1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright (C) 2018 Intel Corporation. 3 * All rights reserved. 4 * Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 5 */ 6 7 #include "spdk/stdinc.h" 8 9 #include "spdk/reduce.h" 10 #include "spdk/env.h" 11 #include "spdk/string.h" 12 #include "spdk/bit_array.h" 13 #include "spdk/util.h" 14 #include "spdk/log.h" 15 #include "spdk/memory.h" 16 17 #include "libpmem.h" 18 19 /* Always round up the size of the PM region to the nearest cacheline. */ 20 #define REDUCE_PM_SIZE_ALIGNMENT 64 21 22 /* Offset into the backing device where the persistent memory file's path is stored. */ 23 #define REDUCE_BACKING_DEV_PATH_OFFSET 4096 24 25 #define REDUCE_EMPTY_MAP_ENTRY -1ULL 26 27 #define REDUCE_NUM_VOL_REQUESTS 256 28 29 /* Structure written to offset 0 of both the pm file and the backing device. */ 30 struct spdk_reduce_vol_superblock { 31 uint8_t signature[8]; 32 struct spdk_reduce_vol_params params; 33 uint8_t reserved[4048]; 34 }; 35 SPDK_STATIC_ASSERT(sizeof(struct spdk_reduce_vol_superblock) == 4096, "size incorrect"); 36 37 #define SPDK_REDUCE_SIGNATURE "SPDKREDU" 38 /* null terminator counts one */ 39 SPDK_STATIC_ASSERT(sizeof(SPDK_REDUCE_SIGNATURE) - 1 == 40 SPDK_SIZEOF_MEMBER(struct spdk_reduce_vol_superblock, signature), "size incorrect"); 41 42 #define REDUCE_PATH_MAX 4096 43 44 #define REDUCE_ZERO_BUF_SIZE 0x100000 45 46 /** 47 * Describes a persistent memory file used to hold metadata associated with a 48 * compressed volume. 49 */ 50 struct spdk_reduce_pm_file { 51 char path[REDUCE_PATH_MAX]; 52 void *pm_buf; 53 int pm_is_pmem; 54 uint64_t size; 55 }; 56 57 #define REDUCE_IO_READV 1 58 #define REDUCE_IO_WRITEV 2 59 60 struct spdk_reduce_chunk_map { 61 uint32_t compressed_size; 62 uint32_t reserved; 63 uint64_t io_unit_index[0]; 64 }; 65 66 struct spdk_reduce_vol_request { 67 /** 68 * Scratch buffer used for uncompressed chunk. This is used for: 69 * 1) source buffer for compression operations 70 * 2) destination buffer for decompression operations 71 * 3) data buffer when writing uncompressed chunk to disk 72 * 4) data buffer when reading uncompressed chunk from disk 73 */ 74 uint8_t *decomp_buf; 75 struct iovec *decomp_buf_iov; 76 77 /** 78 * These are used to construct the iovecs that are sent to 79 * the decomp engine, they point to a mix of the scratch buffer 80 * and user buffer 81 */ 82 struct iovec decomp_iov[REDUCE_MAX_IOVECS + 2]; 83 int decomp_iovcnt; 84 85 /** 86 * Scratch buffer used for compressed chunk. This is used for: 87 * 1) destination buffer for compression operations 88 * 2) source buffer for decompression operations 89 * 3) data buffer when writing compressed chunk to disk 90 * 4) data buffer when reading compressed chunk from disk 91 */ 92 uint8_t *comp_buf; 93 struct iovec *comp_buf_iov; 94 struct iovec *iov; 95 bool rmw; 96 struct spdk_reduce_vol *vol; 97 int type; 98 int reduce_errno; 99 int iovcnt; 100 int num_backing_ops; 101 uint32_t num_io_units; 102 bool chunk_is_compressed; 103 bool copy_after_decompress; 104 uint64_t offset; 105 uint64_t logical_map_index; 106 uint64_t length; 107 uint64_t chunk_map_index; 108 struct spdk_reduce_chunk_map *chunk; 109 spdk_reduce_vol_op_complete cb_fn; 110 void *cb_arg; 111 TAILQ_ENTRY(spdk_reduce_vol_request) tailq; 112 struct spdk_reduce_vol_cb_args backing_cb_args; 113 }; 114 115 struct spdk_reduce_vol { 116 struct spdk_reduce_vol_params params; 117 uint32_t backing_io_units_per_chunk; 118 uint32_t backing_lba_per_io_unit; 119 uint32_t logical_blocks_per_chunk; 120 struct spdk_reduce_pm_file pm_file; 121 struct spdk_reduce_backing_dev *backing_dev; 122 struct spdk_reduce_vol_superblock *backing_super; 123 struct spdk_reduce_vol_superblock *pm_super; 124 uint64_t *pm_logical_map; 125 uint64_t *pm_chunk_maps; 126 127 struct spdk_bit_array *allocated_chunk_maps; 128 struct spdk_bit_array *allocated_backing_io_units; 129 130 struct spdk_reduce_vol_request *request_mem; 131 TAILQ_HEAD(, spdk_reduce_vol_request) free_requests; 132 TAILQ_HEAD(, spdk_reduce_vol_request) executing_requests; 133 TAILQ_HEAD(, spdk_reduce_vol_request) queued_requests; 134 135 /* Single contiguous buffer used for all request buffers for this volume. */ 136 uint8_t *buf_mem; 137 struct iovec *buf_iov_mem; 138 }; 139 140 static void _start_readv_request(struct spdk_reduce_vol_request *req); 141 static void _start_writev_request(struct spdk_reduce_vol_request *req); 142 static uint8_t *g_zero_buf; 143 static int g_vol_count = 0; 144 145 /* 146 * Allocate extra metadata chunks and corresponding backing io units to account for 147 * outstanding IO in worst case scenario where logical map is completely allocated 148 * and no data can be compressed. We need extra chunks in this case to handle 149 * in-flight writes since reduce never writes data in place. 150 */ 151 #define REDUCE_NUM_EXTRA_CHUNKS 128 152 153 static void 154 _reduce_persist(struct spdk_reduce_vol *vol, const void *addr, size_t len) 155 { 156 if (vol->pm_file.pm_is_pmem) { 157 pmem_persist(addr, len); 158 } else { 159 pmem_msync(addr, len); 160 } 161 } 162 163 static uint64_t 164 _get_pm_logical_map_size(uint64_t vol_size, uint64_t chunk_size) 165 { 166 uint64_t chunks_in_logical_map, logical_map_size; 167 168 chunks_in_logical_map = vol_size / chunk_size; 169 logical_map_size = chunks_in_logical_map * sizeof(uint64_t); 170 171 /* Round up to next cacheline. */ 172 return spdk_divide_round_up(logical_map_size, REDUCE_PM_SIZE_ALIGNMENT) * 173 REDUCE_PM_SIZE_ALIGNMENT; 174 } 175 176 static uint64_t 177 _get_total_chunks(uint64_t vol_size, uint64_t chunk_size) 178 { 179 uint64_t num_chunks; 180 181 num_chunks = vol_size / chunk_size; 182 num_chunks += REDUCE_NUM_EXTRA_CHUNKS; 183 184 return num_chunks; 185 } 186 187 static inline uint32_t 188 _reduce_vol_get_chunk_struct_size(uint64_t backing_io_units_per_chunk) 189 { 190 return sizeof(struct spdk_reduce_chunk_map) + sizeof(uint64_t) * backing_io_units_per_chunk; 191 } 192 193 static uint64_t 194 _get_pm_total_chunks_size(uint64_t vol_size, uint64_t chunk_size, uint64_t backing_io_unit_size) 195 { 196 uint64_t io_units_per_chunk, num_chunks, total_chunks_size; 197 198 num_chunks = _get_total_chunks(vol_size, chunk_size); 199 io_units_per_chunk = chunk_size / backing_io_unit_size; 200 201 total_chunks_size = num_chunks * _reduce_vol_get_chunk_struct_size(io_units_per_chunk); 202 203 return spdk_divide_round_up(total_chunks_size, REDUCE_PM_SIZE_ALIGNMENT) * 204 REDUCE_PM_SIZE_ALIGNMENT; 205 } 206 207 static struct spdk_reduce_chunk_map * 208 _reduce_vol_get_chunk_map(struct spdk_reduce_vol *vol, uint64_t chunk_map_index) 209 { 210 uintptr_t chunk_map_addr; 211 212 assert(chunk_map_index < _get_total_chunks(vol->params.vol_size, vol->params.chunk_size)); 213 214 chunk_map_addr = (uintptr_t)vol->pm_chunk_maps; 215 chunk_map_addr += chunk_map_index * 216 _reduce_vol_get_chunk_struct_size(vol->backing_io_units_per_chunk); 217 218 return (struct spdk_reduce_chunk_map *)chunk_map_addr; 219 } 220 221 static int 222 _validate_vol_params(struct spdk_reduce_vol_params *params) 223 { 224 if (params->vol_size > 0) { 225 /** 226 * User does not pass in the vol size - it gets calculated by libreduce from 227 * values in this structure plus the size of the backing device. 