFIELD(chain_mbuf, g_mbuf_offset, uint64_t *) = (uint64_t)bdev_io;
797 	rte_pktmbuf_attach_extbuf(chain_mbuf, addr, phys_addr, phys_len, &g_shinfo);
798 	rte_pktmbuf_append(chain_mbuf, phys_len);
799 
800 	/* Chained buffer is released by rte_pktbuf_free_bulk() automagicaly. */
801 	rte_pktmbuf_chain(orig_mbuf, chain_mbuf);
802 	return 0;
803 }
804 
805 /* Attach data buffer pointed by @addr to @mbuf. Return utilized len of the
806  * contiguous space that was physically available. */
807 static uint64_t
808 mbuf_attach_buf(struct spdk_bdev_io *bdev_io, struct rte_mbuf *mbuf,
809 		uint8_t *addr, uint32_t len)
810 {
811 	uint64_t phys_addr, phys_len;
812 
813 	/* Store context in every mbuf as we don't know anything about completion order */
814 	*RTE_MBUF_DYNFIELD(mbuf, g_mbuf_offset, uint64_t *) = (uint64_t)bdev_io;
815 
816 	phys_len = len;
817 	phys_addr = spdk_vtophys((void *)addr, &phys_len);
818 	if (spdk_unlikely(phys_addr == SPDK_VTOPHYS_ERROR || phys_len == 0)) {
819 		return 0;
820 	}
821 	assert(phys_len <= len);
822 
823 	/* Set the mbuf elements address and length. */
824 	rte_pktmbuf_attach_extbuf(mbuf, addr, phys_addr, phys_len, &g_shinfo);
825 	rte_pktmbuf_append(mbuf, phys_len);
826 
827 	return phys_len;
828 }
829 
830 /* We're either encrypting on the way down or decrypting on the way back. */
831 static int
832 _crypto_operation(struct spdk_bdev_io *bdev_io, enum rte_crypto_cipher_operation crypto_op,
833 		  void *aux_buf)
834 {
835 	uint16_t num_enqueued_ops = 0;
836 	uint32_t cryop_cnt = bdev_io->u.bdev.num_blocks;
837 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
838 	struct crypto_io_channel *crypto_ch = io_ctx->crypto_ch;
839 	uint8_t cdev_id = crypto_ch->device_qp->device->cdev_id;
840 	uint32_t crypto_len = io_ctx->crypto_bdev->crypto_bdev.blocklen;
841 	uint64_t total_length = bdev_io->u.bdev.num_blocks * crypto_len;
842 	int rc;
843 	uint32_t iov_index = 0;
844 	uint32_t allocated = 0;
845 	uint8_t *current_iov = NULL;
846 	uint64_t total_remaining = 0;
847 	uint64_t current_iov_remaining = 0;
848 	uint32_t crypto_index = 0;
849 	uint32_t en_offset = 0;
850 	struct rte_crypto_op *crypto_ops[MAX_ENQUEUE_ARRAY_SIZE];
851 	struct rte_mbuf *src_mbufs[MAX_ENQUEUE_ARRAY_SIZE];
852 	struct rte_mbuf *dst_mbufs[MAX_ENQUEUE_ARRAY_SIZE];
853 	int burst;
854 	struct vbdev_crypto_op *op_to_queue;
855 	uint64_t alignment = spdk_bdev_get_buf_align(&io_ctx->crypto_bdev->crypto_bdev);
856 
857 	assert((bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen) <= CRYPTO_MAX_IO);
858 
859 	/* Get the number of source mbufs that we need. These will always be 1:1 because we
860 	 * don't support chaining. The reason we don't is because of our decision to use
861 	 * LBA as IV, there can be no case where we'd need >1 mbuf per crypto op or the
862 	 * op would be > 1 LBA.
863 	 */
864 	rc = rte_pktmbuf_alloc_bulk(g_mbuf_mp, src_mbufs, cryop_cnt);
865 	if (rc) {
866 		SPDK_ERRLOG("Failed to get src_mbufs!\n");
867 		return -ENOMEM;
868 	}
869 
870 	/* Get the same amount but these buffers to describe the encrypted data location (dst). */
871 	if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
872 		rc = rte_pktmbuf_alloc_bulk(g_mbuf_mp, dst_mbufs, cryop_cnt);
873 		if (rc) {
874 			SPDK_ERRLOG("Failed to get dst_mbufs!\n");
875 			rc = -ENOMEM;
876 			goto error_get_dst;
877 		}
878 	}
879 
880 #ifdef __clang_analyzer__
881 	/* silence scan-build false positive */
882 	SPDK_CLANG_ANALYZER_PREINIT_PTR_ARRAY(crypto_ops, MAX_ENQUEUE_ARRAY_SIZE, 0x1000);
883 #endif
884 	/* Allocate crypto operations. */
885 	allocated = rte_crypto_op_bulk_alloc(g_crypto_op_mp,
886 					     RTE_CRYPTO_OP_TYPE_SYMMETRIC,
887 					     crypto_ops, cryop_cnt);
888 	if (allocated < cryop_cnt) {
889 		SPDK_ERRLOG("Failed to allocate crypto ops!\n");
890 		rc = -ENOMEM;
891 		goto error_get_ops;
892 	}
893 
894 	/* For encryption, we need to prepare a single contiguous buffer as the encryption
895 	 * destination, we'll then pass that along for the write after encryption is done.
896 	 * This is done to avoiding encrypting the provided write buffer which may be
897 	 * undesirable in some use cases.
898 	 */
899 	if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
900 		io_ctx->aux_buf_iov.iov_len = total_length;
901 		io_ctx->aux_buf_raw = aux_buf;
902 		io_ctx->aux_buf_iov.iov_base  = (void *)(((uintptr_t)aux_buf + (alignment - 1)) & ~(alignment - 1));
903 		io_ctx->aux_offset_blocks = bdev_io->u.bdev.offset_blocks;
904 		io_ctx->aux_num_blocks = bdev_io->u.bdev.num_blocks;
905 	}
906 
907 	/* This value is used in the completion callback to determine when the bdev_io is
908 	 * complete.
909 	 */
910 	io_ctx->cryop_cnt_remaining = cryop_cnt;
911 
912 	/* As we don't support chaining because of a decision to use LBA as IV, construction
913 	 * of crypto operations is straightforward. We build both the op, the mbuf and the
914 	 * dst_mbuf in our local arrays by looping through the length of the bdev IO and
915 	 * picking off LBA sized blocks of memory from the IOVs as we walk through them. Each
916 	 * LBA sized chunk of memory will correspond 1:1 to a crypto operation and a single
917 	 * mbuf per crypto operation.
