1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright (C) 2018 Intel Corporation. 3 * All rights reserved. 4 * Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 5 */ 6 7 #include "spdk/stdinc.h" 8 9 #include "queue_internal.h" 10 11 #include "spdk/reduce.h" 12 #include "spdk/env.h" 13 #include "spdk/string.h" 14 #include "spdk/bit_array.h" 15 #include "spdk/util.h" 16 #include "spdk/log.h" 17 #include "spdk/memory.h" 18 #include "spdk/tree.h" 19 20 #include "libpmem.h" 21 22 /* Always round up the size of the PM region to the nearest cacheline. */ 23 #define REDUCE_PM_SIZE_ALIGNMENT 64 24 25 /* Offset into the backing device where the persistent memory file's path is stored. */ 26 #define REDUCE_BACKING_DEV_PATH_OFFSET 4096 27 28 #define REDUCE_EMPTY_MAP_ENTRY -1ULL 29 30 #define REDUCE_NUM_VOL_REQUESTS 256 31 32 /* Structure written to offset 0 of both the pm file and the backing device. */ 33 struct spdk_reduce_vol_superblock { 34 uint8_t signature[8]; 35 struct spdk_reduce_vol_params params; 36 uint8_t reserved[4040]; 37 }; 38 SPDK_STATIC_ASSERT(sizeof(struct spdk_reduce_vol_superblock) == 4096, "size incorrect"); 39 40 #define SPDK_REDUCE_SIGNATURE "SPDKREDU" 41 /* null terminator counts one */ 42 SPDK_STATIC_ASSERT(sizeof(SPDK_REDUCE_SIGNATURE) - 1 == 43 SPDK_SIZEOF_MEMBER(struct spdk_reduce_vol_superblock, signature), "size incorrect"); 44 45 #define REDUCE_PATH_MAX 4096 46 47 #define REDUCE_ZERO_BUF_SIZE 0x100000 48 49 /** 50 * Describes a persistent memory file used to hold metadata associated with a 51 * compressed volume. 52 */ 53 struct spdk_reduce_pm_file { 54 char path[REDUCE_PATH_MAX]; 55 void *pm_buf; 56 int pm_is_pmem; 57 uint64_t size; 58 }; 59 60 #define REDUCE_IO_READV 1 61 #define REDUCE_IO_WRITEV 2 62 #define REDUCE_IO_UNMAP 3 63 64 struct spdk_reduce_chunk_map { 65 uint32_t compressed_size; 66 uint32_t reserved; 67 uint64_t io_unit_index[0]; 68 }; 69 70 struct spdk_reduce_vol_request { 71 /** 72 * Scratch buffer used for uncompressed chunk. This is used for: 73 * 1) source buffer for compression operations 74 * 2) destination buffer for decompression operations 75 * 3) data buffer when writing uncompressed chunk to disk 76 * 4) data buffer when reading uncompressed chunk from disk 77 */ 78 uint8_t *decomp_buf; 79 struct iovec *decomp_buf_iov; 80 81 /** 82 * These are used to construct the iovecs that are sent to 83 * the decomp engine, they point to a mix of the scratch buffer 84 * and user buffer 85 */ 86 struct iovec decomp_iov[REDUCE_MAX_IOVECS + 2]; 87 int decomp_iovcnt; 88 89 /** 90 * Scratch buffer used for compressed chunk. This is used for: 91 * 1) destination buffer for compression operations 92 * 2) source buffer for decompression operations 93 * 3) data buffer when writing compressed chunk to disk 94 * 4) data buffer when reading compressed chunk from disk 95 */ 96 uint8_t *comp_buf; 97 struct iovec *comp_buf_iov; 98 struct iovec *iov; 99 bool rmw; 100 struct spdk_reduce_vol *vol; 101 int type; 102 int reduce_errno; 103 int iovcnt; 104 int num_backing_ops; 105 uint32_t num_io_units; 106 struct spdk_reduce_backing_io *backing_io; 107 bool chunk_is_compressed; 108 bool copy_after_decompress; 109 uint64_t offset; 110 uint64_t logical_map_index; 111 uint64_t length; 112 uint64_t chunk_map_index; 113 struct spdk_reduce_chunk_map *chunk; 114 spdk_reduce_vol_op_complete cb_fn; 115 void *cb_arg; 116 TAILQ_ENTRY(spdk_reduce_vol_request) tailq; 117 RB_ENTRY(spdk_reduce_vol_request) rbnode; 118 struct spdk_reduce_vol_cb_args backing_cb_args; 119 }; 120 121 struct spdk_reduce_vol { 122 struct spdk_reduce_vol_params params; 123 uint32_t backing_io_units_per_chunk; 124 uint32_t backing_lba_per_io_unit; 125 uint32_t logical_blocks_per_chunk; 126 struct spdk_reduce_pm_file pm_file; 127 struct spdk_reduce_backing_dev *backing_dev; 128 struct spdk_reduce_vol_superblock *backing_super; 129 struct spdk_reduce_vol_superblock *pm_super; 130 uint64_t *pm_logical_map; 131 uint64_t *pm_chunk_maps; 132 133 struct spdk_bit_array *allocated_chunk_maps; 134 /* The starting position when looking for a block from allocated_chunk_maps */ 135 uint64_t find_chunk_offset; 136 /* Cache free chunks to speed up lookup of free chunk. */ 137 struct reduce_queue free_chunks_queue; 138 struct spdk_bit_array *allocated_backing_io_units; 139 /* The starting position when looking for a block from allocated_backing_io_units */ 140 uint64_t find_block_offset; 141 /* Cache free blocks for backing bdev to speed up lookup of free backing blocks. */ 142 struct reduce_queue free_backing_blocks_queue; 143 144 struct spdk_reduce_vol_request *request_mem; 145 TAILQ_HEAD(, spdk_reduce_vol_request) free_requests; 146 RB_HEAD(executing_req_tree, spdk_reduce_vol_request) executing_requests; 147 TAILQ_HEAD(, spdk_reduce_vol_request) queued_requests; 148 149 /* Single contiguous buffer used for all request buffers for this volume. */ 150 uint8_t *buf_mem; 151 struct iovec *buf_iov_mem; 152 /* Single contiguous buffer used for backing io buffers for this volume. */ 153 uint8_t *buf_backing_io_mem; 154 }; 155 156 static void _start_readv_request(struct spdk_reduce_vol_request *req); 157 static void _start_writev_request(struct spdk_reduce_vol_request *req); 158 static uint8_t *g_zero_buf; 159 static int g_vol_count = 0; 160 161 /* 162 * Allocate extra metadata chunks and corresponding backing io units to account for 163 * outstanding IO in worst case scenario where logical map is completely allocated 164 * and no data can be compressed. We need extra chunks in this case to handle 165 * in-flight writes since reduce never writes data in place. 166 */ 167 #define REDUCE_NUM_EXTRA_CHUNKS 128 168 169 static void 170 _reduce_persist(struct spdk_reduce_vol *vol, const void *addr, size_t len) 171 { 172 if (vol->pm_file.pm_is_pmem) { 173 pmem_persist(addr, len); 174 } else { 175 pmem_msync(addr, len); 176 } 177 } 178 179 static uint64_t 180 _get_pm_logical_map_size(uint64_t vol_size, uint64_t chunk_size) 181 { 182 uint64_t chunks_in_logical_map, logical_map_size; 183 184 chunks_in_logical_map = vol_size / chunk_size; 185 logical_map_size = chunks_in_logical_map * sizeof(uint64_t); 186 187 /* Round up to next cacheline. */ 188 return spdk_divide_round_up(logical_map_size, REDUCE_PM_SIZE_ALIGNMENT) * 189 REDUCE_PM_SIZE_ALIGNMENT; 190 } 191 192 static uint64_t 193 _get_total_chunks(uint64_t vol_size, uint64_t chunk_size) 194 { 195 uint64_t num_chunks; 196 197 num_chunks = vol_size / chunk_size; 198 num_chunks += REDUCE_NUM_EXTRA_CHUNKS; 199 200 return num_chunks; 201 } 202 203 static inline uint32_t 204 _reduce_vol_get_chunk_struct_size(uint64_t backing_io_units_per_chunk) 205 { 206 return sizeof(struct spdk_reduce_chunk_map) + sizeof(uint64_t) * backing_io_units_per_chunk; 207 } 208 209 static uint64_t 210 _get_pm_total_chunks_size(uint64_t vol_size, uint64_t chunk_size, uint64_t backing_io_unit_size) 211 { 212 uint64_t io_units_per_chunk, num_chunks, total_chunks_size; 213 214 num_chunks = _get_total_chunks(vol_size, chunk_size); 215 io_units_per_chunk = chunk_size / backing_io_unit_size; 216 217 total_chunks_size = num_chunks * _reduce_vol_get_chunk_struct_size(io_units_per_chunk); 218 219 return spdk_divide_round_up(total_chunks_size, REDUCE_PM_SIZE_ALIGNMENT) * 220 REDUCE_PM_SIZE_ALIGNMENT; 221 } 222 223 static struct spdk_reduce_chunk_map * 224 _reduce_vol_get_chunk_map(struct spdk_reduce_vol *vol, uint64_t chunk_map_index) 225 { 226 uintptr_t chunk_map_addr; 227 228 assert(chunk_map_index < _get_total_chunks(vol->params.vol_size, vol->params.chunk_size)); 229 230 chunk_map_addr = (uintptr_t)vol->pm_chunk_maps; 231 chunk_map_addr += chunk_map_index * 232 _reduce_vol_get_chunk_struct_size(vol->backing_io_units_per_chunk); 233 234 return (struct spdk_reduce_chunk_map *)chunk_map_addr; 235 } 236 237 static int 238 _validate_vol_params(struct spdk_reduce_vol_params *params) 239 { 240 if (params->vol_size > 0) { 241 /** 242 * User does not pass in the vol size - it gets calculated by libreduce from 243 * values in this structure plus the size of the backing device. 