xref: /spdk/lib/nvmf/tcp.c (revision ee8167e3e1671162f2e832d6b8798fb04ee76f3c)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (c) Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/accel_engine.h"
8 #include "spdk/stdinc.h"
9 #include "spdk/crc32.h"
10 #include "spdk/endian.h"
11 #include "spdk/assert.h"
12 #include "spdk/thread.h"
13 #include "spdk/nvmf_transport.h"
14 #include "spdk/string.h"
15 #include "spdk/trace.h"
16 #include "spdk/util.h"
17 #include "spdk/log.h"
18 
19 #include "spdk_internal/assert.h"
20 #include "spdk_internal/nvme_tcp.h"
21 #include "spdk_internal/sock.h"
22 
23 #include "nvmf_internal.h"
24 
25 #include "spdk_internal/trace_defs.h"
26 
27 #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
28 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
29 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
30 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
31 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
32 
33 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
34 
35 /* spdk nvmf related structure */
36 enum spdk_nvmf_tcp_req_state {
37 
38 	/* The request is not currently in use */
39 	TCP_REQUEST_STATE_FREE = 0,
40 
41 	/* Initial state when request first received */
42 	TCP_REQUEST_STATE_NEW = 1,
43 
44 	/* The request is queued until a data buffer is available. */
45 	TCP_REQUEST_STATE_NEED_BUFFER = 2,
46 
47 	/* The request is waiting for zcopy_start to finish */
48 	TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 3,
49 
50 	/* The request has received a zero-copy buffer */
51 	TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 4,
52 
53 	/* The request is currently transferring data from the host to the controller. */
54 	TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 5,
55 
56 	/* The request is waiting for the R2T send acknowledgement. */
57 	TCP_REQUEST_STATE_AWAITING_R2T_ACK = 6,
58 
59 	/* The request is ready to execute at the block device */
60 	TCP_REQUEST_STATE_READY_TO_EXECUTE = 7,
61 
62 	/* The request is currently executing at the block device */
63 	TCP_REQUEST_STATE_EXECUTING = 8,
64 
65 	/* The request is waiting for zcopy buffers to be commited */
66 	TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 9,
67 
68 	/* The request finished executing at the block device */
69 	TCP_REQUEST_STATE_EXECUTED = 10,
70 
71 	/* The request is ready to send a completion */
72 	TCP_REQUEST_STATE_READY_TO_COMPLETE = 11,
73 
74 	/* The request is currently transferring final pdus from the controller to the host. */
75 	TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 12,
76 
77 	/* The request is waiting for zcopy buffers to be released (without committing) */
78 	TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 13,
79 
80 	/* The request completed and can be marked free. */
81 	TCP_REQUEST_STATE_COMPLETED = 14,
82 
83 	/* Terminator */
84 	TCP_REQUEST_NUM_STATES,
85 };
86 
87 static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
88 	"Invalid PDU Header Field",
89 	"PDU Sequence Error",
90 	"Header Digiest Error",
91 	"Data Transfer Out of Range",
92 	"R2T Limit Exceeded",
93 	"Unsupported parameter",
94 };
95 
96 SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
97 {
98 	spdk_trace_register_owner(OWNER_NVMF_TCP, 't');
99 	spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
100 	spdk_trace_register_description("TCP_REQ_NEW",
101 					TRACE_TCP_REQUEST_STATE_NEW,
102 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1,
103 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
104 	spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
105 					TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
106 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
107 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
108 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START",
109 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START,
110 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
111 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
112 	spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL",
113 					TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED,
114 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
115 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
116 	spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
117 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
118 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
119 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
120 	spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
121 					TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
122 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
123 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
124 	spdk_trace_register_description("TCP_REQ_EXECUTING",
125 					TRACE_TCP_REQUEST_STATE_EXECUTING,
126 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
127 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
128 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT",
129 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT,
130 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
131 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
132 	spdk_trace_register_description("TCP_REQ_EXECUTED",
133 					TRACE_TCP_REQUEST_STATE_EXECUTED,
134 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
135 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
136 	spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
137 					TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
138 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
139 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
140 	spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
141 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
142 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
143 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
144 	spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS",
145 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE,
146 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
147 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
148 	spdk_trace_register_description("TCP_REQ_COMPLETED",
149 					TRACE_TCP_REQUEST_STATE_COMPLETED,
150 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
151 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
152 	spdk_trace_register_description("TCP_WRITE_START",
153 					TRACE_TCP_FLUSH_WRITEBUF_START,
154 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
155 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
156 	spdk_trace_register_description("TCP_WRITE_DONE",
157 					TRACE_TCP_FLUSH_WRITEBUF_DONE,
158 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
159 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
160 	spdk_trace_register_description("TCP_READ_DONE",
161 					TRACE_TCP_READ_FROM_SOCKET_DONE,
162 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
163 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
164 	spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
165 					TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
166 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
167 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
168 
169 	spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE,
170 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
171 					SPDK_TRACE_ARG_TYPE_INT, "");
172 	spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT,
173 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
174 					SPDK_TRACE_ARG_TYPE_INT, "");
175 	spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE,
176 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
177 					SPDK_TRACE_ARG_TYPE_INT, "state");
178 	spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT,
179 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
180 					SPDK_TRACE_ARG_TYPE_INT, "");
181 	spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY,
182 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
183 					SPDK_TRACE_ARG_TYPE_INT, "");
184 	spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ,
185 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
186 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
187 	spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE,
188 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
189 					SPDK_TRACE_ARG_TYPE_INT, "state");
190 
191 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1);
192 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0);
193 }
194 
195 struct spdk_nvmf_tcp_req  {
196 	struct spdk_nvmf_request		req;
197 	struct spdk_nvme_cpl			rsp;
198 	struct spdk_nvme_cmd			cmd;
199 
200 	/* A PDU that can be used for sending responses. This is
201 	 * not the incoming PDU! */
202 	struct nvme_tcp_pdu			*pdu;
203 
204 	/* In-capsule data buffer */
205 	uint8_t					*buf;
206 
207 	struct spdk_nvmf_tcp_req		*fused_pair;
208 
209 	/*
210 	 * The PDU for a request may be used multiple times in serial over
211 	 * the request's lifetime. For example, first to send an R2T, then
212 	 * to send a completion. To catch mistakes where the PDU is used
213 	 * twice at the same time, add a debug flag here for init/fini.
214 	 */
215 	bool					pdu_in_use;
216 	bool					has_in_capsule_data;
217 	bool					fused_failed;
218 
219 	/* transfer_tag */
220 	uint16_t				ttag;
221 
222 	enum spdk_nvmf_tcp_req_state		state;
223 
224 	/*
225 	 * h2c_offset is used when we receive the h2c_data PDU.
226 	 */
227 	uint32_t				h2c_offset;
228 
229 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		link;
230 	TAILQ_ENTRY(spdk_nvmf_tcp_req)		state_link;
231 };
232 
233 struct spdk_nvmf_tcp_qpair {
234 	struct spdk_nvmf_qpair			qpair;
235 	struct spdk_nvmf_tcp_poll_group		*group;
236 	struct spdk_sock			*sock;
237 
238 	enum nvme_tcp_pdu_recv_state		recv_state;
239 	enum nvme_tcp_qpair_state		state;
240 
241 	/* PDU being actively received */
242 	struct nvme_tcp_pdu			*pdu_in_progress;
243 
244 	struct spdk_nvmf_tcp_req		*fused_first;
245 
246 	/* Queues to track the requests in all states */
247 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_working_queue;
248 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_free_queue;
249 
250 	/* Number of requests in each state */
251 	uint32_t				state_cntr[TCP_REQUEST_NUM_STATES];
252 
253 	uint8_t					cpda;
254 
255 	bool					host_hdgst_enable;
256 	bool					host_ddgst_enable;
257 
258 	/* This is a spare PDU used for sending special management
259 	 * operations. Primarily, this is used for the initial
260 	 * connection response and c2h termination request. */
261 	struct nvme_tcp_pdu			*mgmt_pdu;
262 
263 	/* Arrays of in-capsule buffers, requests, and pdus.
264 	 * Each array is 'resource_count' number of elements */
265 	void					*bufs;
266 	struct spdk_nvmf_tcp_req		*reqs;
267 	struct nvme_tcp_pdu			*pdus;
268 	uint32_t				resource_count;
269 	uint32_t				recv_buf_size;
270 
271 	struct spdk_nvmf_tcp_port		*port;
272 
273 	/* IP address */
274 	char					initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
275 	char					target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
276 
277 	/* IP port */
278 	uint16_t				initiator_port;
279 	uint16_t				target_port;
280 
281 	/* Timer used to destroy qpair after detecting transport error issue if initiator does
282 	 *  not close the connection.
283 	 */
284 	struct spdk_poller			*timeout_poller;
285 
286 	spdk_nvmf_transport_qpair_fini_cb	fini_cb_fn;
287 	void					*fini_cb_arg;
288 
289 	TAILQ_ENTRY(spdk_nvmf_tcp_qpair)	link;
290 };
291 
292 struct spdk_nvmf_tcp_control_msg {
293 	STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
294 };
295 
296 struct spdk_nvmf_tcp_control_msg_list {
297 	void *msg_buf;
298 	STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
299 };
300 
301 struct spdk_nvmf_tcp_poll_group {
302 	struct spdk_nvmf_transport_poll_group	group;
303 	struct spdk_sock_group			*sock_group;
304 
305 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	qpairs;
306 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	await_req;
307 
308 	struct spdk_io_channel			*accel_channel;
309 	struct spdk_nvmf_tcp_control_msg_list	*control_msg_list;
310 
311 	TAILQ_ENTRY(spdk_nvmf_tcp_poll_group)	link;
312 };
313 
314 struct spdk_nvmf_tcp_port {
315 	const struct spdk_nvme_transport_id	*trid;
316 	struct spdk_sock			*listen_sock;
317 	TAILQ_ENTRY(spdk_nvmf_tcp_port)		link;
318 };
319 
320 struct tcp_transport_opts {
321 	bool		c2h_success;
322 	uint16_t	control_msg_num;
323 	uint32_t	sock_priority;
324 };
325 
326 struct spdk_nvmf_tcp_transport {
327 	struct spdk_nvmf_transport		transport;
328 	struct tcp_transport_opts               tcp_opts;
329 
330 	struct spdk_nvmf_tcp_poll_group		*next_pg;
331 
332 	struct spdk_poller			*accept_poller;
333 	pthread_mutex_t				lock;
334 
335 	TAILQ_HEAD(, spdk_nvmf_tcp_port)	ports;
336 	TAILQ_HEAD(, spdk_nvmf_tcp_poll_group)	poll_groups;
337 };
338 
339 static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
340 	{
341 		"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
342 		spdk_json_decode_bool, true
343 	},
344 	{
345 		"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
346 		spdk_json_decode_uint16, true
347 	},
348 	{
349 		"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
350 		spdk_json_decode_uint32, true
351 	},
352 };
353 
354 static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
355 				 struct spdk_nvmf_tcp_req *tcp_req);
356 static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
357 
358 static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
359 				    struct spdk_nvmf_tcp_req *tcp_req);
360 
361 static void
362 nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
363 		       enum spdk_nvmf_tcp_req_state state)
364 {
365 	struct spdk_nvmf_qpair *qpair;
366 	struct spdk_nvmf_tcp_qpair *tqpair;
367 
368 	qpair = tcp_req->req.qpair;
369 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
370 
371 	assert(tqpair->state_cntr[tcp_req->state] > 0);
372 	tqpair->state_cntr[tcp_req->state]--;
373 	tqpair->state_cntr[state]++;
374 
375 	tcp_req->state = state;
376 }
377 
378 static inline struct nvme_tcp_pdu *
379 nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
380 {
381 	assert(tcp_req->pdu_in_use == false);
382 
383 	memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
384 	tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
385 
386 	return tcp_req->pdu;
387 }
388 
389 static struct spdk_nvmf_tcp_req *
390 nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
391 {
392 	struct spdk_nvmf_tcp_req *tcp_req;
393 
394 	tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
395 	if (!tcp_req) {
396 		return NULL;
397 	}
398 
399 	memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
400 	tcp_req->h2c_offset = 0;
401 	tcp_req->has_in_capsule_data = false;
402 	tcp_req->req.dif_enabled = false;
403 	tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE;
404 
405 	TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
406 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
407 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
408 	return tcp_req;
409 }
410 
411 static inline void
412 nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
413 {
414 	assert(!tcp_req->pdu_in_use);
415 
416 	TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
417 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
418 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
419 }
420 
421 static void
422 nvmf_tcp_request_free(void *cb_arg)
423 {
424 	struct spdk_nvmf_tcp_transport *ttransport;
425 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
426 
427 	assert(tcp_req != NULL);
428 
429 	SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
430 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
431 				      struct spdk_nvmf_tcp_transport, transport);
432 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
433 	nvmf_tcp_req_process(ttransport, tcp_req);
434 }
435 
436 static int
437 nvmf_tcp_req_free(struct spdk_nvmf_request *req)
438 {
439 	struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
440 
441 	nvmf_tcp_request_free(tcp_req);
442 
443 	return 0;
444 }
445 
446 static void
447 nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
448 			   enum spdk_nvmf_tcp_req_state state)
449 {
450 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
451 
452 	assert(state != TCP_REQUEST_STATE_FREE);
453 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
454 		if (state == tcp_req->state) {
455 			nvmf_tcp_request_free(tcp_req);
456 		}
457 	}
458 }
459 
460 static void
461 nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
462 {
463 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
464 
465 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
466 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
467 
468 	/* Wipe the requests waiting for buffer from the global list */
469 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
470 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
471 			STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue, &tcp_req->req,
472 				      spdk_nvmf_request, buf_link);
473 		}
474 	}
475 
476 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
477 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
478 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
479 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
480 }
481 
482 static void
483 nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
484 {
485 	int i;
486 	struct spdk_nvmf_tcp_req *tcp_req;
487 
488 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
489 	for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
490 		SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
491 		TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
492 			if ((int)tcp_req->state == i) {
493 				SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
494 				SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
495 			}
496 		}
497 	}
498 }
499 
500 static void
501 _nvmf_tcp_qpair_destroy(void *_tqpair)
502 {
503 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
504 	spdk_nvmf_transport_qpair_fini_cb cb_fn = tqpair->fini_cb_fn;
505 	void *cb_arg = tqpair->fini_cb_arg;
506 	int err = 0;
507 
508 	spdk_trace_record(TRACE_TCP_QP_DESTROY, 0, 0, (uintptr_t)tqpair);
509 
510 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
511 
512 	err = spdk_sock_close(&tqpair->sock);
513 	assert(err == 0);
514 	nvmf_tcp_cleanup_all_states(tqpair);
515 
516 	if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
517 		SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
518 			    tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
519 			    tqpair->resource_count);
520 		err++;
521 	}
522 
523 	if (err > 0) {
524 		nvmf_tcp_dump_qpair_req_contents(tqpair);
525 	}
526 
527 	/* The timeout poller might still be registered here if we close the qpair before host
528 	 * terminates the connection.