228 */ 229 return -EINVAL; 230 } 231 232 if (params->chunk_size == 0 || params->backing_io_unit_size == 0 || 233 params->logical_block_size == 0) { 234 return -EINVAL; 235 } 236 237 /* Chunk size must be an even multiple of the backing io unit size. */ 238 if ((params->chunk_size % params->backing_io_unit_size) != 0) { 239 return -EINVAL; 240 } 241 242 /* Chunk size must be an even multiple of the logical block size. */ 243 if ((params->chunk_size % params->logical_block_size) != 0) { 244 return -1; 245 } 246 247 return 0; 248 } 249 250 static uint64_t 251 _get_vol_size(uint64_t chunk_size, uint64_t backing_dev_size) 252 { 253 uint64_t num_chunks; 254 255 num_chunks = backing_dev_size / chunk_size; 256 if (num_chunks <= REDUCE_NUM_EXTRA_CHUNKS) { 257 return 0; 258 } 259 260 num_chunks -= REDUCE_NUM_EXTRA_CHUNKS; 261 return num_chunks * chunk_size; 262 } 263 264 static uint64_t 265 _get_pm_file_size(struct spdk_reduce_vol_params *params) 266 { 267 uint64_t total_pm_size; 268 269 total_pm_size = sizeof(struct spdk_reduce_vol_superblock); 270 total_pm_size += _get_pm_logical_map_size(params->vol_size, params->chunk_size); 271 total_pm_size += _get_pm_total_chunks_size(params->vol_size, params->chunk_size, 272 params->backing_io_unit_size); 273 return total_pm_size; 274 } 275 276 const struct spdk_uuid * 277 spdk_reduce_vol_get_uuid(struct spdk_reduce_vol *vol) 278 { 279 return &vol->params.uuid; 280 } 281 282 static void 283 _initialize_vol_pm_pointers(struct spdk_reduce_vol *vol) 284 { 285 uint64_t logical_map_size; 286 287 /* Superblock is at the beginning of the pm file. */ 288 vol->pm_super = (struct spdk_reduce_vol_superblock *)vol->pm_file.pm_buf; 289 290 /* Logical map immediately follows the super block. */ 291 vol->pm_logical_map = (uint64_t *)(vol->pm_super + 1); 292 293 /* Chunks maps follow the logical map. */ 294 logical_map_size = _get_pm_logical_map_size(vol->params.vol_size, vol->params.chunk_size); 295 vol->pm_chunk_maps = (uint64_t *)((uint8_t *)vol->pm_logical_map + logical_map_size); 296 } 297 298 /* We need 2 iovs during load - one for the superblock, another for the path */ 299 #define LOAD_IOV_COUNT 2 300 301 struct reduce_init_load_ctx { 302 struct spdk_reduce_vol *vol; 303 struct spdk_reduce_vol_cb_args backing_cb_args; 304 spdk_reduce_vol_op_with_handle_complete cb_fn; 305 void *cb_arg; 306 struct iovec iov[LOAD_IOV_COUNT]; 307 void *path; 308 }; 309 310 static inline bool 311 _addr_crosses_huge_page(const void *addr, size_t *size) 312 { 313 size_t _size; 314 uint64_t rc; 315 316 assert(size); 317 318 _size = *size; 319 rc = spdk_vtophys(addr, size); 320 321 return rc == SPDK_VTOPHYS_ERROR || _size != *size; 322 } 323 324 static inline int 325 _set_buffer(uint8_t **vol_buffer, uint8_t **_addr, uint8_t *addr_range, size_t buffer_size) 326 { 327 uint8_t *addr; 328 size_t size_tmp = buffer_size; 329 330 addr = *_addr; 331 332 /* Verify that addr + buffer_size doesn't cross huge page boundary */ 333 if (_addr_crosses_huge_page(addr, &size_tmp)) { 334 /* Memory start is aligned on 2MiB, so buffer should be located at the end of the page. 335 * Skip remaining bytes and continue from the beginning of the next page */ 336 addr += size_tmp; 337 } 338 339 if (addr + buffer_size > addr_range) { 340 SPDK_ERRLOG("Vol buffer %p out of range %p\n", addr, addr_range); 341 return -ERANGE; 342 } 343 344 *vol_buffer = addr; 345 *_addr = addr + buffer_size; 346 347 return 0; 348 } 349 350 static int 351 _allocate_vol_requests(struct spdk_reduce_vol *vol) 352 { 353 struct spdk_reduce_vol_request *req; 354 uint32_t reqs_in_2mb_page, huge_pages_needed; 355 uint8_t *buffer, *buffer_end; 356 int i = 0; 357 int rc = 0; 358 359 /* It is needed to allocate comp and decomp buffers so that they do not cross physical 360 * page boundaries. Assume that the system uses default 2MiB pages and chunk_size is not 361 * necessarily power of 2 362 * Allocate 2x since we need buffers for both read/write and compress/decompress 363 * intermediate buffers. */ 364 reqs_in_2mb_page = VALUE_2MB / (vol->params.chunk_size * 2); 365 if (!reqs_in_2mb_page) { 366 return -EINVAL; 367 } 368 huge_pages_needed = SPDK_CEIL_DIV(REDUCE_NUM_VOL_REQUESTS, reqs_in_2mb_page); 369 370 vol->buf_mem = spdk_dma_malloc(VALUE_2MB * huge_pages_needed, VALUE_2MB, NULL); 371 if (vol->buf_mem == NULL) { 372 return -ENOMEM; 373 } 374 375 vol->request_mem = calloc(REDUCE_NUM_VOL_REQUESTS, sizeof(*req)); 376 if (vol->request_mem == NULL) { 377 spdk_free(vol->buf_mem); 378 vol->buf_mem = NULL; 379 return -ENOMEM; 380 } 381 382 /* Allocate 2x since we need iovs for both read/write and compress/decompress intermediate 383 * buffers. 384 */ 385 vol->buf_iov_mem = calloc(REDUCE_NUM_VOL_REQUESTS, 386 2 * sizeof(struct iovec) * vol->backing_io_units_per_chunk); 387 if (vol->buf_iov_mem == NULL) { 388 free(vol->request_mem); 389 spdk_free(vol->buf_mem); 390 vol->request_mem = NULL; 391 vol->buf_mem = NULL; 392 return -ENOMEM; 393 } 394 395 buffer = vol->buf_mem; 396 buffer_end = buffer + VALUE_2MB * huge_pages_needed; 397 398 for (i = 0; i < REDUCE_NUM_VOL_REQUESTS; i++) { 399 req = &vol->request_mem[i]; 400 TAILQ_INSERT_HEAD(&vol->free_requests, req, tailq); 401 req->decomp_buf_iov = &vol->buf_iov_mem[(2 * i) * vol->backing_io_units_per_chunk]; 402 req->comp_buf_iov = &vol->buf_iov_mem[(2 * i + 1) * vol->backing_io_units_per_chunk]; 403 404 rc = _set_buffer(&req->comp_buf, &buffer, buffer_end, vol->params.chunk_size); 405 if (rc) { 406 SPDK_ERRLOG("Failed to set comp buffer for req idx %u, addr %p, start %p, end %p\n", i, buffer, 407 vol->buf_mem, buffer_end); 408 break; 409 } 410 rc = _set_buffer(&req->decomp_buf, &buffer, buffer_end, vol->params.chunk_size); 411 if (rc) { 412 SPDK_ERRLOG("Failed to set decomp buffer for req idx %u, addr %p, start %p, end %p\n", i, buffer, 413 vol->buf_mem, buffer_end); 414 break; 415 } 416 } 417 418 if (rc) { 419 free(vol->buf_iov_mem); 420 free(vol->request_mem); 421 spdk_free(vol->buf_mem); 422 vol->buf_mem = NULL; 423 vol->buf_iov_mem = NULL; 424 vol->request_mem = NULL; 425 } 426 427 return rc; 428 } 429 430 static void 431 _init_load_cleanup(struct spdk_reduce_vol *vol, struct reduce_init_load_ctx *ctx) 432 { 433 if (ctx != NULL) { 434 spdk_free(ctx->path); 435 free(ctx); 436 } 437 438 if (vol != NULL) { 439 if (vol->pm_file.pm_buf != NULL) { 440 pmem_unmap(vol->pm_file.pm_buf, vol->pm_file.size); 441 } 442 443 spdk_free(vol->backing_super); 444 spdk_bit_array_free(&vol->allocated_chunk_maps); 445 spdk_bit_array_free(&vol->allocated_backing_io_units); 446 free(vol->request_mem); 447 free(vol->buf_iov_mem); 448 spdk_free(vol->buf_mem); 449 free(vol); 450 } 451 } 452 453 static int 454 _alloc_zero_buff(void) 455 { 456 int rc = 0; 457 458 /* The zero buffer is shared between all volumes and just used 459 * for reads so allocate one global instance here if not already 460 * allocated when another vol init'd or loaded. 461 */ 462 if (g_vol_count++ == 0) { 463 g_zero_buf = spdk_zmalloc(REDUCE_ZERO_BUF_SIZE, 464 64, NULL, SPDK_ENV_LCORE_ID_ANY, 465 SPDK_MALLOC_DMA); 466 if (g_zero_buf == NULL) { 467 rc = -ENOMEM; 468 } 469 } 470 return rc; 471 } 472 473 static void 474 _init_write_super_cpl(void *cb_arg, int reduce_errno) 475 { 476 struct reduce_init_load_ctx *init_ctx = cb_arg; 477 int rc; 478 479 rc = _allocate_vol_requests(init_ctx->vol); 480 if (rc != 0) { 481 init_ctx->cb_fn(init_ctx->cb_arg, NULL, rc); 482 _init_load_cleanup(init_ctx->vol, init_ctx); 483 return; 484 } 485 486 rc = _alloc_zero_buff(); 487 if (rc != 0) { 488 init_ctx->cb_fn(init_ctx->cb_arg, NULL, rc); 489 _init_load_cleanup(init_ctx->vol, init_ctx); 490 return; 491 } 492 493 init_ctx->cb_fn(init_ctx->cb_arg, init_ctx->vol, reduce_errno); 494 /* Only clean up the ctx - the vol has been passed to the application 495 * for use now that initialization was successful. 