1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright (C) 2018 Intel Corporation. 3 * All rights reserved. 4 * Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 5 */ 6 7 #include "spdk/stdinc.h" 8 9 #include "queue_internal.h" 10 11 #include "spdk/reduce.h" 12 #include "spdk/env.h" 13 #include "spdk/string.h" 14 #include "spdk/bit_array.h" 15 #include "spdk/util.h" 16 #include "spdk/log.h" 17 #include "spdk/memory.h" 18 #include "spdk/tree.h" 19 20 #include "libpmem.h" 21 22 /* Always round up the size of the PM region to the nearest cacheline. */ 23 #define REDUCE_PM_SIZE_ALIGNMENT 64 24 25 /* Offset into the backing device where the persistent memory file's path is stored. */ 26 #define REDUCE_BACKING_DEV_PATH_OFFSET 4096 27 28 #define REDUCE_EMPTY_MAP_ENTRY -1ULL 29 30 #define REDUCE_NUM_VOL_REQUESTS 256 31 32 /* Structure written to offset 0 of both the pm file and the backing device. */ 33 struct spdk_reduce_vol_superblock { 34 uint8_t signature[8]; 35 struct spdk_reduce_vol_params params; 36 uint8_t reserved[4040]; 37 }; 38 SPDK_STATIC_ASSERT(sizeof(struct spdk_reduce_vol_superblock) == 4096, "size incorrect"); 39 40 #define SPDK_REDUCE_SIGNATURE "SPDKREDU" 41 /* null terminator counts one */ 42 SPDK_STATIC_ASSERT(sizeof(SPDK_REDUCE_SIGNATURE) - 1 == 43 SPDK_SIZEOF_MEMBER(struct spdk_reduce_vol_superblock, signature), "size incorrect"); 44 45 #define REDUCE_PATH_MAX 4096 46 47 #define REDUCE_ZERO_BUF_SIZE 0x100000 48 49 /** 50 * Describes a persistent memory file used to hold metadata associated with a 51 * compressed volume. 52 */ 53 struct spdk_reduce_pm_file { 54 char path[REDUCE_PATH_MAX]; 55 void *pm_buf; 56 int pm_is_pmem; 57 uint64_t size; 58 }; 59 60 #define REDUCE_IO_READV 1 61 #define REDUCE_IO_WRITEV 2 62 63 struct spdk_reduce_chunk_map { 64 uint32_t compressed_size; 65 uint32_t reserved; 66 uint64_t io_unit_index[0]; 67 }; 68 69 struct spdk_reduce_vol_request { 70 /** 71 * Scratch buffer used for uncompressed chunk. This is used for: 72 * 1) source buffer for compression operations 73 * 2) destination buffer for decompression operations 74 * 3) data buffer when writing uncompressed chunk to disk 75 * 4) data buffer when reading uncompressed chunk from disk 76 */ 77 uint8_t *decomp_buf; 78 struct iovec *decomp_buf_iov; 79 80 /** 81 * These are used to construct the iovecs that are sent to 82 * the decomp engine, they point to a mix of the scratch buffer 83 * and user buffer 84 */ 85 struct iovec decomp_iov[REDUCE_MAX_IOVECS + 2]; 86 int decomp_iovcnt; 87 88 /** 89 * Scratch buffer used for compressed chunk. This is used for: 90 * 1) destination buffer for compression operations 91 * 2) source buffer for decompression operations 92 * 3) data buffer when writing compressed chunk to disk 93 * 4) data buffer when reading compressed chunk from disk 94 */ 95 uint8_t *comp_buf; 96 struct iovec *comp_buf_iov; 97 struct iovec *iov; 98 bool rmw; 99 struct spdk_reduce_vol *vol; 100 int type; 101 int reduce_errno; 102 int iovcnt; 103 int num_backing_ops; 104 uint32_t num_io_units; 105 struct spdk_reduce_backing_io *backing_io; 106 bool chunk_is_compressed; 107 bool copy_after_decompress; 108 uint64_t offset; 109 uint64_t logical_map_index; 110 uint64_t length; 111 uint64_t chunk_map_index; 112 struct spdk_reduce_chunk_map *chunk; 113 spdk_reduce_vol_op_complete cb_fn; 114 void *cb_arg; 115 TAILQ_ENTRY(spdk_reduce_vol_request) tailq; 116 RB_ENTRY(spdk_reduce_vol_request) rbnode; 117 struct spdk_reduce_vol_cb_args backing_cb_args; 118 }; 119 120 struct spdk_reduce_vol { 121 struct spdk_reduce_vol_params params; 122 uint32_t backing_io_units_per_chunk; 123 uint32_t backing_lba_per_io_unit; 124 uint32_t logical_blocks_per_chunk; 125 struct spdk_reduce_pm_file pm_file; 126 struct spdk_reduce_backing_dev *backing_dev; 127 struct spdk_reduce_vol_superblock *backing_super; 128 struct spdk_reduce_vol_superblock *pm_super; 129 uint64_t *pm_logical_map; 130 uint64_t *pm_chunk_maps; 131 132 struct spdk_bit_array *allocated_chunk_maps; 133 /* The starting position when looking for a block from allocated_chunk_maps */ 134 uint64_t find_chunk_offset; 135 /* Cache free chunks to speed up lookup of free chunk. */ 136 struct reduce_queue free_chunks_queue; 137 struct spdk_bit_array *allocated_backing_io_units; 138 /* The starting position when looking for a block from allocated_backing_io_units */ 139 uint64_t find_block_offset; 140 /* Cache free blocks for backing bdev to speed up lookup of free backing blocks. */ 141 struct reduce_queue free_backing_blocks_queue; 142 143 struct spdk_reduce_vol_request *request_mem; 144 TAILQ_HEAD(, spdk_reduce_vol_request) free_requests; 145 RB_HEAD(executing_req_tree, spdk_reduce_vol_request) executing_requests; 146 TAILQ_HEAD(, spdk_reduce_vol_request) queued_requests; 147 148 /* Single contiguous buffer used for all request buffers for this volume. */ 149 uint8_t *buf_mem; 150 struct iovec *buf_iov_mem; 151 /* Single contiguous buffer used for backing io buffers for this volume. */ 152 uint8_t *buf_backing_io_mem; 153 }; 154 155 static void _start_readv_request(struct spdk_reduce_vol_request *req); 156 static void _start_writev_request(struct spdk_reduce_vol_request *req); 157 static uint8_t *g_zero_buf; 158 static int g_vol_count = 0; 159 160 /* 161 * Allocate extra metadata chunks and corresponding backing io units to account for 162 * outstanding IO in worst case scenario where logical map is completely allocated 163 * and no data can be compressed. We need extra chunks in this case to handle 164 * in-flight writes since reduce never writes data in place. 165 */ 166 #define REDUCE_NUM_EXTRA_CHUNKS 128 167 168 static void 169 _reduce_persist(struct spdk_reduce_vol *vol, const void *addr, size_t len) 170 { 171 if (vol->pm_file.pm_is_pmem) { 172 pmem_persist(addr, len); 173 } else { 174 pmem_msync(addr, len); 175 } 176 } 177 178 static uint64_t 179 _get_pm_logical_map_size(uint64_t vol_size, uint64_t chunk_size) 180 { 181 uint64_t chunks_in_logical_map, logical_map_size; 182 183 chunks_in_logical_map = vol_size / chunk_size; 184 logical_map_size = chunks_in_logical_map * sizeof(uint64_t); 185 186 /* Round up to next cacheline. */ 187 return spdk_divide_round_up(logical_map_size, REDUCE_PM_SIZE_ALIGNMENT) * 188 REDUCE_PM_SIZE_ALIGNMENT; 189 } 190 191 static uint64_t 192 _get_total_chunks(uint64_t vol_size, uint64_t chunk_size) 193 { 194 uint64_t num_chunks; 195 196 num_chunks = vol_size / chunk_size; 197 num_chunks += REDUCE_NUM_EXTRA_CHUNKS; 198 199 return num_chunks; 200 } 201 202 static inline uint32_t 203 _reduce_vol_get_chunk_struct_size(uint64_t backing_io_units_per_chunk) 204 { 205 return sizeof(struct spdk_reduce_chunk_map) + sizeof(uint64_t) * backing_io_units_per_chunk; 206 } 207 208 static uint64_t 209 _get_pm_total_chunks_size(uint64_t vol_size, uint64_t chunk_size, uint64_t backing_io_unit_size) 210 { 211 uint64_t io_units_per_chunk, num_chunks, total_chunks_size; 212 213 num_chunks = _get_total_chunks(vol_size, chunk_size); 214 io_units_per_chunk = chunk_size / backing_io_unit_size; 215 216 total_chunks_size = num_chunks * _reduce_vol_get_chunk_struct_size(io_units_per_chunk); 217 218 return spdk_divide_round_up(total_chunks_size, REDUCE_PM_SIZE_ALIGNMENT) * 219 REDUCE_PM_SIZE_ALIGNMENT; 220 } 221 222 static struct spdk_reduce_chunk_map * 223 _reduce_vol_get_chunk_map(struct spdk_reduce_vol *vol, uint64_t chunk_map_index) 224 { 225 uintptr_t chunk_map_addr; 226 227 assert(chunk_map_index < _get_total_chunks(vol->params.vol_size, vol->params.chunk_size)); 228 229 chunk_map_addr = (uintptr_t)vol->pm_chunk_maps; 230 chunk_map_addr += chunk_map_index * 231 _reduce_vol_get_chunk_struct_size(vol->backing_io_units_per_chunk); 232 233 return (struct spdk_reduce_chunk_map *)chunk_map_addr; 234 } 235 236 static int 237 _validate_vol_params(struct spdk_reduce_vol_params *params) 238 { 239 if (params->vol_size > 0) { 240 /** 241 * User does not pass in the vol size - it gets calculated by libreduce from 242 * values in this structure plus the size of the backing device. 