529 	 */
530 	spdk_poller_unregister(&tqpair->timeout_poller);
531 	spdk_dma_free(tqpair->pdus);
532 	free(tqpair->reqs);
533 	spdk_free(tqpair->bufs);
534 	free(tqpair);
535 
536 	if (cb_fn != NULL) {
537 		cb_fn(cb_arg);
538 	}
539 
540 	SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
541 }
542 
543 static void
544 nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
545 {
546 	/* Delay the destruction to make sure it isn't performed from the context of a sock
547 	 * callback.  Otherwise, spdk_sock_close() might not abort pending requests, causing their
548 	 * completions to be executed after the qpair is freed.  (Note: this fixed issue #2471.)
549 	 */
550 	spdk_thread_send_msg(spdk_get_thread(), _nvmf_tcp_qpair_destroy, tqpair);
551 }
552 
553 static void
554 nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
555 {
556 	struct spdk_nvmf_tcp_transport	*ttransport;
557 	assert(w != NULL);
558 
559 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
560 	spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
561 	spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
562 }
563 
564 static int
565 nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
566 		 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
567 {
568 	struct spdk_nvmf_tcp_transport	*ttransport;
569 
570 	assert(transport != NULL);
571 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
572 
573 	spdk_poller_unregister(&ttransport->accept_poller);
574 	pthread_mutex_destroy(&ttransport->lock);
575 	free(ttransport);
576 
577 	if (cb_fn) {
578 		cb_fn(cb_arg);
579 	}
580 	return 0;
581 }
582 
583 static int nvmf_tcp_accept(void *ctx);
584 
585 static struct spdk_nvmf_transport *
586 nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
587 {
588 	struct spdk_nvmf_tcp_transport *ttransport;
589 	uint32_t sge_count;
590 	uint32_t min_shared_buffers;
591 
592 	ttransport = calloc(1, sizeof(*ttransport));
593 	if (!ttransport) {
594 		return NULL;
595 	}
596 
597 	TAILQ_INIT(&ttransport->ports);
598 	TAILQ_INIT(&ttransport->poll_groups);
599 
600 	ttransport->transport.ops = &spdk_nvmf_transport_tcp;
601 
602 	ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
603 	ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
604 	ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
605 	if (opts->transport_specific != NULL &&
606 	    spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
607 					    SPDK_COUNTOF(tcp_transport_opts_decoder),
608 					    &ttransport->tcp_opts)) {
609 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
610 		free(ttransport);
611 		return NULL;
612 	}
613 
614 	SPDK_NOTICELOG("*** TCP Transport Init ***\n");
615 
616 	SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
617 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
618 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
619 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
620 		     "  num_shared_buffers=%d, c2h_success=%d,\n"
621 		     "  dif_insert_or_strip=%d, sock_priority=%d\n"
622 		     "  abort_timeout_sec=%d, control_msg_num=%hu\n",
623 		     opts->max_queue_depth,
624 		     opts->max_io_size,
625 		     opts->max_qpairs_per_ctrlr - 1,
626 		     opts->io_unit_size,
627 		     opts->in_capsule_data_size,
628 		     opts->max_aq_depth,
629 		     opts->num_shared_buffers,
630 		     ttransport->tcp_opts.c2h_success,
631 		     opts->dif_insert_or_strip,
632 		     ttransport->tcp_opts.sock_priority,
633 		     opts->abort_timeout_sec,
634 		     ttransport->tcp_opts.control_msg_num);
635 
636 	if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
637 		SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
638 			    "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
639 			    ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
640 		free(ttransport);
641 		return NULL;
642 	}
643 
644 	if (ttransport->tcp_opts.control_msg_num == 0 &&
645 	    opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
646 		SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
647 			     SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
648 		ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
649 	}
650 
651 	/* I/O unit size cannot be larger than max I/O size */
652 	if (opts->io_unit_size > opts->max_io_size) {
653 		opts->io_unit_size = opts->max_io_size;
654 	}
655 
656 	sge_count = opts->max_io_size / opts->io_unit_size;
657 	if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
658 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
659 		free(ttransport);
660 		return NULL;
661 	}
662 
663 	min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
664 	if (min_shared_buffers > opts->num_shared_buffers) {
665 		SPDK_ERRLOG("There are not enough buffers to satisfy "
666 			    "per-poll group caches for each thread. (%" PRIu32 ") "
667 			    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
668 		SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
669 		free(ttransport);
670 		return NULL;
671 	}
672 
673 	pthread_mutex_init(&ttransport->lock, NULL);
674 
675 	ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport,
676 				    opts->acceptor_poll_rate);
677 	if (!ttransport->accept_poller) {
678 		pthread_mutex_destroy(&ttransport->lock);
679 		free(ttransport);
680 		return NULL;
681 	}
682 
683 	return &ttransport->transport;
684 }
685 
686 static int
687 nvmf_tcp_trsvcid_to_int(const char *trsvcid)
688 {
689 	unsigned long long ull;
690 	char *end = NULL;
691 
692 	ull = strtoull(trsvcid, &end, 10);
693 	if (end == NULL || end == trsvcid || *end != '\0') {
694 		return -1;
695 	}
696 
697 	/* Valid TCP/IP port numbers are in [0, 65535] */
698 	if (ull > 65535) {
699 		return -1;
700 	}
701 
702 	return (int)ull;
703 }
704 
705 /**
706  * Canonicalize a listen address trid.
707  */
708 static int
709 nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
710 			   const struct spdk_nvme_transport_id *trid)
711 {
712 	int trsvcid_int;
713 
714 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
715 	if (trsvcid_int < 0) {
716 		return -EINVAL;
717 	}
718 
719 	memset(canon_trid, 0, sizeof(*canon_trid));
720 	spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
721 	canon_trid->adrfam = trid->adrfam;
722 	snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
723 	snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
724 
725 	return 0;
726 }
727 
728 /**
729  * Find an existing listening port.
730  *
731  * Caller must hold ttransport->lock.
732  */
733 static struct spdk_nvmf_tcp_port *
734 nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
735 		   const struct spdk_nvme_transport_id *trid)
736 {
737 	struct spdk_nvme_transport_id canon_trid;
738 	struct spdk_nvmf_tcp_port *port;
739 
740 	if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
741 		return NULL;
742 	}
743 
744 	TAILQ_FOREACH(port, &ttransport->ports, link) {
745 		if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
746 			return port;
747 		}
748 	}
749 
750 	return NULL;
751 }
752 
753 static int
754 nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
755 		struct spdk_nvmf_listen_opts *listen_opts)
756 {
757 	struct spdk_nvmf_tcp_transport *ttransport;
758 	struct spdk_nvmf_tcp_port *port;
759 	int trsvcid_int;
760 	uint8_t adrfam;
761 	struct spdk_sock_opts opts;
762 
763 	if (!strlen(trid->trsvcid)) {
764 		SPDK_ERRLOG("Service id is required\n");
765 		return -EINVAL;
766 	}
767 
768 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
769 
770 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
771 	if (trsvcid_int < 0) {
772 		SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
773 		return -EINVAL;
774 	}
775 
776 	pthread_mutex_lock(&ttransport->lock);
777 	port = calloc(1, sizeof(*port));
778 	if (!port) {
779 		SPDK_ERRLOG("Port allocation failed\n");
780 		pthread_mutex_unlock(&ttransport->lock);
781 		return -ENOMEM;
782 	}
783 
784 	port->trid = trid;
785 	opts.opts_size = sizeof(opts);
786 	spdk_sock_get_default_opts(&opts);
787 	opts.priority = ttransport->tcp_opts.sock_priority;
788 	port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
789 			    NULL, &opts);
790 	if (port->listen_sock == NULL) {
791 		SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
792 			    trid->traddr, trsvcid_int,
793 			    spdk_strerror(errno), errno);
794 		free(port);
795 		pthread_mutex_unlock(&ttransport->lock);
796 		return -errno;
797 	}
798 
799 	if (spdk_sock_is_ipv4(port->listen_sock)) {
800 		adrfam = SPDK_NVMF_ADRFAM_IPV4;
801 	} else if (spdk_sock_is_ipv6(port->listen_sock)) {
802 		adrfam = SPDK_NVMF_ADRFAM_IPV6;
803 	} else {
804 		SPDK_ERRLOG("Unhandled socket type\n");
805 		adrfam = 0;
806 	}
807 
808 	if (adrfam != trid->adrfam) {
809 		SPDK_ERRLOG("Socket address family mismatch\n");
810 		spdk_sock_close(&port->listen_sock);
811 		free(port);
812 		pthread_mutex_unlock(&ttransport->lock);
813 		return -EINVAL;
814 	}
815 
816 	SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
817 		       trid->traddr, trid->trsvcid);
818 
819 	TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
820 	pthread_mutex_unlock(&ttransport->lock);
821 	return 0;
822 }
823 
824 static void
825 nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
826 		     const struct spdk_nvme_transport_id *trid)
827 {
828 	struct spdk_nvmf_tcp_transport *ttransport;
829 	struct spdk_nvmf_tcp_port *port;
830 
831 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
832 
833 	SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
834 		      trid->traddr, trid->trsvcid);
835 
836 	pthread_mutex_lock(&ttransport->lock);
837 	port = nvmf_tcp_find_port(ttransport, trid);
838 	if (port) {
839 		TAILQ_REMOVE(&ttransport->ports, port, link);
840 		spdk_sock_close(&port->listen_sock);
841 		free(port);
842 	}
843 
844 	pthread_mutex_unlock(&ttransport->lock);
845 }
846 
847 static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
848 		enum nvme_tcp_pdu_recv_state state);
849 
850 static void
851 nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvme_tcp_qpair_state state)
852 {
853 	tqpair->state = state;
854 	spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
855 			  tqpair->state);
856 }
857 
858 static void
859 nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
860 {
861 	SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
862 
863 	spdk_trace_record(TRACE_TCP_QP_DISCONNECT, 0, 0, (uintptr_t)tqpair);
864 
865 	if (tqpair->state <= NVME_TCP_QPAIR_STATE_RUNNING) {
866 		nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITING);
867 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
868 		spdk_poller_unregister(&tqpair->timeout_poller);
869 
870 		/* This will end up calling nvmf_tcp_close_qpair */
871 		spdk_nvmf_qpair_disconnect(&tqpair->qpair, NULL, NULL);
872 	}
873 }
874 
875 static void
876 _mgmt_pdu_write_done(void *_tqpair, int err)
877 {
878 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
879 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
880 
881 	if (spdk_unlikely(err != 0)) {
882 		nvmf_tcp_qpair_disconnect(tqpair);
883 		return;
884 	}
885 
886 	assert(pdu->cb_fn != NULL);
887 	pdu->cb_fn(pdu->cb_arg);
888 }
889 
890 static void
891 _req_pdu_write_done(void *req, int err)
892 {
893 	struct spdk_nvmf_tcp_req *tcp_req = req;
894 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
895 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
896 
897 	assert(tcp_req->pdu_in_use);
898 	tcp_req->pdu_in_use = false;
899 
900 	/* If the request is in a completed state, we're waiting for write completion to free it */
901 	if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) {
902 		nvmf_tcp_request_free(tcp_req);
903 		return;
904 	}
905 
906 	if (spdk_unlikely(err != 0)) {
907 		nvmf_tcp_qpair_disconnect(tqpair);
908 		return;
909 	}
910 
911 	assert(pdu->cb_fn != NULL);
912 	pdu->cb_fn(pdu->cb_arg);
913 }
914 
915 static void
916 _pdu_write_done(struct nvme_tcp_pdu *pdu, int err)
917 {
918 	pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err);
919 }
920 
921 static void
922 _tcp_write_pdu(struct nvme_tcp_pdu *pdu)
923 {
924 	uint32_t mapped_length = 0;
925 	ssize_t rc;
926 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
927 
928 	pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
929 			       tqpair->host_hdgst_enable, tqpair->host_ddgst_enable,
930 			       &mapped_length);
931 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
932 	    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
933 		rc = spdk_sock_writev(tqpair->sock, pdu->iov, pdu->sock_req.iovcnt);
934 		if (rc == mapped_length) {
935 			_pdu_write_done(pdu, 0);
936 		} else {
937 			SPDK_ERRLOG("IC_RESP or TERM_REQ could not write to socket.\n");
938 			_pdu_write_done(pdu, -1);
939 		}
940 	} else {
941 		spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
942 	}
943 }
944 
945 static void
946 data_crc32_accel_done(void *cb_arg, int status)
947 {
948 	struct nvme_tcp_pdu *pdu = cb_arg;
949 
950 	if (spdk_unlikely(status)) {
951 		SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
952 		_pdu_write_done(pdu, status);
953 		return;
954 	}
955 
956 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
957 	MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
958 
959 	_tcp_write_pdu(pdu);
960 }
961 
962 static void
963 pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
964 {
965 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
966 	uint32_t crc32c;
967 
968 	/* Data Digest */
969 	if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
970 		/* Only suport this limitated case for the first step */
971 		if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
972 				&& tqpair->group)) {
973 			if (!spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