244 */ 245 return -EINVAL; 246 } 247 248 if (params->chunk_size == 0 || params->backing_io_unit_size == 0 || 249 params->logical_block_size == 0) { 250 return -EINVAL; 251 } 252 253 /* Chunk size must be an even multiple of the backing io unit size. */ 254 if ((params->chunk_size % params->backing_io_unit_size) != 0) { 255 return -EINVAL; 256 } 257 258 /* Chunk size must be an even multiple of the logical block size. */ 259 if ((params->chunk_size % params->logical_block_size) != 0) { 260 return -1; 261 } 262 263 return 0; 264 } 265 266 static uint64_t 267 _get_vol_size(uint64_t chunk_size, uint64_t backing_dev_size) 268 { 269 uint64_t num_chunks; 270 271 num_chunks = backing_dev_size / chunk_size; 272 if (num_chunks <= REDUCE_NUM_EXTRA_CHUNKS) { 273 return 0; 274 } 275 276 num_chunks -= REDUCE_NUM_EXTRA_CHUNKS; 277 return num_chunks * chunk_size; 278 } 279 280 static uint64_t 281 _get_pm_file_size(struct spdk_reduce_vol_params *params) 282 { 283 uint64_t total_pm_size; 284 285 total_pm_size = sizeof(struct spdk_reduce_vol_superblock); 286 total_pm_size += _get_pm_logical_map_size(params->vol_size, params->chunk_size); 287 total_pm_size += _get_pm_total_chunks_size(params->vol_size, params->chunk_size, 288 params->backing_io_unit_size); 289 return total_pm_size; 290 } 291 292 const struct spdk_uuid * 293 spdk_reduce_vol_get_uuid(struct spdk_reduce_vol *vol) 294 { 295 return &vol->params.uuid; 296 } 297 298 static void 299 _initialize_vol_pm_pointers(struct spdk_reduce_vol *vol) 300 { 301 uint64_t logical_map_size; 302 303 /* Superblock is at the beginning of the pm file. */ 304 vol->pm_super = (struct spdk_reduce_vol_superblock *)vol->pm_file.pm_buf; 305 306 /* Logical map immediately follows the super block. */ 307 vol->pm_logical_map = (uint64_t *)(vol->pm_super + 1); 308 309 /* Chunks maps follow the logical map. */ 310 logical_map_size = _get_pm_logical_map_size(vol->params.vol_size, vol->params.chunk_size); 311 vol->pm_chunk_maps = (uint64_t *)((uint8_t *)vol->pm_logical_map + logical_map_size); 312 } 313 314 /* We need 2 iovs during load - one for the superblock, another for the path */ 315 #define LOAD_IOV_COUNT 2 316 317 struct reduce_init_load_ctx { 318 struct spdk_reduce_vol *vol; 319 struct spdk_reduce_vol_cb_args backing_cb_args; 320 spdk_reduce_vol_op_with_handle_complete cb_fn; 321 void *cb_arg; 322 struct iovec iov[LOAD_IOV_COUNT]; 323 void *path; 324 struct spdk_reduce_backing_io *backing_io; 325 }; 326 327 static inline bool 328 _addr_crosses_huge_page(const void *addr, size_t *size) 329 { 330 size_t _size; 331 uint64_t rc; 332 333 assert(size); 334 335 _size = *size; 336 rc = spdk_vtophys(addr, size); 337 338 return rc == SPDK_VTOPHYS_ERROR || _size != *size; 339 } 340 341 static inline int 342 _set_buffer(uint8_t **vol_buffer, uint8_t **_addr, uint8_t *addr_range, size_t buffer_size) 343 { 344 uint8_t *addr; 345 size_t size_tmp = buffer_size; 346 347 addr = *_addr; 348 349 /* Verify that addr + buffer_size doesn't cross huge page boundary */ 350 if (_addr_crosses_huge_page(addr, &size_tmp)) { 351 /* Memory start is aligned on 2MiB, so buffer should be located at the end of the page. 352 * Skip remaining bytes and continue from the beginning of the next page */ 353 addr += size_tmp; 354 } 355 356 if (addr + buffer_size > addr_range) { 357 SPDK_ERRLOG("Vol buffer %p out of range %p\n", addr, addr_range); 358 return -ERANGE; 359 } 360 361 *vol_buffer = addr; 362 *_addr = addr + buffer_size; 363 364 return 0; 365 } 366 367 static int 368 _allocate_vol_requests(struct spdk_reduce_vol *vol) 369 { 370 struct spdk_reduce_vol_request *req; 371 struct spdk_reduce_backing_dev *backing_dev = vol->backing_dev; 372 uint32_t reqs_in_2mb_page, huge_pages_needed; 373 uint8_t *buffer, *buffer_end; 374 int i = 0; 375 int rc = 0; 376 377 /* It is needed to allocate comp and decomp buffers so that they do not cross physical 378 * page boundaries. Assume that the system uses default 2MiB pages and chunk_size is not 379 * necessarily power of 2 380 * Allocate 2x since we need buffers for both read/write and compress/decompress 381 * intermediate buffers. */ 382 reqs_in_2mb_page = VALUE_2MB / (vol->params.chunk_size * 2); 383 if (!reqs_in_2mb_page) { 384 return -EINVAL; 385 } 386 huge_pages_needed = SPDK_CEIL_DIV(REDUCE_NUM_VOL_REQUESTS, reqs_in_2mb_page); 387 388 vol->buf_mem = spdk_dma_malloc(VALUE_2MB * huge_pages_needed, VALUE_2MB, NULL); 389 if (vol->buf_mem == NULL) { 390 return -ENOMEM; 391 } 392 393 vol->request_mem = calloc(REDUCE_NUM_VOL_REQUESTS, sizeof(*req)); 394 if (vol->request_mem == NULL) { 395 spdk_free(vol->buf_mem); 396 vol->buf_mem = NULL; 397 return -ENOMEM; 398 } 399 400 /* Allocate 2x since we need iovs for both read/write and compress/decompress intermediate 401 * buffers. 402 */ 403 vol->buf_iov_mem = calloc(REDUCE_NUM_VOL_REQUESTS, 404 2 * sizeof(struct iovec) * vol->backing_io_units_per_chunk); 405 if (vol->buf_iov_mem == NULL) { 406 free(vol->request_mem); 407 spdk_free(vol->buf_mem); 408 vol->request_mem = NULL; 409 vol->buf_mem = NULL; 410 return -ENOMEM; 411 } 412 413 vol->buf_backing_io_mem = calloc(REDUCE_NUM_VOL_REQUESTS, (sizeof(struct spdk_reduce_backing_io) + 414 backing_dev->user_ctx_size) * vol->backing_io_units_per_chunk); 415 if (vol->buf_backing_io_mem == NULL) { 416 free(vol->request_mem); 417 free(vol->buf_iov_mem); 418 spdk_free(vol->buf_mem); 419 vol->request_mem = NULL; 420 vol->buf_iov_mem = NULL; 421 vol->buf_mem = NULL; 422 return -ENOMEM; 423 } 424 425 buffer = vol->buf_mem; 426 buffer_end = buffer + VALUE_2MB * huge_pages_needed; 427 428 for (i = 0; i < REDUCE_NUM_VOL_REQUESTS; i++) { 429 req = &vol->request_mem[i]; 430 TAILQ_INSERT_HEAD(&vol->free_requests, req, tailq); 431 req->backing_io = (struct spdk_reduce_backing_io *)(vol->buf_backing_io_mem + i * 432 (sizeof(struct spdk_reduce_backing_io) + backing_dev->user_ctx_size) * 433 vol->backing_io_units_per_chunk); 434 435 req->decomp_buf_iov = &vol->buf_iov_mem[(2 * i) * vol->backing_io_units_per_chunk]; 436 req->comp_buf_iov = &vol->buf_iov_mem[(2 * i + 1) * vol->backing_io_units_per_chunk]; 437 438 rc = _set_buffer(&req->comp_buf, &buffer, buffer_end, vol->params.chunk_size); 439 if (rc) { 440 SPDK_ERRLOG("Failed to set comp buffer for req idx %u, addr %p, start %p, end %p\n", i, buffer, 441 vol->buf_mem, buffer_end); 442 break; 443 } 444 rc = _set_buffer(&req->decomp_buf, &buffer, buffer_end, vol->params.chunk_size); 445 if (rc) { 446 SPDK_ERRLOG("Failed to set decomp buffer for req idx %u, addr %p, start %p, end %p\n", i, buffer, 447 vol->buf_mem, buffer_end); 448 break; 449 } 450 } 451 452 if (rc) { 453 free(vol->buf_backing_io_mem); 454 free(vol->buf_iov_mem); 455 free(vol->request_mem); 456 spdk_free(vol->buf_mem); 457 vol->buf_mem = NULL; 458 vol->buf_backing_io_mem = NULL; 459 vol->buf_iov_mem = NULL; 460 vol->request_mem = NULL; 461 } 462 463 return rc; 464 } 465 466 static void 467 _init_load_cleanup(struct spdk_reduce_vol *vol, struct reduce_init_load_ctx *ctx) 468 { 469 if (ctx != NULL) { 470 spdk_free(ctx->path); 471 free(ctx->backing_io); 472 free(ctx); 473 } 474 475 if (vol != NULL) { 476 if (vol->pm_file.pm_buf != NULL) { 477 pmem_unmap(vol->pm_file.pm_buf, vol->pm_file.size); 478 } 479 480 spdk_free(vol->backing_super); 481 spdk_bit_array_free(&vol->allocated_chunk_maps); 482 spdk_bit_array_free(&vol->allocated_backing_io_units); 483 free(vol->request_mem); 484 free(vol->buf_backing_io_mem); 485 free(vol->buf_iov_mem); 486 spdk_free(vol->buf_mem); 487 free(vol); 488 } 489 } 490 491 static int 492 _alloc_zero_buff(void) 493 { 494 int rc = 0; 495 496 /* The zero buffer is shared between all volumes and just used 497 * for reads so allocate one global instance here if not already 498 * allocated when another vol init'd or loaded. 499 */ 500 if (g_vol_count++ == 0) { 501 g_zero_buf = spdk_zmalloc(REDUCE_ZERO_BUF_SIZE, 502 64, NULL, SPDK_ENV_LCORE_ID_ANY, 503 SPDK_MALLOC_DMA); 504 if (g_zero_buf == NULL) { 505 g_vol_count--; 506 rc = -ENOMEM; 507 } 508 } 509 return rc; 510 } 511 512 static void 513 _init_write_super_cpl(void *cb_arg, int reduce_errno) 514 { 515 struct reduce_init_load_ctx *init_ctx = cb_arg; 516 int rc; 517 518 rc = _allocate_vol_requests(init_ctx->vol); 519 if (rc != 0) { 520 init_ctx->cb_fn(init_ctx->cb_arg, NULL, rc); 521 _init_load_cleanup(init_ctx->vol, init_ctx); 522 return; 523 } 524 525 rc = _alloc_zero_buff(); 526 if (rc != 0) { 527 init_ctx->cb_fn(init_ctx->cb_arg, NULL, rc); 528 _init_load_cleanup(init_ctx->vol, init_ctx); 529 return; 530 } 531 532 init_ctx->cb_fn(init_ctx->cb_arg, init_ctx->vol, reduce_errno); 533 /* Only clean up the ctx - the vol has been passed to the application 534 * for use now that initialization was successful. 