xref: /spdk/lib/reduce/reduce.c (revision 488570ebd418ba07c9e69e65106dcc964f3bb41b)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (c) Intel Corporation.
3  *   All rights reserved.
4  *   Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/stdinc.h"
8 
9 #include "spdk/reduce.h"
10 #include "spdk/env.h"
11 #include "spdk/string.h"
12 #include "spdk/bit_array.h"
13 #include "spdk/util.h"
14 #include "spdk/log.h"
15 #include "spdk/memory.h"
16 
17 #include "libpmem.h"
18 
19 /* Always round up the size of the PM region to the nearest cacheline. */
20 #define REDUCE_PM_SIZE_ALIGNMENT	64
21 
22 /* Offset into the backing device where the persistent memory file's path is stored. */
23 #define REDUCE_BACKING_DEV_PATH_OFFSET	4096
24 
25 #define REDUCE_EMPTY_MAP_ENTRY	-1ULL
26 
27 #define REDUCE_NUM_VOL_REQUESTS	256
28 
29 /* Structure written to offset 0 of both the pm file and the backing device. */
30 struct spdk_reduce_vol_superblock {
31 	uint8_t				signature[8];
32 	struct spdk_reduce_vol_params	params;
33 	uint8_t				reserved[4048];
34 };
35 SPDK_STATIC_ASSERT(sizeof(struct spdk_reduce_vol_superblock) == 4096, "size incorrect");
36 
37 #define SPDK_REDUCE_SIGNATURE "SPDKREDU"
38 /* null terminator counts one */
39 SPDK_STATIC_ASSERT(sizeof(SPDK_REDUCE_SIGNATURE) - 1 ==
40 		   SPDK_SIZEOF_MEMBER(struct spdk_reduce_vol_superblock, signature), "size incorrect");
41 
42 #define REDUCE_PATH_MAX 4096
43 
44 #define REDUCE_ZERO_BUF_SIZE 0x100000
45 
46 /**
47  * Describes a persistent memory file used to hold metadata associated with a
48  *  compressed volume.
49  */
50 struct spdk_reduce_pm_file {
51 	char			path[REDUCE_PATH_MAX];
52 	void			*pm_buf;
53 	int			pm_is_pmem;
54 	uint64_t		size;
55 };
56 
57 #define REDUCE_IO_READV		1
58 #define REDUCE_IO_WRITEV	2
59 
60 struct spdk_reduce_chunk_map {
61 	uint32_t		compressed_size;
62 	uint32_t		reserved;
63 	uint64_t		io_unit_index[0];
64 };
65 
66 struct spdk_reduce_vol_request {
67 	/**
68 	 *  Scratch buffer used for uncompressed chunk.  This is used for:
69 	 *   1) source buffer for compression operations
70 	 *   2) destination buffer for decompression operations
71 	 *   3) data buffer when writing uncompressed chunk to disk
72 	 *   4) data buffer when reading uncompressed chunk from disk
73 	 */
74 	uint8_t					*decomp_buf;
75 	struct iovec				*decomp_buf_iov;
76 
77 	/**
78 	 * These are used to construct the iovecs that are sent to
79 	 *  the decomp engine, they point to a mix of the scratch buffer
80 	 *  and user buffer
81 	 */
82 	struct iovec				decomp_iov[REDUCE_MAX_IOVECS + 2];
83 	int					decomp_iovcnt;
84 
85 	/**
86 	 *  Scratch buffer used for compressed chunk.  This is used for:
87 	 *   1) destination buffer for compression operations
88 	 *   2) source buffer for decompression operations
89 	 *   3) data buffer when writing compressed chunk to disk
90 	 *   4) data buffer when reading compressed chunk from disk
91 	 */
92 	uint8_t					*comp_buf;
93 	struct iovec				*comp_buf_iov;
94 	struct iovec				*iov;
95 	bool					rmw;
96 	struct spdk_reduce_vol			*vol;
97 	int					type;
98 	int					reduce_errno;
99 	int					iovcnt;
100 	int					num_backing_ops;
101 	uint32_t				num_io_units;
102 	bool					chunk_is_compressed;
103 	bool					copy_after_decompress;
104 	uint64_t				offset;
105 	uint64_t				logical_map_index;
106 	uint64_t				length;
107 	uint64_t				chunk_map_index;
108 	struct spdk_reduce_chunk_map		*chunk;
109 	spdk_reduce_vol_op_complete		cb_fn;
110 	void					*cb_arg;
111 	TAILQ_ENTRY(spdk_reduce_vol_request)	tailq;
112 	struct spdk_reduce_vol_cb_args		backing_cb_args;
113 };
114 
115 struct spdk_reduce_vol {
116 	struct spdk_reduce_vol_params		params;
117 	uint32_t				backing_io_units_per_chunk;
118 	uint32_t				backing_lba_per_io_unit;
119 	uint32_t				logical_blocks_per_chunk;
120 	struct spdk_reduce_pm_file		pm_file;
121 	struct spdk_reduce_backing_dev		*backing_dev;
122 	struct spdk_reduce_vol_superblock	*backing_super;
123 	struct spdk_reduce_vol_superblock	*pm_super;
124 	uint64_t				*pm_logical_map;
125 	uint64_t				*pm_chunk_maps;
126 
127 	struct spdk_bit_array			*allocated_chunk_maps;
128 	struct spdk_bit_array			*allocated_backing_io_units;
129 
130 	struct spdk_reduce_vol_request		*request_mem;
131 	TAILQ_HEAD(, spdk_reduce_vol_request)	free_requests;
132 	TAILQ_HEAD(, spdk_reduce_vol_request)	executing_requests;
133 	TAILQ_HEAD(, spdk_reduce_vol_request)	queued_requests;
134 
135 	/* Single contiguous buffer used for all request buffers for this volume. */
136 	uint8_t					*buf_mem;
137 	struct iovec				*buf_iov_mem;
138 };
139 
140 static void _start_readv_request(struct spdk_reduce_vol_request *req);
141 static void _start_writev_request(struct spdk_reduce_vol_request *req);
142 static uint8_t *g_zero_buf;
143 static int g_vol_count = 0;
144 
145 /*
146  * Allocate extra metadata chunks and corresponding backing io units to account for
147  *  outstanding IO in worst case scenario where logical map is completely allocated
148  *  and no data can be compressed.  We need extra chunks in this case to handle
149  *  in-flight writes since reduce never writes data in place.
150  */
151 #define REDUCE_NUM_EXTRA_CHUNKS 128
152 
153 static void
154 _reduce_persist(struct spdk_reduce_vol *vol, const void *addr, size_t len)
155 {
156 	if (vol->pm_file.pm_is_pmem) {
157 		pmem_persist(addr, len);
158 	} else {
159 		pmem_msync(addr, len);
160 	}
161 }
162 
163 static uint64_t
164 _get_pm_logical_map_size(uint64_t vol_size, uint64_t chunk_size)
165 {
166 	uint64_t chunks_in_logical_map, logical_map_size;
167 
168 	chunks_in_logical_map = vol_size / chunk_size;
169 	logical_map_size = chunks_in_logical_map * sizeof(uint64_t);
170 
171 	/* Round up to next cacheline. */
172 	return spdk_divide_round_up(logical_map_size, REDUCE_PM_SIZE_ALIGNMENT) *
173 	       REDUCE_PM_SIZE_ALIGNMENT;
174 }
175 
176 static uint64_t
177 _get_total_chunks(uint64_t vol_size, uint64_t chunk_size)
178 {
179 	uint64_t num_chunks;
180 
181 	num_chunks = vol_size / chunk_size;
182 	num_chunks += REDUCE_NUM_EXTRA_CHUNKS;
183 
184 	return num_chunks;
185 }
186 
187 static inline uint32_t
188 _reduce_vol_get_chunk_struct_size(uint64_t backing_io_units_per_chunk)
189 {
190 	return sizeof(struct spdk_reduce_chunk_map) + sizeof(uint64_t) * backing_io_units_per_chunk;
191 }
192 
193 static uint64_t
194 _get_pm_total_chunks_size(uint64_t vol_size, uint64_t chunk_size, uint64_t backing_io_unit_size)
195 {
196 	uint64_t io_units_per_chunk, num_chunks, total_chunks_size;
197 
198 	num_chunks = _get_total_chunks(vol_size, chunk_size);
199 	io_units_per_chunk = chunk_size / backing_io_unit_size;
200 
201 	total_chunks_size = num_chunks * _reduce_vol_get_chunk_struct_size(io_units_per_chunk);
202 
203 	return spdk_divide_round_up(total_chunks_size, REDUCE_PM_SIZE_ALIGNMENT) *
204 	       REDUCE_PM_SIZE_ALIGNMENT;
205 }
206 
207 static struct spdk_reduce_chunk_map *
208 _reduce_vol_get_chunk_map(struct spdk_reduce_vol *vol, uint64_t chunk_map_index)
209 {
210 	uintptr_t chunk_map_addr;
211 
212 	assert(chunk_map_index < _get_total_chunks(vol->params.vol_size, vol->params.chunk_size));
213 
214 	chunk_map_addr = (uintptr_t)vol->pm_chunk_maps;
215 	chunk_map_addr += chunk_map_index *
216 			  _reduce_vol_get_chunk_struct_size(vol->backing_io_units_per_chunk);
217 
218 	return (struct spdk_reduce_chunk_map *)chunk_map_addr;
219 }
220 
221 static int
222 _validate_vol_params(struct spdk_reduce_vol_params *params)
223 {
224 	if (params->vol_size > 0) {
225 		/**
226 		 * User does not pass in the vol size - it gets calculated by libreduce from
227 		 *  values in this structure plus the size of the backing device.
