xref: /spdk/lib/nvmf/tcp.c (revision d987d777d6b8ce05f11cb1d90f1241bfecfc9af4)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2018 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/accel.h"
8 #include "spdk/stdinc.h"
9 #include "spdk/crc32.h"
10 #include "spdk/endian.h"
11 #include "spdk/assert.h"
12 #include "spdk/thread.h"
13 #include "spdk/nvmf_transport.h"
14 #include "spdk/string.h"
15 #include "spdk/trace.h"
16 #include "spdk/util.h"
17 #include "spdk/log.h"
18 #include "spdk/keyring.h"
19 
20 #include "spdk_internal/assert.h"
21 #include "spdk_internal/nvme_tcp.h"
22 #include "spdk_internal/sock.h"
23 
24 #include "nvmf_internal.h"
25 #include "transport.h"
26 
27 #include "spdk_internal/trace_defs.h"
28 
29 #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
30 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
31 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
32 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
33 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
34 
35 #define SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH 2
36 #define SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH 65535
37 #define SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH 2
38 #define SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH 4096
39 
40 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH 128
41 #define SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH 128
42 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
43 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
44 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
45 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
46 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
47 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX
48 #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
49 #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
50 
51 #define TCP_PSK_INVALID_PERMISSIONS 0177
52 
53 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
54 static bool g_tls_log = false;
55 
56 /* spdk nvmf related structure */
57 enum spdk_nvmf_tcp_req_state {
58 
59 	/* The request is not currently in use */
60 	TCP_REQUEST_STATE_FREE = 0,
61 
62 	/* Initial state when request first received */
63 	TCP_REQUEST_STATE_NEW = 1,
64 
65 	/* The request is queued until a data buffer is available. */
66 	TCP_REQUEST_STATE_NEED_BUFFER = 2,
67 
68 	/* The request has the data buffer available */
69 	TCP_REQUEST_STATE_HAVE_BUFFER = 3,
70 
71 	/* The request is waiting for zcopy_start to finish */
72 	TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 4,
73 
74 	/* The request has received a zero-copy buffer */
75 	TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 5,
76 
77 	/* The request is currently transferring data from the host to the controller. */
78 	TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 6,
79 
80 	/* The request is waiting for the R2T send acknowledgement. */
81 	TCP_REQUEST_STATE_AWAITING_R2T_ACK = 7,
82 
83 	/* The request is ready to execute at the block device */
84 	TCP_REQUEST_STATE_READY_TO_EXECUTE = 8,
85 
86 	/* The request is currently executing at the block device */
87 	TCP_REQUEST_STATE_EXECUTING = 9,
88 
89 	/* The request is waiting for zcopy buffers to be committed */
90 	TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 10,
91 
92 	/* The request finished executing at the block device */
93 	TCP_REQUEST_STATE_EXECUTED = 11,
94 
95 	/* The request is ready to send a completion */
96 	TCP_REQUEST_STATE_READY_TO_COMPLETE = 12,
97 
98 	/* The request is currently transferring final pdus from the controller to the host. */
99 	TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 13,
100 
101 	/* The request is waiting for zcopy buffers to be released (without committing) */
102 	TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 14,
103 
104 	/* The request completed and can be marked free. */
105 	TCP_REQUEST_STATE_COMPLETED = 15,
106 
107 	/* Terminator */
108 	TCP_REQUEST_NUM_STATES,
109 };
110 
111 static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
112 	"Invalid PDU Header Field",
113 	"PDU Sequence Error",
114 	"Header Digiest Error",
115 	"Data Transfer Out of Range",
116 	"R2T Limit Exceeded",
117 	"Unsupported parameter",
118 };
119 
120 SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
121 {
122 	spdk_trace_register_owner_type(OWNER_TYPE_NVMF_TCP, 't');
123 	spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
124 	spdk_trace_register_description("TCP_REQ_NEW",
125 					TRACE_TCP_REQUEST_STATE_NEW,
126 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1,
127 					SPDK_TRACE_ARG_TYPE_INT, "qd");
128 	spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
129 					TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
130 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
131 					SPDK_TRACE_ARG_TYPE_INT, "");
132 	spdk_trace_register_description("TCP_REQ_HAVE_BUFFER",
133 					TRACE_TCP_REQUEST_STATE_HAVE_BUFFER,
134 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
135 					SPDK_TRACE_ARG_TYPE_INT, "");
136 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START",
137 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START,
138 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
139 					SPDK_TRACE_ARG_TYPE_INT, "");
140 	spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL",
141 					TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED,
142 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
143 					SPDK_TRACE_ARG_TYPE_INT, "");
144 	spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
145 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
146 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
147 					SPDK_TRACE_ARG_TYPE_INT, "");
148 	spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
149 					TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
150 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
151 					SPDK_TRACE_ARG_TYPE_INT, "");
152 	spdk_trace_register_description("TCP_REQ_EXECUTING",
153 					TRACE_TCP_REQUEST_STATE_EXECUTING,
154 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
155 					SPDK_TRACE_ARG_TYPE_INT, "");
156 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT",
157 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT,
158 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
159 					SPDK_TRACE_ARG_TYPE_INT, "");
160 	spdk_trace_register_description("TCP_REQ_EXECUTED",
161 					TRACE_TCP_REQUEST_STATE_EXECUTED,
162 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
163 					SPDK_TRACE_ARG_TYPE_INT, "");
164 	spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
165 					TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
166 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
167 					SPDK_TRACE_ARG_TYPE_INT, "");
168 	spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
169 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
170 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
171 					SPDK_TRACE_ARG_TYPE_INT, "");
172 	spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS",
173 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE,
174 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
175 					SPDK_TRACE_ARG_TYPE_INT, "");
176 	spdk_trace_register_description("TCP_REQ_COMPLETED",
177 					TRACE_TCP_REQUEST_STATE_COMPLETED,
178 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
179 					SPDK_TRACE_ARG_TYPE_INT, "qd");
180 	spdk_trace_register_description("TCP_READ_DONE",
181 					TRACE_TCP_READ_FROM_SOCKET_DONE,
182 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
183 					SPDK_TRACE_ARG_TYPE_INT, "");
184 	spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
185 					TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
186 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
187 					SPDK_TRACE_ARG_TYPE_INT, "");
188 
189 	spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE,
190 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
191 					SPDK_TRACE_ARG_TYPE_INT, "");
192 	spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT,
193 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
194 					SPDK_TRACE_ARG_TYPE_INT, "");
195 	spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE,
196 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
197 					SPDK_TRACE_ARG_TYPE_INT, "state");
198 	spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT,
199 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
200 					SPDK_TRACE_ARG_TYPE_INT, "");
201 	spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY,
202 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
203 					SPDK_TRACE_ARG_TYPE_INT, "");
204 	spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ,
205 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
206 					SPDK_TRACE_ARG_TYPE_INT, "");
207 	spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE,
208 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
209 					SPDK_TRACE_ARG_TYPE_INT, "state");
210 
211 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1);
212 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0);
213 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_QUEUE, OBJECT_NVMF_TCP_IO, 0);
214 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_PEND, OBJECT_NVMF_TCP_IO, 0);
215 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_COMPLETE, OBJECT_NVMF_TCP_IO, 0);
216 }
217 
218 struct spdk_nvmf_tcp_req  {
219 	struct spdk_nvmf_request		req;
220 	struct spdk_nvme_cpl			rsp;
221 	struct spdk_nvme_cmd			cmd;
222 
223 	/* A PDU that can be used for sending responses. This is
224 	 * not the incoming PDU! */
225 	struct nvme_tcp_pdu			*pdu;
226 
227 	/* In-capsule data buffer */
228 	uint8_t					*buf;
229 
230 	struct spdk_nvmf_tcp_req		*fused_pair;
231 
232 	/*
233 	 * The PDU for a request may be used multiple times in serial over
234 	 * the request's lifetime. For example, first to send an R2T, then
235 	 * to send a completion. To catch mistakes where the PDU is used
236 	 * twice at the same time, add a debug flag here for init/fini.