918 	 */
919 	total_remaining = total_length;
920 	current_iov = bdev_io->u.bdev.iovs[iov_index].iov_base;
921 	current_iov_remaining = bdev_io->u.bdev.iovs[iov_index].iov_len;
922 	do {
923 		uint8_t *iv_ptr;
924 		uint8_t *buf_addr;
925 		uint64_t phys_len;
926 		uint32_t remainder;
927 		uint64_t op_block_offset;
928 
929 		phys_len = mbuf_attach_buf(bdev_io, src_mbufs[crypto_index],
930 					   current_iov, crypto_len);
931 		if (spdk_unlikely(phys_len == 0)) {
932 			goto error_attach_session;
933 			rc = -EFAULT;
934 		}
935 
936 		/* Handle the case of page boundary. */
937 		remainder = crypto_len - phys_len;
938 		if (spdk_unlikely(remainder > 0)) {
939 			rc = mbuf_chain_remainder(bdev_io, src_mbufs[crypto_index],
940 						  current_iov + phys_len, remainder);
941 			if (spdk_unlikely(rc)) {
942 				goto error_attach_session;
943 			}
944 		}
945 
946 		/* Set the IV - we use the LBA of the crypto_op */
947 		iv_ptr = rte_crypto_op_ctod_offset(crypto_ops[crypto_index], uint8_t *,
948 						   IV_OFFSET);
949 		memset(iv_ptr, 0, IV_LENGTH);
950 		op_block_offset = bdev_io->u.bdev.offset_blocks + crypto_index;
951 		rte_memcpy(iv_ptr, &op_block_offset, sizeof(uint64_t));
952 
953 		/* Set the data to encrypt/decrypt length */
954 		crypto_ops[crypto_index]->sym->cipher.data.length = crypto_len;
955 		crypto_ops[crypto_index]->sym->cipher.data.offset = 0;
956 
957 		/* link the mbuf to the crypto op. */
958 		crypto_ops[crypto_index]->sym->m_src = src_mbufs[crypto_index];
959 
960 		/* For encrypt, point the destination to a buffer we allocate and redirect the bdev_io
961 		 * that will be used to process the write on completion to the same buffer. Setting
962 		 * up the en_buffer is a little simpler as we know the destination buffer is single IOV.
963 		 */
964 		if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
965 			buf_addr = io_ctx->aux_buf_iov.iov_base + en_offset;
966 			phys_len = mbuf_attach_buf(bdev_io, dst_mbufs[crypto_index],
967 						   buf_addr, crypto_len);
968 			if (spdk_unlikely(phys_len == 0)) {
969 				rc = -EFAULT;
970 				goto error_attach_session;
971 			}
972 
973 			crypto_ops[crypto_index]->sym->m_dst = dst_mbufs[crypto_index];
974 			en_offset += phys_len;
975 
976 			/* Handle the case of page boundary. */
977 			remainder = crypto_len - phys_len;
978 			if (spdk_unlikely(remainder > 0)) {
979 				rc = mbuf_chain_remainder(bdev_io, dst_mbufs[crypto_index],
980 							  buf_addr + phys_len, remainder);
981 				if (spdk_unlikely(rc)) {
982 					goto error_attach_session;
983 				}
984 				en_offset += remainder;
985 			}
986 
987 			/* Attach the crypto session to the operation */
988 			rc = rte_crypto_op_attach_sym_session(crypto_ops[crypto_index],
989 							      io_ctx->crypto_bdev->session_encrypt);
990 			if (rc) {
991 				rc = -EINVAL;
992 				goto error_attach_session;
993 			}
994 		} else {
995 			crypto_ops[crypto_index]->sym->m_dst = NULL;
996 
997 			/* Attach the crypto session to the operation */
998 			rc = rte_crypto_op_attach_sym_session(crypto_ops[crypto_index],
999 							      io_ctx->crypto_bdev->session_decrypt);
1000 			if (rc) {
1001 				rc = -EINVAL;
1002 				goto error_attach_session;
1003 			}
1004 		}
1005 
1006 		/* Subtract our running totals for the op in progress and the overall bdev io */
1007 		total_remaining -= crypto_len;
1008 		current_iov_remaining -= crypto_len;
1009 
1010 		/* move our current IOV pointer accordingly. */
1011 		current_iov += crypto_len;
1012 
1013 		/* move on to the next crypto operation */
1014 		crypto_index++;
1015 
1016 		/* If we're done with this IOV, move to the next one. */
1017 		if (current_iov_remaining == 0 && total_remaining > 0) {
1018 			iov_index++;
1019 			current_iov = bdev_io->u.bdev.iovs[iov_index].iov_base;
1020 			current_iov_remaining = bdev_io->u.bdev.iovs[iov_index].iov_len;
1021 		}
1022 	} while (total_remaining > 0);
1023 
1024 	/* Enqueue everything we've got but limit by the max number of descriptors we
1025 	 * configured the crypto device for.
1026 	 */
1027 	burst = spdk_min(cryop_cnt, io_ctx->crypto_bdev->qp_desc_nr);
1028 	num_enqueued_ops = rte_cryptodev_enqueue_burst(cdev_id, crypto_ch->device_qp->qp,
1029 			   &crypto_ops[0],
1030 			   burst);
1031 
1032 	/* Add this bdev_io to our outstanding list if any of its crypto ops made it. */
1033 	if (num_enqueued_ops > 0) {
1034 		TAILQ_INSERT_TAIL(&crypto_ch->pending_cry_ios, bdev_io, module_link);
1035 		io_ctx->on_pending_list = true;
1036 	}
1037 	/* We were unable to enqueue everything but did get some, so need to decide what
1038 	 * to do based on the status of the last op.
1039 	 */
1040 	if (num_enqueued_ops < cryop_cnt) {
1041 		switch (crypto_ops[num_enqueued_ops]->status) {
1042 		case RTE_CRYPTO_OP_STATUS_NOT_PROCESSED:
1043 			/* Queue them up on a linked list to be resubmitted via the poller. */
1044 			for (crypto_index = num_enqueued_ops; crypto_index < cryop_cnt; crypto_index++) {
1045 				op_to_queue = (struct vbdev_crypto_op *)rte_crypto_op_ctod_offset(crypto_ops[crypto_index],
1046 						uint8_t *, QUEUED_OP_OFFSET);
1047 				op_to_queue->cdev_id = cdev_id;
1048 				op_to_queue->qp = crypto_ch->device_qp->qp;
1049 				op_to_queue->crypto_op = crypto_ops[crypto_index];
1050 				op_to_queue->bdev_io = bdev_io;
1051 				TAILQ_INSERT_TAIL(&crypto_ch->queued_cry_ops,
1052 						  op_to_queue,
1053 						  link);
1054 			}
1055 			break;
1056 		default:
1057 			/* For all other statuses, set the io_ctx bdev_io status so that
1058 			 * the poller will pick the failure up for the overall bdev status.
1059 			 */
1060 			io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_FAILED;
1061 			if (num_enqueued_ops == 0) {
1062 				/* If nothing was enqueued, but the last one wasn't because of
1063 				 * busy, fail it now as the poller won't know anything about it.
1064 				 */
1065 				rc = -EINVAL;
1066 				goto error_attach_session;
1067 			}
1068 			break;
1069 		}
1070 	}
1071 
1072 	return rc;
1073 
1074 	/* Error cleanup paths. */
1075 error_attach_session:
1076 error_get_ops:
1077 	if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
1078 		/* This also releases chained mbufs if any. */
1079 		rte_pktmbuf_free_bulk(dst_mbufs, cryop_cnt);
1080 	}
1081 	if (allocated > 0) {
1082 		rte_mempool_put_bulk(g_crypto_op_mp, (void **)crypto_ops,
1083 				     allocated);
1084 	}
1085 error_get_dst:
1086 	/* This also releases chained mbufs if any. */
1087 	rte_pktmbuf_free_bulk(src_mbufs, cryop_cnt);
1088 	return rc;
1089 }
1090 
1091 /* This function is called after all channels have been quiesced following
1092  * a bdev reset.