243 */ 244 return -EINVAL; 245 } 246 247 if (params->chunk_size == 0 || params->backing_io_unit_size == 0 || 248 params->logical_block_size == 0) { 249 return -EINVAL; 250 } 251 252 /* Chunk size must be an even multiple of the backing io unit size. */ 253 if ((params->chunk_size % params->backing_io_unit_size) != 0) { 254 return -EINVAL; 255 } 256 257 /* Chunk size must be an even multiple of the logical block size. */ 258 if ((params->chunk_size % params->logical_block_size) != 0) { 259 return -1; 260 } 261 262 return 0; 263 } 264 265 static uint64_t 266 _get_vol_size(uint64_t chunk_size, uint64_t backing_dev_size) 267 { 268 uint64_t num_chunks; 269 270 num_chunks = backing_dev_size / chunk_size; 271 if (num_chunks <= REDUCE_NUM_EXTRA_CHUNKS) { 272 return 0; 273 } 274 275 num_chunks -= REDUCE_NUM_EXTRA_CHUNKS; 276 return num_chunks * chunk_size; 277 } 278 279 static uint64_t 280 _get_pm_file_size(struct spdk_reduce_vol_params *params) 281 { 282 uint64_t total_pm_size; 283 284 total_pm_size = sizeof(struct spdk_reduce_vol_superblock); 285 total_pm_size += _get_pm_logical_map_size(params->vol_size, params->chunk_size); 286 total_pm_size += _get_pm_total_chunks_size(params->vol_size, params->chunk_size, 287 params->backing_io_unit_size); 288 return total_pm_size; 289 } 290 291 const struct spdk_uuid * 292 spdk_reduce_vol_get_uuid(struct spdk_reduce_vol *vol) 293 { 294 return &vol->params.uuid; 295 } 296 297 static void 298 _initialize_vol_pm_pointers(struct spdk_reduce_vol *vol) 299 { 300 uint64_t logical_map_size; 301 302 /* Superblock is at the beginning of the pm file. */ 303 vol->pm_super = (struct spdk_reduce_vol_superblock *)vol->pm_file.pm_buf; 304 305 /* Logical map immediately follows the super block. */ 306 vol->pm_logical_map = (uint64_t *)(vol->pm_super + 1); 307 308 /* Chunks maps follow the logical map. */ 309 logical_map_size = _get_pm_logical_map_size(vol->params.vol_size, vol->params.chunk_size); 310 vol->pm_chunk_maps = (uint64_t *)((uint8_t *)vol->pm_logical_map + logical_map_size); 311 } 312 313 /* We need 2 iovs during load - one for the superblock, another for the path */ 314 #define LOAD_IOV_COUNT 2 315 316 struct reduce_init_load_ctx { 317 struct spdk_reduce_vol *vol; 318 struct spdk_reduce_vol_cb_args backing_cb_args; 319 spdk_reduce_vol_op_with_handle_complete cb_fn; 320 void *cb_arg; 321 struct iovec iov[LOAD_IOV_COUNT]; 322 void *path; 323 struct spdk_reduce_backing_io *backing_io; 324 }; 325 326 static inline bool 327 _addr_crosses_huge_page(const void *addr, size_t *size) 328 { 329 size_t _size; 330 uint64_t rc; 331 332 assert(size); 333 334 _size = *size; 335 rc = spdk_vtophys(addr, size); 336 337 return rc == SPDK_VTOPHYS_ERROR || _size != *size; 338 } 339 340 static inline int 341 _set_buffer(uint8_t **vol_buffer, uint8_t **_addr, uint8_t *addr_range, size_t buffer_size) 342 { 343 uint8_t *addr; 344 size_t size_tmp = buffer_size; 345 346 addr = *_addr; 347 348 /* Verify that addr + buffer_size doesn't cross huge page boundary */ 349 if (_addr_crosses_huge_page(addr, &size_tmp)) { 350 /* Memory start is aligned on 2MiB, so buffer should be located at the end of the page. 351 * Skip remaining bytes and continue from the beginning of the next page */ 352 addr += size_tmp; 353 } 354 355 if (addr + buffer_size > addr_range) { 356 SPDK_ERRLOG("Vol buffer %p out of range %p\n", addr, addr_range); 357 return -ERANGE; 358 } 359 360 *vol_buffer = addr; 361 *_addr = addr + buffer_size; 362 363 return 0; 364 } 365 366 static int 367 _allocate_vol_requests(struct spdk_reduce_vol *vol) 368 { 369 struct spdk_reduce_vol_request *req; 370 struct spdk_reduce_backing_dev *backing_dev = vol->backing_dev; 371 uint32_t reqs_in_2mb_page, huge_pages_needed; 372 uint8_t *buffer, *buffer_end; 373 int i = 0; 374 int rc = 0; 375 376 /* It is needed to allocate comp and decomp buffers so that they do not cross physical 377 * page boundaries. Assume that the system uses default 2MiB pages and chunk_size is not 378 * necessarily power of 2 379 * Allocate 2x since we need buffers for both read/write and compress/decompress 380 * intermediate buffers. */ 381 reqs_in_2mb_page = VALUE_2MB / (vol->params.chunk_size * 2); 382 if (!reqs_in_2mb_page) { 383 return -EINVAL; 384 } 385 huge_pages_needed = SPDK_CEIL_DIV(REDUCE_NUM_VOL_REQUESTS, reqs_in_2mb_page); 386 387 vol->buf_mem = spdk_dma_malloc(VALUE_2MB * huge_pages_needed, VALUE_2MB, NULL); 388 if (vol->buf_mem == NULL) { 389 return -ENOMEM; 390 } 391 392 vol->request_mem = calloc(REDUCE_NUM_VOL_REQUESTS, sizeof(*req)); 393 if (vol->request_mem == NULL) { 394 spdk_free(vol->buf_mem); 395 vol->buf_mem = NULL; 396 return -ENOMEM; 397 } 398 399 /* Allocate 2x since we need iovs for both read/write and compress/decompress intermediate 400 * buffers. 401 */ 402 vol->buf_iov_mem = calloc(REDUCE_NUM_VOL_REQUESTS, 403 2 * sizeof(struct iovec) * vol->backing_io_units_per_chunk); 404 if (vol->buf_iov_mem == NULL) { 405 free(vol->request_mem); 406 spdk_free(vol->buf_mem); 407 vol->request_mem = NULL; 408 vol->buf_mem = NULL; 409 return -ENOMEM; 410 } 411 412 vol->buf_backing_io_mem = calloc(REDUCE_NUM_VOL_REQUESTS, (sizeof(struct spdk_reduce_backing_io) + 413 backing_dev->user_ctx_size) * vol->backing_io_units_per_chunk); 414 if (vol->buf_backing_io_mem == NULL) { 415 free(vol->request_mem); 416 free(vol->buf_iov_mem); 417 spdk_free(vol->buf_mem); 418 vol->request_mem = NULL; 419 vol->buf_iov_mem = NULL; 420 vol->buf_mem = NULL; 421 return -ENOMEM; 422 } 423 424 buffer = vol->buf_mem; 425 buffer_end = buffer + VALUE_2MB * huge_pages_needed; 426 427 for (i = 0; i < REDUCE_NUM_VOL_REQUESTS; i++) { 428 req = &vol->request_mem[i]; 429 TAILQ_INSERT_HEAD(&vol->free_requests, req, tailq); 430 req->backing_io = (struct spdk_reduce_backing_io *)(vol->buf_backing_io_mem + i * 431 (sizeof(struct spdk_reduce_backing_io) + backing_dev->user_ctx_size) * 432 vol->backing_io_units_per_chunk); 433 434 req->decomp_buf_iov = &vol->buf_iov_mem[(2 * i) * vol->backing_io_units_per_chunk]; 435 req->comp_buf_iov = &vol->buf_iov_mem[(2 * i + 1) * vol->backing_io_units_per_chunk]; 436 437 rc = _set_buffer(&req->comp_buf, &buffer, buffer_end, vol->params.chunk_size); 438 if (rc) { 439 SPDK_ERRLOG("Failed to set comp buffer for req idx %u, addr %p, start %p, end %p\n", i, buffer, 440 vol->buf_mem, buffer_end); 441 break; 442 } 443 rc = _set_buffer(&req->decomp_buf, &buffer, buffer_end, vol->params.chunk_size); 444 if (rc) { 445 SPDK_ERRLOG("Failed to set decomp buffer for req idx %u, addr %p, start %p, end %p\n", i, buffer, 446 vol->buf_mem, buffer_end); 447 break; 448 } 449 } 450 451 if (rc) { 452 free(vol->buf_backing_io_mem); 453 free(vol->buf_iov_mem); 454 free(vol->request_mem); 455 spdk_free(vol->buf_mem); 456 vol->buf_mem = NULL; 457 vol->buf_backing_io_mem = NULL; 458 vol->buf_iov_mem = NULL; 459 vol->request_mem = NULL; 460 } 461 462 return rc; 463 } 464 465 static void 466 _init_load_cleanup(struct spdk_reduce_vol *vol, struct reduce_init_load_ctx *ctx) 467 { 468 if (ctx != NULL) { 469 spdk_free(ctx->path); 470 free(ctx->backing_io); 471 free(ctx); 472 } 473 474 if (vol != NULL) { 475 if (vol->pm_file.pm_buf != NULL) { 476 pmem_unmap(vol->pm_file.pm_buf, vol->pm_file.size); 477 } 478 479 spdk_free(vol->backing_super); 480 spdk_bit_array_free(&vol->allocated_chunk_maps); 481 spdk_bit_array_free(&vol->allocated_backing_io_units); 482 free(vol->request_mem); 483 free(vol->buf_backing_io_mem); 484 free(vol->buf_iov_mem); 485 spdk_free(vol->buf_mem); 486 free(vol); 487 } 488 } 489 490 static int 491 _alloc_zero_buff(void) 492 { 493 int rc = 0; 494 495 /* The zero buffer is shared between all volumes and just used 496 * for reads so allocate one global instance here if not already 497 * allocated when another vol init'd or loaded. 498 */ 499 if (g_vol_count++ == 0) { 500 g_zero_buf = spdk_zmalloc(REDUCE_ZERO_BUF_SIZE, 501 64, NULL, SPDK_ENV_LCORE_ID_ANY, 502 SPDK_MALLOC_DMA); 503 if (g_zero_buf == NULL) { 504 g_vol_count--; 505 rc = -ENOMEM; 506 } 507 } 508 return rc; 509 } 510 511 static void 512 _init_write_super_cpl(void *cb_arg, int reduce_errno) 513 { 514 struct reduce_init_load_ctx *init_ctx = cb_arg; 515 int rc; 516 517 rc = _allocate_vol_requests(init_ctx->vol); 518 if (rc != 0) { 519 init_ctx->cb_fn(init_ctx->cb_arg, NULL, rc); 520 _init_load_cleanup(init_ctx->vol, init_ctx); 521 return; 522 } 523 524 rc = _alloc_zero_buff(); 525 if (rc != 0) { 526 init_ctx->cb_fn(init_ctx->cb_arg, NULL, rc); 527 _init_load_cleanup(init_ctx->vol, init_ctx); 528 return; 529 } 530 531 init_ctx->cb_fn(init_ctx->cb_arg, init_ctx->vol, reduce_errno); 532 /* Only clean up the ctx - the vol has been passed to the application 533 * for use now that initialization was successful. 