974 						       pdu->data_iovcnt, 0, data_crc32_accel_done, pdu)) {
975 				return;
976 			}
977 		}
978 
979 		crc32c = nvme_tcp_pdu_calc_data_digest(pdu);
980 		crc32c = crc32c ^ SPDK_CRC32C_XOR;
981 		MAKE_DIGEST_WORD(pdu->data_digest, crc32c);
982 	}
983 
984 	_tcp_write_pdu(pdu);
985 }
986 
987 static void
988 nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
989 			 struct nvme_tcp_pdu *pdu,
990 			 nvme_tcp_qpair_xfer_complete_cb cb_fn,
991 			 void *cb_arg)
992 {
993 	int hlen;
994 	uint32_t crc32c;
995 
996 	assert(tqpair->pdu_in_progress != pdu);
997 
998 	hlen = pdu->hdr.common.hlen;
999 	pdu->cb_fn = cb_fn;
1000 	pdu->cb_arg = cb_arg;
1001 
1002 	pdu->iov[0].iov_base = &pdu->hdr.raw;
1003 	pdu->iov[0].iov_len = hlen;
1004 
1005 	/* Header Digest */
1006 	if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) {
1007 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1008 		MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
1009 	}
1010 
1011 	/* Data Digest */
1012 	pdu_data_crc32_compute(pdu);
1013 }
1014 
1015 static void
1016 nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1017 			      nvme_tcp_qpair_xfer_complete_cb cb_fn,
1018 			      void *cb_arg)
1019 {
1020 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1021 
1022 	pdu->sock_req.cb_fn = _mgmt_pdu_write_done;
1023 	pdu->sock_req.cb_arg = tqpair;
1024 
1025 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1026 }
1027 
1028 static void
1029 nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1030 			     struct spdk_nvmf_tcp_req *tcp_req,
1031 			     nvme_tcp_qpair_xfer_complete_cb cb_fn,
1032 			     void *cb_arg)
1033 {
1034 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1035 
1036 	pdu->sock_req.cb_fn = _req_pdu_write_done;
1037 	pdu->sock_req.cb_arg = tcp_req;
1038 
1039 	assert(!tcp_req->pdu_in_use);
1040 	tcp_req->pdu_in_use = true;
1041 
1042 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1043 }
1044 
1045 static int
1046 nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
1047 {
1048 	uint32_t i;
1049 	struct spdk_nvmf_transport_opts *opts;
1050 	uint32_t in_capsule_data_size;
1051 
1052 	opts = &tqpair->qpair.transport->opts;
1053 
1054 	in_capsule_data_size = opts->in_capsule_data_size;
1055 	if (opts->dif_insert_or_strip) {
1056 		in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
1057 	}
1058 
1059 	tqpair->resource_count = opts->max_queue_depth;
1060 
1061 	tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
1062 	if (!tqpair->reqs) {
1063 		SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
1064 		return -1;
1065 	}
1066 
1067 	if (in_capsule_data_size) {
1068 		tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
1069 					    NULL, SPDK_ENV_LCORE_ID_ANY,
1070 					    SPDK_MALLOC_DMA);
1071 		if (!tqpair->bufs) {
1072 			SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
1073 			return -1;
1074 		}
1075 	}
1076 
1077 	/* Add additional 2 members, which will be used for mgmt_pdu and pdu_in_progress owned by the tqpair */
1078 	tqpair->pdus = spdk_dma_zmalloc((tqpair->resource_count + 2) * sizeof(*tqpair->pdus), 0x1000, NULL);
1079 	if (!tqpair->pdus) {
1080 		SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
1081 		return -1;
1082 	}
1083 
1084 	for (i = 0; i < tqpair->resource_count; i++) {
1085 		struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
1086 
1087 		tcp_req->ttag = i + 1;
1088 		tcp_req->req.qpair = &tqpair->qpair;
1089 
1090 		tcp_req->pdu = &tqpair->pdus[i];
1091 		tcp_req->pdu->qpair = tqpair;
1092 
1093 		/* Set up memory to receive commands */
1094 		if (tqpair->bufs) {
1095 			tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
1096 		}
1097 
1098 		/* Set the cmdn and rsp */
1099 		tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
1100 		tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
1101 
1102 		tcp_req->req.stripped_data = NULL;
1103 
1104 		/* Initialize request state to FREE */
1105 		tcp_req->state = TCP_REQUEST_STATE_FREE;
1106 		TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
1107 		tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
1108 	}
1109 
1110 	tqpair->mgmt_pdu = &tqpair->pdus[i];
1111 	tqpair->mgmt_pdu->qpair = tqpair;
1112 	tqpair->pdu_in_progress = &tqpair->pdus[i + 1];
1113 
1114 	tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
1115 				 SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1116 
1117 	return 0;
1118 }
1119 
1120 static int
1121 nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
1122 {
1123 	struct spdk_nvmf_tcp_qpair *tqpair;
1124 
1125 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1126 
1127 	SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
1128 
1129 	spdk_trace_record(TRACE_TCP_QP_CREATE, 0, 0, (uintptr_t)tqpair);
1130 
1131 	/* Initialise request state queues of the qpair */
1132 	TAILQ_INIT(&tqpair->tcp_req_free_queue);
1133 	TAILQ_INIT(&tqpair->tcp_req_working_queue);
1134 
1135 	tqpair->host_hdgst_enable = true;
1136 	tqpair->host_ddgst_enable = true;
1137 
1138 	return 0;
1139 }
1140 
1141 static int
1142 nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
1143 {
1144 	int rc;
1145 
1146 	spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, 0, 0, (uintptr_t)tqpair);
1147 
1148 	/* set low water mark */
1149 	rc = spdk_sock_set_recvlowat(tqpair->sock, 1);
1150 	if (rc != 0) {
1151 		SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
1152 		return rc;
1153 	}
1154 
1155 	return 0;
1156 }
1157 
1158 static void
1159 nvmf_tcp_handle_connect(struct spdk_nvmf_transport *transport,
1160 			struct spdk_nvmf_tcp_port *port,
1161 			struct spdk_sock *sock)
1162 {
1163 	struct spdk_nvmf_tcp_qpair *tqpair;
1164 	int rc;
1165 
1166 	SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
1167 		      port->trid->traddr, port->trid->trsvcid);
1168 
1169 	tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
1170 	if (tqpair == NULL) {
1171 		SPDK_ERRLOG("Could not allocate new connection.\n");
1172 		spdk_sock_close(&sock);
1173 		return;
1174 	}
1175 
1176 	tqpair->sock = sock;
1177 	tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
1178 	tqpair->port = port;
1179 	tqpair->qpair.transport = transport;
1180 
1181 	rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
1182 			       sizeof(tqpair->target_addr), &tqpair->target_port,
1183 			       tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
1184 			       &tqpair->initiator_port);
1185 	if (rc < 0) {
1186 		SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
1187 		nvmf_tcp_qpair_destroy(tqpair);
1188 		return;
1189 	}
1190 
1191 	spdk_nvmf_tgt_new_qpair(transport->tgt, &tqpair->qpair);
1192 }
1193 
1194 static uint32_t
1195 nvmf_tcp_port_accept(struct spdk_nvmf_transport *transport, struct spdk_nvmf_tcp_port *port)
1196 {
1197 	struct spdk_sock *sock;
1198 	uint32_t count = 0;
1199 	int i;
1200 
1201 	for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
1202 		sock = spdk_sock_accept(port->listen_sock);
1203 		if (sock == NULL) {
1204 			break;
1205 		}
1206 		count++;
1207 		nvmf_tcp_handle_connect(transport, port, sock);
1208 	}
1209 
1210 	return count;
1211 }
1212 
1213 static int
1214 nvmf_tcp_accept(void *ctx)
1215 {
1216 	struct spdk_nvmf_transport *transport = ctx;
1217 	struct spdk_nvmf_tcp_transport *ttransport;
1218 	struct spdk_nvmf_tcp_port *port;
1219 	uint32_t count = 0;
1220 
1221 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1222 
1223 	TAILQ_FOREACH(port, &ttransport->ports, link) {
1224 		count += nvmf_tcp_port_accept(transport, port);
1225 	}
1226 
1227 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1228 }
1229 
1230 static void
1231 nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
1232 		  struct spdk_nvme_transport_id *trid,
1233 		  struct spdk_nvmf_discovery_log_page_entry *entry)
1234 {
1235 	entry->trtype = SPDK_NVMF_TRTYPE_TCP;
1236 	entry->adrfam = trid->adrfam;
1237 	entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
1238 
1239 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
1240 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
1241 
1242 	entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
1243 }
1244 
1245 static struct spdk_nvmf_tcp_control_msg_list *
1246 nvmf_tcp_control_msg_list_create(uint16_t num_messages)
1247 {
1248 	struct spdk_nvmf_tcp_control_msg_list *list;
1249 	struct spdk_nvmf_tcp_control_msg *msg;
1250 	uint16_t i;
1251 
1252 	list = calloc(1, sizeof(*list));
1253 	if (!list) {
1254 		SPDK_ERRLOG("Failed to allocate memory for list structure\n");
1255 		return NULL;
1256 	}
1257 
1258 	list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
1259 				     NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
1260 	if (!list->msg_buf) {
1261 		SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
1262 		free(list);
1263 		return NULL;
1264 	}
1265 
1266 	STAILQ_INIT(&list->free_msgs);
1267 
1268 	for (i = 0; i < num_messages; i++) {
1269 		msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
1270 				SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1271 		STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
1272 	}
1273 
1274 	return list;
1275 }
1276 
1277 static void
1278 nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
1279 {
1280 	if (!list) {
1281 		return;
1282 	}
1283 
1284 	spdk_free(list->msg_buf);
1285 	free(list);
1286 }
1287 
1288 static struct spdk_nvmf_transport_poll_group *
1289 nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport,
1290 			   struct spdk_nvmf_poll_group *group)
1291 {
1292 	struct spdk_nvmf_tcp_transport	*ttransport;
1293 	struct spdk_nvmf_tcp_poll_group *tgroup;
1294 
1295 	tgroup = calloc(1, sizeof(*tgroup));
1296 	if (!tgroup) {
1297 		return NULL;
1298 	}
1299 
1300 	tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
1301 	if (!tgroup->sock_group) {
1302 		goto cleanup;
1303 	}
1304 
1305 	TAILQ_INIT(&tgroup->qpairs);
1306 	TAILQ_INIT(&tgroup->await_req);
1307 
1308 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1309 
1310 	if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
1311 		SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
1312 			      "Creating control messages list\n", transport->opts.in_capsule_data_size,
1313 			      SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1314 		tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
1315 		if (!tgroup->control_msg_list) {
1316 			goto cleanup;
1317 		}
1318 	}
1319 
1320 	tgroup->accel_channel = spdk_accel_engine_get_io_channel();
1321 	if (spdk_unlikely(!tgroup->accel_channel)) {
1322 		SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
1323 		goto cleanup;
1324 	}
1325 
1326 	pthread_mutex_lock(&ttransport->lock);
1327 	TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link);
1328 	if (ttransport->next_pg == NULL) {
1329 		ttransport->next_pg = tgroup;
1330 	}
1331 	pthread_mutex_unlock(&ttransport->lock);
1332 
1333 	return &tgroup->group;
1334 
1335 cleanup:
1336 	nvmf_tcp_poll_group_destroy(&tgroup->group);
1337 	return NULL;
1338 }
1339 
1340 static struct spdk_nvmf_transport_poll_group *
1341 nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
1342 {
1343 	struct spdk_nvmf_tcp_transport *ttransport;
1344 	struct spdk_nvmf_tcp_poll_group **pg;
1345 	struct spdk_nvmf_tcp_qpair *tqpair;
1346 	struct spdk_sock_group *group = NULL, *hint = NULL;
1347 	int rc;
1348 
1349 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
1350 
1351 	pthread_mutex_lock(&ttransport->lock);
1352 
1353 	if (TAILQ_EMPTY(&ttransport->poll_groups)) {
1354 		pthread_mutex_unlock(&ttransport->lock);
1355 		return NULL;
1356 	}
1357 
1358 	pg = &ttransport->next_pg;
1359 	assert(*pg != NULL);
1360 	hint = (*pg)->sock_group;
1361 
1362 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1363 	rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint);
1364 	if (rc != 0) {
1365 		pthread_mutex_unlock(&ttransport->lock);
1366 		return NULL;
1367 	} else if (group != NULL) {
1368 		/* Optimal poll group was found */
1369 		pthread_mutex_unlock(&ttransport->lock);
1370 		return spdk_sock_group_get_ctx(group);
1371 	}
1372 
1373 	/* The hint was used for optimal poll group, advance next_pg. */
1374 	*pg = TAILQ_NEXT(*pg, link);
1375 	if (*pg == NULL) {
1376 		*pg = TAILQ_FIRST(&ttransport->poll_groups);
1377 	}
1378 
1379 	pthread_mutex_unlock(&ttransport->lock);
1380 	return spdk_sock_group_get_ctx(hint);
1381 }
1382 
1383 static void
1384 nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
1385 {
1386 	struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup;
1387 	struct spdk_nvmf_tcp_transport *ttransport;
1388 
1389 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
1390 	spdk_sock_group_close(&tgroup->sock_group);
1391 	if (tgroup->control_msg_list) {
1392 		nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
1393 	}
1394 
1395 	if (tgroup->accel_channel) {
1396 		spdk_put_io_channel(tgroup->accel_channel);
1397 	}
1398 
1399 	ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport);
1400 
1401 	pthread_mutex_lock(&ttransport->lock);
1402 	next_tgroup = TAILQ_NEXT(tgroup, link);
1403 	TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link);
1404 	if (next_tgroup == NULL) {
1405 		next_tgroup = TAILQ_FIRST(&ttransport->poll_groups);
1406 	}
1407 	if (ttransport->next_pg == tgroup) {
1408 		ttransport->next_pg = next_tgroup;
1409 	}
1410 	pthread_mutex_unlock(&ttransport->lock);
1411 
1412 	free(tgroup);
1413 }
1414 
1415 static void
1416 nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1417 			      enum nvme_tcp_pdu_recv_state state)
1418 {
1419 	if (tqpair->recv_state == state) {
1420 		SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
1421 			    tqpair, state);
1422 		return;
1423 	}
1424 
1425 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1426 		/* When leaving the await req state, move the qpair to the main list */