228 		 */
229 		return -EINVAL;
230 	}
231 
232 	if (params->chunk_size == 0 || params->backing_io_unit_size == 0 ||
233 	    params->logical_block_size == 0) {
234 		return -EINVAL;
235 	}
236 
237 	/* Chunk size must be an even multiple of the backing io unit size. */
238 	if ((params->chunk_size % params->backing_io_unit_size) != 0) {
239 		return -EINVAL;
240 	}
241 
242 	/* Chunk size must be an even multiple of the logical block size. */
243 	if ((params->chunk_size % params->logical_block_size) != 0) {
244 		return -1;
245 	}
246 
247 	return 0;
248 }
249 
250 static uint64_t
251 _get_vol_size(uint64_t chunk_size, uint64_t backing_dev_size)
252 {
253 	uint64_t num_chunks;
254 
255 	num_chunks = backing_dev_size / chunk_size;
256 	if (num_chunks <= REDUCE_NUM_EXTRA_CHUNKS) {
257 		return 0;
258 	}
259 
260 	num_chunks -= REDUCE_NUM_EXTRA_CHUNKS;
261 	return num_chunks * chunk_size;
262 }
263 
264 static uint64_t
265 _get_pm_file_size(struct spdk_reduce_vol_params *params)
266 {
267 	uint64_t total_pm_size;
268 
269 	total_pm_size = sizeof(struct spdk_reduce_vol_superblock);
270 	total_pm_size += _get_pm_logical_map_size(params->vol_size, params->chunk_size);
271 	total_pm_size += _get_pm_total_chunks_size(params->vol_size, params->chunk_size,
272 			 params->backing_io_unit_size);
273 	return total_pm_size;
274 }
275 
276 const struct spdk_uuid *
277 spdk_reduce_vol_get_uuid(struct spdk_reduce_vol *vol)
278 {
279 	return &vol->params.uuid;
280 }
281 
282 static void
283 _initialize_vol_pm_pointers(struct spdk_reduce_vol *vol)
284 {
285 	uint64_t logical_map_size;
286 
287 	/* Superblock is at the beginning of the pm file. */
288 	vol->pm_super = (struct spdk_reduce_vol_superblock *)vol->pm_file.pm_buf;
289 
290 	/* Logical map immediately follows the super block. */
291 	vol->pm_logical_map = (uint64_t *)(vol->pm_super + 1);
292 
293 	/* Chunks maps follow the logical map. */
294 	logical_map_size = _get_pm_logical_map_size(vol->params.vol_size, vol->params.chunk_size);
295 	vol->pm_chunk_maps = (uint64_t *)((uint8_t *)vol->pm_logical_map + logical_map_size);
296 }
297 
298 /* We need 2 iovs during load - one for the superblock, another for the path */
299 #define LOAD_IOV_COUNT	2
300 
301 struct reduce_init_load_ctx {
302 	struct spdk_reduce_vol			*vol;
303 	struct spdk_reduce_vol_cb_args		backing_cb_args;
304 	spdk_reduce_vol_op_with_handle_complete	cb_fn;
305 	void					*cb_arg;
306 	struct iovec				iov[LOAD_IOV_COUNT];
307 	void					*path;
308 };
309 
310 static inline bool
311 _addr_crosses_huge_page(const void *addr, size_t *size)
312 {
313 	size_t _size;
314 	uint64_t rc;
315 
316 	assert(size);
317 
318 	_size = *size;
319 	rc = spdk_vtophys(addr, size);
320 
321 	return rc == SPDK_VTOPHYS_ERROR || _size != *size;
322 }
323 
324 static inline int
325 _set_buffer(uint8_t **vol_buffer, uint8_t **_addr, uint8_t *addr_range, size_t buffer_size)
326 {
327 	uint8_t *addr;
328 	size_t size_tmp = buffer_size;
329 
330 	addr = *_addr;
331 
332 	/* Verify that addr + buffer_size doesn't cross huge page boundary */
333 	if (_addr_crosses_huge_page(addr, &size_tmp)) {
334 		/* Memory start is aligned on 2MiB, so buffer should be located at the end of the page.
335 		 * Skip remaining bytes and continue from the beginning of the next page */
336 		addr += size_tmp;
337 	}
338 
339 	if (addr + buffer_size > addr_range) {
340 		SPDK_ERRLOG("Vol buffer %p out of range %p\n", addr, addr_range);
341 		return -ERANGE;
342 	}
343 
344 	*vol_buffer = addr;
345 	*_addr = addr + buffer_size;
346 
347 	return 0;
348 }
349 
350 static int
351 _allocate_vol_requests(struct spdk_reduce_vol *vol)
352 {
353 	struct spdk_reduce_vol_request *req;
354 	uint32_t reqs_in_2mb_page, huge_pages_needed;
355 	uint8_t *buffer, *buffer_end;
356 	int i = 0;
357 	int rc = 0;
358 
359 	/* It is needed to allocate comp and decomp buffers so that they do not cross physical
360 	* page boundaries. Assume that the system uses default 2MiB pages and chunk_size is not
361 	* necessarily power of 2
362 	* Allocate 2x since we need buffers for both read/write and compress/decompress
363 	* intermediate buffers. */
364 	reqs_in_2mb_page = VALUE_2MB / (vol->params.chunk_size * 2);
365 	if (!reqs_in_2mb_page) {
366 		return -EINVAL;
367 	}
368 	huge_pages_needed = SPDK_CEIL_DIV(REDUCE_NUM_VOL_REQUESTS, reqs_in_2mb_page);
369 
370 	vol->buf_mem = spdk_dma_malloc(VALUE_2MB * huge_pages_needed, VALUE_2MB, NULL);
371 	if (vol->buf_mem == NULL) {
372 		return -ENOMEM;
373 	}
374 
375 	vol->request_mem = calloc(REDUCE_NUM_VOL_REQUESTS, sizeof(*req));
376 	if (vol->request_mem == NULL) {
377 		spdk_free(vol->buf_mem);
378 		vol->buf_mem = NULL;
379 		return -ENOMEM;
380 	}
381 
382 	/* Allocate 2x since we need iovs for both read/write and compress/decompress intermediate
383 	 *  buffers.
384 	 */
385 	vol->buf_iov_mem = calloc(REDUCE_NUM_VOL_REQUESTS,
386 				  2 * sizeof(struct iovec) * vol->backing_io_units_per_chunk);
387 	if (vol->buf_iov_mem == NULL) {
388 		free(vol->request_mem);
389 		spdk_free(vol->buf_mem);
390 		vol->request_mem = NULL;
391 		vol->buf_mem = NULL;
392 		return -ENOMEM;
393 	}
394 
395 	buffer = vol->buf_mem;
396 	buffer_end = buffer + VALUE_2MB * huge_pages_needed;
397 
398 	for (i = 0; i < REDUCE_NUM_VOL_REQUESTS; i++) {
399 		req = &vol->request_mem[i];
400 		TAILQ_INSERT_HEAD(&vol->free_requests, req, tailq);
401 		req->decomp_buf_iov = &vol->buf_iov_mem[(2 * i) * vol->backing_io_units_per_chunk];
402 		req->comp_buf_iov = &vol->buf_iov_mem[(2 * i + 1) * vol->backing_io_units_per_chunk];
403 
404 		rc = _set_buffer(&req->comp_buf, &buffer, buffer_end, vol->params.chunk_size);
405 		if (rc) {
406 			SPDK_ERRLOG("Failed to set comp buffer for req idx %u, addr %p, start %p, end %p\n", i, buffer,
407 				    vol->buf_mem, buffer_end);
408 			break;
409 		}
410 		rc = _set_buffer(&req->decomp_buf, &buffer, buffer_end, vol->params.chunk_size);
411 		if (rc) {
412 			SPDK_ERRLOG("Failed to set decomp buffer for req idx %u, addr %p, start %p, end %p\n", i, buffer,
413 				    vol->buf_mem, buffer_end);
414 			break;
415 		}
416 	}
417 
418 	if (rc) {
419 		free(vol->buf_iov_mem);
420 		free(vol->request_mem);
421 		spdk_free(vol->buf_mem);
422 		vol->buf_mem = NULL;
423 		vol->buf_iov_mem = NULL;
424 		vol->request_mem = NULL;
425 	}
426 
427 	return rc;
428 }
429 
430 static void
431 _init_load_cleanup(struct spdk_reduce_vol *vol, struct reduce_init_load_ctx *ctx)
432 {
433 	if (ctx != NULL) {
434 		spdk_free(ctx->path);
435 		free(ctx);
436 	}
437 
438 	if (vol != NULL) {
439 		if (vol->pm_file.pm_buf != NULL) {
440 			pmem_unmap(vol->pm_file.pm_buf, vol->pm_file.size);
441 		}
442 
443 		spdk_free(vol->backing_super);
444 		spdk_bit_array_free(&vol->allocated_chunk_maps);
445 		spdk_bit_array_free(&vol->allocated_backing_io_units);
446 		free(vol->request_mem);
447 		free(vol->buf_iov_mem);
448 		spdk_free(vol->buf_mem);
449 		free(vol);
450 	}
451 }
452 
453 static int
454 _alloc_zero_buff(void)
455 {
456 	int rc = 0;
457 
458 	/* The zero buffer is shared between all volumes and just used
459 	 * for reads so allocate one global instance here if not already
460 	 * allocated when another vol init'd or loaded.
