xref: /spdk/lib/nvmf/vfio_user.c (revision b69e3ff279affbf4cbc4a09fa1f9c6c2b72397ff)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2020 Intel Corporation.
3  *   Copyright (c) 2019-2022, Nutanix Inc. All rights reserved.
4  *   Copyright (c) 2022, 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 /*
8  * NVMe over vfio-user transport
9  */
10 
11 #include <sys/param.h>
12 
13 #include <vfio-user/libvfio-user.h>
14 #include <vfio-user/pci_defs.h>
15 
16 #include "spdk/barrier.h"
17 #include "spdk/stdinc.h"
18 #include "spdk/assert.h"
19 #include "spdk/thread.h"
20 #include "spdk/nvmf_transport.h"
21 #include "spdk/sock.h"
22 #include "spdk/string.h"
23 #include "spdk/util.h"
24 #include "spdk/log.h"
25 
26 #include "transport.h"
27 
28 #include "nvmf_internal.h"
29 
30 #define SWAP(x, y)                  \
31 	do                          \
32 	{                           \
33 		typeof(x) _tmp = x; \
34 		x = y;              \
35 		y = _tmp;           \
36 	} while (0)
37 
38 #define NVMF_VFIO_USER_DEFAULT_MAX_QUEUE_DEPTH 256
39 #define NVMF_VFIO_USER_DEFAULT_AQ_DEPTH 32
40 #define NVMF_VFIO_USER_DEFAULT_MAX_IO_SIZE ((NVMF_REQ_MAX_BUFFERS - 1) << SHIFT_4KB)
41 #define NVMF_VFIO_USER_DEFAULT_IO_UNIT_SIZE NVMF_VFIO_USER_DEFAULT_MAX_IO_SIZE
42 
43 #define NVME_DOORBELLS_OFFSET	0x1000
44 #define NVMF_VFIO_USER_SHADOW_DOORBELLS_BUFFER_COUNT 2
45 #define NVMF_VFIO_USER_SET_EVENTIDX_MAX_ATTEMPTS 3
46 #define NVMF_VFIO_USER_EVENTIDX_POLL UINT32_MAX
47 
48 #define NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR 512
49 #define NVMF_VFIO_USER_DEFAULT_MAX_QPAIRS_PER_CTRLR (NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR / 4)
50 
51 /* NVMe spec 1.4, section 5.21.1.7 */
52 SPDK_STATIC_ASSERT(NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR >= 2 &&
53 		   NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR <= SPDK_NVME_MAX_IO_QUEUES,
54 		   "bad number of queues");
55 
56 /*
57  * NVMe driver reads 4096 bytes, which is the extended PCI configuration space
58  * available on PCI-X 2.0 and PCI Express buses
59  */
60 #define NVME_REG_CFG_SIZE       0x1000
61 
62 /*
63  * Doorbells must be page aligned so that they can memory mapped.
64  *
65  * TODO does the NVMe spec also require this? Document it.
66  */
67 #define NVMF_VFIO_USER_DOORBELLS_SIZE \
68 	SPDK_ALIGN_CEIL( \
69 		(NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR * 2 * SPDK_NVME_DOORBELL_REGISTER_SIZE), \
70 		0x1000)
71 #define NVME_REG_BAR0_SIZE (NVME_DOORBELLS_OFFSET + NVMF_VFIO_USER_DOORBELLS_SIZE)
72 
73 /*
74  * TODO check the PCI spec whether BAR4 and BAR5 really have to be at least one
75  * page and a multiple of page size (maybe QEMU also needs this?). Document all
76  * this.
77  */
78 
79 /*
80  * MSI-X Pending Bit Array Size
81  *
82  * TODO according to the PCI spec we need one bit per vector, document the
83  * relevant section.
84  *
85  * If the first argument to SPDK_ALIGN_CEIL is 0 then the result is 0, so we
86  * would end up with a 0-size BAR5.
87  */
88 #define NVME_IRQ_MSIX_NUM MAX(CHAR_BIT, NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR)
89 #define NVME_BAR5_SIZE SPDK_ALIGN_CEIL((NVME_IRQ_MSIX_NUM / CHAR_BIT), 0x1000)
90 SPDK_STATIC_ASSERT(NVME_BAR5_SIZE > 0, "Incorrect size");
91 
92 /* MSI-X Table Size */
93 #define NVME_BAR4_SIZE SPDK_ALIGN_CEIL((NVME_IRQ_MSIX_NUM * 16), 0x1000)
94 SPDK_STATIC_ASSERT(NVME_BAR4_SIZE > 0, "Incorrect size");
95 
96 struct nvmf_vfio_user_req;
97 
98 typedef int (*nvmf_vfio_user_req_cb_fn)(struct nvmf_vfio_user_req *req, void *cb_arg);
99 
100 /* 1 more for PRP2 list itself */
101 #define NVMF_VFIO_USER_MAX_IOVECS	(NVMF_REQ_MAX_BUFFERS + 1)
102 
103 enum nvmf_vfio_user_req_state {
104 	VFIO_USER_REQUEST_STATE_FREE = 0,
105 	VFIO_USER_REQUEST_STATE_EXECUTING,
106 };
107 
108 /*
109  * Support for live migration in NVMf/vfio-user: live migration is implemented
110  * by stopping the NVMf subsystem when the device is instructed to enter the
111  * stop-and-copy state and then trivially, and most importantly safely,
112  * collecting migration state and providing it to the vfio-user client. We
113  * don't provide any migration state at the pre-copy state as that's too
114  * complicated to do, we might support this in the future.
115  */
116 
117 
118 /* NVMe device state representation */
119 struct nvme_migr_sq_state {
120 	uint16_t	sqid;
121 	uint16_t	cqid;
122 	uint32_t	head;
123 	uint32_t	size;
124 	uint32_t	reserved;
125 	uint64_t	dma_addr;
126 };
127 SPDK_STATIC_ASSERT(sizeof(struct nvme_migr_sq_state) == 0x18, "Incorrect size");
128 
129 struct nvme_migr_cq_state {
130 	uint16_t	cqid;
131 	uint16_t	phase;
132 	uint32_t	tail;
133 	uint32_t	size;
134 	uint32_t	iv;
135 	uint32_t	ien;
136 	uint32_t	reserved;
137 	uint64_t	dma_addr;
138 };
139 SPDK_STATIC_ASSERT(sizeof(struct nvme_migr_cq_state) == 0x20, "Incorrect size");
140 
141 #define VFIO_USER_MIGR_CALLBACK_VERS	1
142 #define VFIO_USER_NVME_MIGR_MAGIC	0xAFEDBC23
143 
144 /* The device state is in VFIO MIGRATION BAR(9) region, keep the device state page aligned.
145  *
146  * NVMe device migration region is defined as below:
147  * -------------------------------------------------------------------------
148  * | vfio_user_nvme_migr_header | nvmf controller data | queue pairs | BARs |
149  * -------------------------------------------------------------------------
150  *
151  * Keep vfio_user_nvme_migr_header as a fixed 0x1000 length, all new added fields
152  * can use the reserved space at the end of the data structure.
153  */
154 struct vfio_user_nvme_migr_header {
155 	/* Magic value to validate migration data */
156 	uint32_t	magic;
157 	/* Version to check the data is same from source to destination */
158 	uint32_t	version;
159 
160 	/* The library uses this field to know how many fields in this
161 	 * structure are valid, starting at the beginning of this data
162 	 * structure.  New added fields in future use `unused` memory
163 	 * spaces.
164 	 */
165 	uint32_t	opts_size;
166 	uint32_t	reserved0;
167 
168 	/* BARs information */
169 	uint64_t	bar_offset[VFU_PCI_DEV_NUM_REGIONS];
170 	uint64_t	bar_len[VFU_PCI_DEV_NUM_REGIONS];
171 
172 	/* Queue pair start offset, starting at the beginning of this
173 	 * data structure.
174 	 */
175 	uint64_t	qp_offset;
176 	uint64_t	qp_len;
177 
178 	/* Controller data structure */
179 	uint32_t	num_io_queues;
180 	uint32_t	reserved1;
181 
182 	/* NVMf controller data offset and length if exist, starting at
183 	 * the beginning of this data structure.
184 	 */
185 	uint64_t	nvmf_data_offset;
186 	uint64_t	nvmf_data_len;
187 
188 	/*
189 	 * Whether or not shadow doorbells are used in the source. 0 is a valid DMA
190 	 * address.
191 	 */
192 	uint32_t	sdbl;
193 
194 	/* Shadow doorbell DMA addresses. */
195 	uint64_t	shadow_doorbell_buffer;
196 	uint64_t	eventidx_buffer;
197 
198 	/* Reserved memory space for new added fields, the
199 	 * field is always at the end of this data structure.
200 	 */
201 	uint8_t		unused[3856];
202 };
203 SPDK_STATIC_ASSERT(sizeof(struct vfio_user_nvme_migr_header) == 0x1000, "Incorrect size");
204 
205 struct vfio_user_nvme_migr_qp {
206 	struct nvme_migr_sq_state	sq;
207 	struct nvme_migr_cq_state	cq;
208 };
209 
210 /* NVMe state definition used to load/restore from/to NVMe migration BAR region */
211 struct vfio_user_nvme_migr_state {
212 	struct vfio_user_nvme_migr_header	ctrlr_header;
213 	struct spdk_nvmf_ctrlr_migr_data	nvmf_data;
214 	struct vfio_user_nvme_migr_qp		qps[NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR];
215 	uint8_t					doorbells[NVMF_VFIO_USER_DOORBELLS_SIZE];
216 	uint8_t					cfg[NVME_REG_CFG_SIZE];
217 };
218 
219 struct nvmf_vfio_user_req  {
220 	struct spdk_nvmf_request		req;
221 	struct spdk_nvme_cpl			rsp;
222 	struct spdk_nvme_cmd			cmd;
223 
224 	enum nvmf_vfio_user_req_state		state;
225 	nvmf_vfio_user_req_cb_fn		cb_fn;
226 	void					*cb_arg;
227 
228 	/* old CC before prop_set_cc fabric command */
229 	union spdk_nvme_cc_register		cc;
230 
231 	TAILQ_ENTRY(nvmf_vfio_user_req)		link;
232 
233 	struct iovec				iov[NVMF_VFIO_USER_MAX_IOVECS];
234 	uint8_t					iovcnt;
235 
236 	/* NVMF_VFIO_USER_MAX_IOVECS worth of dma_sg_t. */
237 	uint8_t					sg[];
238 };
239 
240 #define MAP_R			(0)
241 #define MAP_RW			(1 << 0)
242 #define MAP_INITIALIZE		(1 << 1)
243 #define MAP_QUIET		(1 << 2)
244 
245 /*
246  * Mapping of an NVMe queue.
247  *
248  * This holds the information tracking a local process mapping of an NVMe queue
249  * shared by the client.
250  */
251 struct nvme_q_mapping {
252 	/* iov of local process mapping. */
253 	struct iovec iov;
254 	/* Stored sg, needed for unmap. */
255 	dma_sg_t *sg;
256 	/* Client PRP of queue. */
257 	uint64_t prp1;
258 	/* Total length in bytes. */
259 	uint64_t len;
260 };
261 
262 enum nvmf_vfio_user_sq_state {
263 	VFIO_USER_SQ_UNUSED = 0,
264 	VFIO_USER_SQ_CREATED,
265 	VFIO_USER_SQ_DELETED,
266 	VFIO_USER_SQ_ACTIVE,
267 	VFIO_USER_SQ_INACTIVE
268 };
269 
270 enum nvmf_vfio_user_cq_state {
271 	VFIO_USER_CQ_UNUSED = 0,
272 	VFIO_USER_CQ_CREATED,
273 	VFIO_USER_CQ_DELETED,
274 };
275 
276 enum nvmf_vfio_user_ctrlr_state {
277 	VFIO_USER_CTRLR_CREATING = 0,
278 	VFIO_USER_CTRLR_RUNNING,
279 	/* Quiesce requested by libvfio-user */
280 	VFIO_USER_CTRLR_PAUSING,
281 	/* NVMf subsystem is paused, it's safe to do PCI reset, memory register,
282 	 * memory unergister, and vfio migration state transition in this state.
283 	 */
284 	VFIO_USER_CTRLR_PAUSED,
285 	/*
286 	 * Implies that the NVMf subsystem is paused. Device will be unquiesced (PCI
287 	 * reset, memory register and unregister, controller in destination VM has
288 	 * been restored).  NVMf subsystem resume has been requested.
289 	 */
290 	VFIO_USER_CTRLR_RESUMING,
291 	/*
292 	 * Implies that the NVMf subsystem is paused. Both controller in source VM and
293 	 * destinatiom VM is in this state when doing live migration.
294 	 */
295 	VFIO_USER_CTRLR_MIGRATING
296 };
297 
298 struct nvmf_vfio_user_sq {
299 	struct spdk_nvmf_qpair			qpair;
300 	struct spdk_nvmf_transport_poll_group	*group;
301 	struct nvmf_vfio_user_ctrlr		*ctrlr;
302 
303 	uint32_t				qid;
304 	/* Number of entries in queue. */
305 	uint32_t				size;
306 	struct nvme_q_mapping			mapping;
307 	enum nvmf_vfio_user_sq_state		sq_state;
308 
309 	uint32_t				head;
310 	volatile uint32_t			*dbl_tailp;
311 
312 	/* Whether a shadow doorbell eventidx needs setting. */
313 	bool					need_rearm;
314 
315 	/* multiple SQs can be mapped to the same CQ */
316 	uint16_t				cqid;
317 
318 	/* handle_queue_connect_rsp() can be used both for CREATE IO SQ response
319 	 * and SQ re-connect response in the destination VM, for the prior case,
320 	 * we will post a NVMe completion to VM, we will not set this flag when
321 	 * re-connecting SQs in the destination VM.
322 	 */
323 	bool					post_create_io_sq_completion;
324 	/* Copy of Create IO SQ command, this field is used together with
325 	 * `post_create_io_sq_completion` flag.
326 	 */
327 	struct spdk_nvme_cmd			create_io_sq_cmd;
328 
329 	struct vfio_user_delete_sq_ctx		*delete_ctx;
330 
331 	/* Currently unallocated reqs. */
332 	TAILQ_HEAD(, nvmf_vfio_user_req)	free_reqs;
333 	/* Poll group entry */
334 	TAILQ_ENTRY(nvmf_vfio_user_sq)		link;
335 	/* Connected SQ entry */
336 	TAILQ_ENTRY(nvmf_vfio_user_sq)		tailq;
337 };
338 
339 struct nvmf_vfio_user_cq {
340 	struct spdk_nvmf_transport_poll_group	*group;
341 	int					cq_ref;
342 
343 	uint32_t				qid;
344 	/* Number of entries in queue. */
345 	uint32_t				size;
346 	struct nvme_q_mapping			mapping;
347 	enum nvmf_vfio_user_cq_state		cq_state;
348 
349 	uint32_t				tail;
350 	volatile uint32_t			*dbl_headp;
351 
352 	bool					phase;
353 
354 	uint16_t				iv;
355 	bool					ien;
356 
357 	uint32_t				last_head;
358 	uint32_t				last_trigger_irq_tail;
359 };
360 
361 struct nvmf_vfio_user_poll_group {
362 	struct spdk_nvmf_transport_poll_group	group;
363 	TAILQ_ENTRY(nvmf_vfio_user_poll_group)	link;
364 	TAILQ_HEAD(, nvmf_vfio_user_sq)		sqs;
365 	struct spdk_interrupt			*intr;
366 	int					intr_fd;
367 	struct {
368 
369 		/*
370 		 * ctrlr_intr and ctrlr_kicks will be zero for all other poll
371 		 * groups. However, they can be zero even for the poll group
372 		 * the controller belongs are if no vfio-user message has been
373 		 * received or the controller hasn't been kicked yet.
374 		 */
375 
376 		/*
377 		 * Number of times vfio_user_ctrlr_intr() has run:
378 		 * vfio-user file descriptor has been ready or explicitly
379 		 * kicked (see below).
380 		 */
381 		uint64_t ctrlr_intr;
382 
383 		/*
384 		 * Kicks to the controller by ctrlr_kick().
385 		 * ctrlr_intr - ctrlr_kicks is the number of times the
386 		 * vfio-user poll file descriptor has been ready.
387 		 */
388 		uint64_t ctrlr_kicks;
389 
390 		/*
391 		 * How many times we won the race arming an SQ.
392 		 */
393 		uint64_t won;
394 
395 		/*
396 		 * How many times we lost the race arming an SQ
397 		 */
398 		uint64_t lost;
399 
400 		/*
401 		 * How many requests we processed in total each time we lost
402 		 * the rearm race.
403 		 */
404 		uint64_t lost_count;
405 
406 		/*
407 		 * Number of attempts we attempted to rearm all the SQs in the
408 		 * poll group.
409 		 */
410 		uint64_t rearms;
411 
412 		uint64_t pg_process_count;
413 		uint64_t intr;
414 		uint64_t polls;
415 		uint64_t polls_spurious;
416 		uint64_t poll_reqs;
417 		uint64_t poll_reqs_squared;
418 		uint64_t cqh_admin_writes;
419 		uint64_t cqh_io_writes;
420 	} stats;
421 };
422 
423 struct nvmf_vfio_user_shadow_doorbells {
424 	volatile uint32_t			*shadow_doorbells;
425 	volatile uint32_t			*eventidxs;
426 	dma_sg_t				*sgs;
427 	struct iovec				*iovs;
428 };
429 
430 struct nvmf_vfio_user_ctrlr {
431 	struct nvmf_vfio_user_endpoint		*endpoint;
432 	struct nvmf_vfio_user_transport		*transport;
433 
434 	/* Connected SQs list */
435 	TAILQ_HEAD(, nvmf_vfio_user_sq)		connected_sqs;
436 	enum nvmf_vfio_user_ctrlr_state		state;
437 
438 	/*
439 	 * Tells whether live migration data have been prepared. This is used
440 	 * by the get_pending_bytes callback to tell whether or not the
441 	 * previous iteration finished.
442 	 */
443 	bool migr_data_prepared;
444 
445 	/* Controller is in source VM when doing live migration */
446 	bool					in_source_vm;
447 
448 	struct spdk_thread			*thread;
449 	struct spdk_poller			*vfu_ctx_poller;
450 	struct spdk_interrupt			*intr;
451 	int					intr_fd;
452 
453 	bool					queued_quiesce;
454 
455 	bool					reset_shn;
456 	bool					disconnect;
457 
458 	uint16_t				cntlid;
459 	struct spdk_nvmf_ctrlr			*ctrlr;
460 
461 	struct nvmf_vfio_user_sq		*sqs[NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR];
462 	struct nvmf_vfio_user_cq		*cqs[NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR];
463 
464 	TAILQ_ENTRY(nvmf_vfio_user_ctrlr)	link;
465 
466 	volatile uint32_t			*bar0_doorbells;
467 	struct nvmf_vfio_user_shadow_doorbells	*sdbl;
468 	/*
469 	 * Shadow doorbells PRPs to provide during the stop-and-copy state.
470 	 */
471 	uint64_t				shadow_doorbell_buffer;
472 	uint64_t				eventidx_buffer;
473 
474 	bool					adaptive_irqs_enabled;
475 };
476 
477 /* Endpoint in vfio-user is associated with a socket file, which
478  * is the representative of a PCI endpoint.
479  */
480 struct nvmf_vfio_user_endpoint {
481 	struct nvmf_vfio_user_transport		*transport;
482 	vfu_ctx_t				*vfu_ctx;
483 	struct spdk_poller			*accept_poller;
484 	struct spdk_thread			*accept_thread;
485 	bool					interrupt_mode;
486 	struct msixcap				*msix;
487 	vfu_pci_config_space_t			*pci_config_space;
488 	int					devmem_fd;
489 	int					accept_intr_fd;
490 	struct spdk_interrupt			*accept_intr;
491 
492 	volatile uint32_t			*bar0_doorbells;
493 
494 	int					migr_fd;
495 	void					*migr_data;
496 
497 	struct spdk_nvme_transport_id		trid;
498 	struct spdk_nvmf_subsystem		*subsystem;
499 
500 	/* Controller is associated with an active socket connection,
501 	 * the lifecycle of the controller is same as the VM.
502 	 * Currently we only support one active connection, as the NVMe
503 	 * specification defines, we may support multiple controllers in
504 	 * future, so that it can support e.g: RESERVATION.
505 	 */
506 	struct nvmf_vfio_user_ctrlr		*ctrlr;
507 	pthread_mutex_t				lock;
508 
509 	bool					need_async_destroy;
510 	/* The subsystem is in PAUSED state and need to be resumed, TRUE
511 	 * only when migration is done successfully and the controller is
512 	 * in source VM.
513 	 */
514 	bool					need_resume;
515 	/* Start the accept poller again after destroying the controller */
516 	bool					need_relisten;
517 
518 	TAILQ_ENTRY(nvmf_vfio_user_endpoint)	link;
519 };
520 
521 struct nvmf_vfio_user_transport_opts {
522 	bool					disable_mappable_bar0;
523 	bool					disable_adaptive_irq;
524 	bool					disable_shadow_doorbells;
525 	bool					disable_compare;
526 	bool					enable_intr_mode_sq_spreading;
527 };
528 
529 struct nvmf_vfio_user_transport {
530 	struct spdk_nvmf_transport		transport;
531 	struct nvmf_vfio_user_transport_opts    transport_opts;
532 	bool					intr_mode_supported;
533 	pthread_mutex_t				lock;
534 	TAILQ_HEAD(, nvmf_vfio_user_endpoint)	endpoints;
535 
536 	pthread_mutex_t				pg_lock;
537 	TAILQ_HEAD(, nvmf_vfio_user_poll_group)	poll_groups;
538 	struct nvmf_vfio_user_poll_group	*next_pg;
539 };
540 
541 /*
542  * function prototypes
543  */
544 static int nvmf_vfio_user_req_free(struct spdk_nvmf_request *req);
545 
546 static struct nvmf_vfio_user_req *get_nvmf_vfio_user_req(struct nvmf_vfio_user_sq *sq);
547 
548 /*
549  * Local process virtual address of a queue.
550  */
551 static inline void *
552 q_addr(struct nvme_q_mapping *mapping)
553 {
554 	return mapping->iov.iov_base;
555 }
556 
557 static inline int
558 queue_index(uint16_t qid, bool is_cq)
559 {
560 	return (qid * 2) + is_cq;
561 }
562 
563 static inline volatile uint32_t *
564 sq_headp(struct nvmf_vfio_user_sq *sq)
565 {
566 	assert(sq != NULL);
567 	return &sq->head;
568 }
569 
570 static inline volatile uint32_t *
571 sq_dbl_tailp(struct nvmf_vfio_user_sq *sq)
572 {
573 	assert(sq != NULL);
574 	return sq->dbl_tailp;
575 }
576 
577 static inline volatile uint32_t *
578 cq_dbl_headp(struct nvmf_vfio_user_cq *cq)
579 {
580 	assert(cq != NULL);
581 	return cq->dbl_headp;
582 }
583 
584 static inline volatile uint32_t *
585 cq_tailp(struct nvmf_vfio_user_cq *cq)
586 {
587 	assert(cq != NULL);
588 	return &cq->tail;
589 }
590 
591 static inline void
592 sq_head_advance(struct nvmf_vfio_user_sq *sq)
593 {
594 	assert(sq != NULL);
595 
596 	assert(*sq_headp(sq) < sq->size);
597 	(*sq_headp(sq))++;
598 
599 	if (spdk_unlikely(*sq_headp(sq) == sq->size)) {
600 		*sq_headp(sq) = 0;
601 	}
602 }
603 
604 static inline void
605 cq_tail_advance(struct nvmf_vfio_user_cq *cq)
606 {
607 	assert(cq != NULL);
608 
609 	assert(*cq_tailp(cq) < cq->size);
610 	(*cq_tailp(cq))++;
611 
612 	if (spdk_unlikely(*cq_tailp(cq) == cq->size)) {
613 		*cq_tailp(cq) = 0;
614 		cq->phase = !cq->phase;
615 	}
616 }
617 
618 static bool
619 io_q_exists(struct nvmf_vfio_user_ctrlr *vu_ctrlr, const uint16_t qid, const bool is_cq)
620 {
621 	assert(vu_ctrlr != NULL);
622 
623 	if (qid == 0 || qid >= NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR) {
624 		return false;
625 	}
626 
627 	if (is_cq) {
628 		if (vu_ctrlr->cqs[qid] == NULL) {
629 			return false;
630 		}
631 
632 		return (vu_ctrlr->cqs[qid]->cq_state != VFIO_USER_CQ_DELETED &&
633 			vu_ctrlr->cqs[qid]->cq_state != VFIO_USER_CQ_UNUSED);
634 	}
635 
636 	if (vu_ctrlr->sqs[qid] == NULL) {
637 		return false;
638 	}
639 
640 	return (vu_ctrlr->sqs[qid]->sq_state != VFIO_USER_SQ_DELETED &&
641 		vu_ctrlr->sqs[qid]->sq_state != VFIO_USER_SQ_UNUSED);
642 }
643 
644 static char *
645 endpoint_id(struct nvmf_vfio_user_endpoint *endpoint)
646 {
647 	return endpoint->trid.traddr;
648 }
649 
650 static char *
651 ctrlr_id(struct nvmf_vfio_user_ctrlr *ctrlr)
652 {
653 	if (!ctrlr || !ctrlr->endpoint) {
654 		return "Null Ctrlr";
655 	}
656 
657 	return endpoint_id(ctrlr->endpoint);
658 }
659 
660 /* Return the poll group for the admin queue of the controller. */
661 static inline struct nvmf_vfio_user_poll_group *
662 ctrlr_to_poll_group(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
663 {
664 	return SPDK_CONTAINEROF(vu_ctrlr->sqs[0]->group,
665 				struct nvmf_vfio_user_poll_group,
666 				group);
667 }
668 
669 static inline struct spdk_thread *
670 poll_group_to_thread(struct nvmf_vfio_user_poll_group *vu_pg)
671 {
672 	return vu_pg->group.group->thread;
673 }
674 
675 static dma_sg_t *
676 index_to_sg_t(void *arr, size_t i)
677 {
678 	return (dma_sg_t *)((uintptr_t)arr + i * dma_sg_size());
679 }
680 
681 static inline size_t
682 vfio_user_migr_data_len(void)
683 {
684 	return SPDK_ALIGN_CEIL(sizeof(struct vfio_user_nvme_migr_state), PAGE_SIZE);
685 }
686 
687 static inline bool
688 in_interrupt_mode(struct nvmf_vfio_user_transport *vu_transport)
689 {
690 	return spdk_interrupt_mode_is_enabled() &&
691 	       vu_transport->intr_mode_supported;
692 }
693 
694 static int vfio_user_ctrlr_intr(void *ctx);
695 
696 static void
697 vfio_user_msg_ctrlr_intr(void *ctx)
698 {
699 	struct nvmf_vfio_user_ctrlr *vu_ctrlr = ctx;
700 	struct nvmf_vfio_user_poll_group *vu_ctrlr_group = ctrlr_to_poll_group(vu_ctrlr);
701 
702 	vu_ctrlr_group->stats.ctrlr_kicks++;
703 
704 	vfio_user_ctrlr_intr(ctx);
705 }
706 
707 /*
708  * Kick (force a wakeup) of all poll groups for this controller.
709  * vfio_user_ctrlr_intr() itself arranges for kicking other poll groups if
710  * needed.
711  */
712 static void
713 ctrlr_kick(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
714 {
715 	struct nvmf_vfio_user_poll_group *vu_ctrlr_group;
716 
717 	SPDK_DEBUGLOG(vfio_user_db, "%s: kicked\n", ctrlr_id(vu_ctrlr));
718 
719 	vu_ctrlr_group = ctrlr_to_poll_group(vu_ctrlr);
720 
721 	spdk_thread_send_msg(poll_group_to_thread(vu_ctrlr_group),
722 			     vfio_user_msg_ctrlr_intr, vu_ctrlr);
723 }
724 
725 /*
726  * Make the given DMA address and length available (locally mapped) via iov.