534 */ 535 _init_load_cleanup(NULL, init_ctx); 536 } 537 538 static void 539 _init_write_path_cpl(void *cb_arg, int reduce_errno) 540 { 541 struct reduce_init_load_ctx *init_ctx = cb_arg; 542 struct spdk_reduce_vol *vol = init_ctx->vol; 543 struct spdk_reduce_backing_io *backing_io = init_ctx->backing_io; 544 545 init_ctx->iov[0].iov_base = vol->backing_super; 546 init_ctx->iov[0].iov_len = sizeof(*vol->backing_super); 547 init_ctx->backing_cb_args.cb_fn = _init_write_super_cpl; 548 init_ctx->backing_cb_args.cb_arg = init_ctx; 549 550 backing_io->dev = vol->backing_dev; 551 backing_io->iov = init_ctx->iov; 552 backing_io->iovcnt = 1; 553 backing_io->lba = 0; 554 backing_io->lba_count = sizeof(*vol->backing_super) / vol->backing_dev->blocklen; 555 backing_io->backing_cb_args = &init_ctx->backing_cb_args; 556 backing_io->backing_io_type = SPDK_REDUCE_BACKING_IO_WRITE; 557 558 vol->backing_dev->submit_backing_io(backing_io); 559 } 560 561 static int 562 _allocate_bit_arrays(struct spdk_reduce_vol *vol) 563 { 564 uint64_t total_chunks, total_backing_io_units; 565 uint32_t i, num_metadata_io_units; 566 567 total_chunks = _get_total_chunks(vol->params.vol_size, vol->params.chunk_size); 568 vol->allocated_chunk_maps = spdk_bit_array_create(total_chunks); 569 vol->find_chunk_offset = 0; 570 total_backing_io_units = total_chunks * (vol->params.chunk_size / vol->params.backing_io_unit_size); 571 vol->allocated_backing_io_units = spdk_bit_array_create(total_backing_io_units); 572 vol->find_block_offset = 0; 573 574 if (vol->allocated_chunk_maps == NULL || vol->allocated_backing_io_units == NULL) { 575 return -ENOMEM; 576 } 577 578 /* Set backing io unit bits associated with metadata. */ 579 num_metadata_io_units = (sizeof(*vol->backing_super) + REDUCE_PATH_MAX) / 580 vol->params.backing_io_unit_size; 581 for (i = 0; i < num_metadata_io_units; i++) { 582 spdk_bit_array_set(vol->allocated_backing_io_units, i); 583 } 584 585 return 0; 586 } 587 588 static int 589 overlap_cmp(struct spdk_reduce_vol_request *req1, struct spdk_reduce_vol_request *req2) 590 { 591 return (req1->logical_map_index < req2->logical_map_index ? -1 : req1->logical_map_index > 592 req2->logical_map_index); 593 } 594 RB_GENERATE_STATIC(executing_req_tree, spdk_reduce_vol_request, rbnode, overlap_cmp); 595 596 597 void 598 spdk_reduce_vol_init(struct spdk_reduce_vol_params *params, 599 struct spdk_reduce_backing_dev *backing_dev, 600 const char *pm_file_dir, 601 spdk_reduce_vol_op_with_handle_complete cb_fn, void *cb_arg) 602 { 603 struct spdk_reduce_vol *vol; 604 struct reduce_init_load_ctx *init_ctx; 605 struct spdk_reduce_backing_io *backing_io; 606 uint64_t backing_dev_size; 607 size_t mapped_len; 608 int dir_len, max_dir_len, rc; 609 610 /* We need to append a path separator and the UUID to the supplied 611 * path. 612 */ 613 max_dir_len = REDUCE_PATH_MAX - SPDK_UUID_STRING_LEN - 1; 614 dir_len = strnlen(pm_file_dir, max_dir_len); 615 /* Strip trailing slash if the user provided one - we will add it back 616 * later when appending the filename. 617 */ 618 if (pm_file_dir[dir_len - 1] == '/') { 619 dir_len--; 620 } 621 if (dir_len == max_dir_len) { 622 SPDK_ERRLOG("pm_file_dir (%s) too long\n", pm_file_dir); 623 cb_fn(cb_arg, NULL, -EINVAL); 624 return; 625 } 626 627 rc = _validate_vol_params(params); 628 if (rc != 0) { 629 SPDK_ERRLOG("invalid vol params\n"); 630 cb_fn(cb_arg, NULL, rc); 631 return; 632 } 633 634 backing_dev_size = backing_dev->blockcnt * backing_dev->blocklen; 635 params->vol_size = _get_vol_size(params->chunk_size, backing_dev_size); 636 if (params->vol_size == 0) { 637 SPDK_ERRLOG("backing device is too small\n"); 638 cb_fn(cb_arg, NULL, -EINVAL); 639 return; 640 } 641 642 if (backing_dev->submit_backing_io == NULL) { 643 SPDK_ERRLOG("backing_dev function pointer not specified\n"); 644 cb_fn(cb_arg, NULL, -EINVAL); 645 return; 646 } 647 648 vol = calloc(1, sizeof(*vol)); 649 if (vol == NULL) { 650 cb_fn(cb_arg, NULL, -ENOMEM); 651 return; 652 } 653 654 TAILQ_INIT(&vol->free_requests); 655 RB_INIT(&vol->executing_requests); 656 TAILQ_INIT(&vol->queued_requests); 657 queue_init(&vol->free_chunks_queue); 658 queue_init(&vol->free_backing_blocks_queue); 659 660 vol->backing_super = spdk_zmalloc(sizeof(*vol->backing_super), 0, NULL, 661 SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 662 if (vol->backing_super == NULL) { 663 cb_fn(cb_arg, NULL, -ENOMEM); 664 _init_load_cleanup(vol, NULL); 665 return; 666 } 667 668 init_ctx = calloc(1, sizeof(*init_ctx)); 669 if (init_ctx == NULL) { 670 cb_fn(cb_arg, NULL, -ENOMEM); 671 _init_load_cleanup(vol, NULL); 672 return; 673 } 674 675 backing_io = calloc(1, sizeof(*backing_io) + backing_dev->user_ctx_size); 676 if (backing_io == NULL) { 677 cb_fn(cb_arg, NULL, -ENOMEM); 678 _init_load_cleanup(vol, init_ctx); 679 return; 680 } 681 init_ctx->backing_io = backing_io; 682 683 init_ctx->path = spdk_zmalloc(REDUCE_PATH_MAX, 0, NULL, 684 SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 685 if (init_ctx->path == NULL) { 686 cb_fn(cb_arg, NULL, -ENOMEM); 687 _init_load_cleanup(vol, init_ctx); 688 return; 689 } 690 691 if (spdk_uuid_is_null(¶ms->uuid)) { 692 spdk_uuid_generate(¶ms->uuid); 693 } 694 695 memcpy(vol->pm_file.path, pm_file_dir, dir_len); 696 vol->pm_file.path[dir_len] = '/'; 697 spdk_uuid_fmt_lower(&vol->pm_file.path[dir_len + 1], SPDK_UUID_STRING_LEN, 698 ¶ms->uuid); 699 vol->pm_file.size = _get_pm_file_size(params); 700 vol->pm_file.pm_buf = pmem_map_file(vol->pm_file.path, vol->pm_file.size, 701 PMEM_FILE_CREATE | PMEM_FILE_EXCL, 0600, 702 &mapped_len, &vol->pm_file.pm_is_pmem); 703 if (vol->pm_file.pm_buf == NULL) { 704 SPDK_ERRLOG("could not pmem_map_file(%s): %s\n", 705 vol->pm_file.path, strerror(errno)); 706 cb_fn(cb_arg, NULL, -errno); 707 _init_load_cleanup(vol, init_ctx); 708 return; 709 } 710 711 if (vol->pm_file.size != mapped_len) { 712 SPDK_ERRLOG("could not map entire pmem file (size=%" PRIu64 " mapped=%" PRIu64 ")\n", 713 vol->pm_file.size, mapped_len); 714 cb_fn(cb_arg, NULL, -ENOMEM); 715 _init_load_cleanup(vol, init_ctx); 716 return; 717 } 718 719 vol->backing_io_units_per_chunk = params->chunk_size / params->backing_io_unit_size; 720 vol->logical_blocks_per_chunk = params->chunk_size / params->logical_block_size; 721 vol->backing_lba_per_io_unit = params->backing_io_unit_size / backing_dev->blocklen; 722 memcpy(&vol->params, params, sizeof(*params)); 723 724 vol->backing_dev = backing_dev; 725 726 rc = _allocate_bit_arrays(vol); 727 if (rc != 0) { 728 cb_fn(cb_arg, NULL, rc); 729 _init_load_cleanup(vol, init_ctx); 730 return; 731 } 732 733 memcpy(vol->backing_super->signature, SPDK_REDUCE_SIGNATURE, 734 sizeof(vol->backing_super->signature)); 735 memcpy(&vol->backing_super->params, params, sizeof(*params)); 736 737 _initialize_vol_pm_pointers(vol); 738 739 memcpy(vol->pm_super, vol->backing_super, sizeof(*vol->backing_super)); 740 /* Writing 0xFF's is equivalent of filling it all with SPDK_EMPTY_MAP_ENTRY. 741 * Note that this writes 0xFF to not just the logical map but the chunk maps as well. 742 */ 743 memset(vol->pm_logical_map, 0xFF, vol->pm_file.size - sizeof(*vol->backing_super)); 744 _reduce_persist(vol, vol->pm_file.pm_buf, vol->pm_file.size); 745 746 init_ctx->vol = vol; 747 init_ctx->cb_fn = cb_fn; 748 init_ctx->cb_arg = cb_arg; 749 750 memcpy(init_ctx->path, vol->pm_file.path, REDUCE_PATH_MAX); 751 init_ctx->iov[0].iov_base = init_ctx->path; 752 init_ctx->iov[0].iov_len = REDUCE_PATH_MAX; 753 init_ctx->backing_cb_args.cb_fn = _init_write_path_cpl; 754 init_ctx->backing_cb_args.cb_arg = init_ctx; 755 /* Write path to offset 4K on backing device - just after where the super 756 * block will be written. We wait until this is committed before writing the 757 * super block to guarantee we don't get the super block written without the 758 * the path if the system crashed in the middle of a write operation. 