1427 		TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link);
1428 		TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link);
1429 	}
1430 
1431 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
1432 	tqpair->recv_state = state;
1433 
1434 	spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
1435 			  tqpair->recv_state);
1436 
1437 	switch (state) {
1438 	case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
1439 	case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
1440 	case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
1441 		break;
1442 	case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
1443 		TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link);
1444 		TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link);
1445 		break;
1446 	case NVME_TCP_PDU_RECV_STATE_ERROR:
1447 	case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
1448 		memset(tqpair->pdu_in_progress, 0, sizeof(*(tqpair->pdu_in_progress)));
1449 		break;
1450 	default:
1451 		SPDK_ERRLOG("The state(%d) is invalid\n", state);
1452 		abort();
1453 		break;
1454 	}
1455 }
1456 
1457 static int
1458 nvmf_tcp_qpair_handle_timeout(void *ctx)
1459 {
1460 	struct spdk_nvmf_tcp_qpair *tqpair = ctx;
1461 
1462 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1463 
1464 	SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
1465 		    SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
1466 
1467 	nvmf_tcp_qpair_disconnect(tqpair);
1468 	return SPDK_POLLER_BUSY;
1469 }
1470 
1471 static void
1472 nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
1473 {
1474 	struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
1475 
1476 	if (!tqpair->timeout_poller) {
1477 		tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
1478 					 SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
1479 	}
1480 }
1481 
1482 static void
1483 nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
1484 			   enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
1485 {
1486 	struct nvme_tcp_pdu *rsp_pdu;
1487 	struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
1488 	uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
1489 	uint32_t copy_len;
1490 
1491 	rsp_pdu = tqpair->mgmt_pdu;
1492 
1493 	c2h_term_req = &rsp_pdu->hdr.term_req;
1494 	c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
1495 	c2h_term_req->common.hlen = c2h_term_req_hdr_len;
1496 
1497 	if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1498 	    (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1499 		DSET32(&c2h_term_req->fei, error_offset);
1500 	}
1501 
1502 	copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
1503 
1504 	/* Copy the error info into the buffer */
1505 	memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
1506 	nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
1507 
1508 	/* Contain the header of the wrong received pdu */
1509 	c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
1510 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
1511 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair);
1512 }
1513 
1514 static void
1515 nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1516 				struct spdk_nvmf_tcp_qpair *tqpair,
1517 				struct nvme_tcp_pdu *pdu)
1518 {
1519 	struct spdk_nvmf_tcp_req *tcp_req;
1520 
1521 	assert(pdu->psh_valid_bytes == pdu->psh_len);
1522 	assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
1523 
1524 	tcp_req = nvmf_tcp_req_get(tqpair);
1525 	if (!tcp_req) {
1526 		/* Directly return and make the allocation retry again.  This can happen if we're
1527 		 * using asynchronous writes to send the response to the host or when releasing
1528 		 * zero-copy buffers after a response has been sent.  In both cases, the host might
1529 		 * receive the response before we've finished processing the request and is free to
1530 		 * send another one.
1531 		 */
1532 		if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 ||
1533 		    tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) {
1534 			return;
1535 		}
1536 
1537 		/* The host sent more commands than the maximum queue depth. */
1538 		SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
1539 		nvmf_tcp_qpair_disconnect(tqpair);
1540 		return;
1541 	}
1542 
1543 	pdu->req = tcp_req;
1544 	assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
1545 	nvmf_tcp_req_process(ttransport, tcp_req);
1546 }
1547 
1548 static void
1549 nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1550 				    struct spdk_nvmf_tcp_qpair *tqpair,
1551 				    struct nvme_tcp_pdu *pdu)
1552 {
1553 	struct spdk_nvmf_tcp_req *tcp_req;
1554 	struct spdk_nvme_tcp_cmd *capsule_cmd;
1555 	uint32_t error_offset = 0;
1556 	enum spdk_nvme_tcp_term_req_fes fes;
1557 	struct spdk_nvme_cpl *rsp;
1558 
1559 	capsule_cmd = &pdu->hdr.capsule_cmd;
1560 	tcp_req = pdu->req;
1561 	assert(tcp_req != NULL);
1562 
1563 	/* Zero-copy requests don't support ICD */
1564 	assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req));
1565 
1566 	if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
1567 		SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
1568 			    SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
1569 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1570 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
1571 		goto err;
1572 	}
1573 
1574 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
1575 
1576 	rsp = &tcp_req->req.rsp->nvme_cpl;
1577 	if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1578 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1579 	} else {
1580 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1581 	}
1582 
1583 	nvmf_tcp_req_process(ttransport, tcp_req);
1584 
1585 	return;
1586 err:
1587 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1588 }
1589 
1590 static void
1591 nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1592 			     struct spdk_nvmf_tcp_qpair *tqpair,
1593 			     struct nvme_tcp_pdu *pdu)
1594 {
1595 	struct spdk_nvmf_tcp_req *tcp_req;
1596 	uint32_t error_offset = 0;
1597 	enum spdk_nvme_tcp_term_req_fes fes = 0;
1598 	struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
1599 
1600 	h2c_data = &pdu->hdr.h2c_data;
1601 
1602 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
1603 		      tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
1604 
1605 	if (h2c_data->ttag > tqpair->resource_count) {
1606 		SPDK_DEBUGLOG(nvmf_tcp, "ttag %u is larger than allowed %u.\n", h2c_data->ttag,
1607 			      tqpair->resource_count);
1608 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1609 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1610 		goto err;
1611 	}
1612 
1613 	tcp_req = &tqpair->reqs[h2c_data->ttag - 1];
1614 
1615 	if (spdk_unlikely(tcp_req->state != TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER &&
1616 			  tcp_req->state != TCP_REQUEST_STATE_AWAITING_R2T_ACK)) {
1617 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, has error state in %d\n", tcp_req, tqpair,
1618 			      tcp_req->state);
1619 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1620 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1621 		goto err;
1622 	}
1623 
1624 	if (spdk_unlikely(tcp_req->req.cmd->nvme_cmd.cid != h2c_data->cccid)) {
1625 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, expected %u but %u for cccid.\n", tcp_req, tqpair,
1626 			      tcp_req->req.cmd->nvme_cmd.cid, h2c_data->cccid);
1627 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1628 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
1629 		goto err;
1630 	}
1631 
1632 	if (tcp_req->h2c_offset != h2c_data->datao) {
1633 		SPDK_DEBUGLOG(nvmf_tcp,
1634 			      "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
1635 			      tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
1636 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1637 		goto err;
1638 	}
1639 
1640 	if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
1641 		SPDK_DEBUGLOG(nvmf_tcp,
1642 			      "tcp_req(%p), tqpair=%p,  (datao=%u + datal=%u) exceeds requested length=%u\n",
1643 			      tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
1644 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1645 		goto err;
1646 	}
1647 
1648 	pdu->req = tcp_req;
1649 
1650 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
1651 		pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
1652 	}
1653 
1654 	nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
1655 				  h2c_data->datao, h2c_data->datal);
1656 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1657 	return;
1658 
1659 err:
1660 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1661 }
1662 
1663 static void
1664 nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
1665 			       struct spdk_nvmf_tcp_qpair *tqpair)
1666 {
1667 	struct nvme_tcp_pdu *rsp_pdu;
1668 	struct spdk_nvme_tcp_rsp *capsule_resp;
1669 
1670 	SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
1671 
1672 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1673 	assert(rsp_pdu != NULL);
1674 
1675 	capsule_resp = &rsp_pdu->hdr.capsule_resp;
1676 	capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
1677 	capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
1678 	capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
1679 	if (tqpair->host_hdgst_enable) {
1680 		capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1681 		capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1682 	}
1683 
1684 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req);
1685 }
1686 
1687 static void
1688 nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
1689 {
1690 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1691 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
1692 					     struct spdk_nvmf_tcp_qpair, qpair);
1693 
1694 	assert(tqpair != NULL);
1695 
1696 	if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
1697 		SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
1698 			      tcp_req->req.length);
1699 		_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
1700 		return;
1701 	}
1702 
1703 	if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
1704 		nvmf_tcp_request_free(tcp_req);
1705 	} else {
1706 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
1707 	}
1708 }
1709 
1710 static void
1711 nvmf_tcp_r2t_complete(void *cb_arg)
1712 {
1713 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1714 	struct spdk_nvmf_tcp_transport *ttransport;
1715 
1716 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
1717 				      struct spdk_nvmf_tcp_transport, transport);
1718 
1719 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
1720 
1721 	if (tcp_req->h2c_offset == tcp_req->req.length) {
1722 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1723 		nvmf_tcp_req_process(ttransport, tcp_req);
1724 	}
1725 }
1726 
1727 static void
1728 nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1729 		      struct spdk_nvmf_tcp_req *tcp_req)
1730 {
1731 	struct nvme_tcp_pdu *rsp_pdu;
1732 	struct spdk_nvme_tcp_r2t_hdr *r2t;
1733 
1734 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1735 	assert(rsp_pdu != NULL);
1736 
1737 	r2t = &rsp_pdu->hdr.r2t;
1738 	r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
1739 	r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
1740 
1741 	if (tqpair->host_hdgst_enable) {
1742 		r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1743 		r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1744 	}
1745 
1746 	r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
1747 	r2t->ttag = tcp_req->ttag;
1748 	r2t->r2to = tcp_req->h2c_offset;
1749 	r2t->r2tl = tcp_req->req.length;
1750 
1751 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
1752 
1753 	SPDK_DEBUGLOG(nvmf_tcp,
1754 		      "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
1755 		      tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
1756 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req);
1757 }
1758 
1759 static void
1760 nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1761 				 struct spdk_nvmf_tcp_qpair *tqpair,
1762 				 struct nvme_tcp_pdu *pdu)
1763 {
1764 	struct spdk_nvmf_tcp_req *tcp_req;
1765 	struct spdk_nvme_cpl *rsp;
1766 
1767 	tcp_req = pdu->req;
1768 	assert(tcp_req != NULL);
1769 
1770 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1771 
1772 	tcp_req->h2c_offset += pdu->data_len;
1773 
1774 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
1775 
1776 	/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
1777 	 * acknowledged before moving on. */
1778 	if (tcp_req->h2c_offset == tcp_req->req.length &&
1779 	    tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
1780 		/* After receiving all the h2c data, we need to check whether there is
1781 		 * transient transport error */
1782 		rsp = &tcp_req->req.rsp->nvme_cpl;
1783 		if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1784 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1785 		} else {
1786 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1787 		}
1788 		nvmf_tcp_req_process(ttransport, tcp_req);
1789 	}
1790 }
1791 
1792 static void
1793 nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
1794 {
1795 	SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
1796 		    spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
1797 	if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1798 	    (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1799 		SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
1800 			      DGET32(h2c_term_req->fei));
1801 	}
1802 }
1803 
1804 static void
1805 nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1806 				 struct nvme_tcp_pdu *pdu)
1807 {
