xref: /spdk/lib/reduce/reduce.c (revision ba20950a539d0b71a20f8a1199cbf759de92e854)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2018 Intel Corporation.
3  *   All rights reserved.
4  *   Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/stdinc.h"
8 
9 #include "spdk/reduce.h"
10 #include "spdk/env.h"
11 #include "spdk/string.h"
12 #include "spdk/bit_array.h"
13 #include "spdk/util.h"
14 #include "spdk/log.h"
15 #include "spdk/memory.h"
16 
17 #include "libpmem.h"
18 
19 /* Always round up the size of the PM region to the nearest cacheline. */
20 #define REDUCE_PM_SIZE_ALIGNMENT	64
21 
22 /* Offset into the backing device where the persistent memory file's path is stored. */
23 #define REDUCE_BACKING_DEV_PATH_OFFSET	4096
24 
25 #define REDUCE_EMPTY_MAP_ENTRY	-1ULL
26 
27 #define REDUCE_NUM_VOL_REQUESTS	256
28 
29 /* Structure written to offset 0 of both the pm file and the backing device. */
30 struct spdk_reduce_vol_superblock {
31 	uint8_t				signature[8];
32 	struct spdk_reduce_vol_params	params;
33 	uint8_t				reserved[4048];
34 };
35 SPDK_STATIC_ASSERT(sizeof(struct spdk_reduce_vol_superblock) == 4096, "size incorrect");
36 
37 #define SPDK_REDUCE_SIGNATURE "SPDKREDU"
38 /* null terminator counts one */
39 SPDK_STATIC_ASSERT(sizeof(SPDK_REDUCE_SIGNATURE) - 1 ==
40 		   SPDK_SIZEOF_MEMBER(struct spdk_reduce_vol_superblock, signature), "size incorrect");
41 
42 #define REDUCE_PATH_MAX 4096
43 
44 #define REDUCE_ZERO_BUF_SIZE 0x100000
45 
46 /**
47  * Describes a persistent memory file used to hold metadata associated with a
48  *  compressed volume.
49  */
50 struct spdk_reduce_pm_file {
51 	char			path[REDUCE_PATH_MAX];
52 	void			*pm_buf;
53 	int			pm_is_pmem;
54 	uint64_t		size;
55 };
56 
57 #define REDUCE_IO_READV		1
58 #define REDUCE_IO_WRITEV	2
59 
60 struct spdk_reduce_chunk_map {
61 	uint32_t		compressed_size;
62 	uint32_t		reserved;
63 	uint64_t		io_unit_index[0];
64 };
65 
66 struct spdk_reduce_vol_request {
67 	/**
68 	 *  Scratch buffer used for uncompressed chunk.  This is used for:
69 	 *   1) source buffer for compression operations
70 	 *   2) destination buffer for decompression operations
71 	 *   3) data buffer when writing uncompressed chunk to disk
72 	 *   4) data buffer when reading uncompressed chunk from disk
73 	 */
74 	uint8_t					*decomp_buf;
75 	struct iovec				*decomp_buf_iov;
76 
77 	/**
78 	 * These are used to construct the iovecs that are sent to
79 	 *  the decomp engine, they point to a mix of the scratch buffer
80 	 *  and user buffer
81 	 */
82 	struct iovec				decomp_iov[REDUCE_MAX_IOVECS + 2];
83 	int					decomp_iovcnt;
84 
85 	/**
86 	 *  Scratch buffer used for compressed chunk.  This is used for:
87 	 *   1) destination buffer for compression operations
88 	 *   2) source buffer for decompression operations
89 	 *   3) data buffer when writing compressed chunk to disk
90 	 *   4) data buffer when reading compressed chunk from disk
91 	 */
92 	uint8_t					*comp_buf;
93 	struct iovec				*comp_buf_iov;
94 	struct iovec				*iov;
95 	bool					rmw;
96 	struct spdk_reduce_vol			*vol;
97 	int					type;
98 	int					reduce_errno;
99 	int					iovcnt;
100 	int					num_backing_ops;
101 	uint32_t				num_io_units;
102 	bool					chunk_is_compressed;
103 	bool					copy_after_decompress;
104 	uint64_t				offset;
105 	uint64_t				logical_map_index;
106 	uint64_t				length;
107 	uint64_t				chunk_map_index;
108 	struct spdk_reduce_chunk_map		*chunk;
109 	spdk_reduce_vol_op_complete		cb_fn;
110 	void					*cb_arg;
111 	TAILQ_ENTRY(spdk_reduce_vol_request)	tailq;
112 	struct spdk_reduce_vol_cb_args		backing_cb_args;
113 };
114 
115 struct spdk_reduce_vol {
116 	struct spdk_reduce_vol_params		params;
117 	uint32_t				backing_io_units_per_chunk;
118 	uint32_t				backing_lba_per_io_unit;
119 	uint32_t				logical_blocks_per_chunk;
120 	struct spdk_reduce_pm_file		pm_file;
121 	struct spdk_reduce_backing_dev		*backing_dev;
122 	struct spdk_reduce_vol_superblock	*backing_super;
123 	struct spdk_reduce_vol_superblock	*pm_super;
124 	uint64_t				*pm_logical_map;
125 	uint64_t				*pm_chunk_maps;
126 
127 	struct spdk_bit_array			*allocated_chunk_maps;
128 	struct spdk_bit_array			*allocated_backing_io_units;
129 
130 	struct spdk_reduce_vol_request		*request_mem;
131 	TAILQ_HEAD(, spdk_reduce_vol_request)	free_requests;
132 	TAILQ_HEAD(, spdk_reduce_vol_request)	executing_requests;
133 	TAILQ_HEAD(, spdk_reduce_vol_request)	queued_requests;
134 
135 	/* Single contiguous buffer used for all request buffers for this volume. */
136 	uint8_t					*buf_mem;
137 	struct iovec				*buf_iov_mem;
138 };
139 
140 static void _start_readv_request(struct spdk_reduce_vol_request *req);
141 static void _start_writev_request(struct spdk_reduce_vol_request *req);
142 static uint8_t *g_zero_buf;
143 static int g_vol_count = 0;
144 
145 /*
146  * Allocate extra metadata chunks and corresponding backing io units to account for
147  *  outstanding IO in worst case scenario where logical map is completely allocated
148  *  and no data can be compressed.  We need extra chunks in this case to handle
149  *  in-flight writes since reduce never writes data in place.
150  */
151 #define REDUCE_NUM_EXTRA_CHUNKS 128
152 
153 static void
154 _reduce_persist(struct spdk_reduce_vol *vol, const void *addr, size_t len)
155 {
156 	if (vol->pm_file.pm_is_pmem) {
157 		pmem_persist(addr, len);
158 	} else {
159 		pmem_msync(addr, len);
160 	}
161 }
162 
163 static uint64_t
164 _get_pm_logical_map_size(uint64_t vol_size, uint64_t chunk_size)
165 {
166 	uint64_t chunks_in_logical_map, logical_map_size;
167 
168 	chunks_in_logical_map = vol_size / chunk_size;
169 	logical_map_size = chunks_in_logical_map * sizeof(uint64_t);
170 
171 	/* Round up to next cacheline. */
172 	return spdk_divide_round_up(logical_map_size, REDUCE_PM_SIZE_ALIGNMENT) *
173 	       REDUCE_PM_SIZE_ALIGNMENT;
174 }
175 
176 static uint64_t
177 _get_total_chunks(uint64_t vol_size, uint64_t chunk_size)
178 {
179 	uint64_t num_chunks;
180 
181 	num_chunks = vol_size / chunk_size;
182 	num_chunks += REDUCE_NUM_EXTRA_CHUNKS;
183 
184 	return num_chunks;
185 }
186 
187 static inline uint32_t
188 _reduce_vol_get_chunk_struct_size(uint64_t backing_io_units_per_chunk)
189 {
190 	return sizeof(struct spdk_reduce_chunk_map) + sizeof(uint64_t) * backing_io_units_per_chunk;
191 }
192 
193 static uint64_t
194 _get_pm_total_chunks_size(uint64_t vol_size, uint64_t chunk_size, uint64_t backing_io_unit_size)
195 {
196 	uint64_t io_units_per_chunk, num_chunks, total_chunks_size;
197 
198 	num_chunks = _get_total_chunks(vol_size, chunk_size);
199 	io_units_per_chunk = chunk_size / backing_io_unit_size;
200 
201 	total_chunks_size = num_chunks * _reduce_vol_get_chunk_struct_size(io_units_per_chunk);
202 
203 	return spdk_divide_round_up(total_chunks_size, REDUCE_PM_SIZE_ALIGNMENT) *
204 	       REDUCE_PM_SIZE_ALIGNMENT;
205 }
206 
207 static struct spdk_reduce_chunk_map *
208 _reduce_vol_get_chunk_map(struct spdk_reduce_vol *vol, uint64_t chunk_map_index)
209 {
210 	uintptr_t chunk_map_addr;
211 
212 	assert(chunk_map_index < _get_total_chunks(vol->params.vol_size, vol->params.chunk_size));
213 
214 	chunk_map_addr = (uintptr_t)vol->pm_chunk_maps;
215 	chunk_map_addr += chunk_map_index *
216 			  _reduce_vol_get_chunk_struct_size(vol->backing_io_units_per_chunk);
217 
218 	return (struct spdk_reduce_chunk_map *)chunk_map_addr;
219 }
220 
221 static int
222 _validate_vol_params(struct spdk_reduce_vol_params *params)
223 {
224 	if (params->vol_size > 0) {
225 		/**
226 		 * User does not pass in the vol size - it gets calculated by libreduce from
227 		 *  values in this structure plus the size of the backing device.