237 	 */
238 	bool					pdu_in_use;
239 	bool					has_in_capsule_data;
240 	bool					fused_failed;
241 
242 	/* transfer_tag */
243 	uint16_t				ttag;
244 
245 	enum spdk_nvmf_tcp_req_state		state;
246 
247 	/*
248 	 * h2c_offset is used when we receive the h2c_data PDU.
249 	 */
250 	uint32_t				h2c_offset;
251 
252 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		link;
253 	TAILQ_ENTRY(spdk_nvmf_tcp_req)		state_link;
254 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		control_msg_link;
255 };
256 
257 struct spdk_nvmf_tcp_qpair {
258 	struct spdk_nvmf_qpair			qpair;
259 	struct spdk_nvmf_tcp_poll_group		*group;
260 	struct spdk_sock			*sock;
261 
262 	enum nvme_tcp_pdu_recv_state		recv_state;
263 	enum nvme_tcp_qpair_state		state;
264 
265 	/* PDU being actively received */
266 	struct nvme_tcp_pdu			*pdu_in_progress;
267 
268 	struct spdk_nvmf_tcp_req		*fused_first;
269 
270 	/* Queues to track the requests in all states */
271 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_working_queue;
272 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_free_queue;
273 	SLIST_HEAD(, nvme_tcp_pdu)		tcp_pdu_free_queue;
274 	/* Number of working pdus */
275 	uint32_t				tcp_pdu_working_count;
276 
277 	/* Number of requests in each state */
278 	uint32_t				state_cntr[TCP_REQUEST_NUM_STATES];
279 
280 	uint8_t					cpda;
281 
282 	bool					host_hdgst_enable;
283 	bool					host_ddgst_enable;
284 
285 	/* This is a spare PDU used for sending special management
286 	 * operations. Primarily, this is used for the initial
287 	 * connection response and c2h termination request. */
288 	struct nvme_tcp_pdu			*mgmt_pdu;
289 
290 	/* Arrays of in-capsule buffers, requests, and pdus.
291 	 * Each array is 'resource_count' number of elements */
292 	void					*bufs;
293 	struct spdk_nvmf_tcp_req		*reqs;
294 	struct nvme_tcp_pdu			*pdus;
295 	uint32_t				resource_count;
296 	uint32_t				recv_buf_size;
297 
298 	struct spdk_nvmf_tcp_port		*port;
299 
300 	/* IP address */
301 	char					initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
302 	char					target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
303 
304 	/* IP port */
305 	uint16_t				initiator_port;
306 	uint16_t				target_port;
307 
308 	/* Wait until the host terminates the connection (e.g. after sending C2HTermReq) */
309 	bool					wait_terminate;
310 
311 	/* Timer used to destroy qpair after detecting transport error issue if initiator does
312 	 *  not close the connection.
313 	 */
314 	struct spdk_poller			*timeout_poller;
315 
316 	spdk_nvmf_transport_qpair_fini_cb	fini_cb_fn;
317 	void					*fini_cb_arg;
318 
319 	TAILQ_ENTRY(spdk_nvmf_tcp_qpair)	link;
320 };
321 
322 struct spdk_nvmf_tcp_control_msg {
323 	STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
324 };
325 
326 struct spdk_nvmf_tcp_control_msg_list {
327 	void *msg_buf;
328 	STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
329 	STAILQ_HEAD(, spdk_nvmf_tcp_req) waiting_for_msg_reqs;
330 };
331 
332 struct spdk_nvmf_tcp_poll_group {
333 	struct spdk_nvmf_transport_poll_group	group;
334 	struct spdk_sock_group			*sock_group;
335 
336 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	qpairs;
337 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	await_req;
338 
339 	struct spdk_io_channel			*accel_channel;
340 	struct spdk_nvmf_tcp_control_msg_list	*control_msg_list;
341 
342 	TAILQ_ENTRY(spdk_nvmf_tcp_poll_group)	link;
343 };
344 
345 struct spdk_nvmf_tcp_port {
346 	const struct spdk_nvme_transport_id	*trid;
347 	struct spdk_sock			*listen_sock;
348 	struct spdk_nvmf_transport		*transport;
349 	TAILQ_ENTRY(spdk_nvmf_tcp_port)		link;
350 };
351 
352 struct tcp_transport_opts {
353 	bool		c2h_success;
354 	uint16_t	control_msg_num;
355 	uint32_t	sock_priority;
356 };
357 
358 struct tcp_psk_entry {
359 	char				hostnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
360 	char				subnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
361 	char				pskid[NVMF_PSK_IDENTITY_LEN];
362 	uint8_t				psk[SPDK_TLS_PSK_MAX_LEN];
363 	struct spdk_key			*key;
364 
365 	/* Original path saved to emit SPDK configuration via "save_config". */
366 	char				psk_path[PATH_MAX];
367 	uint32_t			psk_size;
368 	enum nvme_tcp_cipher_suite	tls_cipher_suite;
369 	TAILQ_ENTRY(tcp_psk_entry)	link;
370 };
371 
372 struct spdk_nvmf_tcp_transport {
373 	struct spdk_nvmf_transport		transport;
374 	struct tcp_transport_opts               tcp_opts;
375 	uint32_t				ack_timeout;
376 
377 	struct spdk_nvmf_tcp_poll_group		*next_pg;
378 
379 	struct spdk_poller			*accept_poller;
380 	struct spdk_sock_group			*listen_sock_group;
381 
382 	TAILQ_HEAD(, spdk_nvmf_tcp_port)	ports;
383 	TAILQ_HEAD(, spdk_nvmf_tcp_poll_group)	poll_groups;
384 
385 	TAILQ_HEAD(, tcp_psk_entry)		psks;
386 };
387 
388 static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
389 	{
390 		"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
391 		spdk_json_decode_bool, true
392 	},
393 	{
394 		"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
395 		spdk_json_decode_uint16, true
396 	},
397 	{
398 		"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
399 		spdk_json_decode_uint32, true
400 	},
401 };
402 
403 static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
404 				 struct spdk_nvmf_tcp_req *tcp_req);
405 static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
406 
407 static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
408 				    struct spdk_nvmf_tcp_req *tcp_req);
409 
410 static inline void
411 nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
412 		       enum spdk_nvmf_tcp_req_state state)
413 {
414 	struct spdk_nvmf_qpair *qpair;
415 	struct spdk_nvmf_tcp_qpair *tqpair;
416 
417 	qpair = tcp_req->req.qpair;
418 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
419 
420 	assert(tqpair->state_cntr[tcp_req->state] > 0);
421 	tqpair->state_cntr[tcp_req->state]--;
422 	tqpair->state_cntr[state]++;
423 
424 	tcp_req->state = state;
425 }
426 
427 static inline struct nvme_tcp_pdu *
428 nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
429 {
430 	assert(tcp_req->pdu_in_use == false);
431 
432 	memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
433 	tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
434 
435 	return tcp_req->pdu;
436 }
437 
438 static struct spdk_nvmf_tcp_req *
439 nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
440 {
441 	struct spdk_nvmf_tcp_req *tcp_req;
442 
443 	tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
444 	if (spdk_unlikely(!tcp_req)) {
445 		return NULL;
446 	}
447 
448 	memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
449 	tcp_req->h2c_offset = 0;
450 	tcp_req->has_in_capsule_data = false;
451 	tcp_req->req.dif_enabled = false;
452 	tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE;
453 
454 	TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
455 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
456 	tqpair->qpair.queue_depth++;
457 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
458 	return tcp_req;
459 }
460 
461 static inline void
462 nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
463 {
464 	assert(!tcp_req->pdu_in_use);
465 
466 	TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
467 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
468 	tqpair->qpair.queue_depth--;
469 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
470 }
471 
472 static void
473 nvmf_tcp_req_get_buffers_done(struct spdk_nvmf_request *req)
474 {
475 	struct spdk_nvmf_tcp_req *tcp_req;
476 	struct spdk_nvmf_transport *transport;
477 	struct spdk_nvmf_tcp_transport *ttransport;
478 
479 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
480 	transport = req->qpair->transport;
481 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
482 
483 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
484 	nvmf_tcp_req_process(ttransport, tcp_req);
485 }
486 
487 static void
488 nvmf_tcp_request_free(void *cb_arg)
489 {
490 	struct spdk_nvmf_tcp_transport *ttransport;
491 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
492 
493 	assert(tcp_req != NULL);
494 
495 	SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
496 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
497 				      struct spdk_nvmf_tcp_transport, transport);
498 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
499 	nvmf_tcp_req_process(ttransport, tcp_req);
500 }
501 
502 static int
503 nvmf_tcp_req_free(struct spdk_nvmf_request *req)
504 {
505 	struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
506 
507 	nvmf_tcp_request_free(tcp_req);
508 
509 	return 0;
510 }
511 
512 static void
513 nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
514 			   enum spdk_nvmf_tcp_req_state state)
515 {
516 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
517 
518 	assert(state != TCP_REQUEST_STATE_FREE);
519 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
520 		if (state == tcp_req->state) {
521 			nvmf_tcp_request_free(tcp_req);
522 		}
523 	}
524 }
525 
526 static inline void
527 nvmf_tcp_request_get_buffers_abort(struct spdk_nvmf_tcp_req *tcp_req)
528 {
529 	/* Request can wait either for the iobuf or control_msg */