1808 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1809 	uint32_t error_offset = 0;
1810 	enum spdk_nvme_tcp_term_req_fes fes;
1811 
1812 	if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
1813 		SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
1814 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1815 		error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
1816 		goto end;
1817 	}
1818 
1819 	/* set the data buffer */
1820 	nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
1821 			      h2c_term_req->common.plen - h2c_term_req->common.hlen);
1822 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1823 	return;
1824 end:
1825 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1826 }
1827 
1828 static void
1829 nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1830 				     struct nvme_tcp_pdu *pdu)
1831 {
1832 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1833 
1834 	nvmf_tcp_h2c_term_req_dump(h2c_term_req);
1835 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
1836 }
1837 
1838 static void
1839 _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1840 			     struct spdk_nvmf_tcp_transport *ttransport)
1841 {
1842 	struct nvme_tcp_pdu *pdu = tqpair->pdu_in_progress;
1843 
1844 	switch (pdu->hdr.common.pdu_type) {
1845 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
1846 		nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
1847 		break;
1848 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
1849 		nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
1850 		break;
1851 
1852 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
1853 		nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
1854 		break;
1855 
1856 	default:
1857 		/* The code should not go to here */
1858 		SPDK_ERRLOG("The code should not go to here\n");
1859 		break;
1860 	}
1861 }
1862 
1863 static void
1864 nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1865 			    struct spdk_nvmf_tcp_transport *ttransport)
1866 {
1867 	int rc = 0;
1868 	struct nvme_tcp_pdu *pdu;
1869 	uint32_t crc32c;
1870 	struct spdk_nvmf_tcp_req *tcp_req;
1871 	struct spdk_nvme_cpl *rsp;
1872 
1873 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1874 	pdu = tqpair->pdu_in_progress;
1875 
1876 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1877 	/* check data digest if need */
1878 	if (pdu->ddgst_enable) {
1879 		crc32c = nvme_tcp_pdu_calc_data_digest(pdu);
1880 		crc32c = crc32c ^ SPDK_CRC32C_XOR;
1881 		rc = MATCH_DIGEST_WORD(pdu->data_digest, crc32c);
1882 		if (rc == 0) {
1883 			SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
1884 			tcp_req = pdu->req;
1885 			assert(tcp_req != NULL);
1886 			rsp = &tcp_req->req.rsp->nvme_cpl;
1887 			rsp->status.sc = SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR;
1888 		}
1889 	}
1890 
1891 	_nvmf_tcp_pdu_payload_handle(tqpair, ttransport);
1892 }
1893 
1894 static void
1895 nvmf_tcp_send_icresp_complete(void *cb_arg)
1896 {
1897 	struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
1898 
1899 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_RUNNING);
1900 }
1901 
1902 static void
1903 nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
1904 		      struct spdk_nvmf_tcp_qpair *tqpair,
1905 		      struct nvme_tcp_pdu *pdu)
1906 {
1907 	struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
1908 	struct nvme_tcp_pdu *rsp_pdu;
1909 	struct spdk_nvme_tcp_ic_resp *ic_resp;
1910 	uint32_t error_offset = 0;
1911 	enum spdk_nvme_tcp_term_req_fes fes;
1912 
1913 	/* Only PFV 0 is defined currently */
1914 	if (ic_req->pfv != 0) {
1915 		SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
1916 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1917 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
1918 		goto end;
1919 	}
1920 
1921 	/* MAXR2T is 0's based */
1922 	SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
1923 
1924 	tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
1925 	if (!tqpair->host_hdgst_enable) {
1926 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1927 	}
1928 
1929 	tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
1930 	if (!tqpair->host_ddgst_enable) {
1931 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1932 	}
1933 
1934 	tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
1935 	/* Now that we know whether digests are enabled, properly size the receive buffer */
1936 	if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
1937 		SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
1938 			     tqpair,
1939 			     tqpair->recv_buf_size);
1940 		/* Not fatal. */
1941 	}
1942 
1943 	tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
1944 	SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
1945 
1946 	rsp_pdu = tqpair->mgmt_pdu;
1947 
1948 	ic_resp = &rsp_pdu->hdr.ic_resp;
1949 	ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
1950 	ic_resp->common.hlen = ic_resp->common.plen =  sizeof(*ic_resp);
1951 	ic_resp->pfv = 0;
1952 	ic_resp->cpda = tqpair->cpda;
1953 	ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
1954 	ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
1955 	ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
1956 
1957 	SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
1958 	SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
1959 
1960 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INITIALIZING);
1961 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair);
1962 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
1963 	return;
1964 end:
1965 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1966 }
1967 
1968 static void
1969 nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1970 			struct spdk_nvmf_tcp_transport *ttransport)
1971 {
1972 	struct nvme_tcp_pdu *pdu;
1973 	int rc;
1974 	uint32_t crc32c, error_offset = 0;
1975 	enum spdk_nvme_tcp_term_req_fes fes;
1976 
1977 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
1978 	pdu = tqpair->pdu_in_progress;
1979 
1980 	SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
1981 		      pdu->hdr.common.pdu_type);
1982 	/* check header digest if needed */
1983 	if (pdu->has_hdgst) {
1984 		SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
1985 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1986 		rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
1987 		if (rc == 0) {
1988 			SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
1989 			fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
1990 			nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1991 			return;
1992 
1993 		}
1994 	}
1995 
1996 	switch (pdu->hdr.common.pdu_type) {
1997 	case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
1998 		nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
1999 		break;
2000 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2001 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
2002 		break;
2003 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2004 		nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
2005 		break;
2006 
2007 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2008 		nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
2009 		break;
2010 
2011 	default:
2012 		SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
2013 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2014 		error_offset = 1;
2015 		nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2016 		break;
2017 	}
2018 }
2019 
2020 static void
2021 nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
2022 {
2023 	struct nvme_tcp_pdu *pdu;
2024 	uint32_t error_offset = 0;
2025 	enum spdk_nvme_tcp_term_req_fes fes;
2026 	uint8_t expected_hlen, pdo;
2027 	bool plen_error = false, pdo_error = false;
2028 
2029 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2030 	pdu = tqpair->pdu_in_progress;
2031 
2032 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
2033 		if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) {
2034 			SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
2035 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2036 			goto err;
2037 		}
2038 		expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
2039 		if (pdu->hdr.common.plen != expected_hlen) {
2040 			plen_error = true;
2041 		}
2042 	} else {
2043 		if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) {
2044 			SPDK_ERRLOG("The TCP/IP connection is not negotiated\n");
2045 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2046 			goto err;
2047 		}
2048 
2049 		switch (pdu->hdr.common.pdu_type) {
2050 		case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2051 			expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
2052 			pdo = pdu->hdr.common.pdo;
2053 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2054 				pdo_error = true;
2055 				break;
2056 			}
2057 
2058 			if (pdu->hdr.common.plen < expected_hlen) {
2059 				plen_error = true;
2060 			}
2061 			break;
2062 		case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2063 			expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
2064 			pdo = pdu->hdr.common.pdo;
2065 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2066 				pdo_error = true;
2067 				break;
2068 			}
2069 			if (pdu->hdr.common.plen < expected_hlen) {
2070 				plen_error = true;
2071 			}
2072 			break;
2073 
2074 		case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2075 			expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
2076 			if ((pdu->hdr.common.plen <= expected_hlen) ||
2077 			    (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
2078 				plen_error = true;
2079 			}
2080 			break;
2081 
2082 		default:
2083 			SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
2084 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2085 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
2086 			goto err;
2087 		}
2088 	}
2089 
2090 	if (pdu->hdr.common.hlen != expected_hlen) {
2091 		SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
2092 			    pdu->hdr.common.pdu_type,
2093 			    expected_hlen, pdu->hdr.common.hlen, tqpair);
2094 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2095 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
2096 		goto err;
2097 	} else if (pdo_error) {
2098 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2099 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
2100 	} else if (plen_error) {
2101 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2102 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2103 		goto err;
2104 	} else {
2105 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2106 		nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
2107 		return;
2108 	}
2109 err:
2110 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2111 }
2112 
2113 static int
2114 nvmf_tcp_pdu_payload_insert_dif(struct nvme_tcp_pdu *pdu, uint32_t read_offset,
2115 				int read_len)
2116 {
2117 	int rc;
2118 
2119 	rc = spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt,
2120 				      read_offset, read_len, pdu->dif_ctx);
2121 	if (rc != 0) {
2122 		SPDK_ERRLOG("DIF generate failed\n");
2123 	}
2124 
2125 	return rc;
2126 }
2127 
2128 static int
2129 nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
2130 {
2131 	int rc = 0;
2132 	struct nvme_tcp_pdu *pdu;
2133 	enum nvme_tcp_pdu_recv_state prev_state;
2134 	uint32_t data_len;
2135 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2136 			struct spdk_nvmf_tcp_transport, transport);
2137 
2138 	/* The loop here is to allow for several back-to-back state changes. */
2139 	do {
2140 		prev_state = tqpair->recv_state;
2141 		SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
2142 
2143 		pdu = tqpair->pdu_in_progress;
2144 		switch (tqpair->recv_state) {
2145 		/* Wait for the common header  */
2146 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
2147 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
2148 			if (spdk_unlikely(tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING)) {
2149 				return rc;
2150 			}
2151 
2152 			rc = nvme_tcp_read_data(tqpair->sock,
2153 						sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
2154 						(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
2155 			if (rc < 0) {
2156 				SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
2157 				return NVME_TCP_PDU_FATAL;
2158 			} else if (rc > 0) {
2159 				pdu->ch_valid_bytes += rc;
2160 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2161 				if (spdk_likely(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY)) {
2162 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2163 				}
2164 			}
2165 
2166 			if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
2167 				return NVME_TCP_PDU_IN_PROGRESS;
2168 			}
2169 
2170 			/* The command header of this PDU has now been read from the socket. */
2171 			nvmf_tcp_pdu_ch_handle(tqpair);
2172 			break;
2173 		/* Wait for the pdu specific header  */
2174 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
2175 			rc = nvme_tcp_read_data(tqpair->sock,
2176 						pdu->psh_len - pdu->psh_valid_bytes,
2177 						(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
2178 			if (rc < 0) {
2179 				return NVME_TCP_PDU_FATAL;
2180 			} else if (rc > 0) {
2181 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2182 				pdu->psh_valid_bytes += rc;
2183 			}
2184 
2185 			if (pdu->psh_valid_bytes < pdu->psh_len) {
2186 				return NVME_TCP_PDU_IN_PROGRESS;
2187 			}
2188 
2189 			/* All header(ch, psh, head digist) of this PDU has now been read from the socket. */
2190 			nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
2191 			break;
2192 		/* Wait for the req slot */
2193 		case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
2194 			nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
2195 			break;
2196 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
