xref: /spdk/lib/nvmf/tcp.c (revision e5693d682a9872b3bb3a84b3245a099af77992d6)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2018 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/accel.h"
8 #include "spdk/stdinc.h"
9 #include "spdk/crc32.h"
10 #include "spdk/endian.h"
11 #include "spdk/assert.h"
12 #include "spdk/thread.h"
13 #include "spdk/nvmf_transport.h"
14 #include "spdk/string.h"
15 #include "spdk/trace.h"
16 #include "spdk/util.h"
17 #include "spdk/log.h"
18 #include "spdk/keyring.h"
19 
20 #include "spdk_internal/assert.h"
21 #include "spdk_internal/nvme_tcp.h"
22 #include "spdk_internal/sock.h"
23 
24 #include "nvmf_internal.h"
25 #include "transport.h"
26 
27 #include "spdk_internal/trace_defs.h"
28 
29 #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
30 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
31 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
32 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
33 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
34 
35 #define SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH 2
36 #define SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH 65535
37 #define SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH 2
38 #define SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH 4096
39 
40 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH 128
41 #define SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH 128
42 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
43 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
44 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
45 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
46 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
47 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX
48 #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
49 #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
50 
51 #define TCP_PSK_INVALID_PERMISSIONS 0177
52 
53 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
54 static bool g_tls_log = false;
55 
56 /* spdk nvmf related structure */
57 enum spdk_nvmf_tcp_req_state {
58 
59 	/* The request is not currently in use */
60 	TCP_REQUEST_STATE_FREE = 0,
61 
62 	/* Initial state when request first received */
63 	TCP_REQUEST_STATE_NEW = 1,
64 
65 	/* The request is queued until a data buffer is available. */
66 	TCP_REQUEST_STATE_NEED_BUFFER = 2,
67 
68 	/* The request has the data buffer available */
69 	TCP_REQUEST_STATE_HAVE_BUFFER = 3,
70 
71 	/* The request is waiting for zcopy_start to finish */
72 	TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 4,
73 
74 	/* The request has received a zero-copy buffer */
75 	TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 5,
76 
77 	/* The request is currently transferring data from the host to the controller. */
78 	TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 6,
79 
80 	/* The request is waiting for the R2T send acknowledgement. */
81 	TCP_REQUEST_STATE_AWAITING_R2T_ACK = 7,
82 
83 	/* The request is ready to execute at the block device */
84 	TCP_REQUEST_STATE_READY_TO_EXECUTE = 8,
85 
86 	/* The request is currently executing at the block device */
87 	TCP_REQUEST_STATE_EXECUTING = 9,
88 
89 	/* The request is waiting for zcopy buffers to be committed */
90 	TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 10,
91 
92 	/* The request finished executing at the block device */
93 	TCP_REQUEST_STATE_EXECUTED = 11,
94 
95 	/* The request is ready to send a completion */
96 	TCP_REQUEST_STATE_READY_TO_COMPLETE = 12,
97 
98 	/* The request is currently transferring final pdus from the controller to the host. */
99 	TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 13,
100 
101 	/* The request is waiting for zcopy buffers to be released (without committing) */
102 	TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 14,
103 
104 	/* The request completed and can be marked free. */
105 	TCP_REQUEST_STATE_COMPLETED = 15,
106 
107 	/* Terminator */
108 	TCP_REQUEST_NUM_STATES,
109 };
110 
111 static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
112 	"Invalid PDU Header Field",
113 	"PDU Sequence Error",
114 	"Header Digiest Error",
115 	"Data Transfer Out of Range",
116 	"R2T Limit Exceeded",
117 	"Unsupported parameter",
118 };
119 
120 SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
121 {
122 	spdk_trace_register_owner_type(OWNER_TYPE_NVMF_TCP, 't');
123 	spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
124 	spdk_trace_register_description("TCP_REQ_NEW",
125 					TRACE_TCP_REQUEST_STATE_NEW,
126 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1,
127 					SPDK_TRACE_ARG_TYPE_INT, "qd");
128 	spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
129 					TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
130 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
131 					SPDK_TRACE_ARG_TYPE_INT, "");
132 	spdk_trace_register_description("TCP_REQ_HAVE_BUFFER",
133 					TRACE_TCP_REQUEST_STATE_HAVE_BUFFER,
134 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
135 					SPDK_TRACE_ARG_TYPE_INT, "");
136 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START",
137 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START,
138 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
139 					SPDK_TRACE_ARG_TYPE_INT, "");
140 	spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL",
141 					TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED,
142 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
143 					SPDK_TRACE_ARG_TYPE_INT, "");
144 	spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
145 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
146 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
147 					SPDK_TRACE_ARG_TYPE_INT, "");
148 	spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
149 					TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
150 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
151 					SPDK_TRACE_ARG_TYPE_INT, "");
152 	spdk_trace_register_description("TCP_REQ_EXECUTING",
153 					TRACE_TCP_REQUEST_STATE_EXECUTING,
154 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
155 					SPDK_TRACE_ARG_TYPE_INT, "");
156 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT",
157 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT,
158 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
159 					SPDK_TRACE_ARG_TYPE_INT, "");
160 	spdk_trace_register_description("TCP_REQ_EXECUTED",
161 					TRACE_TCP_REQUEST_STATE_EXECUTED,
162 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
163 					SPDK_TRACE_ARG_TYPE_INT, "");
164 	spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
165 					TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
166 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
167 					SPDK_TRACE_ARG_TYPE_INT, "");
168 	spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
169 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
170 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
171 					SPDK_TRACE_ARG_TYPE_INT, "");
172 	spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS",
173 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE,
174 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
175 					SPDK_TRACE_ARG_TYPE_INT, "");
176 	spdk_trace_register_description("TCP_REQ_COMPLETED",
177 					TRACE_TCP_REQUEST_STATE_COMPLETED,
178 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
179 					SPDK_TRACE_ARG_TYPE_INT, "qd");
180 	spdk_trace_register_description("TCP_READ_DONE",
181 					TRACE_TCP_READ_FROM_SOCKET_DONE,
182 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
183 					SPDK_TRACE_ARG_TYPE_INT, "");
184 	spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
185 					TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
186 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
187 					SPDK_TRACE_ARG_TYPE_INT, "");
188 
189 	spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE,
190 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
191 					SPDK_TRACE_ARG_TYPE_INT, "");
192 	spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT,
193 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
194 					SPDK_TRACE_ARG_TYPE_INT, "");
195 	spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE,
196 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
197 					SPDK_TRACE_ARG_TYPE_INT, "state");
198 	spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT,
199 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
200 					SPDK_TRACE_ARG_TYPE_INT, "");
201 	spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY,
202 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
203 					SPDK_TRACE_ARG_TYPE_INT, "");
204 	spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ,
205 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
206 					SPDK_TRACE_ARG_TYPE_INT, "");
207 	spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE,
208 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
209 					SPDK_TRACE_ARG_TYPE_INT, "state");
210 
211 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1);
212 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0);
213 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_QUEUE, OBJECT_NVMF_TCP_IO, 0);
214 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_PEND, OBJECT_NVMF_TCP_IO, 0);
215 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_COMPLETE, OBJECT_NVMF_TCP_IO, 0);
216 }
217 
218 struct spdk_nvmf_tcp_req  {
219 	struct spdk_nvmf_request		req;
220 	struct spdk_nvme_cpl			rsp;
221 	struct spdk_nvme_cmd			cmd;
222 
223 	/* A PDU that can be used for sending responses. This is
224 	 * not the incoming PDU! */
225 	struct nvme_tcp_pdu			*pdu;
226 
227 	/* In-capsule data buffer */
228 	uint8_t					*buf;
229 
230 	struct spdk_nvmf_tcp_req		*fused_pair;
231 
232 	/*
233 	 * The PDU for a request may be used multiple times in serial over
234 	 * the request's lifetime. For example, first to send an R2T, then
235 	 * to send a completion. To catch mistakes where the PDU is used
236 	 * twice at the same time, add a debug flag here for init/fini.
237 	 */
238 	bool					pdu_in_use;
239 	bool					has_in_capsule_data;
240 	bool					fused_failed;
241 
242 	/* transfer_tag */
243 	uint16_t				ttag;
244 
245 	enum spdk_nvmf_tcp_req_state		state;
246 
247 	/*
248 	 * h2c_offset is used when we receive the h2c_data PDU.
249 	 */
250 	uint32_t				h2c_offset;
251 
252 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		link;
253 	TAILQ_ENTRY(spdk_nvmf_tcp_req)		state_link;
254 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		control_msg_link;
255 };
256 
257 struct spdk_nvmf_tcp_qpair {
258 	struct spdk_nvmf_qpair			qpair;
259 	struct spdk_nvmf_tcp_poll_group		*group;
260 	struct spdk_sock			*sock;
261 
262 	enum nvme_tcp_pdu_recv_state		recv_state;
263 	enum nvme_tcp_qpair_state		state;
264 
265 	/* PDU being actively received */
266 	struct nvme_tcp_pdu			*pdu_in_progress;
267 
268 	struct spdk_nvmf_tcp_req		*fused_first;
269 
270 	/* Queues to track the requests in all states */
271 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_working_queue;
272 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_free_queue;
273 	SLIST_HEAD(, nvme_tcp_pdu)		tcp_pdu_free_queue;
274 	/* Number of working pdus */
275 	uint32_t				tcp_pdu_working_count;
276 
277 	/* Number of requests in each state */
278 	uint32_t				state_cntr[TCP_REQUEST_NUM_STATES];
279 
280 	uint8_t					cpda;
281 
282 	bool					host_hdgst_enable;
283 	bool					host_ddgst_enable;
284 
285 	/* This is a spare PDU used for sending special management
286 	 * operations. Primarily, this is used for the initial
287 	 * connection response and c2h termination request. */
288 	struct nvme_tcp_pdu			*mgmt_pdu;
289 
290 	/* Arrays of in-capsule buffers, requests, and pdus.
291 	 * Each array is 'resource_count' number of elements */
292 	void					*bufs;
293 	struct spdk_nvmf_tcp_req		*reqs;
294 	struct nvme_tcp_pdu			*pdus;
295 	uint32_t				resource_count;
296 	uint32_t				recv_buf_size;
297 
298 	struct spdk_nvmf_tcp_port		*port;
299 
300 	/* IP address */
301 	char					initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
302 	char					target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
303 
304 	/* IP port */
305 	uint16_t				initiator_port;
306 	uint16_t				target_port;
307 
308 	/* Wait until the host terminates the connection (e.g. after sending C2HTermReq) */
309 	bool					wait_terminate;
310 
311 	/* Timer used to destroy qpair after detecting transport error issue if initiator does
312 	 *  not close the connection.
313 	 */
314 	struct spdk_poller			*timeout_poller;
315 
316 	spdk_nvmf_transport_qpair_fini_cb	fini_cb_fn;
317 	void					*fini_cb_arg;
318 
319 	TAILQ_ENTRY(spdk_nvmf_tcp_qpair)	link;
320 };
321 
322 struct spdk_nvmf_tcp_control_msg {
323 	STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
324 };
325 
326 struct spdk_nvmf_tcp_control_msg_list {
327 	void *msg_buf;
328 	STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
329 	STAILQ_HEAD(, spdk_nvmf_tcp_req) waiting_for_msg_reqs;
330 };
331 
332 struct spdk_nvmf_tcp_poll_group {
333 	struct spdk_nvmf_transport_poll_group	group;
334 	struct spdk_sock_group			*sock_group;
335 
336 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	qpairs;
337 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	await_req;
338 
339 	struct spdk_io_channel			*accel_channel;
340 	struct spdk_nvmf_tcp_control_msg_list	*control_msg_list;
341 
342 	TAILQ_ENTRY(spdk_nvmf_tcp_poll_group)	link;
343 };
344 
345 struct spdk_nvmf_tcp_port {
346 	const struct spdk_nvme_transport_id	*trid;
347 	struct spdk_sock			*listen_sock;
348 	struct spdk_nvmf_transport		*transport;
349 	TAILQ_ENTRY(spdk_nvmf_tcp_port)		link;
350 };
351 
352 struct tcp_transport_opts {
353 	bool		c2h_success;
354 	uint16_t	control_msg_num;
355 	uint32_t	sock_priority;
356 };
357 
358 struct tcp_psk_entry {
359 	char				hostnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
360 	char				subnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
361 	char				pskid[NVMF_PSK_IDENTITY_LEN];
362 	uint8_t				psk[SPDK_TLS_PSK_MAX_LEN];
363 	struct spdk_key			*key;
364 
365 	/* Original path saved to emit SPDK configuration via "save_config". */
366 	char				psk_path[PATH_MAX];
367 	uint32_t			psk_size;
368 	enum nvme_tcp_cipher_suite	tls_cipher_suite;
369 	TAILQ_ENTRY(tcp_psk_entry)	link;
370 };
371 
372 struct spdk_nvmf_tcp_transport {
373 	struct spdk_nvmf_transport		transport;
374 	struct tcp_transport_opts               tcp_opts;
375 	uint32_t				ack_timeout;
376 
377 	struct spdk_nvmf_tcp_poll_group		*next_pg;
378 
379 	struct spdk_poller			*accept_poller;
380 	struct spdk_sock_group			*listen_sock_group;
381 
382 	TAILQ_HEAD(, spdk_nvmf_tcp_port)	ports;
383 	TAILQ_HEAD(, spdk_nvmf_tcp_poll_group)	poll_groups;
384 
385 	TAILQ_HEAD(, tcp_psk_entry)		psks;
386 };
387 
388 static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
389 	{
390 		"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
391 		spdk_json_decode_bool, true
392 	},
393 	{
394 		"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
395 		spdk_json_decode_uint16, true
396 	},
397 	{
398 		"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
399 		spdk_json_decode_uint32, true
400 	},
401 };
402 
403 static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
404 				 struct spdk_nvmf_tcp_req *tcp_req);
405 static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
406 
407 static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
408 				    struct spdk_nvmf_tcp_req *tcp_req);
409 
410 static inline void
411 nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
412 		       enum spdk_nvmf_tcp_req_state state)
413 {
414 	struct spdk_nvmf_qpair *qpair;
415 	struct spdk_nvmf_tcp_qpair *tqpair;
416 
417 	qpair = tcp_req->req.qpair;
418 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
419 
420 	assert(tqpair->state_cntr[tcp_req->state] > 0);
421 	tqpair->state_cntr[tcp_req->state]--;
422 	tqpair->state_cntr[state]++;
423 
424 	tcp_req->state = state;
425 }
426 
427 static inline struct nvme_tcp_pdu *
428 nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
429 {
430 	assert(tcp_req->pdu_in_use == false);
431 
432 	memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
433 	tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
434 
435 	return tcp_req->pdu;
436 }
437 
438 static struct spdk_nvmf_tcp_req *
439 nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
440 {
441 	struct spdk_nvmf_tcp_req *tcp_req;
442 
443 	tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
444 	if (spdk_unlikely(!tcp_req)) {
445 		return NULL;
446 	}
447 
448 	memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
449 	tcp_req->h2c_offset = 0;
450 	tcp_req->has_in_capsule_data = false;
451 	tcp_req->req.dif_enabled = false;
452 	tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE;
453 
454 	TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
455 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
456 	tqpair->qpair.queue_depth++;
457 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
458 	return tcp_req;
459 }
460 
461 static inline void
462 nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
463 {
464 	assert(!tcp_req->pdu_in_use);
465 
466 	TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
467 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
468 	tqpair->qpair.queue_depth--;
469 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
470 }
471 
472 static void
473 nvmf_tcp_req_get_buffers_done(struct spdk_nvmf_request *req)
474 {
475 	struct spdk_nvmf_tcp_req *tcp_req;
476 	struct spdk_nvmf_transport *transport;
477 	struct spdk_nvmf_tcp_transport *ttransport;
478 
479 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
480 	transport = req->qpair->transport;
481 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
482 
483 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
484 	nvmf_tcp_req_process(ttransport, tcp_req);
485 }
486 
487 static void
488 nvmf_tcp_request_free(void *cb_arg)
489 {
490 	struct spdk_nvmf_tcp_transport *ttransport;
491 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
492 
493 	assert(tcp_req != NULL);
494 
495 	SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
496 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
497 				      struct spdk_nvmf_tcp_transport, transport);
498 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
499 	nvmf_tcp_req_process(ttransport, tcp_req);
500 }
501 
502 static int
503 nvmf_tcp_req_free(struct spdk_nvmf_request *req)
504 {
505 	struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
506 
507 	nvmf_tcp_request_free(tcp_req);
508 
509 	return 0;
510 }
511 
512 static void
513 nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
514 			   enum spdk_nvmf_tcp_req_state state)
515 {
516 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
517 
518 	assert(state != TCP_REQUEST_STATE_FREE);
519 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
520 		if (state == tcp_req->state) {
521 			nvmf_tcp_request_free(tcp_req);
522 		}
523 	}
524 }
525 
526 static inline void
527 nvmf_tcp_request_get_buffers_abort(struct spdk_nvmf_tcp_req *tcp_req)
528 {
529 	/* Request can wait either for the iobuf or control_msg */
530 	struct spdk_nvmf_poll_group *group = tcp_req->req.qpair->group;
531 	struct spdk_nvmf_transport *transport = tcp_req->req.qpair->transport;
532 	struct spdk_nvmf_transport_poll_group *tgroup = nvmf_get_transport_poll_group(group, transport);
533 	struct spdk_nvmf_tcp_poll_group *tcp_group = SPDK_CONTAINEROF(tgroup,
534 			struct spdk_nvmf_tcp_poll_group, group);
535 	struct spdk_nvmf_tcp_req *tmp_req, *abort_req;
536 
537 	assert(tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER);
538 
539 	STAILQ_FOREACH_SAFE(abort_req, &tcp_group->control_msg_list->waiting_for_msg_reqs, control_msg_link,
540 			    tmp_req) {
541 		if (abort_req == tcp_req) {
542 			STAILQ_REMOVE(&tcp_group->control_msg_list->waiting_for_msg_reqs, abort_req, spdk_nvmf_tcp_req,
543 				      control_msg_link);
544 			return;
545 		}
546 	}
547 
548 	if (!nvmf_request_get_buffers_abort(&tcp_req->req)) {
549 		SPDK_ERRLOG("Failed to abort tcp_req=%p\n", tcp_req);
550 		assert(0 && "Should never happen");
551 	}
552 }
553 
554 static void
555 nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
556 {
557 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
558 
559 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
560 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
561 
562 	/* Wipe the requests waiting for buffer from the waiting list */
563 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
564 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
565 			nvmf_tcp_request_get_buffers_abort(tcp_req);
566 		}
567 	}
568 
569 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
570 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
571 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
572 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
573 }
574 
575 static void
576 nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
577 {
578 	int i;
579 	struct spdk_nvmf_tcp_req *tcp_req;
580 
581 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
582 	for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
583 		SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
584 		TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
585 			if ((int)tcp_req->state == i) {
586 				SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
587 				SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
588 			}
589 		}
590 	}
591 }
592 
593 static void
594 _nvmf_tcp_qpair_destroy(void *_tqpair)
595 {
596 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
597 	spdk_nvmf_transport_qpair_fini_cb cb_fn = tqpair->fini_cb_fn;
598 	void *cb_arg = tqpair->fini_cb_arg;
599 	int err = 0;
600 
601 	spdk_trace_record(TRACE_TCP_QP_DESTROY, tqpair->qpair.trace_id, 0, 0);
602 
603 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
604 
605 	err = spdk_sock_close(&tqpair->sock);
606 	assert(err == 0);
607 	nvmf_tcp_cleanup_all_states(tqpair);
608 
609 	if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
610 		SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
611 			    tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
612 			    tqpair->resource_count);
613 		err++;
614 	}
615 
616 	if (err > 0) {
617 		nvmf_tcp_dump_qpair_req_contents(tqpair);
618 	}
619 
620 	/* The timeout poller might still be registered here if we close the qpair before host
621 	 * terminates the connection.