530 	struct spdk_nvmf_poll_group *group = tcp_req->req.qpair->group;
531 	struct spdk_nvmf_transport *transport = tcp_req->req.qpair->transport;
532 	struct spdk_nvmf_transport_poll_group *tgroup = nvmf_get_transport_poll_group(group, transport);
533 	struct spdk_nvmf_tcp_poll_group *tcp_group = SPDK_CONTAINEROF(tgroup,
534 			struct spdk_nvmf_tcp_poll_group, group);
535 	struct spdk_nvmf_tcp_req *tmp_req, *abort_req;
536 
537 	assert(tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER);
538 
539 	STAILQ_FOREACH_SAFE(abort_req, &tcp_group->control_msg_list->waiting_for_msg_reqs, control_msg_link,
540 			    tmp_req) {
541 		if (abort_req == tcp_req) {
542 			STAILQ_REMOVE(&tcp_group->control_msg_list->waiting_for_msg_reqs, abort_req, spdk_nvmf_tcp_req,
543 				      control_msg_link);
544 			return;
545 		}
546 	}
547 
548 	if (!nvmf_request_get_buffers_abort(&tcp_req->req)) {
549 		SPDK_ERRLOG("Failed to abort tcp_req=%p\n", tcp_req);
550 		assert(0 && "Should never happen");
551 	}
552 }
553 
554 static void
555 nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
556 {
557 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
558 
559 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
560 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
561 
562 	/* Wipe the requests waiting for buffer from the waiting list */
563 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
564 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
565 			nvmf_tcp_request_get_buffers_abort(tcp_req);
566 		}
567 	}
568 
569 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
570 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
571 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
572 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
573 }
574 
575 static void
576 nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
577 {
578 	int i;
579 	struct spdk_nvmf_tcp_req *tcp_req;
580 
581 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
582 	for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
583 		SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
584 		TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
585 			if ((int)tcp_req->state == i) {
586 				SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
587 				SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
588 			}
589 		}
590 	}
591 }
592 
593 static void
594 _nvmf_tcp_qpair_destroy(void *_tqpair)
595 {
596 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
597 	spdk_nvmf_transport_qpair_fini_cb cb_fn = tqpair->fini_cb_fn;
598 	void *cb_arg = tqpair->fini_cb_arg;
599 	int err = 0;
600 
601 	spdk_trace_record(TRACE_TCP_QP_DESTROY, tqpair->qpair.trace_id, 0, 0);
602 
603 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
604 
605 	err = spdk_sock_close(&tqpair->sock);
606 	assert(err == 0);
607 	nvmf_tcp_cleanup_all_states(tqpair);
608 
609 	if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
610 		SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
611 			    tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
612 			    tqpair->resource_count);
613 		err++;
614 	}
615 
616 	if (err > 0) {
617 		nvmf_tcp_dump_qpair_req_contents(tqpair);
618 	}
619 
620 	/* The timeout poller might still be registered here if we close the qpair before host
621 	 * terminates the connection.
622 	 */
623 	spdk_poller_unregister(&tqpair->timeout_poller);
624 	spdk_dma_free(tqpair->pdus);
625 	free(tqpair->reqs);
626 	spdk_free(tqpair->bufs);
627 	spdk_trace_unregister_owner(tqpair->qpair.trace_id);
628 	free(tqpair);
629 
630 	if (cb_fn != NULL) {
631 		cb_fn(cb_arg);
632 	}
633 
634 	SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
635 }
636 
637 static void
638 nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
639 {
640 	/* Delay the destruction to make sure it isn't performed from the context of a sock
641 	 * callback.  Otherwise, spdk_sock_close() might not abort pending requests, causing their
642 	 * completions to be executed after the qpair is freed.  (Note: this fixed issue #2471.)
643 	 */
644 	spdk_thread_send_msg(spdk_get_thread(), _nvmf_tcp_qpair_destroy, tqpair);
645 }
646 
647 static void
648 nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
649 {
650 	struct spdk_nvmf_tcp_transport	*ttransport;
651 	assert(w != NULL);
652 
653 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
654 	spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
655 	spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
656 }
657 
658 static void
659 nvmf_tcp_free_psk_entry(struct tcp_psk_entry *entry)
660 {
661 	if (entry == NULL) {
662 		return;
663 	}
664 
665 	spdk_memset_s(entry->psk, sizeof(entry->psk), 0, sizeof(entry->psk));
666 	spdk_keyring_put_key(entry->key);
667 	free(entry);
668 }
669 
670 static int
671 nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
672 		 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
673 {
674 	struct spdk_nvmf_tcp_transport	*ttransport;
675 	struct tcp_psk_entry *entry, *tmp;
676 
677 	assert(transport != NULL);
678 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
679 
680 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
681 		TAILQ_REMOVE(&ttransport->psks, entry, link);
682 		nvmf_tcp_free_psk_entry(entry);
683 	}
684 
685 	spdk_poller_unregister(&ttransport->accept_poller);
686 	spdk_sock_group_unregister_interrupt(ttransport->listen_sock_group);
687 	spdk_sock_group_close(&ttransport->listen_sock_group);
688 	free(ttransport);
689 
690 	if (cb_fn) {
691 		cb_fn(cb_arg);
692 	}
693 	return 0;
694 }
695 
696 static int nvmf_tcp_accept(void *ctx);
697 
698 static void nvmf_tcp_accept_cb(void *ctx, struct spdk_sock_group *group, struct spdk_sock *sock);
699 
700 static struct spdk_nvmf_transport *
701 nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
702 {
703 	struct spdk_nvmf_tcp_transport *ttransport;
704 	uint32_t sge_count;
705 	uint32_t min_shared_buffers;
706 	int rc;
707 	uint64_t period;
708 
709 	ttransport = calloc(1, sizeof(*ttransport));
710 	if (!ttransport) {
711 		return NULL;
712 	}
713 
714 	TAILQ_INIT(&ttransport->ports);
715 	TAILQ_INIT(&ttransport->poll_groups);
716 	TAILQ_INIT(&ttransport->psks);
717 
718 	ttransport->transport.ops = &spdk_nvmf_transport_tcp;
719 
720 	ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
721 	ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
722 	ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
723 	if (opts->transport_specific != NULL &&
724 	    spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
725 					    SPDK_COUNTOF(tcp_transport_opts_decoder),
726 					    &ttransport->tcp_opts)) {
727 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
728 		free(ttransport);
729 		return NULL;
730 	}
731 
732 	SPDK_NOTICELOG("*** TCP Transport Init ***\n");
733 
734 	SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
735 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
736 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
737 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
738 		     "  num_shared_buffers=%d, c2h_success=%d,\n"
739 		     "  dif_insert_or_strip=%d, sock_priority=%d\n"
740 		     "  abort_timeout_sec=%d, control_msg_num=%hu\n"
741 		     "  ack_timeout=%d\n",
742 		     opts->max_queue_depth,
743 		     opts->max_io_size,
744 		     opts->max_qpairs_per_ctrlr - 1,
745 		     opts->io_unit_size,
746 		     opts->in_capsule_data_size,
747 		     opts->max_aq_depth,
748 		     opts->num_shared_buffers,
749 		     ttransport->tcp_opts.c2h_success,
750 		     opts->dif_insert_or_strip,
751 		     ttransport->tcp_opts.sock_priority,
752 		     opts->abort_timeout_sec,
753 		     ttransport->tcp_opts.control_msg_num,
754 		     opts->ack_timeout);
755 
756 	if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
757 		SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
758 			    "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
759 			    ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
760 		free(ttransport);
761 		return NULL;
762 	}
763 
764 	if (ttransport->tcp_opts.control_msg_num == 0 &&
765 	    opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
766 		SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
767 			     SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
768 		ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
769 	}
770 
771 	/* I/O unit size cannot be larger than max I/O size */
772 	if (opts->io_unit_size > opts->max_io_size) {
773 		SPDK_WARNLOG("TCP param io_unit_size %u can't be larger than max_io_size %u. Using max_io_size as io_unit_size\n",
774 			     opts->io_unit_size, opts->max_io_size);
775 		opts->io_unit_size = opts->max_io_size;
776 	}
777 
778 	/* In capsule data size cannot be larger than max I/O size */
779 	if (opts->in_capsule_data_size > opts->max_io_size) {
780 		SPDK_WARNLOG("TCP param ICD size %u can't be larger than max_io_size %u. Using max_io_size as ICD size\n",
781 			     opts->io_unit_size, opts->max_io_size);
782 		opts->in_capsule_data_size = opts->max_io_size;
783 	}
784 
785 	/* max IO queue depth cannot be smaller than 2 or larger than 65535.