228 		 */
229 		return -EINVAL;
230 	}
231 
232 	if (params->chunk_size == 0 || params->backing_io_unit_size == 0 ||
233 	    params->logical_block_size == 0) {
234 		return -EINVAL;
235 	}
236 
237 	/* Chunk size must be an even multiple of the backing io unit size. */
238 	if ((params->chunk_size % params->backing_io_unit_size) != 0) {
239 		return -EINVAL;
240 	}
241 
242 	/* Chunk size must be an even multiple of the logical block size. */
243 	if ((params->chunk_size % params->logical_block_size) != 0) {
244 		return -1;
245 	}
246 
247 	return 0;
248 }
249 
250 static uint64_t
251 _get_vol_size(uint64_t chunk_size, uint64_t backing_dev_size)
252 {
253 	uint64_t num_chunks;
254 
255 	num_chunks = backing_dev_size / chunk_size;
256 	if (num_chunks <= REDUCE_NUM_EXTRA_CHUNKS) {
257 		return 0;
258 	}
259 
260 	num_chunks -= REDUCE_NUM_EXTRA_CHUNKS;
261 	return num_chunks * chunk_size;
262 }
263 
264 static uint64_t
265 _get_pm_file_size(struct spdk_reduce_vol_params *params)
266 {
267 	uint64_t total_pm_size;
268 
269 	total_pm_size = sizeof(struct spdk_reduce_vol_superblock);
270 	total_pm_size += _get_pm_logical_map_size(params->vol_size, params->chunk_size);
271 	total_pm_size += _get_pm_total_chunks_size(params->vol_size, params->chunk_size,
272 			 params->backing_io_unit_size);
273 	return total_pm_size;
274 }
275 
276 const struct spdk_uuid *
277 spdk_reduce_vol_get_uuid(struct spdk_reduce_vol *vol)
278 {
279 	return &vol->params.uuid;
280 }
281 
282 static void
283 _initialize_vol_pm_pointers(struct spdk_reduce_vol *vol)
284 {
285 	uint64_t logical_map_size;
286 
287 	/* Superblock is at the beginning of the pm file. */
288 	vol->pm_super = (struct spdk_reduce_vol_superblock *)vol->pm_file.pm_buf;
289 
290 	/* Logical map immediately follows the super block. */
291 	vol->pm_logical_map = (uint64_t *)(vol->pm_super + 1);
292 
293 	/* Chunks maps follow the logical map. */
294 	logical_map_size = _get_pm_logical_map_size(vol->params.vol_size, vol->params.chunk_size);
295 	vol->pm_chunk_maps = (uint64_t *)((uint8_t *)vol->pm_logical_map + logical_map_size);
296 }
297 
298 /* We need 2 iovs during load - one for the superblock, another for the path */
299 #define LOAD_IOV_COUNT	2
300 
301 struct reduce_init_load_ctx {
302 	struct spdk_reduce_vol			*vol;
303 	struct spdk_reduce_vol_cb_args		backing_cb_args;
304 	spdk_reduce_vol_op_with_handle_complete	cb_fn;
305 	void					*cb_arg;
306 	struct iovec				iov[LOAD_IOV_COUNT];
307 	void					*path;
308 };
309 
310 static inline bool
311 _addr_crosses_huge_page(const void *addr, size_t *size)
312 {
313 	size_t _size;
314 	uint64_t rc;
315 
316 	assert(size);
317 
318 	_size = *size;
319 	rc = spdk_vtophys(addr, size);
320 
321 	return rc == SPDK_VTOPHYS_ERROR || _size != *size;
322 }
323 
324 static inline int
325 _set_buffer(uint8_t **vol_buffer, uint8_t **_addr, uint8_t *addr_range, size_t buffer_size)
326 {
327 	uint8_t *addr;
328 	size_t size_tmp = buffer_size;
329 
330 	addr = *_addr;
331 
332 	/* Verify that addr + buffer_size doesn't cross huge page boundary */
333 	if (_addr_crosses_huge_page(addr, &size_tmp)) {
334 		/* Memory start is aligned on 2MiB, so buffer should be located at the end of the page.
335 		 * Skip remaining bytes and continue from the beginning of the next page */
336 		addr += size_tmp;
337 	}
338 
339 	if (addr + buffer_size > addr_range) {
340 		SPDK_ERRLOG("Vol buffer %p out of range %p\n", addr, addr_range);
341 		return -ERANGE;
342 	}
343 
344 	*vol_buffer = addr;
345 	*_addr = addr + buffer_size;
346 
347 	return 0;
348 }
349 
350 static int
351 _allocate_vol_requests(struct spdk_reduce_vol *vol)
352 {
353 	struct spdk_reduce_vol_request *req;
354 	uint32_t reqs_in_2mb_page, huge_pages_needed;
355 	uint8_t *buffer, *buffer_end;
356 	int i = 0;
357 	int rc = 0;
358 
359 	/* It is needed to allocate comp and decomp buffers so that they do not cross physical
360 	* page boundaries. Assume that the system uses default 2MiB pages and chunk_size is not
361 	* necessarily power of 2
362 	* Allocate 2x since we need buffers for both read/write and compress/decompress
363 	* intermediate buffers. */
364 	reqs_in_2mb_page = VALUE_2MB / (vol->params.chunk_size * 2);
365 	if (!reqs_in_2mb_page) {
366 		return -EINVAL;
367 	}
368 	huge_pages_needed = SPDK_CEIL_DIV(REDUCE_NUM_VOL_REQUESTS, reqs_in_2mb_page);
369 
370 	vol->buf_mem = spdk_dma_malloc(VALUE_2MB * huge_pages_needed, VALUE_2MB, NULL);
371 	if (vol->buf_mem == NULL) {
372 		return -ENOMEM;
373 	}
374 
375 	vol->request_mem = calloc(REDUCE_NUM_VOL_REQUESTS, sizeof(*req));
376 	if (vol->request_mem == NULL) {
377 		spdk_free(vol->buf_mem);
378 		vol->buf_mem = NULL;
379 		return -ENOMEM;
380 	}
381 
382 	/* Allocate 2x since we need iovs for both read/write and compress/decompress intermediate
383 	 *  buffers.
384 	 */
385 	vol->buf_iov_mem = calloc(REDUCE_NUM_VOL_REQUESTS,
386 				  2 * sizeof(struct iovec) * vol->backing_io_units_per_chunk);
387 	if (vol->buf_iov_mem == NULL) {
388 		free(vol->request_mem);
389 		spdk_free(vol->buf_mem);
390 		vol->request_mem = NULL;
391 		vol->buf_mem = NULL;
392 		return -ENOMEM;
393 	}
394 
395 	buffer = vol->buf_mem;
396 	buffer_end = buffer + VALUE_2MB * huge_pages_needed;
397 
398 	for (i = 0; i < REDUCE_NUM_VOL_REQUESTS; i++) {
399 		req = &vol->request_mem[i];
400 		TAILQ_INSERT_HEAD(&vol->free_requests, req, tailq);
401 		req->decomp_buf_iov = &vol->buf_iov_mem[(2 * i) * vol->backing_io_units_per_chunk];
402 		req->comp_buf_iov = &vol->buf_iov_mem[(2 * i + 1) * vol->backing_io_units_per_chunk];
403 
404 		rc = _set_buffer(&req->comp_buf, &buffer, buffer_end, vol->params.chunk_size);
405 		if (rc) {
406 			SPDK_ERRLOG("Failed to set comp buffer for req idx %u, addr %p, start %p, end %p\n", i, buffer,
407 				    vol->buf_mem, buffer_end);
408 			break;
409 		}
410 		rc = _set_buffer(&req->decomp_buf, &buffer, buffer_end, vol->params.chunk_size);
411 		if (rc) {
412 			SPDK_ERRLOG("Failed to set decomp buffer for req idx %u, addr %p, start %p, end %p\n", i, buffer,
413 				    vol->buf_mem, buffer_end);
414 			break;
415 		}
416 	}
417 
418 	if (rc) {
419 		free(vol->buf_iov_mem);
420 		free(vol->request_mem);
421 		spdk_free(vol->buf_mem);
422 		vol->buf_mem = NULL;
423 		vol->buf_iov_mem = NULL;
424 		vol->request_mem = NULL;
425 	}
426 
427 	return rc;
428 }
429 
430 static void
431 _init_load_cleanup(struct spdk_reduce_vol *vol, struct reduce_init_load_ctx *ctx)
432 {
433 	if (ctx != NULL) {
434 		spdk_free(ctx->path);
435 		free(ctx);
436 	}
437 
438 	if (vol != NULL) {
439 		if (vol->pm_file.pm_buf != NULL) {
440 			pmem_unmap(vol->pm_file.pm_buf, vol->pm_file.size);
441 		}
442 
443 		spdk_free(vol->backing_super);
444 		spdk_bit_array_free(&vol->allocated_chunk_maps);
445 		spdk_bit_array_free(&vol->allocated_backing_io_units);
446 		free(vol->request_mem);
447 		free(vol->buf_iov_mem);
448 		spdk_free(vol->buf_mem);
449 		free(vol);
450 	}
451 }
452 
453 static int
454 _alloc_zero_buff(void)
455 {
456 	int rc = 0;
457 
458 	/* The zero buffer is shared between all volumes and just used
459 	 * for reads so allocate one global instance here if not already
460 	 * allocated when another vol init'd or loaded.