2197 			/* check whether the data is valid, if not we just return */
2198 			if (!pdu->data_len) {
2199 				return NVME_TCP_PDU_IN_PROGRESS;
2200 			}
2201 
2202 			data_len = pdu->data_len;
2203 			/* data digest */
2204 			if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
2205 					  tqpair->host_ddgst_enable)) {
2206 				data_len += SPDK_NVME_TCP_DIGEST_LEN;
2207 				pdu->ddgst_enable = true;
2208 			}
2209 
2210 			rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
2211 			if (rc < 0) {
2212 				return NVME_TCP_PDU_FATAL;
2213 			}
2214 			pdu->rw_offset += rc;
2215 
2216 			if (spdk_unlikely(pdu->dif_ctx != NULL)) {
2217 				rc = nvmf_tcp_pdu_payload_insert_dif(pdu, pdu->rw_offset - rc, rc);
2218 				if (rc != 0) {
2219 					return NVME_TCP_PDU_FATAL;
2220 				}
2221 			}
2222 
2223 			if (pdu->rw_offset < data_len) {
2224 				return NVME_TCP_PDU_IN_PROGRESS;
2225 			}
2226 
2227 			/* All of this PDU has now been read from the socket. */
2228 			nvmf_tcp_pdu_payload_handle(tqpair, ttransport);
2229 			break;
2230 		case NVME_TCP_PDU_RECV_STATE_ERROR:
2231 			if (!spdk_sock_is_connected(tqpair->sock)) {
2232 				return NVME_TCP_PDU_FATAL;
2233 			}
2234 			break;
2235 		default:
2236 			assert(0);
2237 			SPDK_ERRLOG("code should not come to here");
2238 			break;
2239 		}
2240 	} while (tqpair->recv_state != prev_state);
2241 
2242 	return rc;
2243 }
2244 
2245 static inline void *
2246 nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list)
2247 {
2248 	struct spdk_nvmf_tcp_control_msg *msg;
2249 
2250 	assert(list);
2251 
2252 	msg = STAILQ_FIRST(&list->free_msgs);
2253 	if (!msg) {
2254 		SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
2255 		return NULL;
2256 	}
2257 	STAILQ_REMOVE_HEAD(&list->free_msgs, link);
2258 	return msg;
2259 }
2260 
2261 static inline void
2262 nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
2263 {
2264 	struct spdk_nvmf_tcp_control_msg *msg = _msg;
2265 
2266 	assert(list);
2267 	STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
2268 }
2269 
2270 static int
2271 nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
2272 		       struct spdk_nvmf_transport *transport,
2273 		       struct spdk_nvmf_transport_poll_group *group)
2274 {
2275 	struct spdk_nvmf_request		*req = &tcp_req->req;
2276 	struct spdk_nvme_cmd			*cmd;
2277 	struct spdk_nvme_cpl			*rsp;
2278 	struct spdk_nvme_sgl_descriptor		*sgl;
2279 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2280 	uint32_t				length;
2281 
2282 	cmd = &req->cmd->nvme_cmd;
2283 	rsp = &req->rsp->nvme_cpl;
2284 	sgl = &cmd->dptr.sgl1;
2285 
2286 	length = sgl->unkeyed.length;
2287 
2288 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
2289 	    sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
2290 		if (length > transport->opts.max_io_size) {
2291 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
2292 				    length, transport->opts.max_io_size);
2293 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
2294 			return -1;
2295 		}
2296 
2297 		/* fill request length and populate iovs */
2298 		req->length = length;
2299 
2300 		SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
2301 
2302 		if (spdk_unlikely(req->dif_enabled)) {
2303 			req->dif.orig_length = length;
2304 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2305 			req->dif.elba_length = length;
2306 		}
2307 
2308 		if (nvmf_ctrlr_use_zcopy(req)) {
2309 			SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req);
2310 			req->data_from_pool = false;
2311 			return 0;
2312 		}
2313 
2314 		if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
2315 			/* No available buffers. Queue this request up. */
2316 			SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
2317 				      tcp_req);
2318 			return 0;
2319 		}
2320 
2321 		/* backward compatible */
2322 		req->data = req->iov[0].iov_base;
2323 
2324 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
2325 			      tcp_req, req->iovcnt, req->data);
2326 
2327 		return 0;
2328 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
2329 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
2330 		uint64_t offset = sgl->address;
2331 		uint32_t max_len = transport->opts.in_capsule_data_size;
2332 		assert(tcp_req->has_in_capsule_data);
2333 
2334 		SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
2335 			      offset, length);
2336 
2337 		if (offset > max_len) {
2338 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
2339 				    offset, max_len);
2340 			rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
2341 			return -1;
2342 		}
2343 		max_len -= (uint32_t)offset;
2344 
2345 		if (spdk_unlikely(length > max_len)) {
2346 			/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
2347 			if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
2348 			    (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
2349 
2350 				/* Get a buffer from dedicated list */
2351 				SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
2352 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2353 				assert(tgroup->control_msg_list);
2354 				req->data = nvmf_tcp_control_msg_get(tgroup->control_msg_list);
2355 				if (!req->data) {
2356 					/* No available buffers. Queue this request up. */
2357 					SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
2358 					return 0;
2359 				}
2360 			} else {
2361 				SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
2362 					    length, max_len);
2363 				rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
2364 				return -1;
2365 			}
2366 		} else {
2367 			req->data = tcp_req->buf;
2368 		}
2369 
2370 		req->length = length;
2371 		req->data_from_pool = false;
2372 
2373 		if (spdk_unlikely(req->dif_enabled)) {
2374 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2375 			req->dif.elba_length = length;
2376 		}
2377 
2378 		req->iov[0].iov_base = req->data;
2379 		req->iov[0].iov_len = length;
2380 		req->iovcnt = 1;
2381 
2382 		return 0;
2383 	}
2384 
2385 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2386 		    sgl->generic.type, sgl->generic.subtype);
2387 	rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
2388 	return -1;
2389 }
2390 
2391 static inline enum spdk_nvme_media_error_status_code
2392 nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
2393 	enum spdk_nvme_media_error_status_code result;
2394 
2395 	switch (err_type)
2396 	{
2397 	case SPDK_DIF_REFTAG_ERROR:
2398 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
2399 		break;
2400 	case SPDK_DIF_APPTAG_ERROR:
2401 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
2402 		break;
2403 	case SPDK_DIF_GUARD_ERROR:
2404 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
2405 		break;
2406 	default:
2407 		SPDK_UNREACHABLE();
2408 		break;
2409 	}
2410 
2411 	return result;
2412 }
2413 
2414 static void
2415 _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2416 			struct spdk_nvmf_tcp_req *tcp_req)
2417 {
2418 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
2419 				tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
2420 	struct nvme_tcp_pdu *rsp_pdu;
2421 	struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
2422 	uint32_t plen, pdo, alignment;
2423 	int rc;
2424 
2425 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2426 
2427 	rsp_pdu = tcp_req->pdu;
2428 	assert(rsp_pdu != NULL);
2429 
2430 	c2h_data = &rsp_pdu->hdr.c2h_data;
2431 	c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
2432 	plen = c2h_data->common.hlen = sizeof(*c2h_data);
2433 
2434 	if (tqpair->host_hdgst_enable) {
2435 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2436 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2437 	}
2438 
2439 	/* set the psh */
2440 	c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2441 	c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
2442 	c2h_data->datao = tcp_req->pdu->rw_offset;
2443 
2444 	/* set the padding */
2445 	rsp_pdu->padding_len = 0;
2446 	pdo = plen;
2447 	if (tqpair->cpda) {
2448 		alignment = (tqpair->cpda + 1) << 2;
2449 		if (plen % alignment != 0) {
2450 			pdo = (plen + alignment) / alignment * alignment;
2451 			rsp_pdu->padding_len = pdo - plen;
2452 			plen = pdo;
2453 		}
2454 	}
2455 
2456 	c2h_data->common.pdo = pdo;
2457 	plen += c2h_data->datal;
2458 	if (tqpair->host_ddgst_enable) {
2459 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
2460 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2461 	}
2462 
2463 	c2h_data->common.plen = plen;
2464 
2465 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2466 		rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2467 	}
2468 
2469 	nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2470 				  c2h_data->datao, c2h_data->datal);
2471 
2472 
2473 	c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
2474 	/* Need to send the capsule response if response is not all 0 */
2475 	if (ttransport->tcp_opts.c2h_success &&
2476 	    tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
2477 		c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
2478 	}
2479 
2480 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2481 		struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
2482 		struct spdk_dif_error err_blk = {};
2483 		uint32_t mapped_length = 0;
2484 		uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
2485 		uint32_t ddgst_len = 0;
2486 
2487 		if (tqpair->host_ddgst_enable) {
2488 			/* Data digest consumes additional iov entry */
2489 			available_iovs--;
2490 			/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
2491 			ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
2492 			c2h_data->common.plen -= ddgst_len;
2493 		}
2494 		/* Temp call to estimate if data can be described by limited number of iovs.
2495 		 * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
2496 		nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
2497 				    false, &mapped_length);
2498 
2499 		if (mapped_length != c2h_data->common.plen) {
2500 			c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
2501 			SPDK_DEBUGLOG(nvmf_tcp,
2502 				      "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
2503 				      c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
2504 			c2h_data->common.plen = mapped_length;
2505 
2506 			/* Rebuild pdu->data_iov since data length is changed */
2507 			nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
2508 						  c2h_data->datal);
2509 
2510 			c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
2511 						    SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
2512 		}
2513 
2514 		c2h_data->common.plen += ddgst_len;
2515 
2516 		assert(rsp_pdu->rw_offset <= tcp_req->req.length);
2517 
2518 		rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
2519 					    0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
2520 		if (rc != 0) {
2521 			SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
2522 				    err_blk.err_type, err_blk.err_offset);
2523 			rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2524 			rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
2525 			nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2526 			return;
2527 		}
2528 	}
2529 
2530 	rsp_pdu->rw_offset += c2h_data->datal;
2531 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
2532 }
2533 
2534 static void
2535 nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2536 		       struct spdk_nvmf_tcp_req *tcp_req)
2537 {
2538 	nvmf_tcp_req_pdu_init(tcp_req);
2539 	_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2540 }
2541 
2542 static int
2543 request_transfer_out(struct spdk_nvmf_request *req)
2544 {
2545 	struct spdk_nvmf_tcp_req	*tcp_req;
2546 	struct spdk_nvmf_qpair		*qpair;
2547 	struct spdk_nvmf_tcp_qpair	*tqpair;
2548 	struct spdk_nvme_cpl		*rsp;
2549 
2550 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2551 
2552 	qpair = req->qpair;
2553 	rsp = &req->rsp->nvme_cpl;
2554 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
2555 
2556 	/* Advance our sq_head pointer */
2557 	if (qpair->sq_head == qpair->sq_head_max) {
2558 		qpair->sq_head = 0;
2559 	} else {
2560 		qpair->sq_head++;
2561 	}
2562 	rsp->sqhd = qpair->sq_head;
2563 
2564 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2565 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
2566 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2567 		nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2568 	} else {
2569 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2570 	}
2571 
2572 	return 0;
2573 }
2574 
2575 static void
2576 nvmf_tcp_set_in_capsule_data(struct spdk_nvmf_tcp_qpair *tqpair,
2577 			     struct spdk_nvmf_tcp_req *tcp_req)
2578 {
2579 	struct nvme_tcp_pdu *pdu;
2580 	uint32_t plen = 0;
2581 
2582 	pdu = tqpair->pdu_in_progress;
2583 	plen = pdu->hdr.common.hlen;
2584 
2585 	if (tqpair->host_hdgst_enable) {
2586 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2587 	}
2588 
2589 	if (pdu->hdr.common.plen != plen) {
2590 		tcp_req->has_in_capsule_data = true;
2591 	}
2592 }
2593 
2594 static void
2595 nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport,
2596 			      struct spdk_nvmf_tcp_qpair *tqpair,
2597 			      struct spdk_nvmf_tcp_req *tcp_req)
2598 {
2599 	enum spdk_nvme_cmd_fuse last, next;
2600 
2601 	last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2602 	next = tcp_req->cmd.fuse;
2603 
2604 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2605 
2606 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2607 		return;
2608 	}
2609 
2610 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2611 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2612 			/* This is a valid pair of fused commands.  Point them at each other
2613 			 * so they can be submitted consecutively once ready to be executed.