759 */ 760 backing_io->dev = vol->backing_dev; 761 backing_io->iov = init_ctx->iov; 762 backing_io->iovcnt = 1; 763 backing_io->lba = REDUCE_BACKING_DEV_PATH_OFFSET / vol->backing_dev->blocklen; 764 backing_io->lba_count = REDUCE_PATH_MAX / vol->backing_dev->blocklen; 765 backing_io->backing_cb_args = &init_ctx->backing_cb_args; 766 backing_io->backing_io_type = SPDK_REDUCE_BACKING_IO_WRITE; 767 768 vol->backing_dev->submit_backing_io(backing_io); 769 } 770 771 static void destroy_load_cb(void *cb_arg, struct spdk_reduce_vol *vol, int reduce_errno); 772 773 static void 774 _load_read_super_and_path_cpl(void *cb_arg, int reduce_errno) 775 { 776 struct reduce_init_load_ctx *load_ctx = cb_arg; 777 struct spdk_reduce_vol *vol = load_ctx->vol; 778 uint64_t backing_dev_size; 779 uint64_t i, num_chunks, logical_map_index; 780 struct spdk_reduce_chunk_map *chunk; 781 size_t mapped_len; 782 uint32_t j; 783 int rc; 784 785 rc = _alloc_zero_buff(); 786 if (rc) { 787 goto error; 788 } 789 790 if (memcmp(vol->backing_super->signature, 791 SPDK_REDUCE_SIGNATURE, 792 sizeof(vol->backing_super->signature)) != 0) { 793 /* This backing device isn't a libreduce backing device. */ 794 rc = -EILSEQ; 795 goto error; 796 } 797 798 /* If the cb_fn is destroy_load_cb, it means we are wanting to destroy this compress bdev. 799 * So don't bother getting the volume ready to use - invoke the callback immediately 800 * so destroy_load_cb can delete the metadata off of the block device and delete the 801 * persistent memory file if it exists. 802 */ 803 memcpy(vol->pm_file.path, load_ctx->path, sizeof(vol->pm_file.path)); 804 if (load_ctx->cb_fn == (*destroy_load_cb)) { 805 load_ctx->cb_fn(load_ctx->cb_arg, vol, 0); 806 _init_load_cleanup(NULL, load_ctx); 807 return; 808 } 809 810 memcpy(&vol->params, &vol->backing_super->params, sizeof(vol->params)); 811 vol->backing_io_units_per_chunk = vol->params.chunk_size / vol->params.backing_io_unit_size; 812 vol->logical_blocks_per_chunk = vol->params.chunk_size / vol->params.logical_block_size; 813 vol->backing_lba_per_io_unit = vol->params.backing_io_unit_size / vol->backing_dev->blocklen; 814 815 rc = _allocate_bit_arrays(vol); 816 if (rc != 0) { 817 goto error; 818 } 819 820 backing_dev_size = vol->backing_dev->blockcnt * vol->backing_dev->blocklen; 821 if (_get_vol_size(vol->params.chunk_size, backing_dev_size) < vol->params.vol_size) { 822 SPDK_ERRLOG("backing device size %" PRIi64 " smaller than expected\n", 823 backing_dev_size); 824 rc = -EILSEQ; 825 goto error; 826 } 827 828 vol->pm_file.size = _get_pm_file_size(&vol->params); 829 vol->pm_file.pm_buf = pmem_map_file(vol->pm_file.path, 0, 0, 0, &mapped_len, 830 &vol->pm_file.pm_is_pmem); 831 if (vol->pm_file.pm_buf == NULL) { 832 SPDK_ERRLOG("could not pmem_map_file(%s): %s\n", vol->pm_file.path, strerror(errno)); 833 rc = -errno; 834 goto error; 835 } 836 837 if (vol->pm_file.size != mapped_len) { 838 SPDK_ERRLOG("could not map entire pmem file (size=%" PRIu64 " mapped=%" PRIu64 ")\n", 839 vol->pm_file.size, mapped_len); 840 rc = -ENOMEM; 841 goto error; 842 } 843 844 rc = _allocate_vol_requests(vol); 845 if (rc != 0) { 846 goto error; 847 } 848 849 _initialize_vol_pm_pointers(vol); 850 851 num_chunks = vol->params.vol_size / vol->params.chunk_size; 852 for (i = 0; i < num_chunks; i++) { 853 logical_map_index = vol->pm_logical_map[i]; 854 if (logical_map_index == REDUCE_EMPTY_MAP_ENTRY) { 855 continue; 856 } 857 spdk_bit_array_set(vol->allocated_chunk_maps, logical_map_index); 858 chunk = _reduce_vol_get_chunk_map(vol, logical_map_index); 859 for (j = 0; j < vol->backing_io_units_per_chunk; j++) { 860 if (chunk->io_unit_index[j] != REDUCE_EMPTY_MAP_ENTRY) { 861 spdk_bit_array_set(vol->allocated_backing_io_units, chunk->io_unit_index[j]); 862 } 863 } 864 } 865 866 load_ctx->cb_fn(load_ctx->cb_arg, vol, 0); 867 /* Only clean up the ctx - the vol has been passed to the application 868 * for use now that volume load was successful. 869 */ 870 _init_load_cleanup(NULL, load_ctx); 871 return; 872 873 error: 874 load_ctx->cb_fn(load_ctx->cb_arg, NULL, rc); 875 _init_load_cleanup(vol, load_ctx); 876 } 877 878 void 879 spdk_reduce_vol_load(struct spdk_reduce_backing_dev *backing_dev, 880 spdk_reduce_vol_op_with_handle_complete cb_fn, void *cb_arg) 881 { 882 struct spdk_reduce_vol *vol; 883 struct reduce_init_load_ctx *load_ctx; 884 struct spdk_reduce_backing_io *backing_io; 885 886 if (backing_dev->submit_backing_io == NULL) { 887 SPDK_ERRLOG("backing_dev function pointer not specified\n"); 888 cb_fn(cb_arg, NULL, -EINVAL); 889 return; 890 } 891 892 vol = calloc(1, sizeof(*vol)); 893 if (vol == NULL) { 894 cb_fn(cb_arg, NULL, -ENOMEM); 895 return; 896 } 897 898 TAILQ_INIT(&vol->free_requests); 899 RB_INIT(&vol->executing_requests); 900 TAILQ_INIT(&vol->queued_requests); 901 queue_init(&vol->free_chunks_queue); 902 queue_init(&vol->free_backing_blocks_queue); 903 904 vol->backing_super = spdk_zmalloc(sizeof(*vol->backing_super), 64, NULL, 905 SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 906 if (vol->backing_super == NULL) { 907 _init_load_cleanup(vol, NULL); 908 cb_fn(cb_arg, NULL, -ENOMEM); 909 return; 910 } 911 912 vol->backing_dev = backing_dev; 913 914 load_ctx = calloc(1, sizeof(*load_ctx)); 915 if (load_ctx == NULL) { 916 _init_load_cleanup(vol, NULL); 917 cb_fn(cb_arg, NULL, -ENOMEM); 918 return; 919 } 920 921 backing_io = calloc(1, sizeof(*backing_io) + backing_dev->user_ctx_size); 922 if (backing_io == NULL) { 923 _init_load_cleanup(vol, load_ctx); 924 cb_fn(cb_arg, NULL, -ENOMEM); 925 return; 926 } 927 928 load_ctx->backing_io = backing_io; 929 930 load_ctx->path = spdk_zmalloc(REDUCE_PATH_MAX, 64, NULL, 931 SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 932 if (load_ctx->path == NULL) { 933 _init_load_cleanup(vol, load_ctx); 934 cb_fn(cb_arg, NULL, -ENOMEM); 935 return; 936 } 937 938 load_ctx->vol = vol; 939 load_ctx->cb_fn = cb_fn; 940 load_ctx->cb_arg = cb_arg; 941 942 load_ctx->iov[0].iov_base = vol->backing_super; 943 load_ctx->iov[0].iov_len = sizeof(*vol->backing_super); 944 load_ctx->iov[1].iov_base = load_ctx->path; 945 load_ctx->iov[1].iov_len = REDUCE_PATH_MAX; 946 backing_io->dev = vol->backing_dev; 947 backing_io->iov = load_ctx->iov; 948 backing_io->iovcnt = LOAD_IOV_COUNT; 949 backing_io->lba = 0; 950 backing_io->lba_count = (sizeof(*vol->backing_super) + REDUCE_PATH_MAX) / 951 vol->backing_dev->blocklen; 952 backing_io->backing_cb_args = &load_ctx->backing_cb_args; 953 backing_io->backing_io_type = SPDK_REDUCE_BACKING_IO_READ; 954 955 load_ctx->backing_cb_args.cb_fn = _load_read_super_and_path_cpl; 956 load_ctx->backing_cb_args.cb_arg = load_ctx; 957 vol->backing_dev->submit_backing_io(backing_io); 958 } 959 960 void 961 spdk_reduce_vol_unload(struct spdk_reduce_vol *vol, 962 spdk_reduce_vol_op_complete cb_fn, void *cb_arg) 963 { 964 if (vol == NULL) { 965 /* This indicates a programming error. */ 966 assert(false); 967 cb_fn(cb_arg, -EINVAL); 968 return; 969 } 970 971 if (--g_vol_count == 0) { 972 spdk_free(g_zero_buf); 973 } 974 assert(g_vol_count >= 0); 975 _init_load_cleanup(vol, NULL); 976 cb_fn(cb_arg, 0); 977 } 978 979 struct reduce_destroy_ctx { 980 spdk_reduce_vol_op_complete cb_fn; 981 void *cb_arg; 982 struct spdk_reduce_vol *vol; 983 struct spdk_reduce_vol_superblock *super; 984 struct iovec iov; 985 struct spdk_reduce_vol_cb_args backing_cb_args; 986 int reduce_errno; 987 char pm_path[REDUCE_PATH_MAX]; 988 struct spdk_reduce_backing_io *backing_io; 989 }; 990 991 static void 992 destroy_unload_cpl(void *cb_arg, int reduce_errno) 993 { 994 struct reduce_destroy_ctx *destroy_ctx = cb_arg; 995 996 if (destroy_ctx->reduce_errno == 0) { 997 if (unlink(destroy_ctx->pm_path)) { 998 SPDK_ERRLOG("%s could not be unlinked: %s\n", 999 destroy_ctx->pm_path, strerror(errno)); 1000 } 1001 } 1002 1003 /* Even if the unload somehow failed, we still pass the destroy_ctx 1004 * reduce_errno since that indicates whether or not the volume was 1005 * actually destroyed. 