461 	 */
462 	if (g_vol_count++ == 0) {
463 		g_zero_buf = spdk_zmalloc(REDUCE_ZERO_BUF_SIZE,
464 					  64, NULL, SPDK_ENV_LCORE_ID_ANY,
465 					  SPDK_MALLOC_DMA);
466 		if (g_zero_buf == NULL) {
467 			rc = -ENOMEM;
468 		}
469 	}
470 	return rc;
471 }
472 
473 static void
474 _init_write_super_cpl(void *cb_arg, int reduce_errno)
475 {
476 	struct reduce_init_load_ctx *init_ctx = cb_arg;
477 	int rc;
478 
479 	rc = _allocate_vol_requests(init_ctx->vol);
480 	if (rc != 0) {
481 		init_ctx->cb_fn(init_ctx->cb_arg, NULL, rc);
482 		_init_load_cleanup(init_ctx->vol, init_ctx);
483 		return;
484 	}
485 
486 	rc = _alloc_zero_buff();
487 	if (rc != 0) {
488 		init_ctx->cb_fn(init_ctx->cb_arg, NULL, rc);
489 		_init_load_cleanup(init_ctx->vol, init_ctx);
490 		return;
491 	}
492 
493 	init_ctx->cb_fn(init_ctx->cb_arg, init_ctx->vol, reduce_errno);
494 	/* Only clean up the ctx - the vol has been passed to the application
495 	 *  for use now that initialization was successful.
496 	 */
497 	_init_load_cleanup(NULL, init_ctx);
498 }
499 
500 static void
501 _init_write_path_cpl(void *cb_arg, int reduce_errno)
502 {
503 	struct reduce_init_load_ctx *init_ctx = cb_arg;
504 	struct spdk_reduce_vol *vol = init_ctx->vol;
505 
506 	init_ctx->iov[0].iov_base = vol->backing_super;
507 	init_ctx->iov[0].iov_len = sizeof(*vol->backing_super);
508 	init_ctx->backing_cb_args.cb_fn = _init_write_super_cpl;
509 	init_ctx->backing_cb_args.cb_arg = init_ctx;
510 	vol->backing_dev->writev(vol->backing_dev, init_ctx->iov, 1,
511 				 0, sizeof(*vol->backing_super) / vol->backing_dev->blocklen,
512 				 &init_ctx->backing_cb_args);
513 }
514 
515 static int
516 _allocate_bit_arrays(struct spdk_reduce_vol *vol)
517 {
518 	uint64_t total_chunks, total_backing_io_units;
519 	uint32_t i, num_metadata_io_units;
520 
521 	total_chunks = _get_total_chunks(vol->params.vol_size, vol->params.chunk_size);
522 	vol->allocated_chunk_maps = spdk_bit_array_create(total_chunks);
523 	total_backing_io_units = total_chunks * (vol->params.chunk_size / vol->params.backing_io_unit_size);
524 	vol->allocated_backing_io_units = spdk_bit_array_create(total_backing_io_units);
525 
526 	if (vol->allocated_chunk_maps == NULL || vol->allocated_backing_io_units == NULL) {
527 		return -ENOMEM;
528 	}
529 
530 	/* Set backing io unit bits associated with metadata. */
531 	num_metadata_io_units = (sizeof(*vol->backing_super) + REDUCE_PATH_MAX) /
532 				vol->backing_dev->blocklen;
533 	for (i = 0; i < num_metadata_io_units; i++) {
534 		spdk_bit_array_set(vol->allocated_backing_io_units, i);
535 	}
536 
537 	return 0;
538 }
539 
540 void
541 spdk_reduce_vol_init(struct spdk_reduce_vol_params *params,
542 		     struct spdk_reduce_backing_dev *backing_dev,
543 		     const char *pm_file_dir,
544 		     spdk_reduce_vol_op_with_handle_complete cb_fn, void *cb_arg)
545 {
546 	struct spdk_reduce_vol *vol;
547 	struct reduce_init_load_ctx *init_ctx;
548 	uint64_t backing_dev_size;
549 	size_t mapped_len;
550 	int dir_len, max_dir_len, rc;
551 
552 	/* We need to append a path separator and the UUID to the supplied
553 	 * path.
554 	 */
555 	max_dir_len = REDUCE_PATH_MAX - SPDK_UUID_STRING_LEN - 1;
556 	dir_len = strnlen(pm_file_dir, max_dir_len);
557 	/* Strip trailing slash if the user provided one - we will add it back
558 	 * later when appending the filename.
559 	 */
560 	if (pm_file_dir[dir_len - 1] == '/') {
561 		dir_len--;
562 	}
563 	if (dir_len == max_dir_len) {
564 		SPDK_ERRLOG("pm_file_dir (%s) too long\n", pm_file_dir);
565 		cb_fn(cb_arg, NULL, -EINVAL);
566 		return;
567 	}
568 
569 	rc = _validate_vol_params(params);
570 	if (rc != 0) {
571 		SPDK_ERRLOG("invalid vol params\n");
572 		cb_fn(cb_arg, NULL, rc);
573 		return;
574 	}
575 
576 	backing_dev_size = backing_dev->blockcnt * backing_dev->blocklen;
577 	params->vol_size = _get_vol_size(params->chunk_size, backing_dev_size);
578 	if (params->vol_size == 0) {
579 		SPDK_ERRLOG("backing device is too small\n");
580 		cb_fn(cb_arg, NULL, -EINVAL);
581 		return;
582 	}
583 
584 	if (backing_dev->readv == NULL || backing_dev->writev == NULL ||
585 	    backing_dev->unmap == NULL) {
586 		SPDK_ERRLOG("backing_dev function pointer not specified\n");
587 		cb_fn(cb_arg, NULL, -EINVAL);
588 		return;
589 	}
590 
591 	vol = calloc(1, sizeof(*vol));
592 	if (vol == NULL) {
593 		cb_fn(cb_arg, NULL, -ENOMEM);
594 		return;
595 	}
596 
597 	TAILQ_INIT(&vol->free_requests);
598 	TAILQ_INIT(&vol->executing_requests);
599 	TAILQ_INIT(&vol->queued_requests);
600 
601 	vol->backing_super = spdk_zmalloc(sizeof(*vol->backing_super), 0, NULL,
602 					  SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
603 	if (vol->backing_super == NULL) {
604 		cb_fn(cb_arg, NULL, -ENOMEM);
605 		_init_load_cleanup(vol, NULL);
606 		return;
607 	}
608 
609 	init_ctx = calloc(1, sizeof(*init_ctx));
610 	if (init_ctx == NULL) {
611 		cb_fn(cb_arg, NULL, -ENOMEM);
612 		_init_load_cleanup(vol, NULL);
613 		return;
614 	}
615 
616 	init_ctx->path = spdk_zmalloc(REDUCE_PATH_MAX, 0, NULL,
617 				      SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
618 	if (init_ctx->path == NULL) {
619 		cb_fn(cb_arg, NULL, -ENOMEM);
620 		_init_load_cleanup(vol, init_ctx);
621 		return;
622 	}
623 
624 	if (spdk_mem_all_zero(&params->uuid, sizeof(params->uuid))) {
625 		spdk_uuid_generate(&params->uuid);
626 	}
627 
628 	memcpy(vol->pm_file.path, pm_file_dir, dir_len);
629 	vol->pm_file.path[dir_len] = '/';
630 	spdk_uuid_fmt_lower(&vol->pm_file.path[dir_len + 1], SPDK_UUID_STRING_LEN,
631 			    &params->uuid);
632 	vol->pm_file.size = _get_pm_file_size(params);
633 	vol->pm_file.pm_buf = pmem_map_file(vol->pm_file.path, vol->pm_file.size,
634 					    PMEM_FILE_CREATE | PMEM_FILE_EXCL, 0600,
635 					    &mapped_len, &vol->pm_file.pm_is_pmem);
636 	if (vol->pm_file.pm_buf == NULL) {
637 		SPDK_ERRLOG("could not pmem_map_file(%s): %s\n",
638 			    vol->pm_file.path, strerror(errno));
639 		cb_fn(cb_arg, NULL, -errno);
640 		_init_load_cleanup(vol, init_ctx);
641 		return;
642 	}
643 
644 	if (vol->pm_file.size != mapped_len) {
645 		SPDK_ERRLOG("could not map entire pmem file (size=%" PRIu64 " mapped=%" PRIu64 ")\n",
646 			    vol->pm_file.size, mapped_len);
647 		cb_fn(cb_arg, NULL, -ENOMEM);
648 		_init_load_cleanup(vol, init_ctx);
649 		return;
650 	}
651 
652 	vol->backing_io_units_per_chunk = params->chunk_size / params->backing_io_unit_size;
653 	vol->logical_blocks_per_chunk = params->chunk_size / params->logical_block_size;
654 	vol->backing_lba_per_io_unit = params->backing_io_unit_size / backing_dev->blocklen;
655 	memcpy(&vol->params, params, sizeof(*params));
656 
657 	vol->backing_dev = backing_dev;
658 
659 	rc = _allocate_bit_arrays(vol);
660 	if (rc != 0) {
661 		cb_fn(cb_arg, NULL, rc);
662 		_init_load_cleanup(vol, init_ctx);
663 		return;
664 	}
665 
666 	memcpy(vol->backing_super->signature, SPDK_REDUCE_SIGNATURE,
667 	       sizeof(vol->backing_super->signature));
668 	memcpy(&vol->backing_super->params, params, sizeof(*params));
669 
670 	_initialize_vol_pm_pointers(vol);
671 
672 	memcpy(vol->pm_super, vol->backing_super, sizeof(*vol->backing_super));
673 	/* Writing 0xFF's is equivalent of filling it all with SPDK_EMPTY_MAP_ENTRY.
674 	 * Note that this writes 0xFF to not just the logical map but the chunk maps as well.
675 	 */
676 	memset(vol->pm_logical_map, 0xFF, vol->pm_file.size - sizeof(*vol->backing_super));
677 	_reduce_persist(vol, vol->pm_file.pm_buf, vol->pm_file.size);
678 
679 	init_ctx->vol = vol;
680 	init_ctx->cb_fn = cb_fn;
681 	init_ctx->cb_arg = cb_arg;
682 
683 	memcpy(init_ctx->path, vol->pm_file.path, REDUCE_PATH_MAX);
684 	init_ctx->iov[0].iov_base = init_ctx->path;
685 	init_ctx->iov[0].iov_len = REDUCE_PATH_MAX;
686 	init_ctx->backing_cb_args.cb_fn = _init_write_path_cpl;
687 	init_ctx->backing_cb_args.cb_arg = init_ctx;
688 	/* Write path to offset 4K on backing device - just after where the super
689 	 *  block will be written.  We wait until this is committed before writing the
690 	 *  super block to guarantee we don't get the super block written without the
691 	 *  the path if the system crashed in the middle of a write operation.