622 	 */
623 	spdk_poller_unregister(&tqpair->timeout_poller);
624 	spdk_dma_free(tqpair->pdus);
625 	free(tqpair->reqs);
626 	spdk_free(tqpair->bufs);
627 	spdk_trace_unregister_owner(tqpair->qpair.trace_id);
628 	free(tqpair);
629 
630 	if (cb_fn != NULL) {
631 		cb_fn(cb_arg);
632 	}
633 
634 	SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
635 }
636 
637 static void
638 nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
639 {
640 	/* Delay the destruction to make sure it isn't performed from the context of a sock
641 	 * callback.  Otherwise, spdk_sock_close() might not abort pending requests, causing their
642 	 * completions to be executed after the qpair is freed.  (Note: this fixed issue #2471.)
643 	 */
644 	spdk_thread_send_msg(spdk_get_thread(), _nvmf_tcp_qpair_destroy, tqpair);
645 }
646 
647 static void
648 nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
649 {
650 	struct spdk_nvmf_tcp_transport	*ttransport;
651 	assert(w != NULL);
652 
653 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
654 	spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
655 	spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
656 }
657 
658 static void
659 nvmf_tcp_free_psk_entry(struct tcp_psk_entry *entry)
660 {
661 	if (entry == NULL) {
662 		return;
663 	}
664 
665 	spdk_memset_s(entry->psk, sizeof(entry->psk), 0, sizeof(entry->psk));
666 	spdk_keyring_put_key(entry->key);
667 	free(entry);
668 }
669 
670 static int
671 nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
672 		 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
673 {
674 	struct spdk_nvmf_tcp_transport	*ttransport;
675 	struct tcp_psk_entry *entry, *tmp;
676 
677 	assert(transport != NULL);
678 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
679 
680 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
681 		TAILQ_REMOVE(&ttransport->psks, entry, link);
682 		nvmf_tcp_free_psk_entry(entry);
683 	}
684 
685 	spdk_poller_unregister(&ttransport->accept_poller);
686 	spdk_sock_group_unregister_interrupt(ttransport->listen_sock_group);
687 	spdk_sock_group_close(&ttransport->listen_sock_group);
688 	free(ttransport);
689 
690 	if (cb_fn) {
691 		cb_fn(cb_arg);
692 	}
693 	return 0;
694 }
695 
696 static int nvmf_tcp_accept(void *ctx);
697 
698 static void nvmf_tcp_accept_cb(void *ctx, struct spdk_sock_group *group, struct spdk_sock *sock);
699 
700 static void
701 nvmf_tcp_poller_set_interrupt_mode_nop(struct spdk_poller *poller, void *cb_arg,
702 				       bool interrupt_mode)
703 {
704 }
705 
706 static struct spdk_nvmf_transport *
707 nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
708 {
709 	struct spdk_nvmf_tcp_transport *ttransport;
710 	uint32_t sge_count;
711 	uint32_t min_shared_buffers;
712 	int rc;
713 	uint64_t period;
714 
715 	ttransport = calloc(1, sizeof(*ttransport));
716 	if (!ttransport) {
717 		return NULL;
718 	}
719 
720 	TAILQ_INIT(&ttransport->ports);
721 	TAILQ_INIT(&ttransport->poll_groups);
722 	TAILQ_INIT(&ttransport->psks);
723 
724 	ttransport->transport.ops = &spdk_nvmf_transport_tcp;
725 
726 	ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
727 	ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
728 	ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
729 	if (opts->transport_specific != NULL &&
730 	    spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
731 					    SPDK_COUNTOF(tcp_transport_opts_decoder),
732 					    &ttransport->tcp_opts)) {
733 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
734 		free(ttransport);
735 		return NULL;
736 	}
737 
738 	SPDK_NOTICELOG("*** TCP Transport Init ***\n");
739 
740 	SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
741 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
742 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
743 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
744 		     "  num_shared_buffers=%d, c2h_success=%d,\n"
745 		     "  dif_insert_or_strip=%d, sock_priority=%d\n"
746 		     "  abort_timeout_sec=%d, control_msg_num=%hu\n"
747 		     "  ack_timeout=%d\n",
748 		     opts->max_queue_depth,
749 		     opts->max_io_size,
750 		     opts->max_qpairs_per_ctrlr - 1,
751 		     opts->io_unit_size,
752 		     opts->in_capsule_data_size,
753 		     opts->max_aq_depth,
754 		     opts->num_shared_buffers,
755 		     ttransport->tcp_opts.c2h_success,
756 		     opts->dif_insert_or_strip,
757 		     ttransport->tcp_opts.sock_priority,
758 		     opts->abort_timeout_sec,
759 		     ttransport->tcp_opts.control_msg_num,
760 		     opts->ack_timeout);
761 
762 	if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
763 		SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
764 			    "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
765 			    ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
766 		free(ttransport);
767 		return NULL;
768 	}
769 
770 	if (ttransport->tcp_opts.control_msg_num == 0 &&
771 	    opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
772 		SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
773 			     SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
774 		ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
775 	}
776 
777 	/* I/O unit size cannot be larger than max I/O size */
778 	if (opts->io_unit_size > opts->max_io_size) {
779 		SPDK_WARNLOG("TCP param io_unit_size %u can't be larger than max_io_size %u. Using max_io_size as io_unit_size\n",
780 			     opts->io_unit_size, opts->max_io_size);
781 		opts->io_unit_size = opts->max_io_size;
782 	}
783 
784 	/* In capsule data size cannot be larger than max I/O size */
785 	if (opts->in_capsule_data_size > opts->max_io_size) {
786 		SPDK_WARNLOG("TCP param ICD size %u can't be larger than max_io_size %u. Using max_io_size as ICD size\n",
787 			     opts->io_unit_size, opts->max_io_size);
788 		opts->in_capsule_data_size = opts->max_io_size;
789 	}
790 
791 	/* max IO queue depth cannot be smaller than 2 or larger than 65535.
792 	 * We will not check SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, because max_queue_depth is 16bits and always not larger than 64k. */
793 	if (opts->max_queue_depth < SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH) {
794 		SPDK_WARNLOG("TCP param max_queue_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
795 			     opts->max_queue_depth, SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH,
796 			     SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH);
797 		opts->max_queue_depth = SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
798 	}
799 
800 	/* max admin queue depth cannot be smaller than 2 or larger than 4096 */
801 	if (opts->max_aq_depth < SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH ||
802 	    opts->max_aq_depth > SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH) {
803 		SPDK_WARNLOG("TCP param max_aq_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
804 			     opts->max_aq_depth, SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH,
805 			     SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH);
806 		opts->max_aq_depth = SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
807 	}
808 
809 	sge_count = opts->max_io_size / opts->io_unit_size;
810 	if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
811 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
812 		free(ttransport);
813 		return NULL;
814 	}
815 
816 	/* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */
817 	if (opts->buf_cache_size < UINT32_MAX) {
818 		min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
819 		if (min_shared_buffers > opts->num_shared_buffers) {
820 			SPDK_ERRLOG("There are not enough buffers to satisfy "
821 				    "per-poll group caches for each thread. (%" PRIu32 ") "
822 				    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
823 			SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
824 			free(ttransport);
825 			return NULL;
826 		}
827 	}
828 
829 	period = spdk_interrupt_mode_is_enabled() ? 0 : opts->acceptor_poll_rate;
830 	ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport, period);
831 	if (!ttransport->accept_poller) {
832 		free(ttransport);
833 		return NULL;
834 	}
835 
836 	spdk_poller_register_interrupt(ttransport->accept_poller, nvmf_tcp_poller_set_interrupt_mode_nop,
837 				       NULL);
838 
839 	ttransport->listen_sock_group = spdk_sock_group_create(NULL);
840 	if (ttransport->listen_sock_group == NULL) {
841 		SPDK_ERRLOG("Failed to create socket group for listen sockets\n");
842 		spdk_poller_unregister(&ttransport->accept_poller);
843 		free(ttransport);
844 		return NULL;
845 	}
846 
847 	if (spdk_interrupt_mode_is_enabled()) {
848 		rc = SPDK_SOCK_GROUP_REGISTER_INTERRUPT(ttransport->listen_sock_group,
849 							SPDK_INTERRUPT_EVENT_IN | SPDK_INTERRUPT_EVENT_OUT, nvmf_tcp_accept, &ttransport->transport);
850 		if (rc != 0) {
851 			SPDK_ERRLOG("Failed to register interrupt for listen socker sock group\n");
852 			spdk_sock_group_close(&ttransport->listen_sock_group);
853 			spdk_poller_unregister(&ttransport->accept_poller);
854 			free(ttransport);
855 			return NULL;
856 		}
857 	}
858 
859 	return &ttransport->transport;
860 }
861 
862 static int
863 nvmf_tcp_trsvcid_to_int(const char *trsvcid)
864 {
865 	unsigned long long ull;
866 	char *end = NULL;
867 
868 	ull = strtoull(trsvcid, &end, 10);
869 	if (end == NULL || end == trsvcid || *end != '\0') {
870 		return -1;
871 	}
872 
873 	/* Valid TCP/IP port numbers are in [1, 65535] */
874 	if (ull == 0 || ull > 65535) {
875 		return -1;
876 	}
877 
878 	return (int)ull;
879 }
880 
881 /**
882  * Canonicalize a listen address trid.
883  */
884 static int
885 nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
886 			   const struct spdk_nvme_transport_id *trid)
887 {
888 	int trsvcid_int;
889 
890 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
891 	if (trsvcid_int < 0) {
892 		return -EINVAL;
893 	}
894 
895 	memset(canon_trid, 0, sizeof(*canon_trid));
896 	spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
897 	canon_trid->adrfam = trid->adrfam;
898 	snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
899 	snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
900 
901 	return 0;
902 }
903 
904 /**
905  * Find an existing listening port.