786 	 * We will not check SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, because max_queue_depth is 16bits and always not larger than 64k. */
787 	if (opts->max_queue_depth < SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH) {
788 		SPDK_WARNLOG("TCP param max_queue_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
789 			     opts->max_queue_depth, SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH,
790 			     SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH);
791 		opts->max_queue_depth = SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
792 	}
793 
794 	/* max admin queue depth cannot be smaller than 2 or larger than 4096 */
795 	if (opts->max_aq_depth < SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH ||
796 	    opts->max_aq_depth > SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH) {
797 		SPDK_WARNLOG("TCP param max_aq_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
798 			     opts->max_aq_depth, SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH,
799 			     SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH);
800 		opts->max_aq_depth = SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
801 	}
802 
803 	sge_count = opts->max_io_size / opts->io_unit_size;
804 	if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
805 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
806 		free(ttransport);
807 		return NULL;
808 	}
809 
810 	/* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */
811 	if (opts->buf_cache_size < UINT32_MAX) {
812 		min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
813 		if (min_shared_buffers > opts->num_shared_buffers) {
814 			SPDK_ERRLOG("There are not enough buffers to satisfy "
815 				    "per-poll group caches for each thread. (%" PRIu32 ") "
816 				    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
817 			SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
818 			free(ttransport);
819 			return NULL;
820 		}
821 	}
822 
823 	period = spdk_interrupt_mode_is_enabled() ? 0 : opts->acceptor_poll_rate;
824 	ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport, period);
825 	if (!ttransport->accept_poller) {
826 		free(ttransport);
827 		return NULL;
828 	}
829 
830 	spdk_poller_register_interrupt(ttransport->accept_poller, NULL, NULL);
831 
832 	ttransport->listen_sock_group = spdk_sock_group_create(NULL);
833 	if (ttransport->listen_sock_group == NULL) {
834 		SPDK_ERRLOG("Failed to create socket group for listen sockets\n");
835 		spdk_poller_unregister(&ttransport->accept_poller);
836 		free(ttransport);
837 		return NULL;
838 	}
839 
840 	if (spdk_interrupt_mode_is_enabled()) {
841 		rc = SPDK_SOCK_GROUP_REGISTER_INTERRUPT(ttransport->listen_sock_group,
842 							SPDK_INTERRUPT_EVENT_IN | SPDK_INTERRUPT_EVENT_OUT, nvmf_tcp_accept, &ttransport->transport);
843 		if (rc != 0) {
844 			SPDK_ERRLOG("Failed to register interrupt for listen socker sock group\n");
845 			spdk_sock_group_close(&ttransport->listen_sock_group);
846 			spdk_poller_unregister(&ttransport->accept_poller);
847 			free(ttransport);
848 			return NULL;
849 		}
850 	}
851 
852 	return &ttransport->transport;
853 }
854 
855 static int
856 nvmf_tcp_trsvcid_to_int(const char *trsvcid)
857 {
858 	unsigned long long ull;
859 	char *end = NULL;
860 
861 	ull = strtoull(trsvcid, &end, 10);
862 	if (end == NULL || end == trsvcid || *end != '\0') {
863 		return -1;
864 	}
865 
866 	/* Valid TCP/IP port numbers are in [1, 65535] */
867 	if (ull == 0 || ull > 65535) {
868 		return -1;
869 	}
870 
871 	return (int)ull;
872 }
873 
874 /**
875  * Canonicalize a listen address trid.
876  */
877 static int
878 nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
879 			   const struct spdk_nvme_transport_id *trid)
880 {
881 	int trsvcid_int;
882 
883 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
884 	if (trsvcid_int < 0) {
885 		return -EINVAL;
886 	}
887 
888 	memset(canon_trid, 0, sizeof(*canon_trid));
889 	spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
890 	canon_trid->adrfam = trid->adrfam;
891 	snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
892 	snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
893 
894 	return 0;
895 }
896 
897 /**
898  * Find an existing listening port.
899  */
900 static struct spdk_nvmf_tcp_port *
901 nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
902 		   const struct spdk_nvme_transport_id *trid)
903 {
904 	struct spdk_nvme_transport_id canon_trid;
905 	struct spdk_nvmf_tcp_port *port;
906 
907 	if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
908 		return NULL;
909 	}
910 
911 	TAILQ_FOREACH(port, &ttransport->ports, link) {
912 		if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
913 			return port;
914 		}
915 	}
916 
917 	return NULL;
918 }
919 
920 static int
921 tcp_sock_get_key(uint8_t *out, int out_len, const char **cipher, const char *pskid,
922 		 void *get_key_ctx)
923 {
924 	struct tcp_psk_entry *entry;
925 	struct spdk_nvmf_tcp_transport *ttransport = get_key_ctx;
926 	size_t psk_len;
927 	int rc;
928 
929 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
930 		if (strcmp(pskid, entry->pskid) != 0) {
931 			continue;
932 		}
933 
934 		psk_len = entry->psk_size;
935 		if ((size_t)out_len < psk_len) {
936 			SPDK_ERRLOG("Out buffer of size: %" PRIu32 " cannot fit PSK of len: %lu\n",
937 				    out_len, psk_len);
938 			return -ENOBUFS;
939 		}
940 
941 		/* Convert PSK to the TLS PSK format. */
942 		rc = nvme_tcp_derive_tls_psk(entry->psk, psk_len, pskid, out, out_len,
943 					     entry->tls_cipher_suite);
944 		if (rc < 0) {
945 			SPDK_ERRLOG("Could not generate TLS PSK\n");
946 		}
947 
948 		switch (entry->tls_cipher_suite) {
949 		case NVME_TCP_CIPHER_AES_128_GCM_SHA256:
950 			*cipher = "TLS_AES_128_GCM_SHA256";
951 			break;
952 		case NVME_TCP_CIPHER_AES_256_GCM_SHA384:
953 			*cipher = "TLS_AES_256_GCM_SHA384";
954 			break;
955 		default:
956 			*cipher = NULL;
957 			return -ENOTSUP;
958 		}
959 
960 		return rc;
961 	}
962 
963 	SPDK_ERRLOG("Could not find PSK for identity: %s\n", pskid);
964 
965 	return -EINVAL;
966 }
967 
968 static int
969 nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
970 		struct spdk_nvmf_listen_opts *listen_opts)
971 {
972 	struct spdk_nvmf_tcp_transport *ttransport;
973 	struct spdk_nvmf_tcp_port *port;
974 	int trsvcid_int;
975 	uint8_t adrfam;
976 	const char *sock_impl_name;
977 	struct spdk_sock_impl_opts impl_opts;
978 	size_t impl_opts_size = sizeof(impl_opts);
979 	struct spdk_sock_opts opts;
980 	int rc;
981 
982 	if (!strlen(trid->trsvcid)) {
983 		SPDK_ERRLOG("Service id is required\n");
984 		return -EINVAL;
985 	}
986 
987 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
988 
989 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