727  */
728 static void *
729 map_one(vfu_ctx_t *ctx, uint64_t addr, uint64_t len, dma_sg_t *sg,
730 	struct iovec *iov, int32_t flags)
731 {
732 	int prot = PROT_READ;
733 	int ret;
734 
735 	if (flags & MAP_RW) {
736 		prot |= PROT_WRITE;
737 	}
738 
739 	assert(ctx != NULL);
740 	assert(sg != NULL);
741 	assert(iov != NULL);
742 
743 	ret = vfu_addr_to_sgl(ctx, (void *)(uintptr_t)addr, len, sg, 1, prot);
744 	if (ret < 0) {
745 		if (ret == -1) {
746 			if (!(flags & MAP_QUIET)) {
747 				SPDK_ERRLOG("failed to translate IOVA [%#lx, %#lx) (prot=%d) to local VA: %m\n",
748 					    addr, addr + len, prot);
749 			}
750 		} else {
751 			SPDK_ERRLOG("failed to translate IOVA [%#lx, %#lx) (prot=%d) to local VA: %d segments needed\n",
752 				    addr, addr + len, prot, -(ret + 1));
753 		}
754 		return NULL;
755 	}
756 
757 	ret = vfu_sgl_get(ctx, sg, iov, 1, 0);
758 	if (ret != 0) {
759 		SPDK_ERRLOG("failed to get iovec for IOVA [%#lx, %#lx): %m\n",
760 			    addr, addr + len);
761 		return NULL;
762 	}
763 
764 	assert(iov->iov_base != NULL);
765 	return iov->iov_base;
766 }
767 
768 static int
769 nvme_cmd_map_prps(void *prv, struct spdk_nvme_cmd *cmd, struct iovec *iovs,
770 		  uint32_t max_iovcnt, uint32_t len, size_t mps,
771 		  void *(*gpa_to_vva)(void *prv, uint64_t addr, uint64_t len, uint32_t flags))
772 {
773 	uint64_t prp1, prp2;
774 	void *vva;
775 	uint32_t i;
776 	uint32_t residue_len, nents;
777 	uint64_t *prp_list;
778 	uint32_t iovcnt;
779 
780 	assert(max_iovcnt > 0);
781 
782 	prp1 = cmd->dptr.prp.prp1;
783 	prp2 = cmd->dptr.prp.prp2;
784 
785 	/* PRP1 may started with unaligned page address */
786 	residue_len = mps - (prp1 % mps);
787 	residue_len = spdk_min(len, residue_len);
788 
789 	vva = gpa_to_vva(prv, prp1, residue_len, MAP_RW);
790 	if (spdk_unlikely(vva == NULL)) {
791 		SPDK_ERRLOG("GPA to VVA failed\n");
792 		return -EINVAL;
793 	}
794 	len -= residue_len;
795 	if (len && max_iovcnt < 2) {
796 		SPDK_ERRLOG("Too many page entries, at least two iovs are required\n");
797 		return -ERANGE;
798 	}
799 	iovs[0].iov_base = vva;
800 	iovs[0].iov_len = residue_len;
801 
802 	if (len) {
803 		if (spdk_unlikely(prp2 == 0)) {
804 			SPDK_ERRLOG("no PRP2, %d remaining\n", len);
805 			return -EINVAL;
806 		}
807 
808 		if (len <= mps) {
809 			/* 2 PRP used */
810 			iovcnt = 2;
811 			vva = gpa_to_vva(prv, prp2, len, MAP_RW);
812 			if (spdk_unlikely(vva == NULL)) {
813 				SPDK_ERRLOG("no VVA for %#" PRIx64 ", len%#x\n",
814 					    prp2, len);
815 				return -EINVAL;
816 			}
817 			iovs[1].iov_base = vva;
818 			iovs[1].iov_len = len;
819 		} else {
820 			/* PRP list used */
821 			nents = (len + mps - 1) / mps;
822 			if (spdk_unlikely(nents + 1 > max_iovcnt)) {
823 				SPDK_ERRLOG("Too many page entries\n");
824 				return -ERANGE;
825 			}
826 
827 			vva = gpa_to_vva(prv, prp2, nents * sizeof(*prp_list), MAP_R);
828 			if (spdk_unlikely(vva == NULL)) {
829 				SPDK_ERRLOG("no VVA for %#" PRIx64 ", nents=%#x\n",
830 					    prp2, nents);
831 				return -EINVAL;
832 			}
833 			prp_list = vva;
834 			i = 0;
835 			while (len != 0) {
836 				residue_len = spdk_min(len, mps);
837 				vva = gpa_to_vva(prv, prp_list[i], residue_len, MAP_RW);
838 				if (spdk_unlikely(vva == NULL)) {
839 					SPDK_ERRLOG("no VVA for %#" PRIx64 ", residue_len=%#x\n",
840 						    prp_list[i], residue_len);
841 					return -EINVAL;
842 				}
843 				iovs[i + 1].iov_base = vva;
844 				iovs[i + 1].iov_len = residue_len;
845 				len -= residue_len;
846 				i++;
847 			}
848 			iovcnt = i + 1;
849 		}
850 	} else {
851 		/* 1 PRP used */
852 		iovcnt = 1;
853 	}
854 
855 	assert(iovcnt <= max_iovcnt);
856 	return iovcnt;
857 }
858 
859 static int
860 nvme_cmd_map_sgls_data(void *prv, struct spdk_nvme_sgl_descriptor *sgls, uint32_t num_sgls,
861 		       struct iovec *iovs, uint32_t max_iovcnt,
862 		       void *(*gpa_to_vva)(void *prv, uint64_t addr, uint64_t len, uint32_t flags))
863 {
864 	uint32_t i;
865 	void *vva;
866 
867 	if (spdk_unlikely(max_iovcnt < num_sgls)) {
868 		return -ERANGE;
869 	}
870 
871 	for (i = 0; i < num_sgls; i++) {
872 		if (spdk_unlikely(sgls[i].unkeyed.type != SPDK_NVME_SGL_TYPE_DATA_BLOCK)) {
873 			SPDK_ERRLOG("Invalid SGL type %u\n", sgls[i].unkeyed.type);
874 			return -EINVAL;
875 		}
876 		vva = gpa_to_vva(prv, sgls[i].address, sgls[i].unkeyed.length, MAP_RW);
877 		if (spdk_unlikely(vva == NULL)) {
878 			SPDK_ERRLOG("GPA to VVA failed\n");
879 			return -EINVAL;
880 		}
881 		iovs[i].iov_base = vva;
882 		iovs[i].iov_len = sgls[i].unkeyed.length;
883 	}
884 
885 	return num_sgls;
886 }
887 
888 static int
889 nvme_cmd_map_sgls(void *prv, struct spdk_nvme_cmd *cmd, struct iovec *iovs, uint32_t max_iovcnt,
890 		  uint32_t len, size_t mps,
891 		  void *(*gpa_to_vva)(void *prv, uint64_t addr, uint64_t len, uint32_t flags))
892 {
893 	struct spdk_nvme_sgl_descriptor *sgl, *last_sgl;
894 	uint32_t num_sgls, seg_len;
895 	void *vva;
896 	int ret;
897 	uint32_t total_iovcnt = 0;
898 
899 	/* SGL cases */
900 	sgl = &cmd->dptr.sgl1;
901 
902 	/* only one SGL segment */
903 	if (sgl->unkeyed.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK) {
904 		assert(max_iovcnt > 0);
905 		vva = gpa_to_vva(prv, sgl->address, sgl->unkeyed.length, MAP_RW);
906 		if (spdk_unlikely(vva == NULL)) {
907 			SPDK_ERRLOG("GPA to VVA failed\n");
908 			return -EINVAL;
909 		}
910 		iovs[0].iov_base = vva;
911 		iovs[0].iov_len = sgl->unkeyed.length;
912 		assert(sgl->unkeyed.length == len);
913 
914 		return 1;
915 	}
916 
917 	for (;;) {
918 		if (spdk_unlikely((sgl->unkeyed.type != SPDK_NVME_SGL_TYPE_SEGMENT) &&
919 				  (sgl->unkeyed.type != SPDK_NVME_SGL_TYPE_LAST_SEGMENT))) {
920 			SPDK_ERRLOG("Invalid SGL type %u\n", sgl->unkeyed.type);
921 			return -EINVAL;
922 		}
923 
924 		seg_len = sgl->unkeyed.length;
925 		if (spdk_unlikely(seg_len % sizeof(struct spdk_nvme_sgl_descriptor))) {
926 			SPDK_ERRLOG("Invalid SGL segment len %u\n", seg_len);
927 			return -EINVAL;
928 		}
929 
930 		num_sgls = seg_len / sizeof(struct spdk_nvme_sgl_descriptor);
931 		vva = gpa_to_vva(prv, sgl->address, sgl->unkeyed.length, MAP_R);
932 		if (spdk_unlikely(vva == NULL)) {
933 			SPDK_ERRLOG("GPA to VVA failed\n");
934 			return -EINVAL;
935 		}
936 
937 		/* sgl point to the first segment */
938 		sgl = (struct spdk_nvme_sgl_descriptor *)vva;
939 		last_sgl = &sgl[num_sgls - 1];
940 
941 		/* we are done */
942 		if (last_sgl->unkeyed.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK) {
943 			/* map whole sgl list */
944 			ret = nvme_cmd_map_sgls_data(prv, sgl, num_sgls, &iovs[total_iovcnt],
945 						     max_iovcnt - total_iovcnt, gpa_to_vva);
946 			if (spdk_unlikely(ret < 0)) {
947 				return ret;
948 			}
949 			total_iovcnt += ret;
950 
951 			return total_iovcnt;
952 		}
953 
954 		if (num_sgls > 1) {
955 			/* map whole sgl exclude last_sgl */
956 			ret = nvme_cmd_map_sgls_data(prv, sgl, num_sgls - 1, &iovs[total_iovcnt],
957 						     max_iovcnt - total_iovcnt, gpa_to_vva);
958 			if (spdk_unlikely(ret < 0)) {
959 				return ret;
960 			}
961 			total_iovcnt += ret;
962 		}
963 
964 		/* move to next level's segments */
965 		sgl = last_sgl;
966 	}
967 
968 	return 0;
969 }
970 
971 static int
972 nvme_map_cmd(void *prv, struct spdk_nvme_cmd *cmd, struct iovec *iovs, uint32_t max_iovcnt,
973 	     uint32_t len, size_t mps,
974 	     void *(*gpa_to_vva)(void *prv, uint64_t addr, uint64_t len, uint32_t flags))
975 {
976 	if (cmd->psdt == SPDK_NVME_PSDT_PRP) {
977 		return nvme_cmd_map_prps(prv, cmd, iovs, max_iovcnt, len, mps, gpa_to_vva);
978 	}
979 
980 	return nvme_cmd_map_sgls(prv, cmd, iovs, max_iovcnt, len, mps, gpa_to_vva);
981 }
982 
983 /*
984  * For each queue, update the location of its doorbell to the correct location:
985  * either our own BAR0, or the guest's configured shadow doorbell area.
986  *
987  * The Admin queue (qid: 0) does not ever use shadow doorbells.
988  */
989 static void
990 vfio_user_ctrlr_switch_doorbells(struct nvmf_vfio_user_ctrlr *ctrlr, bool shadow)
991 {
992 	volatile uint32_t *doorbells = shadow ? ctrlr->sdbl->shadow_doorbells :
993 				       ctrlr->bar0_doorbells;
994 
995 	assert(doorbells != NULL);
996 
997 	for (size_t i = 1; i < NVMF_VFIO_USER_DEFAULT_MAX_QPAIRS_PER_CTRLR; i++) {
998 		struct nvmf_vfio_user_sq *sq = ctrlr->sqs[i];
999 		struct nvmf_vfio_user_cq *cq = ctrlr->cqs[i];
1000 
1001 		if (sq != NULL) {
1002 			sq->dbl_tailp = doorbells + queue_index(sq->qid, false);
1003 
1004 			ctrlr->sqs[i]->need_rearm = shadow;
1005 		}
1006 
1007 		if (cq != NULL) {
1008 			cq->dbl_headp = doorbells + queue_index(cq->qid, true);
1009 		}
1010 	}
1011 }
1012 
1013 static void
1014 unmap_sdbl(vfu_ctx_t *vfu_ctx, struct nvmf_vfio_user_shadow_doorbells *sdbl)
1015 {
1016 	assert(vfu_ctx != NULL);
1017 	assert(sdbl != NULL);
1018 
1019 	/*
1020 	 * An allocation error would result in only one of the two being
1021 	 * non-NULL.  If that is the case, no memory should have been mapped.
1022 	 */
1023 	if (sdbl->iovs == NULL || sdbl->sgs == NULL) {
1024 		return;
1025 	}
1026 
1027 	for (size_t i = 0; i < NVMF_VFIO_USER_SHADOW_DOORBELLS_BUFFER_COUNT; ++i) {
1028 		struct iovec *iov;
1029 		dma_sg_t *sg;
1030 
1031 		if (!sdbl->iovs[i].iov_len) {
1032 			continue;
1033 		}
1034 
1035 		sg = index_to_sg_t(sdbl->sgs, i);
1036 		iov = sdbl->iovs + i;
1037 
1038 		vfu_sgl_put(vfu_ctx, sg, iov, 1);
1039 	}
1040 }
1041 
1042 static void
1043 free_sdbl(vfu_ctx_t *vfu_ctx, struct nvmf_vfio_user_shadow_doorbells *sdbl)
1044 {
1045 	if (sdbl == NULL) {
1046 		return;
1047 	}
1048 
1049 	unmap_sdbl(vfu_ctx, sdbl);
1050 
1051 	/*
1052 	 * sdbl->shadow_doorbells and sdbl->eventidxs were mapped,
1053 	 * not allocated, so don't free() them.
1054 	 */
1055 	free(sdbl->sgs);
1056 	free(sdbl->iovs);
1057 	free(sdbl);
1058 }
1059 
1060 static struct nvmf_vfio_user_shadow_doorbells *
1061 map_sdbl(vfu_ctx_t *vfu_ctx, uint64_t prp1, uint64_t prp2, size_t len)
1062 {
1063 	struct nvmf_vfio_user_shadow_doorbells *sdbl = NULL;
1064 	dma_sg_t *sg2 = NULL;
1065 	void *p;
1066 
1067 	assert(vfu_ctx != NULL);
1068 
1069 	sdbl = calloc(1, sizeof(*sdbl));
1070 	if (sdbl == NULL) {
1071 		goto err;
1072 	}
1073 
1074 	sdbl->sgs = calloc(NVMF_VFIO_USER_SHADOW_DOORBELLS_BUFFER_COUNT, dma_sg_size());
1075 	sdbl->iovs = calloc(NVMF_VFIO_USER_SHADOW_DOORBELLS_BUFFER_COUNT, sizeof(*sdbl->iovs));
1076 	if (sdbl->sgs == NULL || sdbl->iovs == NULL) {
1077 		goto err;
1078 	}
1079 
1080 	/* Map shadow doorbell buffer (PRP1). */
1081 	p = map_one(vfu_ctx, prp1, len, sdbl->sgs, sdbl->iovs, MAP_RW);
1082 
1083 	if (p == NULL) {
1084 		goto err;
1085 	}
1086 
1087 	/*
1088 	 * Map eventidx buffer (PRP2).
1089 	 * Should only be written to by the controller.
1090 	 */
1091 
1092 	sg2 = index_to_sg_t(sdbl->sgs, 1);
1093 
1094 	p = map_one(vfu_ctx, prp2, len, sg2, sdbl->iovs + 1, MAP_RW);
1095 
1096 	if (p == NULL) {
1097 		goto err;
1098 	}
1099 
1100 	sdbl->shadow_doorbells = (uint32_t *)sdbl->iovs[0].iov_base;
1101 	sdbl->eventidxs = (uint32_t *)sdbl->iovs[1].iov_base;
1102 
1103 	return sdbl;
1104 
1105 err:
1106 	free_sdbl(vfu_ctx, sdbl);
1107 	return NULL;
1108 }
1109 
1110 /*
1111  * Copy doorbells from one buffer to the other, during switches between BAR0
1112  * doorbells and shadow doorbells.
1113  */
1114 static void
1115 copy_doorbells(struct nvmf_vfio_user_ctrlr *ctrlr,
1116 	       const volatile uint32_t *from, volatile uint32_t *to)
1117 {
1118 	assert(ctrlr != NULL);
1119 	assert(from != NULL);
1120 	assert(to != NULL);
1121 
1122 	SPDK_DEBUGLOG(vfio_user_db,
1123 		      "%s: migrating shadow doorbells from %p to %p\n",
1124 		      ctrlr_id(ctrlr), from, to);
1125 
1126 	/* Can't use memcpy because it doesn't respect volatile semantics. */
1127 	for (size_t i = 0; i < NVMF_VFIO_USER_DEFAULT_MAX_QPAIRS_PER_CTRLR; ++i) {
1128 		if (ctrlr->sqs[i] != NULL) {
1129 			to[queue_index(i, false)] = from[queue_index(i, false)];
1130 		}
1131 
1132 		if (ctrlr->cqs[i] != NULL) {
1133 			to[queue_index(i, true)] = from[queue_index(i, true)];
1134 		}
1135 	}
1136 }
1137 
1138 static void
1139 fail_ctrlr(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
1140 {
1141 	const struct spdk_nvmf_registers *regs;
1142 
1143 	assert(vu_ctrlr != NULL);
1144 	assert(vu_ctrlr->ctrlr != NULL);
1145 
1146 	regs = spdk_nvmf_ctrlr_get_regs(vu_ctrlr->ctrlr);
1147 	if (regs->csts.bits.cfs == 0) {
1148 		SPDK_ERRLOG(":%s failing controller\n", ctrlr_id(vu_ctrlr));
1149 	}
1150 
1151 	nvmf_ctrlr_set_fatal_status(vu_ctrlr->ctrlr);
1152 }
1153 
1154 static inline bool
1155 ctrlr_interrupt_enabled(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
1156 {
1157 	assert(vu_ctrlr != NULL);
1158 	assert(vu_ctrlr->endpoint != NULL);
1159 
1160 	vfu_pci_config_space_t *pci = vu_ctrlr->endpoint->pci_config_space;
1161 
1162 	return (!pci->hdr.cmd.id || vu_ctrlr->endpoint->msix->mxc.mxe);
1163 }
1164 
1165 static void
1166 nvmf_vfio_user_destroy_endpoint(struct nvmf_vfio_user_endpoint *endpoint)
1167 {
1168 	SPDK_DEBUGLOG(nvmf_vfio, "destroy endpoint %s\n", endpoint_id(endpoint));
1169 
1170 	spdk_interrupt_unregister(&endpoint->accept_intr);
1171 	spdk_poller_unregister(&endpoint->accept_poller);
1172 
1173 	if (endpoint->bar0_doorbells) {
1174 		munmap((void *)endpoint->bar0_doorbells, NVMF_VFIO_USER_DOORBELLS_SIZE);
1175 	}
1176 
1177 	if (endpoint->devmem_fd > 0) {
1178 		close(endpoint->devmem_fd);
1179 	}
1180 
1181 	if (endpoint->migr_data) {
1182 		munmap(endpoint->migr_data, vfio_user_migr_data_len());
1183 	}
1184 
1185 	if (endpoint->migr_fd > 0) {
1186 		close(endpoint->migr_fd);
1187 	}
1188 
1189 	if (endpoint->vfu_ctx) {
1190 		vfu_destroy_ctx(endpoint->vfu_ctx);
1191 	}
1192 
1193 	pthread_mutex_destroy(&endpoint->lock);
1194 	free(endpoint);
1195 }
1196 
1197 /* called when process exits */
1198 static int
1199 nvmf_vfio_user_destroy(struct spdk_nvmf_transport *transport,
1200 		       spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
1201 {
1202 	struct nvmf_vfio_user_transport *vu_transport;
1203 	struct nvmf_vfio_user_endpoint *endpoint, *tmp;
1204 
1205 	SPDK_DEBUGLOG(nvmf_vfio, "destroy transport\n");
1206 
1207 	vu_transport = SPDK_CONTAINEROF(transport, struct nvmf_vfio_user_transport,
1208 					transport);
1209 
1210 	pthread_mutex_destroy(&vu_transport->lock);
1211 	pthread_mutex_destroy(&vu_transport->pg_lock);
1212 
1213 	TAILQ_FOREACH_SAFE(endpoint, &vu_transport->endpoints, link, tmp) {
1214 		TAILQ_REMOVE(&vu_transport->endpoints, endpoint, link);
1215 		nvmf_vfio_user_destroy_endpoint(endpoint);
1216 	}
1217 
1218 	free(vu_transport);
1219 
1220 	if (cb_fn) {
1221 		cb_fn(cb_arg);
1222 	}
1223 
1224 	return 0;
1225 }
1226 
1227 static const struct spdk_json_object_decoder vfio_user_transport_opts_decoder[] = {
1228 	{
1229 		"disable_mappable_bar0",
1230 		offsetof(struct nvmf_vfio_user_transport, transport_opts.disable_mappable_bar0),
1231 		spdk_json_decode_bool, true
1232 	},
1233 	{
1234 		"disable_adaptive_irq",
1235 		offsetof(struct nvmf_vfio_user_transport, transport_opts.disable_adaptive_irq),
1236 		spdk_json_decode_bool, true
1237 	},
1238 	{
1239 		"disable_shadow_doorbells",
1240 		offsetof(struct nvmf_vfio_user_transport, transport_opts.disable_shadow_doorbells),
1241 		spdk_json_decode_bool, true
1242 	},
1243 	{
1244 		"disable_compare",
1245 		offsetof(struct nvmf_vfio_user_transport, transport_opts.disable_compare),
1246 		spdk_json_decode_bool, true
1247 	},
1248 	{
1249 		"enable_intr_mode_sq_spreading",
1250 		offsetof(struct nvmf_vfio_user_transport, transport_opts.enable_intr_mode_sq_spreading),
1251 		spdk_json_decode_bool, true
1252 	},
1253 };
1254 
1255 static struct spdk_nvmf_transport *
1256 nvmf_vfio_user_create(struct spdk_nvmf_transport_opts *opts)
1257 {
1258 	struct nvmf_vfio_user_transport *vu_transport;
1259 	int err;
1260 
1261 	if (opts->max_qpairs_per_ctrlr > NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR) {
1262 		SPDK_ERRLOG("Invalid max_qpairs_per_ctrlr=%d, supported max_qpairs_per_ctrlr=%d\n",
1263 			    opts->max_qpairs_per_ctrlr, NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR);
1264 		return NULL;
1265 	}
1266 
1267 	vu_transport = calloc(1, sizeof(*vu_transport));
1268 	if (vu_transport == NULL) {
1269 		SPDK_ERRLOG("Transport alloc fail: %m\n");
1270 		return NULL;
1271 	}
1272 
1273 	err = pthread_mutex_init(&vu_transport->lock, NULL);
1274 	if (err != 0) {
1275 		SPDK_ERRLOG("Pthread initialisation failed (%d)\n", err);
1276 		goto err;
1277 	}
1278 	TAILQ_INIT(&vu_transport->endpoints);
1279 
1280 	err = pthread_mutex_init(&vu_transport->pg_lock, NULL);
1281 	if (err != 0) {
1282 		pthread_mutex_destroy(&vu_transport->lock);
1283 		SPDK_ERRLOG("Pthread initialisation failed (%d)\n", err);
1284 		goto err;
1285 	}
1286 	TAILQ_INIT(&vu_transport->poll_groups);
1287 
1288 	if (opts->transport_specific != NULL &&
1289 	    spdk_json_decode_object_relaxed(opts->transport_specific, vfio_user_transport_opts_decoder,
1290 					    SPDK_COUNTOF(vfio_user_transport_opts_decoder),
1291 					    vu_transport)) {
1292 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
1293 		goto cleanup;
1294 	}
1295 
1296 	/*
1297 	 * To support interrupt mode, the transport must be configured with
1298 	 * mappable BAR0 disabled: we need a vfio-user message to wake us up
1299 	 * when a client writes new doorbell values to BAR0, via the
1300 	 * libvfio-user socket fd.
1301 	 */
1302 	vu_transport->intr_mode_supported =
1303 		vu_transport->transport_opts.disable_mappable_bar0;
1304 
1305 	/*
1306 	 * If BAR0 is mappable, it doesn't make sense to support shadow
1307 	 * doorbells, so explicitly turn it off.
1308 	 */
1309 	if (!vu_transport->transport_opts.disable_mappable_bar0) {
1310 		vu_transport->transport_opts.disable_shadow_doorbells = true;
1311 	}
1312 
1313 	if (spdk_interrupt_mode_is_enabled()) {
1314 		if (!vu_transport->intr_mode_supported) {
1315 			SPDK_ERRLOG("interrupt mode not supported\n");
1316 			goto cleanup;
1317 		}
1318 
1319 		/*
1320 		 * If we are in interrupt mode, we cannot support adaptive IRQs,
1321 		 * as there is no guarantee the SQ poller will run subsequently
1322 		 * to send pending IRQs.
1323 		 */
1324 		vu_transport->transport_opts.disable_adaptive_irq = true;
1325 	}
1326 
1327 	SPDK_DEBUGLOG(nvmf_vfio, "vfio_user transport: disable_mappable_bar0=%d\n",
1328 		      vu_transport->transport_opts.disable_mappable_bar0);
1329 	SPDK_DEBUGLOG(nvmf_vfio, "vfio_user transport: disable_adaptive_irq=%d\n",
1330 		      vu_transport->transport_opts.disable_adaptive_irq);
1331 	SPDK_DEBUGLOG(nvmf_vfio, "vfio_user transport: disable_shadow_doorbells=%d\n",
1332 		      vu_transport->transport_opts.disable_shadow_doorbells);
1333 
1334 	return &vu_transport->transport;
1335 
1336 cleanup:
1337 	pthread_mutex_destroy(&vu_transport->lock);
1338 	pthread_mutex_destroy(&vu_transport->pg_lock);
1339 err:
1340 	free(vu_transport);
1341 	return NULL;
1342 }
1343 
1344 static uint32_t
1345 max_queue_size(struct nvmf_vfio_user_ctrlr const *vu_ctrlr)
1346 {
1347 	assert(vu_ctrlr != NULL);
1348 	assert(vu_ctrlr->ctrlr != NULL);
1349 
1350 	return vu_ctrlr->ctrlr->vcprop.cap.bits.mqes + 1;
1351 }
1352 
1353 static uint32_t
1354 doorbell_stride(const struct nvmf_vfio_user_ctrlr *vu_ctrlr)
1355 {
1356 	assert(vu_ctrlr != NULL);
1357 	assert(vu_ctrlr->ctrlr != NULL);
1358 
1359 	return vu_ctrlr->ctrlr->vcprop.cap.bits.dstrd;
1360 }
1361 
1362 static uintptr_t
1363 memory_page_size(const struct nvmf_vfio_user_ctrlr *vu_ctrlr)
1364 {
1365 	uint32_t memory_page_shift = vu_ctrlr->ctrlr->vcprop.cc.bits.mps + 12;
1366 	return 1ul << memory_page_shift;
1367 }
1368 
1369 static uintptr_t
1370 memory_page_mask(const struct nvmf_vfio_user_ctrlr *ctrlr)
1371 {
1372 	return ~(memory_page_size(ctrlr) - 1);
1373 }
1374 
1375 static int
1376 map_q(struct nvmf_vfio_user_ctrlr *vu_ctrlr, struct nvme_q_mapping *mapping,
1377       uint32_t flags)
1378 {
1379 	void *ret;
1380 
1381 	assert(mapping->len != 0);
1382 	assert(q_addr(mapping) == NULL);
1383 
1384 	ret = map_one(vu_ctrlr->endpoint->vfu_ctx, mapping->prp1, mapping->len,
1385 		      mapping->sg, &mapping->iov, flags);
1386 	if (ret == NULL) {
1387 		return -EFAULT;
1388 	}
1389 
1390 	if (flags & MAP_INITIALIZE) {
1391 		memset(q_addr(mapping), 0, mapping->len);
1392 	}
1393 
1394 	return 0;
1395 }
1396 
1397 static inline void
1398 unmap_q(struct nvmf_vfio_user_ctrlr *vu_ctrlr, struct nvme_q_mapping *mapping)
1399 {
1400 	if (q_addr(mapping) != NULL) {
1401 		vfu_sgl_put(vu_ctrlr->endpoint->vfu_ctx, mapping->sg,
1402 			    &mapping->iov, 1);
1403 		mapping->iov.iov_base = NULL;
1404 	}
1405 }
1406 
1407 static int
1408 asq_setup(struct nvmf_vfio_user_ctrlr *ctrlr)
1409 {
1410 	struct nvmf_vfio_user_sq *sq;
1411 	const struct spdk_nvmf_registers *regs;
1412 	int ret;
1413 
1414 	assert(ctrlr != NULL);
1415 
1416 	sq = ctrlr->sqs[0];
1417 
1418 	assert(sq != NULL);
1419 	assert(q_addr(&sq->mapping) == NULL);
1420 	/* XXX ctrlr->asq == 0 is a valid memory address */
1421 
1422 	regs = spdk_nvmf_ctrlr_get_regs(ctrlr->ctrlr);
1423 	sq->qid = 0;
1424 	sq->size = regs->aqa.bits.asqs + 1;
1425 	sq->mapping.prp1 = regs->asq;
1426 	sq->mapping.len = sq->size * sizeof(struct spdk_nvme_cmd);
1427 	*sq_headp(sq) = 0;
1428 	sq->cqid = 0;
1429 
1430 	ret = map_q(ctrlr, &sq->mapping, MAP_INITIALIZE);
1431 	if (ret) {
1432 		return ret;
1433 	}
1434 
1435 	/* The Admin queue (qid: 0) does not ever use shadow doorbells. */
1436 	sq->dbl_tailp = ctrlr->bar0_doorbells + queue_index(0, false);
1437 
1438 	*sq_dbl_tailp(sq) = 0;
1439 
1440 	return 0;
1441 }
1442 
1443 /*
1444  * Updates eventidx to set an SQ into interrupt or polling mode.
1445  *
1446  * Returns false if the current SQ tail does not match the SQ head, as
1447  * this means that the host has submitted more items to the queue while we were
1448  * not looking - or during the event index update. In that case, we must retry,
1449  * or otherwise make sure we are going to wake up again.
1450  */
1451 static bool
1452 set_sq_eventidx(struct nvmf_vfio_user_sq *sq)
1453 {
1454 	struct nvmf_vfio_user_ctrlr *ctrlr;
1455 	volatile uint32_t *sq_tail_eidx;
1456 	uint32_t old_tail, new_tail;
1457 
1458 	assert(sq != NULL);
1459 	assert(sq->ctrlr != NULL);
1460 	assert(sq->ctrlr->sdbl != NULL);
1461 	assert(sq->need_rearm);
1462 	assert(sq->qid != 0);
1463 
1464 	ctrlr = sq->ctrlr;
1465 
1466 	SPDK_DEBUGLOG(vfio_user_db, "%s: updating eventidx of sqid:%u\n",
1467 		      ctrlr_id(ctrlr), sq->qid);
1468 
1469 	sq_tail_eidx = ctrlr->sdbl->eventidxs + queue_index(sq->qid, false);
1470 
1471 	assert(ctrlr->endpoint != NULL);
1472 
1473 	if (!ctrlr->endpoint->interrupt_mode) {
1474 		/* No synchronisation necessary. */
1475 		*sq_tail_eidx = NVMF_VFIO_USER_EVENTIDX_POLL;
1476 		return true;
1477 	}
1478 
1479 	old_tail = *sq_dbl_tailp(sq);
1480 	*sq_tail_eidx = old_tail;
1481 
1482 	/*
1483 	 * Ensure that the event index is updated before re-reading the tail
1484 	 * doorbell. If it's not, then the host might race us and update the
1485 	 * tail after the second read but before the event index is written, so
1486 	 * it won't write to BAR0 and we'll miss the update.
1487 	 *
1488 	 * The driver should provide similar ordering with an mb().
1489 	 */
1490 	spdk_mb();
1491 
1492 	/*
1493 	 * Check if the host has updated the tail doorbell after we've read it
1494 	 * for the first time, but before the event index was written. If that's
1495 	 * the case, then we've lost the race and we need to update the event
1496 	 * index again (after polling the queue, since the host won't write to
1497 	 * BAR0).
1498 	 */
1499 	new_tail = *sq_dbl_tailp(sq);
1500 
1501 	/*
1502 	 * We might poll the queue straight after this function returns if the
1503 	 * tail has been updated, so we need to ensure that any changes to the
1504 	 * queue will be visible to us if the doorbell has been updated.
1505 	 *
1506 	 * The driver should provide similar ordering with a wmb() to ensure
1507 	 * that the queue is written before it updates the tail doorbell.
1508 	 */
1509 	spdk_rmb();
1510 
1511 	SPDK_DEBUGLOG(vfio_user_db, "%s: sqid:%u, old_tail=%u, new_tail=%u, "
1512 		      "sq_head=%u\n", ctrlr_id(ctrlr), sq->qid, old_tail,
1513 		      new_tail, *sq_headp(sq));
1514 
1515 	if (new_tail == *sq_headp(sq)) {
1516 		sq->need_rearm = false;
1517 		return true;
1518 	}
1519 
1520 	/*
1521 	 * We've lost the race: the tail was updated since we last polled,
1522 	 * including if it happened within this routine.
1523 	 *
1524 	 * The caller should retry after polling (think of this as a cmpxchg
1525 	 * loop); if we go to sleep while the SQ is not empty, then we won't
1526 	 * process the remaining events.
1527 	 */
1528 	return false;
1529 }
1530 
1531 static int nvmf_vfio_user_sq_poll(struct nvmf_vfio_user_sq *sq);
1532 
1533 /*
1534  * Arrange for an SQ to interrupt us if written. Returns non-zero if we
1535  * processed some SQ entries.
1536  */
1537 static int
1538 vfio_user_sq_rearm(struct nvmf_vfio_user_ctrlr *ctrlr,
1539 		   struct nvmf_vfio_user_sq *sq,
1540 		   struct nvmf_vfio_user_poll_group *vu_group)
1541 {
1542 	int count = 0;
1543 	size_t i;
1544 
1545 	assert(sq->need_rearm);
1546 
1547 	for (i = 0; i < NVMF_VFIO_USER_SET_EVENTIDX_MAX_ATTEMPTS; i++) {
1548 		int ret;
1549 
1550 		if (set_sq_eventidx(sq)) {
1551 			/* We won the race and set eventidx; done. */
1552 			vu_group->stats.won++;
1553 			return count;
1554 		}
1555 
1556 		ret = nvmf_vfio_user_sq_poll(sq);
1557 
1558 		count += (ret < 0) ? 1 : ret;
1559 
1560 		/*
1561 		 * set_sq_eventidx() hit the race, so we expected
1562 		 * to process at least one command from this queue.
1563 		 * If there were no new commands waiting for us, then
1564 		 * we must have hit an unexpected race condition.
1565 		 */
1566 		if (ret == 0) {
1567 			SPDK_ERRLOG("%s: unexpected race condition detected "
1568 				    "while updating the shadow doorbell buffer\n",
1569 				    ctrlr_id(ctrlr));
1570 
1571 			fail_ctrlr(ctrlr);
1572 			return count;
1573 		}
1574 	}
1575 
1576 	SPDK_DEBUGLOG(vfio_user_db,
1577 		      "%s: set_sq_eventidx() lost the race %zu times\n",
1578 		      ctrlr_id(ctrlr), i);
1579 
1580 	vu_group->stats.lost++;
1581 	vu_group->stats.lost_count += count;
1582 
1583 	/*
1584 	 * We couldn't arrange an eventidx guaranteed to cause a BAR0 write, as
1585 	 * we raced with the producer too many times; force ourselves to wake up
1586 	 * instead. We'll process all queues at that point.
1587 	 */
1588 	ctrlr_kick(ctrlr);
1589 
1590 	return count;
1591 }
1592 
1593 /*
1594  * We're in interrupt mode, and potentially about to go to sleep. We need to
1595  * make sure any further I/O submissions are guaranteed to wake us up: for
1596  * shadow doorbells that means we may need to go through set_sq_eventidx() for
1597  * every SQ that needs re-arming.
1598  *
1599  * Returns non-zero if we processed something.