496 */ 497 _init_load_cleanup(NULL, init_ctx); 498 } 499 500 static void 501 _init_write_path_cpl(void *cb_arg, int reduce_errno) 502 { 503 struct reduce_init_load_ctx *init_ctx = cb_arg; 504 struct spdk_reduce_vol *vol = init_ctx->vol; 505 506 init_ctx->iov[0].iov_base = vol->backing_super; 507 init_ctx->iov[0].iov_len = sizeof(*vol->backing_super); 508 init_ctx->backing_cb_args.cb_fn = _init_write_super_cpl; 509 init_ctx->backing_cb_args.cb_arg = init_ctx; 510 vol->backing_dev->writev(vol->backing_dev, init_ctx->iov, 1, 511 0, sizeof(*vol->backing_super) / vol->backing_dev->blocklen, 512 &init_ctx->backing_cb_args); 513 } 514 515 static int 516 _allocate_bit_arrays(struct spdk_reduce_vol *vol) 517 { 518 uint64_t total_chunks, total_backing_io_units; 519 uint32_t i, num_metadata_io_units; 520 521 total_chunks = _get_total_chunks(vol->params.vol_size, vol->params.chunk_size); 522 vol->allocated_chunk_maps = spdk_bit_array_create(total_chunks); 523 total_backing_io_units = total_chunks * (vol->params.chunk_size / vol->params.backing_io_unit_size); 524 vol->allocated_backing_io_units = spdk_bit_array_create(total_backing_io_units); 525 526 if (vol->allocated_chunk_maps == NULL || vol->allocated_backing_io_units == NULL) { 527 return -ENOMEM; 528 } 529 530 /* Set backing io unit bits associated with metadata. */ 531 num_metadata_io_units = (sizeof(*vol->backing_super) + REDUCE_PATH_MAX) / 532 vol->backing_dev->blocklen; 533 for (i = 0; i < num_metadata_io_units; i++) { 534 spdk_bit_array_set(vol->allocated_backing_io_units, i); 535 } 536 537 return 0; 538 } 539 540 void 541 spdk_reduce_vol_init(struct spdk_reduce_vol_params *params, 542 struct spdk_reduce_backing_dev *backing_dev, 543 const char *pm_file_dir, 544 spdk_reduce_vol_op_with_handle_complete cb_fn, void *cb_arg) 545 { 546 struct spdk_reduce_vol *vol; 547 struct reduce_init_load_ctx *init_ctx; 548 uint64_t backing_dev_size; 549 size_t mapped_len; 550 int dir_len, max_dir_len, rc; 551 552 /* We need to append a path separator and the UUID to the supplied 553 * path. 554 */ 555 max_dir_len = REDUCE_PATH_MAX - SPDK_UUID_STRING_LEN - 1; 556 dir_len = strnlen(pm_file_dir, max_dir_len); 557 /* Strip trailing slash if the user provided one - we will add it back 558 * later when appending the filename. 559 */ 560 if (pm_file_dir[dir_len - 1] == '/') { 561 dir_len--; 562 } 563 if (dir_len == max_dir_len) { 564 SPDK_ERRLOG("pm_file_dir (%s) too long\n", pm_file_dir); 565 cb_fn(cb_arg, NULL, -EINVAL); 566 return; 567 } 568 569 rc = _validate_vol_params(params); 570 if (rc != 0) { 571 SPDK_ERRLOG("invalid vol params\n"); 572 cb_fn(cb_arg, NULL, rc); 573 return; 574 } 575 576 backing_dev_size = backing_dev->blockcnt * backing_dev->blocklen; 577 params->vol_size = _get_vol_size(params->chunk_size, backing_dev_size); 578 if (params->vol_size == 0) { 579 SPDK_ERRLOG("backing device is too small\n"); 580 cb_fn(cb_arg, NULL, -EINVAL); 581 return; 582 } 583 584 if (backing_dev->readv == NULL || backing_dev->writev == NULL || 585 backing_dev->unmap == NULL) { 586 SPDK_ERRLOG("backing_dev function pointer not specified\n"); 587 cb_fn(cb_arg, NULL, -EINVAL); 588 return; 589 } 590 591 vol = calloc(1, sizeof(*vol)); 592 if (vol == NULL) { 593 cb_fn(cb_arg, NULL, -ENOMEM); 594 return; 595 } 596 597 TAILQ_INIT(&vol->free_requests); 598 TAILQ_INIT(&vol->executing_requests); 599 TAILQ_INIT(&vol->queued_requests); 600 601 vol->backing_super = spdk_zmalloc(sizeof(*vol->backing_super), 0, NULL, 602 SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 603 if (vol->backing_super == NULL) { 604 cb_fn(cb_arg, NULL, -ENOMEM); 605 _init_load_cleanup(vol, NULL); 606 return; 607 } 608 609 init_ctx = calloc(1, sizeof(*init_ctx)); 610 if (init_ctx == NULL) { 611 cb_fn(cb_arg, NULL, -ENOMEM); 612 _init_load_cleanup(vol, NULL); 613 return; 614 } 615 616 init_ctx->path = spdk_zmalloc(REDUCE_PATH_MAX, 0, NULL, 617 SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 618 if (init_ctx->path == NULL) { 619 cb_fn(cb_arg, NULL, -ENOMEM); 620 _init_load_cleanup(vol, init_ctx); 621 return; 622 } 623 624 if (spdk_uuid_is_null(¶ms->uuid)) { 625 spdk_uuid_generate(¶ms->uuid); 626 } 627 628 memcpy(vol->pm_file.path, pm_file_dir, dir_len); 629 vol->pm_file.path[dir_len] = '/'; 630 spdk_uuid_fmt_lower(&vol->pm_file.path[dir_len + 1], SPDK_UUID_STRING_LEN, 631 ¶ms->uuid); 632 vol->pm_file.size = _get_pm_file_size(params); 633 vol->pm_file.pm_buf = pmem_map_file(vol->pm_file.path, vol->pm_file.size, 634 PMEM_FILE_CREATE | PMEM_FILE_EXCL, 0600, 635 &mapped_len, &vol->pm_file.pm_is_pmem); 636 if (vol->pm_file.pm_buf == NULL) { 637 SPDK_ERRLOG("could not pmem_map_file(%s): %s\n", 638 vol->pm_file.path, strerror(errno)); 639 cb_fn(cb_arg, NULL, -errno); 640 _init_load_cleanup(vol, init_ctx); 641 return; 642 } 643 644 if (vol->pm_file.size != mapped_len) { 645 SPDK_ERRLOG("could not map entire pmem file (size=%" PRIu64 " mapped=%" PRIu64 ")\n", 646 vol->pm_file.size, mapped_len); 647 cb_fn(cb_arg, NULL, -ENOMEM); 648 _init_load_cleanup(vol, init_ctx); 649 return; 650 } 651 652 vol->backing_io_units_per_chunk = params->chunk_size / params->backing_io_unit_size; 653 vol->logical_blocks_per_chunk = params->chunk_size / params->logical_block_size; 654 vol->backing_lba_per_io_unit = params->backing_io_unit_size / backing_dev->blocklen; 655 memcpy(&vol->params, params, sizeof(*params)); 656 657 vol->backing_dev = backing_dev; 658 659 rc = _allocate_bit_arrays(vol); 660 if (rc != 0) { 661 cb_fn(cb_arg, NULL, rc); 662 _init_load_cleanup(vol, init_ctx); 663 return; 664 } 665 666 memcpy(vol->backing_super->signature, SPDK_REDUCE_SIGNATURE, 667 sizeof(vol->backing_super->signature)); 668 memcpy(&vol->backing_super->params, params, sizeof(*params)); 669 670 _initialize_vol_pm_pointers(vol); 671 672 memcpy(vol->pm_super, vol->backing_super, sizeof(*vol->backing_super)); 673 /* Writing 0xFF's is equivalent of filling it all with SPDK_EMPTY_MAP_ENTRY. 674 * Note that this writes 0xFF to not just the logical map but the chunk maps as well. 675 */ 676 memset(vol->pm_logical_map, 0xFF, vol->pm_file.size - sizeof(*vol->backing_super)); 677 _reduce_persist(vol, vol->pm_file.pm_buf, vol->pm_file.size); 678 679 init_ctx->vol = vol; 680 init_ctx->cb_fn = cb_fn; 681 init_ctx->cb_arg = cb_arg; 682 683 memcpy(init_ctx->path, vol->pm_file.path, REDUCE_PATH_MAX); 684 init_ctx->iov[0].iov_base = init_ctx->path; 685 init_ctx->iov[0].iov_len = REDUCE_PATH_MAX; 686 init_ctx->backing_cb_args.cb_fn = _init_write_path_cpl; 687 init_ctx->backing_cb_args.cb_arg = init_ctx; 688 /* Write path to offset 4K on backing device - just after where the super 689 * block will be written. We wait until this is committed before writing the 690 * super block to guarantee we don't get the super block written without the 691 * the path if the system crashed in the middle of a write operation. 