1006 */ 1007 destroy_ctx->cb_fn(destroy_ctx->cb_arg, destroy_ctx->reduce_errno); 1008 spdk_free(destroy_ctx->super); 1009 free(destroy_ctx->backing_io); 1010 free(destroy_ctx); 1011 } 1012 1013 static void 1014 _destroy_zero_super_cpl(void *cb_arg, int reduce_errno) 1015 { 1016 struct reduce_destroy_ctx *destroy_ctx = cb_arg; 1017 struct spdk_reduce_vol *vol = destroy_ctx->vol; 1018 1019 destroy_ctx->reduce_errno = reduce_errno; 1020 spdk_reduce_vol_unload(vol, destroy_unload_cpl, destroy_ctx); 1021 } 1022 1023 static void 1024 destroy_load_cb(void *cb_arg, struct spdk_reduce_vol *vol, int reduce_errno) 1025 { 1026 struct reduce_destroy_ctx *destroy_ctx = cb_arg; 1027 struct spdk_reduce_backing_io *backing_io = destroy_ctx->backing_io; 1028 1029 if (reduce_errno != 0) { 1030 destroy_ctx->cb_fn(destroy_ctx->cb_arg, reduce_errno); 1031 spdk_free(destroy_ctx->super); 1032 free(destroy_ctx); 1033 return; 1034 } 1035 1036 destroy_ctx->vol = vol; 1037 memcpy(destroy_ctx->pm_path, vol->pm_file.path, sizeof(destroy_ctx->pm_path)); 1038 destroy_ctx->iov.iov_base = destroy_ctx->super; 1039 destroy_ctx->iov.iov_len = sizeof(*destroy_ctx->super); 1040 destroy_ctx->backing_cb_args.cb_fn = _destroy_zero_super_cpl; 1041 destroy_ctx->backing_cb_args.cb_arg = destroy_ctx; 1042 1043 backing_io->dev = vol->backing_dev; 1044 backing_io->iov = &destroy_ctx->iov; 1045 backing_io->iovcnt = 1; 1046 backing_io->lba = 0; 1047 backing_io->lba_count = sizeof(*destroy_ctx->super) / vol->backing_dev->blocklen; 1048 backing_io->backing_cb_args = &destroy_ctx->backing_cb_args; 1049 backing_io->backing_io_type = SPDK_REDUCE_BACKING_IO_WRITE; 1050 1051 vol->backing_dev->submit_backing_io(backing_io); 1052 } 1053 1054 void 1055 spdk_reduce_vol_destroy(struct spdk_reduce_backing_dev *backing_dev, 1056 spdk_reduce_vol_op_complete cb_fn, void *cb_arg) 1057 { 1058 struct reduce_destroy_ctx *destroy_ctx; 1059 struct spdk_reduce_backing_io *backing_io; 1060 1061 destroy_ctx = calloc(1, sizeof(*destroy_ctx)); 1062 if (destroy_ctx == NULL) { 1063 cb_fn(cb_arg, -ENOMEM); 1064 return; 1065 } 1066 1067 backing_io = calloc(1, sizeof(*backing_io) + backing_dev->user_ctx_size); 1068 if (backing_io == NULL) { 1069 free(destroy_ctx); 1070 cb_fn(cb_arg, -ENOMEM); 1071 return; 1072 } 1073 1074 destroy_ctx->backing_io = backing_io; 1075 1076 destroy_ctx->super = spdk_zmalloc(sizeof(*destroy_ctx->super), 64, NULL, 1077 SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 1078 if (destroy_ctx->super == NULL) { 1079 free(destroy_ctx); 1080 free(backing_io); 1081 cb_fn(cb_arg, -ENOMEM); 1082 return; 1083 } 1084 destroy_ctx->cb_fn = cb_fn; 1085 destroy_ctx->cb_arg = cb_arg; 1086 spdk_reduce_vol_load(backing_dev, destroy_load_cb, destroy_ctx); 1087 } 1088 1089 static bool 1090 _request_spans_chunk_boundary(struct spdk_reduce_vol *vol, uint64_t offset, uint64_t length) 1091 { 1092 uint64_t start_chunk, end_chunk; 1093 1094 start_chunk = offset / vol->logical_blocks_per_chunk; 1095 end_chunk = (offset + length - 1) / vol->logical_blocks_per_chunk; 1096 1097 return (start_chunk != end_chunk); 1098 } 1099 1100 typedef void (*reduce_request_fn)(void *_req, int reduce_errno); 1101 1102 static void 1103 _reduce_vol_complete_req(struct spdk_reduce_vol_request *req, int reduce_errno) 1104 { 1105 struct spdk_reduce_vol_request *next_req; 1106 struct spdk_reduce_vol *vol = req->vol; 1107 1108 req->cb_fn(req->cb_arg, reduce_errno); 1109 RB_REMOVE(executing_req_tree, &vol->executing_requests, req); 1110 1111 TAILQ_FOREACH(next_req, &vol->queued_requests, tailq) { 1112 if (next_req->logical_map_index == req->logical_map_index) { 1113 TAILQ_REMOVE(&vol->queued_requests, next_req, tailq); 1114 if (next_req->type == REDUCE_IO_READV) { 1115 _start_readv_request(next_req); 1116 } else { 1117 assert(next_req->type == REDUCE_IO_WRITEV); 1118 _start_writev_request(next_req); 1119 } 1120 break; 1121 } 1122 } 1123 1124 TAILQ_INSERT_HEAD(&vol->free_requests, req, tailq); 1125 } 1126 1127 static void 1128 _reduce_vol_reset_chunk(struct spdk_reduce_vol *vol, uint64_t chunk_map_index) 1129 { 1130 struct spdk_reduce_chunk_map *chunk; 1131 uint64_t index; 1132 bool success; 1133 uint32_t i; 1134 1135 chunk = _reduce_vol_get_chunk_map(vol, chunk_map_index); 1136 for (i = 0; i < vol->backing_io_units_per_chunk; i++) { 1137 index = chunk->io_unit_index[i]; 1138 if (index == REDUCE_EMPTY_MAP_ENTRY) { 1139 break; 1140 } 1141 assert(spdk_bit_array_get(vol->allocated_backing_io_units, 1142 index) == true); 1143 spdk_bit_array_clear(vol->allocated_backing_io_units, index); 1144 success = queue_enqueue(&vol->free_backing_blocks_queue, index); 1145 if (!success && index < vol->find_block_offset) { 1146 vol->find_block_offset = index; 1147 } 1148 chunk->io_unit_index[i] = REDUCE_EMPTY_MAP_ENTRY; 1149 } 1150 success = queue_enqueue(&vol->free_chunks_queue, chunk_map_index); 1151 if (!success && chunk_map_index < vol->find_chunk_offset) { 1152 vol->find_chunk_offset = chunk_map_index; 1153 } 1154 spdk_bit_array_clear(vol->allocated_chunk_maps, chunk_map_index); 1155 } 1156 1157 static void 1158 _write_write_done(void *_req, int reduce_errno) 1159 { 1160 struct spdk_reduce_vol_request *req = _req; 1161 struct spdk_reduce_vol *vol = req->vol; 1162 uint64_t old_chunk_map_index; 1163 1164 if (reduce_errno != 0) { 1165 req->reduce_errno = reduce_errno; 1166 } 1167 1168 assert(req->num_backing_ops > 0); 1169 if (--req->num_backing_ops > 0) { 1170 return; 1171 } 1172 1173 if (req->reduce_errno != 0) { 1174 _reduce_vol_reset_chunk(vol, req->chunk_map_index); 1175 _reduce_vol_complete_req(req, req->reduce_errno); 1176 return; 1177 } 1178 1179 old_chunk_map_index = vol->pm_logical_map[req->logical_map_index]; 1180 if (old_chunk_map_index != REDUCE_EMPTY_MAP_ENTRY) { 1181 _reduce_vol_reset_chunk(vol, old_chunk_map_index); 1182 } 1183 1184 /* 1185 * We don't need to persist the clearing of the old chunk map here. The old chunk map 1186 * becomes invalid after we update the logical map, since the old chunk map will no 1187 * longer have a reference to it in the logical map. 1188 */ 1189 1190 /* Persist the new chunk map. This must be persisted before we update the logical map. */ 1191 _reduce_persist(vol, req->chunk, 1192 _reduce_vol_get_chunk_struct_size(vol->backing_io_units_per_chunk)); 1193 1194 vol->pm_logical_map[req->logical_map_index] = req->chunk_map_index; 1195 1196 _reduce_persist(vol, &vol->pm_logical_map[req->logical_map_index], sizeof(uint64_t)); 1197 1198 _reduce_vol_complete_req(req, 0); 1199 } 1200 1201 static struct spdk_reduce_backing_io * 1202 _reduce_vol_req_get_backing_io(struct spdk_reduce_vol_request *req, uint32_t index) 1203 { 1204 struct spdk_reduce_backing_dev *backing_dev = req->vol->backing_dev; 1205 struct spdk_reduce_backing_io *backing_io; 1206 1207 backing_io = (struct spdk_reduce_backing_io *)((uint8_t *)req->backing_io + 1208 (sizeof(*backing_io) + backing_dev->user_ctx_size) * index); 1209 1210 return backing_io; 1211 1212 } 1213 1214 struct reduce_merged_io_desc { 1215 uint64_t io_unit_index; 1216 uint32_t num_io_units; 1217 }; 1218 1219 static void 1220 _issue_backing_ops_without_merge(struct spdk_reduce_vol_request *req, struct spdk_reduce_vol *vol, 1221 reduce_request_fn next_fn, bool is_write) 1222 { 1223 struct iovec *iov; 1224 struct spdk_reduce_backing_io *backing_io; 1225 uint8_t *buf; 1226 uint32_t i; 1227 1228 if (req->chunk_is_compressed) { 1229 iov = req->comp_buf_iov; 1230 buf = req->comp_buf; 1231 } else { 1232 iov = req->decomp_buf_iov; 1233 buf = req->decomp_buf; 1234 } 1235 1236 req->num_backing_ops = req->num_io_units; 1237 req->backing_cb_args.cb_fn = next_fn; 1238 req->backing_cb_args.cb_arg = req; 1239 for (i = 0; i < req->num_io_units; i++) { 1240 backing_io = _reduce_vol_req_get_backing_io(req, i); 1241 iov[i].iov_base = buf + i * vol->params.backing_io_unit_size; 1242 iov[i].iov_len = vol->params.backing_io_unit_size; 1243 backing_io->dev = vol->backing_dev; 1244 backing_io->iov = &iov[i]; 1245 backing_io->iovcnt = 1; 1246 backing_io->lba = req->chunk->io_unit_index[i] * vol->backing_lba_per_io_unit; 1247 backing_io->lba_count = vol->backing_lba_per_io_unit; 1248 backing_io->backing_cb_args = &req->backing_cb_args; 1249 if (is_write) { 1250 backing_io->backing_io_type = SPDK_REDUCE_BACKING_IO_WRITE; 1251 } else { 1252 backing_io->backing_io_type = SPDK_REDUCE_BACKING_IO_READ; 1253 } 1254 vol->backing_dev->submit_backing_io(backing_io); 1255 } 1256 } 1257 1258 static void 1259 _issue_backing_ops(struct spdk_reduce_vol_request *req, struct spdk_reduce_vol *vol, 1260 reduce_request_fn next_fn, bool is_write) 1261 { 1262 struct iovec *iov; 1263 struct spdk_reduce_backing_io *backing_io; 1264 struct reduce_merged_io_desc merged_io_desc[4]; 1265 uint8_t *buf; 1266 bool merge = false; 1267 uint32_t num_io = 0; 1268 uint32_t io_unit_counts = 0; 1269 uint32_t merged_io_idx = 0; 1270 uint32_t i; 1271 1272 /* The merged_io_desc value is defined here to contain four elements, 1273 * and the chunk size must be