692 	 */
693 	vol->backing_dev->writev(vol->backing_dev, init_ctx->iov, 1,
694 				 REDUCE_BACKING_DEV_PATH_OFFSET / vol->backing_dev->blocklen,
695 				 REDUCE_PATH_MAX / vol->backing_dev->blocklen,
696 				 &init_ctx->backing_cb_args);
697 }
698 
699 static void destroy_load_cb(void *cb_arg, struct spdk_reduce_vol *vol, int reduce_errno);
700 
701 static void
702 _load_read_super_and_path_cpl(void *cb_arg, int reduce_errno)
703 {
704 	struct reduce_init_load_ctx *load_ctx = cb_arg;
705 	struct spdk_reduce_vol *vol = load_ctx->vol;
706 	uint64_t backing_dev_size;
707 	uint64_t i, num_chunks, logical_map_index;
708 	struct spdk_reduce_chunk_map *chunk;
709 	size_t mapped_len;
710 	uint32_t j;
711 	int rc;
712 
713 	rc = _alloc_zero_buff();
714 	if (rc) {
715 		goto error;
716 	}
717 
718 	if (memcmp(vol->backing_super->signature,
719 		   SPDK_REDUCE_SIGNATURE,
720 		   sizeof(vol->backing_super->signature)) != 0) {
721 		/* This backing device isn't a libreduce backing device. */
722 		rc = -EILSEQ;
723 		goto error;
724 	}
725 
726 	/* If the cb_fn is destroy_load_cb, it means we are wanting to destroy this compress bdev.
727 	 *  So don't bother getting the volume ready to use - invoke the callback immediately
728 	 *  so destroy_load_cb can delete the metadata off of the block device and delete the
729 	 *  persistent memory file if it exists.
730 	 */
731 	memcpy(vol->pm_file.path, load_ctx->path, sizeof(vol->pm_file.path));
732 	if (load_ctx->cb_fn == (*destroy_load_cb)) {
733 		load_ctx->cb_fn(load_ctx->cb_arg, vol, 0);
734 		_init_load_cleanup(NULL, load_ctx);
735 		return;
736 	}
737 
738 	memcpy(&vol->params, &vol->backing_super->params, sizeof(vol->params));
739 	vol->backing_io_units_per_chunk = vol->params.chunk_size / vol->params.backing_io_unit_size;
740 	vol->logical_blocks_per_chunk = vol->params.chunk_size / vol->params.logical_block_size;
741 	vol->backing_lba_per_io_unit = vol->params.backing_io_unit_size / vol->backing_dev->blocklen;
742 
743 	rc = _allocate_bit_arrays(vol);
744 	if (rc != 0) {
745 		goto error;
746 	}
747 
748 	backing_dev_size = vol->backing_dev->blockcnt * vol->backing_dev->blocklen;
749 	if (_get_vol_size(vol->params.chunk_size, backing_dev_size) < vol->params.vol_size) {
750 		SPDK_ERRLOG("backing device size %" PRIi64 " smaller than expected\n",
751 			    backing_dev_size);
752 		rc = -EILSEQ;
753 		goto error;
754 	}
755 
756 	vol->pm_file.size = _get_pm_file_size(&vol->params);
757 	vol->pm_file.pm_buf = pmem_map_file(vol->pm_file.path, 0, 0, 0, &mapped_len,
758 					    &vol->pm_file.pm_is_pmem);
759 	if (vol->pm_file.pm_buf == NULL) {
760 		SPDK_ERRLOG("could not pmem_map_file(%s): %s\n", vol->pm_file.path, strerror(errno));
761 		rc = -errno;
762 		goto error;
763 	}
764 
765 	if (vol->pm_file.size != mapped_len) {
766 		SPDK_ERRLOG("could not map entire pmem file (size=%" PRIu64 " mapped=%" PRIu64 ")\n",
767 			    vol->pm_file.size, mapped_len);
768 		rc = -ENOMEM;
769 		goto error;
770 	}
771 
772 	rc = _allocate_vol_requests(vol);
773 	if (rc != 0) {
774 		goto error;
775 	}
776 
777 	_initialize_vol_pm_pointers(vol);
778 
779 	num_chunks = vol->params.vol_size / vol->params.chunk_size;
780 	for (i = 0; i < num_chunks; i++) {
781 		logical_map_index = vol->pm_logical_map[i];
782 		if (logical_map_index == REDUCE_EMPTY_MAP_ENTRY) {
783 			continue;
784 		}
785 		spdk_bit_array_set(vol->allocated_chunk_maps, logical_map_index);
786 		chunk = _reduce_vol_get_chunk_map(vol, logical_map_index);
787 		for (j = 0; j < vol->backing_io_units_per_chunk; j++) {
788 			if (chunk->io_unit_index[j] != REDUCE_EMPTY_MAP_ENTRY) {
789 				spdk_bit_array_set(vol->allocated_backing_io_units, chunk->io_unit_index[j]);
790 			}
791 		}
792 	}
793 
794 	load_ctx->cb_fn(load_ctx->cb_arg, vol, 0);
795 	/* Only clean up the ctx - the vol has been passed to the application
796 	 *  for use now that volume load was successful.
797 	 */
798 	_init_load_cleanup(NULL, load_ctx);
799 	return;
800 
801 error:
802 	load_ctx->cb_fn(load_ctx->cb_arg, NULL, rc);
803 	_init_load_cleanup(vol, load_ctx);
804 }
805 
806 void
807 spdk_reduce_vol_load(struct spdk_reduce_backing_dev *backing_dev,
808 		     spdk_reduce_vol_op_with_handle_complete cb_fn, void *cb_arg)
809 {
810 	struct spdk_reduce_vol *vol;
811 	struct reduce_init_load_ctx *load_ctx;
812 
813 	if (backing_dev->readv == NULL || backing_dev->writev == NULL ||
814 	    backing_dev->unmap == NULL) {
815 		SPDK_ERRLOG("backing_dev function pointer not specified\n");
816 		cb_fn(cb_arg, NULL, -EINVAL);
817 		return;
818 	}
819 
820 	vol = calloc(1, sizeof(*vol));
821 	if (vol == NULL) {
822 		cb_fn(cb_arg, NULL, -ENOMEM);
823 		return;
824 	}
825 
826 	TAILQ_INIT(&vol->free_requests);
827 	TAILQ_INIT(&vol->executing_requests);
828 	TAILQ_INIT(&vol->queued_requests);
829 
830 	vol->backing_super = spdk_zmalloc(sizeof(*vol->backing_super), 64, NULL,
831 					  SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
832 	if (vol->backing_super == NULL) {
833 		_init_load_cleanup(vol, NULL);
834 		cb_fn(cb_arg, NULL, -ENOMEM);
835 		return;
836 	}
837 
838 	vol->backing_dev = backing_dev;
839 
840 	load_ctx = calloc(1, sizeof(*load_ctx));
841 	if (load_ctx == NULL) {
842 		_init_load_cleanup(vol, NULL);
843 		cb_fn(cb_arg, NULL, -ENOMEM);
844 		return;
845 	}
846 
847 	load_ctx->path = spdk_zmalloc(REDUCE_PATH_MAX, 64, NULL,
848 				      SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
849 	if (load_ctx->path == NULL) {
850 		_init_load_cleanup(vol, load_ctx);
851 		cb_fn(cb_arg, NULL, -ENOMEM);
852 		return;
853 	}
854 
855 	load_ctx->vol = vol;
856 	load_ctx->cb_fn = cb_fn;
857 	load_ctx->cb_arg = cb_arg;
858 
859 	load_ctx->iov[0].iov_base = vol->backing_super;
860 	load_ctx->iov[0].iov_len = sizeof(*vol->backing_super);
861 	load_ctx->iov[1].iov_base = load_ctx->path;
862 	load_ctx->iov[1].iov_len = REDUCE_PATH_MAX;
863 	load_ctx->backing_cb_args.cb_fn = _load_read_super_and_path_cpl;
864 	load_ctx->backing_cb_args.cb_arg = load_ctx;
865 	vol->backing_dev->readv(vol->backing_dev, load_ctx->iov, LOAD_IOV_COUNT, 0,
866 				(sizeof(*vol->backing_super) + REDUCE_PATH_MAX) /
867 				vol->backing_dev->blocklen,
868 				&load_ctx->backing_cb_args);
869 }
870 
871 void
872 spdk_reduce_vol_unload(struct spdk_reduce_vol *vol,
873 		       spdk_reduce_vol_op_complete cb_fn, void *cb_arg)
874 {
875 	if (vol == NULL) {
876 		/* This indicates a programming error. */
877 		assert(false);
878 		cb_fn(cb_arg, -EINVAL);
879 		return;
880 	}
881 
882 	if (--g_vol_count == 0) {
883 		spdk_free(g_zero_buf);
884 	}
885 	assert(g_vol_count >= 0);
886 	_init_load_cleanup(vol, NULL);
887 	cb_fn(cb_arg, 0);
888 }
889 
890 struct reduce_destroy_ctx {
891 	spdk_reduce_vol_op_complete		cb_fn;
892 	void					*cb_arg;
893 	struct spdk_reduce_vol			*vol;
894 	struct spdk_reduce_vol_superblock	*super;
895 	struct iovec				iov;
896 	struct spdk_reduce_vol_cb_args		backing_cb_args;
897 	int					reduce_errno;
898 	char					pm_path[REDUCE_PATH_MAX];
899 };
900 
901 static void
902 destroy_unload_cpl(void *cb_arg, int reduce_errno)
903 {
904 	struct reduce_destroy_ctx *destroy_ctx = cb_arg;
905 
906 	if (destroy_ctx->reduce_errno == 0) {
907 		if (unlink(destroy_ctx->pm_path)) {
908 			SPDK_ERRLOG("%s could not be unlinked: %s\n",
909 				    destroy_ctx->pm_path, strerror(errno));
910 		}
911 	}
912 
913 	/* Even if the unload somehow failed, we still pass the destroy_ctx
914 	 * reduce_errno since that indicates whether or not the volume was
915 	 * actually destroyed.