1600  */
1601 static int
1602 vfio_user_poll_group_rearm(struct nvmf_vfio_user_poll_group *vu_group)
1603 {
1604 	struct nvmf_vfio_user_sq *sq;
1605 	int count = 0;
1606 
1607 	vu_group->stats.rearms++;
1608 
1609 	TAILQ_FOREACH(sq, &vu_group->sqs, link) {
1610 		if (spdk_unlikely(sq->sq_state != VFIO_USER_SQ_ACTIVE || !sq->size)) {
1611 			continue;
1612 		}
1613 
1614 		if (sq->need_rearm) {
1615 			count += vfio_user_sq_rearm(sq->ctrlr, sq, vu_group);
1616 		}
1617 	}
1618 
1619 	return count;
1620 }
1621 
1622 static int
1623 acq_setup(struct nvmf_vfio_user_ctrlr *ctrlr)
1624 {
1625 	struct nvmf_vfio_user_cq *cq;
1626 	const struct spdk_nvmf_registers *regs;
1627 	int ret;
1628 
1629 	assert(ctrlr != NULL);
1630 
1631 	cq = ctrlr->cqs[0];
1632 
1633 	assert(cq != NULL);
1634 
1635 	assert(q_addr(&cq->mapping) == NULL);
1636 
1637 	regs = spdk_nvmf_ctrlr_get_regs(ctrlr->ctrlr);
1638 	assert(regs != NULL);
1639 	cq->qid = 0;
1640 	cq->size = regs->aqa.bits.acqs + 1;
1641 	cq->mapping.prp1 = regs->acq;
1642 	cq->mapping.len = cq->size * sizeof(struct spdk_nvme_cpl);
1643 	*cq_tailp(cq) = 0;
1644 	cq->ien = true;
1645 	cq->phase = true;
1646 
1647 	ret = map_q(ctrlr, &cq->mapping, MAP_RW | MAP_INITIALIZE);
1648 	if (ret) {
1649 		return ret;
1650 	}
1651 
1652 	/* The Admin queue (qid: 0) does not ever use shadow doorbells. */
1653 	cq->dbl_headp = ctrlr->bar0_doorbells + queue_index(0, true);
1654 
1655 	*cq_dbl_headp(cq) = 0;
1656 
1657 	return 0;
1658 }
1659 
1660 static void *
1661 _map_one(void *prv, uint64_t addr, uint64_t len, uint32_t flags)
1662 {
1663 	struct spdk_nvmf_request *req = (struct spdk_nvmf_request *)prv;
1664 	struct spdk_nvmf_qpair *qpair;
1665 	struct nvmf_vfio_user_req *vu_req;
1666 	struct nvmf_vfio_user_sq *sq;
1667 	void *ret;
1668 
1669 	assert(req != NULL);
1670 	qpair = req->qpair;
1671 	vu_req = SPDK_CONTAINEROF(req, struct nvmf_vfio_user_req, req);
1672 	sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
1673 
1674 	assert(vu_req->iovcnt < NVMF_VFIO_USER_MAX_IOVECS);
1675 	ret = map_one(sq->ctrlr->endpoint->vfu_ctx, addr, len,
1676 		      index_to_sg_t(vu_req->sg, vu_req->iovcnt),
1677 		      &vu_req->iov[vu_req->iovcnt], flags);
1678 	if (spdk_likely(ret != NULL)) {
1679 		vu_req->iovcnt++;
1680 	}
1681 	return ret;
1682 }
1683 
1684 static int
1685 vfio_user_map_cmd(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvmf_request *req,
1686 		  struct iovec *iov, uint32_t length)
1687 {
1688 	/* Map PRP list to from Guest physical memory to
1689 	 * virtual memory address.
1690 	 */
1691 	return nvme_map_cmd(req, &req->cmd->nvme_cmd, iov, NVMF_REQ_MAX_BUFFERS,
1692 			    length, 4096, _map_one);
1693 }
1694 
1695 static int handle_cmd_req(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvme_cmd *cmd,
1696 			  struct nvmf_vfio_user_sq *sq);
1697 
1698 static uint32_t
1699 cq_free_slots(struct nvmf_vfio_user_cq *cq)
1700 {
1701 	uint32_t free_slots;
1702 
1703 	assert(cq != NULL);
1704 
1705 	if (cq->tail == cq->last_head) {
1706 		free_slots = cq->size;
1707 	} else if (cq->tail > cq->last_head) {
1708 		free_slots = cq->size - (cq->tail - cq->last_head);
1709 	} else {
1710 		free_slots = cq->last_head - cq->tail;
1711 	}
1712 	assert(free_slots > 0);
1713 
1714 	return free_slots - 1;
1715 }
1716 
1717 /*
1718  * Since reading the head doorbell is relatively expensive, we use the cached
1719  * value, so we only have to read it for real if it appears that we are full.
1720  */
1721 static inline bool
1722 cq_is_full(struct nvmf_vfio_user_cq *cq)
1723 {
1724 	uint32_t free_cq_slots;
1725 
1726 	assert(cq != NULL);
1727 
1728 	free_cq_slots = cq_free_slots(cq);
1729 
1730 	if (spdk_unlikely(free_cq_slots == 0)) {
1731 		cq->last_head = *cq_dbl_headp(cq);
1732 		free_cq_slots = cq_free_slots(cq);
1733 	}
1734 
1735 	return free_cq_slots == 0;
1736 }
1737 
1738 /*
1739  * Posts a CQE in the completion queue.
1740  *
1741  * @ctrlr: the vfio-user controller
1742  * @cq: the completion queue
1743  * @cdw0: cdw0 as reported by NVMf
1744  * @sqid: submission queue ID
1745  * @cid: command identifier in NVMe command
1746  * @sc: the NVMe CQE status code
1747  * @sct: the NVMe CQE status code type
1748  */
1749 static int
1750 post_completion(struct nvmf_vfio_user_ctrlr *ctrlr, struct nvmf_vfio_user_cq *cq,
1751 		uint32_t cdw0, uint16_t sqid, uint16_t cid, uint16_t sc, uint16_t sct)
1752 {
1753 	struct spdk_nvme_status cpl_status = { 0 };
1754 	struct spdk_nvme_cpl *cpl;
1755 	int err;
1756 
1757 	assert(ctrlr != NULL);
1758 
1759 	if (spdk_unlikely(cq == NULL || q_addr(&cq->mapping) == NULL)) {
1760 		return 0;
1761 	}
1762 
1763 	if (cq->qid == 0) {
1764 		assert(spdk_get_thread() == cq->group->group->thread);
1765 	}
1766 
1767 	/*
1768 	 * As per NVMe Base spec 3.3.1.2.1, we are supposed to implement CQ flow
1769 	 * control: if there is no space in the CQ, we should wait until there is.
1770 	 *
1771 	 * In practice, we just fail the controller instead: as it happens, all host
1772 	 * implementations we care about right-size the CQ: this is required anyway for
1773 	 * NVMEoF support (see 3.3.2.8).
1774 	 */
1775 	if (cq_is_full(cq)) {
1776 		SPDK_ERRLOG("%s: cqid:%d full (tail=%d, head=%d)\n",
1777 			    ctrlr_id(ctrlr), cq->qid, *cq_tailp(cq),
1778 			    *cq_dbl_headp(cq));
1779 		return -1;
1780 	}
1781 
1782 	cpl = ((struct spdk_nvme_cpl *)q_addr(&cq->mapping)) + *cq_tailp(cq);
1783 
1784 	assert(ctrlr->sqs[sqid] != NULL);
1785 	SPDK_DEBUGLOG(nvmf_vfio,
1786 		      "%s: request complete sqid:%d cid=%d status=%#x "
1787 		      "sqhead=%d cq tail=%d\n", ctrlr_id(ctrlr), sqid, cid, sc,
1788 		      *sq_headp(ctrlr->sqs[sqid]), *cq_tailp(cq));
1789 
1790 	cpl->sqhd = *sq_headp(ctrlr->sqs[sqid]);
1791 	cpl->sqid = sqid;
1792 	cpl->cid = cid;
1793 	cpl->cdw0 = cdw0;
1794 
1795 	/*
1796 	 * This is a bitfield: instead of setting the individual bits we need
1797 	 * directly in cpl->status, which would cause a read-modify-write cycle,
1798 	 * we'll avoid reading from the CPL altogether by filling in a local
1799 	 * cpl_status variable, then writing the whole thing.
1800 	 */
1801 	cpl_status.sct = sct;
1802 	cpl_status.sc = sc;
1803 	cpl_status.p = cq->phase;
1804 	cpl->status = cpl_status;
1805 
1806 	/* Ensure the Completion Queue Entry is visible. */
1807 	spdk_wmb();
1808 	cq_tail_advance(cq);
1809 
1810 	if ((cq->qid == 0 || !ctrlr->adaptive_irqs_enabled) &&
1811 	    cq->ien && ctrlr_interrupt_enabled(ctrlr)) {
1812 		err = vfu_irq_trigger(ctrlr->endpoint->vfu_ctx, cq->iv);
1813 		if (err != 0) {
1814 			SPDK_ERRLOG("%s: failed to trigger interrupt: %m\n",
1815 				    ctrlr_id(ctrlr));
1816 			return err;
1817 		}
1818 	}
1819 
1820 	return 0;
1821 }
1822 
1823 static void
1824 free_sq_reqs(struct nvmf_vfio_user_sq *sq)
1825 {
1826 	while (!TAILQ_EMPTY(&sq->free_reqs)) {
1827 		struct nvmf_vfio_user_req *vu_req = TAILQ_FIRST(&sq->free_reqs);
1828 		TAILQ_REMOVE(&sq->free_reqs, vu_req, link);
1829 		free(vu_req);
1830 	}
1831 }
1832 
1833 static void
1834 delete_cq_done(struct nvmf_vfio_user_ctrlr *ctrlr, struct nvmf_vfio_user_cq *cq)
1835 {
1836 	assert(cq->cq_ref == 0);
1837 	unmap_q(ctrlr, &cq->mapping);
1838 	cq->size = 0;
1839 	cq->cq_state = VFIO_USER_CQ_DELETED;
1840 	cq->group = NULL;
1841 }
1842 
1843 /* Deletes a SQ, if this SQ is the last user of the associated CQ
1844  * and the controller is being shut down/reset or vfio-user client disconnects,
1845  * then the CQ is also deleted.
1846  */
1847 static void
1848 delete_sq_done(struct nvmf_vfio_user_ctrlr *vu_ctrlr, struct nvmf_vfio_user_sq *sq)
1849 {
1850 	struct nvmf_vfio_user_cq *cq;
1851 	uint16_t cqid;
1852 
1853 	SPDK_DEBUGLOG(nvmf_vfio, "%s: delete sqid:%d=%p done\n", ctrlr_id(vu_ctrlr),
1854 		      sq->qid, sq);
1855 
1856 	/* Free SQ resources */
1857 	unmap_q(vu_ctrlr, &sq->mapping);
1858 
1859 	free_sq_reqs(sq);
1860 
1861 	sq->size = 0;
1862 
1863 	sq->sq_state = VFIO_USER_SQ_DELETED;
1864 
1865 	/* Controller RESET and SHUTDOWN are special cases,
1866 	 * VM may not send DELETE IO SQ/CQ commands, NVMf library
1867 	 * will disconnect IO queue pairs.
1868 	 */
1869 	if (vu_ctrlr->reset_shn || vu_ctrlr->disconnect) {
1870 		cqid = sq->cqid;
1871 		cq = vu_ctrlr->cqs[cqid];
1872 
1873 		SPDK_DEBUGLOG(nvmf_vfio, "%s: try to delete cqid:%u=%p\n", ctrlr_id(vu_ctrlr),
1874 			      cq->qid, cq);
1875 
1876 		assert(cq->cq_ref > 0);
1877 		if (--cq->cq_ref == 0) {
1878 			delete_cq_done(vu_ctrlr, cq);
1879 		}
1880 	}
1881 }
1882 
1883 static void
1884 free_qp(struct nvmf_vfio_user_ctrlr *ctrlr, uint16_t qid)
1885 {
1886 	struct nvmf_vfio_user_sq *sq;
1887 	struct nvmf_vfio_user_cq *cq;
1888 
1889 	if (ctrlr == NULL) {
1890 		return;
1891 	}
1892 
1893 	sq = ctrlr->sqs[qid];
1894 	if (sq) {
1895 		SPDK_DEBUGLOG(nvmf_vfio, "%s: Free sqid:%u\n", ctrlr_id(ctrlr), qid);
1896 		unmap_q(ctrlr, &sq->mapping);
1897 
1898 		free_sq_reqs(sq);
1899 
1900 		free(sq->mapping.sg);
1901 		free(sq);
1902 		ctrlr->sqs[qid] = NULL;
1903 	}
1904 
1905 	cq = ctrlr->cqs[qid];
1906 	if (cq) {
1907 		SPDK_DEBUGLOG(nvmf_vfio, "%s: Free cqid:%u\n", ctrlr_id(ctrlr), qid);
1908 		unmap_q(ctrlr, &cq->mapping);
1909 		free(cq->mapping.sg);
1910 		free(cq);
1911 		ctrlr->cqs[qid] = NULL;
1912 	}
1913 }
1914 
1915 static int
1916 init_sq(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvmf_transport *transport,
1917 	const uint16_t id)
1918 {
1919 	struct nvmf_vfio_user_sq *sq;
1920 
1921 	assert(ctrlr != NULL);
1922 	assert(transport != NULL);
1923 	assert(ctrlr->sqs[id] == NULL);
1924 
1925 	sq = calloc(1, sizeof(*sq));
1926 	if (sq == NULL) {
1927 		return -ENOMEM;
1928 	}
1929 	sq->mapping.sg = calloc(1, dma_sg_size());
1930 	if (sq->mapping.sg == NULL) {
1931 		free(sq);
1932 		return -ENOMEM;
1933 	}
1934 
1935 	sq->qid = id;
1936 	sq->qpair.qid = id;
1937 	sq->qpair.transport = transport;
1938 	sq->ctrlr = ctrlr;
1939 	ctrlr->sqs[id] = sq;
1940 
1941 	TAILQ_INIT(&sq->free_reqs);
1942 
1943 	return 0;
1944 }
1945 
1946 static int
1947 init_cq(struct nvmf_vfio_user_ctrlr *vu_ctrlr, const uint16_t id)
1948 {
1949 	struct nvmf_vfio_user_cq *cq;
1950 
1951 	assert(vu_ctrlr != NULL);
1952 	assert(vu_ctrlr->cqs[id] == NULL);
1953 
1954 	cq = calloc(1, sizeof(*cq));
1955 	if (cq == NULL) {
1956 		return -ENOMEM;
1957 	}
1958 	cq->mapping.sg = calloc(1, dma_sg_size());
1959 	if (cq->mapping.sg == NULL) {
1960 		free(cq);
1961 		return -ENOMEM;
1962 	}
1963 
1964 	cq->qid = id;
1965 	vu_ctrlr->cqs[id] = cq;
1966 
1967 	return 0;
1968 }
1969 
1970 static int
1971 alloc_sq_reqs(struct nvmf_vfio_user_ctrlr *vu_ctrlr, struct nvmf_vfio_user_sq *sq)
1972 {
1973 	struct nvmf_vfio_user_req *vu_req, *tmp;
1974 	size_t req_size;
1975 	uint32_t i;
1976 
1977 	req_size = sizeof(struct nvmf_vfio_user_req) +
1978 		   (dma_sg_size() * NVMF_VFIO_USER_MAX_IOVECS);
1979 
1980 	for (i = 0; i < sq->size; i++) {
1981 		struct spdk_nvmf_request *req;
1982 
1983 		vu_req = calloc(1, req_size);
1984 		if (vu_req == NULL) {
1985 			goto err;
1986 		}
1987 
1988 		req = &vu_req->req;
1989 		req->qpair = &sq->qpair;
1990 		req->rsp = (union nvmf_c2h_msg *)&vu_req->rsp;
1991 		req->cmd = (union nvmf_h2c_msg *)&vu_req->cmd;
1992 		req->stripped_data = NULL;
1993 
1994 		TAILQ_INSERT_TAIL(&sq->free_reqs, vu_req, link);
1995 	}
1996 
1997 	return 0;
1998 
1999 err:
2000 	TAILQ_FOREACH_SAFE(vu_req, &sq->free_reqs, link, tmp) {
2001 		free(vu_req);
2002 	}
2003 	return -ENOMEM;
2004 }
2005 
2006 static volatile uint32_t *
2007 ctrlr_doorbell_ptr(struct nvmf_vfio_user_ctrlr *ctrlr)
2008 {
2009 	return ctrlr->sdbl != NULL ?
2010 	       ctrlr->sdbl->shadow_doorbells :
2011 	       ctrlr->bar0_doorbells;
2012 }
2013 
2014 static uint16_t
2015 handle_create_io_sq(struct nvmf_vfio_user_ctrlr *ctrlr,
2016 		    struct spdk_nvme_cmd *cmd, uint16_t *sct)
2017 {
2018 	struct nvmf_vfio_user_transport *vu_transport = ctrlr->transport;
2019 	struct nvmf_vfio_user_sq *sq;
2020 	uint32_t qsize;
2021 	uint16_t cqid;
2022 	uint16_t qid;
2023 	int err;
2024 
2025 	qid = cmd->cdw10_bits.create_io_q.qid;
2026 	cqid = cmd->cdw11_bits.create_io_sq.cqid;
2027 	qsize = cmd->cdw10_bits.create_io_q.qsize + 1;
2028 
2029 	if (ctrlr->sqs[qid] == NULL) {
2030 		err = init_sq(ctrlr, ctrlr->sqs[0]->qpair.transport, qid);
2031 		if (err != 0) {
2032 			*sct = SPDK_NVME_SCT_GENERIC;
2033 			return SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
2034 		}
2035 	}
2036 
2037 	if (cqid == 0 || cqid >= vu_transport->transport.opts.max_qpairs_per_ctrlr) {
2038 		SPDK_ERRLOG("%s: invalid cqid:%u\n", ctrlr_id(ctrlr), cqid);
2039 		*sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
2040 		return SPDK_NVME_SC_INVALID_QUEUE_IDENTIFIER;
2041 	}
2042 
2043 	/* CQ must be created before SQ. */
2044 	if (!io_q_exists(ctrlr, cqid, true)) {
2045 		SPDK_ERRLOG("%s: cqid:%u does not exist\n", ctrlr_id(ctrlr), cqid);
2046 		*sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
2047 		return SPDK_NVME_SC_COMPLETION_QUEUE_INVALID;
2048 	}
2049 
2050 	if (cmd->cdw11_bits.create_io_sq.pc != 0x1) {
2051 		SPDK_ERRLOG("%s: non-PC SQ not supported\n", ctrlr_id(ctrlr));
2052 		*sct = SPDK_NVME_SCT_GENERIC;
2053 		return SPDK_NVME_SC_INVALID_FIELD;
2054 	}
2055 
2056 	sq = ctrlr->sqs[qid];
2057 	sq->size = qsize;
2058 
2059 	SPDK_DEBUGLOG(nvmf_vfio, "%s: sqid:%d cqid:%d\n", ctrlr_id(ctrlr),
2060 		      qid, cqid);
2061 
2062 	sq->mapping.prp1 = cmd->dptr.prp.prp1;
2063 	sq->mapping.len = sq->size * sizeof(struct spdk_nvme_cmd);
2064 
2065 	err = map_q(ctrlr, &sq->mapping, MAP_INITIALIZE);
2066 	if (err) {
2067 		SPDK_ERRLOG("%s: failed to map I/O queue: %m\n", ctrlr_id(ctrlr));
2068 		*sct = SPDK_NVME_SCT_GENERIC;
2069 		return SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
2070 	}
2071 
2072 	SPDK_DEBUGLOG(nvmf_vfio, "%s: mapped sqid:%d IOVA=%#lx vaddr=%p\n",
2073 		      ctrlr_id(ctrlr), qid, cmd->dptr.prp.prp1,
2074 		      q_addr(&sq->mapping));
2075 
2076 	err = alloc_sq_reqs(ctrlr, sq);
2077 	if (err < 0) {
2078 		SPDK_ERRLOG("%s: failed to allocate SQ requests: %m\n", ctrlr_id(ctrlr));
2079 		*sct = SPDK_NVME_SCT_GENERIC;
2080 		return SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
2081 	}
2082 
2083 	sq->cqid = cqid;
2084 	ctrlr->cqs[sq->cqid]->cq_ref++;
2085 	sq->sq_state = VFIO_USER_SQ_CREATED;
2086 	*sq_headp(sq) = 0;
2087 
2088 	sq->dbl_tailp = ctrlr_doorbell_ptr(ctrlr) + queue_index(qid, false);
2089 
2090 	/*
2091 	 * We should always reset the doorbells.
2092 	 *
2093 	 * The Specification prohibits the controller from writing to the shadow
2094 	 * doorbell buffer, however older versions of the Linux NVMe driver
2095 	 * don't reset the shadow doorbell buffer after a Queue-Level or
2096 	 * Controller-Level reset, which means that we're left with garbage
2097 	 * doorbell values.
2098 	 */
2099 	*sq_dbl_tailp(sq) = 0;
2100 
2101 	if (ctrlr->sdbl != NULL) {
2102 		sq->need_rearm = true;
2103 
2104 		if (!set_sq_eventidx(sq)) {
2105 			SPDK_ERRLOG("%s: host updated SQ tail doorbell before "
2106 				    "sqid:%hu was initialized\n",
2107 				    ctrlr_id(ctrlr), qid);
2108 			fail_ctrlr(ctrlr);
2109 			*sct = SPDK_NVME_SCT_GENERIC;
2110 			return SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
2111 		}
2112 	}
2113 
2114 	/*
2115 	 * Create our new I/O qpair. This asynchronously invokes, on a suitable
2116 	 * poll group, the nvmf_vfio_user_poll_group_add() callback, which will
2117 	 * call spdk_nvmf_request_exec() with a generated fabrics
2118 	 * connect command. This command is then eventually completed via
2119 	 * handle_queue_connect_rsp().
2120 	 */
2121 	sq->create_io_sq_cmd = *cmd;
2122 	sq->post_create_io_sq_completion = true;
2123 
2124 	spdk_nvmf_tgt_new_qpair(ctrlr->transport->transport.tgt,
2125 				&sq->qpair);
2126 
2127 	*sct = SPDK_NVME_SCT_GENERIC;
2128 	return SPDK_NVME_SC_SUCCESS;
2129 }
2130 
2131 static uint16_t
2132 handle_create_io_cq(struct nvmf_vfio_user_ctrlr *ctrlr,
2133 		    struct spdk_nvme_cmd *cmd, uint16_t *sct)
2134 {
2135 	struct nvmf_vfio_user_cq *cq;
2136 	uint32_t qsize;
2137 	uint16_t qid;
2138 	int err;
2139 
2140 	qid = cmd->cdw10_bits.create_io_q.qid;
2141 	qsize = cmd->cdw10_bits.create_io_q.qsize + 1;
2142 
2143 	if (ctrlr->cqs[qid] == NULL) {
2144 		err = init_cq(ctrlr, qid);
2145 		if (err != 0) {
2146 			*sct = SPDK_NVME_SCT_GENERIC;
2147 			return SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
2148 		}
2149 	}
2150 
2151 	if (cmd->cdw11_bits.create_io_cq.pc != 0x1) {
2152 		SPDK_ERRLOG("%s: non-PC CQ not supported\n", ctrlr_id(ctrlr));
2153 		*sct = SPDK_NVME_SCT_GENERIC;
2154 		return SPDK_NVME_SC_INVALID_FIELD;
2155 	}
2156 
2157 	if (cmd->cdw11_bits.create_io_cq.iv > NVME_IRQ_MSIX_NUM - 1) {
2158 		SPDK_ERRLOG("%s: IV is too big\n", ctrlr_id(ctrlr));
2159 		*sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
2160 		return SPDK_NVME_SC_INVALID_INTERRUPT_VECTOR;
2161 	}
2162 
2163 	cq = ctrlr->cqs[qid];
2164 	cq->size = qsize;
2165 
2166 	cq->mapping.prp1 = cmd->dptr.prp.prp1;
2167 	cq->mapping.len = cq->size * sizeof(struct spdk_nvme_cpl);
2168 
2169 	cq->dbl_headp = ctrlr_doorbell_ptr(ctrlr) + queue_index(qid, true);
2170 
2171 	err = map_q(ctrlr, &cq->mapping, MAP_RW | MAP_INITIALIZE);
2172 	if (err) {
2173 		SPDK_ERRLOG("%s: failed to map I/O queue: %m\n", ctrlr_id(ctrlr));
2174 		*sct = SPDK_NVME_SCT_GENERIC;
2175 		return SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
2176 	}
2177 
2178 	SPDK_DEBUGLOG(nvmf_vfio, "%s: mapped cqid:%u IOVA=%#lx vaddr=%p\n",
2179 		      ctrlr_id(ctrlr), qid, cmd->dptr.prp.prp1,
2180 		      q_addr(&cq->mapping));
2181 
2182 	cq->ien = cmd->cdw11_bits.create_io_cq.ien;
2183 	cq->iv = cmd->cdw11_bits.create_io_cq.iv;
2184 	cq->phase = true;
2185 	cq->cq_state = VFIO_USER_CQ_CREATED;
2186 
2187 	*cq_tailp(cq) = 0;
2188 
2189 	/*
2190 	 * We should always reset the doorbells.
2191 	 *
2192 	 * The Specification prohibits the controller from writing to the shadow
2193 	 * doorbell buffer, however older versions of the Linux NVMe driver
2194 	 * don't reset the shadow doorbell buffer after a Queue-Level or
2195 	 * Controller-Level reset, which means that we're left with garbage
2196 	 * doorbell values.
2197 	 */
2198 	*cq_dbl_headp(cq) = 0;
2199 
2200 	*sct = SPDK_NVME_SCT_GENERIC;
2201 	return SPDK_NVME_SC_SUCCESS;
2202 }
2203 
2204 /*
2205  * Creates a completion or submission I/O queue. Returns 0 on success, -errno
2206  * on error.
2207  */
2208 static int
2209 handle_create_io_q(struct nvmf_vfio_user_ctrlr *ctrlr,
2210 		   struct spdk_nvme_cmd *cmd, const bool is_cq)
2211 {
2212 	struct nvmf_vfio_user_transport *vu_transport = ctrlr->transport;
2213 	uint16_t sct = SPDK_NVME_SCT_GENERIC;
2214 	uint16_t sc = SPDK_NVME_SC_SUCCESS;
2215 	uint32_t qsize;
2216 	uint16_t qid;
2217 
2218 	assert(ctrlr != NULL);
2219 	assert(cmd != NULL);
2220 
2221 	qid = cmd->cdw10_bits.create_io_q.qid;
2222 	if (qid == 0 || qid >= vu_transport->transport.opts.max_qpairs_per_ctrlr) {
2223 		SPDK_ERRLOG("%s: invalid qid=%d, max=%d\n", ctrlr_id(ctrlr),
2224 			    qid, vu_transport->transport.opts.max_qpairs_per_ctrlr);
2225 		sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
2226 		sc = SPDK_NVME_SC_INVALID_QUEUE_IDENTIFIER;
2227 		goto out;
2228 	}
2229 
2230 	if (io_q_exists(ctrlr, qid, is_cq)) {
2231 		SPDK_ERRLOG("%s: %cqid:%d already exists\n", ctrlr_id(ctrlr),
2232 			    is_cq ? 'c' : 's', qid);
2233 		sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
2234 		sc = SPDK_NVME_SC_INVALID_QUEUE_IDENTIFIER;
2235 		goto out;
2236 	}
2237 
2238 	qsize = cmd->cdw10_bits.create_io_q.qsize + 1;
2239 	if (qsize == 1 || qsize > max_queue_size(ctrlr)) {
2240 		SPDK_ERRLOG("%s: invalid I/O queue size %u\n", ctrlr_id(ctrlr), qsize);
2241 		sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
2242 		sc = SPDK_NVME_SC_INVALID_QUEUE_SIZE;
2243 		goto out;
2244 	}
2245 
2246 	if (is_cq) {
2247 		sc = handle_create_io_cq(ctrlr, cmd, &sct);
2248 	} else {
2249 		sc = handle_create_io_sq(ctrlr, cmd, &sct);
2250 
2251 		if (sct == SPDK_NVME_SCT_GENERIC &&
2252 		    sc == SPDK_NVME_SC_SUCCESS) {
2253 			/* Completion posted asynchronously. */
2254 			return 0;
2255 		}
2256 	}
2257 
2258 out:
2259 	return post_completion(ctrlr, ctrlr->cqs[0], 0, 0, cmd->cid, sc, sct);
2260 }
2261 
2262 /* For ADMIN I/O DELETE SUBMISSION QUEUE the NVMf library will disconnect and free
2263  * queue pair, so save the command id and controller in a context.
2264  */
2265 struct vfio_user_delete_sq_ctx {
2266 	struct nvmf_vfio_user_ctrlr *vu_ctrlr;
2267 	uint16_t cid;
2268 };
2269 
2270 static void
2271 vfio_user_qpair_delete_cb(void *cb_arg)
2272 {
2273 	struct vfio_user_delete_sq_ctx *ctx = cb_arg;
2274 	struct nvmf_vfio_user_ctrlr *vu_ctrlr = ctx->vu_ctrlr;
2275 	struct nvmf_vfio_user_cq *admin_cq = vu_ctrlr->cqs[0];
2276 
2277 	assert(admin_cq != NULL);
2278 	assert(admin_cq->group != NULL);
2279 	assert(admin_cq->group->group->thread != NULL);
2280 	if (admin_cq->group->group->thread != spdk_get_thread()) {
2281 		spdk_thread_send_msg(admin_cq->group->group->thread,
2282 				     vfio_user_qpair_delete_cb,
2283 				     cb_arg);
2284 	} else {
2285 		post_completion(vu_ctrlr, admin_cq, 0, 0,
2286 				ctx->cid,
2287 				SPDK_NVME_SC_SUCCESS, SPDK_NVME_SCT_GENERIC);
2288 		free(ctx);
2289 	}
2290 }
2291 
2292 /*
2293  * Deletes a completion or submission I/O queue.
2294  */
2295 static int
2296 handle_del_io_q(struct nvmf_vfio_user_ctrlr *ctrlr,
2297 		struct spdk_nvme_cmd *cmd, const bool is_cq)
2298 {
2299 	uint16_t sct = SPDK_NVME_SCT_GENERIC;
2300 	uint16_t sc = SPDK_NVME_SC_SUCCESS;
2301 	struct nvmf_vfio_user_sq *sq;
2302 	struct nvmf_vfio_user_cq *cq;
2303 
2304 	SPDK_DEBUGLOG(nvmf_vfio, "%s: delete I/O %cqid:%d\n",
2305 		      ctrlr_id(ctrlr), is_cq ? 'c' : 's',
2306 		      cmd->cdw10_bits.delete_io_q.qid);
2307 
2308 	if (!io_q_exists(ctrlr, cmd->cdw10_bits.delete_io_q.qid, is_cq)) {
2309 		SPDK_ERRLOG("%s: I/O %cqid:%d does not exist\n", ctrlr_id(ctrlr),
2310 			    is_cq ? 'c' : 's', cmd->cdw10_bits.delete_io_q.qid);
2311 		sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
2312 		sc = SPDK_NVME_SC_INVALID_QUEUE_IDENTIFIER;
2313 		goto out;
2314 	}
2315 
2316 	if (is_cq) {
2317 		cq = ctrlr->cqs[cmd->cdw10_bits.delete_io_q.qid];
2318 		if (cq->cq_ref) {
2319 			SPDK_ERRLOG("%s: the associated SQ must be deleted first\n", ctrlr_id(ctrlr));
2320 			sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
2321 			sc = SPDK_NVME_SC_INVALID_QUEUE_DELETION;
2322 			goto out;
2323 		}
2324 		delete_cq_done(ctrlr, cq);
2325 	} else {
2326 		/*
2327 		 * Deletion of the CQ is only deferred to delete_sq_done() on
2328 		 * VM reboot or CC.EN change, so we have to delete it in all
2329 		 * other cases.
2330 		 */
2331 		sq = ctrlr->sqs[cmd->cdw10_bits.delete_io_q.qid];
2332 		sq->delete_ctx = calloc(1, sizeof(*sq->delete_ctx));
2333 		if (!sq->delete_ctx) {
2334 			sct = SPDK_NVME_SCT_GENERIC;
2335 			sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
2336 			goto out;
2337 		}
2338 		sq->delete_ctx->vu_ctrlr = ctrlr;
2339 		sq->delete_ctx->cid = cmd->cid;
2340 		sq->sq_state = VFIO_USER_SQ_DELETED;
2341 		assert(ctrlr->cqs[sq->cqid]->cq_ref);
2342 		ctrlr->cqs[sq->cqid]->cq_ref--;
2343 
2344 		spdk_nvmf_qpair_disconnect(&sq->qpair);
2345 		return 0;
2346 	}
2347 
2348 out:
2349 	return post_completion(ctrlr, ctrlr->cqs[0], 0, 0, cmd->cid, sc, sct);
2350 }
2351 
2352 /*
2353  * Configures Shadow Doorbells.