461 	 */
462 	if (g_vol_count++ == 0) {
463 		g_zero_buf = spdk_zmalloc(REDUCE_ZERO_BUF_SIZE,
464 					  64, NULL, SPDK_ENV_LCORE_ID_ANY,
465 					  SPDK_MALLOC_DMA);
466 		if (g_zero_buf == NULL) {
467 			rc = -ENOMEM;
468 		}
469 	}
470 	return rc;
471 }
472 
473 static void
474 _init_write_super_cpl(void *cb_arg, int reduce_errno)
475 {
476 	struct reduce_init_load_ctx *init_ctx = cb_arg;
477 	int rc;
478 
479 	rc = _allocate_vol_requests(init_ctx->vol);
480 	if (rc != 0) {
481 		init_ctx->cb_fn(init_ctx->cb_arg, NULL, rc);
482 		_init_load_cleanup(init_ctx->vol, init_ctx);
483 		return;
484 	}
485 
486 	rc = _alloc_zero_buff();
487 	if (rc != 0) {
488 		init_ctx->cb_fn(init_ctx->cb_arg, NULL, rc);
489 		_init_load_cleanup(init_ctx->vol, init_ctx);
490 		return;
491 	}
492 
493 	init_ctx->cb_fn(init_ctx->cb_arg, init_ctx->vol, reduce_errno);
494 	/* Only clean up the ctx - the vol has been passed to the application
495 	 *  for use now that initialization was successful.
496 	 */
497 	_init_load_cleanup(NULL, init_ctx);
498 }
499 
500 static void
501 _init_write_path_cpl(void *cb_arg, int reduce_errno)
502 {
503 	struct reduce_init_load_ctx *init_ctx = cb_arg;
504 	struct spdk_reduce_vol *vol = init_ctx->vol;
505 
506 	init_ctx->iov[0].iov_base = vol->backing_super;
507 	init_ctx->iov[0].iov_len = sizeof(*vol->backing_super);
508 	init_ctx->backing_cb_args.cb_fn = _init_write_super_cpl;
509 	init_ctx->backing_cb_args.cb_arg = init_ctx;
510 	vol->backing_dev->writev(vol->backing_dev, init_ctx->iov, 1,
511 				 0, sizeof(*vol->backing_super) / vol->backing_dev->blocklen,
512 				 &init_ctx->backing_cb_args);
513 }
514 
515 static int
516 _allocate_bit_arrays(struct spdk_reduce_vol *vol)
517 {
518 	uint64_t total_chunks, total_backing_io_units;
519 	uint32_t i, num_metadata_io_units;
520 
521 	total_chunks = _get_total_chunks(vol->params.vol_size, vol->params.chunk_size);
522 	vol->allocated_chunk_maps = spdk_bit_array_create(total_chunks);
523 	total_backing_io_units = total_chunks * (vol->params.chunk_size / vol->params.backing_io_unit_size);
524 	vol->allocated_backing_io_units = spdk_bit_array_create(total_backing_io_units);
525 
526 	if (vol->allocated_chunk_maps == NULL || vol->allocated_backing_io_units == NULL) {
527 		return -ENOMEM;
528 	}
529 
530 	/* Set backing io unit bits associated with metadata. */
531 	num_metadata_io_units = (sizeof(*vol->backing_super) + REDUCE_PATH_MAX) /
532 				vol->backing_dev->blocklen;
533 	for (i = 0; i < num_metadata_io_units; i++) {
534 		spdk_bit_array_set(vol->allocated_backing_io_units, i);
535 	}
536 
537 	return 0;
538 }
539 
540 SPDK_LOG_DEPRECATION_REGISTER(libreduce_pm_file,
541 			      "PMDK libpmem reduce integration", "SPDK 23.05", 0);
542 
543 void
544 spdk_reduce_vol_init(struct spdk_reduce_vol_params *params,
545 		     struct spdk_reduce_backing_dev *backing_dev,
546 		     const char *pm_file_dir,
547 		     spdk_reduce_vol_op_with_handle_complete cb_fn, void *cb_arg)
548 {
549 	struct spdk_reduce_vol *vol;
550 	struct reduce_init_load_ctx *init_ctx;
551 	uint64_t backing_dev_size;
552 	size_t mapped_len;
553 	int dir_len, max_dir_len, rc;
554 
555 	SPDK_LOG_DEPRECATED(libreduce_pm_file);
556 
557 	/* We need to append a path separator and the UUID to the supplied
558 	 * path.
559 	 */
560 	max_dir_len = REDUCE_PATH_MAX - SPDK_UUID_STRING_LEN - 1;
561 	dir_len = strnlen(pm_file_dir, max_dir_len);
562 	/* Strip trailing slash if the user provided one - we will add it back
563 	 * later when appending the filename.
564 	 */
565 	if (pm_file_dir[dir_len - 1] == '/') {
566 		dir_len--;
567 	}
568 	if (dir_len == max_dir_len) {
569 		SPDK_ERRLOG("pm_file_dir (%s) too long\n", pm_file_dir);
570 		cb_fn(cb_arg, NULL, -EINVAL);
571 		return;
572 	}
573 
574 	rc = _validate_vol_params(params);
575 	if (rc != 0) {
576 		SPDK_ERRLOG("invalid vol params\n");
577 		cb_fn(cb_arg, NULL, rc);
578 		return;
579 	}
580 
581 	backing_dev_size = backing_dev->blockcnt * backing_dev->blocklen;
582 	params->vol_size = _get_vol_size(params->chunk_size, backing_dev_size);
583 	if (params->vol_size == 0) {
584 		SPDK_ERRLOG("backing device is too small\n");
585 		cb_fn(cb_arg, NULL, -EINVAL);
586 		return;
587 	}
588 
589 	if (backing_dev->readv == NULL || backing_dev->writev == NULL ||
590 	    backing_dev->unmap == NULL) {
591 		SPDK_ERRLOG("backing_dev function pointer not specified\n");
592 		cb_fn(cb_arg, NULL, -EINVAL);
593 		return;
594 	}
595 
596 	vol = calloc(1, sizeof(*vol));
597 	if (vol == NULL) {
598 		cb_fn(cb_arg, NULL, -ENOMEM);
599 		return;
600 	}
601 
602 	TAILQ_INIT(&vol->free_requests);
603 	TAILQ_INIT(&vol->executing_requests);
604 	TAILQ_INIT(&vol->queued_requests);
605 
606 	vol->backing_super = spdk_zmalloc(sizeof(*vol->backing_super), 0, NULL,
607 					  SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
608 	if (vol->backing_super == NULL) {
609 		cb_fn(cb_arg, NULL, -ENOMEM);
610 		_init_load_cleanup(vol, NULL);
611 		return;
612 	}
613 
614 	init_ctx = calloc(1, sizeof(*init_ctx));
615 	if (init_ctx == NULL) {
616 		cb_fn(cb_arg, NULL, -ENOMEM);
617 		_init_load_cleanup(vol, NULL);
618 		return;
619 	}
620 
621 	init_ctx->path = spdk_zmalloc(REDUCE_PATH_MAX, 0, NULL,
622 				      SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
623 	if (init_ctx->path == NULL) {
624 		cb_fn(cb_arg, NULL, -ENOMEM);
625 		_init_load_cleanup(vol, init_ctx);
626 		return;
627 	}
628 
629 	if (spdk_mem_all_zero(&params->uuid, sizeof(params->uuid))) {
630 		spdk_uuid_generate(&params->uuid);
631 	}
632 
633 	memcpy(vol->pm_file.path, pm_file_dir, dir_len);
634 	vol->pm_file.path[dir_len] = '/';
635 	spdk_uuid_fmt_lower(&vol->pm_file.path[dir_len + 1], SPDK_UUID_STRING_LEN,
636 			    &params->uuid);
637 	vol->pm_file.size = _get_pm_file_size(params);
638 	vol->pm_file.pm_buf = pmem_map_file(vol->pm_file.path, vol->pm_file.size,
639 					    PMEM_FILE_CREATE | PMEM_FILE_EXCL, 0600,
640 					    &mapped_len, &vol->pm_file.pm_is_pmem);
641 	if (vol->pm_file.pm_buf == NULL) {
642 		SPDK_ERRLOG("could not pmem_map_file(%s): %s\n",
643 			    vol->pm_file.path, strerror(errno));
644 		cb_fn(cb_arg, NULL, -errno);
645 		_init_load_cleanup(vol, init_ctx);
646 		return;
647 	}
648 
649 	if (vol->pm_file.size != mapped_len) {
650 		SPDK_ERRLOG("could not map entire pmem file (size=%" PRIu64 " mapped=%" PRIu64 ")\n",
651 			    vol->pm_file.size, mapped_len);
652 		cb_fn(cb_arg, NULL, -ENOMEM);
653 		_init_load_cleanup(vol, init_ctx);
654 		return;
655 	}
656 
657 	vol->backing_io_units_per_chunk = params->chunk_size / params->backing_io_unit_size;
658 	vol->logical_blocks_per_chunk = params->chunk_size / params->logical_block_size;
659 	vol->backing_lba_per_io_unit = params->backing_io_unit_size / backing_dev->blocklen;
660 	memcpy(&vol->params, params, sizeof(*params));
661 
662 	vol->backing_dev = backing_dev;
663 
664 	rc = _allocate_bit_arrays(vol);
665 	if (rc != 0) {
666 		cb_fn(cb_arg, NULL, rc);
667 		_init_load_cleanup(vol, init_ctx);
668 		return;
669 	}
670 
671 	memcpy(vol->backing_super->signature, SPDK_REDUCE_SIGNATURE,
672 	       sizeof(vol->backing_super->signature));
673 	memcpy(&vol->backing_super->params, params, sizeof(*params));
674 
675 	_initialize_vol_pm_pointers(vol);
676 
677 	memcpy(vol->pm_super, vol->backing_super, sizeof(*vol->backing_super));
678 	/* Writing 0xFF's is equivalent of filling it all with SPDK_EMPTY_MAP_ENTRY.
679 	 * Note that this writes 0xFF to not just the logical map but the chunk maps as well.