916 	 */
917 	destroy_ctx->cb_fn(destroy_ctx->cb_arg, destroy_ctx->reduce_errno);
918 	spdk_free(destroy_ctx->super);
919 	free(destroy_ctx);
920 }
921 
922 static void
923 _destroy_zero_super_cpl(void *cb_arg, int reduce_errno)
924 {
925 	struct reduce_destroy_ctx *destroy_ctx = cb_arg;
926 	struct spdk_reduce_vol *vol = destroy_ctx->vol;
927 
928 	destroy_ctx->reduce_errno = reduce_errno;
929 	spdk_reduce_vol_unload(vol, destroy_unload_cpl, destroy_ctx);
930 }
931 
932 static void
933 destroy_load_cb(void *cb_arg, struct spdk_reduce_vol *vol, int reduce_errno)
934 {
935 	struct reduce_destroy_ctx *destroy_ctx = cb_arg;
936 
937 	if (reduce_errno != 0) {
938 		destroy_ctx->cb_fn(destroy_ctx->cb_arg, reduce_errno);
939 		spdk_free(destroy_ctx->super);
940 		free(destroy_ctx);
941 		return;
942 	}
943 
944 	destroy_ctx->vol = vol;
945 	memcpy(destroy_ctx->pm_path, vol->pm_file.path, sizeof(destroy_ctx->pm_path));
946 	destroy_ctx->iov.iov_base = destroy_ctx->super;
947 	destroy_ctx->iov.iov_len = sizeof(*destroy_ctx->super);
948 	destroy_ctx->backing_cb_args.cb_fn = _destroy_zero_super_cpl;
949 	destroy_ctx->backing_cb_args.cb_arg = destroy_ctx;
950 	vol->backing_dev->writev(vol->backing_dev, &destroy_ctx->iov, 1, 0,
951 				 sizeof(*destroy_ctx->super) / vol->backing_dev->blocklen,
952 				 &destroy_ctx->backing_cb_args);
953 }
954 
955 void
956 spdk_reduce_vol_destroy(struct spdk_reduce_backing_dev *backing_dev,
957 			spdk_reduce_vol_op_complete cb_fn, void *cb_arg)
958 {
959 	struct reduce_destroy_ctx *destroy_ctx;
960 
961 	destroy_ctx = calloc(1, sizeof(*destroy_ctx));
962 	if (destroy_ctx == NULL) {
963 		cb_fn(cb_arg, -ENOMEM);
964 		return;
965 	}
966 
967 	destroy_ctx->super = spdk_zmalloc(sizeof(*destroy_ctx->super), 64, NULL,
968 					  SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
969 	if (destroy_ctx->super == NULL) {
970 		free(destroy_ctx);
971 		cb_fn(cb_arg, -ENOMEM);
972 		return;
973 	}
974 	destroy_ctx->cb_fn = cb_fn;
975 	destroy_ctx->cb_arg = cb_arg;
976 	spdk_reduce_vol_load(backing_dev, destroy_load_cb, destroy_ctx);
977 }
978 
979 static bool
980 _request_spans_chunk_boundary(struct spdk_reduce_vol *vol, uint64_t offset, uint64_t length)
981 {
982 	uint64_t start_chunk, end_chunk;
983 
984 	start_chunk = offset / vol->logical_blocks_per_chunk;
985 	end_chunk = (offset + length - 1) / vol->logical_blocks_per_chunk;
986 
987 	return (start_chunk != end_chunk);
988 }
989 
990 typedef void (*reduce_request_fn)(void *_req, int reduce_errno);
991 
992 static void
993 _reduce_vol_complete_req(struct spdk_reduce_vol_request *req, int reduce_errno)
994 {
995 	struct spdk_reduce_vol_request *next_req;
996 	struct spdk_reduce_vol *vol = req->vol;
997 
998 	req->cb_fn(req->cb_arg, reduce_errno);
999 	TAILQ_REMOVE(&vol->executing_requests, req, tailq);
1000 
1001 	TAILQ_FOREACH(next_req, &vol->queued_requests, tailq) {
1002 		if (next_req->logical_map_index == req->logical_map_index) {
1003 			TAILQ_REMOVE(&vol->queued_requests, next_req, tailq);
1004 			if (next_req->type == REDUCE_IO_READV) {
1005 				_start_readv_request(next_req);
1006 			} else {
1007 				assert(next_req->type == REDUCE_IO_WRITEV);
1008 				_start_writev_request(next_req);
1009 			}
1010 			break;
1011 		}
1012 	}
1013 
1014 	TAILQ_INSERT_HEAD(&vol->free_requests, req, tailq);
1015 }
1016 
1017 static void
1018 _write_write_done(void *_req, int reduce_errno)
1019 {
1020 	struct spdk_reduce_vol_request *req = _req;
1021 	struct spdk_reduce_vol *vol = req->vol;
1022 	uint64_t old_chunk_map_index;
1023 	struct spdk_reduce_chunk_map *old_chunk;
1024 	uint32_t i;
1025 
1026 	if (reduce_errno != 0) {
1027 		req->reduce_errno = reduce_errno;
1028 	}
1029 
1030 	assert(req->num_backing_ops > 0);
1031 	if (--req->num_backing_ops > 0) {
1032 		return;
1033 	}
1034 
1035 	if (req->reduce_errno != 0) {
1036 		_reduce_vol_complete_req(req, req->reduce_errno);
1037 		return;
1038 	}
1039 
1040 	old_chunk_map_index = vol->pm_logical_map[req->logical_map_index];
1041 	if (old_chunk_map_index != REDUCE_EMPTY_MAP_ENTRY) {
1042 		old_chunk = _reduce_vol_get_chunk_map(vol, old_chunk_map_index);
1043 		for (i = 0; i < vol->backing_io_units_per_chunk; i++) {
1044 			if (old_chunk->io_unit_index[i] == REDUCE_EMPTY_MAP_ENTRY) {
1045 				break;
1046 			}
1047 			assert(spdk_bit_array_get(vol->allocated_backing_io_units, old_chunk->io_unit_index[i]) == true);
1048 			spdk_bit_array_clear(vol->allocated_backing_io_units, old_chunk->io_unit_index[i]);
1049 			old_chunk->io_unit_index[i] = REDUCE_EMPTY_MAP_ENTRY;
1050 		}
1051 		spdk_bit_array_clear(vol->allocated_chunk_maps, old_chunk_map_index);
1052 	}
1053 
1054 	/*
1055 	 * We don't need to persist the clearing of the old chunk map here.  The old chunk map
1056 	 * becomes invalid after we update the logical map, since the old chunk map will no
1057 	 * longer have a reference to it in the logical map.
1058 	 */
1059 
1060 	/* Persist the new chunk map.  This must be persisted before we update the logical map. */
1061 	_reduce_persist(vol, req->chunk,
1062 			_reduce_vol_get_chunk_struct_size(vol->backing_io_units_per_chunk));
1063 
1064 	vol->pm_logical_map[req->logical_map_index] = req->chunk_map_index;
1065 
1066 	_reduce_persist(vol, &vol->pm_logical_map[req->logical_map_index], sizeof(uint64_t));
1067 
1068 	_reduce_vol_complete_req(req, 0);
1069 }
1070 
1071 static void
1072 _issue_backing_ops(struct spdk_reduce_vol_request *req, struct spdk_reduce_vol *vol,
1073 		   reduce_request_fn next_fn, bool is_write)
1074 {
1075 	struct iovec *iov;
1076 	uint8_t *buf;
1077 	uint32_t i;
1078 
1079 	if (req->chunk_is_compressed) {
1080 		iov = req->comp_buf_iov;
1081 		buf = req->comp_buf;
1082 	} else {
1083 		iov = req->decomp_buf_iov;
1084 		buf = req->decomp_buf;
1085 	}
1086 
1087 	req->num_backing_ops = req->num_io_units;
1088 	req->backing_cb_args.cb_fn = next_fn;
1089 	req->backing_cb_args.cb_arg = req;
1090 	for (i = 0; i < req->num_io_units; i++) {
1091 		iov[i].iov_base = buf + i * vol->params.backing_io_unit_size;
1092 		iov[i].iov_len = vol->params.backing_io_unit_size;
1093 		if (is_write) {
1094 			vol->backing_dev->writev(vol->backing_dev, &iov[i], 1,
1095 						 req->chunk->io_unit_index[i] * vol->backing_lba_per_io_unit,
1096 						 vol->backing_lba_per_io_unit, &req->backing_cb_args);
1097 		} else {
1098 			vol->backing_dev->readv(vol->backing_dev, &iov[i], 1,
1099 						req->chunk->io_unit_index[i] * vol->backing_lba_per_io_unit,
1100 						vol->backing_lba_per_io_unit, &req->backing_cb_args);
1101 		}
1102 	}
1103 }
1104 
1105 static void
1106 _reduce_vol_write_chunk(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn,
1107 			uint32_t compressed_size)
1108 {
1109 	struct spdk_reduce_vol *vol = req->vol;
1110 	uint32_t i;
1111 	uint64_t chunk_offset, remainder, total_len = 0;
1112 	uint8_t *buf;
1113 	int j;
1114 
1115 	req->chunk_map_index = spdk_bit_array_find_first_clear(vol->allocated_chunk_maps, 0);
1116 
1117 	/* TODO: fail if no chunk map found - but really this should not happen if we
1118 	 * size the number of requests similarly to number of extra chunk maps
1119 	 */
1120 	assert(req->chunk_map_index != UINT32_MAX);
1121 	spdk_bit_array_set(vol->allocated_chunk_maps, req->chunk_map_index);
1122 
1123 	req->chunk = _reduce_vol_get_chunk_map(vol, req->chunk_map_index);
1124 	req->num_io_units = spdk_divide_round_up(compressed_size,
1125 			    vol->params.backing_io_unit_size);
1126 	req->chunk_is_compressed = (req->num_io_units != vol->backing_io_units_per_chunk);
1127 	req->chunk->compressed_size =
1128 		req->chunk_is_compressed ? compressed_size : vol->params.chunk_size;
1129 
1130 	/* if the chunk is uncompressed we need to copy the data from the host buffers. */
1131 	if (req->chunk_is_compressed == false) {
1132 		chunk_offset = req->offset % vol->logical_blocks_per_chunk;
1133 		buf = req->decomp_buf;
1134 		total_len = chunk_offset * vol->params.logical_block_size;
1135 
1136 		/* zero any offset into chunk */
1137 		if (req->rmw == false && chunk_offset) {
1138 			memset(buf, 0, total_len);
1139 		}
1140 		buf += total_len;
1141 
1142 		/* copy the data */
1143 		for (j = 0; j < req->iovcnt; j++) {
1144 			memcpy(buf, req->iov[j].iov_base, req->iov[j].iov_len);
1145 			buf += req->iov[j].iov_len;
1146 			total_len += req->iov[j].iov_len;
1147 		}
1148 
1149 		/* zero any remainder */
1150 		remainder = vol->params.chunk_size - total_len;
1151 		total_len += remainder;
1152 		if (req->rmw == false && remainder) {
1153 			memset(buf, 0, remainder);
1154 		}
1155 		assert(total_len == vol->params.chunk_size);
1156 	}
1157 
1158 	for (i = 0; i < req->num_io_units; i++) {
1159 		req->chunk->io_unit_index[i] = spdk_bit_array_find_first_clear(vol->allocated_backing_io_units, 0);
1160 		/* TODO: fail if no backing block found - but really this should also not
1161 		 * happen (see comment above).