692 */ 693 vol->backing_dev->writev(vol->backing_dev, init_ctx->iov, 1, 694 REDUCE_BACKING_DEV_PATH_OFFSET / vol->backing_dev->blocklen, 695 REDUCE_PATH_MAX / vol->backing_dev->blocklen, 696 &init_ctx->backing_cb_args); 697 } 698 699 static void destroy_load_cb(void *cb_arg, struct spdk_reduce_vol *vol, int reduce_errno); 700 701 static void 702 _load_read_super_and_path_cpl(void *cb_arg, int reduce_errno) 703 { 704 struct reduce_init_load_ctx *load_ctx = cb_arg; 705 struct spdk_reduce_vol *vol = load_ctx->vol; 706 uint64_t backing_dev_size; 707 uint64_t i, num_chunks, logical_map_index; 708 struct spdk_reduce_chunk_map *chunk; 709 size_t mapped_len; 710 uint32_t j; 711 int rc; 712 713 rc = _alloc_zero_buff(); 714 if (rc) { 715 goto error; 716 } 717 718 if (memcmp(vol->backing_super->signature, 719 SPDK_REDUCE_SIGNATURE, 720 sizeof(vol->backing_super->signature)) != 0) { 721 /* This backing device isn't a libreduce backing device. */ 722 rc = -EILSEQ; 723 goto error; 724 } 725 726 /* If the cb_fn is destroy_load_cb, it means we are wanting to destroy this compress bdev. 727 * So don't bother getting the volume ready to use - invoke the callback immediately 728 * so destroy_load_cb can delete the metadata off of the block device and delete the 729 * persistent memory file if it exists. 730 */ 731 memcpy(vol->pm_file.path, load_ctx->path, sizeof(vol->pm_file.path)); 732 if (load_ctx->cb_fn == (*destroy_load_cb)) { 733 load_ctx->cb_fn(load_ctx->cb_arg, vol, 0); 734 _init_load_cleanup(NULL, load_ctx); 735 return; 736 } 737 738 memcpy(&vol->params, &vol->backing_super->params, sizeof(vol->params)); 739 vol->backing_io_units_per_chunk = vol->params.chunk_size / vol->params.backing_io_unit_size; 740 vol->logical_blocks_per_chunk = vol->params.chunk_size / vol->params.logical_block_size; 741 vol->backing_lba_per_io_unit = vol->params.backing_io_unit_size / vol->backing_dev->blocklen; 742 743 rc = _allocate_bit_arrays(vol); 744 if (rc != 0) { 745 goto error; 746 } 747 748 backing_dev_size = vol->backing_dev->blockcnt * vol->backing_dev->blocklen; 749 if (_get_vol_size(vol->params.chunk_size, backing_dev_size) < vol->params.vol_size) { 750 SPDK_ERRLOG("backing device size %" PRIi64 " smaller than expected\n", 751 backing_dev_size); 752 rc = -EILSEQ; 753 goto error; 754 } 755 756 vol->pm_file.size = _get_pm_file_size(&vol->params); 757 vol->pm_file.pm_buf = pmem_map_file(vol->pm_file.path, 0, 0, 0, &mapped_len, 758 &vol->pm_file.pm_is_pmem); 759 if (vol->pm_file.pm_buf == NULL) { 760 SPDK_ERRLOG("could not pmem_map_file(%s): %s\n", vol->pm_file.path, strerror(errno)); 761 rc = -errno; 762 goto error; 763 } 764 765 if (vol->pm_file.size != mapped_len) { 766 SPDK_ERRLOG("could not map entire pmem file (size=%" PRIu64 " mapped=%" PRIu64 ")\n", 767 vol->pm_file.size, mapped_len); 768 rc = -ENOMEM; 769 goto error; 770 } 771 772 rc = _allocate_vol_requests(vol); 773 if (rc != 0) { 774 goto error; 775 } 776 777 _initialize_vol_pm_pointers(vol); 778 779 num_chunks = vol->params.vol_size / vol->params.chunk_size; 780 for (i = 0; i < num_chunks; i++) { 781 logical_map_index = vol->pm_logical_map[i]; 782 if (logical_map_index == REDUCE_EMPTY_MAP_ENTRY) { 783 continue; 784 } 785 spdk_bit_array_set(vol->allocated_chunk_maps, logical_map_index); 786 chunk = _reduce_vol_get_chunk_map(vol, logical_map_index); 787 for (j = 0; j < vol->backing_io_units_per_chunk; j++) { 788 if (chunk->io_unit_index[j] != REDUCE_EMPTY_MAP_ENTRY) { 789 spdk_bit_array_set(vol->allocated_backing_io_units, chunk->io_unit_index[j]); 790 } 791 } 792 } 793 794 load_ctx->cb_fn(load_ctx->cb_arg, vol, 0); 795 /* Only clean up the ctx - the vol has been passed to the application 796 * for use now that volume load was successful. 797 */ 798 _init_load_cleanup(NULL, load_ctx); 799 return; 800 801 error: 802 load_ctx->cb_fn(load_ctx->cb_arg, NULL, rc); 803 _init_load_cleanup(vol, load_ctx); 804 } 805 806 void 807 spdk_reduce_vol_load(struct spdk_reduce_backing_dev *backing_dev, 808 spdk_reduce_vol_op_with_handle_complete cb_fn, void *cb_arg) 809 { 810 struct spdk_reduce_vol *vol; 811 struct reduce_init_load_ctx *load_ctx; 812 813 if (backing_dev->readv == NULL || backing_dev->writev == NULL || 814 backing_dev->unmap == NULL) { 815 SPDK_ERRLOG("backing_dev function pointer not specified\n"); 816 cb_fn(cb_arg, NULL, -EINVAL); 817 return; 818 } 819 820 vol = calloc(1, sizeof(*vol)); 821 if (vol == NULL) { 822 cb_fn(cb_arg, NULL, -ENOMEM); 823 return; 824 } 825 826 TAILQ_INIT(&vol->free_requests); 827 TAILQ_INIT(&vol->executing_requests); 828 TAILQ_INIT(&vol->queued_requests); 829 830 vol->backing_super = spdk_zmalloc(sizeof(*vol->backing_super), 64, NULL, 831 SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 832 if (vol->backing_super == NULL) { 833 _init_load_cleanup(vol, NULL); 834 cb_fn(cb_arg, NULL, -ENOMEM); 835 return; 836 } 837 838 vol->backing_dev = backing_dev; 839 840 load_ctx = calloc(1, sizeof(*load_ctx)); 841 if (load_ctx == NULL) { 842 _init_load_cleanup(vol, NULL); 843 cb_fn(cb_arg, NULL, -ENOMEM); 844 return; 845 } 846 847 load_ctx->path = spdk_zmalloc(REDUCE_PATH_MAX, 64, NULL, 848 SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 849 if (load_ctx->path == NULL) { 850 _init_load_cleanup(vol, load_ctx); 851 cb_fn(cb_arg, NULL, -ENOMEM); 852 return; 853 } 854 855 load_ctx->vol = vol; 856 load_ctx->cb_fn = cb_fn; 857 load_ctx->cb_arg = cb_arg; 858 859 load_ctx->iov[0].iov_base = vol->backing_super; 860 load_ctx->iov[0].iov_len = sizeof(*vol->backing_super); 861 load_ctx->iov[1].iov_base = load_ctx->path; 862 load_ctx->iov[1].iov_len = REDUCE_PATH_MAX; 863 load_ctx->backing_cb_args.cb_fn = _load_read_super_and_path_cpl; 864 load_ctx->backing_cb_args.cb_arg = load_ctx; 865 vol->backing_dev->readv(vol->backing_dev, load_ctx->iov, LOAD_IOV_COUNT, 0, 866 (sizeof(*vol->backing_super) + REDUCE_PATH_MAX) / 867 vol->backing_dev->blocklen, 868 &load_ctx->backing_cb_args); 869 } 870 871 void 872 spdk_reduce_vol_unload(struct spdk_reduce_vol *vol, 873 spdk_reduce_vol_op_complete cb_fn, void *cb_arg) 874 { 875 if (vol == NULL) { 876 /* This indicates a programming error. */ 877 assert(false); 878 cb_fn(cb_arg, -EINVAL); 879 return; 880 } 881 882 if (--g_vol_count == 0) { 883 spdk_free(g_zero_buf); 884 } 885 assert(g_vol_count >= 0); 886 _init_load_cleanup(vol, NULL); 887 cb_fn(cb_arg, 0); 888 } 889 890 struct reduce_destroy_ctx { 891 spdk_reduce_vol_op_complete cb_fn; 892 void *cb_arg; 893 struct spdk_reduce_vol *vol; 894 struct spdk_reduce_vol_superblock *super; 895 struct iovec iov; 896 struct spdk_reduce_vol_cb_args backing_cb_args; 897 int reduce_errno; 898 char pm_path[REDUCE_PATH_MAX]; 899 }; 900 901 static void 902 destroy_unload_cpl(void *cb_arg, int reduce_errno) 903 { 904 struct reduce_destroy_ctx *destroy_ctx = cb_arg; 905 906 if (destroy_ctx->reduce_errno == 0) { 907 if (unlink(destroy_ctx->pm_path)) { 908 SPDK_ERRLOG("%s could not be unlinked: %s\n", 909 destroy_ctx->pm_path, strerror(errno)); 910 } 911 } 912 913 /* Even if the unload somehow failed, we still pass the destroy_ctx 914 * reduce_errno since that indicates whether or not the volume was 915 * actually destroyed. 