1093  */
1094 static void
1095 _ch_quiesce_done(struct spdk_io_channel_iter *i, int status)
1096 {
1097 	struct crypto_bdev_io *io_ctx = spdk_io_channel_iter_get_ctx(i);
1098 
1099 	assert(TAILQ_EMPTY(&io_ctx->crypto_ch->pending_cry_ios));
1100 	assert(io_ctx->orig_io != NULL);
1101 
1102 	spdk_bdev_io_complete(io_ctx->orig_io, SPDK_BDEV_IO_STATUS_SUCCESS);
1103 }
1104 
1105 /* This function is called per channel to quiesce IOs before completing a
1106  * bdev reset that we received.
1107  */
1108 static void
1109 _ch_quiesce(struct spdk_io_channel_iter *i)
1110 {
1111 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
1112 	struct crypto_io_channel *crypto_ch = spdk_io_channel_get_ctx(ch);
1113 
1114 	crypto_ch->iter = i;
1115 	/* When the poller runs, it will see the non-NULL iter and handle
1116 	 * the quiesce.
1117 	 */
1118 }
1119 
1120 /* Completion callback for IO that were issued from this bdev other than read/write.
1121  * They have their own for readability.
1122  */
1123 static void
1124 _complete_internal_io(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
1125 {
1126 	struct spdk_bdev_io *orig_io = cb_arg;
1127 	int status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
1128 
1129 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_RESET) {
1130 		struct crypto_bdev_io *orig_ctx = (struct crypto_bdev_io *)orig_io->driver_ctx;
1131 
1132 		assert(orig_io == orig_ctx->orig_io);
1133 
1134 		spdk_bdev_free_io(bdev_io);
1135 
1136 		spdk_for_each_channel(orig_ctx->crypto_bdev,
1137 				      _ch_quiesce,
1138 				      orig_ctx,
1139 				      _ch_quiesce_done);
1140 		return;
1141 	}
1142 
1143 	spdk_bdev_io_complete(orig_io, status);
1144 	spdk_bdev_free_io(bdev_io);
1145 }
1146 
1147 /* Completion callback for writes that were issued from this bdev. */
1148 static void
1149 _complete_internal_write(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
1150 {
1151 	struct spdk_bdev_io *orig_io = cb_arg;
1152 	int status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
1153 	struct crypto_bdev_io *orig_ctx = (struct crypto_bdev_io *)orig_io->driver_ctx;
1154 
1155 	spdk_bdev_io_put_aux_buf(orig_io, orig_ctx->aux_buf_raw);
1156 
1157 	spdk_bdev_io_complete(orig_io, status);
1158 	spdk_bdev_free_io(bdev_io);
1159 }
1160 
1161 /* Completion callback for reads that were issued from this bdev. */
1162 static void
1163 _complete_internal_read(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
1164 {
1165 	struct spdk_bdev_io *orig_io = cb_arg;
1166 	struct crypto_bdev_io *orig_ctx = (struct crypto_bdev_io *)orig_io->driver_ctx;
1167 
1168 	if (success) {
1169 
1170 		/* Save off this bdev_io so it can be freed after decryption. */
1171 		orig_ctx->read_io = bdev_io;
1172 
1173 		if (!_crypto_operation(orig_io, RTE_CRYPTO_CIPHER_OP_DECRYPT, NULL)) {
1174 			return;
1175 		} else {
1176 			SPDK_ERRLOG("Failed to decrypt!\n");
1177 		}
1178 	} else {
1179 		SPDK_ERRLOG("Failed to read prior to decrypting!\n");
1180 	}
1181 
1182 	spdk_bdev_io_complete(orig_io, SPDK_BDEV_IO_STATUS_FAILED);
1183 	spdk_bdev_free_io(bdev_io);
1184 }
1185 
1186 static void
1187 vbdev_crypto_resubmit_io(void *arg)
1188 {
1189 	struct spdk_bdev_io *bdev_io = (struct spdk_bdev_io *)arg;
1190 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
1191 
1192 	vbdev_crypto_submit_request(io_ctx->ch, bdev_io);
1193 }
1194 
1195 static void
1196 vbdev_crypto_queue_io(struct spdk_bdev_io *bdev_io)
1197 {
1198 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
1199 	int rc;
1200 
1201 	io_ctx->bdev_io_wait.bdev = bdev_io->bdev;
1202 	io_ctx->bdev_io_wait.cb_fn = vbdev_crypto_resubmit_io;
1203 	io_ctx->bdev_io_wait.cb_arg = bdev_io;
1204 
1205 	rc = spdk_bdev_queue_io_wait(bdev_io->bdev, io_ctx->crypto_ch->base_ch, &io_ctx->bdev_io_wait);
1206 	if (rc != 0) {
1207 		SPDK_ERRLOG("Queue io failed in vbdev_crypto_queue_io, rc=%d.\n", rc);
1208 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1209 	}
1210 }
1211 
1212 /* Callback for getting a buf from the bdev pool in the event that the caller passed
1213  * in NULL, we need to own the buffer so it doesn't get freed by another vbdev module
1214  * beneath us before we're done with it.
1215  */
1216 static void
1217 crypto_read_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
1218 		       bool success)
1219 {
1220 	struct vbdev_crypto *crypto_bdev = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_crypto,
1221 					   crypto_bdev);
1222 	struct crypto_io_channel *crypto_ch = spdk_io_channel_get_ctx(ch);
1223 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
1224 	int rc;
1225 
1226 	if (!success) {
1227 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1228 		return;
1229 	}
1230 
1231 	rc = spdk_bdev_readv_blocks(crypto_bdev->base_desc, crypto_ch->base_ch, bdev_io->u.bdev.iovs,
1232 				    bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.offset_blocks,
1233 				    bdev_io->u.bdev.num_blocks, _complete_internal_read,
1234 				    bdev_io);
1235 	if (rc != 0) {
1236 		if (rc == -ENOMEM) {
1237 			SPDK_DEBUGLOG(vbdev_crypto, "No memory, queue the IO.\n");
1238 			io_ctx->ch = ch;
1239 			vbdev_crypto_queue_io(bdev_io);
1240 		} else {
1241 			SPDK_ERRLOG("Failed to submit bdev_io!\n");
1242 			spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1243 		}
1244 	}
1245 }
1246 
1247 /* For encryption we don't want to encrypt the data in place as the host isn't
1248  * expecting us to mangle its data buffers so we need to encrypt into the bdev
1249  * aux buffer, then we can use that as the source for the disk data transfer.
1250  */
1251 static void
1252 crypto_write_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
1253 			void *aux_buf)
1254 {
1255 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
1256 	int rc = 0;
1257 
1258 	rc = _crypto_operation(bdev_io, RTE_CRYPTO_CIPHER_OP_ENCRYPT, aux_buf);
1259 	if (rc != 0) {
1260 		spdk_bdev_io_put_aux_buf(bdev_io, aux_buf);
1261 		if (rc == -ENOMEM) {
1262 			SPDK_DEBUGLOG(vbdev_crypto, "No memory, queue the IO.\n");
1263 			io_ctx->ch = ch;
1264 			vbdev_crypto_queue_io(bdev_io);
1265 		} else {
1266 			SPDK_ERRLOG("Failed to submit bdev_io!\n");
1267 			spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1268 		}
1269 	}
1270 }
1271 
1272 /* Called when someone submits IO to this crypto vbdev. For IO's not relevant to crypto,
1273  * we're simply passing it on here via SPDK IO calls which in turn allocate another bdev IO
1274  * and call our cpl callback provided below along with the original bdev_io so that we can
1275  * complete it once this IO completes. For crypto operations, we'll either encrypt it first
1276  * (writes) then call back into bdev to submit it or we'll submit a read and then catch it
1277  * on the way back for decryption.