906  */
907 static struct spdk_nvmf_tcp_port *
908 nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
909 		   const struct spdk_nvme_transport_id *trid)
910 {
911 	struct spdk_nvme_transport_id canon_trid;
912 	struct spdk_nvmf_tcp_port *port;
913 
914 	if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
915 		return NULL;
916 	}
917 
918 	TAILQ_FOREACH(port, &ttransport->ports, link) {
919 		if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
920 			return port;
921 		}
922 	}
923 
924 	return NULL;
925 }
926 
927 static int
928 tcp_sock_get_key(uint8_t *out, int out_len, const char **cipher, const char *pskid,
929 		 void *get_key_ctx)
930 {
931 	struct tcp_psk_entry *entry;
932 	struct spdk_nvmf_tcp_transport *ttransport = get_key_ctx;
933 	size_t psk_len;
934 	int rc;
935 
936 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
937 		if (strcmp(pskid, entry->pskid) != 0) {
938 			continue;
939 		}
940 
941 		psk_len = entry->psk_size;
942 		if ((size_t)out_len < psk_len) {
943 			SPDK_ERRLOG("Out buffer of size: %" PRIu32 " cannot fit PSK of len: %lu\n",
944 				    out_len, psk_len);
945 			return -ENOBUFS;
946 		}
947 
948 		/* Convert PSK to the TLS PSK format. */
949 		rc = nvme_tcp_derive_tls_psk(entry->psk, psk_len, pskid, out, out_len,
950 					     entry->tls_cipher_suite);
951 		if (rc < 0) {
952 			SPDK_ERRLOG("Could not generate TLS PSK\n");
953 		}
954 
955 		switch (entry->tls_cipher_suite) {
956 		case NVME_TCP_CIPHER_AES_128_GCM_SHA256:
957 			*cipher = "TLS_AES_128_GCM_SHA256";
958 			break;
959 		case NVME_TCP_CIPHER_AES_256_GCM_SHA384:
960 			*cipher = "TLS_AES_256_GCM_SHA384";
961 			break;
962 		default:
963 			*cipher = NULL;
964 			return -ENOTSUP;
965 		}
966 
967 		return rc;
968 	}
969 
970 	SPDK_ERRLOG("Could not find PSK for identity: %s\n", pskid);
971 
972 	return -EINVAL;
973 }
974 
975 static int
976 nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
977 		struct spdk_nvmf_listen_opts *listen_opts)
978 {
979 	struct spdk_nvmf_tcp_transport *ttransport;
980 	struct spdk_nvmf_tcp_port *port;
981 	int trsvcid_int;
982 	uint8_t adrfam;
983 	const char *sock_impl_name;
984 	struct spdk_sock_impl_opts impl_opts;
985 	size_t impl_opts_size = sizeof(impl_opts);
986 	struct spdk_sock_opts opts;
987 	int rc;
988 
989 	if (!strlen(trid->trsvcid)) {
990 		SPDK_ERRLOG("Service id is required\n");
991 		return -EINVAL;
992 	}
993 
994 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
995 
996 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
997 	if (trsvcid_int < 0) {
998 		SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
999 		return -EINVAL;
1000 	}
1001 
1002 	port = calloc(1, sizeof(*port));
1003 	if (!port) {
1004 		SPDK_ERRLOG("Port allocation failed\n");
1005 		return -ENOMEM;
1006 	}
1007 
1008 	port->trid = trid;
1009 
1010 	sock_impl_name = NULL;
1011 
1012 	opts.opts_size = sizeof(opts);
1013 	spdk_sock_get_default_opts(&opts);
1014 	opts.priority = ttransport->tcp_opts.sock_priority;
1015 	opts.ack_timeout = transport->opts.ack_timeout;
1016 	if (listen_opts->secure_channel) {
1017 		if (listen_opts->sock_impl &&
1018 		    strncmp("ssl", listen_opts->sock_impl, strlen(listen_opts->sock_impl))) {
1019 			SPDK_ERRLOG("Enabling secure_channel while specifying a sock_impl different from 'ssl' is unsupported");
1020 			free(port);
1021 			return -EINVAL;
1022 		}
1023 		listen_opts->sock_impl = "ssl";
1024 	}
1025 
1026 	if (listen_opts->sock_impl) {
1027 		sock_impl_name = listen_opts->sock_impl;
1028 		spdk_sock_impl_get_opts(sock_impl_name, &impl_opts, &impl_opts_size);
1029 
1030 		if (!strncmp("ssl", sock_impl_name, strlen(sock_impl_name))) {
1031 			if (!g_tls_log) {
1032 				SPDK_NOTICELOG("TLS support is considered experimental\n");
1033 				g_tls_log = true;
1034 			}
1035 			impl_opts.tls_version = SPDK_TLS_VERSION_1_3;
1036 			impl_opts.get_key = tcp_sock_get_key;
1037 			impl_opts.get_key_ctx = ttransport;
1038 			impl_opts.tls_cipher_suites = "TLS_AES_256_GCM_SHA384:TLS_AES_128_GCM_SHA256";
1039 		}
1040 
1041 		opts.impl_opts = &impl_opts;
1042 		opts.impl_opts_size = sizeof(impl_opts);
1043 	}
1044 
1045 	port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
1046 			    sock_impl_name, &opts);
1047 	if (port->listen_sock == NULL) {
1048 		SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
1049 			    trid->traddr, trsvcid_int,
1050 			    spdk_strerror(errno), errno);
1051 		free(port);
1052 		return -errno;
1053 	}
1054 
1055 	if (spdk_sock_is_ipv4(port->listen_sock)) {
1056 		adrfam = SPDK_NVMF_ADRFAM_IPV4;
1057 	} else if (spdk_sock_is_ipv6(port->listen_sock)) {
1058 		adrfam = SPDK_NVMF_ADRFAM_IPV6;
1059 	} else {
1060 		SPDK_ERRLOG("Unhandled socket type\n");
1061 		adrfam = 0;
1062 	}
1063 
1064 	if (adrfam != trid->adrfam) {
1065 		SPDK_ERRLOG("Socket address family mismatch\n");
1066 		spdk_sock_close(&port->listen_sock);
1067 		free(port);
1068 		return -EINVAL;
1069 	}
1070 
1071 	rc = spdk_sock_group_add_sock(ttransport->listen_sock_group, port->listen_sock, nvmf_tcp_accept_cb,
1072 				      port);
1073 	if (rc < 0) {
1074 		SPDK_ERRLOG("Failed to add socket to the listen socket group\n");
1075 		spdk_sock_close(&port->listen_sock);
1076 		free(port);
1077 		return -errno;
1078 	}
1079 
1080 	port->transport = transport;
1081 
1082 	SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
1083 		       trid->traddr, trid->trsvcid);
1084 
1085 	TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
1086 	return 0;
1087 }
1088 
1089 static void
1090 nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
1091 		     const struct spdk_nvme_transport_id *trid)
1092 {
1093 	struct spdk_nvmf_tcp_transport *ttransport;
1094 	struct spdk_nvmf_tcp_port *port;
1095 
1096 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1097 
1098 	SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
1099 		      trid->traddr, trid->trsvcid);
1100 
1101 	port = nvmf_tcp_find_port(ttransport, trid);
1102 	if (port) {
1103 		spdk_sock_group_remove_sock(ttransport->listen_sock_group, port->listen_sock);
1104 		TAILQ_REMOVE(&ttransport->ports, port, link);
1105 		spdk_sock_close(&port->listen_sock);
1106 		free(port);
1107 	}
1108 }
1109 
1110 static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1111 		enum nvme_tcp_pdu_recv_state state);
1112 
1113 static void
1114 nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvme_tcp_qpair_state state)
1115 {
1116 	tqpair->state = state;
1117 	spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0,
1118 			  (uint64_t)tqpair->state);
1119 }
1120 
1121 static void
1122 nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
1123 {
1124 	SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
1125 
1126 	spdk_trace_record(TRACE_TCP_QP_DISCONNECT, tqpair->qpair.trace_id, 0, 0);
1127 
1128 	if (tqpair->state <= NVME_TCP_QPAIR_STATE_RUNNING) {
1129 		nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITING);
1130 		assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1131 		spdk_poller_unregister(&tqpair->timeout_poller);
1132 
1133 		/* This will end up calling nvmf_tcp_close_qpair */
1134 		spdk_nvmf_qpair_disconnect(&tqpair->qpair);
1135 	}
1136 }
1137 
1138 static void
1139 _mgmt_pdu_write_done(void *_tqpair, int err)
1140 {
1141 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
1142 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1143 
1144 	if (spdk_unlikely(err != 0)) {
1145 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1146 		return;
1147 	}
1148 
1149 	assert(pdu->cb_fn != NULL);
1150 	pdu->cb_fn(pdu->cb_arg);
1151 }
1152 
1153 static void
1154 _req_pdu_write_done(void *req, int err)
1155 {
1156 	struct spdk_nvmf_tcp_req *tcp_req = req;
1157 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1158 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1159 
1160 	assert(tcp_req->pdu_in_use);
1161 	tcp_req->pdu_in_use = false;
1162 
1163 	/* If the request is in a completed state, we're waiting for write completion to free it */
1164 	if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) {
1165 		nvmf_tcp_request_free(tcp_req);
1166 		return;
1167 	}
1168 
1169 	if (spdk_unlikely(err != 0)) {
1170 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1171 		return;
1172 	}
1173 
1174 	assert(pdu->cb_fn != NULL);
1175 	pdu->cb_fn(pdu->cb_arg);
1176 }
1177 
1178 static void
1179 _pdu_write_done(struct nvme_tcp_pdu *pdu, int err)
1180 {
1181 	pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err);
1182 }
1183 
1184 static void
1185 _tcp_write_pdu(struct nvme_tcp_pdu *pdu)
1186 {
1187 	int rc;
1188 	uint32_t mapped_length;
1189 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1190 
1191 	pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
1192 			       tqpair->host_hdgst_enable, tqpair->host_ddgst_enable, &mapped_length);
1193 	spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
1194 
1195 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
1196 	    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
1197 		/* Try to force the send immediately. */
1198 		rc = spdk_sock_flush(tqpair->sock);
1199 		if (rc > 0 && (uint32_t)rc == mapped_length) {
1200 			_pdu_write_done(pdu, 0);
1201 		} else {
1202 			SPDK_ERRLOG("Could not write %s to socket: rc=%d, errno=%d\n",
1203 				    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ?
1204 				    "IC_RESP" : "TERM_REQ", rc, errno);
1205 			_pdu_write_done(pdu, rc >= 0 ? -EAGAIN : -errno);
1206 		}
1207 	}
1208 }
1209 
1210 static void
1211 data_crc32_accel_done(void *cb_arg, int status)
1212 {
1213 	struct nvme_tcp_pdu *pdu = cb_arg;
1214 
1215 	if (spdk_unlikely(status)) {
1216 		SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
1217 		_pdu_write_done(pdu, status);
1218 		return;
1219 	}
1220 
1221 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
1222 	MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
1223 
1224 	_tcp_write_pdu(pdu);
1225 }
1226 
1227 static void
1228 pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
1229 {
1230 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1231 	int rc = 0;
1232 
1233 	/* Data Digest */
1234 	if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
1235 		/* Only support this limitated case for the first step */
1236 		if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
1237 				&& tqpair->group)) {
1238 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
1239 						       pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
1240 			if (spdk_likely(rc == 0)) {
1241 				return;
1242 			}
1243 		} else {
1244 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1245 		}
1246 		data_crc32_accel_done(pdu, rc);
1247 	} else {
1248 		_tcp_write_pdu(pdu);
1249 	}
1250 }
1251 
1252 static void
1253 nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1254 			 struct nvme_tcp_pdu *pdu,
1255 			 nvme_tcp_qpair_xfer_complete_cb cb_fn,
1256 			 void *cb_arg)
1257 {
1258 	int hlen;
1259 	uint32_t crc32c;
1260 
1261 	assert(tqpair->pdu_in_progress != pdu);
1262 
1263 	hlen = pdu->hdr.common.hlen;
1264 	pdu->cb_fn = cb_fn;
1265 	pdu->cb_arg = cb_arg;
1266 
1267 	pdu->iov[0].iov_base = &pdu->hdr.raw;
1268 	pdu->iov[0].iov_len = hlen;
1269 
1270 	/* Header Digest */
1271 	if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) {
1272 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1273 		MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
1274 	}
1275 
1276 	/* Data Digest */
1277 	pdu_data_crc32_compute(pdu);
1278 }
1279 
1280 static void
1281 nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1282 			      nvme_tcp_qpair_xfer_complete_cb cb_fn,
1283 			      void *cb_arg)
1284 {
1285 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1286 
1287 	pdu->sock_req.cb_fn = _mgmt_pdu_write_done;
1288 	pdu->sock_req.cb_arg = tqpair;
1289 
1290 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1291 }
1292 
1293 static void
1294 nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1295 			     struct spdk_nvmf_tcp_req *tcp_req,
1296 			     nvme_tcp_qpair_xfer_complete_cb cb_fn,
1297 			     void *cb_arg)
1298 {
1299 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1300 
1301 	pdu->sock_req.cb_fn = _req_pdu_write_done;
1302 	pdu->sock_req.cb_arg = tcp_req;
1303 
1304 	assert(!tcp_req->pdu_in_use);
1305 	tcp_req->pdu_in_use = true;
1306 
1307 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1308 }
1309 
1310 static int
1311 nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
1312 {
1313 	uint32_t i;
1314 	struct spdk_nvmf_transport_opts *opts;
1315 	uint32_t in_capsule_data_size;
1316 
1317 	opts = &tqpair->qpair.transport->opts;
1318 
1319 	in_capsule_data_size = opts->in_capsule_data_size;
1320 	if (opts->dif_insert_or_strip) {
1321 		in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
1322 	}
1323 
1324 	tqpair->resource_count = opts->max_queue_depth;
1325 
1326 	tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
1327 	if (!tqpair->reqs) {
1328 		SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
1329 		return -1;
1330 	}
1331 
1332 	if (in_capsule_data_size) {
1333 		tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
1334 					    NULL, SPDK_ENV_LCORE_ID_ANY,
1335 					    SPDK_MALLOC_DMA);
1336 		if (!tqpair->bufs) {
1337 			SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
1338 			return -1;
1339 		}
1340 	}
1341 	/* prepare memory space for receiving pdus and tcp_req */
1342 	/* Add additional 1 member, which will be used for mgmt_pdu owned by the tqpair */
1343 	tqpair->pdus = spdk_dma_zmalloc((2 * tqpair->resource_count + 1) * sizeof(*tqpair->pdus), 0x1000,
1344 					NULL);
1345 	if (!tqpair->pdus) {
1346 		SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
1347 		return -1;
1348 	}
1349 
1350 	for (i = 0; i < tqpair->resource_count; i++) {
1351 		struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
1352 
1353 		tcp_req->ttag = i + 1;
1354 		tcp_req->req.qpair = &tqpair->qpair;
1355 
1356 		tcp_req->pdu = &tqpair->pdus[i];
1357 		tcp_req->pdu->qpair = tqpair;
1358 
1359 		/* Set up memory to receive commands */
1360 		if (tqpair->bufs) {
1361 			tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
1362 		}
1363 
1364 		/* Set the cmdn and rsp */
1365 		tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
1366 		tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
1367 
1368 		tcp_req->req.stripped_data = NULL;
1369 
1370 		/* Initialize request state to FREE */
1371 		tcp_req->state = TCP_REQUEST_STATE_FREE;
1372 		TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
1373 		tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
1374 	}
1375 
1376 	for (; i < 2 * tqpair->resource_count; i++) {
1377 		struct nvme_tcp_pdu *pdu = &tqpair->pdus[i];
1378 
1379 		pdu->qpair = tqpair;
1380 		SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1381 	}
1382 
1383 	tqpair->mgmt_pdu = &tqpair->pdus[i];
1384 	tqpair->mgmt_pdu->qpair = tqpair;
1385 	tqpair->pdu_in_progress = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
1386 	SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
1387 	tqpair->tcp_pdu_working_count = 1;
1388 
1389 	tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