916 */ 917 destroy_ctx->cb_fn(destroy_ctx->cb_arg, destroy_ctx->reduce_errno); 918 spdk_free(destroy_ctx->super); 919 free(destroy_ctx); 920 } 921 922 static void 923 _destroy_zero_super_cpl(void *cb_arg, int reduce_errno) 924 { 925 struct reduce_destroy_ctx *destroy_ctx = cb_arg; 926 struct spdk_reduce_vol *vol = destroy_ctx->vol; 927 928 destroy_ctx->reduce_errno = reduce_errno; 929 spdk_reduce_vol_unload(vol, destroy_unload_cpl, destroy_ctx); 930 } 931 932 static void 933 destroy_load_cb(void *cb_arg, struct spdk_reduce_vol *vol, int reduce_errno) 934 { 935 struct reduce_destroy_ctx *destroy_ctx = cb_arg; 936 937 if (reduce_errno != 0) { 938 destroy_ctx->cb_fn(destroy_ctx->cb_arg, reduce_errno); 939 spdk_free(destroy_ctx->super); 940 free(destroy_ctx); 941 return; 942 } 943 944 destroy_ctx->vol = vol; 945 memcpy(destroy_ctx->pm_path, vol->pm_file.path, sizeof(destroy_ctx->pm_path)); 946 destroy_ctx->iov.iov_base = destroy_ctx->super; 947 destroy_ctx->iov.iov_len = sizeof(*destroy_ctx->super); 948 destroy_ctx->backing_cb_args.cb_fn = _destroy_zero_super_cpl; 949 destroy_ctx->backing_cb_args.cb_arg = destroy_ctx; 950 vol->backing_dev->writev(vol->backing_dev, &destroy_ctx->iov, 1, 0, 951 sizeof(*destroy_ctx->super) / vol->backing_dev->blocklen, 952 &destroy_ctx->backing_cb_args); 953 } 954 955 void 956 spdk_reduce_vol_destroy(struct spdk_reduce_backing_dev *backing_dev, 957 spdk_reduce_vol_op_complete cb_fn, void *cb_arg) 958 { 959 struct reduce_destroy_ctx *destroy_ctx; 960 961 destroy_ctx = calloc(1, sizeof(*destroy_ctx)); 962 if (destroy_ctx == NULL) { 963 cb_fn(cb_arg, -ENOMEM); 964 return; 965 } 966 967 destroy_ctx->super = spdk_zmalloc(sizeof(*destroy_ctx->super), 64, NULL, 968 SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 969 if (destroy_ctx->super == NULL) { 970 free(destroy_ctx); 971 cb_fn(cb_arg, -ENOMEM); 972 return; 973 } 974 destroy_ctx->cb_fn = cb_fn; 975 destroy_ctx->cb_arg = cb_arg; 976 spdk_reduce_vol_load(backing_dev, destroy_load_cb, destroy_ctx); 977 } 978 979 static bool 980 _request_spans_chunk_boundary(struct spdk_reduce_vol *vol, uint64_t offset, uint64_t length) 981 { 982 uint64_t start_chunk, end_chunk; 983 984 start_chunk = offset / vol->logical_blocks_per_chunk; 985 end_chunk = (offset + length - 1) / vol->logical_blocks_per_chunk; 986 987 return (start_chunk != end_chunk); 988 } 989 990 typedef void (*reduce_request_fn)(void *_req, int reduce_errno); 991 992 static void 993 _reduce_vol_complete_req(struct spdk_reduce_vol_request *req, int reduce_errno) 994 { 995 struct spdk_reduce_vol_request *next_req; 996 struct spdk_reduce_vol *vol = req->vol; 997 998 req->cb_fn(req->cb_arg, reduce_errno); 999 TAILQ_REMOVE(&vol->executing_requests, req, tailq); 1000 1001 TAILQ_FOREACH(next_req, &vol->queued_requests, tailq) { 1002 if (next_req->logical_map_index == req->logical_map_index) { 1003 TAILQ_REMOVE(&vol->queued_requests, next_req, tailq); 1004 if (next_req->type == REDUCE_IO_READV) { 1005 _start_readv_request(next_req); 1006 } else { 1007 assert(next_req->type == REDUCE_IO_WRITEV); 1008 _start_writev_request(next_req); 1009 } 1010 break; 1011 } 1012 } 1013 1014 TAILQ_INSERT_HEAD(&vol->free_requests, req, tailq); 1015 } 1016 1017 static void 1018 _write_write_done(void *_req, int reduce_errno) 1019 { 1020 struct spdk_reduce_vol_request *req = _req; 1021 struct spdk_reduce_vol *vol = req->vol; 1022 uint64_t old_chunk_map_index; 1023 struct spdk_reduce_chunk_map *old_chunk; 1024 uint32_t i; 1025 1026 if (reduce_errno != 0) { 1027 req->reduce_errno = reduce_errno; 1028 } 1029 1030 assert(req->num_backing_ops > 0); 1031 if (--req->num_backing_ops > 0) { 1032 return; 1033 } 1034 1035 if (req->reduce_errno != 0) { 1036 _reduce_vol_complete_req(req, req->reduce_errno); 1037 return; 1038 } 1039 1040 old_chunk_map_index = vol->pm_logical_map[req->logical_map_index]; 1041 if (old_chunk_map_index != REDUCE_EMPTY_MAP_ENTRY) { 1042 old_chunk = _reduce_vol_get_chunk_map(vol, old_chunk_map_index); 1043 for (i = 0; i < vol->backing_io_units_per_chunk; i++) { 1044 if (old_chunk->io_unit_index[i] == REDUCE_EMPTY_MAP_ENTRY) { 1045 break; 1046 } 1047 assert(spdk_bit_array_get(vol->allocated_backing_io_units, old_chunk->io_unit_index[i]) == true); 1048 spdk_bit_array_clear(vol->allocated_backing_io_units, old_chunk->io_unit_index[i]); 1049 old_chunk->io_unit_index[i] = REDUCE_EMPTY_MAP_ENTRY; 1050 } 1051 spdk_bit_array_clear(vol->allocated_chunk_maps, old_chunk_map_index); 1052 } 1053 1054 /* 1055 * We don't need to persist the clearing of the old chunk map here. The old chunk map 1056 * becomes invalid after we update the logical map, since the old chunk map will no 1057 * longer have a reference to it in the logical map. 1058 */ 1059 1060 /* Persist the new chunk map. This must be persisted before we update the logical map. */ 1061 _reduce_persist(vol, req->chunk, 1062 _reduce_vol_get_chunk_struct_size(vol->backing_io_units_per_chunk)); 1063 1064 vol->pm_logical_map[req->logical_map_index] = req->chunk_map_index; 1065 1066 _reduce_persist(vol, &vol->pm_logical_map[req->logical_map_index], sizeof(uint64_t)); 1067 1068 _reduce_vol_complete_req(req, 0); 1069 } 1070 1071 struct reduce_merged_io_desc { 1072 uint64_t io_unit_index; 1073 uint32_t num_io_units; 1074 }; 1075 1076 static void 1077 _issue_backing_ops_without_merge(struct spdk_reduce_vol_request *req, struct spdk_reduce_vol *vol, 1078 reduce_request_fn next_fn, bool is_write) 1079 { 1080 struct iovec *iov; 1081 uint8_t *buf; 1082 uint32_t i; 1083 1084 if (req->chunk_is_compressed) { 1085 iov = req->comp_buf_iov; 1086 buf = req->comp_buf; 1087 } else { 1088 iov = req->decomp_buf_iov; 1089 buf = req->decomp_buf; 1090 } 1091 1092 req->num_backing_ops = req->num_io_units; 1093 req->backing_cb_args.cb_fn = next_fn; 1094 req->backing_cb_args.cb_arg = req; 1095 for (i = 0; i < req->num_io_units; i++) { 1096 iov[i].iov_base = buf + i * vol->params.backing_io_unit_size; 1097 iov[i].iov_len = vol->params.backing_io_unit_size; 1098 if (is_write) { 1099 vol->backing_dev->writev(vol->backing_dev, &iov[i], 1, 1100 req->chunk->io_unit_index[i] * vol->backing_lba_per_io_unit, 1101 vol->backing_lba_per_io_unit, &req->backing_cb_args); 1102 } else { 1103 vol->backing_dev->readv(vol->backing_dev, &iov[i], 1, 1104 req->chunk->io_unit_index[i] * vol->backing_lba_per_io_unit, 1105 vol->backing_lba_per_io_unit, &req->backing_cb_args); 1106 } 1107 } 1108 } 1109 1110 static void 1111 _issue_backing_ops(struct spdk_reduce_vol_request *req, struct spdk_reduce_vol *vol, 1112 reduce_request_fn next_fn, bool is_write) 1113 { 1114 struct iovec *iov; 1115 struct reduce_merged_io_desc merged_io_desc[4]; 1116 uint8_t *buf; 1117 bool merge = false; 1118 uint32_t num_io = 0; 1119 uint32_t io_unit_counts = 0; 1120 uint32_t merged_io_idx = 0; 1121 uint32_t i; 1122 1123 /* The merged_io_desc value is defined here to contain four elements, 1124 * and the chunk size must be four times the maximum of the io unit. 1125 * if chunk size is too big, don't merge IO. 1126 */ 1127 if (vol->backing_io_units_per_chunk > 4) { 1128 _issue_backing_ops_without_merge(req, vol, next_fn, is_write); 1129 return; 1130 } 1131 1132 if (req->chunk_is_compressed) { 1133 iov = req->comp_buf_iov; 1134 buf = req->comp_buf; 1135 } else { 1136 iov = req->decomp_buf_iov; 1137 buf = req->decomp_buf; 1138 } 1139 1140 for (i = 0; i < req->num_io_units; i++) { 1141 if (!merge) { 1142 merged_io_desc[merged_io_idx].io_unit_index = req->chunk->io_unit_index[i]; 1143 merged_io_desc[merged_io_idx].num_io_units = 1; 1144 num_io++; 1145 } 1146 1147 if (i + 1 == req->num_io_units) { 1148 break; 1149 } 1150 1151 if (req->chunk->io_unit_index[i] + 1 == req->chunk->io_unit_index[i + 1]) { 1152 merged_io_desc[merged_io_idx].num_io_units += 1; 1153 merge = true; 1154 continue; 1155 } 1156 merge = false; 1157 merged_io_idx++; 1158 } 1159 1160 req->num_backing_ops = num_io; 1161 req->backing_cb_args.cb_fn = next_fn; 1162 req->backing_cb_args.cb_arg = req; 1163 for (i = 0; i < num_io; i++) { 1164 iov[i].iov_base = buf + io_unit_counts * vol->params.backing_io_unit_size; 1165 iov[i].iov_len = vol->params.backing_io_unit_size * merged_io_desc[i].num_io_units; 1166 if (is_write) { 1167 vol->backing_dev->writev(vol->backing_dev, &iov[i], 1, 1168 merged_io_desc[i].io_unit_index * vol->backing_lba_per_io_unit, 1169 vol->backing_lba_per_io_unit * merged_io_desc[i].num_io_units, 1170 &req->backing_cb_args); 1171 } else { 1172 vol->backing_dev->readv(vol->backing_dev, &iov[i], 1, 1173 merged_io_desc[i].io_unit_index * vol->backing_lba_per_io_unit, 