535 */ 536 _init_load_cleanup(NULL, init_ctx); 537 } 538 539 static void 540 _init_write_path_cpl(void *cb_arg, int reduce_errno) 541 { 542 struct reduce_init_load_ctx *init_ctx = cb_arg; 543 struct spdk_reduce_vol *vol = init_ctx->vol; 544 struct spdk_reduce_backing_io *backing_io = init_ctx->backing_io; 545 546 init_ctx->iov[0].iov_base = vol->backing_super; 547 init_ctx->iov[0].iov_len = sizeof(*vol->backing_super); 548 init_ctx->backing_cb_args.cb_fn = _init_write_super_cpl; 549 init_ctx->backing_cb_args.cb_arg = init_ctx; 550 551 backing_io->dev = vol->backing_dev; 552 backing_io->iov = init_ctx->iov; 553 backing_io->iovcnt = 1; 554 backing_io->lba = 0; 555 backing_io->lba_count = sizeof(*vol->backing_super) / vol->backing_dev->blocklen; 556 backing_io->backing_cb_args = &init_ctx->backing_cb_args; 557 backing_io->backing_io_type = SPDK_REDUCE_BACKING_IO_WRITE; 558 559 vol->backing_dev->submit_backing_io(backing_io); 560 } 561 562 static int 563 _allocate_bit_arrays(struct spdk_reduce_vol *vol) 564 { 565 uint64_t total_chunks, total_backing_io_units; 566 uint32_t i, num_metadata_io_units; 567 568 total_chunks = _get_total_chunks(vol->params.vol_size, vol->params.chunk_size); 569 vol->allocated_chunk_maps = spdk_bit_array_create(total_chunks); 570 vol->find_chunk_offset = 0; 571 total_backing_io_units = total_chunks * (vol->params.chunk_size / vol->params.backing_io_unit_size); 572 vol->allocated_backing_io_units = spdk_bit_array_create(total_backing_io_units); 573 vol->find_block_offset = 0; 574 575 if (vol->allocated_chunk_maps == NULL || vol->allocated_backing_io_units == NULL) { 576 return -ENOMEM; 577 } 578 579 /* Set backing io unit bits associated with metadata. */ 580 num_metadata_io_units = (sizeof(*vol->backing_super) + REDUCE_PATH_MAX) / 581 vol->params.backing_io_unit_size; 582 for (i = 0; i < num_metadata_io_units; i++) { 583 spdk_bit_array_set(vol->allocated_backing_io_units, i); 584 } 585 586 return 0; 587 } 588 589 static int 590 overlap_cmp(struct spdk_reduce_vol_request *req1, struct spdk_reduce_vol_request *req2) 591 { 592 return (req1->logical_map_index < req2->logical_map_index ? -1 : req1->logical_map_index > 593 req2->logical_map_index); 594 } 595 RB_GENERATE_STATIC(executing_req_tree, spdk_reduce_vol_request, rbnode, overlap_cmp); 596 597 598 void 599 spdk_reduce_vol_init(struct spdk_reduce_vol_params *params, 600 struct spdk_reduce_backing_dev *backing_dev, 601 const char *pm_file_dir, 602 spdk_reduce_vol_op_with_handle_complete cb_fn, void *cb_arg) 603 { 604 struct spdk_reduce_vol *vol; 605 struct reduce_init_load_ctx *init_ctx; 606 struct spdk_reduce_backing_io *backing_io; 607 uint64_t backing_dev_size; 608 size_t mapped_len; 609 int dir_len, max_dir_len, rc; 610 611 /* We need to append a path separator and the UUID to the supplied 612 * path. 613 */ 614 max_dir_len = REDUCE_PATH_MAX - SPDK_UUID_STRING_LEN - 1; 615 dir_len = strnlen(pm_file_dir, max_dir_len); 616 /* Strip trailing slash if the user provided one - we will add it back 617 * later when appending the filename. 618 */ 619 if (pm_file_dir[dir_len - 1] == '/') { 620 dir_len--; 621 } 622 if (dir_len == max_dir_len) { 623 SPDK_ERRLOG("pm_file_dir (%s) too long\n", pm_file_dir); 624 cb_fn(cb_arg, NULL, -EINVAL); 625 return; 626 } 627 628 rc = _validate_vol_params(params); 629 if (rc != 0) { 630 SPDK_ERRLOG("invalid vol params\n"); 631 cb_fn(cb_arg, NULL, rc); 632 return; 633 } 634 635 backing_dev_size = backing_dev->blockcnt * backing_dev->blocklen; 636 params->vol_size = _get_vol_size(params->chunk_size, backing_dev_size); 637 if (params->vol_size == 0) { 638 SPDK_ERRLOG("backing device is too small\n"); 639 cb_fn(cb_arg, NULL, -EINVAL); 640 return; 641 } 642 643 if (backing_dev->submit_backing_io == NULL) { 644 SPDK_ERRLOG("backing_dev function pointer not specified\n"); 645 cb_fn(cb_arg, NULL, -EINVAL); 646 return; 647 } 648 649 vol = calloc(1, sizeof(*vol)); 650 if (vol == NULL) { 651 cb_fn(cb_arg, NULL, -ENOMEM); 652 return; 653 } 654 655 TAILQ_INIT(&vol->free_requests); 656 RB_INIT(&vol->executing_requests); 657 TAILQ_INIT(&vol->queued_requests); 658 queue_init(&vol->free_chunks_queue); 659 queue_init(&vol->free_backing_blocks_queue); 660 661 vol->backing_super = spdk_zmalloc(sizeof(*vol->backing_super), 0, NULL, 662 SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 663 if (vol->backing_super == NULL) { 664 cb_fn(cb_arg, NULL, -ENOMEM); 665 _init_load_cleanup(vol, NULL); 666 return; 667 } 668 669 init_ctx = calloc(1, sizeof(*init_ctx)); 670 if (init_ctx == NULL) { 671 cb_fn(cb_arg, NULL, -ENOMEM); 672 _init_load_cleanup(vol, NULL); 673 return; 674 } 675 676 backing_io = calloc(1, sizeof(*backing_io) + backing_dev->user_ctx_size); 677 if (backing_io == NULL) { 678 cb_fn(cb_arg, NULL, -ENOMEM); 679 _init_load_cleanup(vol, init_ctx); 680 return; 681 } 682 init_ctx->backing_io = backing_io; 683 684 init_ctx->path = spdk_zmalloc(REDUCE_PATH_MAX, 0, NULL, 685 SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 686 if (init_ctx->path == NULL) { 687 cb_fn(cb_arg, NULL, -ENOMEM); 688 _init_load_cleanup(vol, init_ctx); 689 return; 690 } 691 692 if (spdk_uuid_is_null(¶ms->uuid)) { 693 spdk_uuid_generate(¶ms->uuid); 694 } 695 696 memcpy(vol->pm_file.path, pm_file_dir, dir_len); 697 vol->pm_file.path[dir_len] = '/'; 698 spdk_uuid_fmt_lower(&vol->pm_file.path[dir_len + 1], SPDK_UUID_STRING_LEN, 699 ¶ms->uuid); 700 vol->pm_file.size = _get_pm_file_size(params); 701 vol->pm_file.pm_buf = pmem_map_file(vol->pm_file.path, vol->pm_file.size, 702 PMEM_FILE_CREATE | PMEM_FILE_EXCL, 0600, 703 &mapped_len, &vol->pm_file.pm_is_pmem); 704 if (vol->pm_file.pm_buf == NULL) { 705 SPDK_ERRLOG("could not pmem_map_file(%s): %s\n", 706 vol->pm_file.path, strerror(errno)); 707 cb_fn(cb_arg, NULL, -errno); 708 _init_load_cleanup(vol, init_ctx); 709 return; 710 } 711 712 if (vol->pm_file.size != mapped_len) { 713 SPDK_ERRLOG("could not map entire pmem file (size=%" PRIu64 " mapped=%" PRIu64 ")\n", 714 vol->pm_file.size, mapped_len); 715 cb_fn(cb_arg, NULL, -ENOMEM); 716 _init_load_cleanup(vol, init_ctx); 717 return; 718 } 719 720 vol->backing_io_units_per_chunk = params->chunk_size / params->backing_io_unit_size; 721 vol->logical_blocks_per_chunk = params->chunk_size / params->logical_block_size; 722 vol->backing_lba_per_io_unit = params->backing_io_unit_size / backing_dev->blocklen; 723 memcpy(&vol->params, params, sizeof(*params)); 724 725 vol->backing_dev = backing_dev; 726 727 rc = _allocate_bit_arrays(vol); 728 if (rc != 0) { 729 cb_fn(cb_arg, NULL, rc); 730 _init_load_cleanup(vol, init_ctx); 731 return; 732 } 733 734 memcpy(vol->backing_super->signature, SPDK_REDUCE_SIGNATURE, 735 sizeof(vol->backing_super->signature)); 736 memcpy(&vol->backing_super->params, params, sizeof(*params)); 737 738 _initialize_vol_pm_pointers(vol); 739 740 memcpy(vol->pm_super, vol->backing_super, sizeof(*vol->backing_super)); 741 /* Writing 0xFF's is equivalent of filling it all with SPDK_EMPTY_MAP_ENTRY. 742 * Note that this writes 0xFF to not just the logical map but the chunk maps as well. 743 */ 744 memset(vol->pm_logical_map, 0xFF, vol->pm_file.size - sizeof(*vol->backing_super)); 745 _reduce_persist(vol, vol->pm_file.pm_buf, vol->pm_file.size); 746 747 init_ctx->vol = vol; 748 init_ctx->cb_fn = cb_fn; 749 init_ctx->cb_arg = cb_arg; 750 751 memcpy(init_ctx->path, vol->pm_file.path, REDUCE_PATH_MAX); 752 init_ctx->iov[0].iov_base = init_ctx->path; 753 init_ctx->iov[0].iov_len = REDUCE_PATH_MAX; 754 init_ctx->backing_cb_args.cb_fn = _init_write_path_cpl; 755 init_ctx->backing_cb_args.cb_arg = init_ctx; 756 /* Write path to offset 4K on backing device - just after where the super 757 * block will be written. We wait until this is committed before writing the 758 * super block to guarantee we don't get the super block written without the 759 * the path if the system crashed in the middle of a write operation. 760 */ 761 backing_io->dev = vol->backing_dev; 762 backing_io->iov = init_ctx->iov; 763 backing_io->iovcnt = 1; 764 backing_io->lba = REDUCE_BACKING_DEV_PATH_OFFSET / vol->backing_dev->blocklen; 765 backing_io->lba_count = REDUCE_PATH_MAX / vol->backing_dev->blocklen; 766 backing_io->backing_cb_args = &init_ctx->backing_cb_args; 767 backing_io->backing_io_type = SPDK_REDUCE_BACKING_IO_WRITE; 768 769 vol->backing_dev->submit_backing_io(backing_io); 770 } 771 772 static void destroy_load_cb(void *cb_arg, struct spdk_reduce_vol *vol, int reduce_errno); 773 774 static void 775 _load_read_super_and_path_cpl(void *cb_arg, int reduce_errno) 776 { 777 struct reduce_init_load_ctx *load_ctx = cb_arg; 778 struct spdk_reduce_vol *vol = load_ctx->vol; 779 uint64_t backing_dev_size; 780 uint64_t i, num_chunks, logical_map_index; 781 struct spdk_reduce_chunk_map *chunk; 782 size_t mapped_len; 783 uint32_t j; 784 int rc; 785 786 if (reduce_errno != 0) { 787 rc = reduce_errno; 788 goto error; 789 } 790 791 rc = _alloc_zero_buff(); 792 if (rc) { 793 goto error; 794 } 795 796 if (memcmp(vol->backing_super->signature, 797 SPDK_REDUCE_SIGNATURE, 798 sizeof(vol->backing_super->signature)) != 0) { 799 /* This backing device isn't a libreduce backing device. */ 800 rc = -EILSEQ; 801 goto error; 802 } 803 804 /* If the cb_fn is destroy_load_cb, it means we are wanting to destroy this compress bdev. 805 * So don't bother getting the volume ready to use - invoke the callback immediately 806 * so destroy_load_cb can delete the metadata off of the block device and delete the 807 * persistent memory file if it exists. 