four times the maximum of the io unit. 1274 * if chunk size is too big, don't merge IO. 1275 */ 1276 if (vol->backing_io_units_per_chunk > 4) { 1277 _issue_backing_ops_without_merge(req, vol, next_fn, is_write); 1278 return; 1279 } 1280 1281 if (req->chunk_is_compressed) { 1282 iov = req->comp_buf_iov; 1283 buf = req->comp_buf; 1284 } else { 1285 iov = req->decomp_buf_iov; 1286 buf = req->decomp_buf; 1287 } 1288 1289 for (i = 0; i < req->num_io_units; i++) { 1290 if (!merge) { 1291 merged_io_desc[merged_io_idx].io_unit_index = req->chunk->io_unit_index[i]; 1292 merged_io_desc[merged_io_idx].num_io_units = 1; 1293 num_io++; 1294 } 1295 1296 if (i + 1 == req->num_io_units) { 1297 break; 1298 } 1299 1300 if (req->chunk->io_unit_index[i] + 1 == req->chunk->io_unit_index[i + 1]) { 1301 merged_io_desc[merged_io_idx].num_io_units += 1; 1302 merge = true; 1303 continue; 1304 } 1305 merge = false; 1306 merged_io_idx++; 1307 } 1308 1309 req->num_backing_ops = num_io; 1310 req->backing_cb_args.cb_fn = next_fn; 1311 req->backing_cb_args.cb_arg = req; 1312 for (i = 0; i < num_io; i++) { 1313 backing_io = _reduce_vol_req_get_backing_io(req, i); 1314 iov[i].iov_base = buf + io_unit_counts * vol->params.backing_io_unit_size; 1315 iov[i].iov_len = vol->params.backing_io_unit_size * merged_io_desc[i].num_io_units; 1316 backing_io->dev = vol->backing_dev; 1317 backing_io->iov = &iov[i]; 1318 backing_io->iovcnt = 1; 1319 backing_io->lba = merged_io_desc[i].io_unit_index * vol->backing_lba_per_io_unit; 1320 backing_io->lba_count = vol->backing_lba_per_io_unit * merged_io_desc[i].num_io_units; 1321 backing_io->backing_cb_args = &req->backing_cb_args; 1322 if (is_write) { 1323 backing_io->backing_io_type = SPDK_REDUCE_BACKING_IO_WRITE; 1324 } else { 1325 backing_io->backing_io_type = SPDK_REDUCE_BACKING_IO_READ; 1326 } 1327 vol->backing_dev->submit_backing_io(backing_io); 1328 1329 /* Collects the number of processed I/O. */ 1330 io_unit_counts += merged_io_desc[i].num_io_units; 1331 } 1332 } 1333 1334 static void 1335 _reduce_vol_write_chunk(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn, 1336 uint32_t compressed_size) 1337 { 1338 struct spdk_reduce_vol *vol = req->vol; 1339 uint32_t i; 1340 uint64_t chunk_offset, remainder, free_index, total_len = 0; 1341 uint8_t *buf; 1342 bool success; 1343 int j; 1344 1345 success = queue_dequeue(&vol->free_chunks_queue, &free_index); 1346 if (success) { 1347 req->chunk_map_index = free_index; 1348 } else { 1349 req->chunk_map_index = spdk_bit_array_find_first_clear(vol->allocated_chunk_maps, 1350 vol->find_chunk_offset); 1351 vol->find_chunk_offset = req->chunk_map_index + 1; 1352 } 1353 1354 /* TODO: fail if no chunk map found - but really this should not happen if we 1355 * size the number of requests similarly to number of extra chunk maps 1356 */ 1357 assert(req->chunk_map_index != UINT32_MAX); 1358 spdk_bit_array_set(vol->allocated_chunk_maps, req->chunk_map_index); 1359 1360 req->chunk = _reduce_vol_get_chunk_map(vol, req->chunk_map_index); 1361 req->num_io_units = spdk_divide_round_up(compressed_size, 1362 vol->params.backing_io_unit_size); 1363 req->chunk_is_compressed = (req->num_io_units != vol->backing_io_units_per_chunk); 1364 req->chunk->compressed_size = 1365 req->chunk_is_compressed ? compressed_size : vol->params.chunk_size; 1366 1367 /* if the chunk is uncompressed we need to copy the data from the host buffers. */ 1368 if (req->chunk_is_compressed == false) { 1369 chunk_offset = req->offset % vol->logical_blocks_per_chunk; 1370 buf = req->decomp_buf; 1371 total_len = chunk_offset * vol->params.logical_block_size; 1372 1373 /* zero any offset into chunk */ 1374 if (req->rmw == false && chunk_offset) { 1375 memset(buf, 0, total_len); 1376 } 1377 buf += total_len; 1378 1379 /* copy the data */ 1380 for (j = 0; j < req->iovcnt; j++) { 1381 memcpy(buf, req->iov[j].iov_base, req->iov[j].iov_len); 1382 buf += req->iov[j].iov_len; 1383 total_len += req->iov[j].iov_len; 1384 } 1385 1386 /* zero any remainder */ 1387 remainder = vol->params.chunk_size - total_len; 1388 total_len += remainder; 1389 if (req->rmw == false && remainder) { 1390 memset(buf, 0, remainder); 1391 } 1392 assert(total_len == vol->params.chunk_size); 1393 } 1394 1395 for (i = 0; i < req->num_io_units; i++) { 1396 success = queue_dequeue(&vol->free_backing_blocks_queue, &free_index); 1397 if (success) { 1398 req->chunk->io_unit_index[i] = free_index; 1399 } else { 1400 req->chunk->io_unit_index[i] = spdk_bit_array_find_first_clear(vol->allocated_backing_io_units, 1401 vol->find_block_offset); 1402 vol->find_block_offset = req->chunk->io_unit_index[i] + 1; 1403 } 1404 /* TODO: fail if no backing block found - but really this should also not 1405 * happen (see comment above). 1406 */ 1407 assert(req->chunk->io_unit_index[i] != UINT32_MAX); 1408 spdk_bit_array_set(vol->allocated_backing_io_units, req->chunk->io_unit_index[i]); 1409 } 1410 1411 _issue_backing_ops(req, vol, next_fn, true /* write */); 1412 } 1413 1414 static void 1415 _write_compress_done(void *_req, int reduce_errno) 1416 { 1417 struct spdk_reduce_vol_request *req = _req; 1418 1419 /* Negative reduce_errno indicates failure for compression operations. 1420 * Just write the uncompressed data instead. Force this to happen 1421 * by just passing the full chunk size to _reduce_vol_write_chunk. 1422 * When it sees the data couldn't be compressed, it will just write 1423 * the uncompressed buffer to disk. 1424 */ 1425 if (reduce_errno < 0) { 1426 req->backing_cb_args.output_size = req->vol->params.chunk_size; 1427 } 1428 1429 _reduce_vol_write_chunk(req, _write_write_done, req->backing_cb_args.output_size); 1430 } 1431 1432 static void 1433 _reduce_vol_compress_chunk(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn) 1434 { 1435 struct spdk_reduce_vol *vol = req->vol; 1436 1437 req->backing_cb_args.cb_fn = next_fn; 1438 req->backing_cb_args.cb_arg = req; 1439 req->comp_buf_iov[0].iov_base = req->comp_buf; 1440 req->comp_buf_iov[0].iov_len = vol->params.chunk_size; 1441 vol->backing_dev->compress(vol->backing_dev, 1442 req->decomp_iov, req->decomp_iovcnt, req->comp_buf_iov, 1, 1443 &req->backing_cb_args); 1444 } 1445 1446 static void 1447 _reduce_vol_decompress_chunk_scratch(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn) 1448 { 1449 struct spdk_reduce_vol *vol = req->vol; 1450 1451 req->backing_cb_args.cb_fn = next_fn; 1452 req->backing_cb_args.cb_arg = req; 1453 req->comp_buf_iov[0].iov_base = req->comp_buf; 1454 req->comp_buf_iov[0].iov_len = req->chunk->compressed_size; 1455 req->decomp_buf_iov[0].iov_base = req->decomp_buf; 1456 req->decomp_buf_iov[0].iov_len = vol->params.chunk_size; 1457 vol->backing_dev->decompress(vol->backing_dev, 1458 req->comp_buf_iov, 1, req->decomp_buf_iov, 1, 1459 &req->backing_cb_args); 1460 } 1461 1462 static void 1463 _reduce_vol_decompress_chunk(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn) 1464 { 1465 struct spdk_reduce_vol *vol = req->vol; 1466 uint64_t chunk_offset, remainder = 0; 1467 uint64_t ttl_len = 0; 1468 size_t iov_len; 1469 int i; 1470 1471 req->decomp_iovcnt = 0; 1472 chunk_offset = req->offset % vol->logical_blocks_per_chunk; 1473 1474 /* If backing device doesn't support SGL output then we should copy the result of decompression to user's buffer 1475 * if at least one of the conditions below is true: 1476 * 1. User's buffer is fragmented 1477 * 2. Length of the user's buffer is less than the chunk 1478 * 3. User's buffer is contig, equals chunk_size but crosses huge page boundary */ 1479 iov_len = req->iov[0].iov_len; 1480 req->copy_after_decompress = !vol->backing_dev->sgl_out && (req->iovcnt > 1 || 1481 req->iov[0].iov_len < vol->params.chunk_size || 1482 _addr_crosses_huge_page(req->iov[0].iov_base, &iov_len)); 1483 if (req->copy_after_decompress) { 1484 req->decomp_iov[0].iov_base = req->decomp_buf; 1485 req->decomp_iov[0].iov_len = vol->params.chunk_size; 1486 req->decomp_iovcnt = 1; 1487 goto decompress; 1488 } 1489 1490 if (chunk_offset) { 1491 /* first iov point to our scratch buffer for any offset into the chunk */ 1492 req->decomp_iov[0].iov_base = req->decomp_buf; 1493 req->decomp_iov[0].iov_len = chunk_offset * vol->params.logical_block_size; 1494 ttl_len += req->decomp_iov[0].iov_len; 1495 req->decomp_iovcnt = 1; 1496 } 1497 1498 /* now the user data