2614 			 */
2615 			tqpair->fused_first->fused_pair = tcp_req;
2616 			tcp_req->fused_pair = tqpair->fused_first;
2617 			tqpair->fused_first = NULL;
2618 			return;
2619 		} else {
2620 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2621 			tqpair->fused_first->fused_failed = true;
2622 
2623 			/*
2624 			 * If the last req is in READY_TO_EXECUTE state, then call
2625 			 * nvmf_tcp_req_process(), otherwise nothing else will kick it.
2626 			 */
2627 			if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2628 				nvmf_tcp_req_process(ttransport, tqpair->fused_first);
2629 			}
2630 
2631 			tqpair->fused_first = NULL;
2632 		}
2633 	}
2634 
2635 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2636 		/* Set tqpair->fused_first here so that we know to check that the next request
2637 		 * is a SECOND (and to fail this one if it isn't).
2638 		 */
2639 		tqpair->fused_first = tcp_req;
2640 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2641 		/* Mark this req failed since it is a SECOND and the last one was not a FIRST. */
2642 		tcp_req->fused_failed = true;
2643 	}
2644 }
2645 
2646 static bool
2647 nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
2648 		     struct spdk_nvmf_tcp_req *tcp_req)
2649 {
2650 	struct spdk_nvmf_tcp_qpair		*tqpair;
2651 	int					rc;
2652 	enum spdk_nvmf_tcp_req_state		prev_state;
2653 	bool					progress = false;
2654 	struct spdk_nvmf_transport		*transport = &ttransport->transport;
2655 	struct spdk_nvmf_transport_poll_group	*group;
2656 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2657 
2658 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2659 	group = &tqpair->group->group;
2660 	assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
2661 
2662 	/* If the qpair is not active, we need to abort the outstanding requests. */
2663 	if (tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2664 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
2665 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2666 		}
2667 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
2668 	}
2669 
2670 	/* The loop here is to allow for several back-to-back state changes. */
2671 	do {
2672 		prev_state = tcp_req->state;
2673 
2674 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
2675 			      tqpair);
2676 
2677 		switch (tcp_req->state) {
2678 		case TCP_REQUEST_STATE_FREE:
2679 			/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
2680 			 * to escape this state. */
2681 			break;
2682 		case TCP_REQUEST_STATE_NEW:
2683 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.qid, 0, (uintptr_t)tcp_req, tqpair);
2684 
2685 			/* copy the cmd from the receive pdu */
2686 			tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
2687 
2688 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
2689 				tcp_req->req.dif_enabled = true;
2690 				tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
2691 			}
2692 
2693 			nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req);
2694 
2695 			/* The next state transition depends on the data transfer needs of this request. */
2696 			tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
2697 
2698 			if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2699 				tcp_req->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2700 				tcp_req->req.rsp->nvme_cpl.status.sc  = SPDK_NVME_SC_INVALID_OPCODE;
2701 				tcp_req->req.rsp->nvme_cpl.cid = tcp_req->req.cmd->nvme_cmd.cid;
2702 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2703 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2704 				SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
2705 				break;
2706 			}
2707 
2708 			/* If no data to transfer, ready to execute. */
2709 			if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
2710 				/* Reset the tqpair receiving pdu state */
2711 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2712 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2713 				break;
2714 			}
2715 
2716 			nvmf_tcp_set_in_capsule_data(tqpair, tcp_req);
2717 
2718 			if (!tcp_req->has_in_capsule_data) {
2719 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2720 			}
2721 
2722 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
2723 			STAILQ_INSERT_TAIL(&group->pending_buf_queue, &tcp_req->req, buf_link);
2724 			break;
2725 		case TCP_REQUEST_STATE_NEED_BUFFER:
2726 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2727 					  tqpair);
2728 
2729 			assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
2730 
2731 			if (!tcp_req->has_in_capsule_data && (&tcp_req->req != STAILQ_FIRST(&group->pending_buf_queue))) {
2732 				SPDK_DEBUGLOG(nvmf_tcp,
2733 					      "Not the first element to wait for the buf for tcp_req(%p) on tqpair=%p\n",
2734 					      tcp_req, tqpair);
2735 				/* This request needs to wait in line to obtain a buffer */
2736 				break;
2737 			}
2738 
2739 			/* Try to get a data buffer */
2740 			rc = nvmf_tcp_req_parse_sgl(tcp_req, transport, group);
2741 			if (rc < 0) {
2742 				STAILQ_REMOVE_HEAD(&group->pending_buf_queue, buf_link);
2743 				/* Reset the tqpair receiving pdu state */
2744 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
2745 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2746 				tcp_req->req.rsp->nvme_cpl.cid = tcp_req->req.cmd->nvme_cmd.cid;
2747 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2748 				break;
2749 			}
2750 
2751 			/* Get a zcopy buffer if the request can be serviced through zcopy */
2752 			if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2753 				if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2754 					assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2755 					tcp_req->req.length = tcp_req->req.dif.elba_length;
2756 				}
2757 
2758 				STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2759 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START);
2760 				spdk_nvmf_request_zcopy_start(&tcp_req->req);
2761 				break;
2762 			}
2763 
2764 			if (!tcp_req->req.data) {
2765 				SPDK_DEBUGLOG(nvmf_tcp, "No buffer allocated for tcp_req(%p) on tqpair(%p\n)",
2766 					      tcp_req, tqpair);
2767 				/* No buffers available. */
2768 				break;
2769 			}
2770 
2771 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2772 
2773 			/* If data is transferring from host to controller, we need to do a transfer from the host. */
2774 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2775 				if (tcp_req->req.data_from_pool) {
2776 					SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2777 					nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2778 				} else {
2779 					struct nvme_tcp_pdu *pdu;
2780 
2781 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
2782 
2783 					pdu = tqpair->pdu_in_progress;
2784 					SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
2785 						      tqpair);
2786 					/* No need to send r2t, contained in the capsuled data */
2787 					nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2788 								  0, tcp_req->req.length);
2789 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2790 				}
2791 				break;
2792 			}
2793 
2794 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2795 			break;
2796 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
2797 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.qid, 0,
2798 					  (uintptr_t)tcp_req, tqpair);
2799 			/* Some external code must kick a request into  TCP_REQUEST_STATE_ZCOPY_START_COMPLETED
2800 			 * to escape this state. */
2801 			break;
2802 		case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
2803 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.qid, 0,
2804 					  (uintptr_t)tcp_req, tqpair);
2805 			if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) {
2806 				SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n",
2807 					      tcp_req, tqpair);
2808 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2809 				break;
2810 			}
2811 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2812 				SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2813 				nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2814 			} else {
2815 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
2816 			}
2817 			break;
2818 		case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
2819 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2820 					  tqpair);
2821 			/* The R2T completion or the h2c data incoming will kick it out of this state. */
2822 			break;
2823 		case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
2824 
2825 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.qid, 0,
2826 					  (uintptr_t)tcp_req, tqpair);
2827 			/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
2828 			 * to escape this state. */
2829 			break;
2830 		case TCP_REQUEST_STATE_READY_TO_EXECUTE:
2831 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.qid, 0,
2832 					  (uintptr_t)tcp_req, tqpair);
2833 
2834 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2835 				assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2836 				tcp_req->req.length = tcp_req->req.dif.elba_length;
2837 			}
2838 
2839 			if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
2840 				if (tcp_req->fused_failed) {
2841 					/* This request failed FUSED semantics.  Fail it immediately, without
2842 					 * even sending it to the target layer.
2843 					 */
2844 					tcp_req->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2845 					tcp_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED;
2846 					tcp_req->req.rsp->nvme_cpl.cid = tcp_req->req.cmd->nvme_cmd.cid;
2847 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2848 					break;
2849 				}
2850 
2851 				if (tcp_req->fused_pair == NULL ||
2852 				    tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2853 					/* This request is ready to execute, but either we don't know yet if it's
2854 					 * valid - i.e. this is a FIRST but we haven't received the next request yet),
2855 					 * or the other request of this fused pair isn't ready to execute. So
2856 					 * break here and this request will get processed later either when the
2857 					 * other request is ready or we find that this request isn't valid.
2858 					 */
2859 					break;
2860 				}
2861 			}
2862 
2863 			if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2864 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
2865 				/* If we get to this point, and this request is a fused command, we know that
2866 				 * it is part of a valid sequence (FIRST followed by a SECOND) and that both
2867 				 * requests are READY_TO_EXECUTE.  So call spdk_nvmf_request_exec() both on this
2868 				 * request, and the other request of the fused pair, in the correct order.
2869 				 * Also clear the ->fused_pair pointers on both requests, since after this point
2870 				 * we no longer need to maintain the relationship between these two requests.
2871 				 */
2872 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
2873 					assert(tcp_req->fused_pair != NULL);
2874 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
2875 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
2876 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
2877 					tcp_req->fused_pair->fused_pair = NULL;
2878 					tcp_req->fused_pair = NULL;
2879 				}
2880 				spdk_nvmf_request_exec(&tcp_req->req);
2881 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
2882 					assert(tcp_req->fused_pair != NULL);
2883 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
2884 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
2885 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
2886 					tcp_req->fused_pair->fused_pair = NULL;
2887 					tcp_req->fused_pair = NULL;
2888 				}
2889 			} else {
2890 				/* For zero-copy, only requests with data coming from host to the
2891 				 * controller can end up here. */
2892 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
2893 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT);
2894 				spdk_nvmf_request_zcopy_end(&tcp_req->req, true);
2895 			}
2896 
2897 			break;
2898 		case TCP_REQUEST_STATE_EXECUTING:
2899 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2900 					  tqpair);
2901 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
2902 			 * to escape this state. */
2903 			break;
2904 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
2905 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.qid, 0,
2906 					  (uintptr_t)tcp_req, tqpair);
2907 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
2908 			 * to escape this state. */
2909 			break;
2910 		case TCP_REQUEST_STATE_EXECUTED:
2911 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2912 					  tqpair);
2913 
2914 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2915 				tcp_req->req.length = tcp_req->req.dif.orig_length;
2916 			}
2917 
2918 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2919 			break;
2920 		case TCP_REQUEST_STATE_READY_TO_COMPLETE:
2921 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.qid, 0,
2922 					  (uintptr_t)tcp_req, tqpair);
2923 			rc = request_transfer_out(&tcp_req->req);
2924 			assert(rc == 0); /* No good way to handle this currently */
2925 			break;
2926 		case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
2927 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.qid, 0,
2928 					  (uintptr_t)tcp_req, tqpair);
2929 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
2930 			 * to escape this state. */
2931 			break;
2932 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
2933 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.qid, 0,
2934 					  (uintptr_t)tcp_req, tqpair);
2935 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
2936 			 * to escape this state. */
2937 			break;
2938 		case TCP_REQUEST_STATE_COMPLETED:
2939 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2940 					  tqpair);
2941 			/* If there's an outstanding PDU sent to the host, the request is completed
2942 			 * due to the qpair being disconnected.  We must delay the completion until
2943 			 * that write is done to avoid freeing the request twice. */
2944 			if (spdk_unlikely(tcp_req->pdu_in_use)) {
2945 				SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding "
2946 					      "write on req=%p\n", tcp_req);
2947 				/* This can only happen for zcopy requests */
2948 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
2949 				assert(tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
2950 				break;
2951 			}
2952 
2953 			if (tcp_req->req.data_from_pool) {
2954 				spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
2955 			} else if (spdk_unlikely(tcp_req->has_in_capsule_data &&
2956 						 (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
2957 						  tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
2958 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2959 				assert(tgroup->control_msg_list);
2960 				SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
2961 				nvmf_tcp_control_msg_put(tgroup->control_msg_list, tcp_req->req.data);
2962 			} else if (tcp_req->req.zcopy_bdev_io != NULL) {
2963 				/* If the request has an unreleased zcopy bdev_io, it's either a
2964 				 * read, a failed write, or the qpair is being disconnected */
2965 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
2966 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
2967 				       spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) ||
2968 				       tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
2969 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE);
2970 				spdk_nvmf_request_zcopy_end(&tcp_req->req, false);
2971 				break;
2972 			}
2973 			tcp_req->req.length = 0;
2974 			tcp_req->req.iovcnt = 0;
2975 			tcp_req->req.data = NULL;
2976 			tcp_req->fused_failed = false;
2977 			if (tcp_req->fused_pair) {
2978 				/* This req was part of a valid fused pair, but failed before it got to
2979 				 * READ_TO_EXECUTE state.  This means we need to fail the other request
2980 				 * in the pair, because it is no longer part of a valid pair.  If the pair
2981 				 * already reached READY_TO_EXECUTE state, we need to kick it.