2354  */
2355 static int
2356 handle_doorbell_buffer_config(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvme_cmd *cmd)
2357 {
2358 	struct nvmf_vfio_user_shadow_doorbells *sdbl = NULL;
2359 	uint32_t dstrd;
2360 	uintptr_t page_size, page_mask;
2361 	uint64_t prp1, prp2;
2362 	uint16_t sct = SPDK_NVME_SCT_GENERIC;
2363 	uint16_t sc = SPDK_NVME_SC_INVALID_FIELD;
2364 
2365 	assert(ctrlr != NULL);
2366 	assert(ctrlr->endpoint != NULL);
2367 	assert(cmd != NULL);
2368 
2369 	dstrd = doorbell_stride(ctrlr);
2370 	page_size = memory_page_size(ctrlr);
2371 	page_mask = memory_page_mask(ctrlr);
2372 
2373 	/* FIXME: we don't check doorbell stride when setting queue doorbells. */
2374 	if ((4u << dstrd) * NVMF_VFIO_USER_DEFAULT_MAX_QPAIRS_PER_CTRLR > page_size) {
2375 		SPDK_ERRLOG("%s: doorbells do not fit in a single host page",
2376 			    ctrlr_id(ctrlr));
2377 
2378 		goto out;
2379 	}
2380 
2381 	/* Verify guest physical addresses passed as PRPs. */
2382 	if (cmd->psdt != SPDK_NVME_PSDT_PRP) {
2383 		SPDK_ERRLOG("%s: received Doorbell Buffer Config without PRPs",
2384 			    ctrlr_id(ctrlr));
2385 
2386 		goto out;
2387 	}
2388 
2389 	prp1 = cmd->dptr.prp.prp1;
2390 	prp2 = cmd->dptr.prp.prp2;
2391 
2392 	SPDK_DEBUGLOG(nvmf_vfio,
2393 		      "%s: configuring shadow doorbells with PRP1=%#lx and PRP2=%#lx (GPAs)\n",
2394 		      ctrlr_id(ctrlr), prp1, prp2);
2395 
2396 	if (prp1 == prp2
2397 	    || prp1 != (prp1 & page_mask)
2398 	    || prp2 != (prp2 & page_mask)) {
2399 		SPDK_ERRLOG("%s: invalid shadow doorbell GPAs\n",
2400 			    ctrlr_id(ctrlr));
2401 
2402 		goto out;
2403 	}
2404 
2405 	/* Map guest physical addresses to our virtual address space. */
2406 	sdbl = map_sdbl(ctrlr->endpoint->vfu_ctx, prp1, prp2, page_size);
2407 	if (sdbl == NULL) {
2408 		SPDK_ERRLOG("%s: failed to map shadow doorbell buffers\n",
2409 			    ctrlr_id(ctrlr));
2410 
2411 		goto out;
2412 	}
2413 
2414 	ctrlr->shadow_doorbell_buffer = prp1;
2415 	ctrlr->eventidx_buffer = prp2;
2416 
2417 	SPDK_DEBUGLOG(nvmf_vfio,
2418 		      "%s: mapped shadow doorbell buffers [%p, %p) and [%p, %p)\n",
2419 		      ctrlr_id(ctrlr),
2420 		      sdbl->iovs[0].iov_base,
2421 		      sdbl->iovs[0].iov_base + sdbl->iovs[0].iov_len,
2422 		      sdbl->iovs[1].iov_base,
2423 		      sdbl->iovs[1].iov_base + sdbl->iovs[1].iov_len);
2424 
2425 
2426 	/*
2427 	 * Set all possible CQ head doorbells to polling mode now, such that we
2428 	 * don't have to worry about it later if the host creates more queues.
2429 	 *
2430 	 * We only ever want interrupts for writes to the SQ tail doorbells
2431 	 * (which are initialised in set_ctrlr_intr_mode() below).
2432 	 */
2433 	for (uint16_t i = 0; i < NVMF_VFIO_USER_DEFAULT_MAX_QPAIRS_PER_CTRLR; ++i) {
2434 		sdbl->eventidxs[queue_index(i, true)] = NVMF_VFIO_USER_EVENTIDX_POLL;
2435 	}
2436 
2437 	/* Update controller. */
2438 	SWAP(ctrlr->sdbl, sdbl);
2439 
2440 	/*
2441 	 * Copy doorbells from either the previous shadow doorbell buffer or the
2442 	 * BAR0 doorbells and make I/O queue doorbells point to the new buffer.
2443 	 *
2444 	 * This needs to account for older versions of the Linux NVMe driver,
2445 	 * which don't clear out the buffer after a controller reset.
2446 	 */
2447 	copy_doorbells(ctrlr, sdbl != NULL ?
2448 		       sdbl->shadow_doorbells : ctrlr->bar0_doorbells,
2449 		       ctrlr->sdbl->shadow_doorbells);
2450 
2451 	vfio_user_ctrlr_switch_doorbells(ctrlr, true);
2452 
2453 	ctrlr_kick(ctrlr);
2454 
2455 	sc = SPDK_NVME_SC_SUCCESS;
2456 
2457 out:
2458 	/*
2459 	 * Unmap existing buffers, in case Doorbell Buffer Config was sent
2460 	 * more than once (pointless, but not prohibited by the spec), or
2461 	 * in case of an error.
2462 	 *
2463 	 * If this is the first time Doorbell Buffer Config was processed,
2464 	 * then we've just swapped a NULL from ctrlr->sdbl into sdbl, so
2465 	 * free_sdbl() becomes a noop.
2466 	 */
2467 	free_sdbl(ctrlr->endpoint->vfu_ctx, sdbl);
2468 
2469 	return post_completion(ctrlr, ctrlr->cqs[0], 0, 0, cmd->cid, sc, sct);
2470 }
2471 
2472 /* Returns 0 on success and -errno on error. */
2473 static int
2474 consume_admin_cmd(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvme_cmd *cmd)
2475 {
2476 	assert(ctrlr != NULL);
2477 	assert(cmd != NULL);
2478 
2479 	if (cmd->fuse != 0) {
2480 		/* Fused admin commands are not supported. */
2481 		return post_completion(ctrlr, ctrlr->cqs[0], 0, 0, cmd->cid,
2482 				       SPDK_NVME_SC_INVALID_FIELD,
2483 				       SPDK_NVME_SCT_GENERIC);
2484 	}
2485 
2486 	switch (cmd->opc) {
2487 	case SPDK_NVME_OPC_CREATE_IO_CQ:
2488 	case SPDK_NVME_OPC_CREATE_IO_SQ:
2489 		return handle_create_io_q(ctrlr, cmd,
2490 					  cmd->opc == SPDK_NVME_OPC_CREATE_IO_CQ);
2491 	case SPDK_NVME_OPC_DELETE_IO_SQ:
2492 	case SPDK_NVME_OPC_DELETE_IO_CQ:
2493 		return handle_del_io_q(ctrlr, cmd,
2494 				       cmd->opc == SPDK_NVME_OPC_DELETE_IO_CQ);
2495 	case SPDK_NVME_OPC_DOORBELL_BUFFER_CONFIG:
2496 		SPDK_NOTICELOG("%s: requested shadow doorbells (supported: %d)\n",
2497 			       ctrlr_id(ctrlr),
2498 			       !ctrlr->transport->transport_opts.disable_shadow_doorbells);
2499 		if (!ctrlr->transport->transport_opts.disable_shadow_doorbells) {
2500 			return handle_doorbell_buffer_config(ctrlr, cmd);
2501 		}
2502 	/* FALLTHROUGH */
2503 	default:
2504 		return handle_cmd_req(ctrlr, cmd, ctrlr->sqs[0]);
2505 	}
2506 }
2507 
2508 static int
2509 handle_cmd_rsp(struct nvmf_vfio_user_req *vu_req, void *cb_arg)
2510 {
2511 	struct nvmf_vfio_user_sq *sq = cb_arg;
2512 	struct nvmf_vfio_user_ctrlr *vu_ctrlr = sq->ctrlr;
2513 	uint16_t sqid, cqid;
2514 
2515 	assert(sq != NULL);
2516 	assert(vu_req != NULL);
2517 	assert(vu_ctrlr != NULL);
2518 
2519 	if (spdk_likely(vu_req->iovcnt)) {
2520 		vfu_sgl_put(vu_ctrlr->endpoint->vfu_ctx,
2521 			    index_to_sg_t(vu_req->sg, 0),
2522 			    vu_req->iov, vu_req->iovcnt);
2523 	}
2524 	sqid = sq->qid;
2525 	cqid = sq->cqid;
2526 
2527 	return post_completion(vu_ctrlr, vu_ctrlr->cqs[cqid],
2528 			       vu_req->req.rsp->nvme_cpl.cdw0,
2529 			       sqid,
2530 			       vu_req->req.cmd->nvme_cmd.cid,
2531 			       vu_req->req.rsp->nvme_cpl.status.sc,
2532 			       vu_req->req.rsp->nvme_cpl.status.sct);
2533 }
2534 
2535 static int
2536 consume_cmd(struct nvmf_vfio_user_ctrlr *ctrlr, struct nvmf_vfio_user_sq *sq,
2537 	    struct spdk_nvme_cmd *cmd)
2538 {
2539 	assert(sq != NULL);
2540 	if (spdk_unlikely(nvmf_qpair_is_admin_queue(&sq->qpair))) {
2541 		return consume_admin_cmd(ctrlr, cmd);
2542 	}
2543 
2544 	return handle_cmd_req(ctrlr, cmd, sq);
2545 }
2546 
2547 /* Returns the number of commands processed, or a negative value on error. */
2548 static int
2549 handle_sq_tdbl_write(struct nvmf_vfio_user_ctrlr *ctrlr, const uint32_t new_tail,
2550 		     struct nvmf_vfio_user_sq *sq)
2551 {
2552 	struct spdk_nvme_cmd *queue;
2553 	struct nvmf_vfio_user_cq *cq = ctrlr->cqs[sq->cqid];
2554 	int count = 0;
2555 	uint32_t free_cq_slots;
2556 
2557 	assert(ctrlr != NULL);
2558 	assert(sq != NULL);
2559 
2560 	if (ctrlr->sdbl != NULL && sq->qid != 0) {
2561 		/*
2562 		 * Submission queue index has moved past the event index, so it
2563 		 * needs to be re-armed before we go to sleep.
2564 		 */
2565 		sq->need_rearm = true;
2566 	}
2567 
2568 	free_cq_slots = cq_free_slots(cq);
2569 	queue = q_addr(&sq->mapping);
2570 	while (*sq_headp(sq) != new_tail) {
2571 		int err;
2572 		struct spdk_nvme_cmd *cmd;
2573 
2574 		/*
2575 		 * Linux host nvme driver can submit cmd's more than free cq slots
2576 		 * available. So process only those who have cq slots available.
2577 		 */
2578 		if (free_cq_slots-- == 0) {
2579 			cq->last_head = *cq_dbl_headp(cq);
2580 
2581 			free_cq_slots = cq_free_slots(cq);
2582 			if (free_cq_slots > 0) {
2583 				continue;
2584 			}
2585 
2586 			/*
2587 			 * If there are no free cq slots then kick interrupt FD to loop
2588 			 * again to process remaining sq cmds.
2589 			 * In case of polling mode we will process remaining sq cmds during
2590 			 * next polling iteration.
2591 			 * sq head is advanced only for consumed commands.
2592 			 */
2593 			if (in_interrupt_mode(ctrlr->transport)) {
2594 				eventfd_write(ctrlr->intr_fd, 1);
2595 			}
2596 			break;
2597 		}
2598 
2599 		cmd = &queue[*sq_headp(sq)];
2600 		count++;
2601 
2602 		/*
2603 		 * SQHD must contain the new head pointer, so we must increase
2604 		 * it before we generate a completion.
2605 		 */
2606 		sq_head_advance(sq);
2607 
2608 		err = consume_cmd(ctrlr, sq, cmd);
2609 		if (spdk_unlikely(err != 0)) {
2610 			return err;
2611 		}
2612 	}
2613 
2614 	return count;
2615 }
2616 
2617 /* Checks whether endpoint is connected from the same process */
2618 static bool
2619 is_peer_same_process(struct nvmf_vfio_user_endpoint *endpoint)
2620 {
2621 	struct ucred ucred;
2622 	socklen_t ucredlen = sizeof(ucred);
2623 
2624 	if (endpoint == NULL) {
2625 		return false;
2626 	}
2627 
2628 	if (getsockopt(vfu_get_poll_fd(endpoint->vfu_ctx), SOL_SOCKET, SO_PEERCRED, &ucred,
2629 		       &ucredlen) < 0) {
2630 		SPDK_ERRLOG("getsockopt(SO_PEERCRED): %s\n", strerror(errno));
2631 		return false;
2632 	}
2633 
2634 	return ucred.pid == getpid();
2635 }
2636 
2637 static void
2638 memory_region_add_cb(vfu_ctx_t *vfu_ctx, vfu_dma_info_t *info)
2639 {
2640 	struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
2641 	struct nvmf_vfio_user_ctrlr *ctrlr;
2642 	struct nvmf_vfio_user_sq *sq;
2643 	struct nvmf_vfio_user_cq *cq;
2644 	void *map_start, *map_end;
2645 	int ret;
2646 
2647 	/*
2648 	 * We're not interested in any DMA regions that aren't mappable (we don't
2649 	 * support clients that don't share their memory).
2650 	 */
2651 	if (!info->vaddr) {
2652 		return;
2653 	}
2654 
2655 	map_start = info->mapping.iov_base;
2656 	map_end = info->mapping.iov_base + info->mapping.iov_len;
2657 
2658 	if (((uintptr_t)info->mapping.iov_base & MASK_2MB) ||
2659 	    (info->mapping.iov_len & MASK_2MB)) {
2660 		SPDK_DEBUGLOG(nvmf_vfio, "Invalid memory region vaddr %p, IOVA %p-%p\n",
2661 			      info->vaddr, map_start, map_end);
2662 		return;
2663 	}
2664 
2665 	assert(endpoint != NULL);
2666 	if (endpoint->ctrlr == NULL) {
2667 		return;
2668 	}
2669 	ctrlr = endpoint->ctrlr;
2670 
2671 	SPDK_DEBUGLOG(nvmf_vfio, "%s: map IOVA %p-%p\n", endpoint_id(endpoint),
2672 		      map_start, map_end);
2673 
2674 	/* VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE are enabled when registering to VFIO, here we also
2675 	 * check the protection bits before registering. When vfio client and server are run in same process
2676 	 * there is no need to register the same memory again.
2677 	 */
2678 	if (info->prot == (PROT_WRITE | PROT_READ) && !is_peer_same_process(endpoint)) {
2679 		ret = spdk_mem_register(info->mapping.iov_base, info->mapping.iov_len);
2680 		if (ret) {
2681 			SPDK_ERRLOG("Memory region register %p-%p failed, ret=%d\n",
2682 				    map_start, map_end, ret);
2683 		}
2684 	}
2685 
2686 	pthread_mutex_lock(&endpoint->lock);
2687 	TAILQ_FOREACH(sq, &ctrlr->connected_sqs, tailq) {
2688 		if (sq->sq_state != VFIO_USER_SQ_INACTIVE) {
2689 			continue;
2690 		}
2691 
2692 		cq = ctrlr->cqs[sq->cqid];
2693 
2694 		/* For shared CQ case, we will use q_addr() to avoid mapping CQ multiple times */
2695 		if (cq->size && q_addr(&cq->mapping) == NULL) {
2696 			ret = map_q(ctrlr, &cq->mapping, MAP_RW | MAP_QUIET);
2697 			if (ret) {
2698 				SPDK_DEBUGLOG(nvmf_vfio, "Memory isn't ready to remap cqid:%d %#lx-%#lx\n",
2699 					      cq->qid, cq->mapping.prp1,
2700 					      cq->mapping.prp1 + cq->mapping.len);
2701 				continue;
2702 			}
2703 		}
2704 
2705 		if (sq->size) {
2706 			ret = map_q(ctrlr, &sq->mapping, MAP_R | MAP_QUIET);
2707 			if (ret) {
2708 				SPDK_DEBUGLOG(nvmf_vfio, "Memory isn't ready to remap sqid:%d %#lx-%#lx\n",
2709 					      sq->qid, sq->mapping.prp1,
2710 					      sq->mapping.prp1 + sq->mapping.len);
2711 				continue;
2712 			}
2713 		}
2714 		sq->sq_state = VFIO_USER_SQ_ACTIVE;
2715 		SPDK_DEBUGLOG(nvmf_vfio, "Remap sqid:%u successfully\n", sq->qid);
2716 	}
2717 	pthread_mutex_unlock(&endpoint->lock);
2718 }
2719 
2720 static void
2721 memory_region_remove_cb(vfu_ctx_t *vfu_ctx, vfu_dma_info_t *info)
2722 {
2723 	struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
2724 	struct nvmf_vfio_user_sq *sq;
2725 	struct nvmf_vfio_user_cq *cq;
2726 	void *map_start, *map_end;
2727 	int ret = 0;
2728 
2729 	if (!info->vaddr) {
2730 		return;
2731 	}
2732 
2733 	map_start = info->mapping.iov_base;
2734 	map_end = info->mapping.iov_base + info->mapping.iov_len;
2735 
2736 	if (((uintptr_t)info->mapping.iov_base & MASK_2MB) ||
2737 	    (info->mapping.iov_len & MASK_2MB)) {
2738 		SPDK_DEBUGLOG(nvmf_vfio, "Invalid memory region vaddr %p, IOVA %p-%p\n",
2739 			      info->vaddr, map_start, map_end);
2740 		return;
2741 	}
2742 
2743 	assert(endpoint != NULL);
2744 	SPDK_DEBUGLOG(nvmf_vfio, "%s: unmap IOVA %p-%p\n", endpoint_id(endpoint),
2745 		      map_start, map_end);
2746 
2747 	if (endpoint->ctrlr != NULL) {
2748 		struct nvmf_vfio_user_ctrlr *ctrlr;
2749 		ctrlr = endpoint->ctrlr;
2750 
2751 		pthread_mutex_lock(&endpoint->lock);
2752 		TAILQ_FOREACH(sq, &ctrlr->connected_sqs, tailq) {
2753 			if (q_addr(&sq->mapping) >= map_start && q_addr(&sq->mapping) <= map_end) {
2754 				unmap_q(ctrlr, &sq->mapping);
2755 				sq->sq_state = VFIO_USER_SQ_INACTIVE;
2756 			}
2757 
2758 			cq = ctrlr->cqs[sq->cqid];
2759 			if (q_addr(&cq->mapping) >= map_start && q_addr(&cq->mapping) <= map_end) {
2760 				unmap_q(ctrlr, &cq->mapping);
2761 			}
2762 		}
2763 
2764 		if (ctrlr->sdbl != NULL) {
2765 			size_t i;
2766 
2767 			for (i = 0; i < NVMF_VFIO_USER_SHADOW_DOORBELLS_BUFFER_COUNT; i++) {
2768 				const void *const iov_base = ctrlr->sdbl->iovs[i].iov_base;
2769 
2770 				if (iov_base >= map_start && iov_base < map_end) {
2771 					copy_doorbells(ctrlr,
2772 						       ctrlr->sdbl->shadow_doorbells,
2773 						       ctrlr->bar0_doorbells);
2774 					vfio_user_ctrlr_switch_doorbells(ctrlr, false);
2775 					free_sdbl(endpoint->vfu_ctx, ctrlr->sdbl);
2776 					ctrlr->sdbl = NULL;
2777 					break;
2778 				}
2779 			}
2780 		}
2781 
2782 		pthread_mutex_unlock(&endpoint->lock);
2783 	}
2784 
2785 	if (info->prot == (PROT_WRITE | PROT_READ) && !is_peer_same_process(endpoint)) {
2786 		ret = spdk_mem_unregister(info->mapping.iov_base, info->mapping.iov_len);
2787 		if (ret) {
2788 			SPDK_ERRLOG("Memory region unregister %p-%p failed, ret=%d\n",
2789 				    map_start, map_end, ret);
2790 		}
2791 	}
2792 }
2793 
2794 /* Used to initiate a controller-level reset or a controller shutdown. */
2795 static void
2796 disable_ctrlr(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
2797 {
2798 	SPDK_NOTICELOG("%s: disabling controller\n", ctrlr_id(vu_ctrlr));
2799 
2800 	/* Unmap Admin queue. */
2801 
2802 	assert(vu_ctrlr->sqs[0] != NULL);
2803 	assert(vu_ctrlr->cqs[0] != NULL);
2804 
2805 	unmap_q(vu_ctrlr, &vu_ctrlr->sqs[0]->mapping);
2806 	unmap_q(vu_ctrlr, &vu_ctrlr->cqs[0]->mapping);
2807 
2808 	vu_ctrlr->sqs[0]->size = 0;
2809 	*sq_headp(vu_ctrlr->sqs[0]) = 0;
2810 
2811 	vu_ctrlr->sqs[0]->sq_state = VFIO_USER_SQ_INACTIVE;
2812 
2813 	vu_ctrlr->cqs[0]->size = 0;
2814 	*cq_tailp(vu_ctrlr->cqs[0]) = 0;
2815 
2816 	/*
2817 	 * For PCIe controller reset or shutdown, we will drop all AER
2818 	 * responses.
2819 	 */
2820 	spdk_nvmf_ctrlr_abort_aer(vu_ctrlr->ctrlr);
2821 
2822 	/* Free the shadow doorbell buffer. */
2823 	vfio_user_ctrlr_switch_doorbells(vu_ctrlr, false);
2824 	free_sdbl(vu_ctrlr->endpoint->vfu_ctx, vu_ctrlr->sdbl);
2825 	vu_ctrlr->sdbl = NULL;
2826 }
2827 
2828 /* Used to re-enable the controller after a controller-level reset. */
2829 static int
2830 enable_ctrlr(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
2831 {
2832 	int err;
2833 
2834 	assert(vu_ctrlr != NULL);
2835 
2836 	SPDK_NOTICELOG("%s: enabling controller\n", ctrlr_id(vu_ctrlr));
2837 
2838 	err = acq_setup(vu_ctrlr);
2839 	if (err != 0) {
2840 		return err;
2841 	}
2842 
2843 	err = asq_setup(vu_ctrlr);
2844 	if (err != 0) {
2845 		return err;
2846 	}
2847 
2848 	vu_ctrlr->sqs[0]->sq_state = VFIO_USER_SQ_ACTIVE;
2849 
2850 	return 0;
2851 }
2852 
2853 static int
2854 nvmf_vfio_user_prop_req_rsp_set(struct nvmf_vfio_user_req *req,
2855 				struct nvmf_vfio_user_sq *sq)
2856 {
2857 	struct nvmf_vfio_user_ctrlr *vu_ctrlr;
2858 	union spdk_nvme_cc_register cc, diff;
2859 
2860 	assert(req->req.cmd->prop_set_cmd.fctype == SPDK_NVMF_FABRIC_COMMAND_PROPERTY_SET);
2861 	assert(sq->ctrlr != NULL);
2862 	vu_ctrlr = sq->ctrlr;
2863 
2864 	if (req->req.cmd->prop_set_cmd.ofst != offsetof(struct spdk_nvme_registers, cc)) {
2865 		return 0;
2866 	}
2867 
2868 	cc.raw = req->req.cmd->prop_set_cmd.value.u64;
2869 	diff.raw = cc.raw ^ req->cc.raw;
2870 
2871 	if (diff.bits.en) {
2872 		if (cc.bits.en) {
2873 			int ret = enable_ctrlr(vu_ctrlr);
2874 			if (ret) {
2875 				SPDK_ERRLOG("%s: failed to enable ctrlr\n", ctrlr_id(vu_ctrlr));
2876 				return ret;
2877 			}
2878 			vu_ctrlr->reset_shn = false;
2879 		} else {
2880 			vu_ctrlr->reset_shn = true;
2881 		}
2882 	}
2883 
2884 	if (diff.bits.shn) {
2885 		if (cc.bits.shn == SPDK_NVME_SHN_NORMAL || cc.bits.shn == SPDK_NVME_SHN_ABRUPT) {
2886 			vu_ctrlr->reset_shn = true;
2887 		}
2888 	}
2889 
2890 	if (vu_ctrlr->reset_shn) {
2891 		disable_ctrlr(vu_ctrlr);
2892 	}
2893 	return 0;
2894 }
2895 
2896 static int
2897 nvmf_vfio_user_prop_req_rsp(struct nvmf_vfio_user_req *req, void *cb_arg)
2898 {
2899 	struct nvmf_vfio_user_sq *sq = cb_arg;
2900 
2901 	assert(sq != NULL);
2902 	assert(req != NULL);
2903 
2904 	if (req->req.cmd->prop_get_cmd.fctype == SPDK_NVMF_FABRIC_COMMAND_PROPERTY_GET) {
2905 		assert(sq->ctrlr != NULL);
2906 		assert(req != NULL);
2907 
2908 		memcpy(req->req.iov[0].iov_base,
2909 		       &req->req.rsp->prop_get_rsp.value.u64,
2910 		       req->req.length);
2911 		return 0;
2912 	}
2913 
2914 	return nvmf_vfio_user_prop_req_rsp_set(req, sq);
2915 }
2916 
2917 /*
2918  * Handles a write at offset 0x1000 or more; this is the non-mapped path when a
2919  * doorbell is written via access_bar0_fn().
2920  *
2921  * DSTRD is set to fixed value 0 for NVMf.
2922  *
2923  */
2924 static int
2925 handle_dbl_access(struct nvmf_vfio_user_ctrlr *ctrlr, uint32_t *buf,
2926 		  const size_t count, loff_t pos, const bool is_write)
2927 {
2928 	struct nvmf_vfio_user_poll_group *group;
2929 
2930 	assert(ctrlr != NULL);
2931 	assert(buf != NULL);
2932 
2933 	if (spdk_unlikely(!is_write)) {
2934 		SPDK_WARNLOG("%s: host tried to read BAR0 doorbell %#lx\n",
2935 			     ctrlr_id(ctrlr), pos);
2936 		errno = EPERM;
2937 		return -1;
2938 	}
2939 
2940 	if (spdk_unlikely(count != sizeof(uint32_t))) {
2941 		SPDK_ERRLOG("%s: bad doorbell buffer size %ld\n",
2942 			    ctrlr_id(ctrlr), count);
2943 		errno = EINVAL;
2944 		return -1;
2945 	}
2946 
2947 	pos -= NVME_DOORBELLS_OFFSET;
2948 
2949 	/* pos must be dword aligned */
2950 	if (spdk_unlikely((pos & 0x3) != 0)) {
2951 		SPDK_ERRLOG("%s: bad doorbell offset %#lx\n", ctrlr_id(ctrlr), pos);
2952 		errno = EINVAL;
2953 		return -1;
2954 	}
2955 
2956 	/* convert byte offset to array index */
2957 	pos >>= 2;
2958 
2959 	if (spdk_unlikely(pos >= NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR * 2)) {
2960 		SPDK_ERRLOG("%s: bad doorbell index %#lx\n", ctrlr_id(ctrlr), pos);
2961 		errno = EINVAL;
2962 		return -1;
2963 	}
2964 
2965 	ctrlr->bar0_doorbells[pos] = *buf;
2966 	spdk_wmb();
2967 
2968 	group = ctrlr_to_poll_group(ctrlr);
2969 	if (pos == 1) {
2970 		group->stats.cqh_admin_writes++;
2971 	} else if (pos & 1) {
2972 		group->stats.cqh_io_writes++;
2973 	}
2974 
2975 	SPDK_DEBUGLOG(vfio_user_db, "%s: updating BAR0 doorbell %s:%ld to %u\n",
2976 		      ctrlr_id(ctrlr), (pos & 1) ? "cqid" : "sqid",
2977 		      pos / 2, *buf);
2978 
2979 
2980 	return 0;
2981 }
2982 
2983 static size_t
2984 vfio_user_property_access(struct nvmf_vfio_user_ctrlr *vu_ctrlr,
2985 			  char *buf, size_t count, loff_t pos,
2986 			  bool is_write)
2987 {
2988 	struct nvmf_vfio_user_req *req;
2989 	const struct spdk_nvmf_registers *regs;
2990 
2991 	if ((count != 4) && (count != 8)) {
2992 		errno = EINVAL;
2993 		return -1;
2994 	}
2995 
2996 	/* Construct a Fabric Property Get/Set command and send it */
2997 	req = get_nvmf_vfio_user_req(vu_ctrlr->sqs[0]);
2998 	if (req == NULL) {
2999 		errno = ENOBUFS;
3000 		return -1;
3001 	}
3002 	regs = spdk_nvmf_ctrlr_get_regs(vu_ctrlr->ctrlr);
3003 	req->cc.raw = regs->cc.raw;
3004 
3005 	req->cb_fn = nvmf_vfio_user_prop_req_rsp;
3006 	req->cb_arg = vu_ctrlr->sqs[0];
3007 	req->req.cmd->prop_set_cmd.opcode = SPDK_NVME_OPC_FABRIC;
3008 	req->req.cmd->prop_set_cmd.cid = 0;
3009 	if (count == 4) {
3010 		req->req.cmd->prop_set_cmd.attrib.size = 0;
3011 	} else {
3012 		req->req.cmd->prop_set_cmd.attrib.size = 1;
3013 	}
3014 	req->req.cmd->prop_set_cmd.ofst = pos;
3015 	if (is_write) {
3016 		req->req.cmd->prop_set_cmd.fctype = SPDK_NVMF_FABRIC_COMMAND_PROPERTY_SET;
3017 		if (req->req.cmd->prop_set_cmd.attrib.size) {
3018 			req->req.cmd->prop_set_cmd.value.u64 = *(uint64_t *)buf;
3019 		} else {
3020 			req->req.cmd->prop_set_cmd.value.u32.high = 0;
3021 			req->req.cmd->prop_set_cmd.value.u32.low = *(uint32_t *)buf;
3022 		}
3023 	} else {
3024 		req->req.cmd->prop_get_cmd.fctype = SPDK_NVMF_FABRIC_COMMAND_PROPERTY_GET;
3025 	}
3026 	req->req.length = count;
3027 	SPDK_IOV_ONE(req->req.iov, &req->req.iovcnt, buf, req->req.length);
3028 
3029 	spdk_nvmf_request_exec(&req->req);
3030 
3031 	return count;
3032 }
3033 
3034 static ssize_t
3035 access_bar0_fn(vfu_ctx_t *vfu_ctx, char *buf, size_t count, loff_t pos,
3036 	       bool is_write)
3037 {
3038 	struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
3039 	struct nvmf_vfio_user_ctrlr *ctrlr;
3040 	int ret;
3041 
3042 	ctrlr = endpoint->ctrlr;
3043 	if (spdk_unlikely(endpoint->need_async_destroy || !ctrlr)) {
3044 		errno = EIO;
3045 		return -1;
3046 	}
3047 
3048 	if (pos >= NVME_DOORBELLS_OFFSET) {
3049 		/*
3050 		 * The fact that the doorbells can be memory mapped doesn't mean
3051 		 * that the client (VFIO in QEMU) is obliged to memory map them,
3052 		 * it might still elect to access them via regular read/write;
3053 		 * we might also have had disable_mappable_bar0 set.
3054 		 */
3055 		ret = handle_dbl_access(ctrlr, (uint32_t *)buf, count,
3056 					pos, is_write);
3057 		if (ret == 0) {
3058 			return count;
3059 		}
3060 		return ret;
3061 	}
3062 
3063 	return vfio_user_property_access(ctrlr, buf, count, pos, is_write);
3064 }
3065 
3066 static ssize_t
3067 access_pci_config(vfu_ctx_t *vfu_ctx, char *buf, size_t count, loff_t offset,
3068 		  bool is_write)
3069 {
3070 	struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
3071 
3072 	if (is_write) {
3073 		SPDK_ERRLOG("%s: write %#lx-%#lx not supported\n",
3074 			    endpoint_id(endpoint), offset, offset + count);
3075 		errno = EINVAL;
3076 		return -1;
3077 	}
3078 
3079 	if (offset + count > NVME_REG_CFG_SIZE) {
3080 		SPDK_ERRLOG("%s: access past end of extended PCI configuration space, want=%ld+%ld, max=%d\n",
3081 			    endpoint_id(endpoint), offset, count,
3082 			    NVME_REG_CFG_SIZE);
3083 		errno = ERANGE;
3084 		return -1;
3085 	}
3086 
3087 	memcpy(buf, ((unsigned char *)endpoint->pci_config_space) + offset, count);
3088 
3089 	return count;
3090 }
3091 
3092 static void
3093 vfio_user_log(vfu_ctx_t *vfu_ctx, int level, char const *msg)
3094 {
3095 	struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
3096 
3097 	if (level >= LOG_DEBUG) {
3098 		SPDK_DEBUGLOG(nvmf_vfio, "%s: %s\n", endpoint_id(endpoint), msg);
3099 	} else if (level >= LOG_INFO) {
3100 		SPDK_INFOLOG(nvmf_vfio, "%s: %s\n", endpoint_id(endpoint), msg);
3101 	} else if (level >= LOG_NOTICE) {
3102 		SPDK_NOTICELOG("%s: %s\n", endpoint_id(endpoint), msg);
3103 	} else if (level >= LOG_WARNING) {
3104 		SPDK_WARNLOG("%s: %s\n", endpoint_id(endpoint), msg);
3105 	} else {
3106 		SPDK_ERRLOG("%s: %s\n", endpoint_id(endpoint), msg);
3107 	}
3108 }
3109 
3110 static int
3111 vfio_user_get_log_level(void)
3112 {
3113 	int level;
3114 
3115 	if (SPDK_DEBUGLOG_FLAG_ENABLED("nvmf_vfio")) {
3116 		return LOG_DEBUG;
3117 	}
3118 
3119 	level = spdk_log_to_syslog_level(spdk_log_get_level());
3120 	if (level < 0) {
3121 		return LOG_ERR;
3122 	}
3123 
3124 	return level;
3125 }
3126 
3127 static void
3128 init_pci_config_space(vfu_pci_config_space_t *p)
3129 {
3130 	/* MLBAR */
3131 	p->hdr.bars[0].raw = 0x0;
3132 	/* MUBAR */
3133 	p->hdr.bars[1].raw = 0x0;
3134 
3135 	/* vendor specific, let's set them to zero for now */
3136 	p->hdr.bars[3].raw = 0x0;
3137 	p->hdr.bars[4].raw = 0x0;
3138 	p->hdr.bars[5].raw = 0x0;
3139 
3140 	/* enable INTx */
3141 	p->hdr.intr.ipin = 0x1;
3142 }
3143 
3144 struct ctrlr_quiesce_ctx {
3145 	struct nvmf_vfio_user_endpoint *endpoint;
3146 	struct nvmf_vfio_user_poll_group *group;
3147 	int status;
3148 };
3149 
3150 static void ctrlr_quiesce(struct nvmf_vfio_user_ctrlr *vu_ctrlr);
3151 
3152 static void
3153 _vfio_user_endpoint_resume_done_msg(void *ctx)
3154 {
3155 	struct nvmf_vfio_user_endpoint *endpoint = ctx;
3156 	struct nvmf_vfio_user_ctrlr *vu_ctrlr = endpoint->ctrlr;
3157 
3158 	endpoint->need_resume = false;
3159 
3160 	if (!vu_ctrlr) {
3161 		return;
3162 	}
3163 
3164 	if (!vu_ctrlr->queued_quiesce) {
3165 		vu_ctrlr->state = VFIO_USER_CTRLR_RUNNING;
3166 
3167 		/*
3168 		 * We might have ignored new SQ entries while we were quiesced:
3169 		 * kick ourselves so we'll definitely check again while in
3170 		 * VFIO_USER_CTRLR_RUNNING state.