iov, direct to the user buffer */ 1499 for (i = 0; i < req->iovcnt; i++) { 1500 req->decomp_iov[i + req->decomp_iovcnt].iov_base = req->iov[i].iov_base; 1501 req->decomp_iov[i + req->decomp_iovcnt].iov_len = req->iov[i].iov_len; 1502 ttl_len += req->decomp_iov[i + req->decomp_iovcnt].iov_len; 1503 } 1504 req->decomp_iovcnt += req->iovcnt; 1505 1506 /* send the rest of the chunk to our scratch buffer */ 1507 remainder = vol->params.chunk_size - ttl_len; 1508 if (remainder) { 1509 req->decomp_iov[req->decomp_iovcnt].iov_base = req->decomp_buf + ttl_len; 1510 req->decomp_iov[req->decomp_iovcnt].iov_len = remainder; 1511 ttl_len += req->decomp_iov[req->decomp_iovcnt].iov_len; 1512 req->decomp_iovcnt++; 1513 } 1514 assert(ttl_len == vol->params.chunk_size); 1515 1516 decompress: 1517 assert(!req->copy_after_decompress || (req->copy_after_decompress && req->decomp_iovcnt == 1)); 1518 req->backing_cb_args.cb_fn = next_fn; 1519 req->backing_cb_args.cb_arg = req; 1520 req->comp_buf_iov[0].iov_base = req->comp_buf; 1521 req->comp_buf_iov[0].iov_len = req->chunk->compressed_size; 1522 vol->backing_dev->decompress(vol->backing_dev, 1523 req->comp_buf_iov, 1, req->decomp_iov, req->decomp_iovcnt, 1524 &req->backing_cb_args); 1525 } 1526 1527 static inline void 1528 _prepare_compress_chunk_copy_user_buffers(struct spdk_reduce_vol_request *req, bool zero_paddings) 1529 { 1530 struct spdk_reduce_vol *vol = req->vol; 1531 char *padding_buffer = zero_paddings ? g_zero_buf : req->decomp_buf; 1532 uint64_t chunk_offset, ttl_len = 0; 1533 uint64_t remainder = 0; 1534 char *copy_offset = NULL; 1535 uint32_t lbsize = vol->params.logical_block_size; 1536 int i; 1537 1538 req->decomp_iov[0].iov_base = req->decomp_buf; 1539 req->decomp_iov[0].iov_len = vol->params.chunk_size; 1540 req->decomp_iovcnt = 1; 1541 copy_offset = req->decomp_iov[0].iov_base; 1542 chunk_offset = req->offset % vol->logical_blocks_per_chunk; 1543 1544 if (chunk_offset) { 1545 ttl_len += chunk_offset * lbsize; 1546 /* copy_offset already points to padding buffer if zero_paddings=false */ 1547 if (zero_paddings) { 1548 memcpy(copy_offset, padding_buffer, ttl_len); 1549 } 1550 copy_offset += ttl_len; 1551 } 1552 1553 /* now the user data iov, direct from the user buffer */ 1554 for (i = 0; i < req->iovcnt; i++) { 1555 memcpy(copy_offset, req->iov[i].iov_base, req->iov[i].iov_len); 1556 copy_offset += req->iov[i].iov_len; 1557 ttl_len += req->iov[i].iov_len; 1558 } 1559 1560 remainder = vol->params.chunk_size - ttl_len; 1561 if (remainder) { 1562 /* copy_offset already points to padding buffer if zero_paddings=false */ 1563 if (zero_paddings) { 1564 memcpy(copy_offset, padding_buffer + ttl_len, remainder); 1565 } 1566 ttl_len += remainder; 1567 } 1568 1569 assert(ttl_len == req->vol->params.chunk_size); 1570 } 1571 1572 /* This function can be called when we are compressing a new data or in case of read-modify-write 1573 * In the first case possible paddings should be filled with zeroes, in the second case the paddings 1574 * should point to already read and decompressed buffer */ 1575 static inline void 1576 _prepare_compress_chunk(struct spdk_reduce_vol_request *req, bool zero_paddings) 1577 { 1578 struct spdk_reduce_vol *vol = req->vol; 1579 char *padding_buffer = zero_paddings ? g_zero_buf : req->decomp_buf; 1580 uint64_t chunk_offset, ttl_len = 0; 1581 uint64_t remainder = 0; 1582 uint32_t lbsize = vol->params.logical_block_size; 1583 size_t iov_len; 1584 int i; 1585 1586 /* If backing device doesn't support SGL input then we should copy user's buffer into decomp_buf 1587 * if at least one of the conditions below is true: 1588 * 1. User's buffer is fragmented 1589 * 2. Length of the user's buffer is less than the chunk 1590 * 3. User's buffer is contig, equals chunk_size but crosses huge page boundary */ 1591 iov_len = req->iov[0].iov_len; 1592 if (!vol->backing_dev->sgl_in && (req->iovcnt > 1 || 1593 req->iov[0].iov_len < vol->params.chunk_size || 1594 _addr_crosses_huge_page(req->iov[0].iov_base, &iov_len))) { 1595 _prepare_compress_chunk_copy_user_buffers(req, zero_paddings); 1596 return; 1597 } 1598 1599 req->decomp_iovcnt = 0; 1600 chunk_offset = req->offset % vol->logical_blocks_per_chunk; 1601 1602 if (chunk_offset != 0) { 1603 ttl_len += chunk_offset * lbsize; 1604 req->decomp_iov[0].iov_base = padding_buffer; 1605 req->decomp_iov[0].iov_len = ttl_len; 1606 req->decomp_iovcnt = 1; 1607 } 1608 1609 /* now the user data iov, direct from the user buffer */ 1610 for (i = 0; i < req->iovcnt; i++) { 1611 req->decomp_iov[i + req->decomp_iovcnt].iov_base = req->iov[i].iov_base; 1612 req->decomp_iov[i + req->decomp_iovcnt].iov_len = req->iov[i].iov_len; 1613 ttl_len += req->iov[i].iov_len; 1614 } 1615 req->decomp_iovcnt += req->iovcnt; 1616 1617 remainder = vol->params.chunk_size - ttl_len; 1618 if (remainder) { 1619 req->decomp_iov[req->decomp_iovcnt].iov_base = padding_buffer + ttl_len; 1620 req->decomp_iov[req->decomp_iovcnt].iov_len = remainder; 1621 req->decomp_iovcnt++; 1622 ttl_len += remainder; 1623 } 1624 assert(ttl_len == req->vol->params.chunk_size); 1625 } 1626 1627 static void 1628 _write_decompress_done(void *_req, int reduce_errno) 1629 { 1630 struct spdk_reduce_vol_request *req = _req; 1631 1632 /* Negative reduce_errno indicates failure for compression operations. */ 1633 if (reduce_errno < 0) { 1634 _reduce_vol_complete_req(req, reduce_errno); 1635 return; 1636 } 1637 1638 /* Positive reduce_errno indicates that the output size field in the backing_cb_args 1639 * represents the output_size. 1640 */ 1641 if (req->backing_cb_args.output_size != req->vol->params.chunk_size) { 1642 _reduce_vol_complete_req(req, -EIO); 1643 return; 1644 } 1645 1646 _prepare_compress_chunk(req, false); 1647 _reduce_vol_compress_chunk(req, _write_compress_done); 1648 } 1649 1650 static void 1651 _write_read_done(void *_req, int reduce_errno) 1652 { 1653 struct spdk_reduce_vol_request *req = _req; 1654 1655 if (reduce_errno != 0) { 1656 req->reduce_errno = reduce_errno; 1657 } 1658 1659 assert(req->num_backing_ops > 0); 1660 if (--req->num_backing_ops > 0) { 1661 return; 1662 } 1663 1664 if (req->reduce_errno != 0) { 1665 _reduce_vol_complete_req(req, req->reduce_errno); 1666 return; 1667 } 1668 1669 if (req->chunk_is_compressed) { 1670 _reduce_vol_decompress_chunk_scratch(req, _write_decompress_done); 1671 } else { 1672 req->backing_cb_args.output_size = req->chunk->compressed_size; 1673 1674 _write_decompress_done(req, 0); 1675 } 1676 } 1677 1678 static void 1679 _read_decompress_done(void *_req, int reduce_errno) 1680 { 1681 struct spdk_reduce_vol_request *req = _req; 1682 struct spdk_reduce_vol *vol = req->vol; 1683 1684 /* Negative reduce_errno indicates failure for compression operations. */ 1685 if (reduce_errno < 0) { 1686 _reduce_vol_complete_req(req, reduce_errno); 1687 return; 1688 } 1689 1690 /* Positive reduce_errno indicates that the output size field in the backing_cb_args 1691 * represents the output_size. 1692 */ 1693 if (req->backing_cb_args.output_size != vol->params.chunk_size) { 1694 _reduce_vol_complete_req(req, -EIO); 1695 return; 1696 } 1697 1698 if (req->copy_after_decompress) { 1699 uint64_t chunk_offset = req->offset % vol->logical_blocks_per_chunk; 1700 char *decomp_buffer = (char *)req->decomp_buf + chunk_offset * vol->params.logical_block_size; 1701 int i; 1702 1703 for (i = 0; i < req->iovcnt; i++) { 1704 memcpy(req->iov[i].iov_base, decomp_buffer, req->iov[i].iov_len); 1705 decomp_buffer += req->iov[i].iov_len; 1706 assert(decomp_buffer <= (char *)req->decomp_buf + vol->params.chunk_size); 1707 } 1708 } 1709 1710 _reduce_vol_complete_req(req, 0); 1711 } 1712 1713 static void 1714 _read_read_done(void *_req, int reduce_errno) 1715 { 1716 struct spdk_reduce_vol_request *req = _req; 1717 uint64_t chunk_offset; 1718 uint8_t *buf; 1719 int i; 1720 1721 if (reduce_errno != 0) { 1722 req->reduce_errno = reduce_errno; 1723 } 1724 1725 assert(req->num_backing_ops > 0); 1726 if (--req->num_backing_ops > 0) { 1727 return; 1728 } 1729 1730 if (req->reduce_errno != 0) { 1731 _reduce_vol_complete_req(req, req->reduce_errno); 1732 return; 1733 } 1734 1735 if (req->chunk_is_compressed) { 1736 _reduce_vol_decompress_chunk(req, _read_decompress_done); 1737 } else { 1738 1739 /* If the chunk was compressed, the data would have been sent