2982 				 */
2983 				tcp_req->fused_pair->fused_failed = true;
2984 				if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2985 					nvmf_tcp_req_process(ttransport, tcp_req->fused_pair);
2986 				}
2987 				tcp_req->fused_pair = NULL;
2988 			}
2989 
2990 			nvmf_tcp_req_put(tqpair, tcp_req);
2991 			break;
2992 		case TCP_REQUEST_NUM_STATES:
2993 		default:
2994 			assert(0);
2995 			break;
2996 		}
2997 
2998 		if (tcp_req->state != prev_state) {
2999 			progress = true;
3000 		}
3001 	} while (tcp_req->state != prev_state);
3002 
3003 	return progress;
3004 }
3005 
3006 static void
3007 nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
3008 {
3009 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
3010 	int rc;
3011 
3012 	assert(tqpair != NULL);
3013 	rc = nvmf_tcp_sock_process(tqpair);
3014 
3015 	/* If there was a new socket error, disconnect */
3016 	if (rc < 0) {
3017 		nvmf_tcp_qpair_disconnect(tqpair);
3018 	}
3019 }
3020 
3021 static int
3022 nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3023 			struct spdk_nvmf_qpair *qpair)
3024 {
3025 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3026 	struct spdk_nvmf_tcp_qpair	*tqpair;
3027 	int				rc;
3028 
3029 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3030 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3031 
3032 	rc =  nvmf_tcp_qpair_sock_init(tqpair);
3033 	if (rc != 0) {
3034 		SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
3035 		return -1;
3036 	}
3037 
3038 	rc = nvmf_tcp_qpair_init(&tqpair->qpair);
3039 	if (rc < 0) {
3040 		SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
3041 		return -1;
3042 	}
3043 
3044 	rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
3045 	if (rc < 0) {
3046 		SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
3047 		return -1;
3048 	}
3049 
3050 	rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
3051 				      nvmf_tcp_sock_cb, tqpair);
3052 	if (rc != 0) {
3053 		SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
3054 			    spdk_strerror(errno), errno);
3055 		return -1;
3056 	}
3057 
3058 	tqpair->group = tgroup;
3059 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INVALID);
3060 	TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
3061 
3062 	return 0;
3063 }
3064 
3065 static int
3066 nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3067 			   struct spdk_nvmf_qpair *qpair)
3068 {
3069 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3070 	struct spdk_nvmf_tcp_qpair		*tqpair;
3071 	int				rc;
3072 
3073 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3074 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3075 
3076 	assert(tqpair->group == tgroup);
3077 
3078 	SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
3079 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
3080 		TAILQ_REMOVE(&tgroup->await_req, tqpair, link);
3081 	} else {
3082 		TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
3083 	}
3084 
3085 	rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
3086 	if (rc != 0) {
3087 		SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
3088 			    spdk_strerror(errno), errno);
3089 	}
3090 
3091 	return rc;
3092 }
3093 
3094 static int
3095 nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
3096 {
3097 	struct spdk_nvmf_tcp_transport *ttransport;
3098 	struct spdk_nvmf_tcp_req *tcp_req;
3099 
3100 	ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3101 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3102 
3103 	switch (tcp_req->state) {
3104 	case TCP_REQUEST_STATE_EXECUTING:
3105 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3106 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3107 		break;
3108 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3109 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED);
3110 		break;
3111 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3112 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3113 		break;
3114 	default:
3115 		assert(0 && "Unexpected request state");
3116 		break;
3117 	}
3118 
3119 	nvmf_tcp_req_process(ttransport, tcp_req);
3120 
3121 	return 0;
3122 }
3123 
3124 static void
3125 nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
3126 		     spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3127 {
3128 	struct spdk_nvmf_tcp_qpair *tqpair;
3129 
3130 	SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
3131 
3132 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3133 
3134 	assert(tqpair->fini_cb_fn == NULL);
3135 	tqpair->fini_cb_fn = cb_fn;
3136 	tqpair->fini_cb_arg = cb_arg;
3137 
3138 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITED);
3139 	nvmf_tcp_qpair_destroy(tqpair);
3140 }
3141 
3142 static int
3143 nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3144 {
3145 	struct spdk_nvmf_tcp_poll_group *tgroup;
3146 	int rc;
3147 	struct spdk_nvmf_request *req, *req_tmp;
3148 	struct spdk_nvmf_tcp_req *tcp_req;
3149 	struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp;
3150 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(group->transport,
3151 			struct spdk_nvmf_tcp_transport, transport);
3152 
3153 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3154 
3155 	if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) {
3156 		return 0;
3157 	}
3158 
3159 	STAILQ_FOREACH_SAFE(req, &group->pending_buf_queue, buf_link, req_tmp) {
3160 		tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3161 		if (nvmf_tcp_req_process(ttransport, tcp_req) == false) {
3162 			break;
3163 		}
3164 	}
3165 
3166 	rc = spdk_sock_group_poll(tgroup->sock_group);
3167 	if (rc < 0) {
3168 		SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
3169 	}
3170 
3171 	TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) {
3172 		nvmf_tcp_sock_process(tqpair);
3173 	}
3174 
3175 	return rc;
3176 }
3177 
3178 static int
3179 nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
3180 			struct spdk_nvme_transport_id *trid, bool peer)
3181 {
3182 	struct spdk_nvmf_tcp_qpair     *tqpair;
3183 	uint16_t			port;
3184 
3185 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3186 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
3187 
3188 	if (peer) {
3189 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
3190 		port = tqpair->initiator_port;
3191 	} else {
3192 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
3193 		port = tqpair->target_port;
3194 	}
3195 
3196 	if (spdk_sock_is_ipv4(tqpair->sock)) {
3197 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3198 	} else if (spdk_sock_is_ipv6(tqpair->sock)) {
3199 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3200 	} else {
3201 		return -1;
3202 	}
3203 
3204 	snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
3205 	return 0;
3206 }
3207 
3208 static int
3209 nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3210 			      struct spdk_nvme_transport_id *trid)
3211 {
3212 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3213 }
3214 
3215 static int
3216 nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3217 			     struct spdk_nvme_transport_id *trid)
3218 {
3219 	return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
3220 }
3221 
3222 static int
3223 nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3224 			       struct spdk_nvme_transport_id *trid)
3225 {
3226 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3227 }
3228 
3229 static void
3230 nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
3231 			      struct spdk_nvmf_tcp_req *tcp_req_to_abort)
3232 {
3233 	tcp_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
3234 	tcp_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
3235 	tcp_req_to_abort->req.rsp->nvme_cpl.cid = tcp_req_to_abort->req.cmd->nvme_cmd.cid;
3236 
3237 	nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3238 
3239 	req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
3240 }
3241 
3242 static int
3243 _nvmf_tcp_qpair_abort_request(void *ctx)
3244 {
3245 	struct spdk_nvmf_request *req = ctx;
3246 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
3247 			struct spdk_nvmf_tcp_req, req);
3248 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
3249 					     struct spdk_nvmf_tcp_qpair, qpair);
3250 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
3251 			struct spdk_nvmf_tcp_transport, transport);
3252 	int rc;
3253 
3254 	spdk_poller_unregister(&req->poller);
3255 
3256 	switch (tcp_req_to_abort->state) {
3257 	case TCP_REQUEST_STATE_EXECUTING:
3258 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3259 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3260 		rc = nvmf_ctrlr_abort_request(req);
3261 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
3262 			return SPDK_POLLER_BUSY;
3263 		}
3264 		break;
3265 
3266 	case TCP_REQUEST_STATE_NEED_BUFFER:
3267 		STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue,
3268 			      &tcp_req_to_abort->req, spdk_nvmf_request, buf_link);
3269 
3270 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3271 		nvmf_tcp_req_process(ttransport, tcp_req_to_abort);
3272 		break;
3273 
3274 	case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3275 	case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
3276 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3277 		break;
3278 
3279 	case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3280 		if (spdk_get_ticks() < req->timeout_tsc) {
3281 			req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
3282 			return SPDK_POLLER_BUSY;
3283 		}
3284 		break;
3285 
3286 	default:
3287 		break;
3288 	}
3289 
3290 	spdk_nvmf_request_complete(req);
3291 	return SPDK_POLLER_BUSY;
3292 }
3293 
3294 static void
3295 nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
3296 			     struct spdk_nvmf_request *req)
3297 {
3298 	struct spdk_nvmf_tcp_qpair *tqpair;
3299 	struct spdk_nvmf_tcp_transport *ttransport;
3300 	struct spdk_nvmf_transport *transport;
3301 	uint16_t cid;
3302 	uint32_t i;
3303 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
3304 
3305 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3306 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3307 	transport = &ttransport->transport;
3308 
3309 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
3310 
3311 	for (i = 0; i < tqpair->resource_count; i++) {
3312 		if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
3313 		    tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
3314 			tcp_req_to_abort = &tqpair->reqs[i];
3315 			break;
3316 		}
3317 	}
3318 
3319 	spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, qpair->qid, 0, (uintptr_t)req, tqpair);
3320 
3321 	if (tcp_req_to_abort == NULL) {
3322 		spdk_nvmf_request_complete(req);
3323 		return;
3324 	}
3325 
3326 	req->req_to_abort = &tcp_req_to_abort->req;
3327 	req->timeout_tsc = spdk_get_ticks() +
3328 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
3329 	req->poller = NULL;
3330 
3331 	_nvmf_tcp_qpair_abort_request(req);
3332 }
3333 
3334 #define SPDK_NVMF_TCP_DEFAULT_MAX_QUEUE_DEPTH 128
3335 #define SPDK_NVMF_TCP_DEFAULT_AQ_DEPTH 128
3336 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
3337 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
3338 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
3339 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
3340 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
3341 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE 32
3342 #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
3343 #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
3344 
3345 static void
3346 nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
3347 {
3348 	opts->max_queue_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_QUEUE_DEPTH;
3349 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
3350 	opts->in_capsule_data_size =	SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
3351 	opts->max_io_size =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
3352 	opts->io_unit_size =		SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
3353 	opts->max_aq_depth =		SPDK_NVMF_TCP_DEFAULT_AQ_DEPTH;
3354 	opts->num_shared_buffers =	SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
3355 	opts->buf_cache_size =		SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
3356 	opts->dif_insert_or_strip =	SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
3357 	opts->abort_timeout_sec =	SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
3358 	opts->transport_specific =      NULL;
3359 }
3360 
3361 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
3362 	.name = "TCP",
3363 	.type = SPDK_NVME_TRANSPORT_TCP,
3364 	.opts_init = nvmf_tcp_opts_init,
3365 	.create = nvmf_tcp_create,
3366 	.dump_opts = nvmf_tcp_dump_opts,
3367 	.destroy = nvmf_tcp_destroy,
3368 
3369 	.listen = nvmf_tcp_listen,
3370 	.stop_listen = nvmf_tcp_stop_listen,
3371 
3372 	.listener_discover = nvmf_tcp_discover,
3373 
3374 	.poll_group_create = nvmf_tcp_poll_group_create,
3375 	.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
3376 	.poll_group_destroy = nvmf_tcp_poll_group_destroy,
3377 	.poll_group_add = nvmf_tcp_poll_group_add,
3378 	.poll_group_remove = nvmf_tcp_poll_group_remove,
3379 	.poll_group_poll = nvmf_tcp_poll_group_poll,
3380 
3381 	.req_free = nvmf_tcp_req_free,
3382 	.req_complete = nvmf_tcp_req_complete,
3383 
3384 	.qpair_fini = nvmf_tcp_close_qpair,
3385 	.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
3386 	.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
3387 	.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
3388 	.qpair_abort_request = nvmf_tcp_qpair_abort_request,
3389 };
3390 
3391 SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
3392 SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)
3393