1278  */
1279 static void
1280 vbdev_crypto_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
1281 {
1282 	struct vbdev_crypto *crypto_bdev = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_crypto,
1283 					   crypto_bdev);
1284 	struct crypto_io_channel *crypto_ch = spdk_io_channel_get_ctx(ch);
1285 	struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
1286 	int rc = 0;
1287 
1288 	memset(io_ctx, 0, sizeof(struct crypto_bdev_io));
1289 	io_ctx->crypto_bdev = crypto_bdev;
1290 	io_ctx->crypto_ch = crypto_ch;
1291 	io_ctx->orig_io = bdev_io;
1292 	io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1293 
1294 	switch (bdev_io->type) {
1295 	case SPDK_BDEV_IO_TYPE_READ:
1296 		spdk_bdev_io_get_buf(bdev_io, crypto_read_get_buf_cb,
1297 				     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
1298 		break;
1299 	case SPDK_BDEV_IO_TYPE_WRITE:
1300 		/* Tell the bdev layer that we need an aux buf in addition to the data
1301 		 * buf already associated with the bdev.
1302 		 */
1303 		spdk_bdev_io_get_aux_buf(bdev_io, crypto_write_get_buf_cb);
1304 		break;
1305 	case SPDK_BDEV_IO_TYPE_UNMAP:
1306 		rc = spdk_bdev_unmap_blocks(crypto_bdev->base_desc, crypto_ch->base_ch,
1307 					    bdev_io->u.bdev.offset_blocks,
1308 					    bdev_io->u.bdev.num_blocks,
1309 					    _complete_internal_io, bdev_io);
1310 		break;
1311 	case SPDK_BDEV_IO_TYPE_FLUSH:
1312 		rc = spdk_bdev_flush_blocks(crypto_bdev->base_desc, crypto_ch->base_ch,
1313 					    bdev_io->u.bdev.offset_blocks,
1314 					    bdev_io->u.bdev.num_blocks,
1315 					    _complete_internal_io, bdev_io);
1316 		break;
1317 	case SPDK_BDEV_IO_TYPE_RESET:
1318 		rc = spdk_bdev_reset(crypto_bdev->base_desc, crypto_ch->base_ch,
1319 				     _complete_internal_io, bdev_io);
1320 		break;
1321 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
1322 	default:
1323 		SPDK_ERRLOG("crypto: unknown I/O type %d\n", bdev_io->type);
1324 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1325 		return;
1326 	}
1327 
1328 	if (rc != 0) {
1329 		if (rc == -ENOMEM) {
1330 			SPDK_DEBUGLOG(vbdev_crypto, "No memory, queue the IO.\n");
1331 			io_ctx->ch = ch;
1332 			vbdev_crypto_queue_io(bdev_io);
1333 		} else {
1334 			SPDK_ERRLOG("Failed to submit bdev_io!\n");
1335 			spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1336 		}
1337 	}
1338 }
1339 
1340 /* We'll just call the base bdev and let it answer except for WZ command which
1341  * we always say we don't support so that the bdev layer will actually send us
1342  * real writes that we can encrypt.
1343  */
1344 static bool
1345 vbdev_crypto_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
1346 {
1347 	struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
1348 
1349 	switch (io_type) {
1350 	case SPDK_BDEV_IO_TYPE_WRITE:
1351 	case SPDK_BDEV_IO_TYPE_UNMAP:
1352 	case SPDK_BDEV_IO_TYPE_RESET:
1353 	case SPDK_BDEV_IO_TYPE_READ:
1354 	case SPDK_BDEV_IO_TYPE_FLUSH:
1355 		return spdk_bdev_io_type_supported(crypto_bdev->base_bdev, io_type);
1356 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
1357 	/* Force the bdev layer to issue actual writes of zeroes so we can
1358 	 * encrypt them as regular writes.
1359 	 */
1360 	default:
1361 		return false;
1362 	}
1363 }
1364 
1365 /* Callback for unregistering the IO device. */
1366 static void
1367 _device_unregister_cb(void *io_device)
1368 {
1369 	struct vbdev_crypto *crypto_bdev = io_device;
1370 
1371 	/* Done with this crypto_bdev. */
1372 	rte_cryptodev_sym_session_free(crypto_bdev->session_decrypt);
1373 	rte_cryptodev_sym_session_free(crypto_bdev->session_encrypt);
1374 	crypto_bdev->opts = NULL;
1375 	free(crypto_bdev->crypto_bdev.name);
1376 	free(crypto_bdev);
1377 }
1378 
1379 /* Wrapper for the bdev close operation. */
1380 static void
1381 _vbdev_crypto_destruct(void *ctx)
1382 {
1383 	struct spdk_bdev_desc *desc = ctx;
1384 
1385 	spdk_bdev_close(desc);
1386 }
1387 
1388 /* Called after we've unregistered following a hot remove callback.
1389  * Our finish entry point will be called next.
1390  */
1391 static int
1392 vbdev_crypto_destruct(void *ctx)
1393 {
1394 	struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
1395 
1396 	/* Remove this device from the internal list */
1397 	TAILQ_REMOVE(&g_vbdev_crypto, crypto_bdev, link);
1398 
1399 	/* Unclaim the underlying bdev. */
1400 	spdk_bdev_module_release_bdev(crypto_bdev->base_bdev);
1401 
1402 	/* Close the underlying bdev on its same opened thread. */
1403 	if (crypto_bdev->thread && crypto_bdev->thread != spdk_get_thread()) {
1404 		spdk_thread_send_msg(crypto_bdev->thread, _vbdev_crypto_destruct, crypto_bdev->base_desc);
1405 	} else {
1406 		spdk_bdev_close(crypto_bdev->base_desc);
1407 	}
1408 
1409 	/* Unregister the io_device. */
1410 	spdk_io_device_unregister(crypto_bdev, _device_unregister_cb);
1411 
1412 	g_number_of_claimed_volumes--;
1413 
1414 	return 0;
1415 }
1416 
1417 /* We supplied this as an entry point for upper layers who want to communicate to this
1418  * bdev.  This is how they get a channel. We are passed the same context we provided when
1419  * we created our crypto vbdev in examine() which, for this bdev, is the address of one of
1420  * our context nodes. From here we'll ask the SPDK channel code to fill out our channel
1421  * struct and we'll keep it in our crypto node.
1422  */
1423 static struct spdk_io_channel *
1424 vbdev_crypto_get_io_channel(void *ctx)
1425 {
1426 	struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
1427 
1428 	/* The IO channel code will allocate a channel for us which consists of
1429 	 * the SPDK channel structure plus the size of our crypto_io_channel struct
1430 	 * that we passed in when we registered our IO device. It will then call
1431 	 * our channel create callback to populate any elements that we need to
1432 	 * update.