808 */ 809 memcpy(vol->pm_file.path, load_ctx->path, sizeof(vol->pm_file.path)); 810 if (load_ctx->cb_fn == (*destroy_load_cb)) { 811 load_ctx->cb_fn(load_ctx->cb_arg, vol, 0); 812 _init_load_cleanup(NULL, load_ctx); 813 return; 814 } 815 816 memcpy(&vol->params, &vol->backing_super->params, sizeof(vol->params)); 817 vol->backing_io_units_per_chunk = vol->params.chunk_size / vol->params.backing_io_unit_size; 818 vol->logical_blocks_per_chunk = vol->params.chunk_size / vol->params.logical_block_size; 819 vol->backing_lba_per_io_unit = vol->params.backing_io_unit_size / vol->backing_dev->blocklen; 820 821 rc = _allocate_bit_arrays(vol); 822 if (rc != 0) { 823 goto error; 824 } 825 826 backing_dev_size = vol->backing_dev->blockcnt * vol->backing_dev->blocklen; 827 if (_get_vol_size(vol->params.chunk_size, backing_dev_size) < vol->params.vol_size) { 828 SPDK_ERRLOG("backing device size %" PRIi64 " smaller than expected\n", 829 backing_dev_size); 830 rc = -EILSEQ; 831 goto error; 832 } 833 834 vol->pm_file.size = _get_pm_file_size(&vol->params); 835 vol->pm_file.pm_buf = pmem_map_file(vol->pm_file.path, 0, 0, 0, &mapped_len, 836 &vol->pm_file.pm_is_pmem); 837 if (vol->pm_file.pm_buf == NULL) { 838 SPDK_ERRLOG("could not pmem_map_file(%s): %s\n", vol->pm_file.path, strerror(errno)); 839 rc = -errno; 840 goto error; 841 } 842 843 if (vol->pm_file.size != mapped_len) { 844 SPDK_ERRLOG("could not map entire pmem file (size=%" PRIu64 " mapped=%" PRIu64 ")\n", 845 vol->pm_file.size, mapped_len); 846 rc = -ENOMEM; 847 goto error; 848 } 849 850 rc = _allocate_vol_requests(vol); 851 if (rc != 0) { 852 goto error; 853 } 854 855 _initialize_vol_pm_pointers(vol); 856 857 num_chunks = vol->params.vol_size / vol->params.chunk_size; 858 for (i = 0; i < num_chunks; i++) { 859 logical_map_index = vol->pm_logical_map[i]; 860 if (logical_map_index == REDUCE_EMPTY_MAP_ENTRY) { 861 continue; 862 } 863 spdk_bit_array_set(vol->allocated_chunk_maps, logical_map_index); 864 chunk = _reduce_vol_get_chunk_map(vol, logical_map_index); 865 for (j = 0; j < vol->backing_io_units_per_chunk; j++) { 866 if (chunk->io_unit_index[j] != REDUCE_EMPTY_MAP_ENTRY) { 867 spdk_bit_array_set(vol->allocated_backing_io_units, chunk->io_unit_index[j]); 868 } 869 } 870 } 871 872 load_ctx->cb_fn(load_ctx->cb_arg, vol, 0); 873 /* Only clean up the ctx - the vol has been passed to the application 874 * for use now that volume load was successful. 875 */ 876 _init_load_cleanup(NULL, load_ctx); 877 return; 878 879 error: 880 load_ctx->cb_fn(load_ctx->cb_arg, NULL, rc); 881 _init_load_cleanup(vol, load_ctx); 882 } 883 884 void 885 spdk_reduce_vol_load(struct spdk_reduce_backing_dev *backing_dev, 886 spdk_reduce_vol_op_with_handle_complete cb_fn, void *cb_arg) 887 { 888 struct spdk_reduce_vol *vol; 889 struct reduce_init_load_ctx *load_ctx; 890 struct spdk_reduce_backing_io *backing_io; 891 892 if (backing_dev->submit_backing_io == NULL) { 893 SPDK_ERRLOG("backing_dev function pointer not specified\n"); 894 cb_fn(cb_arg, NULL, -EINVAL); 895 return; 896 } 897 898 vol = calloc(1, sizeof(*vol)); 899 if (vol == NULL) { 900 cb_fn(cb_arg, NULL, -ENOMEM); 901 return; 902 } 903 904 TAILQ_INIT(&vol->free_requests); 905 RB_INIT(&vol->executing_requests); 906 TAILQ_INIT(&vol->queued_requests); 907 queue_init(&vol->free_chunks_queue); 908 queue_init(&vol->free_backing_blocks_queue); 909 910 vol->backing_super = spdk_zmalloc(sizeof(*vol->backing_super), 64, NULL, 911 SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 912 if (vol->backing_super == NULL) { 913 _init_load_cleanup(vol, NULL); 914 cb_fn(cb_arg, NULL, -ENOMEM); 915 return; 916 } 917 918 vol->backing_dev = backing_dev; 919 920 load_ctx = calloc(1, sizeof(*load_ctx)); 921 if (load_ctx == NULL) { 922 _init_load_cleanup(vol, NULL); 923 cb_fn(cb_arg, NULL, -ENOMEM); 924 return; 925 } 926 927 backing_io = calloc(1, sizeof(*backing_io) + backing_dev->user_ctx_size); 928 if (backing_io == NULL) { 929 _init_load_cleanup(vol, load_ctx); 930 cb_fn(cb_arg, NULL, -ENOMEM); 931 return; 932 } 933 934 load_ctx->backing_io = backing_io; 935 936 load_ctx->path = spdk_zmalloc(REDUCE_PATH_MAX, 64, NULL, 937 SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 938 if (load_ctx->path == NULL) { 939 _init_load_cleanup(vol, load_ctx); 940 cb_fn(cb_arg, NULL, -ENOMEM); 941 return; 942 } 943 944 load_ctx->vol = vol; 945 load_ctx->cb_fn = cb_fn; 946 load_ctx->cb_arg = cb_arg; 947 948 load_ctx->iov[0].iov_base = vol->backing_super; 949 load_ctx->iov[0].iov_len = sizeof(*vol->backing_super); 950 load_ctx->iov[1].iov_base = load_ctx->path; 951 load_ctx->iov[1].iov_len = REDUCE_PATH_MAX; 952 backing_io->dev = vol->backing_dev; 953 backing_io->iov = load_ctx->iov; 954 backing_io->iovcnt = LOAD_IOV_COUNT; 955 backing_io->lba = 0; 956 backing_io->lba_count = (sizeof(*vol->backing_super) + REDUCE_PATH_MAX) / 957 vol->backing_dev->blocklen; 958 backing_io->backing_cb_args = &load_ctx->backing_cb_args; 959 backing_io->backing_io_type = SPDK_REDUCE_BACKING_IO_READ; 960 961 load_ctx->backing_cb_args.cb_fn = _load_read_super_and_path_cpl; 962 load_ctx->backing_cb_args.cb_arg = load_ctx; 963 vol->backing_dev->submit_backing_io(backing_io); 964 } 965 966 void 967 spdk_reduce_vol_unload(struct spdk_reduce_vol *vol, 968 spdk_reduce_vol_op_complete cb_fn, void *cb_arg) 969 { 970 if (vol == NULL) { 971 /* This indicates a programming error. */ 972 assert(false); 973 cb_fn(cb_arg, -EINVAL); 974 return; 975 } 976 977 if (--g_vol_count == 0) { 978 spdk_free(g_zero_buf); 979 } 980 assert(g_vol_count >= 0); 981 _init_load_cleanup(vol, NULL); 982 cb_fn(cb_arg, 0); 983 } 984 985 struct reduce_destroy_ctx { 986 spdk_reduce_vol_op_complete cb_fn; 987 void *cb_arg; 988 struct spdk_reduce_vol *vol; 989 struct spdk_reduce_vol_superblock *super; 990 struct iovec iov; 991 struct spdk_reduce_vol_cb_args backing_cb_args; 992 int reduce_errno; 993 char pm_path[REDUCE_PATH_MAX]; 994 struct spdk_reduce_backing_io *backing_io; 995 }; 996 997 static void 998 destroy_unload_cpl(void *cb_arg, int reduce_errno) 999 { 1000 struct reduce_destroy_ctx *destroy_ctx = cb_arg; 1001 1002 if (destroy_ctx->reduce_errno == 0) { 1003 if (unlink(destroy_ctx->pm_path)) { 1004 SPDK_ERRLOG("%s could not be unlinked: %s\n", 1005 destroy_ctx->pm_path, strerror(errno)); 1006 } 1007 } 1008 1009 /* Even if the unload somehow failed, we still pass the destroy_ctx 1010 * reduce_errno since that indicates whether or not the volume was 1011 * actually destroyed. 1012 */ 1013 destroy_ctx->cb_fn(destroy_ctx->cb_arg, destroy_ctx->reduce_errno); 1014 spdk_free(destroy_ctx->super); 1015 free(destroy_ctx->backing_io); 1016 free(destroy_ctx); 1017 } 1018 1019 static void 1020 _destroy_zero_super_cpl(void *cb_arg, int reduce_errno) 1021 { 1022 struct reduce_destroy_ctx *destroy_ctx = cb_arg; 1023 struct spdk_reduce_vol *vol = destroy_ctx->vol; 1024 1025 destroy_ctx->reduce_errno = reduce_errno; 1026 spdk_reduce_vol_unload(vol, destroy_unload_cpl, destroy_ctx); 1027 } 1028 1029 static void 1030 destroy_load_cb(void *cb_arg, struct spdk_reduce_vol *vol, int reduce_errno) 1031 { 1032 struct reduce_destroy_ctx *destroy_ctx = cb_arg; 1033 struct spdk_reduce_backing_io *backing_io = destroy_ctx->backing_io; 1034 1035 if (reduce_errno != 0) { 1036 destroy_ctx->cb_fn(destroy_ctx->cb_arg, reduce_errno); 1037 spdk_free(destroy_ctx->super); 1038 free(destroy_ctx); 1039 return; 1040 } 1041 1042 destroy_ctx->vol = vol; 1043 memcpy(destroy_ctx->pm_path, vol->pm_file.path, sizeof(destroy_ctx->pm_path)); 1044 destroy_ctx->iov.iov_base = destroy_ctx->super; 1045 destroy_ctx->iov.iov_len = sizeof(*destroy_ctx->super); 1046 destroy_ctx->backing_cb_args.cb_fn = _destroy_zero_super_cpl; 1047 destroy_ctx->backing_cb_args.cb_arg = destroy_ctx; 1048 1049 backing_io->dev = vol->backing_dev; 1050 backing_io->iov = &destroy_ctx->iov; 1051 backing_io->iovcnt = 1; 1052 backing_io->lba = 0; 1053 backing_io->lba_count = sizeof(*destroy_ctx->super) / vol->backing_dev->blocklen; 1054 backing_io->backing_cb_args = &destroy_ctx->backing_cb_args; 1055 backing_io->backing_io_type = SPDK_REDUCE_BACKING_IO_WRITE; 1056 1057 vol->backing_dev->submit_backing_io(backing_io); 1058 } 1059 1060 void 1061 spdk_reduce_vol_destroy(struct spdk_reduce_backing_dev *backing_dev, 1062 spdk_reduce_vol_op_complete cb_fn, void *cb_arg) 1063 { 1064 struct reduce_destroy_ctx *destroy_ctx; 1065 struct spdk_reduce_backing_io *backing_io; 1066 1067 destroy_ctx = calloc(1, sizeof(*destroy_ctx)); 1068 if (destroy_ctx == NULL) { 1069 cb_fn(cb_arg, -ENOMEM); 1070 return; 1071 } 1072 1073 backing_io = calloc(1, sizeof(*backing_io) + backing_dev->user_ctx_size); 1074 if (backing_io == NULL) { 1075 free(destroy_ctx); 1076 cb_fn(cb_arg, -ENOMEM); 1077 return; 1078 } 1079 1080 destroy_ctx->backing_io = backing_io; 1081 1082 destroy_ctx->super = spdk_zmalloc(sizeof(*destroy_ctx->super), 64, NULL, 1083 SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 1084 if (destroy_ctx->super == NULL) { 1085 free(destroy_ctx); 1086 free(backing_io); 1087 cb_fn(cb_arg, -ENOMEM); 1088 return; 1089 } 1090 destroy_ctx->cb_fn = cb_fn; 1091 destroy_ctx->cb_arg = cb_arg; 1092 spdk_reduce_vol_load(backing_dev, destroy_load_cb, destroy_ctx); 1093 } 1094 1095 static bool 1096 _request_spans_chunk_boundary(struct spdk_reduce_vol *vol, uint64_t offset, uint64_t length) 1097 { 1098 uint64_t start_chunk, end_chunk; 1099 1100 start_chunk = offset / vol->logical_blocks_per_chunk; 1101 end_chunk = (offset + length - 1) / vol->logical_blocks_per_chunk; 1102 1103 return (start_chunk != end_chunk); 1104 } 1105 1106 typedef void (*reduce_request_fn)(void *_req, int reduce_errno); 1107 static void _start_unmap_request_full_chunk(void *ctx); 1108 1109 static void 1110 _reduce_vol_complete_req(struct spdk_reduce_vol_request *req, int reduce_errno) 1111 { 1112 struct spdk_reduce_vol_request *next_req; 1113 struct spdk_reduce_vol *vol = req->vol; 1114 1115 req->cb_fn(req->cb_arg, reduce_errno); 1116 RB_REMOVE(executing_req_tree, &vol->executing_requests, req); 1117 1118 TAILQ_FOREACH(next_req, &vol->queued_requests, tailq) { 1119 if (next_req->logical_map_index == req->logical_map_index) { 1120 TAILQ_REMOVE(&vol->queued_requests, next_req, tailq); 1121 if (next_req->type == REDUCE_IO_READV) { 1122 _start_readv_request(next_req); 1123 } else if (next_req->type == REDUCE_IO_WRITEV) { 1124 _start_writev_request(next_req); 1125 } else { 1126 assert(next_req->type == REDUCE_IO_UNMAP); 1127 _start_unmap_request_full_chunk(next_req); 1128 } 1129 break; 1130 } 1131 } 1132 1133 TAILQ_INSERT_HEAD(&vol->free_requests, req, tailq); 1134 } 1135 1136 static void 1137 _reduce_vol_reset_chunk(struct spdk_reduce_vol *vol, uint64_t chunk_map_index) 1138 { 1139 struct spdk_reduce_chunk_map *chunk; 1140 uint64_t index; 1141 bool success; 1142 uint32_t i; 1143 1144 chunk = _reduce_vol_get_chunk_map(vol, chunk_map_index); 1145 for (i = 0; i < vol->backing_io_units_per_chunk; i++) { 1146 index = chunk->io_unit_index[i]; 1147 if (index == REDUCE_EMPTY_MAP_ENTRY) { 1148 break; 1149 } 1150 assert(spdk_bit_array_get(vol->allocated_backing_io_units, 1151 index) == true); 1152 spdk_bit_array_clear(vol->allocated_backing_io_units, index); 1153 success = queue_enqueue(&vol->free_backing_blocks_queue, index); 1154 if (!success && index < vol->find_block_offset) { 1155 vol->find_block_offset = index; 1156 } 1157 chunk->io_unit_index[i] = REDUCE_EMPTY_MAP_ENTRY; 1158 } 1159 success = queue_enqueue(&vol->free_chunks_queue, chunk_map_index); 1160 if (!success && chunk_map_index < vol->find_chunk_offset) { 1161 vol->find_chunk_offset = chunk_map_index; 1162 } 1163 spdk_bit_array_clear(vol->allocated_chunk_maps, chunk_map_index); 1164 } 1165 1166 static void 1167 _write_write_done(void *_req, int reduce_errno) 1168 { 1169 struct spdk_reduce_vol_request *req = _req; 1170 struct spdk_reduce_vol *vol = req->vol; 1171 uint64_t old_chunk_map_index; 1172 1173 if (reduce_errno != 0) { 1174 req->reduce_errno = reduce_errno; 1175 } 1176 1177 assert(req->num_backing_ops > 0); 1178 if (--req->num_backing_ops > 0) { 1179 return; 1180 } 1181 1182 if (req->reduce_errno != 0) { 1183 _reduce_vol_reset_chunk(vol, req->chunk_map_index); 1184 _reduce_vol_complete_req(req, req->reduce_errno); 1185 return; 1186 } 1187 1188 old_chunk_map_index = vol->pm_logical_map[req->logical_map_index]; 1189 if (old_chunk_map_index != REDUCE_EMPTY_MAP_ENTRY) { 1190 _reduce_vol_reset_chunk(vol, old_chunk_map_index); 1191 } 1192 1193 /* 1194 * We don't need to persist the clearing of the old chunk map here. The old chunk map 1195 * becomes invalid after we update the logical map, since the old chunk map will no 1196 * longer have a reference to it in the logical map. 1197 */ 1198 1199 /* Persist the new chunk map. This must be persisted before we update the logical map. */ 1200 _reduce_persist(vol, req->chunk, 1201 _reduce_vol_get_chunk_struct_size(vol->backing_io_units_per_chunk)); 1202 1203 vol->pm_logical_map[req->logical_map_index] = req->chunk_map_index; 1204 1205 _reduce_persist(vol, &vol->pm_logical_map[req->logical_map_index], sizeof(uint64_t)); 1206 1207 _reduce_vol_complete_req(req, 0); 1208 } 1209 1210 static struct spdk_reduce_backing_io * 1211 _reduce_vol_req_get_backing_io(struct spdk_reduce_vol_request *req, uint32_t index) 1212 { 1213 struct spdk_reduce_backing_dev *backing_dev = req->vol->backing_dev; 1214 struct spdk_reduce_backing_io *backing_io; 1215 1216 backing_io = (struct spdk_reduce_backing_io *)((uint8_t *)req->backing_io + 1217 (sizeof(*backing_io) + backing_dev->user_ctx_size) * index); 1218 1219 return backing_io; 1220 1221 } 1222 1223 struct reduce_merged_io_desc { 1224 uint64_t io_unit_index; 1225 uint32_t num_io_units; 1226 }; 1227 1228 static void 1229 _issue_backing_ops_without_merge(struct spdk_reduce_vol_request *req, struct spdk_reduce_vol *vol, 1230 reduce_request_fn next_fn, bool is_write) 1231 { 1232 struct iovec *iov; 1233 struct spdk_reduce_backing_io *backing_io; 1234 uint8_t *buf; 1235 uint32_t i; 1236 1237 if (req->chunk_is_compressed) { 1238 iov = req->comp_buf_iov; 1239 buf = req->comp_buf; 1240 } else { 1241 iov = req->decomp_buf_iov; 1242 buf = req->decomp_buf; 1243 } 1244 1245 req->num_backing_ops = req->num_io_units; 1246 req->backing_cb_args.cb_fn = next_fn; 1247 req->backing_cb_args.cb_arg = req; 1248 for (i = 0; i < req->num_io_units; i++) { 1249 backing_io = _reduce_vol_req_get_backing_io(req, i); 1250 iov[i].iov_base = buf + i * vol->params.backing_io_unit_size; 1251 iov[i].iov_len = vol->params.backing_io_unit_size; 1252 backing_io->dev = vol->backing_dev; 1253 backing_io->iov = &iov[i]; 1254 backing_io->iovcnt = 1; 1255 backing_io->lba = req->chunk->io_unit_index[i] * vol->backing_lba_per_io_unit; 1256 backing_io->lba_count = vol->backing_lba_per_io_unit; 1257 backing_io->backing_cb_args = &req->backing_cb_args; 1258 if (is_write) { 1259 backing_io->backing_io_type = SPDK_REDUCE_BACKING_IO_WRITE; 1260 } else { 1261 backing_io->backing_io_type = SPDK_REDUCE_BACKING_IO_READ; 1262 } 1263 vol->backing_dev->submit_backing_io(backing_io); 1264 } 1265 } 1266 1267 static void 1268 _issue_backing_ops(struct spdk_reduce_vol_request *req, struct spdk_reduce_vol *vol, 1269 reduce_request_fn next_fn, bool is_write) 1270 { 1271 struct iovec *iov; 1272 struct spdk_reduce_backing_io *backing_io; 1273 struct reduce_merged_io_desc merged_io_desc[4]; 1274 uint8_t *buf; 1275 bool merge = false; 1276 uint32_t num_io = 0; 1277 uint32_t io_unit_counts = 0; 1278 uint32_t merged_io_idx = 0; 1279 uint32_t i; 1280 1281 /* The merged_io_desc value is defined here to contain four elements, 1282 * and the chunk size must be four times the maximum of the io unit. 1283 * if chunk size is too big, don't merge IO. 1284 */ 1285 if (vol->backing_io_units_per_chunk > 4) { 1286 _issue_backing_ops_without_merge(req, vol, next_fn, is_write); 1287 return; 1288 } 1289 1290 if (req->chunk_is_compressed) { 1291 iov = req->comp_buf_iov; 1292 buf = req->comp_buf; 1293 } else { 1294 iov = req->decomp_buf_iov; 1295 buf = req->decomp_buf; 1296 } 1297 1298 for (i = 0; i < req->num_io_units; i++) { 1299 if (!merge) { 1300 merged_io_desc[merged_io_idx].io_unit_index = req->chunk->io_unit_index[i]; 1301 merged_io_desc[merged_io_idx].num_io_units = 1; 1302 num_io++; 1303 } 1304 1305 if (i + 1 == req->num_io_units) { 1306 break; 1307 } 1308 1309 if (req->chunk->io_unit_index[i] + 1 == req->chunk->io_unit_index[i + 1]) { 1310 merged_io_desc[merged_io_idx].num_io_units += 1; 1311 merge = true; 1312 continue; 1313 } 1314 merge = false; 1315 merged_io_idx++; 1316 } 1317 1318 req->num_backing_ops = num_io; 1319 req->backing_cb_args.cb_fn = next_fn; 1320 req->backing_cb_args.cb_arg = req; 1321 for (i = 0; i < num_io; i++) { 1322 backing_io = _reduce_vol_req_get_backing_io(req, i); 1323 iov[i].iov_base = buf + io_unit_counts * vol->params.backing_io_unit_size; 1324 iov[i].iov_len = vol->params.backing_io_unit_size * merged_io_desc[i].num_io_units; 1325 backing_io->dev = vol->backing_dev; 1326 backing_io->iov = &iov[i]; 1327 backing_io->iovcnt = 1; 1328 backing_io->lba = merged_io_desc[i].io_unit_index * vol->backing_lba_per_io_unit; 1329 backing_io->lba_count = vol->backing_lba_per_io_unit * merged_io_desc[i].num_io_units; 1330 backing_io->backing_cb_args = &req->backing_cb_args; 1331 if (is_write) { 1332 backing_io->backing_io_type = SPDK_REDUCE_BACKING_IO_WRITE; 1333 } else { 1334 backing_io->backing_io_type = SPDK_REDUCE_BACKING_IO_READ; 1335 } 1336 vol->backing_dev->submit_backing_io(backing_io); 1337 1338 /* Collects the number of processed I/O. */ 1339 io_unit_counts += merged_io_desc[i].num_io_units; 1340 } 1341 } 1342 1343 static void 1344 _reduce_vol_write_chunk(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn, 1345 uint32_t