680 	 */
681 	memset(vol->pm_logical_map, 0xFF, vol->pm_file.size - sizeof(*vol->backing_super));
682 	_reduce_persist(vol, vol->pm_file.pm_buf, vol->pm_file.size);
683 
684 	init_ctx->vol = vol;
685 	init_ctx->cb_fn = cb_fn;
686 	init_ctx->cb_arg = cb_arg;
687 
688 	memcpy(init_ctx->path, vol->pm_file.path, REDUCE_PATH_MAX);
689 	init_ctx->iov[0].iov_base = init_ctx->path;
690 	init_ctx->iov[0].iov_len = REDUCE_PATH_MAX;
691 	init_ctx->backing_cb_args.cb_fn = _init_write_path_cpl;
692 	init_ctx->backing_cb_args.cb_arg = init_ctx;
693 	/* Write path to offset 4K on backing device - just after where the super
694 	 *  block will be written.  We wait until this is committed before writing the
695 	 *  super block to guarantee we don't get the super block written without the
696 	 *  the path if the system crashed in the middle of a write operation.
697 	 */
698 	vol->backing_dev->writev(vol->backing_dev, init_ctx->iov, 1,
699 				 REDUCE_BACKING_DEV_PATH_OFFSET / vol->backing_dev->blocklen,
700 				 REDUCE_PATH_MAX / vol->backing_dev->blocklen,
701 				 &init_ctx->backing_cb_args);
702 }
703 
704 static void destroy_load_cb(void *cb_arg, struct spdk_reduce_vol *vol, int reduce_errno);
705 
706 static void
707 _load_read_super_and_path_cpl(void *cb_arg, int reduce_errno)
708 {
709 	struct reduce_init_load_ctx *load_ctx = cb_arg;
710 	struct spdk_reduce_vol *vol = load_ctx->vol;
711 	uint64_t backing_dev_size;
712 	uint64_t i, num_chunks, logical_map_index;
713 	struct spdk_reduce_chunk_map *chunk;
714 	size_t mapped_len;
715 	uint32_t j;
716 	int rc;
717 
718 	rc = _alloc_zero_buff();
719 	if (rc) {
720 		goto error;
721 	}
722 
723 	if (memcmp(vol->backing_super->signature,
724 		   SPDK_REDUCE_SIGNATURE,
725 		   sizeof(vol->backing_super->signature)) != 0) {
726 		/* This backing device isn't a libreduce backing device. */
727 		rc = -EILSEQ;
728 		goto error;
729 	}
730 
731 	/* If the cb_fn is destroy_load_cb, it means we are wanting to destroy this compress bdev.
732 	 *  So don't bother getting the volume ready to use - invoke the callback immediately
733 	 *  so destroy_load_cb can delete the metadata off of the block device and delete the
734 	 *  persistent memory file if it exists.
735 	 */
736 	memcpy(vol->pm_file.path, load_ctx->path, sizeof(vol->pm_file.path));
737 	if (load_ctx->cb_fn == (*destroy_load_cb)) {
738 		load_ctx->cb_fn(load_ctx->cb_arg, vol, 0);
739 		_init_load_cleanup(NULL, load_ctx);
740 		return;
741 	}
742 
743 	memcpy(&vol->params, &vol->backing_super->params, sizeof(vol->params));
744 	vol->backing_io_units_per_chunk = vol->params.chunk_size / vol->params.backing_io_unit_size;
745 	vol->logical_blocks_per_chunk = vol->params.chunk_size / vol->params.logical_block_size;
746 	vol->backing_lba_per_io_unit = vol->params.backing_io_unit_size / vol->backing_dev->blocklen;
747 
748 	rc = _allocate_bit_arrays(vol);
749 	if (rc != 0) {
750 		goto error;
751 	}
752 
753 	backing_dev_size = vol->backing_dev->blockcnt * vol->backing_dev->blocklen;
754 	if (_get_vol_size(vol->params.chunk_size, backing_dev_size) < vol->params.vol_size) {
755 		SPDK_ERRLOG("backing device size %" PRIi64 " smaller than expected\n",
756 			    backing_dev_size);
757 		rc = -EILSEQ;
758 		goto error;
759 	}
760 
761 	vol->pm_file.size = _get_pm_file_size(&vol->params);
762 	vol->pm_file.pm_buf = pmem_map_file(vol->pm_file.path, 0, 0, 0, &mapped_len,
763 					    &vol->pm_file.pm_is_pmem);
764 	if (vol->pm_file.pm_buf == NULL) {
765 		SPDK_ERRLOG("could not pmem_map_file(%s): %s\n", vol->pm_file.path, strerror(errno));
766 		rc = -errno;
767 		goto error;
768 	}
769 
770 	if (vol->pm_file.size != mapped_len) {
771 		SPDK_ERRLOG("could not map entire pmem file (size=%" PRIu64 " mapped=%" PRIu64 ")\n",
772 			    vol->pm_file.size, mapped_len);
773 		rc = -ENOMEM;
774 		goto error;
775 	}
776 
777 	rc = _allocate_vol_requests(vol);
778 	if (rc != 0) {
779 		goto error;
780 	}
781 
782 	_initialize_vol_pm_pointers(vol);
783 
784 	num_chunks = vol->params.vol_size / vol->params.chunk_size;
785 	for (i = 0; i < num_chunks; i++) {
786 		logical_map_index = vol->pm_logical_map[i];
787 		if (logical_map_index == REDUCE_EMPTY_MAP_ENTRY) {
788 			continue;
789 		}
790 		spdk_bit_array_set(vol->allocated_chunk_maps, logical_map_index);
791 		chunk = _reduce_vol_get_chunk_map(vol, logical_map_index);
792 		for (j = 0; j < vol->backing_io_units_per_chunk; j++) {
793 			if (chunk->io_unit_index[j] != REDUCE_EMPTY_MAP_ENTRY) {
794 				spdk_bit_array_set(vol->allocated_backing_io_units, chunk->io_unit_index[j]);
795 			}
796 		}
797 	}
798 
799 	load_ctx->cb_fn(load_ctx->cb_arg, vol, 0);
800 	/* Only clean up the ctx - the vol has been passed to the application
801 	 *  for use now that volume load was successful.
802 	 */
803 	_init_load_cleanup(NULL, load_ctx);
804 	return;
805 
806 error:
807 	load_ctx->cb_fn(load_ctx->cb_arg, NULL, rc);
808 	_init_load_cleanup(vol, load_ctx);
809 }
810 
811 void
812 spdk_reduce_vol_load(struct spdk_reduce_backing_dev *backing_dev,
813 		     spdk_reduce_vol_op_with_handle_complete cb_fn, void *cb_arg)
814 {
815 	struct spdk_reduce_vol *vol;
816 	struct reduce_init_load_ctx *load_ctx;
817 
818 	if (backing_dev->readv == NULL || backing_dev->writev == NULL ||
819 	    backing_dev->unmap == NULL) {
820 		SPDK_ERRLOG("backing_dev function pointer not specified\n");
821 		cb_fn(cb_arg, NULL, -EINVAL);
822 		return;
823 	}
824 
825 	vol = calloc(1, sizeof(*vol));
826 	if (vol == NULL) {
827 		cb_fn(cb_arg, NULL, -ENOMEM);
828 		return;
829 	}
830 
831 	TAILQ_INIT(&vol->free_requests);
832 	TAILQ_INIT(&vol->executing_requests);
833 	TAILQ_INIT(&vol->queued_requests);
834 
835 	vol->backing_super = spdk_zmalloc(sizeof(*vol->backing_super), 64, NULL,
836 					  SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
837 	if (vol->backing_super == NULL) {
838 		_init_load_cleanup(vol, NULL);
839 		cb_fn(cb_arg, NULL, -ENOMEM);
840 		return;
841 	}
842 
843 	vol->backing_dev = backing_dev;
844 
845 	load_ctx = calloc(1, sizeof(*load_ctx));
846 	if (load_ctx == NULL) {
847 		_init_load_cleanup(vol, NULL);
848 		cb_fn(cb_arg, NULL, -ENOMEM);
849 		return;
850 	}
851 
852 	load_ctx->path = spdk_zmalloc(REDUCE_PATH_MAX, 64, NULL,
853 				      SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
854 	if (load_ctx->path == NULL) {
855 		_init_load_cleanup(vol, load_ctx);
856 		cb_fn(cb_arg, NULL, -ENOMEM);
857 		return;
858 	}
859 
860 	load_ctx->vol = vol;
861 	load_ctx->cb_fn = cb_fn;
862 	load_ctx->cb_arg = cb_arg;
863 
864 	load_ctx->iov[0].iov_base = vol->backing_super;
865 	load_ctx->iov[0].iov_len = sizeof(*vol->backing_super);
866 	load_ctx->iov[1].iov_base = load_ctx->path;
867 	load_ctx->iov[1].iov_len = REDUCE_PATH_MAX;
868 	load_ctx->backing_cb_args.cb_fn = _load_read_super_and_path_cpl;
869 	load_ctx->backing_cb_args.cb_arg = load_ctx;
870 	vol->backing_dev->readv(vol->backing_dev, load_ctx->iov, LOAD_IOV_COUNT, 0,
871 				(sizeof(*vol->backing_super) + REDUCE_PATH_MAX) /
872 				vol->backing_dev->blocklen,
873 				&load_ctx->backing_cb_args);
874 }
875 
876 void
877 spdk_reduce_vol_unload(struct spdk_reduce_vol *vol,
878 		       spdk_reduce_vol_op_complete cb_fn, void *cb_arg)
879 {
880 	if (vol == NULL) {
881 		/* This indicates a programming error. */
882 		assert(false);
883 		cb_fn(cb_arg, -EINVAL);
884 		return;
885 	}
886 
887 	if (--g_vol_count == 0) {
888 		spdk_free(g_zero_buf);
889 	}
890 	assert(g_vol_count >= 0);
891 	_init_load_cleanup(vol, NULL);
892 	cb_fn(cb_arg, 0);
893 }
894 
895 struct reduce_destroy_ctx {
896 	spdk_reduce_vol_op_complete		cb_fn;
897 	void					*cb_arg;
898 	struct spdk_reduce_vol			*vol;
899 	struct spdk_reduce_vol_superblock	*super;
900 	struct iovec				iov;
901 	struct spdk_reduce_vol_cb_args		backing_cb_args;
902 	int					reduce_errno;
903 	char					pm_path[REDUCE_PATH_MAX];
904 };
905 
906 static void
907 destroy_unload_cpl(void *cb_arg, int reduce_errno)
908 {
909 	struct reduce_destroy_ctx *destroy_ctx = cb_arg;
910 
911 	if (destroy_ctx->reduce_errno == 0) {
912 		if (unlink(destroy_ctx->pm_path)) {
913 			SPDK_ERRLOG("%s could not be unlinked: %s\n",
914 				    destroy_ctx->pm_path, strerror(errno));
915 		}
916 	}
917 
918 	/* Even if the unload somehow failed, we still pass the destroy_ctx
919 	 * reduce_errno since that indicates whether or not the volume was
920 	 * actually destroyed.