990 	if (trsvcid_int < 0) {
991 		SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
992 		return -EINVAL;
993 	}
994 
995 	port = calloc(1, sizeof(*port));
996 	if (!port) {
997 		SPDK_ERRLOG("Port allocation failed\n");
998 		return -ENOMEM;
999 	}
1000 
1001 	port->trid = trid;
1002 
1003 	sock_impl_name = NULL;
1004 
1005 	opts.opts_size = sizeof(opts);
1006 	spdk_sock_get_default_opts(&opts);
1007 	opts.priority = ttransport->tcp_opts.sock_priority;
1008 	opts.ack_timeout = transport->opts.ack_timeout;
1009 	if (listen_opts->secure_channel) {
1010 		if (listen_opts->sock_impl &&
1011 		    strncmp("ssl", listen_opts->sock_impl, strlen(listen_opts->sock_impl))) {
1012 			SPDK_ERRLOG("Enabling secure_channel while specifying a sock_impl different from 'ssl' is unsupported");
1013 			free(port);
1014 			return -EINVAL;
1015 		}
1016 		listen_opts->sock_impl = "ssl";
1017 	}
1018 
1019 	if (listen_opts->sock_impl) {
1020 		sock_impl_name = listen_opts->sock_impl;
1021 		spdk_sock_impl_get_opts(sock_impl_name, &impl_opts, &impl_opts_size);
1022 
1023 		if (!strncmp("ssl", sock_impl_name, strlen(sock_impl_name))) {
1024 			if (!g_tls_log) {
1025 				SPDK_NOTICELOG("TLS support is considered experimental\n");
1026 				g_tls_log = true;
1027 			}
1028 			impl_opts.tls_version = SPDK_TLS_VERSION_1_3;
1029 			impl_opts.get_key = tcp_sock_get_key;
1030 			impl_opts.get_key_ctx = ttransport;
1031 			impl_opts.tls_cipher_suites = "TLS_AES_256_GCM_SHA384:TLS_AES_128_GCM_SHA256";
1032 		}
1033 
1034 		opts.impl_opts = &impl_opts;
1035 		opts.impl_opts_size = sizeof(impl_opts);
1036 	}
1037 
1038 	port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
1039 			    sock_impl_name, &opts);
1040 	if (port->listen_sock == NULL) {
1041 		SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
1042 			    trid->traddr, trsvcid_int,
1043 			    spdk_strerror(errno), errno);
1044 		free(port);
1045 		return -errno;
1046 	}
1047 
1048 	if (spdk_sock_is_ipv4(port->listen_sock)) {
1049 		adrfam = SPDK_NVMF_ADRFAM_IPV4;
1050 	} else if (spdk_sock_is_ipv6(port->listen_sock)) {
1051 		adrfam = SPDK_NVMF_ADRFAM_IPV6;
1052 	} else {
1053 		SPDK_ERRLOG("Unhandled socket type\n");
1054 		adrfam = 0;
1055 	}
1056 
1057 	if (adrfam != trid->adrfam) {
1058 		SPDK_ERRLOG("Socket address family mismatch\n");
1059 		spdk_sock_close(&port->listen_sock);
1060 		free(port);
1061 		return -EINVAL;
1062 	}
1063 
1064 	rc = spdk_sock_group_add_sock(ttransport->listen_sock_group, port->listen_sock, nvmf_tcp_accept_cb,
1065 				      port);
1066 	if (rc < 0) {
1067 		SPDK_ERRLOG("Failed to add socket to the listen socket group\n");
1068 		spdk_sock_close(&port->listen_sock);
1069 		free(port);
1070 		return -errno;
1071 	}
1072 
1073 	port->transport = transport;
1074 
1075 	SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
1076 		       trid->traddr, trid->trsvcid);
1077 
1078 	TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
1079 	return 0;
1080 }
1081 
1082 static void
1083 nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
1084 		     const struct spdk_nvme_transport_id *trid)
1085 {
1086 	struct spdk_nvmf_tcp_transport *ttransport;
1087 	struct spdk_nvmf_tcp_port *port;
1088 
1089 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1090 
1091 	SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
1092 		      trid->traddr, trid->trsvcid);
1093 
1094 	port = nvmf_tcp_find_port(ttransport, trid);
1095 	if (port) {
1096 		spdk_sock_group_remove_sock(ttransport->listen_sock_group, port->listen_sock);
1097 		TAILQ_REMOVE(&ttransport->ports, port, link);
1098 		spdk_sock_close(&port->listen_sock);
1099 		free(port);
1100 	}
1101 }
1102 
1103 static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1104 		enum nvme_tcp_pdu_recv_state state);
1105 
1106 static void
1107 nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvme_tcp_qpair_state state)
1108 {
1109 	tqpair->state = state;
1110 	spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0,
1111 			  (uint64_t)tqpair->state);
1112 }
1113 
1114 static void
1115 nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
1116 {
1117 	SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
1118 
1119 	spdk_trace_record(TRACE_TCP_QP_DISCONNECT, tqpair->qpair.trace_id, 0, 0);
1120 
1121 	if (tqpair->state <= NVME_TCP_QPAIR_STATE_RUNNING) {
1122 		nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITING);
1123 		assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1124 		spdk_poller_unregister(&tqpair->timeout_poller);
1125 
1126 		/* This will end up calling nvmf_tcp_close_qpair */
1127 		spdk_nvmf_qpair_disconnect(&tqpair->qpair);
1128 	}
1129 }
1130 
1131 static void
1132 _mgmt_pdu_write_done(void *_tqpair, int err)
1133 {
1134 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
1135 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1136 
1137 	if (spdk_unlikely(err != 0)) {
1138 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1139 		return;
1140 	}
1141 
1142 	assert(pdu->cb_fn != NULL);
1143 	pdu->cb_fn(pdu->cb_arg);
1144 }
1145 
1146 static void
1147 _req_pdu_write_done(void *req, int err)
1148 {
1149 	struct spdk_nvmf_tcp_req *tcp_req = req;
1150 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1151 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1152 
1153 	assert(tcp_req->pdu_in_use);
1154 	tcp_req->pdu_in_use = false;
1155 
1156 	/* If the request is in a completed state, we're waiting for write completion to free it */
1157 	if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) {
1158 		nvmf_tcp_request_free(tcp_req);
1159 		return;
1160 	}
1161 
1162 	if (spdk_unlikely(err != 0)) {
1163 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1164 		return;
1165 	}
1166 
1167 	assert(pdu->cb_fn != NULL);
1168 	pdu->cb_fn(pdu->cb_arg);
1169 }
1170 
1171 static void
1172 _pdu_write_done(struct nvme_tcp_pdu *pdu, int err)
1173 {
1174 	pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err);
1175 }
1176 
1177 static void
1178 _tcp_write_pdu(struct nvme_tcp_pdu *pdu)
1179 {
1180 	int rc;
1181 	uint32_t mapped_length;
1182 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1183 
1184 	pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
1185 			       tqpair->host_hdgst_enable, tqpair->host_ddgst_enable, &mapped_length);
1186 	spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
1187 
1188 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
1189 	    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
1190 		/* Try to force the send immediately. */
1191 		rc = spdk_sock_flush(tqpair->sock);
1192 		if (rc > 0 && (uint32_t)rc == mapped_length) {
1193 			_pdu_write_done(pdu, 0);
1194 		} else {
1195 			SPDK_ERRLOG("Could not write %s to socket: rc=%d, errno=%d\n",
1196 				    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ?