1174 vol->backing_lba_per_io_unit * merged_io_desc[i].num_io_units, 1175 &req->backing_cb_args); 1176 } 1177 1178 /* Collects the number of processed I/O. */ 1179 io_unit_counts += merged_io_desc[i].num_io_units; 1180 } 1181 } 1182 1183 static void 1184 _reduce_vol_write_chunk(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn, 1185 uint32_t compressed_size) 1186 { 1187 struct spdk_reduce_vol *vol = req->vol; 1188 uint32_t i; 1189 uint64_t chunk_offset, remainder, total_len = 0; 1190 uint8_t *buf; 1191 int j; 1192 1193 req->chunk_map_index = spdk_bit_array_find_first_clear(vol->allocated_chunk_maps, 0); 1194 1195 /* TODO: fail if no chunk map found - but really this should not happen if we 1196 * size the number of requests similarly to number of extra chunk maps 1197 */ 1198 assert(req->chunk_map_index != UINT32_MAX); 1199 spdk_bit_array_set(vol->allocated_chunk_maps, req->chunk_map_index); 1200 1201 req->chunk = _reduce_vol_get_chunk_map(vol, req->chunk_map_index); 1202 req->num_io_units = spdk_divide_round_up(compressed_size, 1203 vol->params.backing_io_unit_size); 1204 req->chunk_is_compressed = (req->num_io_units != vol->backing_io_units_per_chunk); 1205 req->chunk->compressed_size = 1206 req->chunk_is_compressed ? compressed_size : vol->params.chunk_size; 1207 1208 /* if the chunk is uncompressed we need to copy the data from the host buffers. */ 1209 if (req->chunk_is_compressed == false) { 1210 chunk_offset = req->offset % vol->logical_blocks_per_chunk; 1211 buf = req->decomp_buf; 1212 total_len = chunk_offset * vol->params.logical_block_size; 1213 1214 /* zero any offset into chunk */ 1215 if (req->rmw == false && chunk_offset) { 1216 memset(buf, 0, total_len); 1217 } 1218 buf += total_len; 1219 1220 /* copy the data */ 1221 for (j = 0; j < req->iovcnt; j++) { 1222 memcpy(buf, req->iov[j].iov_base, req->iov[j].iov_len); 1223 buf += req->iov[j].iov_len; 1224 total_len += req->iov[j].iov_len; 1225 } 1226 1227 /* zero any remainder */ 1228 remainder = vol->params.chunk_size - total_len; 1229 total_len += remainder; 1230 if (req->rmw == false && remainder) { 1231 memset(buf, 0, remainder); 1232 } 1233 assert(total_len == vol->params.chunk_size); 1234 } 1235 1236 for (i = 0; i < req->num_io_units; i++) { 1237 req->chunk->io_unit_index[i] = spdk_bit_array_find_first_clear(vol->allocated_backing_io_units, 0); 1238 /* TODO: fail if no backing block found - but really this should also not 1239 * happen (see comment above). 1240 */ 1241 assert(req->chunk->io_unit_index[i] != UINT32_MAX); 1242 spdk_bit_array_set(vol->allocated_backing_io_units, req->chunk->io_unit_index[i]); 1243 } 1244 1245 _issue_backing_ops(req, vol, next_fn, true /* write */); 1246 } 1247 1248 static void 1249 _write_compress_done(void *_req, int reduce_errno) 1250 { 1251 struct spdk_reduce_vol_request *req = _req; 1252 1253 /* Negative reduce_errno indicates failure for compression operations. 1254 * Just write the uncompressed data instead. Force this to happen 1255 * by just passing the full chunk size to _reduce_vol_write_chunk. 1256 * When it sees the data couldn't be compressed, it will just write 1257 * the uncompressed buffer to disk. 1258 */ 1259 if (reduce_errno < 0) { 1260 req->backing_cb_args.output_size = req->vol->params.chunk_size; 1261 } 1262 1263 _reduce_vol_write_chunk(req, _write_write_done, req->backing_cb_args.output_size); 1264 } 1265 1266 static void 1267 _reduce_vol_compress_chunk(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn) 1268 { 1269 struct spdk_reduce_vol *vol = req->vol; 1270 1271 req->backing_cb_args.cb_fn = next_fn; 1272 req->backing_cb_args.cb_arg = req; 1273 req->comp_buf_iov[0].iov_base = req->comp_buf; 1274 req->comp_buf_iov[0].iov_len = vol->params.chunk_size; 1275 vol->backing_dev->compress(vol->backing_dev, 1276 req->decomp_iov, req->decomp_iovcnt, req->comp_buf_iov, 1, 1277 &req->backing_cb_args); 1278 } 1279 1280 static void 1281 _reduce_vol_decompress_chunk_scratch(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn) 1282 { 1283 struct spdk_reduce_vol *vol = req->vol; 1284 1285 req->backing_cb_args.cb_fn = next_fn; 1286 req->backing_cb_args.cb_arg = req; 1287 req->comp_buf_iov[0].iov_base = req->comp_buf; 1288 req->comp_buf_iov[0].iov_len = req->chunk->compressed_size; 1289 req->decomp_buf_iov[0].iov_base = req->decomp_buf; 1290 req->decomp_buf_iov[0].iov_len = vol->params.chunk_size; 1291 vol->backing_dev->decompress(vol->backing_dev, 1292 req->comp_buf_iov, 1, req->decomp_buf_iov, 1, 1293 &req->backing_cb_args); 1294 } 1295 1296 static void 1297 _reduce_vol_decompress_chunk(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn) 1298 { 1299 struct spdk_reduce_vol *vol = req->vol; 1300 uint64_t chunk_offset, remainder = 0; 1301 uint64_t ttl_len = 0; 1302 size_t iov_len; 1303 int i; 1304 1305 req->decomp_iovcnt = 0; 1306 chunk_offset = req->offset % vol->logical_blocks_per_chunk; 1307 1308 /* If backing device doesn't support SGL output then we should copy the result of decompression to user's buffer 1309 * if at least one of the conditions below is true: 1310 * 1. User's buffer is fragmented 1311 * 2. Length of the user's buffer is less than the chunk 1312 * 3. User's buffer is contig, equals chunk_size but crosses huge page boundary */ 1313 iov_len = req->iov[0].iov_len; 1314 req->copy_after_decompress = !vol->backing_dev->sgl_out && (req->iovcnt > 1 || 1315 req->iov[0].iov_len < vol->params.chunk_size || 1316 _addr_crosses_huge_page(req->iov[0].iov_base, &iov_len)); 1317 if (req->copy_after_decompress) { 1318 req->decomp_iov[0].iov_base = req->decomp_buf; 1319 req->decomp_iov[0].iov_len = vol->params.chunk_size; 1320 req->decomp_iovcnt = 1; 1321 goto decompress; 1322 } 1323 1324 if (chunk_offset) { 1325 /* first iov point to our scratch buffer for any offset into the chunk */ 1326 req->decomp_iov[0].iov_base = req->decomp_buf; 1327 req->decomp_iov[0].iov_len = chunk_offset * vol->params.logical_block_size; 1328 ttl_len += req->decomp_iov[0].iov_len; 1329 req->decomp_iovcnt = 1; 1330 } 1331 1332 /* now the user data iov, direct to the user buffer */ 1333 for (i = 0; i < req->iovcnt; i++) { 1334 req->decomp_iov[i + req->decomp_iovcnt].iov_base = req->iov[i].iov_base; 1335 req->decomp_iov[i + req->decomp_iovcnt].iov_len = req->iov[i].iov_len; 1336 ttl_len += req->decomp_iov[i + req->decomp_iovcnt].iov_len; 1337 } 1338 req->decomp_iovcnt += req->iovcnt; 1339 1340 /* send the rest of the chunk to our scratch buffer */ 1341 remainder = vol->params.chunk_size - ttl_len; 1342 if (remainder) { 1343 req->decomp_iov[req->decomp_iovcnt].iov_base = req->decomp_buf + ttl_len; 1344 req->decomp_iov[req->decomp_iovcnt].iov_len = remainder; 1345 ttl_len += req->decomp_iov[req->decomp_iovcnt].iov_len; 1346 req->decomp_iovcnt++; 1347 } 1348 assert(ttl_len == vol->params.chunk_size); 1349 1350 decompress: 1351 assert(!req->copy_after_decompress || (req->copy_after_decompress && req->decomp_iovcnt == 1)); 1352 req->backing_cb_args.cb_fn = next_fn; 1353 req->backing_cb_args.cb_arg = req; 1354 req->comp_buf_iov[0].iov_base = req->comp_buf; 1355 req->comp_buf_iov[0].iov_len = req->chunk->compressed_size; 1356 vol->backing_dev->decompress(vol->backing_dev, 1357 req->comp_buf_iov, 1, req->decomp_iov, req->decomp_iovcnt, 1358 &req->backing_cb_args); 1359 } 1360 1361 static inline void 1362 _prepare_compress_chunk_copy_user_buffers(struct spdk_reduce_vol_request *req, bool zero_paddings) 1363 { 1364 struct spdk_reduce_vol *vol = req->vol; 1365 char *padding_buffer = zero_paddings ? g_zero_buf : req->decomp_buf; 1366 uint64_t chunk_offset, ttl_len = 0; 1367 uint64_t remainder = 0; 1368 char *copy_offset = NULL; 1369 uint32_t lbsize = vol->params.logical_block_size; 1370 int i; 1371 1372 req->decomp_iov[0].iov_base = req->decomp_buf; 1373 req->decomp_iov[0].iov_len = vol->params.chunk_size; 1374 req->decomp_iovcnt = 1; 1375 copy_offset = req->decomp_iov[0].iov_base; 1376 chunk_offset = req->offset % vol->logical_blocks_per_chunk; 1377 1378 if (chunk_offset) { 1379 ttl_len += chunk_offset * lbsize; 1380 /* copy_offset already points to padding buffer if zero_paddings=false */ 1381 if (zero_paddings) { 1382 memcpy(copy_offset, padding_buffer, ttl_len); 1383 } 1384 copy_offset += ttl_len; 1385 } 1386 1387 /* now the user data iov, direct from the user buffer */ 1388 for (i = 0; i < req->iovcnt; i++) { 1389 memcpy(copy_offset, req->iov[i].iov_base, req->iov[i].iov_len); 1390 copy_offset += req->iov[i].iov_len; 1391 ttl_len += req->iov[i].iov_len; 1392 } 1393 1394 remainder = vol->params.chunk_size - ttl_len; 1395 if (remainder) { 1396 /* copy_offset already points to padding buffer if zero_paddings=false */ 1397 if (zero_paddings) { 1398 memcpy(copy_offset, padding_buffer + ttl_len, remainder); 1399 } 1400 ttl_len += remainder; 1401 } 1402 1403 assert(ttl_len == req->vol->params.chunk_size); 1404 } 1405 1406 /* This function can be called when we are compressing a new data or in case of read-modify-write 1407 * In the first case possible paddings should be filled with zeroes, in the second case the paddings 1408 * should point to already read and decompressed buffer */ 1409 static inline void 1410 _prepare_compress_chunk(struct spdk_reduce_vol_request *req, bool zero_paddings) 1411 { 1412 struct spdk_reduce_vol *vol = req->vol; 1413 char *padding_buffer = zero_paddings ? g_zero_buf : req->decomp_buf; 1414 uint64_t chunk_offset, ttl_len = 0; 1415 uint64_t remainder = 0; 1416 uint32_t lbsize = vol->params.logical_block_size; 1417 size_t iov_len; 1418 int i; 1419 1420 /* If backing device doesn't support SGL input then we should copy user's buffer into decomp_buf 1421 * if at least one of the conditions below is true: 1422 * 1. User's buffer is fragmented 1423 * 2. Length of the user's buffer is less than the chunk 1424 * 3. User's buffer is contig, equals chunk_size but crosses huge page boundary */ 1425 iov_len = req->iov[0].iov_len; 1426 if (!vol->backing_dev->sgl_in && (req->iovcnt > 1 || 1427 req->iov[0].iov_len < vol->params.chunk_size || 1428 _addr_crosses_huge_page(req->iov[0].iov_base, &iov_len))) { 1429 _prepare_compress_chunk_copy_user_buffers(req, zero_paddings); 1430 return; 1431 } 1432 1433 req->decomp_iovcnt = 0; 1434 chunk_offset = req->offset % vol->logical_blocks_per_chunk; 1435 1436 if (chunk_offset != 0) { 1437 ttl_len += chunk_offset * lbsize; 1438 req->decomp_iov[0].iov_base = padding_buffer; 1439 req->decomp_iov[0].iov_len = ttl_len; 1440 req->decomp_iovcnt = 1; 1441 } 1442 1443 /* now the user data iov, direct from the user buffer */ 1444 for (i = 0; i < req->iovcnt; i++) { 1445 req->decomp_iov[i + req->decomp_iovcnt].iov_base = req->iov[i].iov_base; 1446 req->decomp_iov[i + req->decomp_iovcnt].iov_len = req->iov[i].iov_len; 1447 ttl_len += req->iov[i].iov_len; 1448 } 1449 req->decomp_iovcnt += req->iovcnt; 1450 1451 remainder = vol->params.chunk_size - ttl_len; 1452 if (remainder) { 1453 req->decomp_iov[req->decomp_iovcnt].iov_base = padding_buffer + ttl_len; 1454 req->decomp_iov[req->decomp_iovcnt].iov_len = remainder; 1455 req->decomp_iovcnt++; 1456 ttl_len += remainder; 1457 } 1458 assert(ttl_len == req->vol->params.chunk_size); 1459 } 1460 1461 static void 1462 _write_decompress_done(void *_req, int reduce_errno) 1463 { 1464 struct spdk_reduce_vol_request *req = _req; 1465 1466 /* Negative reduce_errno indicates failure for compression operations. */ 1467 if (reduce_errno < 0) { 1468 _reduce_vol_complete_req(req, reduce_errno); 1469 return; 1470 } 1471 1472 /* Positive reduce_errno indicates that the output size field in the backing_cb_args 1473 * represents the output_size. 1474 */ 1475 if (req->backing_cb_args.output_size != req->vol->params.chunk_size) { 1476 _reduce_vol_complete_req(req, -EIO); 1477 return; 1478 } 1479 1480 _prepare_compress_chunk(req, false); 1481 _reduce_vol_compress_chunk(req, _write_compress_done); 1482 } 1483 1484 static void 1485 _write_read_done(void *_req, int reduce_errno) 1486 { 1487 struct spdk_reduce_vol_request *req = _req; 1488 1489 if (reduce_errno != 0) { 1490 req->reduce_errno = reduce_errno; 1491 } 1492 1493 assert(req->num_backing_ops > 0); 1494 if (--req->num_backing_ops > 0) { 1495 return; 1496 } 1497 1498 if (req->reduce_errno != 0) { 1499 _reduce_vol_complete_req(req, req->reduce_errno); 1500 return; 1501 } 1502 1503 if (req->chunk_is_compressed) { 1504 _reduce_vol_decompress_chunk_scratch(req, _write_decompress_done); 1505 } else { 1506 req->backing_cb_args.output_size = req->chunk->compressed_size; 1507 1508 _write_decompress_done(req, 0); 1509 } 1510 } 1511 1512 static void 1513 _read_decompress_done(void *_req, int reduce_errno) 1514 { 1515 struct spdk_reduce_vol_request *req = _req; 1516 struct spdk_reduce_vol *vol = req->vol; 1517 1518 /* Negative reduce_errno indicates failure for compression operations. */ 1519 if (reduce_errno < 0) { 1520 _reduce_vol_complete_req(req, reduce_errno); 1521 return; 1522 } 1523 1524 /* Positive reduce_errno indicates that the output size field in the backing_cb_args 1525 * represents the output_size. 1526 */ 1527 if (req->backing_cb_args.output_size != vol->params.chunk_size) { 1528 _reduce_vol_complete_req(req, -EIO); 1529 return; 1530 } 1531 1532 if (req->copy_after_decompress) { 1533 uint64_t chunk_offset = req->offset % vol->logical_blocks_per_chunk; 1534 char *decomp_buffer = (char *)req->decomp_buf + chunk_offset * vol->params.logical_block_size; 1535 int i; 1536 1537 for (i = 0; i < req->iovcnt; i++) { 1538 memcpy(req->iov[i].iov_base, decomp_buffer, req->iov[i].iov_len); 1539 decomp_buffer += req->iov[i].iov_len; 1540 assert(decomp_buffer <= (char *)req->decomp_buf + vol->params.chunk_size); 1541 } 1542 } 1543 1544 _reduce_vol_complete_req(req, 0); 1545 } 1546 1547 static void 1548 _read_read_done(void *_req, int reduce_errno) 1549 { 1550 struct spdk_reduce_vol_request *req = _req; 1551 uint64_t chunk_offset; 1552 uint8_t *buf; 1553 int i; 1554 1555 if (reduce_errno != 0) { 1556 req->reduce_errno = reduce_errno; 1557 } 1558 1559 assert(req->num_backing_ops > 0); 1560 if (--req->num_backing_ops > 0) { 1561 return; 1562 } 1563 1564 if (req->reduce_errno != 0) { 1565 _reduce_vol_complete_req(req, req->reduce_errno); 1566 return; 1567 } 1568 1569 if (req->chunk_is_compressed) { 1570 _reduce_vol_decompress_chunk(req, _read_decompress_done); 1571 } else { 1572 1573 /* If the chunk was compressed, the data would have been sent to the 1574 * host buffers by the decompression operation, if not we need to memcpy here. 1575 */ 1576 chunk_offset = req->offset % req->vol->logical_blocks_per_chunk; 1577 buf = req->decomp_buf + chunk_offset * req->vol->params.logical_block_size; 1578 for (i = 0; i < req->iovcnt; i++) { 1579 memcpy(req->iov[i].iov_base, buf, req->iov[i].iov_len); 1580 buf += req->iov[i].iov_len; 1581 } 1582 1583 req->backing_cb_args.output_size = req->chunk->compressed_size; 1584 1585 _read_decompress_done(req, 0); 1586 } 1587 } 1588 1589 static void 1590 _reduce_vol_read_chunk(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn) 1591 { 1592 struct spdk_reduce_vol *vol = req->vol; 1593 1594 