921 	 */
922 	destroy_ctx->cb_fn(destroy_ctx->cb_arg, destroy_ctx->reduce_errno);
923 	spdk_free(destroy_ctx->super);
924 	free(destroy_ctx);
925 }
926 
927 static void
928 _destroy_zero_super_cpl(void *cb_arg, int reduce_errno)
929 {
930 	struct reduce_destroy_ctx *destroy_ctx = cb_arg;
931 	struct spdk_reduce_vol *vol = destroy_ctx->vol;
932 
933 	destroy_ctx->reduce_errno = reduce_errno;
934 	spdk_reduce_vol_unload(vol, destroy_unload_cpl, destroy_ctx);
935 }
936 
937 static void
938 destroy_load_cb(void *cb_arg, struct spdk_reduce_vol *vol, int reduce_errno)
939 {
940 	struct reduce_destroy_ctx *destroy_ctx = cb_arg;
941 
942 	if (reduce_errno != 0) {
943 		destroy_ctx->cb_fn(destroy_ctx->cb_arg, reduce_errno);
944 		spdk_free(destroy_ctx->super);
945 		free(destroy_ctx);
946 		return;
947 	}
948 
949 	destroy_ctx->vol = vol;
950 	memcpy(destroy_ctx->pm_path, vol->pm_file.path, sizeof(destroy_ctx->pm_path));
951 	destroy_ctx->iov.iov_base = destroy_ctx->super;
952 	destroy_ctx->iov.iov_len = sizeof(*destroy_ctx->super);
953 	destroy_ctx->backing_cb_args.cb_fn = _destroy_zero_super_cpl;
954 	destroy_ctx->backing_cb_args.cb_arg = destroy_ctx;
955 	vol->backing_dev->writev(vol->backing_dev, &destroy_ctx->iov, 1, 0,
956 				 sizeof(*destroy_ctx->super) / vol->backing_dev->blocklen,
957 				 &destroy_ctx->backing_cb_args);
958 }
959 
960 void
961 spdk_reduce_vol_destroy(struct spdk_reduce_backing_dev *backing_dev,
962 			spdk_reduce_vol_op_complete cb_fn, void *cb_arg)
963 {
964 	struct reduce_destroy_ctx *destroy_ctx;
965 
966 	destroy_ctx = calloc(1, sizeof(*destroy_ctx));
967 	if (destroy_ctx == NULL) {
968 		cb_fn(cb_arg, -ENOMEM);
969 		return;
970 	}
971 
972 	destroy_ctx->super = spdk_zmalloc(sizeof(*destroy_ctx->super), 64, NULL,
973 					  SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
974 	if (destroy_ctx->super == NULL) {
975 		free(destroy_ctx);
976 		cb_fn(cb_arg, -ENOMEM);
977 		return;
978 	}
979 	destroy_ctx->cb_fn = cb_fn;
980 	destroy_ctx->cb_arg = cb_arg;
981 	spdk_reduce_vol_load(backing_dev, destroy_load_cb, destroy_ctx);
982 }
983 
984 static bool
985 _request_spans_chunk_boundary(struct spdk_reduce_vol *vol, uint64_t offset, uint64_t length)
986 {
987 	uint64_t start_chunk, end_chunk;
988 
989 	start_chunk = offset / vol->logical_blocks_per_chunk;
990 	end_chunk = (offset + length - 1) / vol->logical_blocks_per_chunk;
991 
992 	return (start_chunk != end_chunk);
993 }
994 
995 typedef void (*reduce_request_fn)(void *_req, int reduce_errno);
996 
997 static void
998 _reduce_vol_complete_req(struct spdk_reduce_vol_request *req, int reduce_errno)
999 {
1000 	struct spdk_reduce_vol_request *next_req;
1001 	struct spdk_reduce_vol *vol = req->vol;
1002 
1003 	req->cb_fn(req->cb_arg, reduce_errno);
1004 	TAILQ_REMOVE(&vol->executing_requests, req, tailq);
1005 
1006 	TAILQ_FOREACH(next_req, &vol->queued_requests, tailq) {
1007 		if (next_req->logical_map_index == req->logical_map_index) {
1008 			TAILQ_REMOVE(&vol->queued_requests, next_req, tailq);
1009 			if (next_req->type == REDUCE_IO_READV) {
1010 				_start_readv_request(next_req);
1011 			} else {
1012 				assert(next_req->type == REDUCE_IO_WRITEV);
1013 				_start_writev_request(next_req);
1014 			}
1015 			break;
1016 		}
1017 	}
1018 
1019 	TAILQ_INSERT_HEAD(&vol->free_requests, req, tailq);
1020 }
1021 
1022 static void
1023 _write_write_done(void *_req, int reduce_errno)
1024 {
1025 	struct spdk_reduce_vol_request *req = _req;
1026 	struct spdk_reduce_vol *vol = req->vol;
1027 	uint64_t old_chunk_map_index;
1028 	struct spdk_reduce_chunk_map *old_chunk;
1029 	uint32_t i;
1030 
1031 	if (reduce_errno != 0) {
1032 		req->reduce_errno = reduce_errno;
1033 	}
1034 
1035 	assert(req->num_backing_ops > 0);
1036 	if (--req->num_backing_ops > 0) {
1037 		return;
1038 	}
1039 
1040 	if (req->reduce_errno != 0) {
1041 		_reduce_vol_complete_req(req, req->reduce_errno);
1042 		return;
1043 	}
1044 
1045 	old_chunk_map_index = vol->pm_logical_map[req->logical_map_index];
1046 	if (old_chunk_map_index != REDUCE_EMPTY_MAP_ENTRY) {
1047 		old_chunk = _reduce_vol_get_chunk_map(vol, old_chunk_map_index);
1048 		for (i = 0; i < vol->backing_io_units_per_chunk; i++) {
1049 			if (old_chunk->io_unit_index[i] == REDUCE_EMPTY_MAP_ENTRY) {
1050 				break;
1051 			}
1052 			assert(spdk_bit_array_get(vol->allocated_backing_io_units, old_chunk->io_unit_index[i]) == true);
1053 			spdk_bit_array_clear(vol->allocated_backing_io_units, old_chunk->io_unit_index[i]);
1054 			old_chunk->io_unit_index[i] = REDUCE_EMPTY_MAP_ENTRY;
1055 		}
1056 		spdk_bit_array_clear(vol->allocated_chunk_maps, old_chunk_map_index);
1057 	}
1058 
1059 	/*
1060 	 * We don't need to persist the clearing of the old chunk map here.  The old chunk map
1061 	 * becomes invalid after we update the logical map, since the old chunk map will no
1062 	 * longer have a reference to it in the logical map.