1197 				    "IC_RESP" : "TERM_REQ", rc, errno);
1198 			_pdu_write_done(pdu, rc >= 0 ? -EAGAIN : -errno);
1199 		}
1200 	}
1201 }
1202 
1203 static void
1204 data_crc32_accel_done(void *cb_arg, int status)
1205 {
1206 	struct nvme_tcp_pdu *pdu = cb_arg;
1207 
1208 	if (spdk_unlikely(status)) {
1209 		SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
1210 		_pdu_write_done(pdu, status);
1211 		return;
1212 	}
1213 
1214 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
1215 	MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
1216 
1217 	_tcp_write_pdu(pdu);
1218 }
1219 
1220 static void
1221 pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
1222 {
1223 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1224 	int rc = 0;
1225 
1226 	/* Data Digest */
1227 	if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
1228 		/* Only support this limitated case for the first step */
1229 		if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
1230 				&& tqpair->group)) {
1231 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
1232 						       pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
1233 			if (spdk_likely(rc == 0)) {
1234 				return;
1235 			}
1236 		} else {
1237 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1238 		}
1239 		data_crc32_accel_done(pdu, rc);
1240 	} else {
1241 		_tcp_write_pdu(pdu);
1242 	}
1243 }
1244 
1245 static void
1246 nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1247 			 struct nvme_tcp_pdu *pdu,
1248 			 nvme_tcp_qpair_xfer_complete_cb cb_fn,
1249 			 void *cb_arg)
1250 {
1251 	int hlen;
1252 	uint32_t crc32c;
1253 
1254 	assert(tqpair->pdu_in_progress != pdu);
1255 
1256 	hlen = pdu->hdr.common.hlen;
1257 	pdu->cb_fn = cb_fn;
1258 	pdu->cb_arg = cb_arg;
1259 
1260 	pdu->iov[0].iov_base = &pdu->hdr.raw;
1261 	pdu->iov[0].iov_len = hlen;
1262 
1263 	/* Header Digest */
1264 	if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) {
1265 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1266 		MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
1267 	}
1268 
1269 	/* Data Digest */
1270 	pdu_data_crc32_compute(pdu);
1271 }
1272 
1273 static void
1274 nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1275 			      nvme_tcp_qpair_xfer_complete_cb cb_fn,
1276 			      void *cb_arg)
1277 {
1278 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1279 
1280 	pdu->sock_req.cb_fn = _mgmt_pdu_write_done;
1281 	pdu->sock_req.cb_arg = tqpair;
1282 
1283 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1284 }
1285 
1286 static void
1287 nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1288 			     struct spdk_nvmf_tcp_req *tcp_req,
1289 			     nvme_tcp_qpair_xfer_complete_cb cb_fn,
1290 			     void *cb_arg)
1291 {
1292 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1293 
1294 	pdu->sock_req.cb_fn = _req_pdu_write_done;
1295 	pdu->sock_req.cb_arg = tcp_req;
1296 
1297 	assert(!tcp_req->pdu_in_use);
1298 	tcp_req->pdu_in_use = true;
1299 
1300 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1301 }
1302 
1303 static int
1304 nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
1305 {
1306 	uint32_t i;
1307 	struct spdk_nvmf_transport_opts *opts;
1308 	uint32_t in_capsule_data_size;
1309 
1310 	opts = &tqpair->qpair.transport->opts;
1311 
1312 	in_capsule_data_size = opts->in_capsule_data_size;
1313 	if (opts->dif_insert_or_strip) {
1314 		in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
1315 	}
1316 
1317 	tqpair->resource_count = opts->max_queue_depth;
1318 
1319 	tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
1320 	if (!tqpair->reqs) {
1321 		SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
1322 		return -1;
1323 	}
1324 
1325 	if (in_capsule_data_size) {
1326 		tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
1327 					    NULL, SPDK_ENV_LCORE_ID_ANY,
1328 					    SPDK_MALLOC_DMA);
1329 		if (!tqpair->bufs) {
1330 			SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
1331 			return -1;
1332 		}
1333 	}
1334 	/* prepare memory space for receiving pdus and tcp_req */
1335 	/* Add additional 1 member, which will be used for mgmt_pdu owned by the tqpair */
1336 	tqpair->pdus = spdk_dma_zmalloc((2 * tqpair->resource_count + 1) * sizeof(*tqpair->pdus), 0x1000,
1337 					NULL);
1338 	if (!tqpair->pdus) {
1339 		SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
1340 		return -1;
1341 	}
1342 
1343 	for (i = 0; i < tqpair->resource_count; i++) {
1344 		struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
1345 
1346 		tcp_req->ttag = i + 1;
1347 		tcp_req->req.qpair = &tqpair->qpair;
1348 
1349 		tcp_req->pdu = &tqpair->pdus[i];
1350 		tcp_req->pdu->qpair = tqpair;
1351 
1352 		/* Set up memory to receive commands */
1353 		if (tqpair->bufs) {
1354 			tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
1355 		}
1356 
1357 		/* Set the cmdn and rsp */
1358 		tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
1359 		tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
1360 
1361 		tcp_req->req.stripped_data = NULL;
1362 
1363 		/* Initialize request state to FREE */
1364 		tcp_req->state = TCP_REQUEST_STATE_FREE;
1365 		TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
1366 		tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
1367 	}
1368 
1369 	for (; i < 2 * tqpair->resource_count; i++) {
1370 		struct nvme_tcp_pdu *pdu = &tqpair->pdus[i];
1371 
1372 		pdu->qpair = tqpair;
1373 		SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1374 	}
1375 
1376 	tqpair->mgmt_pdu = &tqpair->pdus[i];
1377 	tqpair->mgmt_pdu->qpair = tqpair;
1378 	tqpair->pdu_in_progress = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
1379 	SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
1380 	tqpair->tcp_pdu_working_count = 1;
1381 
1382 	tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
1383 				 SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1384 
1385 	return 0;
1386 }
1387 
1388 static int
1389 nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
1390 {
1391 	struct spdk_nvmf_tcp_qpair *tqpair;
1392 
1393 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1394 
1395 	SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
1396 
1397 	spdk_trace_record(TRACE_TCP_QP_CREATE, tqpair->qpair.trace_id, 0, 0);
1398 
1399 	/* Initialise request state queues of the qpair */
1400 	TAILQ_INIT(&tqpair->tcp_req_free_queue);
1401 	TAILQ_INIT(&tqpair->tcp_req_working_queue);
1402 	SLIST_INIT(&tqpair->tcp_pdu_free_queue);
1403 	tqpair->qpair.queue_depth = 0;
1404 
1405 	tqpair->host_hdgst_enable = true;
1406 	tqpair->host_ddgst_enable = true;
1407 
1408 	return 0;
1409 }
1410 
1411 static int
1412 nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
1413 {
1414 	char saddr[32], caddr[32];
1415 	uint16_t sport, cport;
1416 	char owner[256];
1417 	int rc;
1418 
1419 	rc = spdk_sock_getaddr(tqpair->sock, saddr, sizeof(saddr), &sport,
1420 			       caddr, sizeof(caddr), &cport);
1421 	if (rc != 0) {
1422 		SPDK_ERRLOG("spdk_sock_getaddr() failed\n");
1423 		return rc;
1424 	}
1425 	snprintf(owner, sizeof(owner), "%s:%d", caddr, cport);
1426 	tqpair->qpair.trace_id = spdk_trace_register_owner(OWNER_TYPE_NVMF_TCP, owner);
1427 	spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, tqpair->qpair.trace_id, 0, 0);
1428 
1429 	/* set low water mark */
1430 	rc = spdk_sock_set_recvlowat(tqpair->sock, 1);
1431 	if (rc != 0) {
1432 		SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
1433 		return rc;
1434 	}
1435 
1436 	return 0;
1437 }
1438 
1439 static void
1440 nvmf_tcp_handle_connect(struct spdk_nvmf_tcp_port *port, struct spdk_sock *sock)
1441 {
1442 	struct spdk_nvmf_tcp_qpair *tqpair;
1443 	int rc;
1444 
1445 	SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
1446 		      port->trid->traddr, port->trid->trsvcid);
1447 
1448 	tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
1449 	if (tqpair == NULL) {
1450 		SPDK_ERRLOG("Could not allocate new connection.\n");
1451 		spdk_sock_close(&sock);
1452 		return;
1453 	}
1454 
1455 	tqpair->sock = sock;
1456 	tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
1457 	tqpair->port = port;
1458 	tqpair->qpair.transport = port->transport;
1459 	tqpair->qpair.numa.id_valid = 1;
1460 	tqpair->qpair.numa.id = spdk_sock_get_numa_id(sock);
1461 
1462 	rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
1463 			       sizeof(tqpair->target_addr), &tqpair->target_port,
1464 			       tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
1465 			       &tqpair->initiator_port);
1466 	if (rc < 0) {
1467 		SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