1162 		 */
1163 		assert(req->chunk->io_unit_index[i] != UINT32_MAX);
1164 		spdk_bit_array_set(vol->allocated_backing_io_units, req->chunk->io_unit_index[i]);
1165 	}
1166 
1167 	_issue_backing_ops(req, vol, next_fn, true /* write */);
1168 }
1169 
1170 static void
1171 _write_compress_done(void *_req, int reduce_errno)
1172 {
1173 	struct spdk_reduce_vol_request *req = _req;
1174 
1175 	/* Negative reduce_errno indicates failure for compression operations.
1176 	 * Just write the uncompressed data instead.  Force this to happen
1177 	 * by just passing the full chunk size to _reduce_vol_write_chunk.
1178 	 * When it sees the data couldn't be compressed, it will just write
1179 	 * the uncompressed buffer to disk.
1180 	 */
1181 	if (reduce_errno < 0) {
1182 		reduce_errno = req->vol->params.chunk_size;
1183 	}
1184 
1185 	/* Positive reduce_errno indicates number of bytes in compressed buffer. */
1186 	_reduce_vol_write_chunk(req, _write_write_done, (uint32_t)reduce_errno);
1187 }
1188 
1189 static void
1190 _reduce_vol_compress_chunk(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn)
1191 {
1192 	struct spdk_reduce_vol *vol = req->vol;
1193 
1194 	req->backing_cb_args.cb_fn = next_fn;
1195 	req->backing_cb_args.cb_arg = req;
1196 	req->comp_buf_iov[0].iov_base = req->comp_buf;
1197 	req->comp_buf_iov[0].iov_len = vol->params.chunk_size;
1198 	vol->backing_dev->compress(vol->backing_dev,
1199 				   req->decomp_iov, req->decomp_iovcnt, req->comp_buf_iov, 1,
1200 				   &req->backing_cb_args);
1201 }
1202 
1203 static void
1204 _reduce_vol_decompress_chunk_scratch(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn)
1205 {
1206 	struct spdk_reduce_vol *vol = req->vol;
1207 
1208 	req->backing_cb_args.cb_fn = next_fn;
1209 	req->backing_cb_args.cb_arg = req;
1210 	req->comp_buf_iov[0].iov_base = req->comp_buf;
1211 	req->comp_buf_iov[0].iov_len = req->chunk->compressed_size;
1212 	req->decomp_buf_iov[0].iov_base = req->decomp_buf;
1213 	req->decomp_buf_iov[0].iov_len = vol->params.chunk_size;
1214 	vol->backing_dev->decompress(vol->backing_dev,
1215 				     req->comp_buf_iov, 1, req->decomp_buf_iov, 1,
1216 				     &req->backing_cb_args);
1217 }
1218 
1219 static void
1220 _reduce_vol_decompress_chunk(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn)
1221 {
1222 	struct spdk_reduce_vol *vol = req->vol;
1223 	uint64_t chunk_offset, remainder = 0;
1224 	uint64_t ttl_len = 0;
1225 	size_t iov_len;
1226 	int i;
1227 
1228 	req->decomp_iovcnt = 0;
1229 	chunk_offset = req->offset % vol->logical_blocks_per_chunk;
1230 
1231 	/* If backing device doesn't support SGL output then we should copy the result of decompression to user's buffer
1232 	 * if at least one of the conditions below is true:
1233 	 * 1. User's buffer is fragmented
1234 	 * 2. Length of the user's buffer is less than the chunk
1235 	 * 3. User's buffer is contig, equals chunk_size but crosses huge page boundary */
1236 	iov_len = req->iov[0].iov_len;
1237 	req->copy_after_decompress = !vol->backing_dev->sgl_out && (req->iovcnt > 1 ||
1238 				     req->iov[0].iov_len < vol->params.chunk_size ||
1239 				     _addr_crosses_huge_page(req->iov[0].iov_base, &iov_len));
1240 	if (req->copy_after_decompress) {
1241 		req->decomp_iov[0].iov_base = req->decomp_buf;
1242 		req->decomp_iov[0].iov_len = vol->params.chunk_size;
1243 		req->decomp_iovcnt = 1;
1244 		goto decompress;
1245 	}
1246 
1247 	if (chunk_offset) {
1248 		/* first iov point to our scratch buffer for any offset into the chunk */
1249 		req->decomp_iov[0].iov_base = req->decomp_buf;
1250 		req->decomp_iov[0].iov_len = chunk_offset * vol->params.logical_block_size;
1251 		ttl_len += req->decomp_iov[0].iov_len;
1252 		req->decomp_iovcnt = 1;
1253 	}
1254 
1255 	/* now the user data iov, direct to the user buffer */
1256 	for (i = 0; i < req->iovcnt; i++) {
1257 		req->decomp_iov[i + req->decomp_iovcnt].iov_base = req->iov[i].iov_base;
1258 		req->decomp_iov[i + req->decomp_iovcnt].iov_len = req->iov[i].iov_len;
1259 		ttl_len += req->decomp_iov[i + req->decomp_iovcnt].iov_len;
1260 	}
1261 	req->decomp_iovcnt += req->iovcnt;
1262 
1263 	/* send the rest of the chunk to our scratch buffer */
1264 	remainder = vol->params.chunk_size - ttl_len;
1265 	if (remainder) {
1266 		req->decomp_iov[req->decomp_iovcnt].iov_base = req->decomp_buf + ttl_len;
1267 		req->decomp_iov[req->decomp_iovcnt].iov_len = remainder;
1268 		ttl_len += req->decomp_iov[req->decomp_iovcnt].iov_len;
1269 		req->decomp_iovcnt++;
1270 	}
1271 	assert(ttl_len == vol->params.chunk_size);
1272 
1273 decompress:
1274 	assert(!req->copy_after_decompress || (req->copy_after_decompress && req->decomp_iovcnt == 1));
1275 	req->backing_cb_args.cb_fn = next_fn;
1276 	req->backing_cb_args.cb_arg = req;
1277 	req->comp_buf_iov[0].iov_base = req->comp_buf;
1278 	req->comp_buf_iov[0].iov_len = req->chunk->compressed_size;
1279 	vol->backing_dev->decompress(vol->backing_dev,
1280 				     req->comp_buf_iov, 1, req->decomp_iov, req->decomp_iovcnt,
1281 				     &req->backing_cb_args);
1282 }
1283 
1284 static inline void
1285 _prepare_compress_chunk_copy_user_buffers(struct spdk_reduce_vol_request *req, bool zero_paddings)
1286 {
1287 	struct spdk_reduce_vol *vol = req->vol;
1288 	char *padding_buffer = zero_paddings ? g_zero_buf : req->decomp_buf;
1289 	uint64_t chunk_offset, ttl_len = 0;
1290 	uint64_t remainder = 0;
1291 	char *copy_offset = NULL;
1292 	uint32_t lbsize = vol->params.logical_block_size;
1293 	int i;
1294 
1295 	req->decomp_iov[0].iov_base = req->decomp_buf;
1296 	req->decomp_iov[0].iov_len = vol->params.chunk_size;
1297 	req->decomp_iovcnt = 1;
1298 	copy_offset = req->decomp_iov[0].iov_base;
1299 	chunk_offset = req->offset % vol->logical_blocks_per_chunk;
1300 
1301 	if (chunk_offset) {
1302 		ttl_len += chunk_offset * lbsize;
1303 		/* copy_offset already points to padding buffer if zero_paddings=false */
1304 		if (zero_paddings) {
1305 			memcpy(copy_offset, padding_buffer, ttl_len);
1306 		}
1307 		copy_offset += ttl_len;
1308 	}
1309 
1310 	/* now the user data iov, direct from the user buffer */
1311 	for (i = 0; i < req->iovcnt; i++) {
1312 		memcpy(copy_offset, req->iov[i].iov_base, req->iov[i].iov_len);
1313 		copy_offset += req->iov[i].iov_len;