1433 	 */
1434 	return spdk_get_io_channel(crypto_bdev);
1435 }
1436 
1437 /* This is the output for bdev_get_bdevs() for this vbdev */
1438 static int
1439 vbdev_crypto_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
1440 {
1441 	struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
1442 	char *hexkey = NULL, *hexkey2 = NULL;
1443 	int rc = 0;
1444 
1445 	hexkey = hexlify(crypto_bdev->opts->key,
1446 			 crypto_bdev->opts->key_size);
1447 	if (!hexkey) {
1448 		return -ENOMEM;
1449 	}
1450 
1451 	if (crypto_bdev->opts->key2) {
1452 		hexkey2 = hexlify(crypto_bdev->opts->key2,
1453 				  crypto_bdev->opts->key2_size);
1454 		if (!hexkey2) {
1455 			rc = -ENOMEM;
1456 			goto out_err;
1457 		}
1458 	}
1459 
1460 	spdk_json_write_name(w, "crypto");
1461 	spdk_json_write_object_begin(w);
1462 	spdk_json_write_named_string(w, "base_bdev_name", spdk_bdev_get_name(crypto_bdev->base_bdev));
1463 	spdk_json_write_named_string(w, "name", spdk_bdev_get_name(&crypto_bdev->crypto_bdev));
1464 	spdk_json_write_named_string(w, "crypto_pmd", crypto_bdev->opts->drv_name);
1465 	spdk_json_write_named_string(w, "key", hexkey);
1466 	if (hexkey2) {
1467 		spdk_json_write_named_string(w, "key2", hexkey2);
1468 	}
1469 	spdk_json_write_named_string(w, "cipher", crypto_bdev->opts->cipher);
1470 	spdk_json_write_object_end(w);
1471 out_err:
1472 	if (hexkey) {
1473 		memset(hexkey, 0, strlen(hexkey));
1474 		free(hexkey);
1475 	}
1476 	if (hexkey2) {
1477 		memset(hexkey2, 0, strlen(hexkey2));
1478 		free(hexkey2);
1479 	}
1480 	return rc;
1481 }
1482 
1483 static int
1484 vbdev_crypto_config_json(struct spdk_json_write_ctx *w)
1485 {
1486 	struct vbdev_crypto *crypto_bdev;
1487 
1488 	TAILQ_FOREACH(crypto_bdev, &g_vbdev_crypto, link) {
1489 		char *hexkey = NULL, *hexkey2 = NULL;
1490 
1491 		hexkey = hexlify(crypto_bdev->opts->key,
1492 				 crypto_bdev->opts->key_size);
1493 		if (!hexkey) {
1494 			return -ENOMEM;
1495 		}
1496 
1497 		if (crypto_bdev->opts->key2) {
1498 			hexkey2 = hexlify(crypto_bdev->opts->key2,
1499 					  crypto_bdev->opts->key2_size);
1500 			if (!hexkey2) {
1501 				memset(hexkey, 0, strlen(hexkey));
1502 				free(hexkey);
1503 				return -ENOMEM;
1504 			}
1505 		}
1506 
1507 		spdk_json_write_object_begin(w);
1508 		spdk_json_write_named_string(w, "method", "bdev_crypto_create");
1509 		spdk_json_write_named_object_begin(w, "params");
1510 		spdk_json_write_named_string(w, "base_bdev_name", spdk_bdev_get_name(crypto_bdev->base_bdev));
1511 		spdk_json_write_named_string(w, "name", spdk_bdev_get_name(&crypto_bdev->crypto_bdev));
1512 		spdk_json_write_named_string(w, "crypto_pmd", crypto_bdev->opts->drv_name);
1513 		spdk_json_write_named_string(w, "key", hexkey);
1514 		if (hexkey2) {
1515 			spdk_json_write_named_string(w, "key2", hexkey2);
1516 		}
1517 		spdk_json_write_named_string(w, "cipher", crypto_bdev->opts->cipher);
1518 		spdk_json_write_object_end(w);
1519 		spdk_json_write_object_end(w);
1520 
1521 		if (hexkey) {
1522 			memset(hexkey, 0, strlen(hexkey));
1523 			free(hexkey);
1524 		}
1525 		if (hexkey2) {
1526 			memset(hexkey2, 0, strlen(hexkey2));
1527 			free(hexkey2);
1528 		}
1529 	}
1530 	return 0;
1531 }
1532 
1533 /* Helper function for the channel creation callback. */
1534 static void
1535 _assign_device_qp(struct vbdev_crypto *crypto_bdev, struct device_qp *device_qp,
1536 		  struct crypto_io_channel *crypto_ch)
1537 {
1538 	pthread_mutex_lock(&g_device_qp_lock);
1539 	if (strcmp(crypto_bdev->opts->drv_name, QAT) == 0) {
1540 		/* For some QAT devices, the optimal qp to use is every 32nd as this spreads the
1541 		 * workload out over the multiple virtual functions in the device. For the devices
1542 		 * where this isn't the case, it doesn't hurt.
1543 		 */
1544 		TAILQ_FOREACH(device_qp, &g_device_qp_qat, link) {
1545 			if (device_qp->index != g_next_qat_index) {
1546 				continue;
1547 			}
1548 			if (device_qp->in_use == false) {
1549 				crypto_ch->device_qp = device_qp;
1550 				device_qp->in_use = true;
1551 				g_next_qat_index = (g_next_qat_index + QAT_VF_SPREAD) % g_qat_total_qp;
1552 				break;
1553 			} else {
1554 				/* if the preferred index is used, skip to the next one in this set. */
1555 				g_next_qat_index = (g_next_qat_index + 1) % g_qat_total_qp;
1556 			}
1557 		}
1558 	} else if (strcmp(crypto_bdev->opts->drv_name, AESNI_MB) == 0) {
1559 		TAILQ_FOREACH(device_qp, &g_device_qp_aesni_mb, link) {
1560 			if (device_qp->in_use == false) {
1561 				crypto_ch->device_qp = device_qp;
1562 				device_qp->in_use = true;
1563 				break;
1564 			}
1565 		}
1566 	} else if (strcmp(crypto_bdev->opts->drv_name, MLX5) == 0) {
1567 		TAILQ_FOREACH(device_qp, &g_device_qp_mlx5, link) {
1568 			if (device_qp->in_use == false) {
1569 				crypto_ch->device_qp = device_qp;
1570 				device_qp->in_use = true;
1571 				break;
1572 			}
1573 		}
1574 	}
1575 	pthread_mutex_unlock(&g_device_qp_lock);
1576 }
1577 
1578 /* We provide this callback for the SPDK channel code to create a channel using
1579  * the channel struct we provided in our module get_io_channel() entry point. Here
1580  * we get and save off an underlying base channel of the device below us so that
1581  * we can communicate with the base bdev on a per channel basis. We also register the
1582  * poller used to complete crypto operations from the device.
1583  */
1584 static int
1585 crypto_bdev_ch_create_cb(void *io_device, void *ctx_buf)
1586 {
1587 	struct crypto_io_channel *crypto_ch = ctx_buf;
1588 	struct vbdev_crypto *crypto_bdev = io_device;
1589 	struct device_qp *device_qp = NULL;
1590 
1591 	crypto_ch->base_ch = spdk_bdev_get_io_channel(crypto_bdev->base_desc);
1592 	crypto_ch->poller = SPDK_POLLER_REGISTER(crypto_dev_poller, crypto_ch, 0);
1593 	crypto_ch->device_qp = NULL;
1594 
1595 	/* Assign a device/qp combination that is unique per channel per PMD. */
1596 	_assign_device_qp(crypto_bdev, device_qp, crypto_ch);
1597 	assert(crypto_ch->device_qp);
1598 
1599 	/* We use this queue to track outstanding IO in our layer. */
1600 	TAILQ_INIT(&crypto_ch->pending_cry_ios);
1601 
1602 	/* We use this to queue up crypto ops when the device is busy. */
1603 	TAILQ_INIT(&crypto_ch->queued_cry_ops);
1604 
1605 	return 0;
1606 }
1607 
1608 /* We provide this callback for the SPDK channel code to destroy a channel
1609  * created with our create callback. We just need to undo anything we did
1610  * when we created.