1468 		nvmf_tcp_qpair_destroy(tqpair);
1469 		return;
1470 	}
1471 
1472 	spdk_nvmf_tgt_new_qpair(port->transport->tgt, &tqpair->qpair);
1473 }
1474 
1475 static uint32_t
1476 nvmf_tcp_port_accept(struct spdk_nvmf_tcp_port *port)
1477 {
1478 	struct spdk_sock *sock;
1479 	uint32_t count = 0;
1480 	int i;
1481 
1482 	for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
1483 		sock = spdk_sock_accept(port->listen_sock);
1484 		if (sock == NULL) {
1485 			break;
1486 		}
1487 		count++;
1488 		nvmf_tcp_handle_connect(port, sock);
1489 	}
1490 
1491 	return count;
1492 }
1493 
1494 static int
1495 nvmf_tcp_accept(void *ctx)
1496 {
1497 	struct spdk_nvmf_transport *transport = ctx;
1498 	struct spdk_nvmf_tcp_transport *ttransport;
1499 	int count;
1500 
1501 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1502 
1503 	count = spdk_sock_group_poll(ttransport->listen_sock_group);
1504 	if (count < 0) {
1505 		SPDK_ERRLOG("Fail in TCP listen socket group poll\n");
1506 	}
1507 
1508 	return count != 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1509 }
1510 
1511 static void
1512 nvmf_tcp_accept_cb(void *ctx, struct spdk_sock_group *group, struct spdk_sock *sock)
1513 {
1514 	struct spdk_nvmf_tcp_port *port = ctx;
1515 
1516 	nvmf_tcp_port_accept(port);
1517 }
1518 
1519 static void
1520 nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
1521 		  struct spdk_nvme_transport_id *trid,
1522 		  struct spdk_nvmf_discovery_log_page_entry *entry)
1523 {
1524 	struct spdk_nvmf_tcp_port *port;
1525 	struct spdk_nvmf_tcp_transport *ttransport;
1526 
1527 	entry->trtype = SPDK_NVMF_TRTYPE_TCP;
1528 	entry->adrfam = trid->adrfam;
1529 
1530 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
1531 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
1532 
1533 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1534 	port = nvmf_tcp_find_port(ttransport, trid);
1535 
1536 	assert(port != NULL);
1537 
1538 	if (strcmp(spdk_sock_get_impl_name(port->listen_sock), "ssl") == 0) {
1539 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_REQUIRED;
1540 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_TLS_1_3;
1541 	} else {
1542 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
1543 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
1544 	}
1545 }
1546 
1547 static struct spdk_nvmf_tcp_control_msg_list *
1548 nvmf_tcp_control_msg_list_create(uint16_t num_messages)
1549 {
1550 	struct spdk_nvmf_tcp_control_msg_list *list;
1551 	struct spdk_nvmf_tcp_control_msg *msg;
1552 	uint16_t i;
1553 
1554 	list = calloc(1, sizeof(*list));
1555 	if (!list) {
1556 		SPDK_ERRLOG("Failed to allocate memory for list structure\n");
1557 		return NULL;
1558 	}
1559 
1560 	list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
1561 				     NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
1562 	if (!list->msg_buf) {
1563 		SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
1564 		free(list);
1565 		return NULL;
1566 	}
1567 
1568 	STAILQ_INIT(&list->free_msgs);
1569 	STAILQ_INIT(&list->waiting_for_msg_reqs);
1570 
1571 	for (i = 0; i < num_messages; i++) {
1572 		msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
1573 				SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1574 		STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
1575 	}
1576 
1577 	return list;
1578 }
1579 
1580 static void
1581 nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
1582 {
1583 	if (!list) {
1584 		return;
1585 	}
1586 
1587 	spdk_free(list->msg_buf);
1588 	free(list);
1589 }
1590 
1591 static int nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group);
1592 
1593 static int
1594 nvmf_tcp_poll_group_intr(void *ctx)
1595 {
1596 	struct spdk_nvmf_transport_poll_group *group = ctx;
1597 	int ret = 0;
1598 
1599 	ret = nvmf_tcp_poll_group_poll(group);
1600 
1601 	return ret != 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1602 }
1603 
1604 static struct spdk_nvmf_transport_poll_group *
1605 nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport,
1606 			   struct spdk_nvmf_poll_group *group)
1607 {
1608 	struct spdk_nvmf_tcp_transport	*ttransport;
1609 	struct spdk_nvmf_tcp_poll_group *tgroup;
1610 	int rc;
1611 
1612 	tgroup = calloc(1, sizeof(*tgroup));
1613 	if (!tgroup) {
1614 		return NULL;
1615 	}
1616 
1617 	tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
1618 	if (!tgroup->sock_group) {
1619 		goto cleanup;
1620 	}
1621 
1622 	TAILQ_INIT(&tgroup->qpairs);
1623 	TAILQ_INIT(&tgroup->await_req);
1624 
1625 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1626 
1627 	if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
1628 		SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
1629 			      "Creating control messages list\n", transport->opts.in_capsule_data_size,
1630 			      SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1631 		tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
1632 		if (!tgroup->control_msg_list) {
1633 			goto cleanup;
1634 		}
1635 	}
1636 
1637 	tgroup->accel_channel = spdk_accel_get_io_channel();
1638 	if (spdk_unlikely(!tgroup->accel_channel)) {
1639 		SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
1640 		goto cleanup;
1641 	}
1642 
1643 	TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link);
1644 	if (ttransport->next_pg == NULL) {
1645 		ttransport->next_pg = tgroup;
1646 	}
1647 
1648 	if (spdk_interrupt_mode_is_enabled()) {
1649 		rc = SPDK_SOCK_GROUP_REGISTER_INTERRUPT(tgroup->sock_group,
1650 							SPDK_INTERRUPT_EVENT_IN | SPDK_INTERRUPT_EVENT_OUT, nvmf_tcp_poll_group_intr, &tgroup->group);
1651 		if (rc != 0) {
1652 			SPDK_ERRLOG("Failed to register interrupt for sock group\n");
1653 			goto cleanup;
1654 		}
1655 	}
1656 
1657 	return &tgroup->group;
1658 
1659 cleanup:
1660 	nvmf_tcp_poll_group_destroy(&tgroup->group);
1661 	return NULL;
1662 }
1663 
1664 static struct spdk_nvmf_transport_poll_group *
1665 nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
1666 {
1667 	struct spdk_nvmf_tcp_transport *ttransport;
1668 	struct spdk_nvmf_tcp_poll_group **pg;
1669 	struct spdk_nvmf_tcp_qpair *tqpair;
1670 	struct spdk_sock_group *group = NULL, *hint = NULL;
1671 	int rc;
1672 
1673 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
1674 
1675 	if (TAILQ_EMPTY(&ttransport->poll_groups)) {
1676 		return NULL;
1677 	}
1678 
1679 	pg = &ttransport->next_pg;
1680 	assert(*pg != NULL);
1681 	hint = (*pg)->sock_group;
1682 
1683 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1684 	rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint);
1685 	if (rc != 0) {
1686 		return NULL;
1687 	} else if (group != NULL) {
1688 		/* Optimal poll group was found */
1689 		return spdk_sock_group_get_ctx(group);
1690 	}
1691 
1692 	/* The hint was used for optimal poll group, advance next_pg. */
1693 	*pg = TAILQ_NEXT(*pg, link);
1694 	if (*pg == NULL) {
1695 		*pg = TAILQ_FIRST(&ttransport->poll_groups);
1696 	}
1697 
1698 	return spdk_sock_group_get_ctx(hint);
1699 }
1700 
1701 static void
1702 nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
1703 {
1704 	struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup;
1705 	struct spdk_nvmf_tcp_transport *ttransport;
1706 
1707 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
1708 	spdk_sock_group_unregister_interrupt(tgroup->sock_group);
1709 	spdk_sock_group_close(&tgroup->sock_group);
1710 	if (tgroup->control_msg_list) {
1711 		nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
1712 	}
1713 
1714 	if (tgroup->accel_channel) {
1715 		spdk_put_io_channel(tgroup->accel_channel);
1716 	}
1717 
1718 	if (tgroup->group.transport == NULL) {
1719 		/* Transport can be NULL when nvmf_tcp_poll_group_create()
1720 		 * calls this function directly in a failure path. */
1721 		free(tgroup);
1722 		return;
1723 	}
1724 
1725 	ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport);
1726 
1727 	next_tgroup = TAILQ_NEXT(tgroup, link);
1728 	TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link);
1729 	if (next_tgroup == NULL) {
1730 		next_tgroup = TAILQ_FIRST(&ttransport->poll_groups);
1731 	}
1732 	if (ttransport->next_pg == tgroup) {
1733 		ttransport->next_pg = next_tgroup;
1734 	}
1735 
1736 	free(tgroup);
1737 }
1738 
1739 static void
1740 nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1741 			      enum nvme_tcp_pdu_recv_state state)
1742 {
1743 	if (tqpair->recv_state == state) {
1744 		SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
1745 			    tqpair, state);
1746 		return;
1747 	}
1748 
1749 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_QUIESCING)) {