3171 		 */
3172 		if (in_interrupt_mode(endpoint->transport)) {
3173 			ctrlr_kick(vu_ctrlr);
3174 		}
3175 		return;
3176 	}
3177 
3178 
3179 	/*
3180 	 * Basically, once we call `vfu_device_quiesced` the device is
3181 	 * unquiesced from libvfio-user's perspective so from the moment
3182 	 * `vfio_user_quiesce_done` returns libvfio-user might quiesce the device
3183 	 * again. However, because the NVMf subsystem is an asynchronous
3184 	 * operation, this quiesce might come _before_ the NVMf subsystem has
3185 	 * been resumed, so in the callback of `spdk_nvmf_subsystem_resume` we
3186 	 * need to check whether a quiesce was requested.
3187 	 */
3188 	SPDK_DEBUGLOG(nvmf_vfio, "%s has queued quiesce event, quiesce again\n",
3189 		      ctrlr_id(vu_ctrlr));
3190 	ctrlr_quiesce(vu_ctrlr);
3191 }
3192 
3193 static void
3194 vfio_user_endpoint_resume_done(struct spdk_nvmf_subsystem *subsystem,
3195 			       void *cb_arg, int status)
3196 {
3197 	struct nvmf_vfio_user_endpoint *endpoint = cb_arg;
3198 	struct nvmf_vfio_user_ctrlr *vu_ctrlr = endpoint->ctrlr;
3199 
3200 	SPDK_DEBUGLOG(nvmf_vfio, "%s resumed done with status %d\n", endpoint_id(endpoint), status);
3201 
3202 	if (!vu_ctrlr) {
3203 		return;
3204 	}
3205 
3206 	spdk_thread_send_msg(vu_ctrlr->thread, _vfio_user_endpoint_resume_done_msg, endpoint);
3207 }
3208 
3209 static void
3210 vfio_user_quiesce_done(void *ctx)
3211 {
3212 	struct ctrlr_quiesce_ctx *quiesce_ctx = ctx;
3213 	struct nvmf_vfio_user_endpoint *endpoint = quiesce_ctx->endpoint;
3214 	struct nvmf_vfio_user_ctrlr *vu_ctrlr = endpoint->ctrlr;
3215 	int ret;
3216 
3217 	if (!vu_ctrlr) {
3218 		free(quiesce_ctx);
3219 		return;
3220 	}
3221 
3222 	SPDK_DEBUGLOG(nvmf_vfio, "%s device quiesced\n", ctrlr_id(vu_ctrlr));
3223 
3224 	assert(vu_ctrlr->state == VFIO_USER_CTRLR_PAUSING);
3225 	vu_ctrlr->state = VFIO_USER_CTRLR_PAUSED;
3226 	vfu_device_quiesced(endpoint->vfu_ctx, quiesce_ctx->status);
3227 	vu_ctrlr->queued_quiesce = false;
3228 	free(quiesce_ctx);
3229 
3230 	/* `vfu_device_quiesced` can change the migration state,
3231 	 * so we need to re-check `vu_ctrlr->state`.
3232 	 */
3233 	if (vu_ctrlr->state == VFIO_USER_CTRLR_MIGRATING) {
3234 		SPDK_DEBUGLOG(nvmf_vfio, "%s is in MIGRATION state\n", ctrlr_id(vu_ctrlr));
3235 		return;
3236 	}
3237 
3238 	SPDK_DEBUGLOG(nvmf_vfio, "%s start to resume\n", ctrlr_id(vu_ctrlr));
3239 	vu_ctrlr->state = VFIO_USER_CTRLR_RESUMING;
3240 	ret = spdk_nvmf_subsystem_resume((struct spdk_nvmf_subsystem *)endpoint->subsystem,
3241 					 vfio_user_endpoint_resume_done, endpoint);
3242 	if (ret < 0) {
3243 		vu_ctrlr->state = VFIO_USER_CTRLR_PAUSED;
3244 		SPDK_ERRLOG("%s: failed to resume, ret=%d\n", endpoint_id(endpoint), ret);
3245 	}
3246 }
3247 
3248 static void
3249 vfio_user_pause_done(struct spdk_nvmf_subsystem *subsystem,
3250 		     void *ctx, int status)
3251 {
3252 	struct ctrlr_quiesce_ctx *quiesce_ctx = ctx;
3253 	struct nvmf_vfio_user_endpoint *endpoint = quiesce_ctx->endpoint;
3254 	struct nvmf_vfio_user_ctrlr *vu_ctrlr = endpoint->ctrlr;
3255 
3256 	if (!vu_ctrlr) {
3257 		free(quiesce_ctx);
3258 		return;
3259 	}
3260 
3261 	quiesce_ctx->status = status;
3262 
3263 	SPDK_DEBUGLOG(nvmf_vfio, "%s pause done with status %d\n",
3264 		      ctrlr_id(vu_ctrlr), status);
3265 
3266 	spdk_thread_send_msg(vu_ctrlr->thread,
3267 			     vfio_user_quiesce_done, ctx);
3268 }
3269 
3270 /*
3271  * Ensure that, for this PG, we've stopped running in nvmf_vfio_user_sq_poll();
3272  * we've already set ctrlr->state, so we won't process new entries, but we need
3273  * to ensure that this PG is quiesced. This only works because there's no
3274  * callback context set up between polling the SQ and spdk_nvmf_request_exec().
3275  *
3276  * Once we've walked all PGs, we need to pause any submitted I/O via
3277  * spdk_nvmf_subsystem_pause(SPDK_NVME_GLOBAL_NS_TAG).
3278  */
3279 static void
3280 vfio_user_quiesce_pg(void *ctx)
3281 {
3282 	struct ctrlr_quiesce_ctx *quiesce_ctx = ctx;
3283 	struct nvmf_vfio_user_endpoint *endpoint = quiesce_ctx->endpoint;
3284 	struct nvmf_vfio_user_ctrlr *vu_ctrlr = endpoint->ctrlr;
3285 	struct nvmf_vfio_user_poll_group *vu_group = quiesce_ctx->group;
3286 	struct spdk_nvmf_subsystem *subsystem = endpoint->subsystem;
3287 	int ret;
3288 
3289 	SPDK_DEBUGLOG(nvmf_vfio, "quiesced pg:%p\n", vu_group);
3290 
3291 	if (!vu_ctrlr) {
3292 		free(quiesce_ctx);
3293 		return;
3294 	}
3295 
3296 	quiesce_ctx->group = TAILQ_NEXT(vu_group, link);
3297 	if (quiesce_ctx->group != NULL)  {
3298 		spdk_thread_send_msg(poll_group_to_thread(quiesce_ctx->group),
3299 				     vfio_user_quiesce_pg, quiesce_ctx);
3300 		return;
3301 	}
3302 
3303 	ret = spdk_nvmf_subsystem_pause(subsystem, SPDK_NVME_GLOBAL_NS_TAG,
3304 					vfio_user_pause_done, quiesce_ctx);
3305 	if (ret < 0) {
3306 		SPDK_ERRLOG("%s: failed to pause, ret=%d\n",
3307 			    endpoint_id(endpoint), ret);
3308 		vu_ctrlr->state = VFIO_USER_CTRLR_RUNNING;
3309 		fail_ctrlr(vu_ctrlr);
3310 		free(quiesce_ctx);
3311 	}
3312 }
3313 
3314 static void
3315 ctrlr_quiesce(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
3316 {
3317 	struct ctrlr_quiesce_ctx *quiesce_ctx;
3318 
3319 	vu_ctrlr->state = VFIO_USER_CTRLR_PAUSING;
3320 
3321 	quiesce_ctx = calloc(1, sizeof(*quiesce_ctx));
3322 	if (!quiesce_ctx) {
3323 		SPDK_ERRLOG("Failed to allocate subsystem pause context\n");
3324 		assert(false);
3325 		return;
3326 	}
3327 
3328 	quiesce_ctx->endpoint = vu_ctrlr->endpoint;
3329 	quiesce_ctx->status = 0;
3330 	quiesce_ctx->group = TAILQ_FIRST(&vu_ctrlr->transport->poll_groups);
3331 
3332 	spdk_thread_send_msg(poll_group_to_thread(quiesce_ctx->group),
3333 			     vfio_user_quiesce_pg, quiesce_ctx);
3334 }
3335 
3336 static int
3337 vfio_user_dev_quiesce_cb(vfu_ctx_t *vfu_ctx)
3338 {
3339 	struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
3340 	struct spdk_nvmf_subsystem *subsystem = endpoint->subsystem;
3341 	struct nvmf_vfio_user_ctrlr *vu_ctrlr = endpoint->ctrlr;
3342 
3343 	if (!vu_ctrlr) {
3344 		return 0;
3345 	}
3346 
3347 	/* NVMf library will destruct controller when no
3348 	 * connected queue pairs.
3349 	 */
3350 	if (!nvmf_subsystem_get_ctrlr(subsystem, vu_ctrlr->cntlid)) {
3351 		return 0;
3352 	}
3353 
3354 	SPDK_DEBUGLOG(nvmf_vfio, "%s starts to quiesce\n", ctrlr_id(vu_ctrlr));
3355 
3356 	/* There is no race condition here as device quiesce callback
3357 	 * and nvmf_prop_set_cc() are running in the same thread context.
3358 	 */
3359 	if (!vu_ctrlr->ctrlr->vcprop.cc.bits.en) {
3360 		return 0;
3361 	} else if (!vu_ctrlr->ctrlr->vcprop.csts.bits.rdy) {
3362 		return 0;
3363 	} else if (vu_ctrlr->ctrlr->vcprop.csts.bits.shst == SPDK_NVME_SHST_COMPLETE) {
3364 		return 0;
3365 	}
3366 
3367 	switch (vu_ctrlr->state) {
3368 	case VFIO_USER_CTRLR_PAUSED:
3369 	case VFIO_USER_CTRLR_MIGRATING:
3370 		return 0;
3371 	case VFIO_USER_CTRLR_RUNNING:
3372 		ctrlr_quiesce(vu_ctrlr);
3373 		break;
3374 	case VFIO_USER_CTRLR_RESUMING:
3375 		vu_ctrlr->queued_quiesce = true;
3376 		SPDK_DEBUGLOG(nvmf_vfio, "%s is busy to quiesce, current state %u\n", ctrlr_id(vu_ctrlr),
3377 			      vu_ctrlr->state);
3378 		break;
3379 	default:
3380 		assert(vu_ctrlr->state != VFIO_USER_CTRLR_PAUSING);
3381 		break;
3382 	}
3383 
3384 	errno = EBUSY;
3385 	return -1;
3386 }
3387 
3388 static void
3389 vfio_user_ctrlr_dump_migr_data(const char *name,
3390 			       struct vfio_user_nvme_migr_state *migr_data,
3391 			       struct nvmf_vfio_user_shadow_doorbells *sdbl)
3392 {
3393 	struct spdk_nvmf_registers *regs;
3394 	struct nvme_migr_sq_state *sq;
3395 	struct nvme_migr_cq_state *cq;
3396 	uint32_t *doorbell_base;
3397 	uint32_t i;
3398 
3399 	SPDK_NOTICELOG("Dump %s\n", name);
3400 
3401 	regs = &migr_data->nvmf_data.regs;
3402 	doorbell_base = (uint32_t *)&migr_data->doorbells;
3403 
3404 	SPDK_NOTICELOG("Registers\n");
3405 	SPDK_NOTICELOG("CSTS 0x%x\n", regs->csts.raw);
3406 	SPDK_NOTICELOG("CAP  0x%"PRIx64"\n", regs->cap.raw);
3407 	SPDK_NOTICELOG("VS   0x%x\n", regs->vs.raw);
3408 	SPDK_NOTICELOG("CC   0x%x\n", regs->cc.raw);
3409 	SPDK_NOTICELOG("AQA  0x%x\n", regs->aqa.raw);
3410 	SPDK_NOTICELOG("ASQ  0x%"PRIx64"\n", regs->asq);
3411 	SPDK_NOTICELOG("ACQ  0x%"PRIx64"\n", regs->acq);
3412 
3413 	SPDK_NOTICELOG("Number of IO Queues %u\n", migr_data->ctrlr_header.num_io_queues);
3414 
3415 	if (sdbl != NULL) {
3416 		SPDK_NOTICELOG("shadow doorbell buffer=%#lx\n",
3417 			       migr_data->ctrlr_header.shadow_doorbell_buffer);
3418 		SPDK_NOTICELOG("eventidx buffer=%#lx\n",
3419 			       migr_data->ctrlr_header.eventidx_buffer);
3420 	}
3421 
3422 	for (i = 0; i < NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR; i++) {
3423 		sq = &migr_data->qps[i].sq;
3424 		cq = &migr_data->qps[i].cq;
3425 
3426 		if (sq->size) {
3427 			SPDK_NOTICELOG("sqid:%u, bar0_doorbell:%u\n", sq->sqid, doorbell_base[i * 2]);
3428 			if (i > 0 && sdbl != NULL) {
3429 				SPDK_NOTICELOG("sqid:%u, shadow_doorbell:%u, eventidx:%u\n",
3430 					       sq->sqid,
3431 					       sdbl->shadow_doorbells[queue_index(i, false)],
3432 					       sdbl->eventidxs[queue_index(i, false)]);
3433 			}
3434 			SPDK_NOTICELOG("SQ sqid:%u, cqid:%u, sqhead:%u, size:%u, dma_addr:0x%"PRIx64"\n",
3435 				       sq->sqid, sq->cqid, sq->head, sq->size, sq->dma_addr);
3436 		}
3437 
3438 		if (cq->size) {
3439 			SPDK_NOTICELOG("cqid:%u, bar0_doorbell:%u\n", cq->cqid, doorbell_base[i * 2 + 1]);
3440 			if (i > 0 && sdbl != NULL) {
3441 				SPDK_NOTICELOG("cqid:%u, shadow_doorbell:%u, eventidx:%u\n",
3442 					       cq->cqid,
3443 					       sdbl->shadow_doorbells[queue_index(i, true)],
3444 					       sdbl->eventidxs[queue_index(i, true)]);
3445 			}
3446 			SPDK_NOTICELOG("CQ cqid:%u, phase:%u, cqtail:%u, size:%u, iv:%u, ien:%u, dma_addr:0x%"PRIx64"\n",
3447 				       cq->cqid, cq->phase, cq->tail, cq->size, cq->iv, cq->ien, cq->dma_addr);
3448 		}
3449 	}
3450 
3451 	SPDK_NOTICELOG("%s Dump Done\n", name);
3452 }
3453 
3454 /* Read region 9 content and restore it to migration data structures */
3455 static int
3456 vfio_user_migr_stream_to_data(struct nvmf_vfio_user_endpoint *endpoint,
3457 			      struct vfio_user_nvme_migr_state *migr_state)
3458 {
3459 	void *data_ptr = endpoint->migr_data;
3460 
3461 	/* Load vfio_user_nvme_migr_header first */
3462 	memcpy(&migr_state->ctrlr_header, data_ptr, sizeof(struct vfio_user_nvme_migr_header));
3463 	/* TODO: version check */
3464 	if (migr_state->ctrlr_header.magic != VFIO_USER_NVME_MIGR_MAGIC) {
3465 		SPDK_ERRLOG("%s: bad magic number %x\n", endpoint_id(endpoint), migr_state->ctrlr_header.magic);
3466 		return -EINVAL;
3467 	}
3468 
3469 	/* Load nvmf controller data */
3470 	data_ptr = endpoint->migr_data + migr_state->ctrlr_header.nvmf_data_offset;
3471 	memcpy(&migr_state->nvmf_data, data_ptr, migr_state->ctrlr_header.nvmf_data_len);
3472 
3473 	/* Load queue pairs */
3474 	data_ptr = endpoint->migr_data + migr_state->ctrlr_header.qp_offset;
3475 	memcpy(&migr_state->qps, data_ptr, migr_state->ctrlr_header.qp_len);
3476 
3477 	/* Load doorbells */
3478 	data_ptr = endpoint->migr_data + migr_state->ctrlr_header.bar_offset[VFU_PCI_DEV_BAR0_REGION_IDX];
3479 	memcpy(&migr_state->doorbells, data_ptr,
3480 	       migr_state->ctrlr_header.bar_len[VFU_PCI_DEV_BAR0_REGION_IDX]);
3481 
3482 	/* Load CFG */
3483 	data_ptr = endpoint->migr_data + migr_state->ctrlr_header.bar_offset[VFU_PCI_DEV_CFG_REGION_IDX];
3484 	memcpy(&migr_state->cfg, data_ptr, migr_state->ctrlr_header.bar_len[VFU_PCI_DEV_CFG_REGION_IDX]);
3485 
3486 	return 0;
3487 }
3488 
3489 
3490 static void
3491 vfio_user_migr_ctrlr_save_data(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
3492 {
3493 	struct spdk_nvmf_ctrlr *ctrlr = vu_ctrlr->ctrlr;
3494 	struct nvmf_vfio_user_endpoint *endpoint = vu_ctrlr->endpoint;
3495 	struct nvmf_vfio_user_sq *sq;
3496 	struct nvmf_vfio_user_cq *cq;
3497 	uint64_t data_offset;
3498 	void *data_ptr;
3499 	uint32_t *doorbell_base;
3500 	uint32_t i = 0;
3501 	uint16_t sqid, cqid;
3502 	struct vfio_user_nvme_migr_state migr_state = {
3503 		.nvmf_data = {
3504 			.data_size = offsetof(struct spdk_nvmf_ctrlr_migr_data, unused),
3505 			.regs_size = sizeof(struct spdk_nvmf_registers),
3506 			.feat_size = sizeof(struct spdk_nvmf_ctrlr_feat)
3507 		}
3508 	};
3509 
3510 	/* Save all data to vfio_user_nvme_migr_state first, then we will
3511 	 * copy it to device migration region at last.
3512 	 */
3513 
3514 	/* save magic number */
3515 	migr_state.ctrlr_header.magic = VFIO_USER_NVME_MIGR_MAGIC;
3516 
3517 	/* save controller data */
3518 	spdk_nvmf_ctrlr_save_migr_data(ctrlr, &migr_state.nvmf_data);
3519 
3520 	/* save connected queue pairs */
3521 	TAILQ_FOREACH(sq, &vu_ctrlr->connected_sqs, tailq) {
3522 		/* save sq */
3523 		sqid = sq->qid;
3524 		migr_state.qps[sqid].sq.sqid = sq->qid;
3525 		migr_state.qps[sqid].sq.cqid = sq->cqid;
3526 		migr_state.qps[sqid].sq.head = *sq_headp(sq);
3527 		migr_state.qps[sqid].sq.size = sq->size;
3528 		migr_state.qps[sqid].sq.dma_addr = sq->mapping.prp1;
3529 
3530 		/* save cq, for shared cq case, cq may be saved multiple times */
3531 		cqid = sq->cqid;
3532 		cq = vu_ctrlr->cqs[cqid];
3533 		migr_state.qps[cqid].cq.cqid = cqid;
3534 		migr_state.qps[cqid].cq.tail = *cq_tailp(cq);
3535 		migr_state.qps[cqid].cq.ien = cq->ien;
3536 		migr_state.qps[cqid].cq.iv = cq->iv;
3537 		migr_state.qps[cqid].cq.size = cq->size;
3538 		migr_state.qps[cqid].cq.phase = cq->phase;
3539 		migr_state.qps[cqid].cq.dma_addr = cq->mapping.prp1;
3540 		i++;
3541 	}
3542 
3543 	assert(i > 0);
3544 	migr_state.ctrlr_header.num_io_queues = i - 1;
3545 
3546 	/* Save doorbells */
3547 	doorbell_base = (uint32_t *)&migr_state.doorbells;
3548 	memcpy(doorbell_base, (void *)vu_ctrlr->bar0_doorbells, NVMF_VFIO_USER_DOORBELLS_SIZE);
3549 
3550 	/* Save PCI configuration space */
3551 	memcpy(&migr_state.cfg, (void *)endpoint->pci_config_space, NVME_REG_CFG_SIZE);
3552 
3553 	/* Save all data to device migration region */
3554 	data_ptr = endpoint->migr_data;
3555 
3556 	/* Copy nvmf controller data */
3557 	data_offset = sizeof(struct vfio_user_nvme_migr_header);
3558 	data_ptr += data_offset;
3559 	migr_state.ctrlr_header.nvmf_data_offset = data_offset;
3560 	migr_state.ctrlr_header.nvmf_data_len = sizeof(struct spdk_nvmf_ctrlr_migr_data);
3561 	memcpy(data_ptr, &migr_state.nvmf_data, sizeof(struct spdk_nvmf_ctrlr_migr_data));
3562 
3563 	/* Copy queue pairs */
3564 	data_offset += sizeof(struct spdk_nvmf_ctrlr_migr_data);
3565 	data_ptr += sizeof(struct spdk_nvmf_ctrlr_migr_data);
3566 	migr_state.ctrlr_header.qp_offset = data_offset;
3567 	migr_state.ctrlr_header.qp_len = i * (sizeof(struct nvme_migr_sq_state) + sizeof(
3568 			struct nvme_migr_cq_state));
3569 	memcpy(data_ptr, &migr_state.qps, migr_state.ctrlr_header.qp_len);
3570 
3571 	/* Copy doorbells */
3572 	data_offset += migr_state.ctrlr_header.qp_len;
3573 	data_ptr += migr_state.ctrlr_header.qp_len;
3574 	migr_state.ctrlr_header.bar_offset[VFU_PCI_DEV_BAR0_REGION_IDX] = data_offset;
3575 	migr_state.ctrlr_header.bar_len[VFU_PCI_DEV_BAR0_REGION_IDX] = NVMF_VFIO_USER_DOORBELLS_SIZE;
3576 	memcpy(data_ptr, &migr_state.doorbells, NVMF_VFIO_USER_DOORBELLS_SIZE);
3577 
3578 	/* Copy CFG */
3579 	data_offset += NVMF_VFIO_USER_DOORBELLS_SIZE;
3580 	data_ptr += NVMF_VFIO_USER_DOORBELLS_SIZE;
3581 	migr_state.ctrlr_header.bar_offset[VFU_PCI_DEV_CFG_REGION_IDX] = data_offset;
3582 	migr_state.ctrlr_header.bar_len[VFU_PCI_DEV_CFG_REGION_IDX] = NVME_REG_CFG_SIZE;
3583 	memcpy(data_ptr, &migr_state.cfg, NVME_REG_CFG_SIZE);
3584 
3585 	/* copy shadow doorbells */
3586 	if (vu_ctrlr->sdbl != NULL) {
3587 		migr_state.ctrlr_header.sdbl = true;
3588 		migr_state.ctrlr_header.shadow_doorbell_buffer = vu_ctrlr->shadow_doorbell_buffer;
3589 		migr_state.ctrlr_header.eventidx_buffer = vu_ctrlr->eventidx_buffer;
3590 	}
3591 
3592 	/* Copy nvme migration header finally */
3593 	memcpy(endpoint->migr_data, &migr_state.ctrlr_header, sizeof(struct vfio_user_nvme_migr_header));
3594 
3595 	if (SPDK_DEBUGLOG_FLAG_ENABLED("nvmf_vfio")) {
3596 		vfio_user_ctrlr_dump_migr_data("SAVE", &migr_state, vu_ctrlr->sdbl);
3597 	}
3598 }
3599 
3600 /*
3601  * If we are about to close the connection, we need to unregister the interrupt,
3602  * as the library will subsequently close the file descriptor we registered.
3603  */
3604 static int
3605 vfio_user_device_reset(vfu_ctx_t *vfu_ctx, vfu_reset_type_t type)
3606 {
3607 	struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
3608 	struct nvmf_vfio_user_ctrlr *ctrlr = endpoint->ctrlr;
3609 
3610 	SPDK_DEBUGLOG(nvmf_vfio, "Device reset type %u\n", type);
3611 
3612 	if (type == VFU_RESET_LOST_CONN) {
3613 		if (ctrlr != NULL) {
3614 			spdk_interrupt_unregister(&ctrlr->intr);
3615 			ctrlr->intr_fd = -1;
3616 		}
3617 		return 0;
3618 	}
3619 
3620 	/* FIXME: LOST_CONN case ? */
3621 	if (ctrlr->sdbl != NULL) {
3622 		vfio_user_ctrlr_switch_doorbells(ctrlr, false);
3623 		free_sdbl(vfu_ctx, ctrlr->sdbl);
3624 		ctrlr->sdbl = NULL;
3625 	}
3626 
3627 	/* FIXME: much more needed here. */
3628 
3629 	return 0;
3630 }
3631 
3632 static int
3633 vfio_user_migr_ctrlr_construct_qps(struct nvmf_vfio_user_ctrlr *vu_ctrlr,
3634 				   struct vfio_user_nvme_migr_state *migr_state)
3635 {
3636 	uint32_t i, qsize = 0;
3637 	uint16_t sqid, cqid;
3638 	struct vfio_user_nvme_migr_qp migr_qp;
3639 	void *addr;
3640 	uint32_t cqs_ref[NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR] = {};
3641 	int ret;
3642 
3643 	if (SPDK_DEBUGLOG_FLAG_ENABLED("nvmf_vfio")) {
3644 		vfio_user_ctrlr_dump_migr_data("RESUME", migr_state, vu_ctrlr->sdbl);
3645 	}
3646 
3647 	/* restore submission queues */
3648 	for (i = 0; i < NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR; i++) {
3649 		migr_qp =  migr_state->qps[i];
3650 
3651 		qsize = migr_qp.sq.size;
3652 		if (qsize) {
3653 			struct nvmf_vfio_user_sq *sq;
3654 
3655 			sqid = migr_qp.sq.sqid;
3656 			if (sqid != i) {
3657 				SPDK_ERRLOG("Expected sqid %u while got %u", i, sqid);
3658 				return -EINVAL;
3659 			}
3660 
3661 			/* allocate sq if necessary */
3662 			if (vu_ctrlr->sqs[sqid] == NULL) {
3663 				ret = init_sq(vu_ctrlr, &vu_ctrlr->transport->transport, sqid);
3664 				if (ret) {
3665 					SPDK_ERRLOG("Construct qpair with qid %u failed\n", sqid);
3666 					return -EFAULT;
3667 				}
3668 			}
3669 
3670 			sq = vu_ctrlr->sqs[sqid];
3671 			sq->size = qsize;
3672 
3673 			ret = alloc_sq_reqs(vu_ctrlr, sq);
3674 			if (ret) {
3675 				SPDK_ERRLOG("Construct sq with qid %u failed\n", sqid);
3676 				return -EFAULT;
3677 			}
3678 
3679 			/* restore sq */
3680 			sq->sq_state = VFIO_USER_SQ_CREATED;
3681 			sq->cqid = migr_qp.sq.cqid;
3682 			*sq_headp(sq) = migr_qp.sq.head;
3683 			sq->mapping.prp1 = migr_qp.sq.dma_addr;
3684 			sq->mapping.len = sq->size * sizeof(struct spdk_nvme_cmd);
3685 			addr = map_one(vu_ctrlr->endpoint->vfu_ctx,
3686 				       sq->mapping.prp1, sq->mapping.len,
3687 				       sq->mapping.sg, &sq->mapping.iov,
3688 				       PROT_READ);
3689 			if (addr == NULL) {
3690 				SPDK_ERRLOG("Restore sq with qid %u PRP1 0x%"PRIx64" with size %u failed\n",
3691 					    sqid, sq->mapping.prp1, sq->size);
3692 				return -EFAULT;
3693 			}
3694 			cqs_ref[sq->cqid]++;
3695 		}
3696 	}
3697 
3698 	/* restore completion queues */
3699 	for (i = 0; i < NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR; i++) {
3700 		migr_qp =  migr_state->qps[i];
3701 
3702 		qsize = migr_qp.cq.size;
3703 		if (qsize) {
3704 			struct nvmf_vfio_user_cq *cq;
3705 
3706 			/* restore cq */
3707 			cqid = migr_qp.sq.cqid;
3708 			assert(cqid == i);
3709 
3710 			/* allocate cq if necessary */
3711 			if (vu_ctrlr->cqs[cqid] == NULL) {
3712 				ret = init_cq(vu_ctrlr, cqid);
3713 				if (ret) {
3714 					SPDK_ERRLOG("Construct qpair with qid %u failed\n", cqid);
3715 					return -EFAULT;
3716 				}
3717 			}
3718 
3719 			cq = vu_ctrlr->cqs[cqid];
3720 
3721 			cq->size = qsize;
3722 
3723 			cq->cq_state = VFIO_USER_CQ_CREATED;
3724 			cq->cq_ref = cqs_ref[cqid];
3725 			*cq_tailp(cq) = migr_qp.cq.tail;
3726 			cq->mapping.prp1 = migr_qp.cq.dma_addr;
3727 			cq->mapping.len = cq->size * sizeof(struct spdk_nvme_cpl);
3728 			cq->ien = migr_qp.cq.ien;
3729 			cq->iv = migr_qp.cq.iv;
3730 			cq->phase = migr_qp.cq.phase;
3731 			addr = map_one(vu_ctrlr->endpoint->vfu_ctx,
3732 				       cq->mapping.prp1, cq->mapping.len,
3733 				       cq->mapping.sg, &cq->mapping.iov,
3734 				       PROT_READ | PROT_WRITE);
3735 			if (addr == NULL) {
3736 				SPDK_ERRLOG("Restore cq with qid %u PRP1 0x%"PRIx64" with size %u failed\n",
3737 					    cqid, cq->mapping.prp1, cq->size);
3738 				return -EFAULT;
3739 			}
3740 		}
3741 	}
3742 
3743 	return 0;
3744 }
3745 
3746 static int
3747 vfio_user_migr_ctrlr_restore(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
3748 {
3749 	struct nvmf_vfio_user_endpoint *endpoint = vu_ctrlr->endpoint;
3750 	struct spdk_nvmf_ctrlr *ctrlr = vu_ctrlr->ctrlr;
3751 	uint32_t *doorbell_base;
3752 	struct spdk_nvme_cmd cmd;
3753 	uint16_t i;
3754 	int rc = 0;
3755 	struct vfio_user_nvme_migr_state migr_state = {
3756 		.nvmf_data = {
3757 			.data_size = offsetof(struct spdk_nvmf_ctrlr_migr_data, unused),
3758 			.regs_size = sizeof(struct spdk_nvmf_registers),
3759 			.feat_size = sizeof(struct spdk_nvmf_ctrlr_feat)
3760 		}
3761 	};
3762 
3763 	assert(endpoint->migr_data != NULL);
3764 	assert(ctrlr != NULL);
3765 	rc = vfio_user_migr_stream_to_data(endpoint, &migr_state);
3766 	if (rc) {
3767 		return rc;
3768 	}
3769 
3770 	/* restore shadow doorbells */
3771 	if (migr_state.ctrlr_header.sdbl) {
3772 		struct nvmf_vfio_user_shadow_doorbells *sdbl;
3773 		sdbl = map_sdbl(vu_ctrlr->endpoint->vfu_ctx,
3774 				migr_state.ctrlr_header.shadow_doorbell_buffer,
3775 				migr_state.ctrlr_header.eventidx_buffer,
3776 				memory_page_size(vu_ctrlr));
3777 		if (sdbl == NULL) {
3778 			SPDK_ERRLOG("%s: failed to re-map shadow doorbell buffers\n",
3779 				    ctrlr_id(vu_ctrlr));
3780 			return -1;
3781 		}
3782 
3783 		vu_ctrlr->shadow_doorbell_buffer = migr_state.ctrlr_header.shadow_doorbell_buffer;
3784 		vu_ctrlr->eventidx_buffer = migr_state.ctrlr_header.eventidx_buffer;
3785 
3786 		SWAP(vu_ctrlr->sdbl, sdbl);
3787 	}
3788 
3789 	rc = vfio_user_migr_ctrlr_construct_qps(vu_ctrlr, &migr_state);
3790 	if (rc) {
3791 		return rc;
3792 	}
3793 
3794 	/* restore PCI configuration space */
3795 	memcpy((void *)endpoint->pci_config_space, &migr_state.cfg, NVME_REG_CFG_SIZE);
3796 
3797 	doorbell_base = (uint32_t *)&migr_state.doorbells;
3798 	/* restore doorbells from saved registers */
3799 	memcpy((void *)vu_ctrlr->bar0_doorbells, doorbell_base, NVMF_VFIO_USER_DOORBELLS_SIZE);
3800 
3801 	/* restore nvmf controller data */
3802 	rc = spdk_nvmf_ctrlr_restore_migr_data(ctrlr, &migr_state.nvmf_data);
3803 	if (rc) {
3804 		return rc;
3805 	}
3806 
3807 	/* resubmit pending AERs */
3808 	for (i = 0; i < migr_state.nvmf_data.num_aer_cids; i++) {
3809 		SPDK_DEBUGLOG(nvmf_vfio, "%s AER resubmit, CID %u\n", ctrlr_id(vu_ctrlr),
3810 			      migr_state.nvmf_data.aer_cids[i]);
3811 		memset(&cmd, 0, sizeof(cmd));
3812 		cmd.opc = SPDK_NVME_OPC_ASYNC_EVENT_REQUEST;
3813 		cmd.cid = migr_state.nvmf_data.aer_cids[i];
3814 		rc = handle_cmd_req(vu_ctrlr, &cmd, vu_ctrlr->sqs[0]);
3815 		if (spdk_unlikely(rc)) {
3816 			break;
3817 		}
3818 	}
3819 
3820 	return rc;
3821 }
3822 
3823 static void
3824 vfio_user_migr_ctrlr_enable_sqs(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
3825 {
3826 	uint32_t i;
3827 	struct nvmf_vfio_user_sq *sq;
3828 
3829 	/* The Admin queue (qid: 0) does not ever use shadow doorbells. */
3830 
3831 	if (vu_ctrlr->sqs[0] != NULL) {
3832 		vu_ctrlr->sqs[0]->dbl_tailp = vu_ctrlr->bar0_doorbells +
3833 					      queue_index(0, false);
3834 	}
3835 
3836 	if (vu_ctrlr->cqs[0] != NULL) {
3837 		vu_ctrlr->cqs[0]->dbl_headp = vu_ctrlr->bar0_doorbells +
3838 					      queue_index(0, true);
3839 	}
3840 
3841 	vfio_user_ctrlr_switch_doorbells(vu_ctrlr, vu_ctrlr->sdbl != NULL);
3842 
3843 	for (i = 0; i < NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR; i++) {
3844 		sq = vu_ctrlr->sqs[i];
3845 		if (!sq || !sq->size) {
3846 			continue;
3847 		}
3848 
3849 		if (nvmf_qpair_is_admin_queue(&sq->qpair)) {
3850 			/* ADMIN queue pair is always in the poll group, just enable it */
3851 			sq->sq_state = VFIO_USER_SQ_ACTIVE;
3852 		} else {
3853 			spdk_nvmf_tgt_new_qpair(vu_ctrlr->transport->transport.tgt, &sq->qpair);
3854 		}
3855 	}
3856 }
3857 
3858 /*
3859  * We are in stop-and-copy state, but still potentially have some current dirty
3860  * sgls: while we're quiesced and thus should have no active requests, we still
3861  * have potentially dirty maps of the shadow doorbells and the CQs (SQs are
3862  * mapped read only).