1611  */
1612 static void
1613 crypto_bdev_ch_destroy_cb(void *io_device, void *ctx_buf)
1614 {
1615 	struct crypto_io_channel *crypto_ch = ctx_buf;
1616 
1617 	pthread_mutex_lock(&g_device_qp_lock);
1618 	crypto_ch->device_qp->in_use = false;
1619 	pthread_mutex_unlock(&g_device_qp_lock);
1620 
1621 	spdk_poller_unregister(&crypto_ch->poller);
1622 	spdk_put_io_channel(crypto_ch->base_ch);
1623 }
1624 
1625 /* Create the association from the bdev and vbdev name and insert
1626  * on the global list. */
1627 static int
1628 vbdev_crypto_insert_name(struct vbdev_crypto_opts *opts, struct bdev_names **out)
1629 {
1630 	struct bdev_names *name;
1631 	bool found = false;
1632 	int j;
1633 
1634 	assert(opts);
1635 	assert(out);
1636 
1637 	TAILQ_FOREACH(name, &g_bdev_names, link) {
1638 		if (strcmp(opts->vbdev_name, name->opts->vbdev_name) == 0) {
1639 			SPDK_ERRLOG("Crypto bdev %s already exists\n", opts->vbdev_name);
1640 			return -EEXIST;
1641 		}
1642 	}
1643 
1644 	for (j = 0; j < MAX_NUM_DRV_TYPES ; j++) {
1645 		if (strcmp(opts->drv_name, g_driver_names[j]) == 0) {
1646 			found = true;
1647 			break;
1648 		}
1649 	}
1650 	if (!found) {
1651 		SPDK_ERRLOG("Crypto PMD type %s is not supported.\n", opts->drv_name);
1652 		return -EINVAL;
1653 	}
1654 
1655 	name = calloc(1, sizeof(struct bdev_names));
1656 	if (!name) {
1657 		SPDK_ERRLOG("Failed to allocate memory for bdev_names.\n");
1658 		return -ENOMEM;
1659 	}
1660 
1661 	name->opts = opts;
1662 	TAILQ_INSERT_TAIL(&g_bdev_names, name, link);
1663 	*out = name;
1664 
1665 	return 0;
1666 }
1667 
1668 void
1669 free_crypto_opts(struct vbdev_crypto_opts *opts)
1670 {
1671 	free(opts->bdev_name);
1672 	free(opts->vbdev_name);
1673 	free(opts->drv_name);
1674 	if (opts->xts_key) {
1675 		memset(opts->xts_key, 0,
1676 		       opts->key_size + opts->key2_size);
1677 		free(opts->xts_key);
1678 	}
1679 	memset(opts->key, 0, opts->key_size);
1680 	free(opts->key);
1681 	opts->key_size = 0;
1682 	if (opts->key2) {
1683 		memset(opts->key2, 0, opts->key2_size);
1684 		free(opts->key2);
1685 	}
1686 	opts->key2_size = 0;
1687 	free(opts);
1688 }
1689 
1690 static void
1691 vbdev_crypto_delete_name(struct bdev_names *name)
1692 {
1693 	TAILQ_REMOVE(&g_bdev_names, name, link);
1694 	if (name->opts) {
1695 		free_crypto_opts(name->opts);
1696 		name->opts = NULL;
1697 	}
1698 	free(name);
1699 }
1700 
1701 /* RPC entry point for crypto creation. */
1702 int
1703 create_crypto_disk(struct vbdev_crypto_opts *opts)
1704 {
1705 	struct bdev_names *name = NULL;
1706 	int rc;
1707 
1708 	rc = vbdev_crypto_insert_name(opts, &name);
1709 	if (rc) {
1710 		return rc;
1711 	}
1712 
1713 	rc = vbdev_crypto_claim(opts->bdev_name);
1714 	if (rc == -ENODEV) {
1715 		SPDK_NOTICELOG("vbdev creation deferred pending base bdev arrival\n");
1716 		rc = 0;
1717 	}
1718 
1719 	if (rc) {
1720 		assert(name != NULL);
1721 		/* In case of error we let the caller function to deallocate @opts
1722 		 * since it is its responsibiltiy. Setting name->opts = NULL let's
1723 		 * vbdev_crypto_delete_name() know it does not have to do anything
1724 		 * about @opts.
1725 		 */
1726 		name->opts = NULL;
1727 		vbdev_crypto_delete_name(name);
1728 	}
1729 	return rc;
1730 }
1731 
1732 /* Called at driver init time, parses config file to prepare for examine calls,
1733  * also fully initializes the crypto drivers.
1734  */
1735 static int
1736 vbdev_crypto_init(void)
1737 {
1738 	int rc = 0;
1739 
1740 	/* Fully configure both SW and HW drivers. */
1741 	rc = vbdev_crypto_init_crypto_drivers();
1742 	if (rc) {
1743 		SPDK_ERRLOG("Error setting up crypto devices\n");
1744 	}
1745 
1746 	return rc;
1747 }
1748 
1749 /* Called when the entire module is being torn down. */
1750 static void
1751 vbdev_crypto_finish(void)
1752 {
1753 	struct bdev_names *name;
1754 	struct vbdev_dev *device;
1755 
1756 	while ((name = TAILQ_FIRST(&g_bdev_names))) {
1757 		vbdev_crypto_delete_name(name);
1758 	}
1759 
1760 	while ((device = TAILQ_FIRST(&g_vbdev_devs))) {
1761 		TAILQ_REMOVE(&g_vbdev_devs, device, link);
1762 		release_vbdev_dev(device);
1763 	}
1764 	rte_vdev_uninit(AESNI_MB);
1765 
1766 	/* These are removed in release_vbdev_dev() */
1767 	assert(TAILQ_EMPTY(&g_device_qp_qat));
1768 	assert(TAILQ_EMPTY(&g_device_qp_aesni_mb));
1769 	assert(TAILQ_EMPTY(&g_device_qp_mlx5));
1770 
1771 	rte_mempool_free(g_crypto_op_mp);
1772 	rte_mempool_free(g_mbuf_mp);
1773 	rte_mempool_free(g_session_mp);
1774 	if (g_session_mp_priv != NULL) {
1775 		rte_mempool_free(g_session_mp_priv);
1776 	}
1777 }
1778 
1779 /* During init we'll be asked how much memory we'd like passed to us
1780  * in bev_io structures as context. Here's where we specify how
1781  * much context we want per IO.