1314 		ttl_len += req->iov[i].iov_len;
1315 	}
1316 
1317 	remainder = vol->params.chunk_size - ttl_len;
1318 	if (remainder) {
1319 		/* copy_offset already points to padding buffer if zero_paddings=false */
1320 		if (zero_paddings) {
1321 			memcpy(copy_offset, padding_buffer + ttl_len, remainder);
1322 		}
1323 		ttl_len += remainder;
1324 	}
1325 
1326 	assert(ttl_len == req->vol->params.chunk_size);
1327 }
1328 
1329 /* This function can be called when we are compressing a new data or in case of read-modify-write
1330  * In the first case possible paddings should be filled with zeroes, in the second case the paddings
1331  * should point to already read and decompressed buffer */
1332 static inline void
1333 _prepare_compress_chunk(struct spdk_reduce_vol_request *req, bool zero_paddings)
1334 {
1335 	struct spdk_reduce_vol *vol = req->vol;
1336 	char *padding_buffer = zero_paddings ? g_zero_buf : req->decomp_buf;
1337 	uint64_t chunk_offset, ttl_len = 0;
1338 	uint64_t remainder = 0;
1339 	uint32_t lbsize = vol->params.logical_block_size;
1340 	size_t iov_len;
1341 	int i;
1342 
1343 	/* If backing device doesn't support SGL input then we should copy user's buffer into decomp_buf
1344 	 * if at least one of the conditions below is true:
1345 	 * 1. User's buffer is fragmented
1346 	 * 2. Length of the user's buffer is less than the chunk
1347 	 * 3. User's buffer is contig, equals chunk_size but crosses huge page boundary */
1348 	iov_len = req->iov[0].iov_len;
1349 	if (!vol->backing_dev->sgl_in && (req->iovcnt > 1 ||
1350 					  req->iov[0].iov_len < vol->params.chunk_size ||
1351 					  _addr_crosses_huge_page(req->iov[0].iov_base, &iov_len))) {
1352 		_prepare_compress_chunk_copy_user_buffers(req, zero_paddings);
1353 		return;
1354 	}
1355 
1356 	req->decomp_iovcnt = 0;
1357 	chunk_offset = req->offset % vol->logical_blocks_per_chunk;
1358 
1359 	if (chunk_offset != 0) {
1360 		ttl_len += chunk_offset * lbsize;
1361 		req->decomp_iov[0].iov_base = padding_buffer;
1362 		req->decomp_iov[0].iov_len = ttl_len;
1363 		req->decomp_iovcnt = 1;
1364 	}
1365 
1366 	/* now the user data iov, direct from the user buffer */
1367 	for (i = 0; i < req->iovcnt; i++) {
1368 		req->decomp_iov[i + req->decomp_iovcnt].iov_base = req->iov[i].iov_base;
1369 		req->decomp_iov[i + req->decomp_iovcnt].iov_len = req->iov[i].iov_len;
1370 		ttl_len += req->iov[i].iov_len;
1371 	}
1372 	req->decomp_iovcnt += req->iovcnt;
1373 
1374 	remainder = vol->params.chunk_size - ttl_len;
1375 	if (remainder) {
1376 		req->decomp_iov[req->decomp_iovcnt].iov_base = padding_buffer + ttl_len;
1377 		req->decomp_iov[req->decomp_iovcnt].iov_len = remainder;
1378 		req->decomp_iovcnt++;
1379 		ttl_len += remainder;
1380 	}
1381 	assert(ttl_len == req->vol->params.chunk_size);
1382 }
1383 
1384 static void
1385 _write_decompress_done(void *_req, int reduce_errno)
1386 {
1387 	struct spdk_reduce_vol_request *req = _req;
1388 
1389 	/* Negative reduce_errno indicates failure for compression operations. */
1390 	if (reduce_errno < 0) {
1391 		_reduce_vol_complete_req(req, reduce_errno);
1392 		return;
1393 	}
1394 
1395 	/* Positive reduce_errno indicates number of bytes in decompressed
1396 	 *  buffer.  This should equal the chunk size - otherwise that's another
1397 	 *  type of failure.
1398 	 */
1399 	if ((uint32_t)reduce_errno != req->vol->params.chunk_size) {
1400 		_reduce_vol_complete_req(req, -EIO);
1401 		return;
1402 	}
1403 
1404 	_prepare_compress_chunk(req, false);
1405 	_reduce_vol_compress_chunk(req, _write_compress_done);
1406 }
1407 
1408 static void
1409 _write_read_done(void *_req, int reduce_errno)
1410 {
1411 	struct spdk_reduce_vol_request *req = _req;
1412 
1413 	if (reduce_errno != 0) {
1414 		req->reduce_errno = reduce_errno;
1415 	}
1416 
1417 	assert(req->num_backing_ops > 0);
1418 	if (--req->num_backing_ops > 0) {
1419 		return;
1420 	}
1421 
1422 	if (req->reduce_errno != 0) {
1423 		_reduce_vol_complete_req(req, req->reduce_errno);
1424 		return;
1425 	}
1426 
1427 	if (req->chunk_is_compressed) {
1428 		_reduce_vol_decompress_chunk_scratch(req, _write_decompress_done);
1429 	} else {
1430 		_write_decompress_done(req, req->chunk->compressed_size);
1431 	}
1432 }
1433 
1434 static void
1435 _read_decompress_done(void *_req, int reduce_errno)
1436 {
1437 	struct spdk_reduce_vol_request *req = _req;
1438 	struct spdk_reduce_vol *vol = req->vol;
1439 
1440 	/* Negative reduce_errno indicates failure for compression operations. */
1441 	if (reduce_errno < 0) {
1442 		_reduce_vol_complete_req(req, reduce_errno);
1443 		return;
1444 	}
1445 
1446 	/* Positive reduce_errno indicates number of bytes in decompressed
1447 	 *  buffer.  This should equal the chunk size - otherwise that's another
1448 	 *  type of failure.
1449 	 */
1450 	if ((uint32_t)reduce_errno != vol->params.chunk_size) {
1451 		_reduce_vol_complete_req(req, -EIO);
1452 		return;
1453 	}
1454 
1455 	if (req->copy_after_decompress) {
1456 		uint64_t chunk_offset = req->offset % vol->logical_blocks_per_chunk;
1457 		char *decomp_buffer = (char *)req->decomp_buf + chunk_offset * vol->params.logical_block_size;
1458 		int i;
1459 
1460 		for (i = 0; i < req->iovcnt; i++) {
1461 			memcpy(req->iov[i].iov_base, decomp_buffer, req->iov[i].iov_len);
1462 			decomp_buffer += req->iov[i].iov_len;
1463 			assert(decomp_buffer <= (char *)req->decomp_buf + vol->params.chunk_size);
1464 		}
1465 	}
1466 
1467 	_reduce_vol_complete_req(req, 0);
1468 }
1469 
1470 static void
1471 _read_read_done(void *_req, int reduce_errno)
1472 {
1473 	struct spdk_reduce_vol_request *req = _req;
1474 	uint64_t chunk_offset;
1475 	uint8_t *buf;
1476 	int i;
1477 
1478 	if (reduce_errno != 0) {
1479 		req->reduce_errno = reduce_errno;
1480 	}
1481 
1482 	assert(req->num_backing_ops > 0);
1483 	if (--req->num_backing_ops > 0) {
1484 		return;
1485 	}
1486 
1487 	if (req->reduce_errno != 0) {
1488 		_reduce_vol_complete_req(req, req->reduce_errno);
1489 		return;
1490 	}
1491 
1492 	if (req->chunk_is_compressed) {
1493 		_reduce_vol_decompress_chunk(req, _read_decompress_done);
1494 	} else {
1495 
1496 		/* If the chunk was compressed, the data would have been sent to the
1497 		 *  host buffers by the decompression operation, if not we need to memcpy here.