compressed_size) 1346 { 1347 struct spdk_reduce_vol *vol = req->vol; 1348 uint32_t i; 1349 uint64_t chunk_offset, remainder, free_index, total_len = 0; 1350 uint8_t *buf; 1351 bool success; 1352 int j; 1353 1354 success = queue_dequeue(&vol->free_chunks_queue, &free_index); 1355 if (success) { 1356 req->chunk_map_index = free_index; 1357 } else { 1358 req->chunk_map_index = spdk_bit_array_find_first_clear(vol->allocated_chunk_maps, 1359 vol->find_chunk_offset); 1360 vol->find_chunk_offset = req->chunk_map_index + 1; 1361 } 1362 1363 /* TODO: fail if no chunk map found - but really this should not happen if we 1364 * size the number of requests similarly to number of extra chunk maps 1365 */ 1366 assert(req->chunk_map_index != UINT32_MAX); 1367 spdk_bit_array_set(vol->allocated_chunk_maps, req->chunk_map_index); 1368 1369 req->chunk = _reduce_vol_get_chunk_map(vol, req->chunk_map_index); 1370 req->num_io_units = spdk_divide_round_up(compressed_size, 1371 vol->params.backing_io_unit_size); 1372 req->chunk_is_compressed = (req->num_io_units != vol->backing_io_units_per_chunk); 1373 req->chunk->compressed_size = 1374 req->chunk_is_compressed ? compressed_size : vol->params.chunk_size; 1375 1376 /* if the chunk is uncompressed we need to copy the data from the host buffers. */ 1377 if (req->chunk_is_compressed == false) { 1378 chunk_offset = req->offset % vol->logical_blocks_per_chunk; 1379 buf = req->decomp_buf; 1380 total_len = chunk_offset * vol->params.logical_block_size; 1381 1382 /* zero any offset into chunk */ 1383 if (req->rmw == false && chunk_offset) { 1384 memset(buf, 0, total_len); 1385 } 1386 buf += total_len; 1387 1388 /* copy the data */ 1389 for (j = 0; j < req->iovcnt; j++) { 1390 memcpy(buf, req->iov[j].iov_base, req->iov[j].iov_len); 1391 buf += req->iov[j].iov_len; 1392 total_len += req->iov[j].iov_len; 1393 } 1394 1395 /* zero any remainder */ 1396 remainder = vol->params.chunk_size - total_len; 1397 total_len += remainder; 1398 if (req->rmw == false && remainder) { 1399 memset(buf, 0, remainder); 1400 } 1401 assert(total_len == vol->params.chunk_size); 1402 } 1403 1404 for (i = 0; i < req->num_io_units; i++) { 1405 success = queue_dequeue(&vol->free_backing_blocks_queue, &free_index); 1406 if (success) { 1407 req->chunk->io_unit_index[i] = free_index; 1408 } else { 1409 req->chunk->io_unit_index[i] = spdk_bit_array_find_first_clear(vol->allocated_backing_io_units, 1410 vol->find_block_offset); 1411 vol->find_block_offset = req->chunk->io_unit_index[i] + 1; 1412 } 1413 /* TODO: fail if no backing block found - but really this should also not 1414 * happen (see comment above). 1415 */ 1416 assert(req->chunk->io_unit_index[i] != UINT32_MAX); 1417 spdk_bit_array_set(vol->allocated_backing_io_units, req->chunk->io_unit_index[i]); 1418 } 1419 1420 _issue_backing_ops(req, vol, next_fn, true /* write */); 1421 } 1422 1423 static void 1424 _write_compress_done(void *_req, int reduce_errno) 1425 { 1426 struct spdk_reduce_vol_request *req = _req; 1427 1428 /* Negative reduce_errno indicates failure for compression operations. 1429 * Just write the uncompressed data instead. Force this to happen 1430 * by just passing the full chunk size to _reduce_vol_write_chunk. 1431 * When it sees the data couldn't be compressed, it will just write 1432 * the uncompressed buffer to disk. 1433 */ 1434 if (reduce_errno < 0) { 1435 req->backing_cb_args.output_size = req->vol->params.chunk_size; 1436 } 1437 1438 _reduce_vol_write_chunk(req, _write_write_done, req->backing_cb_args.output_size); 1439 } 1440 1441 static void 1442 _reduce_vol_compress_chunk(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn) 1443 { 1444 struct spdk_reduce_vol *vol = req->vol; 1445 1446 req->backing_cb_args.cb_fn = next_fn; 1447 req->backing_cb_args.cb_arg = req; 1448 req->comp_buf_iov[0].iov_base = req->comp_buf; 1449 req->comp_buf_iov[0].iov_len = vol->params.chunk_size; 1450 vol->backing_dev->compress(vol->backing_dev, 1451 req->decomp_iov, req->decomp_iovcnt, req->comp_buf_iov, 1, 1452 &req->backing_cb_args); 1453 } 1454 1455 static void 1456 _reduce_vol_decompress_chunk_scratch(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn) 1457 { 1458 struct spdk_reduce_vol *vol = req->vol; 1459 1460 req->backing_cb_args.cb_fn = next_fn; 1461 req->backing_cb_args.cb_arg = req; 1462 req->comp_buf_iov[0].iov_base = req->comp_buf; 1463 req->comp_buf_iov[0].iov_len = req->chunk->compressed_size; 1464 req->decomp_buf_iov[0].iov_base = req->decomp_buf; 1465 req->decomp_buf_iov[0].iov_len = vol->params.chunk_size; 1466 vol->backing_dev->decompress(vol->backing_dev, 1467 req->comp_buf_iov, 1, req->decomp_buf_iov, 1, 1468 &req->backing_cb_args); 1469 } 1470 1471 static void 1472 _reduce_vol_decompress_chunk(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn) 1473 { 1474 struct spdk_reduce_vol *vol = req->vol; 1475 uint64_t chunk_offset, remainder = 0; 1476 uint64_t ttl_len = 0; 1477 size_t iov_len; 1478 int i; 1479 1480 req->decomp_iovcnt = 0; 1481 chunk_offset = req->offset % vol->logical_blocks_per_chunk; 1482 1483 /* If backing device doesn't support SGL output then we should copy the result of decompression to user's buffer 1484 * if at least one of the conditions below is true: 1485 * 1. User's buffer is fragmented 1486 * 2. Length of the user's buffer is less than the chunk 1487 * 3. User's buffer is contig, equals chunk_size but crosses huge page boundary */ 1488 iov_len = req->iov[0].iov_len; 1489 req->copy_after_decompress = !vol->backing_dev->sgl_out && (req->iovcnt > 1 || 1490 req->iov[0].iov_len < vol->params.chunk_size || 1491 _addr_crosses_huge_page(req->iov[0].iov_base, &iov_len)); 1492 if (req->copy_after_decompress) { 1493 req->decomp_iov[0].iov_base = req->decomp_buf; 1494 req->decomp_iov[0].iov_len = vol->params.chunk_size; 1495 req->decomp_iovcnt = 1; 1496 goto decompress; 1497 } 1498 1499 if (chunk_offset) { 1500 /* first iov point to our scratch buffer for any offset into the chunk */ 1501 req->decomp_iov[0].iov_base = req->decomp_buf; 1502 req->decomp_iov[0].iov_len = chunk_offset * vol->params.logical_block_size; 1503 ttl_len += req->decomp_iov[0].iov_len; 1504 req->decomp_iovcnt = 1; 1505 } 1506 1507 /* now the user data iov, direct to the user buffer */ 1508 for (i = 0; i < req->iovcnt; i++) { 1509 req->decomp_iov[i + req->decomp_iovcnt].iov_base = req->iov[i].iov_base; 1510 req->decomp_iov[i + req->decomp_iovcnt].iov_len = req->iov[i].iov_len; 1511 ttl_len += req->decomp_iov[i + req->decomp_iovcnt].iov_len; 1512 } 1513 req->decomp_iovcnt += req->iovcnt; 1514 1515 /* send the rest of the chunk to our scratch buffer */ 1516 remainder = vol->params.chunk_size - ttl_len; 1517 if (remainder) { 1518 req->decomp_iov[req->decomp_iovcnt].iov_base = req->decomp_buf + ttl_len; 1519 req->decomp_iov[req->decomp_iovcnt].iov_len = remainder; 1520 ttl_len += req->decomp_iov[req->decomp_iovcnt].iov_len; 1521 req->decomp_iovcnt++; 1522 } 1523 assert(ttl_len == vol->params.chunk_size); 1524 1525 decompress: 1526 assert(!req->copy_after_decompress || (req->copy_after_decompress && req->decomp_iovcnt == 1)); 1527 req->backing_cb_args.cb_fn = next_fn; 1528 req->backing_cb_args.cb_arg = req; 1529 req->comp_buf_iov[0].iov_base = req->comp_buf; 1530 req->comp_buf_iov[0].iov_len = req->chunk->compressed_size; 1531 vol->backing_dev->decompress(vol->backing_dev, 1532 req->comp_buf_iov, 1, req->decomp_iov, req->decomp_iovcnt, 1533 &req->backing_cb_args); 1534 } 1535 1536 static inline void 1537 _prepare_compress_chunk_copy_user_buffers(struct spdk_reduce_vol_request *req, bool zero_paddings) 1538 { 1539 struct spdk_reduce_vol *vol = req->vol; 1540 char *padding_buffer = zero_paddings ? g_zero_buf : req->decomp_buf; 1541 uint64_t chunk_offset, ttl_len = 0; 1542 uint64_t remainder = 0; 1543 char *copy_offset = NULL; 1544 uint32_t lbsize = vol->params.logical_block_size; 1545 int i; 1546 1547 req->decomp_iov[0].iov_base = req->decomp_buf; 1548 req->decomp_iov[0].iov_len = vol->params.chunk_size; 1549 req->decomp_iovcnt = 1; 1550 copy_offset = req->decomp_iov[0].iov_base; 1551 chunk_offset = req->offset % vol->logical_blocks_per_chunk; 1552 1553 if (chunk_offset) { 1554 ttl_len += chunk_offset * lbsize; 1555 /* copy_offset already points to padding buffer if zero_paddings=false */ 1556 if (zero_paddings) { 1557 memcpy(copy_offset, padding_buffer, ttl_len); 1558 } 1559 copy_offset += ttl_len; 1560 } 1561 1562 /* now the user data iov, direct from the user buffer */ 1563 for (i = 0; i < req->iovcnt; i++) { 1564 memcpy(copy_offset, req->iov[i].iov_base, req->iov[i].iov_len); 1565 copy_offset += req->iov[i].iov_len; 1566 ttl_len += req->iov[i].iov_len; 1567 } 1568 1569 remainder = vol->params.chunk_size - ttl_len; 1570 if (remainder) { 1571 /* copy_offset already points to padding buffer if zero_paddings=false */ 1572 if (zero_paddings) { 1573 memcpy(copy_offset, padding_buffer + ttl_len, remainder); 1574 } 1575 ttl_len += remainder; 1576 } 1577 1578 assert(ttl_len == req->vol->params.chunk_size); 1579 } 1580 1581 /* This function can be called when we are compressing a new data or in case of read-modify-write 1582 * In the first case possible paddings should be filled with zeroes, in the second case the paddings 1583 * should point to already read and decompressed buffer */ 1584 static inline void 1585 _prepare_compress_chunk(struct spdk_reduce_vol_request *req, bool zero_paddings) 1586 { 1587 struct spdk_reduce_vol *vol = req->vol; 1588 char *padding_buffer = zero_paddings ? g_zero_buf : req->decomp_buf; 1589 uint64_t chunk_offset, ttl_len = 0; 1590 uint64_t remainder = 0; 1591 uint32_t lbsize = vol->params.logical_block_size; 1592 size_t iov_len; 1593 int i; 1594 1595 /* If backing device doesn't support SGL input then we should copy user's buffer into decomp_buf 1596 * if at least one of the conditions below is true: 1597 * 1. User's buffer is fragmented 1598 * 2. Length of the user's buffer is less than the chunk 1599 * 3. User's buffer is contig, equals chunk_size but crosses huge page boundary */ 1600 iov_len = req->iov[0].iov_len; 1601 if (!vol->backing_dev->sgl_in && (req->iovcnt > 1 || 1602 req->iov[0].iov_len < vol->params.chunk_size || 1603 _addr_crosses_huge_page(req->iov[0].iov_base, &iov_len))) { 1604 _prepare_compress_chunk_copy_user_buffers(req, zero_paddings); 1605 return; 1606 } 1607 1608 req->decomp_iovcnt = 0; 1609 chunk_offset = req->offset % vol->logical_blocks_per_chunk; 1610 1611 if (chunk_offset != 0) { 1612 ttl_len += chunk_offset * lbsize; 1613 req->decomp_iov[0].iov_base = padding_buffer; 1614 req->decomp_iov[0].iov_len = ttl_len; 1615 req->decomp_iovcnt = 1; 1616 } 1617 1618 /* now the user data iov, direct from the user buffer */ 1619 for (i = 0; i < req->iovcnt; i++) { 1620 req->decomp_iov[i + req->decomp_iovcnt].iov_base = req->iov[i].iov_base; 1621 req->decomp_iov[i + req->decomp_iovcnt].iov_len = req->iov[i].iov_len; 1622 ttl_len += req->iov[i].iov_len; 1623 } 1624 req->decomp_iovcnt += req->iovcnt; 1625 1626 remainder = vol->params.chunk_size - ttl_len; 1627 if (remainder) { 1628 req->decomp_iov[req->decomp_iovcnt].iov_base = padding_buffer + ttl_len; 1629 req->decomp_iov[req->decomp_iovcnt].iov_len = remainder; 1630 req->decomp_iovcnt++; 1631 ttl_len += remainder; 1632 } 1633 assert(ttl_len == req->vol->params.chunk_size); 1634 } 1635 1636 static void 1637 _write_decompress_done(void *_req, int reduce_errno) 1638 { 1639 struct spdk_reduce_vol_request *req = _req; 1640 1641 /* Negative reduce_errno indicates failure for compression operations. */ 1642 if (reduce_errno < 0) { 1643 _reduce_vol_complete_req(req, reduce_errno); 1644 return; 1645 } 1646 1647 /* Positive reduce_errno indicates that the output size field in the backing_cb_args 1648 * represents the output_size. 1649 */ 1650 if (req->backing_cb_args.output_size != req->vol->params.chunk_size) { 1651 _reduce_vol_complete_req(req, -EIO); 1652 return; 1653 } 1654 1655 _prepare_compress_chunk(req, false); 1656 _reduce_vol_compress_chunk(req, _write_compress_done); 1657 } 1658 1659 static void 1660 _write_read_done(void *_req, int reduce_errno) 1661 { 1662 struct spdk_reduce_vol_request *req = _req; 1663 1664 if (reduce_errno != 0) { 1665 req->reduce_errno = reduce_errno; 1666 } 1667 1668 assert(req->num_backing_ops > 0); 1669 if (--req->num_backing_ops > 0) { 1670 return; 1671 } 1672 1673 if (req->reduce_errno != 0) { 1674 _reduce_vol_complete_req(req, req->reduce_errno); 1675 return; 1676 } 1677 1678 if (req->chunk_is_compressed) { 1679 _reduce_vol_decompress_chunk_scratch(req, _write_decompress_done); 1680 } else { 1681 req->backing_cb_args.output_size = req->chunk->compressed_size; 1682 1683 _write_decompress_done(req, 0); 1684 } 1685 } 1686 1687 static void 1688 _read_decompress_done(void *_req, int reduce_errno) 1689 { 1690 struct spdk_reduce_vol_request *req = _req; 1691 struct spdk_reduce_vol *vol = req->vol; 1692 1693 /* Negative reduce_errno indicates failure for compression operations. */ 1694 if (reduce_errno < 0) { 1695 _reduce_vol_complete_req(req, reduce_errno); 1696 return; 1697 } 1698 1699 /* Positive reduce_errno indicates that the output size field in the backing_cb_args 1700 * represents the output_size. 1701 */ 1702 if (req->backing_cb_args.output_size != vol->params.chunk_size) { 1703 _reduce_vol_complete_req(req, -EIO); 1704 return; 1705 } 1706 1707 if (req->copy_after_decompress) { 1708 uint64_t chunk_offset = req->offset % vol->logical_blocks_per_chunk; 1709 char *decomp_buffer = (char *)req->decomp_buf + chunk_offset * vol->params.logical_block_size; 1710 int i; 1711 1712 for (i = 0; i < req->iovcnt; i++) { 1713 memcpy(req->iov[i].iov_base, decomp_buffer, req->iov[i].iov_len); 1714 decomp_buffer += req->iov[i].iov_len; 1715 assert(decomp_buffer <= (char *)req->decomp_buf + vol->params.chunk_size); 1716 } 1717 } 1718 1719 _reduce_vol_complete_req(req, 0); 1720 } 1721 1722 static void 1723 _read_read_done(void *_req, int reduce_errno) 1724 { 1725 struct spdk_reduce_vol_request *req = _req; 1726 uint64_t chunk_offset; 1727 uint8_t *buf; 1728 int i; 1729 1730 if (reduce_errno != 0) { 1731 req->reduce_errno = reduce_errno; 1732 } 1733 1734 assert(req->num_backing_ops > 0); 1735 if (--req->num_backing_ops > 0) { 1736 return; 1737 } 1738 1739 if (req->reduce_errno != 0) { 1740 _reduce_vol_complete_req(req, req->reduce_errno); 1741 return; 1742 } 1743 1744 if (req->chunk_is_compressed) { 1745 _reduce_vol_decompress_chunk(req, _read_decompress_done); 1746 } else { 1747 1748 /* If the chunk was compressed, the data would have been sent to the 1749 * host buffers by the decompression operation, if not we need to memcpy here. 1750 */ 1751 chunk_offset = req->offset % req->vol->logical_blocks_per_chunk; 1752 buf = req->decomp_buf + chunk_offset * req->vol->params.logical_block_size; 1753 for (i = 0; i < req->iovcnt; i++) { 1754 memcpy(req->iov[i].iov_base, buf, req->iov[i].iov_len); 1755 buf += req->iov[i].iov_len; 1756 } 1757 1758 req->backing_cb_args.output_size = req->chunk->compressed_size; 1759 1760 _read_decompress_done(req, 0); 1761 } 1762 } 1763 1764 static void 1765 _reduce_vol_read_chunk(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn) 1766 { 1767 struct spdk_reduce_vol *vol = req->vol; 1768 1769 req->chunk_map_index = vol->pm_logical_map[req->logical_map_index]; 1770 assert(req->chunk_map_index != UINT32_MAX); 1771 1772 req->chunk = _reduce_vol_get_chunk_map(vol, req->chunk_map_index); 1773 req->num_io_units = spdk_divide_round_up(req->chunk->compressed_size, 1774 vol->params.backing_io_unit_size); 1775 req->chunk_is_compressed = (req->num_io_units != vol->backing_io_units_per_chunk); 1776 1777 _issue_backing_ops(req, vol, next_fn, false /* read */); 1778 } 1779 1780 static bool 1781 _iov_array_is_valid(struct spdk_reduce_vol *vol, struct iovec *iov, int iovcnt, 1782 uint64_t length) 1783 { 1784 uint64_t size = 0; 1785 int i; 1786 1787 if (iovcnt > REDUCE_MAX_IOVECS) { 1788 return false; 1789 } 1790 1791 for (i = 0; i < iovcnt; i++) { 1792 size += iov[i].iov_len; 1793 } 1794 1795 return size == (length * vol->params.logical_block_size); 1796 } 1797 1798 static bool 1799 _check_overlap(struct spdk_reduce_vol *vol, uint64_t logical_map_index) 1800 { 1801 struct spdk_reduce_vol_request req; 1802 1803 req.logical_map_index = logical_map_index; 1804 1805 return (NULL != RB_FIND(executing_req_tree, &vol->executing_requests, &req)); 1806 } 1807 1808 static void 1809 _start_readv_request(struct spdk_reduce_vol_request *req) 1810 { 1811 RB_INSERT(executing_req_tree, &req->vol->executing_requests, req); 1812 _reduce_vol_read_chunk(req, _read_read_done); 1813 } 1814 1815 void 1816 spdk_reduce_vol_readv(struct spdk_reduce_vol *vol, 1817 struct iovec *iov, int iovcnt, uint64_t offset, uint64_t length, 1818 spdk_reduce_vol_op_complete cb_fn, void *cb_arg) 1819 { 1820 struct spdk_reduce_vol_request *req; 1821 uint64_t logical_map_index; 1822 bool overlapped; 1823 int i; 1824 1825 if (length == 0) { 1826 cb_fn(cb_arg, 0); 1827 return; 1828 } 1829 1830 if (_request_spans_chunk_boundary(vol, offset, length)) { 1831 cb_fn(cb_arg, -EINVAL); 1832 return; 1833 } 1834 1835 if (!_iov_array_is_valid(vol, iov, iovcnt, length)) { 1836 cb_fn(cb_arg, -EINVAL); 1837 return; 1838 } 1839 1840 logical_map_index = offset / vol->logical_blocks_per_chunk; 1841 overlapped = _check_overlap(vol, logical_map_index); 1842 1843 if (!overlapped && vol->pm_logical_map[logical_map_index] == REDUCE_EMPTY_MAP_ENTRY) { 1844 /* 1845 * This chunk hasn't been allocated. So treat the data as all 1846 * zeroes for this chunk - do the memset and immediately complete 1847 * the operation. 