1390 				 SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1391 
1392 	return 0;
1393 }
1394 
1395 static int
1396 nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
1397 {
1398 	struct spdk_nvmf_tcp_qpair *tqpair;
1399 
1400 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1401 
1402 	SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
1403 
1404 	spdk_trace_record(TRACE_TCP_QP_CREATE, tqpair->qpair.trace_id, 0, 0);
1405 
1406 	/* Initialise request state queues of the qpair */
1407 	TAILQ_INIT(&tqpair->tcp_req_free_queue);
1408 	TAILQ_INIT(&tqpair->tcp_req_working_queue);
1409 	SLIST_INIT(&tqpair->tcp_pdu_free_queue);
1410 	tqpair->qpair.queue_depth = 0;
1411 
1412 	tqpair->host_hdgst_enable = true;
1413 	tqpair->host_ddgst_enable = true;
1414 
1415 	return 0;
1416 }
1417 
1418 static int
1419 nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
1420 {
1421 	char saddr[32], caddr[32];
1422 	uint16_t sport, cport;
1423 	char owner[256];
1424 	int rc;
1425 
1426 	rc = spdk_sock_getaddr(tqpair->sock, saddr, sizeof(saddr), &sport,
1427 			       caddr, sizeof(caddr), &cport);
1428 	if (rc != 0) {
1429 		SPDK_ERRLOG("spdk_sock_getaddr() failed\n");
1430 		return rc;
1431 	}
1432 	snprintf(owner, sizeof(owner), "%s:%d", caddr, cport);
1433 	tqpair->qpair.trace_id = spdk_trace_register_owner(OWNER_TYPE_NVMF_TCP, owner);
1434 	spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, tqpair->qpair.trace_id, 0, 0);
1435 
1436 	/* set low water mark */
1437 	rc = spdk_sock_set_recvlowat(tqpair->sock, 1);
1438 	if (rc != 0) {
1439 		SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
1440 		return rc;
1441 	}
1442 
1443 	return 0;
1444 }
1445 
1446 static void
1447 nvmf_tcp_handle_connect(struct spdk_nvmf_tcp_port *port, struct spdk_sock *sock)
1448 {
1449 	struct spdk_nvmf_tcp_qpair *tqpair;
1450 	int rc;
1451 
1452 	SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
1453 		      port->trid->traddr, port->trid->trsvcid);
1454 
1455 	tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
1456 	if (tqpair == NULL) {
1457 		SPDK_ERRLOG("Could not allocate new connection.\n");
1458 		spdk_sock_close(&sock);
1459 		return;
1460 	}
1461 
1462 	tqpair->sock = sock;
1463 	tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
1464 	tqpair->port = port;
1465 	tqpair->qpair.transport = port->transport;
1466 
1467 	rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
1468 			       sizeof(tqpair->target_addr), &tqpair->target_port,
1469 			       tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
1470 			       &tqpair->initiator_port);
1471 	if (rc < 0) {
1472 		SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
1473 		nvmf_tcp_qpair_destroy(tqpair);
1474 		return;
1475 	}
1476 
1477 	spdk_nvmf_tgt_new_qpair(port->transport->tgt, &tqpair->qpair);
1478 }
1479 
1480 static uint32_t
1481 nvmf_tcp_port_accept(struct spdk_nvmf_tcp_port *port)
1482 {
1483 	struct spdk_sock *sock;
1484 	uint32_t count = 0;
1485 	int i;
1486 
1487 	for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
1488 		sock = spdk_sock_accept(port->listen_sock);
1489 		if (sock == NULL) {
1490 			break;
1491 		}
1492 		count++;
1493 		nvmf_tcp_handle_connect(port, sock);
1494 	}
1495 
1496 	return count;
1497 }
1498 
1499 static int
1500 nvmf_tcp_accept(void *ctx)
1501 {
1502 	struct spdk_nvmf_transport *transport = ctx;
1503 	struct spdk_nvmf_tcp_transport *ttransport;
1504 	int count;
1505 
1506 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1507 
1508 	count = spdk_sock_group_poll(ttransport->listen_sock_group);
1509 	if (count < 0) {
1510 		SPDK_ERRLOG("Fail in TCP listen socket group poll\n");
1511 	}
1512 
1513 	return count != 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1514 }
1515 
1516 static void
1517 nvmf_tcp_accept_cb(void *ctx, struct spdk_sock_group *group, struct spdk_sock *sock)
1518 {
1519 	struct spdk_nvmf_tcp_port *port = ctx;
1520 
1521 	nvmf_tcp_port_accept(port);
1522 }
1523 
1524 static void
1525 nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
1526 		  struct spdk_nvme_transport_id *trid,
1527 		  struct spdk_nvmf_discovery_log_page_entry *entry)
1528 {
1529 	struct spdk_nvmf_tcp_port *port;
1530 	struct spdk_nvmf_tcp_transport *ttransport;
1531 
1532 	entry->trtype = SPDK_NVMF_TRTYPE_TCP;
1533 	entry->adrfam = trid->adrfam;
1534 
1535 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
1536 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
1537 
1538 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1539 	port = nvmf_tcp_find_port(ttransport, trid);
1540 
1541 	assert(port != NULL);
1542 
1543 	if (strcmp(spdk_sock_get_impl_name(port->listen_sock), "ssl") == 0) {
1544 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_REQUIRED;
1545 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_TLS_1_3;
1546 	} else {
1547 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
1548 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
1549 	}
1550 }
1551 
1552 static struct spdk_nvmf_tcp_control_msg_list *
1553 nvmf_tcp_control_msg_list_create(uint16_t num_messages)
1554 {
1555 	struct spdk_nvmf_tcp_control_msg_list *list;
1556 	struct spdk_nvmf_tcp_control_msg *msg;
1557 	uint16_t i;
1558 
1559 	list = calloc(1, sizeof(*list));
1560 	if (!list) {
1561 		SPDK_ERRLOG("Failed to allocate memory for list structure\n");
1562 		return NULL;
1563 	}
1564 
1565 	list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
1566 				     NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
1567 	if (!list->msg_buf) {
1568 		SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
1569 		free(list);
1570 		return NULL;
1571 	}
1572 
1573 	STAILQ_INIT(&list->free_msgs);
1574 	STAILQ_INIT(&list->waiting_for_msg_reqs);
1575 
1576 	for (i = 0; i < num_messages; i++) {
1577 		msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
1578 				SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1579 		STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
1580 	}
1581 
1582 	return list;
1583 }
1584 
1585 static void
1586 nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
1587 {
1588 	if (!list) {
1589 		return;
1590 	}
1591 
1592 	spdk_free(list->msg_buf);
1593 	free(list);
1594 }
1595 
1596 static int nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group);
1597 
1598 static int
1599 nvmf_tcp_poll_group_intr(void *ctx)
1600 {
1601 	struct spdk_nvmf_transport_poll_group *group = ctx;
1602 	int ret = 0;
1603 
1604 	ret = nvmf_tcp_poll_group_poll(group);
1605 
1606 	return ret != 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1607 }
1608 
1609 static struct spdk_nvmf_transport_poll_group *
1610 nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport,
1611 			   struct spdk_nvmf_poll_group *group)
1612 {
1613 	struct spdk_nvmf_tcp_transport	*ttransport;
1614 	struct spdk_nvmf_tcp_poll_group *tgroup;
1615 	int rc;
1616 
1617 	tgroup = calloc(1, sizeof(*tgroup));
1618 	if (!tgroup) {
1619 		return NULL;
1620 	}
1621 
1622 	tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
1623 	if (!tgroup->sock_group) {
1624 		goto cleanup;
1625 	}
1626 
1627 	TAILQ_INIT(&tgroup->qpairs);
1628 	TAILQ_INIT(&tgroup->await_req);
1629 
1630 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1631 
1632 	if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
1633 		SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
1634 			      "Creating control messages list\n", transport->opts.in_capsule_data_size,
1635 			      SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1636 		tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
1637 		if (!tgroup->control_msg_list) {
1638 			goto cleanup;
1639 		}
1640 	}
1641 
1642 	tgroup->accel_channel = spdk_accel_get_io_channel();
1643 	if (spdk_unlikely(!tgroup->accel_channel)) {
1644 		SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
1645 		goto cleanup;
1646 	}
1647 
1648 	TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link);
1649 	if (ttransport->next_pg == NULL) {
1650 		ttransport->next_pg = tgroup;
1651 	}
1652 
1653 	if (spdk_interrupt_mode_is_enabled()) {
1654 		rc = SPDK_SOCK_GROUP_REGISTER_INTERRUPT(tgroup->sock_group,
1655 							SPDK_INTERRUPT_EVENT_IN | SPDK_INTERRUPT_EVENT_OUT, nvmf_tcp_poll_group_intr, &tgroup->group);
1656 		if (rc != 0) {
1657 			SPDK_ERRLOG("Failed to register interrupt for sock group\n");
1658 			goto cleanup;
1659 		}
1660 	}
1661 
1662 	return &tgroup->group;
1663 
1664 cleanup:
1665 	nvmf_tcp_poll_group_destroy(&tgroup->group);
1666 	return NULL;
1667 }
1668 
1669 static struct spdk_nvmf_transport_poll_group *
1670 nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
1671 {
1672 	struct spdk_nvmf_tcp_transport *ttransport;
1673 	struct spdk_nvmf_tcp_poll_group **pg;
1674 	struct spdk_nvmf_tcp_qpair *tqpair;
1675 	struct spdk_sock_group *group = NULL, *hint = NULL;
1676 	int rc;
1677 
1678 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
1679 
1680 	if (TAILQ_EMPTY(&ttransport->poll_groups)) {
1681 		return NULL;
1682 	}
1683 
1684 	pg = &ttransport->next_pg;
1685 	assert(*pg != NULL);
1686 	hint = (*pg)->sock_group;
1687 
1688 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1689 	rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint);
1690 	if (rc != 0) {
1691 		return NULL;
1692 	} else if (group != NULL) {
1693 		/* Optimal poll group was found */
1694 		return spdk_sock_group_get_ctx(group);
1695 	}
1696 
1697 	/* The hint was used for optimal poll group, advance next_pg. */
1698 	*pg = TAILQ_NEXT(*pg, link);
1699 	if (*pg == NULL) {
1700 		*pg = TAILQ_FIRST(&ttransport->poll_groups);
1701 	}
1702 
1703 	return spdk_sock_group_get_ctx(hint);
1704 }
1705 
1706 static void
1707 nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
1708 {
1709 	struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup;
1710 	struct spdk_nvmf_tcp_transport *ttransport;
1711 
1712 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
1713 	spdk_sock_group_unregister_interrupt(tgroup->sock_group);
1714 	spdk_sock_group_close(&tgroup->sock_group);
1715 	if (tgroup->control_msg_list) {
1716 		nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
1717 	}
1718 
1719 	if (tgroup->accel_channel) {
1720 		spdk_put_io_channel(tgroup->accel_channel);
1721 	}
1722 
1723 	if (tgroup->group.transport == NULL) {
1724 		/* Transport can be NULL when nvmf_tcp_poll_group_create()
1725 		 * calls this function directly in a failure path. */
1726 		free(tgroup);
1727 		return;
1728 	}
1729 
1730 	ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport);
1731 
1732 	next_tgroup = TAILQ_NEXT(tgroup, link);
1733 	TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link);
1734 	if (next_tgroup == NULL) {
1735 		next_tgroup = TAILQ_FIRST(&ttransport->poll_groups);
1736 	}
1737 	if (ttransport->next_pg == tgroup) {
1738 		ttransport->next_pg = next_tgroup;
1739 	}
1740 
1741 	free(tgroup);
1742 }
1743 
1744 static void
1745 nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1746 			      enum nvme_tcp_pdu_recv_state state)
1747 {
1748 	if (tqpair->recv_state == state) {
1749 		SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
1750 			    tqpair, state);
1751 		return;
1752 	}
1753 
1754 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_QUIESCING)) {
1755 		if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH && tqpair->pdu_in_progress) {
1756 			SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, tqpair->pdu_in_progress, slist);
1757 			tqpair->tcp_pdu_working_count--;
1758 		}
1759 	}
1760 
1761 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_ERROR)) {
1762 		assert(tqpair->tcp_pdu_working_count == 0);
1763 	}
1764 
1765 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1766 		/* When leaving the await req state, move the qpair to the main list */
1767 		TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link);
1768 		TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link);
1769 	} else if (state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1770 		TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link);
1771 		TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link);
1772 	}
1773 
1774 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
1775 	tqpair->recv_state = state;
1776 
1777 	spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0,
1778 			  (uint64_t)tqpair->recv_state);
1779 }
1780 
1781 static int
1782 nvmf_tcp_qpair_handle_timeout(void *ctx)
1783 {
1784 	struct spdk_nvmf_tcp_qpair *tqpair = ctx;
1785 
1786 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1787 
1788 	SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
1789 		    SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
1790 
1791 	nvmf_tcp_qpair_disconnect(tqpair);
1792 	return SPDK_POLLER_BUSY;
1793 }
1794 
1795 static void
1796 nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
1797 {
1798 	struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
1799 
1800 	if (!tqpair->timeout_poller) {
1801 		tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
1802 					 SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
1803 	}
1804 }
1805 
1806 static void
1807 nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
1808 			   enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
1809 {
1810 	struct nvme_tcp_pdu *rsp_pdu;
1811 	struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
1812 	uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
1813 	uint32_t copy_len;
1814 
1815 	rsp_pdu = tqpair->mgmt_pdu;
1816 
1817 	c2h_term_req = &rsp_pdu->hdr.term_req;
1818 	c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
1819 	c2h_term_req->common.hlen = c2h_term_req_hdr_len;
1820 	c2h_term_req->fes = fes;
1821 
1822 	if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1823 	    (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1824 		DSET32(&c2h_term_req->fei, error_offset);
1825 	}
1826 
1827 	copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
1828 
1829 	/* Copy the error info into the buffer */
1830 	memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
1831 	nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
1832 
1833 	/* Contain the header of the wrong received pdu */
1834 	c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
1835 	tqpair->wait_terminate = true;
1836 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1837 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair);
1838 }
1839 
1840 static void
1841 nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1842 				struct spdk_nvmf_tcp_qpair *tqpair,
1843 				struct nvme_tcp_pdu *pdu)
1844 {
1845 	struct spdk_nvmf_tcp_req *tcp_req;
1846 
1847 	assert(pdu->psh_valid_bytes == pdu->psh_len);
1848 	assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
1849 
1850 	tcp_req = nvmf_tcp_req_get(tqpair);
1851 	if (!tcp_req) {
1852 		/* Directly return and make the allocation retry again.  This can happen if we're
1853 		 * using asynchronous writes to send the response to the host or when releasing
1854 		 * zero-copy buffers after a response has been sent.  In both cases, the host might
1855 		 * receive the response before we've finished processing the request and is free to
1856 		 * send another one.