1063 	 */
1064 
1065 	/* Persist the new chunk map.  This must be persisted before we update the logical map. */
1066 	_reduce_persist(vol, req->chunk,
1067 			_reduce_vol_get_chunk_struct_size(vol->backing_io_units_per_chunk));
1068 
1069 	vol->pm_logical_map[req->logical_map_index] = req->chunk_map_index;
1070 
1071 	_reduce_persist(vol, &vol->pm_logical_map[req->logical_map_index], sizeof(uint64_t));
1072 
1073 	_reduce_vol_complete_req(req, 0);
1074 }
1075 
1076 static void
1077 _issue_backing_ops(struct spdk_reduce_vol_request *req, struct spdk_reduce_vol *vol,
1078 		   reduce_request_fn next_fn, bool is_write)
1079 {
1080 	struct iovec *iov;
1081 	uint8_t *buf;
1082 	uint32_t i;
1083 
1084 	if (req->chunk_is_compressed) {
1085 		iov = req->comp_buf_iov;
1086 		buf = req->comp_buf;
1087 	} else {
1088 		iov = req->decomp_buf_iov;
1089 		buf = req->decomp_buf;
1090 	}
1091 
1092 	req->num_backing_ops = req->num_io_units;
1093 	req->backing_cb_args.cb_fn = next_fn;
1094 	req->backing_cb_args.cb_arg = req;
1095 	for (i = 0; i < req->num_io_units; i++) {
1096 		iov[i].iov_base = buf + i * vol->params.backing_io_unit_size;
1097 		iov[i].iov_len = vol->params.backing_io_unit_size;
1098 		if (is_write) {
1099 			vol->backing_dev->writev(vol->backing_dev, &iov[i], 1,
1100 						 req->chunk->io_unit_index[i] * vol->backing_lba_per_io_unit,
1101 						 vol->backing_lba_per_io_unit, &req->backing_cb_args);
1102 		} else {
1103 			vol->backing_dev->readv(vol->backing_dev, &iov[i], 1,
1104 						req->chunk->io_unit_index[i] * vol->backing_lba_per_io_unit,
1105 						vol->backing_lba_per_io_unit, &req->backing_cb_args);
1106 		}
1107 	}
1108 }
1109 
1110 static void
1111 _reduce_vol_write_chunk(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn,
1112 			uint32_t compressed_size)
1113 {
1114 	struct spdk_reduce_vol *vol = req->vol;
1115 	uint32_t i;
1116 	uint64_t chunk_offset, remainder, total_len = 0;
1117 	uint8_t *buf;
1118 	int j;
1119 
1120 	req->chunk_map_index = spdk_bit_array_find_first_clear(vol->allocated_chunk_maps, 0);
1121 
1122 	/* TODO: fail if no chunk map found - but really this should not happen if we
1123 	 * size the number of requests similarly to number of extra chunk maps
1124 	 */
1125 	assert(req->chunk_map_index != UINT32_MAX);
1126 	spdk_bit_array_set(vol->allocated_chunk_maps, req->chunk_map_index);
1127 
1128 	req->chunk = _reduce_vol_get_chunk_map(vol, req->chunk_map_index);
1129 	req->num_io_units = spdk_divide_round_up(compressed_size,
1130 			    vol->params.backing_io_unit_size);
1131 	req->chunk_is_compressed = (req->num_io_units != vol->backing_io_units_per_chunk);
1132 	req->chunk->compressed_size =
1133 		req->chunk_is_compressed ? compressed_size : vol->params.chunk_size;
1134 
1135 	/* if the chunk is uncompressed we need to copy the data from the host buffers. */
1136 	if (req->chunk_is_compressed == false) {
1137 		chunk_offset = req->offset % vol->logical_blocks_per_chunk;
1138 		buf = req->decomp_buf;
1139 		total_len = chunk_offset * vol->params.logical_block_size;
1140 
1141 		/* zero any offset into chunk */
1142 		if (req->rmw == false && chunk_offset) {
1143 			memset(buf, 0, total_len);
1144 		}
1145 		buf += total_len;
1146 
1147 		/* copy the data */
1148 		for (j = 0; j < req->iovcnt; j++) {
1149 			memcpy(buf, req->iov[j].iov_base, req->iov[j].iov_len);
1150 			buf += req->iov[j].iov_len;
1151 			total_len += req->iov[j].iov_len;
1152 		}
1153 
1154 		/* zero any remainder */
1155 		remainder = vol->params.chunk_size - total_len;
1156 		total_len += remainder;
1157 		if (req->rmw == false && remainder) {
1158 			memset(buf, 0, remainder);
1159 		}
1160 		assert(total_len == vol->params.chunk_size);
1161 	}
1162 
1163 	for (i = 0; i < req->num_io_units; i++) {
1164 		req->chunk->io_unit_index[i] = spdk_bit_array_find_first_clear(vol->allocated_backing_io_units, 0);
1165 		/* TODO: fail if no backing block found - but really this should also not
1166 		 * happen (see comment above).
1167 		 */
1168 		assert(req->chunk->io_unit_index[i] != UINT32_MAX);
1169 		spdk_bit_array_set(vol->allocated_backing_io_units, req->chunk->io_unit_index[i]);
1170 	}
1171 
1172 	_issue_backing_ops(req, vol, next_fn, true /* write */);
1173 }
1174 
1175 static void
1176 _write_compress_done(void *_req, int reduce_errno)
1177 {
1178 	struct spdk_reduce_vol_request *req = _req;
1179 
1180 	/* Negative reduce_errno indicates failure for compression operations.
1181 	 * Just write the uncompressed data instead.  Force this to happen
1182 	 * by just passing the full chunk size to _reduce_vol_write_chunk.
1183 	 * When it sees the data couldn't be compressed, it will just write
1184 	 * the uncompressed buffer to disk.
1185 	 */
1186 	if (reduce_errno < 0) {
1187 		req->backing_cb_args.output_size = req->vol->params.chunk_size;
1188 	}
1189 
1190 	_reduce_vol_write_chunk(req, _write_write_done, req->backing_cb_args.output_size);
1191 }
1192 
1193 static void
1194 _reduce_vol_compress_chunk(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn)
1195 {
1196 	struct spdk_reduce_vol *vol = req->vol;
1197 
1198 	req->backing_cb_args.cb_fn = next_fn;
1199 	req->backing_cb_args.cb_arg = req;
1200 	req->comp_buf_iov[0].iov_base = req->comp_buf;
1201 	req->comp_buf_iov[0].iov_len = vol->params.chunk_size;
1202 	vol->backing_dev->compress(vol->backing_dev,
1203 				   req->decomp_iov, req->decomp_iovcnt, req->comp_buf_iov, 1,
1204 				   &req->backing_cb_args);
1205 }
1206 
1207 static void
1208 _reduce_vol_decompress_chunk_scratch(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn)
1209 {
1210 	struct spdk_reduce_vol *vol = req->vol;
1211 
1212 	req->backing_cb_args.cb_fn = next_fn;
1213 	req->backing_cb_args.cb_arg = req;
1214 	req->comp_buf_iov[0].iov_base = req->comp_buf;
1215 	req->comp_buf_iov[0].iov_len = req->chunk->compressed_size;
1216 	req->decomp_buf_iov[0].iov_base = req->decomp_buf;
1217 	req->decomp_buf_iov[0].iov_len = vol->params.chunk_size;
1218 	vol->backing_dev->decompress(vol->backing_dev,
1219 				     req->comp_buf_iov, 1, req->decomp_buf_iov, 1,
1220 				     &req->backing_cb_args);
1221 }
1222 
1223 static void
1224 _reduce_vol_decompress_chunk(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn)
1225 {
1226 	struct spdk_reduce_vol *vol = req->vol;
1227 	uint64_t chunk_offset, remainder = 0;
1228 	uint64_t ttl_len = 0;
1229 	size_t iov_len;
1230 	int i;
1231 
1232 	req->decomp_iovcnt = 0;
1233 	chunk_offset = req->offset % vol->logical_blocks_per_chunk;
1234 
1235 	/* If backing device doesn't support SGL output then we should copy the result of decompression to user's buffer
1236 	 * if at least one of the conditions below is true:
1237 	 * 1. User's buffer is fragmented
1238 	 * 2. Length of the user's buffer is less than the chunk
1239 	 * 3. User's buffer is contig, equals chunk_size but crosses huge page boundary */
1240 	iov_len = req->iov[0].iov_len;
1241 	req->copy_after_decompress = !vol->backing_dev->sgl_out && (req->iovcnt > 1 ||
1242 				     req->iov[0].iov_len < vol->params.chunk_size ||
1243 				     _addr_crosses_huge_page(req->iov[0].iov_base, &iov_len));
1244 	if (req->copy_after_decompress) {
1245 		req->decomp_iov[0].iov_base = req->decomp_buf;
1246 		req->decomp_iov[0].iov_len = vol->params.chunk_size;
1247 		req->decomp_iovcnt = 1;
1248 		goto decompress;
1249 	}
1250 
1251 	if (chunk_offset) {
1252 		/* first iov point to our scratch buffer for any offset into the chunk */
1253 		req->decomp_iov[0].iov_base = req->decomp_buf;
1254 		req->decomp_iov[0].iov_len = chunk_offset * vol->params.logical_block_size;
1255 		ttl_len += req->decomp_iov[0].iov_len;
1256 		req->decomp_iovcnt = 1;
1257 	}
1258 
1259 	/* now the user data iov, direct to the user buffer */
1260 	for (i = 0; i < req->iovcnt; i++) {
1261 		req->decomp_iov[i + req->decomp_iovcnt].iov_base = req->iov[i].iov_base;
1262 		req->decomp_iov[i + req->decomp_iovcnt].iov_len = req->iov[i].iov_len;
1263 		ttl_len += req->decomp_iov[i + req->decomp_iovcnt].iov_len;
1264 	}
1265 	req->decomp_iovcnt += req->iovcnt;
1266 
1267 	/* send the rest of the chunk to our scratch buffer */
1268 	remainder = vol->params.chunk_size - ttl_len;
1269 	if (remainder) {