1782  */
1783 static int
1784 vbdev_crypto_get_ctx_size(void)
1785 {
1786 	return sizeof(struct crypto_bdev_io);
1787 }
1788 
1789 static void
1790 vbdev_crypto_base_bdev_hotremove_cb(struct spdk_bdev *bdev_find)
1791 {
1792 	struct vbdev_crypto *crypto_bdev, *tmp;
1793 
1794 	TAILQ_FOREACH_SAFE(crypto_bdev, &g_vbdev_crypto, link, tmp) {
1795 		if (bdev_find == crypto_bdev->base_bdev) {
1796 			spdk_bdev_unregister(&crypto_bdev->crypto_bdev, NULL, NULL);
1797 		}
1798 	}
1799 }
1800 
1801 /* Called when the underlying base bdev triggers asynchronous event such as bdev removal. */
1802 static void
1803 vbdev_crypto_base_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev,
1804 				void *event_ctx)
1805 {
1806 	switch (type) {
1807 	case SPDK_BDEV_EVENT_REMOVE:
1808 		vbdev_crypto_base_bdev_hotremove_cb(bdev);
1809 		break;
1810 	default:
1811 		SPDK_NOTICELOG("Unsupported bdev event: type %d\n", type);
1812 		break;
1813 	}
1814 }
1815 
1816 static void
1817 vbdev_crypto_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
1818 {
1819 	/* No config per bdev needed */
1820 }
1821 
1822 /* When we register our bdev this is how we specify our entry points. */
1823 static const struct spdk_bdev_fn_table vbdev_crypto_fn_table = {
1824 	.destruct		= vbdev_crypto_destruct,
1825 	.submit_request		= vbdev_crypto_submit_request,
1826 	.io_type_supported	= vbdev_crypto_io_type_supported,
1827 	.get_io_channel		= vbdev_crypto_get_io_channel,
1828 	.dump_info_json		= vbdev_crypto_dump_info_json,
1829 	.write_config_json	= vbdev_crypto_write_config_json
1830 };
1831 
1832 static struct spdk_bdev_module crypto_if = {
1833 	.name = "crypto",
1834 	.module_init = vbdev_crypto_init,
1835 	.get_ctx_size = vbdev_crypto_get_ctx_size,
1836 	.examine_config = vbdev_crypto_examine,
1837 	.module_fini = vbdev_crypto_finish,
1838 	.config_json = vbdev_crypto_config_json
1839 };
1840 
1841 SPDK_BDEV_MODULE_REGISTER(crypto, &crypto_if)
1842 
1843 static int
1844 vbdev_crypto_claim(const char *bdev_name)
1845 {
1846 	struct bdev_names *name;
1847 	struct vbdev_crypto *vbdev;
1848 	struct vbdev_dev *device;
1849 	struct spdk_bdev *bdev;
1850 	bool found = false;
1851 	uint8_t key_size;
1852 	int rc = 0;
1853 
1854 	if (g_number_of_claimed_volumes >= MAX_CRYPTO_VOLUMES) {
1855 		SPDK_DEBUGLOG(vbdev_crypto, "Reached max number of claimed volumes\n");
1856 		return -EINVAL;
1857 	}
1858 	g_number_of_claimed_volumes++;
1859 
1860 	/* Check our list of names from config versus this bdev and if
1861 	 * there's a match, create the crypto_bdev & bdev accordingly.
1862 	 */
1863 	TAILQ_FOREACH(name, &g_bdev_names, link) {
1864 		if (strcmp(name->opts->bdev_name, bdev_name) != 0) {
1865 			continue;
1866 		}
1867 		SPDK_DEBUGLOG(vbdev_crypto, "Match on %s\n", bdev_name);
1868 
1869 		vbdev = calloc(1, sizeof(struct vbdev_crypto));
1870 		if (!vbdev) {
1871 			SPDK_ERRLOG("Failed to allocate memory for crypto_bdev.\n");
1872 			rc = -ENOMEM;
1873 			goto error_vbdev_alloc;
1874 		}
1875 		vbdev->crypto_bdev.product_name = "crypto";
1876 
1877 		vbdev->crypto_bdev.name = strdup(name->opts->vbdev_name);
1878 		if (!vbdev->crypto_bdev.name) {
1879 			SPDK_ERRLOG("Failed to allocate memory for crypto_bdev name.\n");
1880 			rc = -ENOMEM;
1881 			goto error_bdev_name;
1882 		}
1883 
1884 		rc = spdk_bdev_open_ext(bdev_name, true, vbdev_crypto_base_bdev_event_cb,
1885 					NULL, &vbdev->base_desc);
1886 		if (rc) {
1887 			if (rc != -ENODEV) {
1888 				SPDK_ERRLOG("Failed to open bdev %s: error %d\n", bdev_name, rc);
1889 			}
1890 			goto error_open;
1891 		}
1892 
1893 		bdev = spdk_bdev_desc_get_bdev(vbdev->base_desc);
1894 		vbdev->base_bdev = bdev;
1895 
1896 		if (strcmp(name->opts->drv_name, MLX5) == 0) {
1897 			vbdev->qp_desc_nr = CRYPTO_QP_DESCRIPTORS_MLX5;
1898 		} else {
1899 			vbdev->qp_desc_nr = CRYPTO_QP_DESCRIPTORS;
1900 		}
1901 
1902 		vbdev->crypto_bdev.write_cache = bdev->write_cache;
1903 		if (strcmp(name->opts->drv_name, QAT) == 0) {
1904 			vbdev->crypto_bdev.required_alignment =
1905 				spdk_max(spdk_u32log2(bdev->blocklen), bdev->required_alignment);
1906 			SPDK_NOTICELOG("QAT in use: Required alignment set to %u\n",
1907 				       vbdev->crypto_bdev.required_alignment);
1908 			SPDK_NOTICELOG("QAT using cipher: %s\n", name->opts->cipher);
1909 		} else if (strcmp(name->opts->drv_name, MLX5) == 0) {
1910 			vbdev->crypto_bdev.required_alignment = bdev->required_alignment;
1911 			SPDK_NOTICELOG("MLX5 using cipher: %s\n", name->opts->cipher);
1912 		} else {
1913 			vbdev->crypto_bdev.required_alignment = bdev->required_alignment;
1914 			SPDK_NOTICELOG("AESNI_MB using cipher: %s\n", name->opts->cipher);
1915 		}
1916 		vbdev->cipher_xform.cipher.iv.length = IV_LENGTH;
1917 
1918 		/* Note: CRYPTO_MAX_IO is in units of bytes, optimal_io_boundary is
1919 		 * in units of blocks.
1920 		 */
1921 		if (bdev->optimal_io_boundary > 0) {
1922 			vbdev->crypto_bdev.optimal_io_boundary =
1923 				spdk_min((CRYPTO_MAX_IO / bdev->blocklen), bdev->optimal_io_boundary);
1924 		} else {
1925 			vbdev->crypto_bdev.optimal_io_boundary = (CRYPTO_MAX_IO / bdev->blocklen);
1926 		}
1927 		vbdev->crypto_bdev.split_on_optimal_io_boundary = true;
1928 		vbdev->crypto_bdev.blocklen = bdev->blocklen;
1929 		vbdev->crypto_bdev.blockcnt = bdev->blockcnt;
1930 
1931 		/* This is the context that is passed to us when the bdev
1932 		 * layer calls in so we'll save our crypto_bdev node here.