1857 		 */
1858 		if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 ||
1859 		    tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) {
1860 			return;
1861 		}
1862 
1863 		/* The host sent more commands than the maximum queue depth. */
1864 		SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
1865 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1866 		return;
1867 	}
1868 
1869 	pdu->req = tcp_req;
1870 	assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
1871 	nvmf_tcp_req_process(ttransport, tcp_req);
1872 }
1873 
1874 static void
1875 nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1876 				    struct spdk_nvmf_tcp_qpair *tqpair,
1877 				    struct nvme_tcp_pdu *pdu)
1878 {
1879 	struct spdk_nvmf_tcp_req *tcp_req;
1880 	struct spdk_nvme_tcp_cmd *capsule_cmd;
1881 	uint32_t error_offset = 0;
1882 	enum spdk_nvme_tcp_term_req_fes fes;
1883 	struct spdk_nvme_cpl *rsp;
1884 
1885 	capsule_cmd = &pdu->hdr.capsule_cmd;
1886 	tcp_req = pdu->req;
1887 	assert(tcp_req != NULL);
1888 
1889 	/* Zero-copy requests don't support ICD */
1890 	assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req));
1891 
1892 	if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
1893 		SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
1894 			    SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
1895 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1896 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
1897 		goto err;
1898 	}
1899 
1900 	rsp = &tcp_req->req.rsp->nvme_cpl;
1901 	if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1902 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1903 	} else {
1904 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1905 	}
1906 
1907 	nvmf_tcp_req_process(ttransport, tcp_req);
1908 
1909 	return;
1910 err:
1911 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1912 }
1913 
1914 static void
1915 nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1916 			     struct spdk_nvmf_tcp_qpair *tqpair,
1917 			     struct nvme_tcp_pdu *pdu)
1918 {
1919 	struct spdk_nvmf_tcp_req *tcp_req;
1920 	uint32_t error_offset = 0;
1921 	enum spdk_nvme_tcp_term_req_fes fes = 0;
1922 	struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
1923 
1924 	h2c_data = &pdu->hdr.h2c_data;
1925 
1926 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
1927 		      tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
1928 
1929 	if (h2c_data->ttag > tqpair->resource_count) {
1930 		SPDK_DEBUGLOG(nvmf_tcp, "ttag %u is larger than allowed %u.\n", h2c_data->ttag,
1931 			      tqpair->resource_count);
1932 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1933 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1934 		goto err;
1935 	}
1936 
1937 	tcp_req = &tqpair->reqs[h2c_data->ttag - 1];
1938 
1939 	if (spdk_unlikely(tcp_req->state != TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER &&
1940 			  tcp_req->state != TCP_REQUEST_STATE_AWAITING_R2T_ACK)) {
1941 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, has error state in %d\n", tcp_req, tqpair,
1942 			      tcp_req->state);
1943 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1944 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1945 		goto err;
1946 	}
1947 
1948 	if (spdk_unlikely(tcp_req->req.cmd->nvme_cmd.cid != h2c_data->cccid)) {
1949 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, expected %u but %u for cccid.\n", tcp_req, tqpair,
1950 			      tcp_req->req.cmd->nvme_cmd.cid, h2c_data->cccid);
1951 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1952 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
1953 		goto err;
1954 	}
1955 
1956 	if (tcp_req->h2c_offset != h2c_data->datao) {
1957 		SPDK_DEBUGLOG(nvmf_tcp,
1958 			      "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
1959 			      tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
1960 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1961 		goto err;
1962 	}
1963 
1964 	if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
1965 		SPDK_DEBUGLOG(nvmf_tcp,
1966 			      "tcp_req(%p), tqpair=%p,  (datao=%u + datal=%u) exceeds requested length=%u\n",
1967 			      tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
1968 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1969 		goto err;
1970 	}
1971 
1972 	pdu->req = tcp_req;
1973 
1974 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
1975 		pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
1976 	}
1977 
1978 	nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
1979 				  h2c_data->datao, h2c_data->datal);
1980 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1981 	return;
1982 
1983 err:
1984 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1985 }
1986 
1987 static void
1988 nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
1989 			       struct spdk_nvmf_tcp_qpair *tqpair)
1990 {
1991 	struct nvme_tcp_pdu *rsp_pdu;
1992 	struct spdk_nvme_tcp_rsp *capsule_resp;
1993 
1994 	SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
1995 
1996 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1997 	assert(rsp_pdu != NULL);
1998 
1999 	capsule_resp = &rsp_pdu->hdr.capsule_resp;
2000 	capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
2001 	capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
2002 	capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
2003 	if (tqpair->host_hdgst_enable) {
2004 		capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2005 		capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
2006 	}
2007 
2008 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req);
2009 }
2010 
2011 static void
2012 nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
2013 {
2014 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
2015 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
2016 					     struct spdk_nvmf_tcp_qpair, qpair);
2017 
2018 	assert(tqpair != NULL);
2019 
2020 	if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
2021 		SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
2022 			      tcp_req->req.length);
2023 		_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2024 		return;
2025 	}
2026 
2027 	if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
2028 		nvmf_tcp_request_free(tcp_req);
2029 	} else {
2030 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2031 	}
2032 }
2033 
2034 static void
2035 nvmf_tcp_r2t_complete(void *cb_arg)
2036 {
2037 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
2038 	struct spdk_nvmf_tcp_transport *ttransport;
2039 
2040 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
2041 				      struct spdk_nvmf_tcp_transport, transport);
2042 
2043 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
2044 
2045 	if (tcp_req->h2c_offset == tcp_req->req.length) {
2046 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2047 		nvmf_tcp_req_process(ttransport, tcp_req);
2048 	}
2049 }
2050 
2051 static void
2052 nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
2053 		      struct spdk_nvmf_tcp_req *tcp_req)
2054 {
2055 	struct nvme_tcp_pdu *rsp_pdu;
2056 	struct spdk_nvme_tcp_r2t_hdr *r2t;
2057 
2058 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
2059 	assert(rsp_pdu != NULL);
2060 
2061 	r2t = &rsp_pdu->hdr.r2t;
2062 	r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
2063 	r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
2064 
2065 	if (tqpair->host_hdgst_enable) {
2066 		r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2067 		r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
2068 	}
2069 
2070 	r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2071 	r2t->ttag = tcp_req->ttag;
2072 	r2t->r2to = tcp_req->h2c_offset;
2073 	r2t->r2tl = tcp_req->req.length;
2074 
2075 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
2076 
2077 	SPDK_DEBUGLOG(nvmf_tcp,
2078 		      "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
2079 		      tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
2080 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req);
2081 }
2082 
2083 static void
2084 nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
2085 				 struct spdk_nvmf_tcp_qpair *tqpair,
2086 				 struct nvme_tcp_pdu *pdu)
2087 {
2088 	struct spdk_nvmf_tcp_req *tcp_req;
2089 	struct spdk_nvme_cpl *rsp;
2090 
2091 	tcp_req = pdu->req;
2092 	assert(tcp_req != NULL);
2093 
2094 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2095 
2096 	tcp_req->h2c_offset += pdu->data_len;
2097 
2098 	/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
2099 	 * acknowledged before moving on. */
2100 	if (tcp_req->h2c_offset == tcp_req->req.length &&
2101 	    tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
2102 		/* After receiving all the h2c data, we need to check whether there is
2103 		 * transient transport error */
2104 		rsp = &tcp_req->req.rsp->nvme_cpl;
2105 		if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
2106 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2107 		} else {
2108 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2109 		}
2110 		nvmf_tcp_req_process(ttransport, tcp_req);
2111 	}
2112 }
2113 
2114 static void
2115 nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
2116 {
2117 	SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
2118 		    spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
2119 	if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
2120 	    (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
2121 		SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
2122 			      DGET32(h2c_term_req->fei));
2123 	}
2124 }
2125 
2126 static void
2127 nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2128 				 struct nvme_tcp_pdu *pdu)
2129 {
2130 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
2131 	uint32_t error_offset = 0;
2132 	enum spdk_nvme_tcp_term_req_fes fes;
2133 
2134 	if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
2135 		SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
2136 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2137 		error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
2138 		goto end;
2139 	}
2140 
2141 	/* set the data buffer */
2142 	nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
2143 			      h2c_term_req->common.plen - h2c_term_req->common.hlen);
2144 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2145 	return;
2146 end:
2147 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2148 }
2149 
2150 static void
2151 nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2152 				     struct nvme_tcp_pdu *pdu)
2153 {
2154 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
2155 
2156 	nvmf_tcp_h2c_term_req_dump(h2c_term_req);
2157 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2158 }
2159 
2160 static void
2161 _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2162 {
2163 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2164 			struct spdk_nvmf_tcp_transport, transport);
2165 
2166 	switch (pdu->hdr.common.pdu_type) {
2167 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2168 		nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
2169 		break;
2170 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2171 		nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
2172 		break;
2173 
2174 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2175 		nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
2176 		break;
2177 
2178 	default:
2179 		/* The code should not go to here */
2180 		SPDK_ERRLOG("ERROR pdu type %d\n", pdu->hdr.common.pdu_type);
2181 		break;
2182 	}
2183 	SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
2184 	tqpair->tcp_pdu_working_count--;
2185 }
2186 
2187 static inline void
2188 nvmf_tcp_req_set_cpl(struct spdk_nvmf_tcp_req *treq, int sct, int sc)
2189 {
2190 	treq->req.rsp->nvme_cpl.status.sct = sct;
2191 	treq->req.rsp->nvme_cpl.status.sc = sc;
2192 	treq->req.rsp->nvme_cpl.cid = treq->req.cmd->nvme_cmd.cid;
2193 }
2194 
2195 static void
2196 data_crc32_calc_done(void *cb_arg, int status)
2197 {
2198 	struct nvme_tcp_pdu *pdu = cb_arg;
2199 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
2200 
2201 	/* async crc32 calculation is failed and use direct calculation to check */
2202 	if (spdk_unlikely(status)) {
2203 		SPDK_ERRLOG("Data digest on tqpair=(%p) with pdu=%p failed to be calculated asynchronously\n",
2204 			    tqpair, pdu);
2205 		pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2206 	}
2207 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
2208 	if (!MATCH_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32)) {
2209 		SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2210 		assert(pdu->req != NULL);
2211 		nvmf_tcp_req_set_cpl(pdu->req, SPDK_NVME_SCT_GENERIC,
2212 				     SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR);
2213 	}
2214 	_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2215 }
2216 
2217 static void
2218 nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2219 {
2220 	int rc = 0;
2221 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2222 	tqpair->pdu_in_progress = NULL;
2223 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2224 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2225 	/* check data digest if need */
2226 	if (pdu->ddgst_enable) {
2227 		if (tqpair->qpair.qid != 0 && !pdu->dif_ctx && tqpair->group &&
2228 		    (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)) {
2229 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
2230 						       pdu->data_iovcnt, 0, data_crc32_calc_done, pdu);
2231 			if (spdk_likely(rc == 0)) {
2232 				return;
2233 			}
2234 		} else {
2235 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2236 		}
2237 		data_crc32_calc_done(pdu, rc);
2238 	} else {
2239 		_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2240 	}
2241 }
2242 
2243 static void
2244 nvmf_tcp_send_icresp_complete(void *cb_arg)
2245 {
2246 	struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
2247 
2248 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_RUNNING);
2249 }
2250 
2251 static void
2252 nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
2253 		      struct spdk_nvmf_tcp_qpair *tqpair,
2254 		      struct nvme_tcp_pdu *pdu)
2255 {
2256 	struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
2257 	struct nvme_tcp_pdu *rsp_pdu;
2258 	struct spdk_nvme_tcp_ic_resp *ic_resp;
2259 	uint32_t error_offset = 0;
2260 	enum spdk_nvme_tcp_term_req_fes fes;
2261 
2262 	/* Only PFV 0 is defined currently */
2263 	if (ic_req->pfv != 0) {
2264 		SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
2265 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2266 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
2267 		goto end;
2268 	}
2269 
2270 	/* This value is 0’s based value in units of dwords should not be larger than SPDK_NVME_TCP_HPDA_MAX */
2271 	if (ic_req->hpda > SPDK_NVME_TCP_HPDA_MAX) {
2272 		SPDK_ERRLOG("ICReq HPDA out of range 0 to 31, got %u\n", ic_req->hpda);
2273 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2274 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, hpda);
2275 		goto end;
2276 	}
2277 
2278 	/* MAXR2T is 0's based */
2279 	SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
2280 
2281 	tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
2282 	if (!tqpair->host_hdgst_enable) {
2283 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2284 	}
2285 
2286 	tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
2287 	if (!tqpair->host_ddgst_enable) {
2288 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2289 	}
2290 
2291 	tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
2292 	/* Now that we know whether digests are enabled, properly size the receive buffer */
2293 	if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
2294 		SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
2295 			     tqpair,
2296 			     tqpair->recv_buf_size);
2297 		/* Not fatal. */
2298 	}
2299 
2300 	tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
2301 	SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
2302 
2303 	rsp_pdu = tqpair->mgmt_pdu;
2304 
2305 	ic_resp = &rsp_pdu->hdr.ic_resp;
2306 	ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
2307 	ic_resp->common.hlen = ic_resp->common.plen =  sizeof(*ic_resp);
2308 	ic_resp->pfv = 0;
2309 	ic_resp->cpda = tqpair->cpda;
2310 	ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
2311 	ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
2312 	ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
2313 
2314 	SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
2315 	SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
2316 
2317 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INITIALIZING);
2318 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair);
2319 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2320 	return;
2321 end:
2322 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2323 }
2324 
2325 static void
2326 nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2327 			struct spdk_nvmf_tcp_transport *ttransport)
2328 {
2329 	struct nvme_tcp_pdu *pdu;
2330 	int rc;
2331 	uint32_t crc32c, error_offset = 0;
2332 	enum spdk_nvme_tcp_term_req_fes fes;
2333 
2334 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2335 	pdu = tqpair->pdu_in_progress;
2336 
2337 	SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
2338 		      pdu->hdr.common.pdu_type);
2339 	/* check header digest if needed */
2340 	if (pdu->has_hdgst) {
2341 		SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
2342 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
2343 		rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
2344 		if (rc == 0) {
2345 			SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2346 			fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
2347 			nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2348 			return;
2349 
2350 		}
2351 	}
2352 
2353 	switch (pdu->hdr.common.pdu_type) {
2354 	case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
2355 		nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
2356 		break;
2357 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2358 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
2359 		break;
2360 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2361 		nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
2362 		break;
2363 
2364 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2365 		nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
2366 		break;
2367 
2368 	default:
2369 		SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
2370 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2371 		error_offset = 1;
2372 		nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2373 		break;
2374 	}
2375 }
2376 
2377 static void
2378 nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
2379 {
2380 	struct nvme_tcp_pdu *pdu;
2381 	uint32_t error_offset = 0;
2382 	enum spdk_nvme_tcp_term_req_fes fes;
2383 	uint8_t expected_hlen, pdo;
2384 	bool plen_error = false, pdo_error = false;
2385 
2386 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2387 	pdu = tqpair->pdu_in_progress;
2388 	assert(pdu);
2389 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
2390 		if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) {
2391 			SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
2392 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2393 			goto err;
2394 		}
2395 		expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
2396 		if (pdu->hdr.common.plen != expected_hlen) {
2397 			plen_error = true;
2398 		}
2399 	} else {
2400 		if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) {
2401 			SPDK_ERRLOG("The TCP/IP connection is not negotiated\n");
2402 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2403 			goto err;
2404 		}
2405 
2406 		switch (pdu->hdr.common.pdu_type) {
2407 		case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2408 			expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
2409 			pdo = pdu->hdr.common.pdo;
2410 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2411 				pdo_error = true;
2412 				break;
2413 			}
2414 
2415 			if (pdu->hdr.common.plen < expected_hlen) {
2416 				plen_error = true;
2417 			}
2418 			break;
2419 		case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2420 			expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
2421 			pdo = pdu->hdr.common.pdo;
2422 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2423 				pdo_error = true;
2424 				break;
2425 			}
2426 			if (pdu->hdr.common.plen < expected_hlen) {
2427 				plen_error = true;
2428 			}
2429 			break;
2430 
2431 		case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2432 			expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
2433 			if ((pdu->hdr.common.plen <= expected_hlen) ||
2434 			    (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
2435 				plen_error = true;
2436 			}
2437 			break;
2438 
2439 		default:
2440 			SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
2441 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2442 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
2443 			goto err;
2444 		}
2445 	}
2446 
2447 	if (pdu->hdr.common.hlen != expected_hlen) {
2448 		SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