1270 		req->decomp_iov[req->decomp_iovcnt].iov_base = req->decomp_buf + ttl_len;
1271 		req->decomp_iov[req->decomp_iovcnt].iov_len = remainder;
1272 		ttl_len += req->decomp_iov[req->decomp_iovcnt].iov_len;
1273 		req->decomp_iovcnt++;
1274 	}
1275 	assert(ttl_len == vol->params.chunk_size);
1276 
1277 decompress:
1278 	assert(!req->copy_after_decompress || (req->copy_after_decompress && req->decomp_iovcnt == 1));
1279 	req->backing_cb_args.cb_fn = next_fn;
1280 	req->backing_cb_args.cb_arg = req;
1281 	req->comp_buf_iov[0].iov_base = req->comp_buf;
1282 	req->comp_buf_iov[0].iov_len = req->chunk->compressed_size;
1283 	vol->backing_dev->decompress(vol->backing_dev,
1284 				     req->comp_buf_iov, 1, req->decomp_iov, req->decomp_iovcnt,
1285 				     &req->backing_cb_args);
1286 }
1287 
1288 static inline void
1289 _prepare_compress_chunk_copy_user_buffers(struct spdk_reduce_vol_request *req, bool zero_paddings)
1290 {
1291 	struct spdk_reduce_vol *vol = req->vol;
1292 	char *padding_buffer = zero_paddings ? g_zero_buf : req->decomp_buf;
1293 	uint64_t chunk_offset, ttl_len = 0;
1294 	uint64_t remainder = 0;
1295 	char *copy_offset = NULL;
1296 	uint32_t lbsize = vol->params.logical_block_size;
1297 	int i;
1298 
1299 	req->decomp_iov[0].iov_base = req->decomp_buf;
1300 	req->decomp_iov[0].iov_len = vol->params.chunk_size;
1301 	req->decomp_iovcnt = 1;
1302 	copy_offset = req->decomp_iov[0].iov_base;
1303 	chunk_offset = req->offset % vol->logical_blocks_per_chunk;
1304 
1305 	if (chunk_offset) {
1306 		ttl_len += chunk_offset * lbsize;
1307 		/* copy_offset already points to padding buffer if zero_paddings=false */
1308 		if (zero_paddings) {
1309 			memcpy(copy_offset, padding_buffer, ttl_len);
1310 		}
1311 		copy_offset += ttl_len;
1312 	}
1313 
1314 	/* now the user data iov, direct from the user buffer */
1315 	for (i = 0; i < req->iovcnt; i++) {
1316 		memcpy(copy_offset, req->iov[i].iov_base, req->iov[i].iov_len);
1317 		copy_offset += req->iov[i].iov_len;
1318 		ttl_len += req->iov[i].iov_len;
1319 	}
1320 
1321 	remainder = vol->params.chunk_size - ttl_len;
1322 	if (remainder) {
1323 		/* copy_offset already points to padding buffer if zero_paddings=false */
1324 		if (zero_paddings) {
1325 			memcpy(copy_offset, padding_buffer + ttl_len, remainder);
1326 		}
1327 		ttl_len += remainder;
1328 	}
1329 
1330 	assert(ttl_len == req->vol->params.chunk_size);
1331 }
1332 
1333 /* This function can be called when we are compressing a new data or in case of read-modify-write
1334  * In the first case possible paddings should be filled with zeroes, in the second case the paddings
1335  * should point to already read and decompressed buffer */
1336 static inline void
1337 _prepare_compress_chunk(struct spdk_reduce_vol_request *req, bool zero_paddings)
1338 {
1339 	struct spdk_reduce_vol *vol = req->vol;
1340 	char *padding_buffer = zero_paddings ? g_zero_buf : req->decomp_buf;
1341 	uint64_t chunk_offset, ttl_len = 0;
1342 	uint64_t remainder = 0;
1343 	uint32_t lbsize = vol->params.logical_block_size;
1344 	size_t iov_len;
1345 	int i;
1346 
1347 	/* If backing device doesn't support SGL input then we should copy user's buffer into decomp_buf
1348 	 * if at least one of the conditions below is true:
1349 	 * 1. User's buffer is fragmented
1350 	 * 2. Length of the user's buffer is less than the chunk
1351 	 * 3. User's buffer is contig, equals chunk_size but crosses huge page boundary */
1352 	iov_len = req->iov[0].iov_len;
1353 	if (!vol->backing_dev->sgl_in && (req->iovcnt > 1 ||
1354 					  req->iov[0].iov_len < vol->params.chunk_size ||
1355 					  _addr_crosses_huge_page(req->iov[0].iov_base, &iov_len))) {
1356 		_prepare_compress_chunk_copy_user_buffers(req, zero_paddings);
1357 		return;
1358 	}
1359 
1360 	req->decomp_iovcnt = 0;
1361 	chunk_offset = req->offset % vol->logical_blocks_per_chunk;
1362 
1363 	if (chunk_offset != 0) {
1364 		ttl_len += chunk_offset * lbsize;
1365 		req->decomp_iov[0].iov_base = padding_buffer;
1366 		req->decomp_iov[0].iov_len = ttl_len;
1367 		req->decomp_iovcnt = 1;
1368 	}
1369 
1370 	/* now the user data iov, direct from the user buffer */
1371 	for (i = 0; i < req->iovcnt; i++) {
1372 		req->decomp_iov[i + req->decomp_iovcnt].iov_base = req->iov[i].iov_base;
1373 		req->decomp_iov[i + req->decomp_iovcnt].iov_len = req->iov[i].iov_len;
1374 		ttl_len += req->iov[i].iov_len;
1375 	}
1376 	req->decomp_iovcnt += req->iovcnt;
1377 
1378 	remainder = vol->params.chunk_size - ttl_len;
1379 	if (remainder) {
1380 		req->decomp_iov[req->decomp_iovcnt].iov_base = padding_buffer + ttl_len;
1381 		req->decomp_iov[req->decomp_iovcnt].iov_len = remainder;
1382 		req->decomp_iovcnt++;
1383 		ttl_len += remainder;
1384 	}
1385 	assert(ttl_len == req->vol->params.chunk_size);
1386 }
1387 
1388 static void
1389 _write_decompress_done(void *_req, int reduce_errno)
1390 {
1391 	struct spdk_reduce_vol_request *req = _req;
1392 
1393 	/* Negative reduce_errno indicates failure for compression operations. */
1394 	if (reduce_errno < 0) {
1395 		_reduce_vol_complete_req(req, reduce_errno);
1396 		return;
1397 	}
1398 
1399 	/* Positive reduce_errno indicates that the output size field in the backing_cb_args
1400 	 * represents the output_size.
1401 	 */
1402 	if (req->backing_cb_args.output_size != req->vol->params.chunk_size) {
1403 		_reduce_vol_complete_req(req, -EIO);
1404 		return;
1405 	}
1406 
1407 	_prepare_compress_chunk(req, false);
1408 	_reduce_vol_compress_chunk(req, _write_compress_done);
1409 }
1410 
1411 static void
1412 _write_read_done(void *_req, int reduce_errno)
1413 {
1414 	struct spdk_reduce_vol_request *req = _req;
1415 
1416 	if (reduce_errno != 0) {
1417 		req->reduce_errno = reduce_errno;
1418 	}
1419 
1420 	assert(req->num_backing_ops > 0);
1421 	if (--req->num_backing_ops > 0) {
1422 		return;
1423 	}
1424 
1425 	if (req->reduce_errno != 0) {
1426 		_reduce_vol_complete_req(req, req->reduce_errno);
1427 		return;
1428 	}
1429 
1430 	if (req->chunk_is_compressed) {
1431 		_reduce_vol_decompress_chunk_scratch(req, _write_decompress_done);
1432 	} else {
1433 		_write_decompress_done(req, req->chunk->compressed_size);
1434 	}
1435 }
1436 
1437 static void
1438 _read_decompress_done(void *_req, int reduce_errno)
1439 {
1440 	struct spdk_reduce_vol_request *req = _req;
1441 	struct spdk_reduce_vol *vol = req->vol;
1442 
1443 	/* Negative reduce_errno indicates failure for compression operations. */
1444 	if (reduce_errno < 0) {
1445 		_reduce_vol_complete_req(req, reduce_errno);
1446 		return;
1447 	}
1448 
1449 	/* Positive reduce_errno indicates that the output size field in the backing_cb_args
1450 	 * represents the output_size.
1451 	 */
1452 	if (req->backing_cb_args.output_size != vol->params.chunk_size) {
1453 		_reduce_vol_complete_req(req, -EIO);
1454 		return;
1455 	}
1456 
1457 	if (req->copy_after_decompress) {
1458 		uint64_t chunk_offset = req->offset % vol->logical_blocks_per_chunk;
1459 		char *decomp_buffer = (char *)req->decomp_buf + chunk_offset * vol->params.logical_block_size;
1460 		int i;
1461 
1462 		for (i = 0; i < req->iovcnt; i++) {
1463 			memcpy(req->iov[i].iov_base, decomp_buffer, req->iov[i].iov_len);
1464 			decomp_buffer += req->iov[i].iov_len;
1465 			assert(decomp_buffer <= (char *)req->decomp_buf + vol->params.chunk_size);
1466 		}
1467 	}
1468 
1469 	_reduce_vol_complete_req(req, 0);
1470 }
1471 
1472 static void
1473 _read_read_done(void *_req, int reduce_errno)
1474 {
1475 	struct spdk_reduce_vol_request *req = _req;
1476 	uint64_t chunk_offset;
1477 	uint8_t *buf;
1478 	int i;
1479 
1480 	if (reduce_errno != 0) {
1481 		req->reduce_errno = reduce_errno;
1482 	}
1483 
1484 	assert(req->num_backing_ops > 0);
1485 	if (--req->num_backing_ops > 0) {
1486 		return;
1487 	}
1488 
1489 	if (req->reduce_errno != 0) {
1490 		_reduce_vol_complete_req(req, req->reduce_errno);
1491 		return;
1492 	}
1493 
1494 	if (req->chunk_is_compressed) {
1495 		_reduce_vol_decompress_chunk(req, _read_decompress_done);
1496 	} else {
1497 
1498 		/* If the chunk was compressed, the data would have been sent to the
1499 		 *  host buffers by the decompression operation, if not we need to memcpy here.