req->chunk_map_index = vol->pm_logical_map[req->logical_map_index]; 1595 assert(req->chunk_map_index != UINT32_MAX); 1596 1597 req->chunk = _reduce_vol_get_chunk_map(vol, req->chunk_map_index); 1598 req->num_io_units = spdk_divide_round_up(req->chunk->compressed_size, 1599 vol->params.backing_io_unit_size); 1600 req->chunk_is_compressed = (req->num_io_units != vol->backing_io_units_per_chunk); 1601 1602 _issue_backing_ops(req, vol, next_fn, false /* read */); 1603 } 1604 1605 static bool 1606 _iov_array_is_valid(struct spdk_reduce_vol *vol, struct iovec *iov, int iovcnt, 1607 uint64_t length) 1608 { 1609 uint64_t size = 0; 1610 int i; 1611 1612 if (iovcnt > REDUCE_MAX_IOVECS) { 1613 return false; 1614 } 1615 1616 for (i = 0; i < iovcnt; i++) { 1617 size += iov[i].iov_len; 1618 } 1619 1620 return size == (length * vol->params.logical_block_size); 1621 } 1622 1623 static bool 1624 _check_overlap(struct spdk_reduce_vol *vol, uint64_t logical_map_index) 1625 { 1626 struct spdk_reduce_vol_request *req; 1627 1628 TAILQ_FOREACH(req, &vol->executing_requests, tailq) { 1629 if (logical_map_index == req->logical_map_index) { 1630 return true; 1631 } 1632 } 1633 1634 return false; 1635 } 1636 1637 static void 1638 _start_readv_request(struct spdk_reduce_vol_request *req) 1639 { 1640 TAILQ_INSERT_TAIL(&req->vol->executing_requests, req, tailq); 1641 _reduce_vol_read_chunk(req, _read_read_done); 1642 } 1643 1644 void 1645 spdk_reduce_vol_readv(struct spdk_reduce_vol *vol, 1646 struct iovec *iov, int iovcnt, uint64_t offset, uint64_t length, 1647 spdk_reduce_vol_op_complete cb_fn, void *cb_arg) 1648 { 1649 struct spdk_reduce_vol_request *req; 1650 uint64_t logical_map_index; 1651 bool overlapped; 1652 int i; 1653 1654 if (length == 0) { 1655 cb_fn(cb_arg, 0); 1656 return; 1657 } 1658 1659 if (_request_spans_chunk_boundary(vol, offset, length)) { 1660 cb_fn(cb_arg, -EINVAL); 1661 return; 1662 } 1663 1664 if (!_iov_array_is_valid(vol, iov, iovcnt, length)) { 1665 cb_fn(cb_arg, -EINVAL); 1666 return; 1667 } 1668 1669 logical_map_index = offset / vol->logical_blocks_per_chunk; 1670 overlapped = _check_overlap(vol, logical_map_index); 1671 1672 if (!overlapped && vol->pm_logical_map[logical_map_index] == REDUCE_EMPTY_MAP_ENTRY) { 1673 /* 1674 * This chunk hasn't been allocated. So treat the data as all 1675 * zeroes for this chunk - do the memset and immediately complete 1676 * the operation. 1677 */ 1678 for (i = 0; i < iovcnt; i++) { 1679 memset(iov[i].iov_base, 0, iov[i].iov_len); 1680 } 1681 cb_fn(cb_arg, 0); 1682 return; 1683 } 1684 1685 req = TAILQ_FIRST(&vol->free_requests); 1686 if (req == NULL) { 1687 cb_fn(cb_arg, -ENOMEM); 1688 return; 1689 } 1690 1691 TAILQ_REMOVE(&vol->free_requests, req, tailq); 1692 req->type = REDUCE_IO_READV; 1693 req->vol = vol; 1694 req->iov = iov; 1695 req->iovcnt = iovcnt; 1696 req->offset = offset; 1697 req->logical_map_index = logical_map_index; 1698 req->length = length; 1699 req->copy_after_decompress = false; 1700 req->cb_fn = cb_fn; 1701 req->cb_arg = cb_arg; 1702 1703 if (!overlapped) { 1704 _start_readv_request(req); 1705 } else { 1706 TAILQ_INSERT_TAIL(&vol->queued_requests, req, tailq); 1707 } 1708 } 1709 1710 static void 1711 _start_writev_request(struct spdk_reduce_vol_request *req) 1712 { 1713 struct spdk_reduce_vol *vol = req->vol; 1714 1715 TAILQ_INSERT_TAIL(&req->vol->executing_requests, req, tailq); 1716 if (vol->pm_logical_map[req->logical_map_index] != REDUCE_EMPTY_MAP_ENTRY) { 1717 if ((req->length * vol->params.logical_block_size) < vol->params.chunk_size) { 1718 /* Read old chunk, then overwrite with data from this write 1719 * operation. 1720 */ 1721 req->rmw = true; 1722 _reduce_vol_read_chunk(req, _write_read_done); 1723 return; 1724 } 1725 } 1726 1727 req->rmw = false; 1728 1729 _prepare_compress_chunk(req, true); 1730 _reduce_vol_compress_chunk(req, _write_compress_done); 1731 } 1732 1733 void 1734 spdk_reduce_vol_writev(struct spdk_reduce_vol *vol, 1735 struct iovec *iov, int iovcnt, uint64_t offset, uint64_t length, 1736 spdk_reduce_vol_op_complete cb_fn, void *cb_arg) 1737 { 1738 struct spdk_reduce_vol_request *req; 1739 uint64_t logical_map_index; 1740 bool overlapped; 1741 1742 if (length == 0) { 1743 cb_fn(cb_arg, 0); 1744 return; 1745 } 1746 1747 if (_request_spans_chunk_boundary(vol, offset, length)) { 1748 cb_fn(cb_arg, -EINVAL); 1749 return; 1750 } 1751 1752 if (!_iov_array_is_valid(vol, iov, iovcnt, length)) { 1753 cb_fn(cb_arg, -EINVAL); 1754 return; 1755 } 1756 1757 logical_map_index = offset / vol->logical_blocks_per_chunk; 1758 overlapped = _check_overlap(vol, logical_map_index); 1759 1760 req = TAILQ_FIRST(&vol->free_requests); 1761 if (req == NULL) { 1762 cb_fn(cb_arg, -ENOMEM); 1763 return; 1764 } 1765 1766 TAILQ_REMOVE(&vol->free_requests, req, tailq); 1767 req->type = REDUCE_IO_WRITEV; 1768 req->vol = vol; 1769 req->iov = iov; 1770 req->iovcnt = iovcnt; 1771 req->offset = offset; 1772 req->logical_map_index = logical_map_index; 1773 req->length = length; 1774 req->copy_after_decompress = false; 1775 req->cb_fn = cb_fn; 1776 req->cb_arg = cb_arg; 1777 1778 if (!overlapped) { 1779 _start_writev_request(req); 1780 } else { 1781 TAILQ_INSERT_TAIL(&vol->queued_requests, req, tailq); 1782 } 1783 } 1784 1785 const struct spdk_reduce_vol_params * 1786 spdk_reduce_vol_get_params(struct spdk_reduce_vol *vol) 1787 { 1788 return &vol->params; 1789 } 1790 1791 void 1792 spdk_reduce_vol_print_info(struct spdk_reduce_vol *vol) 1793 { 1794 uint64_t logical_map_size, num_chunks, ttl_chunk_sz; 1795 uint32_t struct_size; 1796 uint64_t chunk_map_size; 1797 1798 SPDK_NOTICELOG("vol info:\n"); 1799 SPDK_NOTICELOG("\tvol->params.backing_io_unit_size = 0x%x\n", vol->params.backing_io_unit_size); 1800 SPDK_NOTICELOG("\tvol->params.logical_block_size = 0x%x\n", vol->params.logical_block_size); 1801 SPDK_NOTICELOG("\tvol->params.chunk_size = 0x%x\n", vol->params.chunk_size); 1802 SPDK_NOTICELOG("\tvol->params.vol_size = 0x%" PRIx64 "\n", vol->params.vol_size); 1803 num_chunks = _get_total_chunks(vol->params.vol_size, vol->params.chunk_size); 1804 SPDK_NOTICELOG("\ttotal chunks (including extra) = 0x%" PRIx64 "\n", num_chunks); 1805 SPDK_NOTICELOG("\ttotal chunks (excluding extra) = 0x%" PRIx64 "\n", 1806 vol->params.vol_size / vol->params.chunk_size); 1807 ttl_chunk_sz = _get_pm_total_chunks_size(vol->params.vol_size, vol->params.chunk_size, 1808 vol->params.backing_io_unit_size); 1809 SPDK_NOTICELOG("\ttotal_chunks_size = 0x%" PRIx64 "\n", ttl_chunk_sz); 1810 struct_size = _reduce_vol_get_chunk_struct_size(vol->backing_io_units_per_chunk); 1811 SPDK_NOTICELOG("\tchunk_struct_size = 0x%x\n", struct_size); 1812 1813 SPDK_NOTICELOG("pmem info:\n"); 1814 SPDK_NOTICELOG("\tvol->pm_file.size = 0x%" PRIx64 "\n", vol->pm_file.size); 1815 SPDK_NOTICELOG("\tvol->pm_file.pm_buf = %p\n", (void *)vol->pm_file.pm_buf); 1816 SPDK_NOTICELOG("\tvol->pm_super = %p\n", (void *)vol->pm_super); 1817 SPDK_NOTICELOG("\tvol->pm_logical_map = %p\n", (void *)vol->pm_logical_map); 1818 logical_map_size = _get_pm_logical_map_size(vol->params.vol_size, 1819 vol->params.chunk_size); 1820 SPDK_NOTICELOG("\tlogical_map_size = 0x%" PRIx64 "\n", logical_map_size); 1821 SPDK_NOTICELOG("\tvol->pm_chunk_maps = %p\n", (void *)vol->pm_chunk_maps); 1822 chunk_map_size = _get_pm_total_chunks_size(vol->params.vol_size, vol->params.chunk_size, 1823 vol->params.backing_io_unit_size); 1824 SPDK_NOTICELOG("\tchunk_map_size = 0x%" PRIx64 "\n", chunk_map_size); 1825 } 1826 1827 SPDK_LOG_REGISTER_COMPONENT(reduce) 1828