2449 			    pdu->hdr.common.pdu_type,
2450 			    expected_hlen, pdu->hdr.common.hlen, tqpair);
2451 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2452 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
2453 		goto err;
2454 	} else if (pdo_error) {
2455 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2456 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
2457 	} else if (plen_error) {
2458 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2459 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2460 		goto err;
2461 	} else {
2462 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2463 		nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
2464 		return;
2465 	}
2466 err:
2467 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2468 }
2469 
2470 static int
2471 nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
2472 {
2473 	int rc = 0;
2474 	struct nvme_tcp_pdu *pdu;
2475 	enum nvme_tcp_pdu_recv_state prev_state;
2476 	uint32_t data_len;
2477 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2478 			struct spdk_nvmf_tcp_transport, transport);
2479 
2480 	/* The loop here is to allow for several back-to-back state changes. */
2481 	do {
2482 		prev_state = tqpair->recv_state;
2483 		SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
2484 
2485 		pdu = tqpair->pdu_in_progress;
2486 		assert(pdu != NULL ||
2487 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY ||
2488 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_QUIESCING ||
2489 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
2490 
2491 		switch (tqpair->recv_state) {
2492 		/* Wait for the common header  */
2493 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
2494 			if (!pdu) {
2495 				pdu = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
2496 				if (spdk_unlikely(!pdu)) {
2497 					return NVME_TCP_PDU_IN_PROGRESS;
2498 				}
2499 				SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
2500 				tqpair->pdu_in_progress = pdu;
2501 				tqpair->tcp_pdu_working_count++;
2502 			}
2503 			memset(pdu, 0, offsetof(struct nvme_tcp_pdu, qpair));
2504 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2505 		/* FALLTHROUGH */
2506 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
2507 			if (spdk_unlikely(tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING)) {
2508 				return rc;
2509 			}
2510 
2511 			rc = nvme_tcp_read_data(tqpair->sock,
2512 						sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
2513 						(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
2514 			if (rc < 0) {
2515 				SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
2516 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2517 				break;
2518 			} else if (rc > 0) {
2519 				pdu->ch_valid_bytes += rc;
2520 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0);
2521 			}
2522 
2523 			if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
2524 				return NVME_TCP_PDU_IN_PROGRESS;
2525 			}
2526 
2527 			/* The command header of this PDU has now been read from the socket. */
2528 			nvmf_tcp_pdu_ch_handle(tqpair);
2529 			break;
2530 		/* Wait for the pdu specific header  */
2531 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
2532 			rc = nvme_tcp_read_data(tqpair->sock,
2533 						pdu->psh_len - pdu->psh_valid_bytes,
2534 						(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
2535 			if (rc < 0) {
2536 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2537 				break;
2538 			} else if (rc > 0) {
2539 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0);
2540 				pdu->psh_valid_bytes += rc;
2541 			}
2542 
2543 			if (pdu->psh_valid_bytes < pdu->psh_len) {
2544 				return NVME_TCP_PDU_IN_PROGRESS;
2545 			}
2546 
2547 			/* All header(ch, psh, head digits) of this PDU has now been read from the socket. */
2548 			nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
2549 			break;
2550 		/* Wait for the req slot */
2551 		case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
2552 			nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
2553 			break;
2554 		/* Wait for the request processing loop to acquire a buffer for the PDU */
2555 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_BUF:
2556 			break;
2557 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
2558 			/* check whether the data is valid, if not we just return */
2559 			if (!pdu->data_len) {
2560 				return NVME_TCP_PDU_IN_PROGRESS;
2561 			}
2562 
2563 			data_len = pdu->data_len;
2564 			/* data digest */
2565 			if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
2566 					  tqpair->host_ddgst_enable)) {
2567 				data_len += SPDK_NVME_TCP_DIGEST_LEN;
2568 				pdu->ddgst_enable = true;
2569 			}
2570 
2571 			rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
2572 			if (rc < 0) {
2573 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2574 				break;
2575 			}
2576 			pdu->rw_offset += rc;
2577 
2578 			if (pdu->rw_offset < data_len) {
2579 				return NVME_TCP_PDU_IN_PROGRESS;
2580 			}
2581 
2582 			/* Generate and insert DIF to whole data block received if DIF is enabled */
2583 			if (spdk_unlikely(pdu->dif_ctx != NULL) &&
2584 			    spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt, 0, data_len,
2585 						     pdu->dif_ctx) != 0) {
2586 				SPDK_ERRLOG("DIF generate failed\n");
2587 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2588 				break;
2589 			}
2590 
2591 			/* All of this PDU has now been read from the socket. */
2592 			nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2593 			break;
2594 		case NVME_TCP_PDU_RECV_STATE_QUIESCING:
2595 			if (tqpair->tcp_pdu_working_count != 0) {
2596 				return NVME_TCP_PDU_IN_PROGRESS;
2597 			}
2598 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
2599 			break;
2600 		case NVME_TCP_PDU_RECV_STATE_ERROR:
2601 			if (spdk_sock_is_connected(tqpair->sock) && tqpair->wait_terminate) {
2602 				return NVME_TCP_PDU_IN_PROGRESS;
2603 			}
2604 			return NVME_TCP_PDU_FATAL;
2605 		default:
2606 			SPDK_ERRLOG("The state(%d) is invalid\n", tqpair->recv_state);
2607 			abort();
2608 			break;
2609 		}
2610 	} while (tqpair->recv_state != prev_state);
2611 
2612 	return rc;
2613 }
2614 
2615 static inline void *
2616 nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list,
2617 			 struct spdk_nvmf_tcp_req *tcp_req)
2618 {
2619 	struct spdk_nvmf_tcp_control_msg *msg;
2620 
2621 	assert(list);
2622 
2623 	msg = STAILQ_FIRST(&list->free_msgs);
2624 	if (!msg) {
2625 		SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
2626 		STAILQ_INSERT_TAIL(&list->waiting_for_msg_reqs, tcp_req, control_msg_link);
2627 		return NULL;
2628 	}
2629 	STAILQ_REMOVE_HEAD(&list->free_msgs, link);
2630 	return msg;
2631 }
2632 
2633 static inline void
2634 nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
2635 {
2636 	struct spdk_nvmf_tcp_control_msg *msg = _msg;
2637 	struct spdk_nvmf_tcp_req *tcp_req;
2638 	struct spdk_nvmf_tcp_transport *ttransport;
2639 
2640 	assert(list);
2641 	STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
2642 	if (!STAILQ_EMPTY(&list->waiting_for_msg_reqs)) {
2643 		tcp_req = STAILQ_FIRST(&list->waiting_for_msg_reqs);
2644 		STAILQ_REMOVE_HEAD(&list->waiting_for_msg_reqs, control_msg_link);
2645 		ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
2646 					      struct spdk_nvmf_tcp_transport, transport);
2647 		nvmf_tcp_req_process(ttransport, tcp_req);
2648 	}
2649 }
2650 
2651 static void
2652 nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
2653 		       struct spdk_nvmf_transport *transport,
2654 		       struct spdk_nvmf_transport_poll_group *group)
2655 {
2656 	struct spdk_nvmf_request		*req = &tcp_req->req;
2657 	struct spdk_nvme_cmd			*cmd;
2658 	struct spdk_nvme_sgl_descriptor		*sgl;
2659 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2660 	enum spdk_nvme_tcp_term_req_fes		fes;
2661 	struct nvme_tcp_pdu			*pdu;
2662 	struct spdk_nvmf_tcp_qpair		*tqpair;
2663 	uint32_t				length, error_offset = 0;
2664 
2665 	cmd = &req->cmd->nvme_cmd;
2666 	sgl = &cmd->dptr.sgl1;
2667 
2668 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
2669 	    sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
2670 		/* get request length from sgl */
2671 		length = sgl->unkeyed.length;
2672 		if (spdk_unlikely(length > transport->opts.max_io_size)) {
2673 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
2674 				    length, transport->opts.max_io_size);
2675 			fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2676 			goto fatal_err;
2677 		}
2678 
2679 		/* fill request length and populate iovs */
2680 		req->length = length;
2681 
2682 		SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
2683 
2684 		if (spdk_unlikely(req->dif_enabled)) {
2685 			req->dif.orig_length = length;
2686 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2687 			req->dif.elba_length = length;
2688 		}
2689 
2690 		if (nvmf_ctrlr_use_zcopy(req)) {
2691 			SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req);
2692 			req->data_from_pool = false;
2693 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
2694 			return;
2695 		}
2696 
2697 		if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
2698 			/* No available buffers. Queue this request up. */
2699 			SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
2700 				      tcp_req);
2701 			return;
2702 		}
2703 
2704 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
2705 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
2706 			      tcp_req, req->iovcnt, req->iov[0].iov_base);
2707 
2708 		return;
2709 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
2710 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
2711 		uint64_t offset = sgl->address;
2712 		uint32_t max_len = transport->opts.in_capsule_data_size;
2713 
2714 		assert(tcp_req->has_in_capsule_data);
2715 		/* Capsule Cmd with In-capsule Data should get data length from pdu header */
2716 		tqpair = tcp_req->pdu->qpair;
2717 		/* receiving pdu is not same with the pdu in tcp_req */
2718 		pdu = tqpair->pdu_in_progress;
2719 		length = pdu->hdr.common.plen - pdu->psh_len - sizeof(struct spdk_nvme_tcp_common_pdu_hdr);
2720 		if (tqpair->host_ddgst_enable) {
2721 			length -= SPDK_NVME_TCP_DIGEST_LEN;
2722 		}
2723 		/* This error is not defined in NVMe/TCP spec, take this error as fatal error */
2724 		if (spdk_unlikely(length != sgl->unkeyed.length)) {
2725 			SPDK_ERRLOG("In-Capsule Data length 0x%x is not equal to SGL data length 0x%x\n",
2726 				    length, sgl->unkeyed.length);
2727 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2728 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2729 			goto fatal_err;
2730 		}
2731 
2732 		SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
2733 			      offset, length);
2734 
2735 		/* The NVMe/TCP transport does not use ICDOFF to control the in-capsule data offset. ICDOFF should be '0' */
2736 		if (spdk_unlikely(offset != 0)) {
2737 			/* Not defined fatal error in NVMe/TCP spec, handle this error as a fatal error */
2738 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " should be ZERO in NVMe/TCP\n", offset);
2739 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2740 			error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.address);
2741 			goto fatal_err;
2742 		}
2743 
2744 		if (spdk_unlikely(length > max_len)) {
2745 			/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
2746 			if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
2747 			    (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
2748 
2749 				/* Get a buffer from dedicated list */
2750 				SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
2751 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2752 				assert(tgroup->control_msg_list);
2753 				req->iov[0].iov_base = nvmf_tcp_control_msg_get(tgroup->control_msg_list, tcp_req);
2754 				if (!req->iov[0].iov_base) {
2755 					/* No available buffers. Queue this request up. */
2756 					SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
2757 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_BUF);
2758 					return;
2759 				}
2760 			} else {
2761 				SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
2762 					    length, max_len);
2763 				fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2764 				goto fatal_err;
2765 			}
2766 		} else {
2767 			req->iov[0].iov_base = tcp_req->buf;
2768 		}
2769 
2770 		req->length = length;
2771 		req->data_from_pool = false;
2772 
2773 		if (spdk_unlikely(req->dif_enabled)) {
2774 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2775 			req->dif.elba_length = length;
2776 		}
2777 
2778 		req->iov[0].iov_len = length;
2779 		req->iovcnt = 1;
2780 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
2781 
2782 		return;
2783 	}
2784 	/* If we want to handle the problem here, then we can't skip the following data segment.
2785 	 * Because this function runs before reading data part, now handle all errors as fatal errors. */
2786 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2787 		    sgl->generic.type, sgl->generic.subtype);
2788 	fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2789 	error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.generic);
2790 fatal_err:
2791 	nvmf_tcp_send_c2h_term_req(tcp_req->pdu->qpair, tcp_req->pdu, fes, error_offset);
2792 }
2793 
2794 static inline enum spdk_nvme_media_error_status_code
2795 nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
2796 	enum spdk_nvme_media_error_status_code result;
2797 
2798 	switch (err_type)
2799 	{
2800 	case SPDK_DIF_REFTAG_ERROR:
2801 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
2802 		break;
2803 	case SPDK_DIF_APPTAG_ERROR:
2804 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
2805 		break;
2806 	case SPDK_DIF_GUARD_ERROR:
2807 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
2808 		break;
2809 	default:
2810 		SPDK_UNREACHABLE();
2811 		break;
2812 	}
2813 
2814 	return result;
2815 }
2816 
2817 static void
2818 _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2819 			struct spdk_nvmf_tcp_req *tcp_req)
2820 {
2821 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
2822 				tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
2823 	struct nvme_tcp_pdu *rsp_pdu;
2824 	struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
2825 	uint32_t plen, pdo, alignment;
2826 	int rc;
2827 
2828 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2829 
2830 	rsp_pdu = tcp_req->pdu;
2831 	assert(rsp_pdu != NULL);
2832 
2833 	c2h_data = &rsp_pdu->hdr.c2h_data;
2834 	c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
2835 	plen = c2h_data->common.hlen = sizeof(*c2h_data);
2836 
2837 	if (tqpair->host_hdgst_enable) {
2838 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2839 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2840 	}
2841 
2842 	/* set the psh */
2843 	c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2844 	c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
2845 	c2h_data->datao = tcp_req->pdu->rw_offset;
2846 
2847 	/* set the padding */
2848 	rsp_pdu->padding_len = 0;
2849 	pdo = plen;
2850 	if (tqpair->cpda) {
2851 		alignment = (tqpair->cpda + 1) << 2;
2852 		if (plen % alignment != 0) {
2853 			pdo = (plen + alignment) / alignment * alignment;
2854 			rsp_pdu->padding_len = pdo - plen;
2855 			plen = pdo;
2856 		}
2857 	}
2858 
2859 	c2h_data->common.pdo = pdo;
2860 	plen += c2h_data->datal;
2861 	if (tqpair->host_ddgst_enable) {
2862 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
2863 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2864 	}
2865 
2866 	c2h_data->common.plen = plen;
2867 
2868 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2869 		rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2870 	}
2871 
2872 	nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2873 				  c2h_data->datao, c2h_data->datal);
2874 
2875 
2876 	c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
2877 	/* Need to send the capsule response if response is not all 0 */
2878 	if (ttransport->tcp_opts.c2h_success &&
2879 	    tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
2880 		c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
2881 	}
2882 
2883 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2884 		struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
2885 		struct spdk_dif_error err_blk = {};
2886 		uint32_t mapped_length = 0;
2887 		uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
2888 		uint32_t ddgst_len = 0;
2889 
2890 		if (tqpair->host_ddgst_enable) {
2891 			/* Data digest consumes additional iov entry */
2892 			available_iovs--;
2893 			/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
2894 			ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
2895 			c2h_data->common.plen -= ddgst_len;
2896 		}
2897 		/* Temp call to estimate if data can be described by limited number of iovs.
2898 		 * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
2899 		nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
2900 				    false, &mapped_length);
2901 
2902 		if (mapped_length != c2h_data->common.plen) {
2903 			c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
2904 			SPDK_DEBUGLOG(nvmf_tcp,
2905 				      "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
2906 				      c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
2907 			c2h_data->common.plen = mapped_length;
2908 
2909 			/* Rebuild pdu->data_iov since data length is changed */
2910 			nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
2911 						  c2h_data->datal);
2912 
2913 			c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
2914 						    SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
2915 		}
2916 
2917 		c2h_data->common.plen += ddgst_len;
2918 
2919 		assert(rsp_pdu->rw_offset <= tcp_req->req.length);
2920 
2921 		rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
2922 					    0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
2923 		if (rc != 0) {
2924 			SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
2925 				    err_blk.err_type, err_blk.err_offset);
2926 			rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2927 			rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
2928 			nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2929 			return;
2930 		}
2931 	}
2932 
2933 	rsp_pdu->rw_offset += c2h_data->datal;
2934 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
2935 }
2936 
2937 static void
2938 nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2939 		       struct spdk_nvmf_tcp_req *tcp_req)
2940 {
2941 	nvmf_tcp_req_pdu_init(tcp_req);
2942 	_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2943 }
2944 
2945 static int
2946 request_transfer_out(struct spdk_nvmf_request *req)
2947 {
2948 	struct spdk_nvmf_tcp_req	*tcp_req;
2949 	struct spdk_nvmf_qpair		*qpair;
2950 	struct spdk_nvmf_tcp_qpair	*tqpair;
2951 	struct spdk_nvme_cpl		*rsp;
2952 
2953 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2954 
2955 	qpair = req->qpair;
2956 	rsp = &req->rsp->nvme_cpl;
2957 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
2958 
2959 	/* Advance our sq_head pointer */
2960 	if (qpair->sq_head == qpair->sq_head_max) {
2961 		qpair->sq_head = 0;
2962 	} else {
2963 		qpair->sq_head++;
2964 	}
2965 	rsp->sqhd = qpair->sq_head;
2966 
2967 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2968 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
2969 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2970 		nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2971 	} else {
2972 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2973 	}
2974 
2975 	return 0;
2976 }
2977 
2978 static void
2979 nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport,
2980 			      struct spdk_nvmf_tcp_qpair *tqpair,
2981 			      struct spdk_nvmf_tcp_req *tcp_req)
2982 {
2983 	enum spdk_nvme_cmd_fuse last, next;
2984 
2985 	last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2986 	next = tcp_req->cmd.fuse;
2987 
2988 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2989 
2990 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2991 		return;
2992 	}
2993 
2994 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2995 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2996 			/* This is a valid pair of fused commands.  Point them at each other
2997 			 * so they can be submitted consecutively once ready to be executed.
2998 			 */
2999 			tqpair->fused_first->fused_pair = tcp_req;
3000 			tcp_req->fused_pair = tqpair->fused_first;
3001 			tqpair->fused_first = NULL;
3002 			return;
3003 		} else {
3004 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
3005 			tqpair->fused_first->fused_failed = true;
3006 
3007 			/*
3008 			 * If the last req is in READY_TO_EXECUTE state, then call
3009 			 * nvmf_tcp_req_process(), otherwise nothing else will kick it.
3010 			 */
3011 			if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3012 				nvmf_tcp_req_process(ttransport, tqpair->fused_first);
3013 			}
3014 
3015 			tqpair->fused_first = NULL;
3016 		}
3017 	}
3018 
3019 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
3020 		/* Set tqpair->fused_first here so that we know to check that the next request
3021 		 * is a SECOND (and to fail this one if it isn't).