to the 1740 * host buffers by the decompression operation, if not we need to memcpy here. 1741 */ 1742 chunk_offset = req->offset % req->vol->logical_blocks_per_chunk; 1743 buf = req->decomp_buf + chunk_offset * req->vol->params.logical_block_size; 1744 for (i = 0; i < req->iovcnt; i++) { 1745 memcpy(req->iov[i].iov_base, buf, req->iov[i].iov_len); 1746 buf += req->iov[i].iov_len; 1747 } 1748 1749 req->backing_cb_args.output_size = req->chunk->compressed_size; 1750 1751 _read_decompress_done(req, 0); 1752 } 1753 } 1754 1755 static void 1756 _reduce_vol_read_chunk(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn) 1757 { 1758 struct spdk_reduce_vol *vol = req->vol; 1759 1760 req->chunk_map_index = vol->pm_logical_map[req->logical_map_index]; 1761 assert(req->chunk_map_index != UINT32_MAX); 1762 1763 req->chunk = _reduce_vol_get_chunk_map(vol, req->chunk_map_index); 1764 req->num_io_units = spdk_divide_round_up(req->chunk->compressed_size, 1765 vol->params.backing_io_unit_size); 1766 req->chunk_is_compressed = (req->num_io_units != vol->backing_io_units_per_chunk); 1767 1768 _issue_backing_ops(req, vol, next_fn, false /* read */); 1769 } 1770 1771 static bool 1772 _iov_array_is_valid(struct spdk_reduce_vol *vol, struct iovec *iov, int iovcnt, 1773 uint64_t length) 1774 { 1775 uint64_t size = 0; 1776 int i; 1777 1778 if (iovcnt > REDUCE_MAX_IOVECS) { 1779 return false; 1780 } 1781 1782 for (i = 0; i < iovcnt; i++) { 1783 size += iov[i].iov_len; 1784 } 1785 1786 return size == (length * vol->params.logical_block_size); 1787 } 1788 1789 static bool 1790 _check_overlap(struct spdk_reduce_vol *vol, uint64_t logical_map_index) 1791 { 1792 struct spdk_reduce_vol_request req; 1793 1794 req.logical_map_index = logical_map_index; 1795 1796 return (NULL != RB_FIND(executing_req_tree, &vol->executing_requests, &req)); 1797 } 1798 1799 static void 1800 _start_readv_request(struct spdk_reduce_vol_request *req) 1801 { 1802 RB_INSERT(executing_req_tree, &req->vol->executing_requests, req); 1803 _reduce_vol_read_chunk(req, _read_read_done); 1804 } 1805 1806 void 1807 spdk_reduce_vol_readv(struct spdk_reduce_vol *vol, 1808 struct iovec *iov, int iovcnt, uint64_t offset, uint64_t length, 1809 spdk_reduce_vol_op_complete cb_fn, void *cb_arg) 1810 { 1811 struct spdk_reduce_vol_request *req; 1812 uint64_t logical_map_index; 1813 bool overlapped; 1814 int i; 1815 1816 if (length == 0) { 1817 cb_fn(cb_arg, 0); 1818 return; 1819 } 1820 1821 if (_request_spans_chunk_boundary(vol, offset, length)) { 1822 cb_fn(cb_arg, -EINVAL); 1823 return; 1824 } 1825 1826 if (!_iov_array_is_valid(vol, iov, iovcnt, length)) { 1827 cb_fn(cb_arg, -EINVAL); 1828 return; 1829 } 1830 1831 logical_map_index = offset / vol->logical_blocks_per_chunk; 1832 overlapped = _check_overlap(vol, logical_map_index); 1833 1834 if (!overlapped && vol->pm_logical_map[logical_map_index] == REDUCE_EMPTY_MAP_ENTRY) { 1835 /* 1836 * This chunk hasn't been allocated. So treat the data as all 1837 * zeroes for this chunk - do the memset and immediately complete 1838 * the operation. 1839 */ 1840 for (i = 0; i < iovcnt; i++) { 1841 memset(iov[i].iov_base, 0, iov[i].iov_len); 1842 } 1843 cb_fn(cb_arg, 0); 1844 return; 1845 } 1846 1847 req = TAILQ_FIRST(&vol->free_requests); 1848 if (req == NULL) { 1849 cb_fn(cb_arg, -ENOMEM); 1850 return; 1851 } 1852 1853 TAILQ_REMOVE(&vol->free_requests, req, tailq); 1854 req->type = REDUCE_IO_READV; 1855 req->vol = vol; 1856 req->iov = iov; 1857 req->iovcnt = iovcnt; 1858 req->offset = offset; 1859 req->logical_map_index = logical_map_index; 1860 req->length = length; 1861 req->copy_after_decompress = false; 1862 req->cb_fn = cb_fn; 1863 req->cb_arg = cb_arg; 1864 1865 if (!overlapped) { 1866 _start_readv_request(req); 1867 } else { 1868 TAILQ_INSERT_TAIL(&vol->queued_requests, req, tailq); 1869 } 1870 } 1871 1872 static void 1873 _start_writev_request(struct spdk_reduce_vol_request *req) 1874 { 1875 struct spdk_reduce_vol *vol = req->vol; 1876 1877 RB_INSERT(executing_req_tree, &req->vol->executing_requests, req); 1878 if (vol->pm_logical_map[req->logical_map_index] != REDUCE_EMPTY_MAP_ENTRY) { 1879 if ((req->length * vol->params.logical_block_size) < vol->params.chunk_size) { 1880 /* Read old chunk, then overwrite with data from this write 1881 * operation. 1882 */ 1883 req->rmw = true; 1884 _reduce_vol_read_chunk(req, _write_read_done); 1885 return; 1886 } 1887 } 1888 1889 req->rmw = false; 1890 1891 _prepare_compress_chunk(req, true); 1892 _reduce_vol_compress_chunk(req, _write_compress_done); 1893 } 1894 1895 void 1896 spdk_reduce_vol_writev(struct spdk_reduce_vol *vol, 1897 struct iovec *iov, int iovcnt, uint64_t offset, uint64_t length, 1898 spdk_reduce_vol_op_complete cb_fn, void *cb_arg) 1899 { 1900 struct spdk_reduce_vol_request *req; 1901 uint64_t logical_map_index; 1902 bool overlapped; 1903 1904 if (length == 0) { 1905 cb_fn(cb_arg, 0); 1906 return; 1907 } 1908 1909 if (_request_spans_chunk_boundary(vol, offset, length)) { 1910 cb_fn(cb_arg, -EINVAL); 1911 return; 1912 } 1913 1914 if (!_iov_array_is_valid(vol, iov, iovcnt, length)) { 1915 cb_fn(cb_arg, -EINVAL); 1916 return; 1917 } 1918 1919 logical_map_index = offset / vol->logical_blocks_per_chunk; 1920 overlapped = _check_overlap(vol, logical_map_index); 1921 1922 req = TAILQ_FIRST(&vol->free_requests); 1923 if (req == NULL) { 1924 cb_fn(cb_arg, -ENOMEM); 1925 return; 1926 } 1927 1928 TAILQ_REMOVE(&vol->free_requests, req, tailq); 1929 req->type = REDUCE_IO_WRITEV; 1930 req->vol = vol; 1931 req->iov = iov; 1932 req->iovcnt = iovcnt; 1933 req->offset = offset; 1934 req->logical_map_index = logical_map_index; 1935 req->length = length; 1936 req->copy_after_decompress = false; 1937 req->cb_fn = cb_fn; 1938 req->cb_arg = cb_arg; 1939 1940 if (!overlapped) { 1941 _start_writev_request(req); 1942 } else { 1943 TAILQ_INSERT_TAIL(&vol->queued_requests, req, tailq); 1944 } 1945 } 1946 1947 const struct spdk_reduce_vol_params * 1948 spdk_reduce_vol_get_params(struct spdk_reduce_vol *vol) 1949 { 1950 return &vol->params; 1951 } 1952 1953 const char * 1954 spdk_reduce_vol_get_pm_path(const struct spdk_reduce_vol *vol) 1955 { 1956 return vol->pm_file.path; 1957 } 1958 1959 void 1960 spdk_reduce_vol_print_info(struct spdk_reduce_vol *vol) 1961 { 1962 uint64_t logical_map_size, num_chunks, ttl_chunk_sz; 1963 uint32_t struct_size; 1964 uint64_t chunk_map_size; 1965 1966 SPDK_NOTICELOG("vol info:\n"); 1967 SPDK_NOTICELOG("\tvol->params.backing_io_unit_size = 0x%x\n", vol->params.backing_io_unit_size); 1968 SPDK_NOTICELOG("\tvol->params.logical_block_size = 0x%x\n", vol->params.logical_block_size); 1969 SPDK_NOTICELOG("\tvol->params.chunk_size = 0x%x\n", vol->params.chunk_size); 1970 SPDK_NOTICELOG("\tvol->params.vol_size = 0x%" PRIx64 "\n", vol->params.vol_size); 1971 num_chunks = _get_total_chunks(vol->params.vol_size, vol->params.chunk_size); 1972 SPDK_NOTICELOG("\ttotal chunks (including extra) = 0x%" PRIx64 "\n", num_chunks); 1973 SPDK_NOTICELOG("\ttotal chunks (excluding extra) = 0x%" PRIx64 "\n", 1974 vol->params.vol_size / vol->params.chunk_size); 1975 ttl_chunk_sz = _get_pm_total_chunks_size(vol->params.vol_size, vol->params.chunk_size, 1976 vol->params.backing_io_unit_size); 1977 SPDK_NOTICELOG("\ttotal_chunks_size = 0x%" PRIx64 "\n", ttl_chunk_sz); 1978 struct_size = _reduce_vol_get_chunk_struct_size(vol->backing_io_units_per_chunk); 1979 SPDK_NOTICELOG("\tchunk_struct_size = 0x%x\n", struct_size); 1980 1981 SPDK_NOTICELOG("pmem info:\n"); 1982 SPDK_NOTICELOG("\tvol->pm_file.size = 0x%" PRIx64 "\n", vol->pm_file.size); 1983 SPDK_NOTICELOG("\tvol->pm_file.pm_buf = %p\n", (void *)vol->pm_file.pm_buf); 1984 SPDK_NOTICELOG("\tvol->pm_super = %p\n", (void *)vol->pm_super); 1985 SPDK_NOTICELOG("\tvol->pm_logical_map = %p\n", (void *)vol->pm_logical_map); 1986 logical_map_size = _get_pm_logical_map_size(vol->params.vol_size, 1987 vol->params.chunk_size); 1988 SPDK_NOTICELOG("\tlogical_map_size = 0x%" PRIx64 "\n", logical_map_size); 1989 SPDK_NOTICELOG("\tvol->pm_chunk_maps = %p\n", (void *)vol->pm_chunk_maps); 1990 chunk_map_size = _get_pm_total_chunks_size(vol->params.vol_size, vol->params.chunk_size, 1991 vol->params.backing_io_unit_size); 1992 SPDK_NOTICELOG("\tchunk_map_size = 0x%" PRIx64 "\n", chunk_map_size); 1993 } 1994 1995 SPDK_LOG_REGISTER_COMPONENT(reduce) 1996