3863  *
3864  * Since we won't be calling vfu_sgl_put() for them, we need to explicitly
3865  * mark them dirty now.
3866  */
3867 static void
3868 vfio_user_migr_ctrlr_mark_dirty(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
3869 {
3870 	struct nvmf_vfio_user_endpoint *endpoint = vu_ctrlr->endpoint;
3871 
3872 	assert(vu_ctrlr->state == VFIO_USER_CTRLR_MIGRATING);
3873 
3874 	for (size_t i = 0; i < NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR; i++) {
3875 		struct nvmf_vfio_user_cq *cq = vu_ctrlr->cqs[i];
3876 
3877 		if (cq == NULL || q_addr(&cq->mapping) == NULL) {
3878 			continue;
3879 		}
3880 
3881 		vfu_sgl_mark_dirty(endpoint->vfu_ctx, cq->mapping.sg, 1);
3882 	}
3883 
3884 	if (vu_ctrlr->sdbl != NULL) {
3885 		dma_sg_t *sg;
3886 		size_t i;
3887 
3888 		for (i = 0; i < NVMF_VFIO_USER_SHADOW_DOORBELLS_BUFFER_COUNT;
3889 		     ++i) {
3890 
3891 			if (!vu_ctrlr->sdbl->iovs[i].iov_len) {
3892 				continue;
3893 			}
3894 
3895 			sg = index_to_sg_t(vu_ctrlr->sdbl->sgs, i);
3896 
3897 			vfu_sgl_mark_dirty(endpoint->vfu_ctx, sg, 1);
3898 		}
3899 	}
3900 }
3901 
3902 static int
3903 vfio_user_migration_device_state_transition(vfu_ctx_t *vfu_ctx, vfu_migr_state_t state)
3904 {
3905 	struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
3906 	struct nvmf_vfio_user_ctrlr *vu_ctrlr = endpoint->ctrlr;
3907 	struct nvmf_vfio_user_sq *sq;
3908 	int ret = 0;
3909 
3910 	SPDK_DEBUGLOG(nvmf_vfio, "%s controller state %u, migration state %u\n", endpoint_id(endpoint),
3911 		      vu_ctrlr->state, state);
3912 
3913 	switch (state) {
3914 	case VFU_MIGR_STATE_STOP_AND_COPY:
3915 		vu_ctrlr->in_source_vm = true;
3916 		vu_ctrlr->state = VFIO_USER_CTRLR_MIGRATING;
3917 		vfio_user_migr_ctrlr_mark_dirty(vu_ctrlr);
3918 		vfio_user_migr_ctrlr_save_data(vu_ctrlr);
3919 		break;
3920 	case VFU_MIGR_STATE_STOP:
3921 		vu_ctrlr->state = VFIO_USER_CTRLR_MIGRATING;
3922 		/* The controller associates with source VM is dead now, we will resume
3923 		 * the subsystem after destroying the controller data structure, then the
3924 		 * subsystem can be re-used for another new client.
3925 		 */
3926 		if (vu_ctrlr->in_source_vm) {
3927 			endpoint->need_resume = true;
3928 		}
3929 		break;
3930 	case VFU_MIGR_STATE_PRE_COPY:
3931 		assert(vu_ctrlr->state == VFIO_USER_CTRLR_PAUSED);
3932 		break;
3933 	case VFU_MIGR_STATE_RESUME:
3934 		/*
3935 		 * Destination ADMIN queue pair is connected when starting the VM,
3936 		 * but the ADMIN queue pair isn't enabled in destination VM, the poll
3937 		 * group will do nothing to ADMIN queue pair for now.
3938 		 */
3939 		if (vu_ctrlr->state != VFIO_USER_CTRLR_RUNNING) {
3940 			break;
3941 		}
3942 
3943 		assert(!vu_ctrlr->in_source_vm);
3944 		vu_ctrlr->state = VFIO_USER_CTRLR_MIGRATING;
3945 
3946 		sq = TAILQ_FIRST(&vu_ctrlr->connected_sqs);
3947 		assert(sq != NULL);
3948 		assert(sq->qpair.qid == 0);
3949 		sq->sq_state = VFIO_USER_SQ_INACTIVE;
3950 
3951 		/* Free ADMIN SQ resources first, SQ resources will be
3952 		 * allocated based on queue size from source VM.
3953 		 */
3954 		free_sq_reqs(sq);
3955 		sq->size = 0;
3956 		break;
3957 	case VFU_MIGR_STATE_RUNNING:
3958 
3959 		if (vu_ctrlr->state != VFIO_USER_CTRLR_MIGRATING) {
3960 			break;
3961 		}
3962 
3963 		if (!vu_ctrlr->in_source_vm) {
3964 			/* Restore destination VM from BAR9 */
3965 			ret = vfio_user_migr_ctrlr_restore(vu_ctrlr);
3966 			if (ret) {
3967 				break;
3968 			}
3969 
3970 			vfio_user_ctrlr_switch_doorbells(vu_ctrlr, false);
3971 			vfio_user_migr_ctrlr_enable_sqs(vu_ctrlr);
3972 			vu_ctrlr->state = VFIO_USER_CTRLR_RUNNING;
3973 			/* FIXME where do we resume nvmf? */
3974 		} else {
3975 			/* Rollback source VM */
3976 			vu_ctrlr->state = VFIO_USER_CTRLR_RESUMING;
3977 			ret = spdk_nvmf_subsystem_resume((struct spdk_nvmf_subsystem *)endpoint->subsystem,
3978 							 vfio_user_endpoint_resume_done, endpoint);
3979 			if (ret < 0) {
3980 				/* TODO: fail controller with CFS bit set */
3981 				vu_ctrlr->state = VFIO_USER_CTRLR_PAUSED;
3982 				SPDK_ERRLOG("%s: failed to resume, ret=%d\n", endpoint_id(endpoint), ret);
3983 			}
3984 		}
3985 		vu_ctrlr->migr_data_prepared = false;
3986 		vu_ctrlr->in_source_vm = false;
3987 		break;
3988 
3989 	default:
3990 		return -EINVAL;
3991 	}
3992 
3993 	return ret;
3994 }
3995 
3996 static uint64_t
3997 vfio_user_migration_get_pending_bytes(vfu_ctx_t *vfu_ctx)
3998 {
3999 	struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
4000 	struct nvmf_vfio_user_ctrlr *ctrlr = endpoint->ctrlr;
4001 	uint64_t pending_bytes;
4002 
4003 	if (ctrlr->migr_data_prepared) {
4004 		assert(ctrlr->state == VFIO_USER_CTRLR_MIGRATING);
4005 		pending_bytes = 0;
4006 	} else {
4007 		pending_bytes = vfio_user_migr_data_len();
4008 	}
4009 
4010 	SPDK_DEBUGLOG(nvmf_vfio,
4011 		      "%s current state %u, pending bytes 0x%"PRIx64"\n",
4012 		      endpoint_id(endpoint), ctrlr->state, pending_bytes);
4013 
4014 	return pending_bytes;
4015 }
4016 
4017 static int
4018 vfio_user_migration_prepare_data(vfu_ctx_t *vfu_ctx, uint64_t *offset, uint64_t *size)
4019 {
4020 	struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
4021 	struct nvmf_vfio_user_ctrlr *ctrlr = endpoint->ctrlr;
4022 
4023 	/*
4024 	 * When transitioning to pre-copy state we set pending_bytes to 0,
4025 	 * so the vfio-user client shouldn't attempt to read any migration
4026 	 * data. This is not yet guaranteed by libvfio-user.
4027 	 */
4028 	if (ctrlr->state != VFIO_USER_CTRLR_MIGRATING) {
4029 		assert(size != NULL);
4030 		*offset = 0;
4031 		*size = 0;
4032 		return 0;
4033 	}
4034 
4035 	if (ctrlr->in_source_vm) { /* migration source */
4036 		assert(size != NULL);
4037 		*size = vfio_user_migr_data_len();
4038 		vfio_user_migr_ctrlr_save_data(ctrlr);
4039 	} else { /* migration destination */
4040 		assert(size == NULL);
4041 		assert(!ctrlr->migr_data_prepared);
4042 	}
4043 	*offset = 0;
4044 	ctrlr->migr_data_prepared = true;
4045 
4046 	SPDK_DEBUGLOG(nvmf_vfio, "%s current state %u\n", endpoint_id(endpoint), ctrlr->state);
4047 
4048 	return 0;
4049 }
4050 
4051 static ssize_t
4052 vfio_user_migration_read_data(vfu_ctx_t *vfu_ctx __attribute__((unused)),
4053 			      void *buf __attribute__((unused)),
4054 			      uint64_t count __attribute__((unused)),
4055 			      uint64_t offset __attribute__((unused)))
4056 {
4057 	SPDK_DEBUGLOG(nvmf_vfio, "%s: migration read data not supported\n",
4058 		      endpoint_id(vfu_get_private(vfu_ctx)));
4059 	errno = ENOTSUP;
4060 	return -1;
4061 }
4062 
4063 static ssize_t
4064 vfio_user_migration_write_data(vfu_ctx_t *vfu_ctx __attribute__((unused)),
4065 			       void *buf __attribute__((unused)),
4066 			       uint64_t count __attribute__((unused)),
4067 			       uint64_t offset __attribute__((unused)))
4068 {
4069 	SPDK_DEBUGLOG(nvmf_vfio, "%s: migration write data not supported\n",
4070 		      endpoint_id(vfu_get_private(vfu_ctx)));
4071 	errno = ENOTSUP;
4072 	return -1;
4073 }
4074 
4075 static int
4076 vfio_user_migration_data_written(vfu_ctx_t *vfu_ctx __attribute__((unused)),
4077 				 uint64_t count)
4078 {
4079 	SPDK_DEBUGLOG(nvmf_vfio, "write 0x%"PRIx64"\n", (uint64_t)count);
4080 
4081 	if (count != vfio_user_migr_data_len()) {
4082 		SPDK_DEBUGLOG(nvmf_vfio, "%s bad count %#lx\n",
4083 			      endpoint_id(vfu_get_private(vfu_ctx)), count);
4084 		errno = EINVAL;
4085 		return -1;
4086 	}
4087 
4088 	return 0;
4089 }
4090 
4091 static int
4092 vfio_user_dev_info_fill(struct nvmf_vfio_user_transport *vu_transport,
4093 			struct nvmf_vfio_user_endpoint *endpoint)
4094 {
4095 	int ret;
4096 	ssize_t cap_offset;
4097 	vfu_ctx_t *vfu_ctx = endpoint->vfu_ctx;
4098 	struct iovec migr_sparse_mmap = {};
4099 
4100 	struct pmcap pmcap = { .hdr.id = PCI_CAP_ID_PM, .pmcs.nsfrst = 0x1 };
4101 	struct pxcap pxcap = {
4102 		.hdr.id = PCI_CAP_ID_EXP,
4103 		.pxcaps.ver = 0x2,
4104 		.pxdcap = {.rer = 0x1, .flrc = 0x1},
4105 		.pxdcap2.ctds = 0x1
4106 	};
4107 
4108 	struct msixcap msixcap = {
4109 		.hdr.id = PCI_CAP_ID_MSIX,
4110 		.mxc.ts = NVME_IRQ_MSIX_NUM - 1,
4111 		.mtab = {.tbir = 0x4, .to = 0x0},
4112 		.mpba = {.pbir = 0x5, .pbao = 0x0}
4113 	};
4114 
4115 	struct iovec sparse_mmap[] = {
4116 		{
4117 			.iov_base = (void *)NVME_DOORBELLS_OFFSET,
4118 			.iov_len = NVMF_VFIO_USER_DOORBELLS_SIZE,
4119 		},
4120 	};
4121 
4122 	const vfu_migration_callbacks_t migr_callbacks = {
4123 		.version = VFIO_USER_MIGR_CALLBACK_VERS,
4124 		.transition = &vfio_user_migration_device_state_transition,
4125 		.get_pending_bytes = &vfio_user_migration_get_pending_bytes,
4126 		.prepare_data = &vfio_user_migration_prepare_data,
4127 		.read_data = &vfio_user_migration_read_data,
4128 		.data_written = &vfio_user_migration_data_written,
4129 		.write_data = &vfio_user_migration_write_data
4130 	};
4131 
4132 	ret = vfu_pci_init(vfu_ctx, VFU_PCI_TYPE_EXPRESS, PCI_HEADER_TYPE_NORMAL, 0);
4133 	if (ret < 0) {
4134 		SPDK_ERRLOG("vfu_ctx %p failed to initialize PCI\n", vfu_ctx);
4135 		return ret;
4136 	}
4137 	vfu_pci_set_id(vfu_ctx, SPDK_PCI_VID_NUTANIX, 0x0001, SPDK_PCI_VID_NUTANIX, 0);
4138 	/*
4139 	 * 0x02, controller uses the NVM Express programming interface
4140 	 * 0x08, non-volatile memory controller
4141 	 * 0x01, mass storage controller
4142 	 */
4143 	vfu_pci_set_class(vfu_ctx, 0x01, 0x08, 0x02);
4144 
4145 	cap_offset = vfu_pci_add_capability(vfu_ctx, 0, 0, &pmcap);
4146 	if (cap_offset < 0) {
4147 		SPDK_ERRLOG("vfu_ctx %p failed add pmcap\n", vfu_ctx);
4148 		return ret;
4149 	}
4150 
4151 	cap_offset = vfu_pci_add_capability(vfu_ctx, 0, 0, &pxcap);
4152 	if (cap_offset < 0) {
4153 		SPDK_ERRLOG("vfu_ctx %p failed add pxcap\n", vfu_ctx);
4154 		return ret;
4155 	}
4156 
4157 	cap_offset = vfu_pci_add_capability(vfu_ctx, 0, 0, &msixcap);
4158 	if (cap_offset < 0) {
4159 		SPDK_ERRLOG("vfu_ctx %p failed add msixcap\n", vfu_ctx);
4160 		return ret;
4161 	}
4162 
4163 	ret = vfu_setup_region(vfu_ctx, VFU_PCI_DEV_CFG_REGION_IDX, NVME_REG_CFG_SIZE,
4164 			       access_pci_config, VFU_REGION_FLAG_RW, NULL, 0, -1, 0);
4165 	if (ret < 0) {
4166 		SPDK_ERRLOG("vfu_ctx %p failed to setup cfg\n", vfu_ctx);
4167 		return ret;
4168 	}
4169 
4170 	if (vu_transport->transport_opts.disable_mappable_bar0) {
4171 		ret = vfu_setup_region(vfu_ctx, VFU_PCI_DEV_BAR0_REGION_IDX, NVME_REG_BAR0_SIZE,
4172 				       access_bar0_fn, VFU_REGION_FLAG_RW | VFU_REGION_FLAG_MEM,
4173 				       NULL, 0, -1, 0);
4174 	} else {
4175 		ret = vfu_setup_region(vfu_ctx, VFU_PCI_DEV_BAR0_REGION_IDX, NVME_REG_BAR0_SIZE,
4176 				       access_bar0_fn, VFU_REGION_FLAG_RW | VFU_REGION_FLAG_MEM,
4177 				       sparse_mmap, 1, endpoint->devmem_fd, 0);
4178 	}
4179 
4180 	if (ret < 0) {
4181 		SPDK_ERRLOG("vfu_ctx %p failed to setup bar 0\n", vfu_ctx);
4182 		return ret;
4183 	}
4184 
4185 	ret = vfu_setup_region(vfu_ctx, VFU_PCI_DEV_BAR4_REGION_IDX, NVME_BAR4_SIZE,
4186 			       NULL, VFU_REGION_FLAG_RW, NULL, 0, -1, 0);
4187 	if (ret < 0) {
4188 		SPDK_ERRLOG("vfu_ctx %p failed to setup bar 4\n", vfu_ctx);
4189 		return ret;
4190 	}
4191 
4192 	ret = vfu_setup_region(vfu_ctx, VFU_PCI_DEV_BAR5_REGION_IDX, NVME_BAR5_SIZE,
4193 			       NULL, VFU_REGION_FLAG_RW, NULL, 0, -1, 0);
4194 	if (ret < 0) {
4195 		SPDK_ERRLOG("vfu_ctx %p failed to setup bar 5\n", vfu_ctx);
4196 		return ret;
4197 	}
4198 
4199 	ret = vfu_setup_device_dma(vfu_ctx, memory_region_add_cb, memory_region_remove_cb);
4200 	if (ret < 0) {
4201 		SPDK_ERRLOG("vfu_ctx %p failed to setup dma callback\n", vfu_ctx);
4202 		return ret;
4203 	}
4204 
4205 	ret = vfu_setup_device_reset_cb(vfu_ctx, vfio_user_device_reset);
4206 	if (ret < 0) {
4207 		SPDK_ERRLOG("vfu_ctx %p failed to setup reset callback\n", vfu_ctx);
4208 		return ret;
4209 	}
4210 
4211 	ret = vfu_setup_device_nr_irqs(vfu_ctx, VFU_DEV_INTX_IRQ, 1);
4212 	if (ret < 0) {
4213 		SPDK_ERRLOG("vfu_ctx %p failed to setup INTX\n", vfu_ctx);
4214 		return ret;
4215 	}
4216 
4217 	ret = vfu_setup_device_nr_irqs(vfu_ctx, VFU_DEV_MSIX_IRQ, NVME_IRQ_MSIX_NUM);
4218 	if (ret < 0) {
4219 		SPDK_ERRLOG("vfu_ctx %p failed to setup MSIX\n", vfu_ctx);
4220 		return ret;
4221 	}
4222 
4223 	vfu_setup_device_quiesce_cb(vfu_ctx, vfio_user_dev_quiesce_cb);
4224 
4225 	migr_sparse_mmap.iov_base = (void *)4096;
4226 	migr_sparse_mmap.iov_len = vfio_user_migr_data_len();
4227 	ret = vfu_setup_region(vfu_ctx, VFU_PCI_DEV_MIGR_REGION_IDX,
4228 			       vfu_get_migr_register_area_size() + vfio_user_migr_data_len(),
4229 			       NULL, VFU_REGION_FLAG_RW | VFU_REGION_FLAG_MEM, &migr_sparse_mmap,
4230 			       1, endpoint->migr_fd, 0);
4231 	if (ret < 0) {
4232 		SPDK_ERRLOG("vfu_ctx %p failed to setup migration region\n", vfu_ctx);
4233 		return ret;
4234 	}
4235 
4236 	ret = vfu_setup_device_migration_callbacks(vfu_ctx, &migr_callbacks,
4237 			vfu_get_migr_register_area_size());
4238 	if (ret < 0) {
4239 		SPDK_ERRLOG("vfu_ctx %p failed to setup migration callbacks\n", vfu_ctx);
4240 		return ret;
4241 	}
4242 
4243 	ret = vfu_realize_ctx(vfu_ctx);
4244 	if (ret < 0) {
4245 		SPDK_ERRLOG("vfu_ctx %p failed to realize\n", vfu_ctx);
4246 		return ret;
4247 	}
4248 
4249 	endpoint->pci_config_space = vfu_pci_get_config_space(endpoint->vfu_ctx);
4250 	assert(endpoint->pci_config_space != NULL);
4251 	init_pci_config_space(endpoint->pci_config_space);
4252 
4253 	assert(cap_offset != 0);
4254 	endpoint->msix = (struct msixcap *)((uint8_t *)endpoint->pci_config_space + cap_offset);
4255 
4256 	return 0;
4257 }
4258 
4259 static int nvmf_vfio_user_accept(void *ctx);
4260 
4261 static void
4262 set_intr_mode_noop(struct spdk_poller *poller, void *arg, bool interrupt_mode)
4263 {
4264 	/* Nothing for us to do here. */
4265 }
4266 
4267 /*
4268  * Register an "accept" poller: this is polling for incoming vfio-user socket
4269  * connections (on the listening socket).
4270  *
4271  * We need to do this on first listening, and also after destroying a
4272  * controller, so we can accept another connection.
4273  */
4274 static int
4275 vfio_user_register_accept_poller(struct nvmf_vfio_user_endpoint *endpoint)
4276 {
4277 	uint64_t poll_rate_us = endpoint->transport->transport.opts.acceptor_poll_rate;
4278 
4279 	SPDK_DEBUGLOG(nvmf_vfio, "registering accept poller\n");
4280 
4281 	endpoint->accept_poller = SPDK_POLLER_REGISTER(nvmf_vfio_user_accept,
4282 				  endpoint, poll_rate_us);
4283 
4284 	if (!endpoint->accept_poller) {
4285 		return -1;
4286 	}
4287 
4288 	endpoint->accept_thread = spdk_get_thread();
4289 	endpoint->need_relisten = false;
4290 
4291 	if (!spdk_interrupt_mode_is_enabled()) {
4292 		return 0;
4293 	}
4294 
4295 	endpoint->accept_intr_fd = vfu_get_poll_fd(endpoint->vfu_ctx);
4296 	assert(endpoint->accept_intr_fd != -1);
4297 
4298 	endpoint->accept_intr = SPDK_INTERRUPT_REGISTER(endpoint->accept_intr_fd,
4299 				nvmf_vfio_user_accept, endpoint);
4300 
4301 	assert(endpoint->accept_intr != NULL);
4302 
4303 	spdk_poller_register_interrupt(endpoint->accept_poller,
4304 				       set_intr_mode_noop, NULL);
4305 	return 0;
4306 }
4307 
4308 static void
4309 _vfio_user_relisten(void *ctx)
4310 {
4311 	struct nvmf_vfio_user_endpoint *endpoint = ctx;
4312 
4313 	vfio_user_register_accept_poller(endpoint);
4314 }
4315 
4316 static void
4317 _free_ctrlr(void *ctx)
4318 {
4319 	struct nvmf_vfio_user_ctrlr *ctrlr = ctx;
4320 	struct nvmf_vfio_user_endpoint *endpoint = ctrlr->endpoint;
4321 
4322 	free_sdbl(endpoint->vfu_ctx, ctrlr->sdbl);
4323 
4324 	spdk_interrupt_unregister(&ctrlr->intr);
4325 	ctrlr->intr_fd = -1;
4326 	spdk_poller_unregister(&ctrlr->vfu_ctx_poller);
4327 
4328 	free(ctrlr);
4329 
4330 	if (endpoint->need_async_destroy) {
4331 		nvmf_vfio_user_destroy_endpoint(endpoint);
4332 	} else if (endpoint->need_relisten) {
4333 		spdk_thread_send_msg(endpoint->accept_thread,
4334 				     _vfio_user_relisten, endpoint);
4335 	}
4336 }
4337 
4338 static void
4339 free_ctrlr(struct nvmf_vfio_user_ctrlr *ctrlr)
4340 {
4341 	struct spdk_thread *thread;
4342 	int i;
4343 
4344 	assert(ctrlr != NULL);
4345 	thread = ctrlr->thread ? ctrlr->thread : spdk_get_thread();
4346 
4347 	SPDK_DEBUGLOG(nvmf_vfio, "free %s\n", ctrlr_id(ctrlr));
4348 
4349 	for (i = 0; i < NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR; i++) {
4350 		free_qp(ctrlr, i);
4351 	}
4352 
4353 	spdk_thread_exec_msg(thread, _free_ctrlr, ctrlr);
4354 }
4355 
4356 static int
4357 nvmf_vfio_user_create_ctrlr(struct nvmf_vfio_user_transport *transport,
4358 			    struct nvmf_vfio_user_endpoint *endpoint)
4359 {
4360 	struct nvmf_vfio_user_ctrlr *ctrlr;
4361 	int err = 0;
4362 
4363 	SPDK_DEBUGLOG(nvmf_vfio, "%s\n", endpoint_id(endpoint));
4364 
4365 	/* First, construct a vfio-user CUSTOM transport controller */
4366 	ctrlr = calloc(1, sizeof(*ctrlr));
4367 	if (ctrlr == NULL) {
4368 		err = -ENOMEM;
4369 		goto out;
4370 	}
4371 	/*
4372 	 * We can only support one connection for now, but generate a unique cntlid in case vfio-user
4373 	 * transport is used together with RDMA or TCP transports in the same target
4374 	 */
4375 	ctrlr->cntlid = nvmf_subsystem_gen_cntlid(endpoint->subsystem);
4376 	ctrlr->intr_fd = -1;
4377 	ctrlr->transport = transport;
4378 	ctrlr->endpoint = endpoint;
4379 	ctrlr->bar0_doorbells = endpoint->bar0_doorbells;
4380 	TAILQ_INIT(&ctrlr->connected_sqs);
4381 
4382 	ctrlr->adaptive_irqs_enabled =
4383 		!transport->transport_opts.disable_adaptive_irq;
4384 
4385 	/* Then, construct an admin queue pair */
4386 	err = init_sq(ctrlr, &transport->transport, 0);
4387 	if (err != 0) {
4388 		free(ctrlr);
4389 		goto out;
4390 	}
4391 
4392 	err = init_cq(ctrlr, 0);
4393 	if (err != 0) {
4394 		free(ctrlr);
4395 		goto out;
4396 	}
4397 
4398 	ctrlr->sqs[0]->size = NVMF_VFIO_USER_DEFAULT_AQ_DEPTH;
4399 
4400 	err = alloc_sq_reqs(ctrlr, ctrlr->sqs[0]);
4401 	if (err != 0) {
4402 		free(ctrlr);
4403 		goto out;
4404 	}
4405 	endpoint->ctrlr = ctrlr;
4406 
4407 	/* Notify the generic layer about the new admin queue pair */
4408 	spdk_nvmf_tgt_new_qpair(transport->transport.tgt, &ctrlr->sqs[0]->qpair);
4409 
4410 out:
4411 	if (err != 0) {
4412 		SPDK_ERRLOG("%s: failed to create vfio-user controller: %s\n",
4413 			    endpoint_id(endpoint), strerror(-err));
4414 	}
4415 
4416 	return err;
4417 }
4418 
4419 static int
4420 nvmf_vfio_user_listen(struct spdk_nvmf_transport *transport,
4421 		      const struct spdk_nvme_transport_id *trid,
4422 		      struct spdk_nvmf_listen_opts *listen_opts)
4423 {
4424 	struct nvmf_vfio_user_transport *vu_transport;
4425 	struct nvmf_vfio_user_endpoint *endpoint, *tmp;
4426 	char path[PATH_MAX] = {};
4427 	char uuid[PATH_MAX] = {};
4428 	int ret;
4429 
4430 	vu_transport = SPDK_CONTAINEROF(transport, struct nvmf_vfio_user_transport,
4431 					transport);
4432 
4433 	pthread_mutex_lock(&vu_transport->lock);
4434 	TAILQ_FOREACH_SAFE(endpoint, &vu_transport->endpoints, link, tmp) {
4435 		/* Only compare traddr */
4436 		if (strncmp(endpoint->trid.traddr, trid->traddr, sizeof(endpoint->trid.traddr)) == 0) {
4437 			pthread_mutex_unlock(&vu_transport->lock);
4438 			return -EEXIST;
4439 		}
4440 	}
4441 	pthread_mutex_unlock(&vu_transport->lock);
4442 
4443 	endpoint = calloc(1, sizeof(*endpoint));
4444 	if (!endpoint) {
4445 		return -ENOMEM;
4446 	}
4447 
4448 	pthread_mutex_init(&endpoint->lock, NULL);
4449 	endpoint->devmem_fd = -1;
4450 	memcpy(&endpoint->trid, trid, sizeof(endpoint->trid));
4451 	endpoint->transport = vu_transport;
4452 
4453 	ret = snprintf(path, PATH_MAX, "%s/bar0", endpoint_id(endpoint));
4454 	if (ret < 0 || ret >= PATH_MAX) {
4455 		SPDK_ERRLOG("%s: error to get socket path: %s.\n", endpoint_id(endpoint), spdk_strerror(errno));
4456 		ret = -1;
4457 		goto out;
4458 	}
4459 
4460 	ret = open(path, O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
4461 	if (ret == -1) {
4462 		SPDK_ERRLOG("%s: failed to open device memory at %s: %s.\n",
4463 			    endpoint_id(endpoint), path, spdk_strerror(errno));
4464 		goto out;
4465 	}
4466 	unlink(path);
4467 
4468 	endpoint->devmem_fd = ret;
4469 	ret = ftruncate(endpoint->devmem_fd,
4470 			NVME_DOORBELLS_OFFSET + NVMF_VFIO_USER_DOORBELLS_SIZE);
4471 	if (ret != 0) {
4472 		SPDK_ERRLOG("%s: error to ftruncate file %s: %s.\n", endpoint_id(endpoint), path,
4473 			    spdk_strerror(errno));
4474 		goto out;
4475 	}
4476 
4477 	endpoint->bar0_doorbells = mmap(NULL, NVMF_VFIO_USER_DOORBELLS_SIZE,
4478 					PROT_READ | PROT_WRITE, MAP_SHARED, endpoint->devmem_fd, NVME_DOORBELLS_OFFSET);
4479 	if (endpoint->bar0_doorbells == MAP_FAILED) {
4480 		SPDK_ERRLOG("%s: error to mmap file %s: %s.\n", endpoint_id(endpoint), path, spdk_strerror(errno));
4481 		endpoint->bar0_doorbells = NULL;
4482 		ret = -1;
4483 		goto out;
4484 	}
4485 
4486 	ret = snprintf(path, PATH_MAX, "%s/migr", endpoint_id(endpoint));
4487 	if (ret < 0 || ret >= PATH_MAX) {
4488 		SPDK_ERRLOG("%s: error to get migration file path: %s.\n", endpoint_id(endpoint),
4489 			    spdk_strerror(errno));
4490 		ret = -1;
4491 		goto out;
4492 	}
4493 	ret = open(path, O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
4494 	if (ret == -1) {
4495 		SPDK_ERRLOG("%s: failed to open device memory at %s: %s.\n",
4496 			    endpoint_id(endpoint), path, spdk_strerror(errno));
4497 		goto out;
4498 	}
4499 	unlink(path);
4500 
4501 	endpoint->migr_fd = ret;
4502 	ret = ftruncate(endpoint->migr_fd,
4503 			vfu_get_migr_register_area_size() + vfio_user_migr_data_len());
4504 	if (ret != 0) {
4505 		SPDK_ERRLOG("%s: error to ftruncate migration file %s: %s.\n", endpoint_id(endpoint), path,
4506 			    spdk_strerror(errno));
4507 		goto out;
4508 	}
4509 
4510 	endpoint->migr_data = mmap(NULL, vfio_user_migr_data_len(),
4511 				   PROT_READ | PROT_WRITE, MAP_SHARED, endpoint->migr_fd, vfu_get_migr_register_area_size());
4512 	if (endpoint->migr_data == MAP_FAILED) {
4513 		SPDK_ERRLOG("%s: error to mmap file %s: %s.\n", endpoint_id(endpoint), path, spdk_strerror(errno));
4514 		endpoint->migr_data = NULL;
4515 		ret = -1;
4516 		goto out;
4517 	}
4518 
4519 	ret = snprintf(uuid, PATH_MAX, "%s/cntrl", endpoint_id(endpoint));
4520 	if (ret < 0 || ret >= PATH_MAX) {
4521 		SPDK_ERRLOG("%s: error to get ctrlr file path: %s\n", endpoint_id(endpoint), spdk_strerror(errno));
4522 		ret = -1;
4523 		goto out;
4524 	}
4525 
4526 	endpoint->vfu_ctx = vfu_create_ctx(VFU_TRANS_SOCK, uuid, LIBVFIO_USER_FLAG_ATTACH_NB,
4527 					   endpoint, VFU_DEV_TYPE_PCI);
4528 	if (endpoint->vfu_ctx == NULL) {
4529 		SPDK_ERRLOG("%s: error creating libmuser context: %m\n",
4530 			    endpoint_id(endpoint));
4531 		ret = -1;
4532 		goto out;
4533 	}
4534 
4535 	ret = vfu_setup_log(endpoint->vfu_ctx, vfio_user_log,
4536 			    vfio_user_get_log_level());
4537 	if (ret < 0) {
4538 		goto out;
4539 	}
4540 
4541 
4542 	ret = vfio_user_dev_info_fill(vu_transport, endpoint);
4543 	if (ret < 0) {
4544 		goto out;
4545 	}
4546 
4547 	ret = vfio_user_register_accept_poller(endpoint);
4548 
4549 	if (ret != 0) {
4550 		goto out;
4551 	}
4552 
4553 	pthread_mutex_lock(&vu_transport->lock);
4554 	TAILQ_INSERT_TAIL(&vu_transport->endpoints, endpoint, link);
4555 	pthread_mutex_unlock(&vu_transport->lock);
4556 
4557 out:
4558 	if (ret != 0) {
4559 		nvmf_vfio_user_destroy_endpoint(endpoint);
4560 	}
4561 
4562 	return ret;
4563 }
4564 
4565 static void
4566 nvmf_vfio_user_stop_listen(struct spdk_nvmf_transport *transport,
4567 			   const struct spdk_nvme_transport_id *trid)
4568 {
4569 	struct nvmf_vfio_user_transport *vu_transport;
4570 	struct nvmf_vfio_user_endpoint *endpoint, *tmp;
4571 
4572 	assert(trid != NULL);
4573 	assert(trid->traddr != NULL);
4574 
4575 	SPDK_DEBUGLOG(nvmf_vfio, "%s: stop listen\n", trid->traddr);
4576 
4577 	vu_transport = SPDK_CONTAINEROF(transport, struct nvmf_vfio_user_transport,
4578 					transport);
4579 
4580 	pthread_mutex_lock(&vu_transport->lock);
4581 	TAILQ_FOREACH_SAFE(endpoint, &vu_transport->endpoints, link, tmp) {
4582 		if (strcmp(trid->traddr, endpoint->trid.traddr) == 0) {
4583 			TAILQ_REMOVE(&vu_transport->endpoints, endpoint, link);
4584 			/* Defer to free endpoint resources until the controller
4585 			 * is freed.  There are two cases when running here:
4586 			 * 1. kill nvmf target while VM is connected
4587 			 * 2. remove listener via RPC call
4588 			 * nvmf library will disconnect all queue paris.