1848 */ 1849 for (i = 0; i < iovcnt; i++) { 1850 memset(iov[i].iov_base, 0, iov[i].iov_len); 1851 } 1852 cb_fn(cb_arg, 0); 1853 return; 1854 } 1855 1856 req = TAILQ_FIRST(&vol->free_requests); 1857 if (req == NULL) { 1858 cb_fn(cb_arg, -ENOMEM); 1859 return; 1860 } 1861 1862 TAILQ_REMOVE(&vol->free_requests, req, tailq); 1863 req->type = REDUCE_IO_READV; 1864 req->vol = vol; 1865 req->iov = iov; 1866 req->iovcnt = iovcnt; 1867 req->offset = offset; 1868 req->logical_map_index = logical_map_index; 1869 req->length = length; 1870 req->copy_after_decompress = false; 1871 req->cb_fn = cb_fn; 1872 req->cb_arg = cb_arg; 1873 1874 if (!overlapped) { 1875 _start_readv_request(req); 1876 } else { 1877 TAILQ_INSERT_TAIL(&vol->queued_requests, req, tailq); 1878 } 1879 } 1880 1881 static void 1882 _start_writev_request(struct spdk_reduce_vol_request *req) 1883 { 1884 struct spdk_reduce_vol *vol = req->vol; 1885 1886 RB_INSERT(executing_req_tree, &req->vol->executing_requests, req); 1887 if (vol->pm_logical_map[req->logical_map_index] != REDUCE_EMPTY_MAP_ENTRY) { 1888 if ((req->length * vol->params.logical_block_size) < vol->params.chunk_size) { 1889 /* Read old chunk, then overwrite with data from this write 1890 * operation. 1891 */ 1892 req->rmw = true; 1893 _reduce_vol_read_chunk(req, _write_read_done); 1894 return; 1895 } 1896 } 1897 1898 req->rmw = false; 1899 1900 _prepare_compress_chunk(req, true); 1901 _reduce_vol_compress_chunk(req, _write_compress_done); 1902 } 1903 1904 void 1905 spdk_reduce_vol_writev(struct spdk_reduce_vol *vol, 1906 struct iovec *iov, int iovcnt, uint64_t offset, uint64_t length, 1907 spdk_reduce_vol_op_complete cb_fn, void *cb_arg) 1908 { 1909 struct spdk_reduce_vol_request *req; 1910 uint64_t logical_map_index; 1911 bool overlapped; 1912 1913 if (length == 0) { 1914 cb_fn(cb_arg, 0); 1915 return; 1916 } 1917 1918 if (_request_spans_chunk_boundary(vol, offset, length)) { 1919 cb_fn(cb_arg, -EINVAL); 1920 return; 1921 } 1922 1923 if (!_iov_array_is_valid(vol, iov, iovcnt, length)) { 1924 cb_fn(cb_arg, -EINVAL); 1925 return; 1926 } 1927 1928 logical_map_index = offset / vol->logical_blocks_per_chunk; 1929 overlapped = _check_overlap(vol, logical_map_index); 1930 1931 req = TAILQ_FIRST(&vol->free_requests); 1932 if (req == NULL) { 1933 cb_fn(cb_arg, -ENOMEM); 1934 return; 1935 } 1936 1937 TAILQ_REMOVE(&vol->free_requests, req, tailq); 1938 req->type = REDUCE_IO_WRITEV; 1939 req->vol = vol; 1940 req->iov = iov; 1941 req->iovcnt = iovcnt; 1942 req->offset = offset; 1943 req->logical_map_index = logical_map_index; 1944 req->length = length; 1945 req->copy_after_decompress = false; 1946 req->cb_fn = cb_fn; 1947 req->cb_arg = cb_arg; 1948 1949 if (!overlapped) { 1950 _start_writev_request(req); 1951 } else { 1952 TAILQ_INSERT_TAIL(&vol->queued_requests, req, tailq); 1953 } 1954 } 1955 1956 static void 1957 _start_unmap_request_full_chunk(void *ctx) 1958 { 1959 struct spdk_reduce_vol_request *req = ctx; 1960 struct spdk_reduce_vol *vol = req->vol; 1961 uint64_t chunk_map_index; 1962 1963 RB_INSERT(executing_req_tree, &req->vol->executing_requests, req); 1964 1965 chunk_map_index = vol->pm_logical_map[req->logical_map_index]; 1966 if (chunk_map_index != REDUCE_EMPTY_MAP_ENTRY) { 1967 _reduce_vol_reset_chunk(vol, chunk_map_index); 1968 req->chunk = _reduce_vol_get_chunk_map(vol, req->chunk_map_index); 1969 _reduce_persist(vol, req->chunk, 1970 _reduce_vol_get_chunk_struct_size(vol->backing_io_units_per_chunk)); 1971 vol->pm_logical_map[req->logical_map_index] = REDUCE_EMPTY_MAP_ENTRY; 1972 _reduce_persist(vol, &vol->pm_logical_map[req->logical_map_index], sizeof(uint64_t)); 1973 } 1974 _reduce_vol_complete_req(req, 0); 1975 } 1976 1977 static void 1978 _reduce_vol_unmap_full_chunk(struct spdk_reduce_vol *vol, 1979 uint64_t offset, uint64_t length, 1980 spdk_reduce_vol_op_complete cb_fn, void *cb_arg) 1981 { 1982 struct spdk_reduce_vol_request *req; 1983 uint64_t logical_map_index; 1984 bool overlapped; 1985 1986 if (_request_spans_chunk_boundary(vol, offset, length)) { 1987 cb_fn(cb_arg, -EINVAL); 1988 return; 1989 } 1990 1991 logical_map_index = offset / vol->logical_blocks_per_chunk; 1992 overlapped = _check_overlap(vol, logical_map_index); 1993 1994 req = TAILQ_FIRST(&vol->free_requests); 1995 if (req == NULL) { 1996 cb_fn(cb_arg, -ENOMEM); 1997 return; 1998 } 1999 2000 TAILQ_REMOVE(&vol->free_requests, req, tailq); 2001 req->type = REDUCE_IO_UNMAP; 2002 req->vol = vol; 2003 req->iov = NULL; 2004 req->iovcnt = 0; 2005 req->offset = offset; 2006 req->logical_map_index = logical_map_index; 2007 req->length = length; 2008 req->copy_after_decompress = false; 2009 req->cb_fn = cb_fn; 2010 req->cb_arg = cb_arg; 2011 2012 if (!overlapped) { 2013 _start_unmap_request_full_chunk(req); 2014 } else { 2015 TAILQ_INSERT_TAIL(&vol->queued_requests, req, tailq); 2016 } 2017 } 2018 2019 struct unmap_partial_chunk_ctx { 2020 struct spdk_reduce_vol *vol; 2021 struct iovec iov; 2022 spdk_reduce_vol_op_complete cb_fn; 2023 void *cb_arg; 2024 }; 2025 2026 static void 2027 _reduce_unmap_partial_chunk_complete(void *_ctx, int reduce_errno) 2028 { 2029 struct unmap_partial_chunk_ctx *ctx = _ctx; 2030 2031 ctx->cb_fn(ctx->cb_arg, reduce_errno); 2032 free(ctx); 2033 } 2034 2035 static void 2036 _reduce_vol_unmap_partial_chunk(struct spdk_reduce_vol *vol, uint64_t offset, uint64_t length, 2037 spdk_reduce_vol_op_complete cb_fn, void *cb_arg) 2038 { 2039 struct unmap_partial_chunk_ctx *ctx; 2040 2041 ctx = calloc(1, sizeof(struct unmap_partial_chunk_ctx)); 2042 if (ctx == NULL) { 2043 cb_fn(cb_arg, -ENOMEM); 2044 return; 2045 } 2046 2047 ctx->vol = vol; 2048 ctx->iov.iov_base = g_zero_buf; 2049 ctx->iov.iov_len = length * vol->params.logical_block_size; 2050 ctx->cb_fn = cb_fn; 2051 ctx->cb_arg = cb_arg; 2052 2053 spdk_reduce_vol_writev(vol, &ctx->iov, 1, offset, length, _reduce_unmap_partial_chunk_complete, 2054 ctx); 2055 } 2056 2057 void 2058 spdk_reduce_vol_unmap(struct spdk_reduce_vol *vol, 2059 uint64_t offset, uint64_t length, 2060 spdk_reduce_vol_op_complete cb_fn, void *cb_arg) 2061 { 2062 if (length < vol->logical_blocks_per_chunk) { 2063 _reduce_vol_unmap_partial_chunk(vol, offset, length, cb_fn, cb_arg); 2064 } else if (length == vol->logical_blocks_per_chunk) { 2065 _reduce_vol_unmap_full_chunk(vol, offset, length, cb_fn, cb_arg); 2066 } else { 2067 cb_fn(cb_arg, -EINVAL); 2068 } 2069 } 2070 2071 const struct spdk_reduce_vol_params * 2072 spdk_reduce_vol_get_params(struct spdk_reduce_vol *vol) 2073 { 2074 return &vol->params; 2075 } 2076 2077 const char * 2078 spdk_reduce_vol_get_pm_path(const struct spdk_reduce_vol *vol) 2079 { 2080 return vol->pm_file.path; 2081 } 2082 2083 void 2084 spdk_reduce_vol_print_info(struct spdk_reduce_vol *vol) 2085 { 2086 uint64_t logical_map_size, num_chunks, ttl_chunk_sz; 2087 uint32_t struct_size; 2088 uint64_t chunk_map_size; 2089 2090 SPDK_NOTICELOG("vol info:\n"); 2091 SPDK_NOTICELOG("\tvol->params.backing_io_unit_size = 0x%x\n", vol->params.backing_io_unit_size); 2092 SPDK_NOTICELOG("\tvol->params.logical_block_size = 0x%x\n", vol->params.logical_block_size); 2093 SPDK_NOTICELOG("\tvol->params.chunk_size = 0x%x\n", vol->params.chunk_size); 2094 SPDK_NOTICELOG("\tvol->params.vol_size = 0x%" PRIx64 "\n", vol->params.vol_size); 2095 num_chunks = _get_total_chunks(vol->params.vol_size, vol->params.chunk_size); 2096 SPDK_NOTICELOG("\ttotal chunks (including extra) = 0x%" PRIx64 "\n", num_chunks); 2097 SPDK_NOTICELOG("\ttotal chunks (excluding extra) = 0x%" PRIx64 "\n", 2098 vol->params.vol_size / vol->params.chunk_size); 2099 ttl_chunk_sz = _get_pm_total_chunks_size(vol->params.vol_size, vol->params.chunk_size, 2100 vol->params.backing_io_unit_size); 2101 SPDK_NOTICELOG("\ttotal_chunks_size = 0x%" PRIx64 "\n", ttl_chunk_sz); 2102 struct_size = _reduce_vol_get_chunk_struct_size(vol->backing_io_units_per_chunk); 2103 SPDK_NOTICELOG("\tchunk_struct_size = 0x%x\n", struct_size); 2104 2105 SPDK_NOTICELOG("pmem info:\n"); 2106 SPDK_NOTICELOG("\tvol->pm_file.size = 0x%" PRIx64 "\n", vol->pm_file.size); 2107 SPDK_NOTICELOG("\tvol->pm_file.pm_buf = %p\n", (void *)vol->pm_file.pm_buf); 2108 SPDK_NOTICELOG("\tvol->pm_super = %p\n", (void *)vol->pm_super); 2109 SPDK_NOTICELOG("\tvol->pm_logical_map = %p\n", (void *)vol->pm_logical_map); 2110 logical_map_size = _get_pm_logical_map_size(vol->params.vol_size, 2111 vol->params.chunk_size); 2112 SPDK_NOTICELOG("\tlogical_map_size = 0x%" PRIx64 "\n", logical_map_size); 2113 SPDK_NOTICELOG("\tvol->pm_chunk_maps = %p\n", (void *)vol->pm_chunk_maps); 2114 chunk_map_size = _get_pm_total_chunks_size(vol->params.vol_size, vol->params.chunk_size, 2115 vol->params.backing_io_unit_size); 2116 SPDK_NOTICELOG("\tchunk_map_size = 0x%" PRIx64 "\n", chunk_map_size); 2117 } 2118 2119 SPDK_LOG_REGISTER_COMPONENT(reduce) 2120