3022 		 */
3023 		tqpair->fused_first = tcp_req;
3024 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
3025 		/* Mark this req failed since it is a SECOND and the last one was not a FIRST. */
3026 		tcp_req->fused_failed = true;
3027 	}
3028 }
3029 
3030 static bool
3031 nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
3032 		     struct spdk_nvmf_tcp_req *tcp_req)
3033 {
3034 	struct spdk_nvmf_tcp_qpair		*tqpair;
3035 	uint32_t				plen;
3036 	struct nvme_tcp_pdu			*pdu;
3037 	enum spdk_nvmf_tcp_req_state		prev_state;
3038 	bool					progress = false;
3039 	struct spdk_nvmf_transport		*transport = &ttransport->transport;
3040 	struct spdk_nvmf_transport_poll_group	*group;
3041 	struct spdk_nvmf_tcp_poll_group		*tgroup;
3042 
3043 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
3044 	group = &tqpair->group->group;
3045 	assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
3046 
3047 	/* If the qpair is not active, we need to abort the outstanding requests. */
3048 	if (!spdk_nvmf_qpair_is_active(&tqpair->qpair)) {
3049 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
3050 			nvmf_tcp_request_get_buffers_abort(tcp_req);
3051 		}
3052 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3053 	}
3054 
3055 	/* The loop here is to allow for several back-to-back state changes. */
3056 	do {
3057 		prev_state = tcp_req->state;
3058 
3059 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
3060 			      tqpair);
3061 
3062 		switch (tcp_req->state) {
3063 		case TCP_REQUEST_STATE_FREE:
3064 			/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
3065 			 * to escape this state. */
3066 			break;
3067 		case TCP_REQUEST_STATE_NEW:
3068 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req,
3069 					  tqpair->qpair.queue_depth);
3070 
3071 			/* copy the cmd from the receive pdu */
3072 			tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
3073 
3074 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
3075 				tcp_req->req.dif_enabled = true;
3076 				tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
3077 			}
3078 
3079 			nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req);
3080 
3081 			/* The next state transition depends on the data transfer needs of this request. */
3082 			tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
3083 
3084 			if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
3085 				nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_INVALID_OPCODE);
3086 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
3087 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3088 				SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
3089 				break;
3090 			}
3091 
3092 			/* If no data to transfer, ready to execute. */
3093 			if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
3094 				/* Reset the tqpair receiving pdu state */
3095 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
3096 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
3097 				break;
3098 			}
3099 
3100 			pdu = tqpair->pdu_in_progress;
3101 			plen = pdu->hdr.common.hlen;
3102 			if (tqpair->host_hdgst_enable) {
3103 				plen += SPDK_NVME_TCP_DIGEST_LEN;
3104 			}
3105 			if (pdu->hdr.common.plen != plen) {
3106 				tcp_req->has_in_capsule_data = true;
3107 			} else {
3108 				/* Data is transmitted by C2H PDUs */
3109 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
3110 			}
3111 
3112 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
3113 			break;
3114 		case TCP_REQUEST_STATE_NEED_BUFFER:
3115 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.trace_id, 0,
3116 					  (uintptr_t)tcp_req);
3117 
3118 			assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
3119 
3120 			/* Try to get a data buffer */
3121 			nvmf_tcp_req_parse_sgl(tcp_req, transport, group);
3122 			break;
3123 		case TCP_REQUEST_STATE_HAVE_BUFFER:
3124 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_HAVE_BUFFER, tqpair->qpair.trace_id, 0,
3125 					  (uintptr_t)tcp_req);
3126 			/* Get a zcopy buffer if the request can be serviced through zcopy */
3127 			if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
3128 				if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3129 					assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
3130 					tcp_req->req.length = tcp_req->req.dif.elba_length;
3131 				}
3132 
3133 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START);
3134 				spdk_nvmf_request_zcopy_start(&tcp_req->req);
3135 				break;
3136 			}
3137 
3138 			assert(tcp_req->req.iovcnt > 0);
3139 
3140 			/* If data is transferring from host to controller, we need to do a transfer from the host. */
3141 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
3142 				if (tcp_req->req.data_from_pool) {
3143 					SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
3144 					nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
3145 				} else {
3146 					struct nvme_tcp_pdu *pdu;
3147 
3148 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
3149 
3150 					pdu = tqpair->pdu_in_progress;
3151 					SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
3152 						      tqpair);
3153 					/* No need to send r2t, contained in the capsuled data */
3154 					nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
3155 								  0, tcp_req->req.length);
3156 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
3157 				}
3158 				break;
3159 			}
3160 
3161 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
3162 			break;
3163 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3164 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.trace_id, 0,
3165 					  (uintptr_t)tcp_req);
3166 			/* Some external code must kick a request into  TCP_REQUEST_STATE_ZCOPY_START_COMPLETED
3167 			 * to escape this state. */
3168 			break;
3169 		case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
3170 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.trace_id, 0,
3171 					  (uintptr_t)tcp_req);
3172 			if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) {
3173 				SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n",
3174 					      tcp_req, tqpair);
3175 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3176 				break;
3177 			}
3178 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
3179 				SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
3180 				nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
3181 			} else {
3182 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3183 			}
3184 			break;
3185 		case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3186 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.trace_id, 0,
3187 					  (uintptr_t)tcp_req);
3188 			/* The R2T completion or the h2c data incoming will kick it out of this state. */
3189 			break;
3190 		case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3191 
3192 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.trace_id,
3193 					  0, (uintptr_t)tcp_req);
3194 			/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
3195 			 * to escape this state. */
3196 			break;
3197 		case TCP_REQUEST_STATE_READY_TO_EXECUTE:
3198 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.trace_id, 0,
3199 					  (uintptr_t)tcp_req);
3200 
3201 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3202 				assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
3203 				tcp_req->req.length = tcp_req->req.dif.elba_length;
3204 			}
3205 
3206 			if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
3207 				if (tcp_req->fused_failed) {
3208 					/* This request failed FUSED semantics.  Fail it immediately, without
3209 					 * even sending it to the target layer.
3210 					 */
3211 					nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_MISSING_FUSED);
3212 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3213 					break;
3214 				}
3215 
3216 				if (tcp_req->fused_pair == NULL ||
3217 				    tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3218 					/* This request is ready to execute, but either we don't know yet if it's
3219 					 * valid - i.e. this is a FIRST but we haven't received the next request yet),
3220 					 * or the other request of this fused pair isn't ready to execute. So
3221 					 * break here and this request will get processed later either when the
3222 					 * other request is ready or we find that this request isn't valid.
3223 					 */
3224 					break;
3225 				}
3226 			}
3227 
3228 			if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
3229 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
3230 				/* If we get to this point, and this request is a fused command, we know that
3231 				 * it is part of a valid sequence (FIRST followed by a SECOND) and that both
3232 				 * requests are READY_TO_EXECUTE.  So call spdk_nvmf_request_exec() both on this
3233 				 * request, and the other request of the fused pair, in the correct order.
3234 				 * Also clear the ->fused_pair pointers on both requests, since after this point
3235 				 * we no longer need to maintain the relationship between these two requests.
3236 				 */
3237 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
3238 					assert(tcp_req->fused_pair != NULL);
3239 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3240 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3241 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3242 					tcp_req->fused_pair->fused_pair = NULL;
3243 					tcp_req->fused_pair = NULL;
3244 				}
3245 				spdk_nvmf_request_exec(&tcp_req->req);
3246 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
3247 					assert(tcp_req->fused_pair != NULL);
3248 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3249 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3250 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3251 					tcp_req->fused_pair->fused_pair = NULL;
3252 					tcp_req->fused_pair = NULL;
3253 				}
3254 			} else {
3255 				/* For zero-copy, only requests with data coming from host to the
3256 				 * controller can end up here. */
3257 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
3258 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT);
3259 				spdk_nvmf_request_zcopy_end(&tcp_req->req, true);
3260 			}
3261 
3262 			break;
3263 		case TCP_REQUEST_STATE_EXECUTING:
3264 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
3265 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3266 			 * to escape this state. */
3267 			break;
3268 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3269 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.trace_id, 0,
3270 					  (uintptr_t)tcp_req);
3271 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3272 			 * to escape this state. */
3273 			break;
3274 		case TCP_REQUEST_STATE_EXECUTED:
3275 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
3276 
3277 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3278 				tcp_req->req.length = tcp_req->req.dif.orig_length;
3279 			}
3280 
3281 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3282 			break;
3283 		case TCP_REQUEST_STATE_READY_TO_COMPLETE:
3284 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.trace_id, 0,
3285 					  (uintptr_t)tcp_req);
3286 			if (request_transfer_out(&tcp_req->req) != 0) {
3287 				assert(0); /* No good way to handle this currently */
3288 			}
3289 			break;
3290 		case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
3291 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.trace_id,
3292 					  0, (uintptr_t)tcp_req);
3293 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3294 			 * to escape this state. */
3295 			break;
3296 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3297 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.trace_id, 0,
3298 					  (uintptr_t)tcp_req);
3299 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3300 			 * to escape this state. */
3301 			break;
3302 		case TCP_REQUEST_STATE_COMPLETED:
3303 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req,
3304 					  tqpair->qpair.queue_depth);
3305 			/* If there's an outstanding PDU sent to the host, the request is completed
3306 			 * due to the qpair being disconnected.  We must delay the completion until
3307 			 * that write is done to avoid freeing the request twice. */
3308 			if (spdk_unlikely(tcp_req->pdu_in_use)) {
3309 				SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding "
3310 					      "write on req=%p\n", tcp_req);
3311 				/* This can only happen for zcopy requests */
3312 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3313 				assert(!spdk_nvmf_qpair_is_active(&tqpair->qpair));
3314 				break;
3315 			}
3316 
3317 			if (tcp_req->req.data_from_pool) {
3318 				spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
3319 			} else if (spdk_unlikely(tcp_req->has_in_capsule_data &&
3320 						 (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
3321 						  tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
3322 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3323 				assert(tgroup->control_msg_list);
3324 				SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
3325 				nvmf_tcp_control_msg_put(tgroup->control_msg_list,
3326 							 tcp_req->req.iov[0].iov_base);
3327 			} else if (tcp_req->req.zcopy_bdev_io != NULL) {
3328 				/* If the request has an unreleased zcopy bdev_io, it's either a
3329 				 * read, a failed write, or the qpair is being disconnected */
3330 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3331 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
3332 				       spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) ||
3333 				       !spdk_nvmf_qpair_is_active(&tqpair->qpair));
3334 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE);
3335 				spdk_nvmf_request_zcopy_end(&tcp_req->req, false);
3336 				break;
3337 			}
3338 			tcp_req->req.length = 0;
3339 			tcp_req->req.iovcnt = 0;
3340 			tcp_req->fused_failed = false;
3341 			if (tcp_req->fused_pair) {
3342 				/* This req was part of a valid fused pair, but failed before it got to
3343 				 * READ_TO_EXECUTE state.  This means we need to fail the other request
3344 				 * in the pair, because it is no longer part of a valid pair.  If the pair
3345 				 * already reached READY_TO_EXECUTE state, we need to kick it.
3346 				 */
3347 				tcp_req->fused_pair->fused_failed = true;
3348 				if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3349 					nvmf_tcp_req_process(ttransport, tcp_req->fused_pair);
3350 				}
3351 				tcp_req->fused_pair = NULL;
3352 			}
3353 
3354 			nvmf_tcp_req_put(tqpair, tcp_req);
3355 			break;
3356 		case TCP_REQUEST_NUM_STATES:
3357 		default:
3358 			assert(0);
3359 			break;
3360 		}
3361 
3362 		if (tcp_req->state != prev_state) {
3363 			progress = true;
3364 		}
3365 	} while (tcp_req->state != prev_state);
3366 
3367 	return progress;
3368 }
3369 
3370 static void
3371 tcp_sock_cb(void *arg)
3372 {
3373 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
3374 	int rc;
3375 
3376 	assert(tqpair != NULL);
3377 	rc = nvmf_tcp_sock_process(tqpair);
3378 
3379 	/* If there was a new socket error, disconnect */
3380 	if (rc < 0) {
3381 		nvmf_tcp_qpair_disconnect(tqpair);
3382 	}
3383 }
3384 
3385 static void
3386 nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
3387 {
3388 	tcp_sock_cb(arg);
3389 }
3390 
3391 static int
3392 nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3393 			struct spdk_nvmf_qpair *qpair)
3394 {
3395 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3396 	struct spdk_nvmf_tcp_qpair	*tqpair;
3397 	int				rc;
3398 
3399 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3400 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3401 
3402 	rc =  nvmf_tcp_qpair_sock_init(tqpair);
3403 	if (rc != 0) {
3404 		SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
3405 		return -1;
3406 	}
3407 
3408 	rc = nvmf_tcp_qpair_init(&tqpair->qpair);
3409 	if (rc < 0) {
3410 		SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
3411 		return -1;
3412 	}
3413 
3414 	rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
3415 	if (rc < 0) {
3416 		SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
3417 		return -1;
3418 	}
3419 
3420 	rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
3421 				      nvmf_tcp_sock_cb, tqpair);
3422 	if (rc != 0) {
3423 		SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
3424 			    spdk_strerror(errno), errno);
3425 		return -1;
3426 	}
3427 
3428 	tqpair->group = tgroup;
3429 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INVALID);
3430 	TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
3431 
3432 	return 0;
3433 }
3434 
3435 static int
3436 nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3437 			   struct spdk_nvmf_qpair *qpair)
3438 {
3439 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3440 	struct spdk_nvmf_tcp_qpair		*tqpair;
3441 	int				rc;
3442 
3443 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3444 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3445 
3446 	assert(tqpair->group == tgroup);
3447 
3448 	SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
3449 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
3450 		/* Change the state to move the qpair from the await_req list to the main list
3451 		 * and prevent adding it again later by nvmf_tcp_qpair_set_recv_state() */
3452 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
3453 	}
3454 	TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
3455 
3456 	/* Try to force out any pending writes */
3457 	spdk_sock_flush(tqpair->sock);
3458 
3459 	rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
3460 	if (rc != 0) {
3461 		SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
3462 			    spdk_strerror(errno), errno);
3463 	}
3464 
3465 	return rc;
3466 }
3467 
3468 static int
3469 nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
3470 {
3471 	struct spdk_nvmf_tcp_transport *ttransport;
3472 	struct spdk_nvmf_tcp_req *tcp_req;
3473 	struct spdk_nvmf_tcp_qpair *tqpair;
3474 
3475 	ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3476 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3477 	tqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_tcp_qpair, qpair);
3478 
3479 	switch (tcp_req->state) {
3480 	case TCP_REQUEST_STATE_EXECUTING:
3481 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3482 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3483 		break;
3484 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3485 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED);
3486 		break;
3487 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3488 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3489 		/* In the interrupt mode it's possible that all responses are already written out over
3490 		 * the socket but zero-copy buffers are still not released. In that case there won't be
3491 		 * any event to trigger further socket processing. Send msg to a thread to avoid deadlock.
3492 		 */
3493 		if (spdk_unlikely(spdk_interrupt_mode_is_enabled() &&
3494 				  tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ &&
3495 				  spdk_nvmf_qpair_is_active(&tqpair->qpair))) {
3496 			spdk_thread_send_msg(spdk_get_thread(), tcp_sock_cb, tqpair);
3497 		}
3498 		break;
3499 	default:
3500 		SPDK_ERRLOG("Unexpected request state %d (cntlid:%d, qid:%d)\n",
3501 			    tcp_req->state, req->qpair->ctrlr->cntlid, req->qpair->qid);
3502 		assert(0 && "Unexpected request state");
3503 		break;
3504 	}
3505 
3506 	nvmf_tcp_req_process(ttransport, tcp_req);
3507 
3508 	return 0;
3509 }
3510 
3511 static void
3512 nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
3513 		     spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3514 {
3515 	struct spdk_nvmf_tcp_qpair *tqpair;
3516 
3517 	SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
3518 
3519 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3520 
3521 	assert(tqpair->fini_cb_fn == NULL);
3522 	tqpair->fini_cb_fn = cb_fn;
3523 	tqpair->fini_cb_arg = cb_arg;
3524 
3525 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITED);
3526 	nvmf_tcp_qpair_destroy(tqpair);
3527 }
3528 
3529 static int
3530 nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3531 {
3532 	struct spdk_nvmf_tcp_poll_group *tgroup;
3533 	int num_events, rc = 0, rc2;
3534 	struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp;
3535 
3536 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3537 
3538 	if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) {
3539 		return 0;
3540 	}
3541 
3542 	num_events = spdk_sock_group_poll(tgroup->sock_group);
3543 	if (spdk_unlikely(num_events < 0)) {
3544 		SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
3545 	}
3546 
3547 	TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) {
3548 		rc2 = nvmf_tcp_sock_process(tqpair);
3549 
3550 		/* If there was a new socket error, disconnect */
3551 		if (spdk_unlikely(rc2 < 0)) {
3552 			nvmf_tcp_qpair_disconnect(tqpair);
3553 			if (rc == 0) {
3554 				rc = rc2;
3555 			}
3556 		}
3557 	}
3558 
3559 	return rc == 0 ? num_events : rc;
3560 }
3561 
3562 static int
3563 nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
3564 			struct spdk_nvme_transport_id *trid, bool peer)
3565 {
3566 	struct spdk_nvmf_tcp_qpair     *tqpair;
3567 	uint16_t			port;
3568 
3569 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3570 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
3571 
3572 	if (peer) {
3573 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
3574 		port = tqpair->initiator_port;
3575 	} else {
3576 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
3577 		port = tqpair->target_port;
3578 	}
3579 
3580 	if (spdk_sock_is_ipv4(tqpair->sock)) {
3581 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3582 	} else if (spdk_sock_is_ipv6(tqpair->sock)) {
3583 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3584 	} else {
3585 		return -1;
3586 	}
3587 
3588 	snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
3589 	return 0;
3590 }
3591 
3592 static int
3593 nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3594 			      struct spdk_nvme_transport_id *trid)
3595 {
3596 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3597 }
3598 
3599 static int
3600 nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3601 			     struct spdk_nvme_transport_id *trid)
3602 {
3603 	return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
3604 }
3605 
3606 static int
3607 nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3608 			       struct spdk_nvme_transport_id *trid)
3609 {
3610 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3611 }
3612 
3613 static void
3614 nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
3615 			      struct spdk_nvmf_tcp_req *tcp_req_to_abort)
3616 {
3617 	nvmf_tcp_req_set_cpl(tcp_req_to_abort, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_BY_REQUEST);
3618 	nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3619 
3620 	req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
3621 }
3622 
3623 static int
3624 _nvmf_tcp_qpair_abort_request(void *ctx)
3625 {
3626 	struct spdk_nvmf_request *req = ctx;
3627 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
3628 			struct spdk_nvmf_tcp_req, req);
3629 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
3630 					     struct spdk_nvmf_tcp_qpair, qpair);
3631 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
3632 			struct spdk_nvmf_tcp_transport, transport);
3633 	int rc;
3634 
3635 	spdk_poller_unregister(&req->poller);
3636 
3637 	switch (tcp_req_to_abort->state) {
3638 	case TCP_REQUEST_STATE_EXECUTING:
3639 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3640 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3641 		rc = nvmf_ctrlr_abort_request(req);
3642 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
3643 			return SPDK_POLLER_BUSY;
3644 		}
3645 		break;
3646 
3647 	case TCP_REQUEST_STATE_NEED_BUFFER:
3648 		nvmf_tcp_request_get_buffers_abort(tcp_req_to_abort);
3649 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3650 		nvmf_tcp_req_process(ttransport, tcp_req_to_abort);
3651 		break;
3652 
3653 	case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3654 	case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3655 		if (spdk_get_ticks() < req->timeout_tsc) {
3656 			req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
3657 			return SPDK_POLLER_BUSY;
3658 		}
3659 		break;
3660 
3661 	default:
3662 		/* Requests in other states are either un-abortable (e.g.