4589 			 */
4590 			if (endpoint->ctrlr) {
4591 				assert(!endpoint->need_async_destroy);
4592 				endpoint->need_async_destroy = true;
4593 				pthread_mutex_unlock(&vu_transport->lock);
4594 				return;
4595 			}
4596 
4597 			nvmf_vfio_user_destroy_endpoint(endpoint);
4598 			pthread_mutex_unlock(&vu_transport->lock);
4599 			return;
4600 		}
4601 	}
4602 	pthread_mutex_unlock(&vu_transport->lock);
4603 
4604 	SPDK_DEBUGLOG(nvmf_vfio, "%s: not found\n", trid->traddr);
4605 }
4606 
4607 static void
4608 nvmf_vfio_user_cdata_init(struct spdk_nvmf_transport *transport,
4609 			  struct spdk_nvmf_subsystem *subsystem,
4610 			  struct spdk_nvmf_ctrlr_data *cdata)
4611 {
4612 	struct nvmf_vfio_user_transport *vu_transport;
4613 
4614 	vu_transport = SPDK_CONTAINEROF(transport, struct nvmf_vfio_user_transport, transport);
4615 
4616 	cdata->vid = SPDK_PCI_VID_NUTANIX;
4617 	cdata->ssvid = SPDK_PCI_VID_NUTANIX;
4618 	cdata->ieee[0] = 0x8d;
4619 	cdata->ieee[1] = 0x6b;
4620 	cdata->ieee[2] = 0x50;
4621 	memset(&cdata->sgls, 0, sizeof(struct spdk_nvme_cdata_sgls));
4622 	cdata->sgls.supported = SPDK_NVME_SGLS_SUPPORTED_DWORD_ALIGNED;
4623 	cdata->oncs.compare = !vu_transport->transport_opts.disable_compare;
4624 	/* libvfio-user can only support 1 connection for now */
4625 	cdata->oncs.reservations = 0;
4626 	cdata->oacs.doorbell_buffer_config = !vu_transport->transport_opts.disable_shadow_doorbells;
4627 	cdata->fuses.compare_and_write = !vu_transport->transport_opts.disable_compare;
4628 }
4629 
4630 static int
4631 nvmf_vfio_user_listen_associate(struct spdk_nvmf_transport *transport,
4632 				const struct spdk_nvmf_subsystem *subsystem,
4633 				const struct spdk_nvme_transport_id *trid)
4634 {
4635 	struct nvmf_vfio_user_transport *vu_transport;
4636 	struct nvmf_vfio_user_endpoint *endpoint;
4637 
4638 	vu_transport = SPDK_CONTAINEROF(transport, struct nvmf_vfio_user_transport, transport);
4639 
4640 	pthread_mutex_lock(&vu_transport->lock);
4641 	TAILQ_FOREACH(endpoint, &vu_transport->endpoints, link) {
4642 		if (strncmp(endpoint->trid.traddr, trid->traddr, sizeof(endpoint->trid.traddr)) == 0) {
4643 			break;
4644 		}
4645 	}
4646 	pthread_mutex_unlock(&vu_transport->lock);
4647 
4648 	if (endpoint == NULL) {
4649 		return -ENOENT;
4650 	}
4651 
4652 	/* Drop const - we will later need to pause/unpause. */
4653 	endpoint->subsystem = (struct spdk_nvmf_subsystem *)subsystem;
4654 
4655 	return 0;
4656 }
4657 
4658 /*
4659  * Executed periodically at a default SPDK_NVMF_DEFAULT_ACCEPT_POLL_RATE_US
4660  * frequency.
4661  *
4662  * For this endpoint (which at the libvfio-user level corresponds to a socket),
4663  * if we don't currently have a controller set up, peek to see if the socket is
4664  * able to accept a new connection.
4665  */
4666 static int
4667 nvmf_vfio_user_accept(void *ctx)
4668 {
4669 	struct nvmf_vfio_user_endpoint *endpoint = ctx;
4670 	struct nvmf_vfio_user_transport *vu_transport;
4671 	int err;
4672 
4673 	vu_transport = endpoint->transport;
4674 
4675 	if (endpoint->ctrlr != NULL) {
4676 		return SPDK_POLLER_IDLE;
4677 	}
4678 
4679 	/* While we're here, the controller is already destroyed,
4680 	 * subsystem may still be in RESUMING state, we will wait
4681 	 * until the subsystem is in RUNNING state.
4682 	 */
4683 	if (endpoint->need_resume) {
4684 		return SPDK_POLLER_IDLE;
4685 	}
4686 
4687 	err = vfu_attach_ctx(endpoint->vfu_ctx);
4688 	if (err == 0) {
4689 		SPDK_DEBUGLOG(nvmf_vfio, "attach succeeded\n");
4690 		err = nvmf_vfio_user_create_ctrlr(vu_transport, endpoint);
4691 		if (err == 0) {
4692 			/*
4693 			 * Unregister ourselves: now we've accepted a
4694 			 * connection, there is nothing for us to poll for, and
4695 			 * we will poll the connection via vfu_run_ctx()
4696 			 * instead.
4697 			 */
4698 			spdk_interrupt_unregister(&endpoint->accept_intr);
4699 			spdk_poller_unregister(&endpoint->accept_poller);
4700 		}
4701 		return SPDK_POLLER_BUSY;
4702 	}
4703 
4704 	if (errno == EAGAIN || errno == EWOULDBLOCK) {
4705 		return SPDK_POLLER_IDLE;
4706 	}
4707 
4708 	return SPDK_POLLER_BUSY;
4709 }
4710 
4711 static void
4712 nvmf_vfio_user_discover(struct spdk_nvmf_transport *transport,
4713 			struct spdk_nvme_transport_id *trid,
4714 			struct spdk_nvmf_discovery_log_page_entry *entry)
4715 { }
4716 
4717 static int vfio_user_poll_group_intr(void *ctx);
4718 
4719 static void
4720 vfio_user_poll_group_add_intr(struct nvmf_vfio_user_poll_group *vu_group,
4721 			      struct spdk_nvmf_poll_group *group)
4722 {
4723 	vu_group->intr_fd = eventfd(0, EFD_NONBLOCK);
4724 	assert(vu_group->intr_fd != -1);
4725 
4726 	vu_group->intr = SPDK_INTERRUPT_REGISTER(vu_group->intr_fd,
4727 			 vfio_user_poll_group_intr, vu_group);
4728 	assert(vu_group->intr != NULL);
4729 }
4730 
4731 static struct spdk_nvmf_transport_poll_group *
4732 nvmf_vfio_user_poll_group_create(struct spdk_nvmf_transport *transport,
4733 				 struct spdk_nvmf_poll_group *group)
4734 {
4735 	struct nvmf_vfio_user_transport *vu_transport;
4736 	struct nvmf_vfio_user_poll_group *vu_group;
4737 
4738 	vu_transport = SPDK_CONTAINEROF(transport, struct nvmf_vfio_user_transport,
4739 					transport);
4740 
4741 	SPDK_DEBUGLOG(nvmf_vfio, "create poll group\n");
4742 
4743 	vu_group = calloc(1, sizeof(*vu_group));
4744 	if (vu_group == NULL) {
4745 		SPDK_ERRLOG("Error allocating poll group: %m");
4746 		return NULL;
4747 	}
4748 
4749 	if (in_interrupt_mode(vu_transport)) {
4750 		vfio_user_poll_group_add_intr(vu_group, group);
4751 	}
4752 
4753 	TAILQ_INIT(&vu_group->sqs);
4754 
4755 	pthread_mutex_lock(&vu_transport->pg_lock);
4756 	TAILQ_INSERT_TAIL(&vu_transport->poll_groups, vu_group, link);
4757 	if (vu_transport->next_pg == NULL) {
4758 		vu_transport->next_pg = vu_group;
4759 	}
4760 	pthread_mutex_unlock(&vu_transport->pg_lock);
4761 
4762 	return &vu_group->group;
4763 }
4764 
4765 static struct spdk_nvmf_transport_poll_group *
4766 nvmf_vfio_user_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
4767 {
4768 	struct nvmf_vfio_user_transport *vu_transport;
4769 	struct nvmf_vfio_user_poll_group **vu_group;
4770 	struct nvmf_vfio_user_sq *sq;
4771 	struct nvmf_vfio_user_cq *cq;
4772 
4773 	struct spdk_nvmf_transport_poll_group *result = NULL;
4774 
4775 	sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
4776 	cq = sq->ctrlr->cqs[sq->cqid];
4777 	assert(cq != NULL);
4778 	vu_transport = SPDK_CONTAINEROF(qpair->transport, struct nvmf_vfio_user_transport, transport);
4779 
4780 	pthread_mutex_lock(&vu_transport->pg_lock);
4781 	if (TAILQ_EMPTY(&vu_transport->poll_groups)) {
4782 		goto out;
4783 	}
4784 
4785 	if (!nvmf_qpair_is_admin_queue(qpair)) {
4786 		/*
4787 		 * If this is shared IO CQ case, just return the used CQ's poll
4788 		 * group, so I/O completions don't have to use
4789 		 * spdk_thread_send_msg().
4790 		 */
4791 		if (cq->group != NULL) {
4792 			result = cq->group;
4793 			goto out;
4794 		}
4795 
4796 		/*
4797 		 * If we're in interrupt mode, align all qpairs for a controller
4798 		 * on the same poll group by default, unless requested. This can
4799 		 * be lower in performance than running on a single poll group,
4800 		 * so we disable spreading by default.
4801 		 */
4802 		if (in_interrupt_mode(vu_transport) &&
4803 		    !vu_transport->transport_opts.enable_intr_mode_sq_spreading) {
4804 			result = sq->ctrlr->sqs[0]->group;
4805 			goto out;
4806 		}
4807 
4808 	}
4809 
4810 	vu_group = &vu_transport->next_pg;
4811 	assert(*vu_group != NULL);
4812 
4813 	result = &(*vu_group)->group;
4814 	*vu_group = TAILQ_NEXT(*vu_group, link);
4815 	if (*vu_group == NULL) {
4816 		*vu_group = TAILQ_FIRST(&vu_transport->poll_groups);
4817 	}
4818 
4819 out:
4820 	if (cq->group == NULL) {
4821 		cq->group = result;
4822 	}
4823 
4824 	pthread_mutex_unlock(&vu_transport->pg_lock);
4825 	return result;
4826 }
4827 
4828 static void
4829 vfio_user_poll_group_del_intr(struct nvmf_vfio_user_poll_group *vu_group)
4830 {
4831 	assert(vu_group->intr_fd != -1);
4832 
4833 	spdk_interrupt_unregister(&vu_group->intr);
4834 
4835 	close(vu_group->intr_fd);
4836 	vu_group->intr_fd = -1;
4837 }
4838 
4839 /* called when process exits */
4840 static void
4841 nvmf_vfio_user_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
4842 {
4843 	struct nvmf_vfio_user_poll_group *vu_group, *next_tgroup;
4844 	struct nvmf_vfio_user_transport *vu_transport;
4845 
4846 	SPDK_DEBUGLOG(nvmf_vfio, "destroy poll group\n");
4847 
4848 	vu_group = SPDK_CONTAINEROF(group, struct nvmf_vfio_user_poll_group, group);
4849 	vu_transport = SPDK_CONTAINEROF(vu_group->group.transport, struct nvmf_vfio_user_transport,
4850 					transport);
4851 
4852 	if (in_interrupt_mode(vu_transport)) {
4853 		vfio_user_poll_group_del_intr(vu_group);
4854 	}
4855 
4856 	pthread_mutex_lock(&vu_transport->pg_lock);
4857 	next_tgroup = TAILQ_NEXT(vu_group, link);
4858 	TAILQ_REMOVE(&vu_transport->poll_groups, vu_group, link);
4859 	if (next_tgroup == NULL) {
4860 		next_tgroup = TAILQ_FIRST(&vu_transport->poll_groups);
4861 	}
4862 	if (vu_transport->next_pg == vu_group) {
4863 		vu_transport->next_pg = next_tgroup;
4864 	}
4865 	pthread_mutex_unlock(&vu_transport->pg_lock);
4866 
4867 	free(vu_group);
4868 }
4869 
4870 static void
4871 _vfio_user_qpair_disconnect(void *ctx)
4872 {
4873 	struct nvmf_vfio_user_sq *sq = ctx;
4874 
4875 	spdk_nvmf_qpair_disconnect(&sq->qpair);
4876 }
4877 
4878 /* The function is used when socket connection is destroyed */
4879 static int
4880 vfio_user_destroy_ctrlr(struct nvmf_vfio_user_ctrlr *ctrlr)
4881 {
4882 	struct nvmf_vfio_user_sq *sq;
4883 	struct nvmf_vfio_user_endpoint *endpoint;
4884 
4885 	SPDK_DEBUGLOG(nvmf_vfio, "%s stop processing\n", ctrlr_id(ctrlr));
4886 
4887 	endpoint = ctrlr->endpoint;
4888 	assert(endpoint != NULL);
4889 
4890 	pthread_mutex_lock(&endpoint->lock);
4891 	endpoint->need_relisten = true;
4892 	ctrlr->disconnect = true;
4893 	if (TAILQ_EMPTY(&ctrlr->connected_sqs)) {
4894 		endpoint->ctrlr = NULL;
4895 		free_ctrlr(ctrlr);
4896 		pthread_mutex_unlock(&endpoint->lock);
4897 		return 0;
4898 	}
4899 
4900 	TAILQ_FOREACH(sq, &ctrlr->connected_sqs, tailq) {
4901 		/* add another round thread poll to avoid recursive endpoint lock */
4902 		spdk_thread_send_msg(ctrlr->thread, _vfio_user_qpair_disconnect, sq);
4903 	}
4904 	pthread_mutex_unlock(&endpoint->lock);
4905 
4906 	return 0;
4907 }
4908 
4909 /*
4910  * Poll for and process any incoming vfio-user messages.
4911  */
4912 static int
4913 vfio_user_poll_vfu_ctx(void *ctx)
4914 {
4915 	struct nvmf_vfio_user_ctrlr *ctrlr = ctx;
4916 	int ret;
4917 
4918 	assert(ctrlr != NULL);
4919 
4920 	/* This will call access_bar0_fn() if there are any writes
4921 	 * to the portion of the BAR that is not mmap'd */
4922 	ret = vfu_run_ctx(ctrlr->endpoint->vfu_ctx);
4923 	if (spdk_unlikely(ret == -1)) {
4924 		if (errno == EBUSY) {
4925 			return SPDK_POLLER_IDLE;
4926 		}
4927 
4928 		spdk_poller_unregister(&ctrlr->vfu_ctx_poller);
4929 
4930 		/*
4931 		 * We lost the client; the reset callback will already have
4932 		 * unregistered the interrupt.
4933 		 */
4934 		if (errno == ENOTCONN) {
4935 			vfio_user_destroy_ctrlr(ctrlr);
4936 			return SPDK_POLLER_BUSY;
4937 		}
4938 
4939 		/*
4940 		 * We might not have got a reset callback in this case, so
4941 		 * explicitly unregister the interrupt here.
4942 		 */
4943 		spdk_interrupt_unregister(&ctrlr->intr);
4944 		ctrlr->intr_fd = -1;
4945 		fail_ctrlr(ctrlr);
4946 	}
4947 
4948 	return ret != 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
4949 }
4950 
4951 struct vfio_user_post_cpl_ctx {
4952 	struct nvmf_vfio_user_ctrlr	*ctrlr;
4953 	struct nvmf_vfio_user_cq	*cq;
4954 	struct spdk_nvme_cpl		cpl;
4955 };
4956 
4957 static void
4958 _post_completion_msg(void *ctx)
4959 {
4960 	struct vfio_user_post_cpl_ctx *cpl_ctx = ctx;
4961 
4962 	post_completion(cpl_ctx->ctrlr, cpl_ctx->cq, cpl_ctx->cpl.cdw0, cpl_ctx->cpl.sqid,
4963 			cpl_ctx->cpl.cid, cpl_ctx->cpl.status.sc, cpl_ctx->cpl.status.sct);
4964 	free(cpl_ctx);
4965 }
4966 
4967 static int nvmf_vfio_user_poll_group_poll(struct spdk_nvmf_transport_poll_group *group);
4968 
4969 static int
4970 vfio_user_poll_group_process(void *ctx)
4971 {
4972 	struct nvmf_vfio_user_poll_group *vu_group = ctx;
4973 	int ret = 0;
4974 
4975 	SPDK_DEBUGLOG(vfio_user_db, "pg:%p got intr\n", vu_group);
4976 
4977 	ret |= nvmf_vfio_user_poll_group_poll(&vu_group->group);
4978 
4979 	/*
4980 	 * Re-arm the event indexes. NB: this also could rearm other
4981 	 * controller's SQs.
4982 	 */
4983 	ret |= vfio_user_poll_group_rearm(vu_group);
4984 
4985 	vu_group->stats.pg_process_count++;
4986 	return ret != 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
4987 }
4988 
4989 static int
4990 vfio_user_poll_group_intr(void *ctx)
4991 {
4992 	struct nvmf_vfio_user_poll_group *vu_group = ctx;
4993 	eventfd_t val;
4994 
4995 	eventfd_read(vu_group->intr_fd, &val);
4996 
4997 	vu_group->stats.intr++;
4998 
4999 	return vfio_user_poll_group_process(ctx);
5000 }
5001 
5002 /*
5003  * Handle an interrupt for the given controller: we must poll the vfu_ctx, and
5004  * the SQs assigned to our own poll group. Other poll groups are handled via
5005  * vfio_user_poll_group_intr().
5006  */
5007 static int
5008 vfio_user_ctrlr_intr(void *ctx)
5009 {
5010 	struct nvmf_vfio_user_poll_group *vu_ctrlr_group;
5011 	struct nvmf_vfio_user_ctrlr *vu_ctrlr = ctx;
5012 	struct nvmf_vfio_user_poll_group *vu_group;
5013 	int ret = SPDK_POLLER_IDLE;
5014 
5015 	vu_ctrlr_group = ctrlr_to_poll_group(vu_ctrlr);
5016 
5017 	SPDK_DEBUGLOG(vfio_user_db, "ctrlr pg:%p got intr\n", vu_ctrlr_group);
5018 
5019 	vu_ctrlr_group->stats.ctrlr_intr++;
5020 
5021 	/*
5022 	 * Poll vfio-user for this controller. We need to do this before polling
5023 	 * any SQs, as this is where doorbell writes may be handled.
5024 	 */
5025 	ret = vfio_user_poll_vfu_ctx(vu_ctrlr);
5026 
5027 	/*
5028 	 * `sqs[0]` could be set to NULL in vfio_user_poll_vfu_ctx() context,
5029 	 * just return for this case.
5030 	 */
5031 	if (vu_ctrlr->sqs[0] == NULL) {
5032 		return ret;
5033 	}
5034 
5035 	if (vu_ctrlr->transport->transport_opts.enable_intr_mode_sq_spreading) {
5036 		/*
5037 		 * We may have just written to a doorbell owned by another
5038 		 * reactor: we need to prod them to make sure its SQs are polled
5039 		 * *after* the doorbell value is updated.
5040 		 */
5041 		TAILQ_FOREACH(vu_group, &vu_ctrlr->transport->poll_groups, link) {
5042 			if (vu_group != vu_ctrlr_group) {
5043 				SPDK_DEBUGLOG(vfio_user_db, "prodding pg:%p\n", vu_group);
5044 				eventfd_write(vu_group->intr_fd, 1);
5045 			}
5046 		}
5047 	}
5048 
5049 	ret |= vfio_user_poll_group_process(vu_ctrlr_group);
5050 
5051 	return ret;
5052 }
5053 
5054 static void
5055 vfio_user_ctrlr_set_intr_mode(struct spdk_poller *poller, void *ctx,
5056 			      bool interrupt_mode)
5057 {
5058 	struct nvmf_vfio_user_ctrlr *ctrlr = ctx;
5059 	assert(ctrlr != NULL);
5060 	assert(ctrlr->endpoint != NULL);
5061 
5062 	SPDK_DEBUGLOG(nvmf_vfio, "%s: setting interrupt mode to %d\n",
5063 		      ctrlr_id(ctrlr), interrupt_mode);
5064 
5065 	/*
5066 	 * interrupt_mode needs to persist across controller resets, so store
5067 	 * it in the endpoint instead.
5068 	 */
5069 	ctrlr->endpoint->interrupt_mode = interrupt_mode;
5070 
5071 	vfio_user_poll_group_rearm(ctrlr_to_poll_group(ctrlr));
5072 }
5073 
5074 /*
5075  * In response to the nvmf_vfio_user_create_ctrlr() path, the admin queue is now
5076  * set up and we can start operating on this controller.
5077  */
5078 static void
5079 start_ctrlr(struct nvmf_vfio_user_ctrlr *vu_ctrlr,
5080 	    struct spdk_nvmf_ctrlr *ctrlr)
5081 {
5082 	struct nvmf_vfio_user_endpoint *endpoint = vu_ctrlr->endpoint;
5083 
5084 	vu_ctrlr->ctrlr = ctrlr;
5085 	vu_ctrlr->cntlid = ctrlr->cntlid;
5086 	vu_ctrlr->thread = spdk_get_thread();
5087 	vu_ctrlr->state = VFIO_USER_CTRLR_RUNNING;
5088 
5089 	if (!in_interrupt_mode(endpoint->transport)) {
5090 		vu_ctrlr->vfu_ctx_poller = SPDK_POLLER_REGISTER(vfio_user_poll_vfu_ctx,
5091 					   vu_ctrlr, 1000);
5092 		return;
5093 	}
5094 
5095 	vu_ctrlr->vfu_ctx_poller = SPDK_POLLER_REGISTER(vfio_user_poll_vfu_ctx,
5096 				   vu_ctrlr, 0);
5097 
5098 	vu_ctrlr->intr_fd = vfu_get_poll_fd(vu_ctrlr->endpoint->vfu_ctx);
5099 	assert(vu_ctrlr->intr_fd != -1);
5100 
5101 	vu_ctrlr->intr = SPDK_INTERRUPT_REGISTER(vu_ctrlr->intr_fd,
5102 			 vfio_user_ctrlr_intr, vu_ctrlr);
5103 
5104 	assert(vu_ctrlr->intr != NULL);
5105 
5106 	spdk_poller_register_interrupt(vu_ctrlr->vfu_ctx_poller,
5107 				       vfio_user_ctrlr_set_intr_mode,
5108 				       vu_ctrlr);
5109 }
5110 
5111 static int
5112 handle_queue_connect_rsp(struct nvmf_vfio_user_req *req, void *cb_arg)
5113 {
5114 	struct nvmf_vfio_user_poll_group *vu_group;
5115 	struct nvmf_vfio_user_sq *sq = cb_arg;
5116 	struct nvmf_vfio_user_cq *admin_cq;
5117 	struct nvmf_vfio_user_ctrlr *vu_ctrlr;
5118 	struct nvmf_vfio_user_endpoint *endpoint;
5119 
5120 	assert(sq != NULL);
5121 	assert(req != NULL);
5122 
5123 	vu_ctrlr = sq->ctrlr;
5124 	assert(vu_ctrlr != NULL);
5125 	endpoint = vu_ctrlr->endpoint;
5126 	assert(endpoint != NULL);
5127 
5128 	if (spdk_nvme_cpl_is_error(&req->req.rsp->nvme_cpl)) {
5129 		SPDK_ERRLOG("SC %u, SCT %u\n", req->req.rsp->nvme_cpl.status.sc, req->req.rsp->nvme_cpl.status.sct);
5130 		endpoint->ctrlr = NULL;
5131 		free_ctrlr(vu_ctrlr);
5132 		return -1;
5133 	}
5134 
5135 	vu_group = SPDK_CONTAINEROF(sq->group, struct nvmf_vfio_user_poll_group, group);
5136 	TAILQ_INSERT_TAIL(&vu_group->sqs, sq, link);
5137 
5138 	admin_cq = vu_ctrlr->cqs[0];
5139 	assert(admin_cq != NULL);
5140 	assert(admin_cq->group != NULL);
5141 	assert(admin_cq->group->group->thread != NULL);
5142 
5143 	pthread_mutex_lock(&endpoint->lock);
5144 	if (nvmf_qpair_is_admin_queue(&sq->qpair)) {
5145 		assert(admin_cq->group->group->thread == spdk_get_thread());
5146 		/*
5147 		 * The admin queue is special as SQ0 and CQ0 are created
5148 		 * together.
5149 		 */
5150 		admin_cq->cq_ref = 1;
5151 		start_ctrlr(vu_ctrlr, sq->qpair.ctrlr);
5152 	} else {
5153 		/* For I/O queues this command was generated in response to an
5154 		 * ADMIN I/O CREATE SUBMISSION QUEUE command which has not yet
5155 		 * been completed. Complete it now.
5156 		 */
5157 		if (sq->post_create_io_sq_completion) {
5158 			if (admin_cq->group->group->thread != spdk_get_thread()) {
5159 				struct vfio_user_post_cpl_ctx *cpl_ctx;
5160 
5161 				cpl_ctx = calloc(1, sizeof(*cpl_ctx));
5162 				if (!cpl_ctx) {
5163 					return -ENOMEM;
5164 				}
5165 				cpl_ctx->ctrlr = vu_ctrlr;
5166 				cpl_ctx->cq = admin_cq;
5167 				cpl_ctx->cpl.sqid = 0;
5168 				cpl_ctx->cpl.cdw0 = 0;
5169 				cpl_ctx->cpl.cid = sq->create_io_sq_cmd.cid;
5170 				cpl_ctx->cpl.status.sc = SPDK_NVME_SC_SUCCESS;
5171 				cpl_ctx->cpl.status.sct = SPDK_NVME_SCT_GENERIC;
5172 
5173 				spdk_thread_send_msg(admin_cq->group->group->thread,
5174 						     _post_completion_msg,
5175 						     cpl_ctx);
5176 			} else {
5177 				post_completion(vu_ctrlr, admin_cq, 0, 0,
5178 						sq->create_io_sq_cmd.cid, SPDK_NVME_SC_SUCCESS, SPDK_NVME_SCT_GENERIC);
5179 			}
5180 			sq->post_create_io_sq_completion = false;
5181 		} else if (in_interrupt_mode(endpoint->transport)) {
5182 			/*
5183 			 * If we're live migrating a guest, there is a window
5184 			 * where the I/O queues haven't been set up but the
5185 			 * device is in running state, during which the guest
5186 			 * might write to a doorbell. This doorbell write will
5187 			 * go unnoticed, so let's poll the whole controller to
5188 			 * pick that up.