1933 		 */
1934 		vbdev->crypto_bdev.ctxt = vbdev;
1935 		vbdev->crypto_bdev.fn_table = &vbdev_crypto_fn_table;
1936 		vbdev->crypto_bdev.module = &crypto_if;
1937 
1938 		/* Assign crypto opts from the name. The pointer is valid up to the point
1939 		 * the module is unloaded and all names removed from the list. */
1940 		vbdev->opts = name->opts;
1941 
1942 		TAILQ_INSERT_TAIL(&g_vbdev_crypto, vbdev, link);
1943 
1944 		spdk_io_device_register(vbdev, crypto_bdev_ch_create_cb, crypto_bdev_ch_destroy_cb,
1945 					sizeof(struct crypto_io_channel), vbdev->crypto_bdev.name);
1946 
1947 		/* Save the thread where the base device is opened */
1948 		vbdev->thread = spdk_get_thread();
1949 
1950 		rc = spdk_bdev_module_claim_bdev(bdev, vbdev->base_desc, vbdev->crypto_bdev.module);
1951 		if (rc) {
1952 			SPDK_ERRLOG("Failed to claim bdev %s\n", spdk_bdev_get_name(bdev));
1953 			goto error_claim;
1954 		}
1955 
1956 		/* To init the session we have to get the cryptoDev device ID for this vbdev */
1957 		TAILQ_FOREACH(device, &g_vbdev_devs, link) {
1958 			if (strcmp(device->cdev_info.driver_name, vbdev->opts->drv_name) == 0) {
1959 				found = true;
1960 				break;
1961 			}
1962 		}
1963 		if (found == false) {
1964 			SPDK_ERRLOG("Failed to match crypto device driver to crypto vbdev.\n");
1965 			rc = -EINVAL;
1966 			goto error_cant_find_devid;
1967 		}
1968 
1969 		/* Get sessions. */
1970 		vbdev->session_encrypt = rte_cryptodev_sym_session_create(g_session_mp);
1971 		if (NULL == vbdev->session_encrypt) {
1972 			SPDK_ERRLOG("Failed to create encrypt crypto session.\n");
1973 			rc = -EINVAL;
1974 			goto error_session_en_create;
1975 		}
1976 
1977 		vbdev->session_decrypt = rte_cryptodev_sym_session_create(g_session_mp);
1978 		if (NULL == vbdev->session_decrypt) {
1979 			SPDK_ERRLOG("Failed to create decrypt crypto session.\n");
1980 			rc = -EINVAL;
1981 			goto error_session_de_create;
1982 		}
1983 
1984 		/* Init our per vbdev xform with the desired cipher options. */
1985 		vbdev->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
1986 		vbdev->cipher_xform.cipher.iv.offset = IV_OFFSET;
1987 		if (strcmp(vbdev->opts->cipher, AES_CBC) == 0) {
1988 			vbdev->cipher_xform.cipher.key.data = vbdev->opts->key;
1989 			vbdev->cipher_xform.cipher.key.length = vbdev->opts->key_size;
1990 			vbdev->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC;
1991 		} else if (strcmp(vbdev->opts->cipher, AES_XTS) == 0) {
1992 			key_size = vbdev->opts->key_size + vbdev->opts->key2_size;
1993 			vbdev->cipher_xform.cipher.key.data = vbdev->opts->xts_key;
1994 			vbdev->cipher_xform.cipher.key.length = key_size;
1995 			vbdev->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_XTS;
1996 		} else {
1997 			SPDK_ERRLOG("Invalid cipher name %s.\n", vbdev->opts->cipher);
1998 			rc = -EINVAL;
1999 			goto error_session_de_create;
2000 		}
2001 		vbdev->cipher_xform.cipher.iv.length = IV_LENGTH;
2002 
2003 		vbdev->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
2004 		rc = rte_cryptodev_sym_session_init(device->cdev_id, vbdev->session_encrypt,
2005 						    &vbdev->cipher_xform,
2006 						    g_session_mp_priv ? g_session_mp_priv : g_session_mp);
2007 		if (rc < 0) {
2008 			SPDK_ERRLOG("Failed to init encrypt session: error %d\n", rc);
2009 			rc = -EINVAL;
2010 			goto error_session_init;
2011 		}
2012 
2013 		vbdev->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_DECRYPT;
2014 		rc = rte_cryptodev_sym_session_init(device->cdev_id, vbdev->session_decrypt,
2015 						    &vbdev->cipher_xform,
2016 						    g_session_mp_priv ? g_session_mp_priv : g_session_mp);
2017 		if (rc < 0) {
2018 			SPDK_ERRLOG("Failed to init decrypt session: error %d\n", rc);
2019 			rc = -EINVAL;
2020 			goto error_session_init;
2021 		}
2022 
2023 		rc = spdk_bdev_register(&vbdev->crypto_bdev);
2024 		if (rc < 0) {
2025 			SPDK_ERRLOG("Failed to register vbdev: error %d\n", rc);
2026 			rc = -EINVAL;
2027 			goto error_bdev_register;
2028 		}
2029 		SPDK_DEBUGLOG(vbdev_crypto, "Registered io_device and virtual bdev for: %s\n",
2030 			      vbdev->opts->vbdev_name);
2031 		break;
2032 	}
2033 
2034 	return rc;
2035 
2036 	/* Error cleanup paths. */
2037 error_bdev_register:
2038 error_session_init:
2039 	rte_cryptodev_sym_session_free(vbdev->session_decrypt);
2040 error_session_de_create:
2041 	rte_cryptodev_sym_session_free(vbdev->session_encrypt);
2042 error_session_en_create:
2043 error_cant_find_devid:
2044 	spdk_bdev_module_release_bdev(vbdev->base_bdev);
2045 error_claim:
2046 	TAILQ_REMOVE(&g_vbdev_crypto, vbdev, link);
2047 	spdk_io_device_unregister(vbdev, NULL);
2048 	spdk_bdev_close(vbdev->base_desc);
2049 error_open:
2050 	free(vbdev->crypto_bdev.name);
2051 error_bdev_name:
2052 	free(vbdev);
2053 error_vbdev_alloc:
2054 	g_number_of_claimed_volumes--;
2055 	return rc;
2056 }
2057 
2058 /* RPC entry for deleting a crypto vbdev. */
2059 void
2060 delete_crypto_disk(const char *bdev_name, spdk_delete_crypto_complete cb_fn,
2061 		   void *cb_arg)
2062 {
2063 	struct bdev_names *name;
2064 	int rc;
2065 
2066 	/* Some cleanup happens in the destruct callback. */
2067 	rc = spdk_bdev_unregister_by_name(bdev_name, &crypto_if, cb_fn, cb_arg);
2068 	if (rc == 0) {
2069 		/* Remove the association (vbdev, bdev) from g_bdev_names. This is required so that the
2070 		 * vbdev does not get re-created if the same bdev is constructed at some other time,
2071 		 * unless the underlying bdev was hot-removed.
2072 		 */
2073 		TAILQ_FOREACH(name, &g_bdev_names, link) {
2074 			if (strcmp(name->opts->vbdev_name, bdev_name) == 0) {
2075 				vbdev_crypto_delete_name(name);
2076 				break;
2077 			}
2078 		}
2079 	} else {
2080 		cb_fn(cb_arg, rc);
2081 	}
2082 }
2083 
2084 /* Because we specified this function in our crypto bdev function table when we
2085  * registered our crypto bdev, we'll get this call anytime a new bdev shows up.
2086  * Here we need to decide if we care about it and if so what to do. We
2087  * parsed the config file at init so we check the new bdev against the list
2088  * we built up at that time and if the user configured us to attach to this
2089  * bdev, here's where we do it.
2090  */
2091 static void
2092 vbdev_crypto_examine(struct spdk_bdev *bdev)
2093 {
2094 	vbdev_crypto_claim(spdk_bdev_get_name(bdev));
2095 	spdk_bdev_module_examine_done(&crypto_if);
2096 }
2097 
2098 SPDK_LOG_REGISTER_COMPONENT(vbdev_crypto)
2099