1498 		 */
1499 		chunk_offset = req->offset % req->vol->logical_blocks_per_chunk;
1500 		buf = req->decomp_buf + chunk_offset * req->vol->params.logical_block_size;
1501 		for (i = 0; i < req->iovcnt; i++) {
1502 			memcpy(req->iov[i].iov_base, buf, req->iov[i].iov_len);
1503 			buf += req->iov[i].iov_len;
1504 		}
1505 
1506 		_read_decompress_done(req, req->chunk->compressed_size);
1507 	}
1508 }
1509 
1510 static void
1511 _reduce_vol_read_chunk(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn)
1512 {
1513 	struct spdk_reduce_vol *vol = req->vol;
1514 
1515 	req->chunk_map_index = vol->pm_logical_map[req->logical_map_index];
1516 	assert(req->chunk_map_index != UINT32_MAX);
1517 
1518 	req->chunk = _reduce_vol_get_chunk_map(vol, req->chunk_map_index);
1519 	req->num_io_units = spdk_divide_round_up(req->chunk->compressed_size,
1520 			    vol->params.backing_io_unit_size);
1521 	req->chunk_is_compressed = (req->num_io_units != vol->backing_io_units_per_chunk);
1522 
1523 	_issue_backing_ops(req, vol, next_fn, false /* read */);
1524 }
1525 
1526 static bool
1527 _iov_array_is_valid(struct spdk_reduce_vol *vol, struct iovec *iov, int iovcnt,
1528 		    uint64_t length)
1529 {
1530 	uint64_t size = 0;
1531 	int i;
1532 
1533 	if (iovcnt > REDUCE_MAX_IOVECS) {
1534 		return false;
1535 	}
1536 
1537 	for (i = 0; i < iovcnt; i++) {
1538 		size += iov[i].iov_len;
1539 	}
1540 
1541 	return size == (length * vol->params.logical_block_size);
1542 }
1543 
1544 static bool
1545 _check_overlap(struct spdk_reduce_vol *vol, uint64_t logical_map_index)
1546 {
1547 	struct spdk_reduce_vol_request *req;
1548 
1549 	TAILQ_FOREACH(req, &vol->executing_requests, tailq) {
1550 		if (logical_map_index == req->logical_map_index) {
1551 			return true;
1552 		}
1553 	}
1554 
1555 	return false;
1556 }
1557 
1558 static void
1559 _start_readv_request(struct spdk_reduce_vol_request *req)
1560 {
1561 	TAILQ_INSERT_TAIL(&req->vol->executing_requests, req, tailq);
1562 	_reduce_vol_read_chunk(req, _read_read_done);
1563 }
1564 
1565 void
1566 spdk_reduce_vol_readv(struct spdk_reduce_vol *vol,
1567 		      struct iovec *iov, int iovcnt, uint64_t offset, uint64_t length,
1568 		      spdk_reduce_vol_op_complete cb_fn, void *cb_arg)
1569 {
1570 	struct spdk_reduce_vol_request *req;
1571 	uint64_t logical_map_index;
1572 	bool overlapped;
1573 	int i;
1574 
1575 	if (length == 0) {
1576 		cb_fn(cb_arg, 0);
1577 		return;
1578 	}
1579 
1580 	if (_request_spans_chunk_boundary(vol, offset, length)) {
1581 		cb_fn(cb_arg, -EINVAL);
1582 		return;
1583 	}
1584 
1585 	if (!_iov_array_is_valid(vol, iov, iovcnt, length)) {
1586 		cb_fn(cb_arg, -EINVAL);
1587 		return;
1588 	}
1589 
1590 	logical_map_index = offset / vol->logical_blocks_per_chunk;
1591 	overlapped = _check_overlap(vol, logical_map_index);
1592 
1593 	if (!overlapped && vol->pm_logical_map[logical_map_index] == REDUCE_EMPTY_MAP_ENTRY) {
1594 		/*
1595 		 * This chunk hasn't been allocated.  So treat the data as all
1596 		 * zeroes for this chunk - do the memset and immediately complete
1597 		 * the operation.
1598 		 */
1599 		for (i = 0; i < iovcnt; i++) {
1600 			memset(iov[i].iov_base, 0, iov[i].iov_len);
1601 		}
1602 		cb_fn(cb_arg, 0);
1603 		return;
1604 	}
1605 
1606 	req = TAILQ_FIRST(&vol->free_requests);
1607 	if (req == NULL) {
1608 		cb_fn(cb_arg, -ENOMEM);
1609 		return;
1610 	}
1611 
1612 	TAILQ_REMOVE(&vol->free_requests, req, tailq);
1613 	req->type = REDUCE_IO_READV;
1614 	req->vol = vol;
1615 	req->iov = iov;
1616 	req->iovcnt = iovcnt;
1617 	req->offset = offset;
1618 	req->logical_map_index = logical_map_index;
1619 	req->length = length;
1620 	req->copy_after_decompress = false;
1621 	req->cb_fn = cb_fn;
1622 	req->cb_arg = cb_arg;
1623 
1624 	if (!overlapped) {
1625 		_start_readv_request(req);
1626 	} else {
1627 		TAILQ_INSERT_TAIL(&vol->queued_requests, req, tailq);
1628 	}
1629 }
1630 
1631 static void
1632 _start_writev_request(struct spdk_reduce_vol_request *req)
1633 {
1634 	struct spdk_reduce_vol *vol = req->vol;
1635 
1636 	TAILQ_INSERT_TAIL(&req->vol->executing_requests, req, tailq);
1637 	if (vol->pm_logical_map[req->logical_map_index] != REDUCE_EMPTY_MAP_ENTRY) {
1638 		if ((req->length * vol->params.logical_block_size) < vol->params.chunk_size) {
1639 			/* Read old chunk, then overwrite with data from this write
1640 			 *  operation.
1641 			 */
1642 			req->rmw = true;
1643 			_reduce_vol_read_chunk(req, _write_read_done);
1644 			return;
1645 		}
1646 	}
1647 
1648 	req->rmw = false;
1649 
1650 	_prepare_compress_chunk(req, true);
1651 	_reduce_vol_compress_chunk(req, _write_compress_done);
1652 }
1653 
1654 void
1655 spdk_reduce_vol_writev(struct spdk_reduce_vol *vol,
1656 		       struct iovec *iov, int iovcnt, uint64_t offset, uint64_t length,
1657 		       spdk_reduce_vol_op_complete cb_fn, void *cb_arg)
1658 {
1659 	struct spdk_reduce_vol_request *req;
1660 	uint64_t logical_map_index;
1661 	bool overlapped;
1662 
1663 	if (length == 0) {
1664 		cb_fn(cb_arg, 0);
1665 		return;
1666 	}
1667 
1668 	if (_request_spans_chunk_boundary(vol, offset, length)) {
1669 		cb_fn(cb_arg, -EINVAL);
1670 		return;
1671 	}
1672 
1673 	if (!_iov_array_is_valid(vol, iov, iovcnt, length)) {
1674 		cb_fn(cb_arg, -EINVAL);
1675 		return;
1676 	}
1677 
1678 	logical_map_index = offset / vol->logical_blocks_per_chunk;
1679 	overlapped = _check_overlap(vol, logical_map_index);
1680 
1681 	req = TAILQ_FIRST(&vol->free_requests);
1682 	if (req == NULL) {
1683 		cb_fn(cb_arg, -ENOMEM);
1684 		return;
1685 	}
1686 
1687 	TAILQ_REMOVE(&vol->free_requests, req, tailq);
1688 	req->type = REDUCE_IO_WRITEV;
1689 	req->vol = vol;
1690 	req->iov = iov;
1691 	req->iovcnt = iovcnt;
1692 	req->offset = offset;
1693 	req->logical_map_index = logical_map_index;
1694 	req->length = length;
1695 	req->copy_after_decompress = false;
1696 	req->cb_fn = cb_fn;
1697 	req->cb_arg = cb_arg;
1698 
1699 	if (!overlapped) {
1700 		_start_writev_request(req);
1701 	} else {
1702 		TAILQ_INSERT_TAIL(&vol->queued_requests, req, tailq);
1703 	}
1704 }
1705 
1706 const struct spdk_reduce_vol_params *
1707 spdk_reduce_vol_get_params(struct spdk_reduce_vol *vol)
1708 {
1709 	return &vol->params;
1710 }
1711 
1712 void spdk_reduce_vol_print_info(struct spdk_reduce_vol *vol)
1713 {
1714 	uint64_t logical_map_size, num_chunks, ttl_chunk_sz;
1715 	uint32_t struct_size;
1716 	uint64_t chunk_map_size;
1717 
1718 	SPDK_NOTICELOG("vol info:\n");
1719 	SPDK_NOTICELOG("\tvol->params.backing_io_unit_size = 0x%x\n", vol->params.backing_io_unit_size);
1720 	SPDK_NOTICELOG("\tvol->params.logical_block_size = 0x%x\n", vol->params.logical_block_size);
1721 	SPDK_NOTICELOG("\tvol->params.chunk_size = 0x%x\n", vol->params.chunk_size);
1722 	SPDK_NOTICELOG("\tvol->params.vol_size = 0x%" PRIx64 "\n", vol->params.vol_size);
1723 	num_chunks = _get_total_chunks(vol->params.vol_size, vol->params.chunk_size);
1724 	SPDK_NOTICELOG("\ttotal chunks (including extra) = 0x%" PRIx64 "\n", num_chunks);
1725 	SPDK_NOTICELOG("\ttotal chunks (excluding extra) = 0x%" PRIx64 "\n",
1726 		       vol->params.vol_size / vol->params.chunk_size);
1727 	ttl_chunk_sz = _get_pm_total_chunks_size(vol->params.vol_size, vol->params.chunk_size,
1728 			vol->params.backing_io_unit_size);
1729 	SPDK_NOTICELOG("\ttotal_chunks_size = 0x%" PRIx64 "\n", ttl_chunk_sz);
1730 	struct_size = _reduce_vol_get_chunk_struct_size(vol->backing_io_units_per_chunk);
1731 	SPDK_NOTICELOG("\tchunk_struct_size = 0x%x\n", struct_size);
1732 
1733 	SPDK_NOTICELOG("pmem info:\n");
1734 	SPDK_NOTICELOG("\tvol->pm_file.size = 0x%" PRIx64 "\n", vol->pm_file.size);
1735 	SPDK_NOTICELOG("\tvol->pm_file.pm_buf = %p\n", (void *)vol->pm_file.pm_buf);
1736 	SPDK_NOTICELOG("\tvol->pm_super = %p\n", (void *)vol->pm_super);
1737 	SPDK_NOTICELOG("\tvol->pm_logical_map = %p\n", (void *)vol->pm_logical_map);
1738 	logical_map_size = _get_pm_logical_map_size(vol->params.vol_size,
1739 			   vol->params.chunk_size);
1740 	SPDK_NOTICELOG("\tlogical_map_size = 0x%" PRIx64 "\n", logical_map_size);
1741 	SPDK_NOTICELOG("\tvol->pm_chunk_maps = %p\n", (void *)vol->pm_chunk_maps);
1742 	chunk_map_size = _get_pm_total_chunks_size(vol->params.vol_size, vol->params.chunk_size,
1743 			 vol->params.backing_io_unit_size);
1744 	SPDK_NOTICELOG("\tchunk_map_size = 0x%" PRIx64 "\n", chunk_map_size);
1745 }
1746 
1747 SPDK_LOG_REGISTER_COMPONENT(reduce)
1748