1500 		 */
1501 		chunk_offset = req->offset % req->vol->logical_blocks_per_chunk;
1502 		buf = req->decomp_buf + chunk_offset * req->vol->params.logical_block_size;
1503 		for (i = 0; i < req->iovcnt; i++) {
1504 			memcpy(req->iov[i].iov_base, buf, req->iov[i].iov_len);
1505 			buf += req->iov[i].iov_len;
1506 		}
1507 
1508 		_read_decompress_done(req, req->chunk->compressed_size);
1509 	}
1510 }
1511 
1512 static void
1513 _reduce_vol_read_chunk(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn)
1514 {
1515 	struct spdk_reduce_vol *vol = req->vol;
1516 
1517 	req->chunk_map_index = vol->pm_logical_map[req->logical_map_index];
1518 	assert(req->chunk_map_index != UINT32_MAX);
1519 
1520 	req->chunk = _reduce_vol_get_chunk_map(vol, req->chunk_map_index);
1521 	req->num_io_units = spdk_divide_round_up(req->chunk->compressed_size,
1522 			    vol->params.backing_io_unit_size);
1523 	req->chunk_is_compressed = (req->num_io_units != vol->backing_io_units_per_chunk);
1524 
1525 	_issue_backing_ops(req, vol, next_fn, false /* read */);
1526 }
1527 
1528 static bool
1529 _iov_array_is_valid(struct spdk_reduce_vol *vol, struct iovec *iov, int iovcnt,
1530 		    uint64_t length)
1531 {
1532 	uint64_t size = 0;
1533 	int i;
1534 
1535 	if (iovcnt > REDUCE_MAX_IOVECS) {
1536 		return false;
1537 	}
1538 
1539 	for (i = 0; i < iovcnt; i++) {
1540 		size += iov[i].iov_len;
1541 	}
1542 
1543 	return size == (length * vol->params.logical_block_size);
1544 }
1545 
1546 static bool
1547 _check_overlap(struct spdk_reduce_vol *vol, uint64_t logical_map_index)
1548 {
1549 	struct spdk_reduce_vol_request *req;
1550 
1551 	TAILQ_FOREACH(req, &vol->executing_requests, tailq) {
1552 		if (logical_map_index == req->logical_map_index) {
1553 			return true;
1554 		}
1555 	}
1556 
1557 	return false;
1558 }
1559 
1560 static void
1561 _start_readv_request(struct spdk_reduce_vol_request *req)
1562 {
1563 	TAILQ_INSERT_TAIL(&req->vol->executing_requests, req, tailq);
1564 	_reduce_vol_read_chunk(req, _read_read_done);
1565 }
1566 
1567 void
1568 spdk_reduce_vol_readv(struct spdk_reduce_vol *vol,
1569 		      struct iovec *iov, int iovcnt, uint64_t offset, uint64_t length,
1570 		      spdk_reduce_vol_op_complete cb_fn, void *cb_arg)
1571 {
1572 	struct spdk_reduce_vol_request *req;
1573 	uint64_t logical_map_index;
1574 	bool overlapped;
1575 	int i;
1576 
1577 	if (length == 0) {
1578 		cb_fn(cb_arg, 0);
1579 		return;
1580 	}
1581 
1582 	if (_request_spans_chunk_boundary(vol, offset, length)) {
1583 		cb_fn(cb_arg, -EINVAL);
1584 		return;
1585 	}
1586 
1587 	if (!_iov_array_is_valid(vol, iov, iovcnt, length)) {
1588 		cb_fn(cb_arg, -EINVAL);
1589 		return;
1590 	}
1591 
1592 	logical_map_index = offset / vol->logical_blocks_per_chunk;
1593 	overlapped = _check_overlap(vol, logical_map_index);
1594 
1595 	if (!overlapped && vol->pm_logical_map[logical_map_index] == REDUCE_EMPTY_MAP_ENTRY) {
1596 		/*
1597 		 * This chunk hasn't been allocated.  So treat the data as all
1598 		 * zeroes for this chunk - do the memset and immediately complete
1599 		 * the operation.
1600 		 */
1601 		for (i = 0; i < iovcnt; i++) {
1602 			memset(iov[i].iov_base, 0, iov[i].iov_len);
1603 		}
1604 		cb_fn(cb_arg, 0);
1605 		return;
1606 	}
1607 
1608 	req = TAILQ_FIRST(&vol->free_requests);
1609 	if (req == NULL) {
1610 		cb_fn(cb_arg, -ENOMEM);
1611 		return;
1612 	}
1613 
1614 	TAILQ_REMOVE(&vol->free_requests, req, tailq);
1615 	req->type = REDUCE_IO_READV;
1616 	req->vol = vol;
1617 	req->iov = iov;
1618 	req->iovcnt = iovcnt;
1619 	req->offset = offset;
1620 	req->logical_map_index = logical_map_index;
1621 	req->length = length;
1622 	req->copy_after_decompress = false;
1623 	req->cb_fn = cb_fn;
1624 	req->cb_arg = cb_arg;
1625 
1626 	if (!overlapped) {
1627 		_start_readv_request(req);
1628 	} else {
1629 		TAILQ_INSERT_TAIL(&vol->queued_requests, req, tailq);
1630 	}
1631 }
1632 
1633 static void
1634 _start_writev_request(struct spdk_reduce_vol_request *req)
1635 {
1636 	struct spdk_reduce_vol *vol = req->vol;
1637 
1638 	TAILQ_INSERT_TAIL(&req->vol->executing_requests, req, tailq);
1639 	if (vol->pm_logical_map[req->logical_map_index] != REDUCE_EMPTY_MAP_ENTRY) {
1640 		if ((req->length * vol->params.logical_block_size) < vol->params.chunk_size) {
1641 			/* Read old chunk, then overwrite with data from this write
1642 			 *  operation.
1643 			 */
1644 			req->rmw = true;
1645 			_reduce_vol_read_chunk(req, _write_read_done);
1646 			return;
1647 		}
1648 	}
1649 
1650 	req->rmw = false;
1651 
1652 	_prepare_compress_chunk(req, true);
1653 	_reduce_vol_compress_chunk(req, _write_compress_done);
1654 }
1655 
1656 void
1657 spdk_reduce_vol_writev(struct spdk_reduce_vol *vol,
1658 		       struct iovec *iov, int iovcnt, uint64_t offset, uint64_t length,
1659 		       spdk_reduce_vol_op_complete cb_fn, void *cb_arg)
1660 {
1661 	struct spdk_reduce_vol_request *req;
1662 	uint64_t logical_map_index;
1663 	bool overlapped;
1664 
1665 	if (length == 0) {
1666 		cb_fn(cb_arg, 0);
1667 		return;
1668 	}
1669 
1670 	if (_request_spans_chunk_boundary(vol, offset, length)) {
1671 		cb_fn(cb_arg, -EINVAL);
1672 		return;
1673 	}
1674 
1675 	if (!_iov_array_is_valid(vol, iov, iovcnt, length)) {
1676 		cb_fn(cb_arg, -EINVAL);
1677 		return;
1678 	}
1679 
1680 	logical_map_index = offset / vol->logical_blocks_per_chunk;
1681 	overlapped = _check_overlap(vol, logical_map_index);
1682 
1683 	req = TAILQ_FIRST(&vol->free_requests);
1684 	if (req == NULL) {
1685 		cb_fn(cb_arg, -ENOMEM);
1686 		return;
1687 	}
1688 
1689 	TAILQ_REMOVE(&vol->free_requests, req, tailq);
1690 	req->type = REDUCE_IO_WRITEV;
1691 	req->vol = vol;
1692 	req->iov = iov;
1693 	req->iovcnt = iovcnt;
1694 	req->offset = offset;
1695 	req->logical_map_index = logical_map_index;
1696 	req->length = length;
1697 	req->copy_after_decompress = false;
1698 	req->cb_fn = cb_fn;
1699 	req->cb_arg = cb_arg;
1700 
1701 	if (!overlapped) {
1702 		_start_writev_request(req);
1703 	} else {
1704 		TAILQ_INSERT_TAIL(&vol->queued_requests, req, tailq);
1705 	}
1706 }
1707 
1708 const struct spdk_reduce_vol_params *
1709 spdk_reduce_vol_get_params(struct spdk_reduce_vol *vol)
1710 {
1711 	return &vol->params;
1712 }
1713 
1714 void
1715 spdk_reduce_vol_print_info(struct spdk_reduce_vol *vol)
1716 {
1717 	uint64_t logical_map_size, num_chunks, ttl_chunk_sz;
1718 	uint32_t struct_size;
1719 	uint64_t chunk_map_size;
1720 
1721 	SPDK_NOTICELOG("vol info:\n");
1722 	SPDK_NOTICELOG("\tvol->params.backing_io_unit_size = 0x%x\n", vol->params.backing_io_unit_size);
1723 	SPDK_NOTICELOG("\tvol->params.logical_block_size = 0x%x\n", vol->params.logical_block_size);
1724 	SPDK_NOTICELOG("\tvol->params.chunk_size = 0x%x\n", vol->params.chunk_size);
1725 	SPDK_NOTICELOG("\tvol->params.vol_size = 0x%" PRIx64 "\n", vol->params.vol_size);
1726 	num_chunks = _get_total_chunks(vol->params.vol_size, vol->params.chunk_size);
1727 	SPDK_NOTICELOG("\ttotal chunks (including extra) = 0x%" PRIx64 "\n", num_chunks);
1728 	SPDK_NOTICELOG("\ttotal chunks (excluding extra) = 0x%" PRIx64 "\n",
1729 		       vol->params.vol_size / vol->params.chunk_size);
1730 	ttl_chunk_sz = _get_pm_total_chunks_size(vol->params.vol_size, vol->params.chunk_size,
1731 			vol->params.backing_io_unit_size);
1732 	SPDK_NOTICELOG("\ttotal_chunks_size = 0x%" PRIx64 "\n", ttl_chunk_sz);
1733 	struct_size = _reduce_vol_get_chunk_struct_size(vol->backing_io_units_per_chunk);
1734 	SPDK_NOTICELOG("\tchunk_struct_size = 0x%x\n", struct_size);
1735 
1736 	SPDK_NOTICELOG("pmem info:\n");
1737 	SPDK_NOTICELOG("\tvol->pm_file.size = 0x%" PRIx64 "\n", vol->pm_file.size);
1738 	SPDK_NOTICELOG("\tvol->pm_file.pm_buf = %p\n", (void *)vol->pm_file.pm_buf);
1739 	SPDK_NOTICELOG("\tvol->pm_super = %p\n", (void *)vol->pm_super);
1740 	SPDK_NOTICELOG("\tvol->pm_logical_map = %p\n", (void *)vol->pm_logical_map);
1741 	logical_map_size = _get_pm_logical_map_size(vol->params.vol_size,
1742 			   vol->params.chunk_size);
1743 	SPDK_NOTICELOG("\tlogical_map_size = 0x%" PRIx64 "\n", logical_map_size);
1744 	SPDK_NOTICELOG("\tvol->pm_chunk_maps = %p\n", (void *)vol->pm_chunk_maps);
1745 	chunk_map_size = _get_pm_total_chunks_size(vol->params.vol_size, vol->params.chunk_size,
1746 			 vol->params.backing_io_unit_size);
1747 	SPDK_NOTICELOG("\tchunk_map_size = 0x%" PRIx64 "\n", chunk_map_size);
1748 }
1749 
1750 SPDK_LOG_REGISTER_COMPONENT(reduce)
1751