3663 		 * TRANSFERRING_CONTROLLER_TO_HOST) or should never end up here, as they're
3664 		 * immediately transitioned to other states in nvmf_tcp_req_process() (e.g.
3665 		 * READY_TO_EXECUTE).  But it is fine to end up here, as we'll simply complete the
3666 		 * abort request with the bit0 of dword0 set (command not aborted).
3667 		 */
3668 		break;
3669 	}
3670 
3671 	spdk_nvmf_request_complete(req);
3672 	return SPDK_POLLER_BUSY;
3673 }
3674 
3675 static void
3676 nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
3677 			     struct spdk_nvmf_request *req)
3678 {
3679 	struct spdk_nvmf_tcp_qpair *tqpair;
3680 	struct spdk_nvmf_tcp_transport *ttransport;
3681 	struct spdk_nvmf_transport *transport;
3682 	uint16_t cid;
3683 	uint32_t i;
3684 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
3685 
3686 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3687 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3688 	transport = &ttransport->transport;
3689 
3690 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
3691 
3692 	for (i = 0; i < tqpair->resource_count; i++) {
3693 		if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
3694 		    tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
3695 			tcp_req_to_abort = &tqpair->reqs[i];
3696 			break;
3697 		}
3698 	}
3699 
3700 	spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, tqpair->qpair.trace_id, 0, (uintptr_t)req);
3701 
3702 	if (tcp_req_to_abort == NULL) {
3703 		spdk_nvmf_request_complete(req);
3704 		return;
3705 	}
3706 
3707 	req->req_to_abort = &tcp_req_to_abort->req;
3708 	req->timeout_tsc = spdk_get_ticks() +
3709 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
3710 	req->poller = NULL;
3711 
3712 	_nvmf_tcp_qpair_abort_request(req);
3713 }
3714 
3715 struct tcp_subsystem_add_host_opts {
3716 	char *psk;
3717 };
3718 
3719 static const struct spdk_json_object_decoder tcp_subsystem_add_host_opts_decoder[] = {
3720 	{"psk", offsetof(struct tcp_subsystem_add_host_opts, psk), spdk_json_decode_string, true},
3721 };
3722 
3723 static int
3724 tcp_load_psk(const char *fname, char *buf, size_t bufsz)
3725 {
3726 	FILE *psk_file;
3727 	struct stat statbuf;
3728 	int rc;
3729 
3730 	if (stat(fname, &statbuf) != 0) {
3731 		SPDK_ERRLOG("Could not read permissions for PSK file\n");
3732 		return -EACCES;
3733 	}
3734 
3735 	if ((statbuf.st_mode & TCP_PSK_INVALID_PERMISSIONS) != 0) {
3736 		SPDK_ERRLOG("Incorrect permissions for PSK file\n");
3737 		return -EPERM;
3738 	}
3739 	if ((size_t)statbuf.st_size > bufsz) {
3740 		SPDK_ERRLOG("Invalid PSK: too long\n");
3741 		return -EINVAL;
3742 	}
3743 	psk_file = fopen(fname, "r");
3744 	if (psk_file == NULL) {
3745 		SPDK_ERRLOG("Could not open PSK file\n");
3746 		return -EINVAL;
3747 	}
3748 
3749 	rc = fread(buf, 1, statbuf.st_size, psk_file);
3750 	if (rc != statbuf.st_size) {
3751 		SPDK_ERRLOG("Failed to read PSK\n");
3752 		fclose(psk_file);
3753 		return -EINVAL;
3754 	}
3755 
3756 	fclose(psk_file);
3757 	return 0;
3758 }
3759 
3760 SPDK_LOG_DEPRECATION_REGISTER(nvmf_tcp_psk_path, "PSK path", "v24.09", 0);
3761 
3762 static int
3763 nvmf_tcp_subsystem_add_host(struct spdk_nvmf_transport *transport,
3764 			    const struct spdk_nvmf_subsystem *subsystem,
3765 			    const char *hostnqn,
3766 			    const struct spdk_json_val *transport_specific)
3767 {
3768 	struct tcp_subsystem_add_host_opts opts;
3769 	struct spdk_nvmf_tcp_transport *ttransport;
3770 	struct tcp_psk_entry *tmp, *entry = NULL;
3771 	uint8_t psk_configured[SPDK_TLS_PSK_MAX_LEN] = {};
3772 	char psk_interchange[SPDK_TLS_PSK_MAX_LEN + 1] = {};
3773 	uint8_t tls_cipher_suite;
3774 	int rc = 0;
3775 	uint8_t psk_retained_hash;
3776 	uint64_t psk_configured_size;
3777 
3778 	if (transport_specific == NULL) {
3779 		return 0;
3780 	}
3781 
3782 	assert(transport != NULL);
3783 	assert(subsystem != NULL);
3784 
3785 	memset(&opts, 0, sizeof(opts));
3786 
3787 	/* Decode PSK (either name of a key or file path) */
3788 	if (spdk_json_decode_object_relaxed(transport_specific, tcp_subsystem_add_host_opts_decoder,
3789 					    SPDK_COUNTOF(tcp_subsystem_add_host_opts_decoder), &opts)) {
3790 		SPDK_ERRLOG("spdk_json_decode_object failed\n");
3791 		return -EINVAL;
3792 	}
3793 
3794 	if (opts.psk == NULL) {
3795 		return 0;
3796 	}
3797 
3798 	entry = calloc(1, sizeof(struct tcp_psk_entry));
3799 	if (entry == NULL) {
3800 		SPDK_ERRLOG("Unable to allocate memory for PSK entry!\n");
3801 		rc = -ENOMEM;
3802 		goto end;
3803 	}
3804 
3805 	entry->key = spdk_keyring_get_key(opts.psk);
3806 	if (entry->key != NULL) {
3807 		rc = spdk_key_get_key(entry->key, psk_interchange, SPDK_TLS_PSK_MAX_LEN);
3808 		if (rc < 0) {
3809 			SPDK_ERRLOG("Failed to retrieve PSK '%s'\n", opts.psk);
3810 			rc = -EINVAL;
3811 			goto end;
3812 		}
3813 	} else {
3814 		if (strlen(opts.psk) >= sizeof(entry->psk)) {
3815 			SPDK_ERRLOG("PSK path too long\n");
3816 			rc = -EINVAL;
3817 			goto end;
3818 		}
3819 
3820 		rc = tcp_load_psk(opts.psk, psk_interchange, SPDK_TLS_PSK_MAX_LEN);
3821 		if (rc) {
3822 			SPDK_ERRLOG("Could not retrieve PSK from file\n");
3823 			goto end;
3824 		}
3825 
3826 		SPDK_LOG_DEPRECATED(nvmf_tcp_psk_path);
3827 	}
3828 
3829 	/* Parse PSK interchange to get length of base64 encoded data.
3830 	 * This is then used to decide which cipher suite should be used
3831 	 * to generate PSK identity and TLS PSK later on. */
3832 	rc = nvme_tcp_parse_interchange_psk(psk_interchange, psk_configured, sizeof(psk_configured),
3833 					    &psk_configured_size, &psk_retained_hash);
3834 	if (rc < 0) {
3835 		SPDK_ERRLOG("Failed to parse PSK interchange!\n");
3836 		goto end;
3837 	}
3838 
3839 	/* The Base64 string encodes the configured PSK (32 or 48 bytes binary).
3840 	 * This check also ensures that psk_configured_size is smaller than
3841 	 * psk_retained buffer size. */
3842 	if (psk_configured_size == SHA256_DIGEST_LENGTH) {
3843 		tls_cipher_suite = NVME_TCP_CIPHER_AES_128_GCM_SHA256;
3844 	} else if (psk_configured_size == SHA384_DIGEST_LENGTH) {
3845 		tls_cipher_suite = NVME_TCP_CIPHER_AES_256_GCM_SHA384;
3846 	} else {
3847 		SPDK_ERRLOG("Unrecognized cipher suite!\n");
3848 		rc = -EINVAL;
3849 		goto end;
3850 	}
3851 
3852 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3853 	/* Generate PSK identity. */
3854 	rc = nvme_tcp_generate_psk_identity(entry->pskid, sizeof(entry->pskid), hostnqn,
3855 					    subsystem->subnqn, tls_cipher_suite);
3856 	if (rc) {
3857 		rc = -EINVAL;
3858 		goto end;
3859 	}
3860 	/* Check if PSK identity entry already exists. */
3861 	TAILQ_FOREACH(tmp, &ttransport->psks, link) {
3862 		if (strncmp(tmp->pskid, entry->pskid, NVMF_PSK_IDENTITY_LEN) == 0) {
3863 			SPDK_ERRLOG("Given PSK identity: %s entry already exists!\n", entry->pskid);
3864 			rc = -EEXIST;
3865 			goto end;
3866 		}
3867 	}
3868 
3869 	if (snprintf(entry->hostnqn, sizeof(entry->hostnqn), "%s", hostnqn) < 0) {
3870 		SPDK_ERRLOG("Could not write hostnqn string!\n");
3871 		rc = -EINVAL;
3872 		goto end;
3873 	}
3874 	if (snprintf(entry->subnqn, sizeof(entry->subnqn), "%s", subsystem->subnqn) < 0) {
3875 		SPDK_ERRLOG("Could not write subnqn string!\n");
3876 		rc = -EINVAL;
3877 		goto end;
3878 	}
3879 
3880 	entry->tls_cipher_suite = tls_cipher_suite;
3881 
3882 	/* No hash indicates that Configured PSK must be used as Retained PSK. */
3883 	if (psk_retained_hash == NVME_TCP_HASH_ALGORITHM_NONE) {
3884 		/* Psk configured is either 32 or 48 bytes long. */
3885 		memcpy(entry->psk, psk_configured, psk_configured_size);
3886 		entry->psk_size = psk_configured_size;
3887 	} else {
3888 		/* Derive retained PSK. */
3889 		rc = nvme_tcp_derive_retained_psk(psk_configured, psk_configured_size, hostnqn, entry->psk,
3890 						  SPDK_TLS_PSK_MAX_LEN, psk_retained_hash);
3891 		if (rc < 0) {
3892 			SPDK_ERRLOG("Unable to derive retained PSK!\n");
3893 			goto end;
3894 		}
3895 		entry->psk_size = rc;
3896 	}
3897 
3898 	if (entry->key == NULL) {
3899 		rc = snprintf(entry->psk_path, sizeof(entry->psk_path), "%s", opts.psk);
3900 		if (rc < 0 || (size_t)rc >= sizeof(entry->psk_path)) {
3901 			SPDK_ERRLOG("Could not save PSK path!\n");
3902 			rc = -ENAMETOOLONG;
3903 			goto end;
3904 		}
3905 	}
3906 
3907 	TAILQ_INSERT_TAIL(&ttransport->psks, entry, link);
3908 	rc = 0;
3909 
3910 end:
3911 	spdk_memset_s(psk_configured, sizeof(psk_configured), 0, sizeof(psk_configured));
3912 	spdk_memset_s(psk_interchange, sizeof(psk_interchange), 0, sizeof(psk_interchange));
3913 
3914 	free(opts.psk);
3915 	if (rc != 0) {
3916 		nvmf_tcp_free_psk_entry(entry);
3917 	}
3918 
3919 	return rc;
3920 }
3921 
3922 static void
3923 nvmf_tcp_subsystem_remove_host(struct spdk_nvmf_transport *transport,
3924 			       const struct spdk_nvmf_subsystem *subsystem,
3925 			       const char *hostnqn)
3926 {
3927 	struct spdk_nvmf_tcp_transport *ttransport;
3928 	struct tcp_psk_entry *entry, *tmp;
3929 
3930 	assert(transport != NULL);
3931 	assert(subsystem != NULL);
3932 
3933 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3934 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
3935 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3936 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3937 			TAILQ_REMOVE(&ttransport->psks, entry, link);
3938 			nvmf_tcp_free_psk_entry(entry);
3939 			break;
3940 		}
3941 	}
3942 }
3943 
3944 static void
3945 nvmf_tcp_subsystem_dump_host(struct spdk_nvmf_transport *transport,
3946 			     const struct spdk_nvmf_subsystem *subsystem, const char *hostnqn,
3947 			     struct spdk_json_write_ctx *w)
3948 {
3949 	struct spdk_nvmf_tcp_transport *ttransport;
3950 	struct tcp_psk_entry *entry;
3951 
3952 	assert(transport != NULL);
3953 	assert(subsystem != NULL);
3954 
3955 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3956 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
3957 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3958 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3959 			spdk_json_write_named_string(w, "psk", entry->key ?
3960 						     spdk_key_get_name(entry->key) : entry->psk_path);
3961 			break;
3962 		}
3963 	}
3964 }
3965 
3966 static void
3967 nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
3968 {
3969 	opts->max_queue_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
3970 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
3971 	opts->in_capsule_data_size =	SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
3972 	opts->max_io_size =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
3973 	opts->io_unit_size =		SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
3974 	opts->max_aq_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
3975 	opts->num_shared_buffers =	SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
3976 	opts->buf_cache_size =		SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
3977 	opts->dif_insert_or_strip =	SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
3978 	opts->abort_timeout_sec =	SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
3979 	opts->transport_specific =      NULL;
3980 }
3981 
3982 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
3983 	.name = "TCP",
3984 	.type = SPDK_NVME_TRANSPORT_TCP,
3985 	.opts_init = nvmf_tcp_opts_init,
3986 	.create = nvmf_tcp_create,
3987 	.dump_opts = nvmf_tcp_dump_opts,
3988 	.destroy = nvmf_tcp_destroy,
3989 
3990 	.listen = nvmf_tcp_listen,
3991 	.stop_listen = nvmf_tcp_stop_listen,
3992 
3993 	.listener_discover = nvmf_tcp_discover,
3994 
3995 	.poll_group_create = nvmf_tcp_poll_group_create,
3996 	.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
3997 	.poll_group_destroy = nvmf_tcp_poll_group_destroy,
3998 	.poll_group_add = nvmf_tcp_poll_group_add,
3999 	.poll_group_remove = nvmf_tcp_poll_group_remove,
4000 	.poll_group_poll = nvmf_tcp_poll_group_poll,
4001 
4002 	.req_free = nvmf_tcp_req_free,
4003 	.req_complete = nvmf_tcp_req_complete,
4004 	.req_get_buffers_done = nvmf_tcp_req_get_buffers_done,
4005 
4006 	.qpair_fini = nvmf_tcp_close_qpair,
4007 	.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
4008 	.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
4009 	.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
4010 	.qpair_abort_request = nvmf_tcp_qpair_abort_request,
4011 	.subsystem_add_host = nvmf_tcp_subsystem_add_host,
4012 	.subsystem_remove_host = nvmf_tcp_subsystem_remove_host,
4013 	.subsystem_dump_host = nvmf_tcp_subsystem_dump_host,
4014 };
4015 
4016 SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
4017 SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)
4018