5189 			 */
5190 			ctrlr_kick(vu_ctrlr);
5191 		}
5192 		sq->sq_state = VFIO_USER_SQ_ACTIVE;
5193 	}
5194 
5195 	TAILQ_INSERT_TAIL(&vu_ctrlr->connected_sqs, sq, tailq);
5196 	pthread_mutex_unlock(&endpoint->lock);
5197 
5198 	free(req->req.iov[0].iov_base);
5199 	req->req.iov[0].iov_base = NULL;
5200 	req->req.iovcnt = 0;
5201 
5202 	return 0;
5203 }
5204 
5205 static void
5206 _nvmf_vfio_user_poll_group_add(void *req)
5207 {
5208 	spdk_nvmf_request_exec(req);
5209 }
5210 
5211 /*
5212  * Add the given qpair to the given poll group. New qpairs are added via
5213  * spdk_nvmf_tgt_new_qpair(), which picks a poll group via
5214  * nvmf_vfio_user_get_optimal_poll_group(), then calls back here via
5215  * nvmf_transport_poll_group_add().
5216  */
5217 static int
5218 nvmf_vfio_user_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
5219 			      struct spdk_nvmf_qpair *qpair)
5220 {
5221 	struct nvmf_vfio_user_sq *sq;
5222 	struct nvmf_vfio_user_req *vu_req;
5223 	struct nvmf_vfio_user_ctrlr *ctrlr;
5224 	struct spdk_nvmf_request *req;
5225 	struct spdk_nvmf_fabric_connect_data *data;
5226 	bool admin;
5227 
5228 	sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
5229 	sq->group = group;
5230 	ctrlr = sq->ctrlr;
5231 
5232 	SPDK_DEBUGLOG(nvmf_vfio, "%s: add QP%d=%p(%p) to poll_group=%p\n",
5233 		      ctrlr_id(ctrlr), sq->qpair.qid,
5234 		      sq, qpair, group);
5235 
5236 	admin = nvmf_qpair_is_admin_queue(&sq->qpair);
5237 
5238 	vu_req = get_nvmf_vfio_user_req(sq);
5239 	if (vu_req == NULL) {
5240 		return -1;
5241 	}
5242 
5243 	req = &vu_req->req;
5244 	req->cmd->connect_cmd.opcode = SPDK_NVME_OPC_FABRIC;
5245 	req->cmd->connect_cmd.cid = 0;
5246 	req->cmd->connect_cmd.fctype = SPDK_NVMF_FABRIC_COMMAND_CONNECT;
5247 	req->cmd->connect_cmd.recfmt = 0;
5248 	req->cmd->connect_cmd.sqsize = sq->size - 1;
5249 	req->cmd->connect_cmd.qid = admin ? 0 : qpair->qid;
5250 
5251 	req->length = sizeof(struct spdk_nvmf_fabric_connect_data);
5252 
5253 	data = calloc(1, req->length);
5254 	if (data == NULL) {
5255 		nvmf_vfio_user_req_free(req);
5256 		return -ENOMEM;
5257 	}
5258 
5259 	SPDK_IOV_ONE(req->iov, &req->iovcnt, data, req->length);
5260 
5261 	data->cntlid = ctrlr->cntlid;
5262 	snprintf(data->subnqn, sizeof(data->subnqn), "%s",
5263 		 spdk_nvmf_subsystem_get_nqn(ctrlr->endpoint->subsystem));
5264 
5265 	vu_req->cb_fn = handle_queue_connect_rsp;
5266 	vu_req->cb_arg = sq;
5267 
5268 	SPDK_DEBUGLOG(nvmf_vfio,
5269 		      "%s: sending connect fabrics command for qid:%#x cntlid=%#x\n",
5270 		      ctrlr_id(ctrlr), qpair->qid, data->cntlid);
5271 
5272 	/*
5273 	 * By the time transport's poll_group_add() callback is executed, the
5274 	 * qpair isn't in the ACTIVE state yet, so spdk_nvmf_request_exec()
5275 	 * would fail.  The state changes to ACTIVE immediately after the
5276 	 * callback finishes, so delay spdk_nvmf_request_exec() by sending a
5277 	 * message.
5278 	 */
5279 	spdk_thread_send_msg(spdk_get_thread(), _nvmf_vfio_user_poll_group_add, req);
5280 	return 0;
5281 }
5282 
5283 static int
5284 nvmf_vfio_user_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
5285 				 struct spdk_nvmf_qpair *qpair)
5286 {
5287 	struct nvmf_vfio_user_sq *sq;
5288 	struct nvmf_vfio_user_poll_group *vu_group;
5289 
5290 	sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
5291 
5292 	SPDK_DEBUGLOG(nvmf_vfio,
5293 		      "%s: remove NVMf QP%d=%p from NVMf poll_group=%p\n",
5294 		      ctrlr_id(sq->ctrlr), qpair->qid, qpair, group);
5295 
5296 
5297 	vu_group = SPDK_CONTAINEROF(group, struct nvmf_vfio_user_poll_group, group);
5298 	TAILQ_REMOVE(&vu_group->sqs, sq, link);
5299 
5300 	return 0;
5301 }
5302 
5303 static void
5304 _nvmf_vfio_user_req_free(struct nvmf_vfio_user_sq *sq, struct nvmf_vfio_user_req *vu_req)
5305 {
5306 	memset(&vu_req->cmd, 0, sizeof(vu_req->cmd));
5307 	memset(&vu_req->rsp, 0, sizeof(vu_req->rsp));
5308 	vu_req->iovcnt = 0;
5309 	vu_req->req.iovcnt = 0;
5310 	vu_req->req.length = 0;
5311 	vu_req->state = VFIO_USER_REQUEST_STATE_FREE;
5312 
5313 	TAILQ_INSERT_TAIL(&sq->free_reqs, vu_req, link);
5314 }
5315 
5316 static int
5317 nvmf_vfio_user_req_free(struct spdk_nvmf_request *req)
5318 {
5319 	struct nvmf_vfio_user_sq *sq;
5320 	struct nvmf_vfio_user_req *vu_req;
5321 
5322 	assert(req != NULL);
5323 
5324 	vu_req = SPDK_CONTAINEROF(req, struct nvmf_vfio_user_req, req);
5325 	sq = SPDK_CONTAINEROF(req->qpair, struct nvmf_vfio_user_sq, qpair);
5326 
5327 	_nvmf_vfio_user_req_free(sq, vu_req);
5328 
5329 	return 0;
5330 }
5331 
5332 static int
5333 nvmf_vfio_user_req_complete(struct spdk_nvmf_request *req)
5334 {
5335 	struct nvmf_vfio_user_sq *sq;
5336 	struct nvmf_vfio_user_req *vu_req;
5337 
5338 	assert(req != NULL);
5339 
5340 	vu_req = SPDK_CONTAINEROF(req, struct nvmf_vfio_user_req, req);
5341 	sq = SPDK_CONTAINEROF(req->qpair, struct nvmf_vfio_user_sq, qpair);
5342 
5343 	if (vu_req->cb_fn != NULL) {
5344 		if (vu_req->cb_fn(vu_req, vu_req->cb_arg) != 0) {
5345 			fail_ctrlr(sq->ctrlr);
5346 		}
5347 	}
5348 
5349 	_nvmf_vfio_user_req_free(sq, vu_req);
5350 
5351 	return 0;
5352 }
5353 
5354 static void
5355 nvmf_vfio_user_close_qpair(struct spdk_nvmf_qpair *qpair,
5356 			   spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
5357 {
5358 	struct nvmf_vfio_user_sq *sq;
5359 	struct nvmf_vfio_user_ctrlr *vu_ctrlr;
5360 	struct nvmf_vfio_user_endpoint *endpoint;
5361 	struct vfio_user_delete_sq_ctx *del_ctx;
5362 
5363 	assert(qpair != NULL);
5364 	sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
5365 	vu_ctrlr = sq->ctrlr;
5366 	endpoint = vu_ctrlr->endpoint;
5367 	del_ctx = sq->delete_ctx;
5368 	sq->delete_ctx = NULL;
5369 
5370 	pthread_mutex_lock(&endpoint->lock);
5371 	TAILQ_REMOVE(&vu_ctrlr->connected_sqs, sq, tailq);
5372 	delete_sq_done(vu_ctrlr, sq);
5373 	if (TAILQ_EMPTY(&vu_ctrlr->connected_sqs)) {
5374 		endpoint->ctrlr = NULL;
5375 		if (vu_ctrlr->in_source_vm && endpoint->need_resume) {
5376 			/* The controller will be freed, we can resume the subsystem
5377 			 * now so that the endpoint can be ready to accept another
5378 			 * new connection.
5379 			 */
5380 			spdk_nvmf_subsystem_resume((struct spdk_nvmf_subsystem *)endpoint->subsystem,
5381 						   vfio_user_endpoint_resume_done, endpoint);
5382 		}
5383 		free_ctrlr(vu_ctrlr);
5384 	}
5385 	pthread_mutex_unlock(&endpoint->lock);
5386 
5387 	if (del_ctx) {
5388 		vfio_user_qpair_delete_cb(del_ctx);
5389 	}
5390 
5391 	if (cb_fn) {
5392 		cb_fn(cb_arg);
5393 	}
5394 }
5395 
5396 /**
5397  * Returns a preallocated request, or NULL if there isn't one available.
5398  */
5399 static struct nvmf_vfio_user_req *
5400 get_nvmf_vfio_user_req(struct nvmf_vfio_user_sq *sq)
5401 {
5402 	struct nvmf_vfio_user_req *req;
5403 
5404 	if (sq == NULL) {
5405 		return NULL;
5406 	}
5407 
5408 	req = TAILQ_FIRST(&sq->free_reqs);
5409 	if (req == NULL) {
5410 		return NULL;
5411 	}
5412 
5413 	TAILQ_REMOVE(&sq->free_reqs, req, link);
5414 
5415 	return req;
5416 }
5417 
5418 static int
5419 get_nvmf_io_req_length(struct spdk_nvmf_request *req)
5420 {
5421 	uint16_t nr;
5422 	uint32_t nlb, nsid;
5423 	struct spdk_nvme_cmd *cmd = &req->cmd->nvme_cmd;
5424 	struct spdk_nvmf_ctrlr *ctrlr = req->qpair->ctrlr;
5425 	struct spdk_nvmf_ns *ns;
5426 
5427 	nsid = cmd->nsid;
5428 	ns = _nvmf_subsystem_get_ns(ctrlr->subsys, nsid);
5429 	if (ns == NULL || ns->bdev == NULL) {
5430 		SPDK_ERRLOG("unsuccessful query for nsid %u\n", cmd->nsid);
5431 		return -EINVAL;
5432 	}
5433 
5434 	if (cmd->opc == SPDK_NVME_OPC_DATASET_MANAGEMENT) {
5435 		nr = cmd->cdw10_bits.dsm.nr + 1;
5436 		return nr * sizeof(struct spdk_nvme_dsm_range);
5437 	}
5438 
5439 	if (cmd->opc == SPDK_NVME_OPC_COPY) {
5440 		nr = (cmd->cdw12 & 0x000000ffu) + 1;
5441 		return nr * sizeof(struct spdk_nvme_scc_source_range);
5442 	}
5443 
5444 	nlb = (cmd->cdw12 & 0x0000ffffu) + 1;
5445 	return nlb * spdk_bdev_get_block_size(ns->bdev);
5446 }
5447 
5448 static int
5449 map_admin_cmd_req(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvmf_request *req)
5450 {
5451 	struct spdk_nvme_cmd *cmd = &req->cmd->nvme_cmd;
5452 	uint32_t len = 0, numdw = 0;
5453 	uint8_t fid;
5454 	int iovcnt;
5455 
5456 	req->xfer = spdk_nvme_opc_get_data_transfer(cmd->opc);
5457 
5458 	if (req->xfer == SPDK_NVME_DATA_NONE) {
5459 		return 0;
5460 	}
5461 
5462 	switch (cmd->opc) {
5463 	case SPDK_NVME_OPC_IDENTIFY:
5464 		len = 4096;
5465 		break;
5466 	case SPDK_NVME_OPC_GET_LOG_PAGE:
5467 		numdw = ((((uint32_t)cmd->cdw11_bits.get_log_page.numdu << 16) |
5468 			  cmd->cdw10_bits.get_log_page.numdl) + 1);
5469 		if (numdw > UINT32_MAX / 4) {
5470 			return -EINVAL;
5471 		}
5472 		len = numdw * 4;
5473 		break;
5474 	case SPDK_NVME_OPC_GET_FEATURES:
5475 	case SPDK_NVME_OPC_SET_FEATURES:
5476 		fid = cmd->cdw10_bits.set_features.fid;
5477 		switch (fid) {
5478 		case SPDK_NVME_FEAT_LBA_RANGE_TYPE:
5479 			len = 4096;
5480 			break;
5481 		case SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION:
5482 			len = 256;
5483 			break;
5484 		case SPDK_NVME_FEAT_TIMESTAMP:
5485 			len = 8;
5486 			break;
5487 		case SPDK_NVME_FEAT_HOST_BEHAVIOR_SUPPORT:
5488 			len = 512;
5489 			break;
5490 		case SPDK_NVME_FEAT_HOST_IDENTIFIER:
5491 			if (cmd->cdw11_bits.feat_host_identifier.bits.exhid) {
5492 				len = 16;
5493 			} else {
5494 				len = 8;
5495 			}
5496 			break;
5497 		default:
5498 			return 0;
5499 		}
5500 		break;
5501 	case SPDK_NVME_OPC_FABRIC:
5502 		return -ENOTSUP;
5503 	default:
5504 		return 0;
5505 	}
5506 
5507 	/* ADMIN command will not use SGL */
5508 	if (cmd->psdt != 0) {
5509 		return -EINVAL;
5510 	}
5511 
5512 	iovcnt = vfio_user_map_cmd(ctrlr, req, req->iov, len);
5513 	if (iovcnt < 0) {
5514 		SPDK_ERRLOG("%s: map Admin Opc %x failed\n",
5515 			    ctrlr_id(ctrlr), cmd->opc);
5516 		return -1;
5517 	}
5518 	req->length = len;
5519 	req->iovcnt = iovcnt;
5520 
5521 	return 0;
5522 }
5523 
5524 /*
5525  * Map an I/O command's buffers.
5526  *
5527  * Returns 0 on success and -errno on failure.
5528  */
5529 static int
5530 map_io_cmd_req(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvmf_request *req)
5531 {
5532 	int len, iovcnt;
5533 	struct spdk_nvme_cmd *cmd;
5534 
5535 	assert(ctrlr != NULL);
5536 	assert(req != NULL);
5537 
5538 	cmd = &req->cmd->nvme_cmd;
5539 	req->xfer = spdk_nvme_opc_get_data_transfer(cmd->opc);
5540 
5541 	if (spdk_unlikely(req->xfer == SPDK_NVME_DATA_NONE)) {
5542 		return 0;
5543 	}
5544 
5545 	len = get_nvmf_io_req_length(req);
5546 	if (len < 0) {
5547 		return -EINVAL;
5548 	}
5549 	req->length = len;
5550 
5551 	iovcnt = vfio_user_map_cmd(ctrlr, req, req->iov, req->length);
5552 	if (iovcnt < 0) {
5553 		SPDK_ERRLOG("%s: failed to map IO OPC %u\n", ctrlr_id(ctrlr), cmd->opc);
5554 		return -EFAULT;
5555 	}
5556 	req->iovcnt = iovcnt;
5557 
5558 	return 0;
5559 }
5560 
5561 static int
5562 handle_cmd_req(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvme_cmd *cmd,
5563 	       struct nvmf_vfio_user_sq *sq)
5564 {
5565 	int err;
5566 	struct nvmf_vfio_user_req *vu_req;
5567 	struct spdk_nvmf_request *req;
5568 
5569 	assert(ctrlr != NULL);
5570 	assert(cmd != NULL);
5571 
5572 	vu_req = get_nvmf_vfio_user_req(sq);
5573 	if (spdk_unlikely(vu_req == NULL)) {
5574 		SPDK_ERRLOG("%s: no request for NVMe command opc 0x%x\n", ctrlr_id(ctrlr), cmd->opc);
5575 		return post_completion(ctrlr, ctrlr->cqs[sq->cqid], 0, 0, cmd->cid,
5576 				       SPDK_NVME_SC_INTERNAL_DEVICE_ERROR, SPDK_NVME_SCT_GENERIC);
5577 
5578 	}
5579 	req = &vu_req->req;
5580 
5581 	assert(req->qpair != NULL);
5582 	SPDK_DEBUGLOG(nvmf_vfio, "%s: handle sqid:%u, req opc=%#x cid=%d\n",
5583 		      ctrlr_id(ctrlr), req->qpair->qid, cmd->opc, cmd->cid);
5584 
5585 	vu_req->cb_fn = handle_cmd_rsp;
5586 	vu_req->cb_arg = SPDK_CONTAINEROF(req->qpair, struct nvmf_vfio_user_sq, qpair);
5587 	req->cmd->nvme_cmd = *cmd;
5588 
5589 	if (nvmf_qpair_is_admin_queue(req->qpair)) {
5590 		err = map_admin_cmd_req(ctrlr, req);
5591 	} else {
5592 		switch (cmd->opc) {
5593 		case SPDK_NVME_OPC_RESERVATION_REGISTER:
5594 		case SPDK_NVME_OPC_RESERVATION_REPORT:
5595 		case SPDK_NVME_OPC_RESERVATION_ACQUIRE:
5596 		case SPDK_NVME_OPC_RESERVATION_RELEASE:
5597 		case SPDK_NVME_OPC_FABRIC:
5598 			err = -ENOTSUP;
5599 			break;
5600 		default:
5601 			err = map_io_cmd_req(ctrlr, req);
5602 			break;
5603 		}
5604 	}
5605 
5606 	if (spdk_unlikely(err < 0)) {
5607 		SPDK_ERRLOG("%s: process NVMe command opc 0x%x failed\n",
5608 			    ctrlr_id(ctrlr), cmd->opc);
5609 		req->rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
5610 		req->rsp->nvme_cpl.status.sc = err == -ENOTSUP ?
5611 					       SPDK_NVME_SC_INVALID_OPCODE :
5612 					       SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
5613 		err = handle_cmd_rsp(vu_req, vu_req->cb_arg);
5614 		_nvmf_vfio_user_req_free(sq, vu_req);
5615 		return err;
5616 	}
5617 
5618 	vu_req->state = VFIO_USER_REQUEST_STATE_EXECUTING;
5619 	spdk_nvmf_request_exec(req);
5620 
5621 	return 0;
5622 }
5623 
5624 /*
5625  * If we suppressed an IRQ in post_completion(), check if it needs to be fired
5626  * here: if the host isn't up to date, and is apparently not actively processing
5627  * the queue (i.e. ->last_head isn't changing), we need an IRQ.
5628  */
5629 static void
5630 handle_suppressed_irq(struct nvmf_vfio_user_ctrlr *ctrlr,
5631 		      struct nvmf_vfio_user_sq *sq)
5632 {
5633 	struct nvmf_vfio_user_cq *cq = ctrlr->cqs[sq->cqid];
5634 	uint32_t cq_head;
5635 	uint32_t cq_tail;
5636 
5637 	if (!cq->ien || cq->qid == 0 || !ctrlr_interrupt_enabled(ctrlr)) {
5638 		return;
5639 	}
5640 
5641 	cq_tail = *cq_tailp(cq);
5642 
5643 	/* Already sent? */
5644 	if (cq_tail == cq->last_trigger_irq_tail) {
5645 		return;
5646 	}
5647 
5648 	spdk_ivdt_dcache(cq_dbl_headp(cq));
5649 	cq_head = *cq_dbl_headp(cq);
5650 
5651 	if (cq_head != cq_tail && cq_head == cq->last_head) {
5652 		int err = vfu_irq_trigger(ctrlr->endpoint->vfu_ctx, cq->iv);
5653 		if (err != 0) {
5654 			SPDK_ERRLOG("%s: failed to trigger interrupt: %m\n",
5655 				    ctrlr_id(ctrlr));
5656 		} else {
5657 			cq->last_trigger_irq_tail = cq_tail;
5658 		}
5659 	}
5660 
5661 	cq->last_head = cq_head;
5662 }
5663 
5664 /* Returns the number of commands processed, or a negative value on error. */
5665 static int
5666 nvmf_vfio_user_sq_poll(struct nvmf_vfio_user_sq *sq)
5667 {
5668 	struct nvmf_vfio_user_ctrlr *ctrlr;
5669 	uint32_t new_tail;
5670 	int count = 0;
5671 
5672 	assert(sq != NULL);
5673 
5674 	ctrlr = sq->ctrlr;
5675 
5676 	/*
5677 	 * A quiesced, or migrating, controller should never process new
5678 	 * commands.
5679 	 */
5680 	if (ctrlr->state != VFIO_USER_CTRLR_RUNNING) {
5681 		return SPDK_POLLER_IDLE;
5682 	}
5683 
5684 	if (ctrlr->adaptive_irqs_enabled) {
5685 		handle_suppressed_irq(ctrlr, sq);
5686 	}
5687 
5688 	/* On aarch64 platforms, doorbells update from guest VM may not be seen
5689 	 * on SPDK target side. This is because there is memory type mismatch
5690 	 * situation here. That is on guest VM side, the doorbells are treated as
5691 	 * device memory while on SPDK target side, it is treated as normal
5692 	 * memory. And this situation cause problem on ARM platform.
5693 	 * Refer to "https://developer.arm.com/documentation/102376/0100/
5694 	 * Memory-aliasing-and-mismatched-memory-types". Only using spdk_mb()
5695 	 * cannot fix this. Use "dc civac" to invalidate cache may solve
5696 	 * this.
5697 	 */
5698 	spdk_ivdt_dcache(sq_dbl_tailp(sq));
5699 
5700 	/* Load-Acquire. */
5701 	new_tail = *sq_dbl_tailp(sq);
5702 
5703 	new_tail = new_tail & 0xffffu;
5704 	if (spdk_unlikely(new_tail >= sq->size)) {
5705 		SPDK_DEBUGLOG(nvmf_vfio, "%s: invalid sqid:%u doorbell value %u\n", ctrlr_id(ctrlr), sq->qid,
5706 			      new_tail);
5707 		spdk_nvmf_ctrlr_async_event_error_event(ctrlr->ctrlr, SPDK_NVME_ASYNC_EVENT_INVALID_DB_WRITE);
5708 
5709 		return -1;
5710 	}
5711 
5712 	if (*sq_headp(sq) == new_tail) {
5713 		return 0;
5714 	}
5715 
5716 	SPDK_DEBUGLOG(nvmf_vfio, "%s: sqid:%u doorbell old=%u new=%u\n",
5717 		      ctrlr_id(ctrlr), sq->qid, *sq_headp(sq), new_tail);
5718 	if (ctrlr->sdbl != NULL) {
5719 		SPDK_DEBUGLOG(nvmf_vfio,
5720 			      "%s: sqid:%u bar0_doorbell=%u shadow_doorbell=%u eventidx=%u\n",
5721 			      ctrlr_id(ctrlr), sq->qid,
5722 			      ctrlr->bar0_doorbells[queue_index(sq->qid, false)],
5723 			      ctrlr->sdbl->shadow_doorbells[queue_index(sq->qid, false)],
5724 			      ctrlr->sdbl->eventidxs[queue_index(sq->qid, false)]);
5725 	}
5726 
5727 	/*
5728 	 * Ensure that changes to the queue are visible to us.
5729 	 * The host driver should write the queue first, do a wmb(), and then
5730 	 * update the SQ tail doorbell (their Store-Release).
5731 	 */
5732 	spdk_rmb();
5733 
5734 	count = handle_sq_tdbl_write(ctrlr, new_tail, sq);
5735 	if (spdk_unlikely(count < 0)) {
5736 		fail_ctrlr(ctrlr);
5737 	}
5738 
5739 	return count;
5740 }
5741 
5742 /*
5743  * vfio-user transport poll handler. Note that the library context is polled in
5744  * a separate poller (->vfu_ctx_poller), so this poller only needs to poll the
5745  * active SQs.
5746  *
5747  * Returns the number of commands processed, or a negative value on error.
5748  */
5749 static int
5750 nvmf_vfio_user_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
5751 {
5752 	struct nvmf_vfio_user_poll_group *vu_group;
5753 	struct nvmf_vfio_user_sq *sq, *tmp;
5754 	int count = 0;
5755 
5756 	assert(group != NULL);
5757 
5758 	vu_group = SPDK_CONTAINEROF(group, struct nvmf_vfio_user_poll_group, group);
5759 
5760 	SPDK_DEBUGLOG(vfio_user_db, "polling all SQs\n");
5761 
5762 	TAILQ_FOREACH_SAFE(sq, &vu_group->sqs, link, tmp) {
5763 		int ret;
5764 
5765 		if (spdk_unlikely(sq->sq_state != VFIO_USER_SQ_ACTIVE || !sq->size)) {
5766 			continue;
5767 		}
5768 
5769 		ret = nvmf_vfio_user_sq_poll(sq);
5770 
5771 		if (spdk_unlikely(ret < 0)) {
5772 			return ret;
5773 		}
5774 
5775 		count += ret;
5776 	}
5777 
5778 	vu_group->stats.polls++;
5779 	vu_group->stats.poll_reqs += count;
5780 	vu_group->stats.poll_reqs_squared += count * count;
5781 	if (count == 0) {
5782 		vu_group->stats.polls_spurious++;
5783 	}
5784 
5785 	return count;
5786 }
5787 
5788 static int
5789 nvmf_vfio_user_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
5790 				    struct spdk_nvme_transport_id *trid)
5791 {
5792 	struct nvmf_vfio_user_sq *sq;
5793 	struct nvmf_vfio_user_ctrlr *ctrlr;
5794 
5795 	sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
5796 	ctrlr = sq->ctrlr;
5797 
5798 	memcpy(trid, &ctrlr->endpoint->trid, sizeof(*trid));
5799 	return 0;
5800 }
5801 
5802 static int
5803 nvmf_vfio_user_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
5804 				   struct spdk_nvme_transport_id *trid)
5805 {
5806 	return 0;
5807 }
5808 
5809 static int
5810 nvmf_vfio_user_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
5811 				     struct spdk_nvme_transport_id *trid)
5812 {
5813 	struct nvmf_vfio_user_sq *sq;
5814 	struct nvmf_vfio_user_ctrlr *ctrlr;
5815 
5816 	sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
5817 	ctrlr = sq->ctrlr;
5818 
5819 	memcpy(trid, &ctrlr->endpoint->trid, sizeof(*trid));
5820 	return 0;
5821 }
5822 
5823 static void
5824 nvmf_vfio_user_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
5825 				   struct spdk_nvmf_request *req)
5826 {
5827 	struct spdk_nvmf_request *req_to_abort = NULL;
5828 	struct spdk_nvmf_request *temp_req = NULL;
5829 	uint16_t cid;
5830 
5831 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
5832 
5833 	TAILQ_FOREACH(temp_req, &qpair->outstanding, link) {
5834 		struct nvmf_vfio_user_req *vu_req;
5835 
5836 		vu_req = SPDK_CONTAINEROF(temp_req, struct nvmf_vfio_user_req, req);
5837 
5838 		if (vu_req->state == VFIO_USER_REQUEST_STATE_EXECUTING && vu_req->cmd.cid == cid) {
5839 			req_to_abort = temp_req;
5840 			break;
5841 		}
5842 	}
5843 
5844 	if (req_to_abort == NULL) {
5845 		spdk_nvmf_request_complete(req);
5846 		return;
5847 	}
5848 
5849 	req->req_to_abort = req_to_abort;
5850 	nvmf_ctrlr_abort_request(req);
5851 }
5852 
5853 static void
5854 nvmf_vfio_user_poll_group_dump_stat(struct spdk_nvmf_transport_poll_group *group,
5855 				    struct spdk_json_write_ctx *w)
5856 {
5857 	struct nvmf_vfio_user_poll_group *vu_group = SPDK_CONTAINEROF(group,
5858 			struct nvmf_vfio_user_poll_group, group);
5859 	uint64_t polls_denom;
5860 
5861 	spdk_json_write_named_uint64(w, "ctrlr_intr", vu_group->stats.ctrlr_intr);
5862 	spdk_json_write_named_uint64(w, "ctrlr_kicks", vu_group->stats.ctrlr_kicks);
5863 	spdk_json_write_named_uint64(w, "won", vu_group->stats.won);
5864 	spdk_json_write_named_uint64(w, "lost", vu_group->stats.lost);
5865 	spdk_json_write_named_uint64(w, "lost_count", vu_group->stats.lost_count);
5866 	spdk_json_write_named_uint64(w, "rearms", vu_group->stats.rearms);
5867 	spdk_json_write_named_uint64(w, "pg_process_count", vu_group->stats.pg_process_count);
5868 	spdk_json_write_named_uint64(w, "intr", vu_group->stats.intr);
5869 	spdk_json_write_named_uint64(w, "polls", vu_group->stats.polls);
5870 	spdk_json_write_named_uint64(w, "polls_spurious", vu_group->stats.polls_spurious);
5871 	spdk_json_write_named_uint64(w, "poll_reqs", vu_group->stats.poll_reqs);
5872 	polls_denom = vu_group->stats.polls * (vu_group->stats.polls - 1);
5873 	if (polls_denom) {
5874 		uint64_t n = vu_group->stats.polls * vu_group->stats.poll_reqs_squared - vu_group->stats.poll_reqs *
5875 			     vu_group->stats.poll_reqs;
5876 		spdk_json_write_named_double(w, "poll_reqs_variance", sqrt(n / polls_denom));
5877 	}
5878 
5879 	spdk_json_write_named_uint64(w, "cqh_admin_writes", vu_group->stats.cqh_admin_writes);
5880 	spdk_json_write_named_uint64(w, "cqh_io_writes", vu_group->stats.cqh_io_writes);
5881 }
5882 
5883 static void
5884 nvmf_vfio_user_opts_init(struct spdk_nvmf_transport_opts *opts)
5885 {
5886 	opts->max_queue_depth =		NVMF_VFIO_USER_DEFAULT_MAX_QUEUE_DEPTH;
5887 	opts->max_qpairs_per_ctrlr =	NVMF_VFIO_USER_DEFAULT_MAX_QPAIRS_PER_CTRLR;
5888 	opts->in_capsule_data_size =	0;
5889 	opts->max_io_size =		NVMF_VFIO_USER_DEFAULT_MAX_IO_SIZE;
5890 	opts->io_unit_size =		NVMF_VFIO_USER_DEFAULT_IO_UNIT_SIZE;
5891 	opts->max_aq_depth =		NVMF_VFIO_USER_DEFAULT_AQ_DEPTH;
5892 	opts->num_shared_buffers =	0;
5893 	opts->buf_cache_size =		0;
5894 	opts->association_timeout =	0;
5895 	opts->transport_specific =      NULL;
5896 }
5897 
5898 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_vfio_user = {
5899 	.name = "VFIOUSER",
5900 	.type = SPDK_NVME_TRANSPORT_VFIOUSER,
5901 	.opts_init = nvmf_vfio_user_opts_init,
5902 	.create = nvmf_vfio_user_create,
5903 	.destroy = nvmf_vfio_user_destroy,
5904 
5905 	.listen = nvmf_vfio_user_listen,
5906 	.stop_listen = nvmf_vfio_user_stop_listen,
5907 	.cdata_init = nvmf_vfio_user_cdata_init,
5908 	.listen_associate = nvmf_vfio_user_listen_associate,
5909 
5910 	.listener_discover = nvmf_vfio_user_discover,
5911 
5912 	.poll_group_create = nvmf_vfio_user_poll_group_create,
5913 	.get_optimal_poll_group = nvmf_vfio_user_get_optimal_poll_group,
5914 	.poll_group_destroy = nvmf_vfio_user_poll_group_destroy,
5915 	.poll_group_add = nvmf_vfio_user_poll_group_add,
5916 	.poll_group_remove = nvmf_vfio_user_poll_group_remove,
5917 	.poll_group_poll = nvmf_vfio_user_poll_group_poll,
5918 
5919 	.req_free = nvmf_vfio_user_req_free,
5920 	.req_complete = nvmf_vfio_user_req_complete,
5921 
5922 	.qpair_fini = nvmf_vfio_user_close_qpair,
5923 	.qpair_get_local_trid = nvmf_vfio_user_qpair_get_local_trid,
5924 	.qpair_get_peer_trid = nvmf_vfio_user_qpair_get_peer_trid,
5925 	.qpair_get_listen_trid = nvmf_vfio_user_qpair_get_listen_trid,
5926 	.qpair_abort_request = nvmf_vfio_user_qpair_abort_request,
5927 
5928 	.poll_group_dump_stat = nvmf_vfio_user_poll_group_dump_stat,
5929 };
5930 
5931 SPDK_NVMF_TRANSPORT_REGISTER(muser, &spdk_nvmf_transport_vfio_user);
5932 SPDK_LOG_REGISTER_COMPONENT(nvmf_vfio)
5933 SPDK_LOG_REGISTER_COMPONENT(vfio_user_db)
5934