1750 		if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH && tqpair->pdu_in_progress) {
1751 			SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, tqpair->pdu_in_progress, slist);
1752 			tqpair->tcp_pdu_working_count--;
1753 		}
1754 	}
1755 
1756 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_ERROR)) {
1757 		assert(tqpair->tcp_pdu_working_count == 0);
1758 	}
1759 
1760 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1761 		/* When leaving the await req state, move the qpair to the main list */
1762 		TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link);
1763 		TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link);
1764 	} else if (state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1765 		TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link);
1766 		TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link);
1767 	}
1768 
1769 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
1770 	tqpair->recv_state = state;
1771 
1772 	spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0,
1773 			  (uint64_t)tqpair->recv_state);
1774 }
1775 
1776 static int
1777 nvmf_tcp_qpair_handle_timeout(void *ctx)
1778 {
1779 	struct spdk_nvmf_tcp_qpair *tqpair = ctx;
1780 
1781 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1782 
1783 	SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
1784 		    SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
1785 
1786 	nvmf_tcp_qpair_disconnect(tqpair);
1787 	return SPDK_POLLER_BUSY;
1788 }
1789 
1790 static void
1791 nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
1792 {
1793 	struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
1794 
1795 	if (!tqpair->timeout_poller) {
1796 		tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
1797 					 SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
1798 	}
1799 }
1800 
1801 static void
1802 nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
1803 			   enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
1804 {
1805 	struct nvme_tcp_pdu *rsp_pdu;
1806 	struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
1807 	uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
1808 	uint32_t copy_len;
1809 
1810 	rsp_pdu = tqpair->mgmt_pdu;
1811 
1812 	c2h_term_req = &rsp_pdu->hdr.term_req;
1813 	c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
1814 	c2h_term_req->common.hlen = c2h_term_req_hdr_len;
1815 	c2h_term_req->fes = fes;
1816 
1817 	if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1818 	    (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1819 		DSET32(&c2h_term_req->fei, error_offset);
1820 	}
1821 
1822 	copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
1823 
1824 	/* Copy the error info into the buffer */
1825 	memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
1826 	nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
1827 
1828 	/* Contain the header of the wrong received pdu */
1829 	c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
1830 	tqpair->wait_terminate = true;
1831 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1832 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair);
1833 }
1834 
1835 static void
1836 nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1837 				struct spdk_nvmf_tcp_qpair *tqpair,
1838 				struct nvme_tcp_pdu *pdu)
1839 {
1840 	struct spdk_nvmf_tcp_req *tcp_req;
1841 
1842 	assert(pdu->psh_valid_bytes == pdu->psh_len);
1843 	assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
1844 
1845 	tcp_req = nvmf_tcp_req_get(tqpair);
1846 	if (!tcp_req) {
1847 		/* Directly return and make the allocation retry again.  This can happen if we're
1848 		 * using asynchronous writes to send the response to the host or when releasing
1849 		 * zero-copy buffers after a response has been sent.  In both cases, the host might
1850 		 * receive the response before we've finished processing the request and is free to
1851 		 * send another one.
1852 		 */
1853 		if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 ||
1854 		    tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) {
1855 			return;
1856 		}
1857 
1858 		/* The host sent more commands than the maximum queue depth. */
1859 		SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
1860 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1861 		return;
1862 	}
1863 
1864 	pdu->req = tcp_req;
1865 	assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
1866 	nvmf_tcp_req_process(ttransport, tcp_req);
1867 }
1868 
1869 static void
1870 nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1871 				    struct spdk_nvmf_tcp_qpair *tqpair,
1872 				    struct nvme_tcp_pdu *pdu)
1873 {
1874 	struct spdk_nvmf_tcp_req *tcp_req;
1875 	struct spdk_nvme_tcp_cmd *capsule_cmd;
1876 	uint32_t error_offset = 0;
1877 	enum spdk_nvme_tcp_term_req_fes fes;
1878 	struct spdk_nvme_cpl *rsp;
1879 
1880 	capsule_cmd = &pdu->hdr.capsule_cmd;
1881 	tcp_req = pdu->req;
1882 	assert(tcp_req != NULL);
1883 
1884 	/* Zero-copy requests don't support ICD */
1885 	assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req));
1886 
1887 	if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
1888 		SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
1889 			    SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
1890 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1891 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
1892 		goto err;
1893 	}
1894 
1895 	rsp = &tcp_req->req.rsp->nvme_cpl;
1896 	if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1897 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1898 	} else {
1899 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1900 	}
1901 
1902 	nvmf_tcp_req_process(ttransport, tcp_req);
1903 
1904 	return;
1905 err:
1906 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1907 }
1908 
1909 static void
1910 nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1911 			     struct spdk_nvmf_tcp_qpair *tqpair,
1912 			     struct nvme_tcp_pdu *pdu)
1913 {
1914 	struct spdk_nvmf_tcp_req *tcp_req;
1915 	uint32_t error_offset = 0;
1916 	enum spdk_nvme_tcp_term_req_fes fes = 0;
1917 	struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
1918 
1919 	h2c_data = &pdu->hdr.h2c_data;
1920 
1921 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
1922 		      tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
1923 
1924 	if (h2c_data->ttag > tqpair->resource_count) {
1925 		SPDK_DEBUGLOG(nvmf_tcp, "ttag %u is larger than allowed %u.\n", h2c_data->ttag,
1926 			      tqpair->resource_count);
1927 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1928 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1929 		goto err;
1930 	}
1931 
1932 	tcp_req = &tqpair->reqs[h2c_data->ttag - 1];
1933 
1934 	if (spdk_unlikely(tcp_req->state != TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER &&
1935 			  tcp_req->state != TCP_REQUEST_STATE_AWAITING_R2T_ACK)) {
1936 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, has error state in %d\n", tcp_req, tqpair,
1937 			      tcp_req->state);
1938 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1939 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1940 		goto err;
1941 	}
1942 
1943 	if (spdk_unlikely(tcp_req->req.cmd->nvme_cmd.cid != h2c_data->cccid)) {
1944 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, expected %u but %u for cccid.\n", tcp_req, tqpair,
1945 			      tcp_req->req.cmd->nvme_cmd.cid, h2c_data->cccid);
1946 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1947 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
1948 		goto err;
1949 	}
1950 
1951 	if (tcp_req->h2c_offset != h2c_data->datao) {
1952 		SPDK_DEBUGLOG(nvmf_tcp,
1953 			      "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
1954 			      tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
1955 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1956 		goto err;
1957 	}
1958 
1959 	if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
1960 		SPDK_DEBUGLOG(nvmf_tcp,
1961 			      "tcp_req(%p), tqpair=%p,  (datao=%u + datal=%u) exceeds requested length=%u\n",
1962 			      tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
1963 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1964 		goto err;
1965 	}
1966 
1967 	pdu->req = tcp_req;
1968 
1969 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
1970 		pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
1971 	}
1972 
1973 	nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
1974 				  h2c_data->datao, h2c_data->datal);
1975 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1976 	return;
1977 
1978 err:
1979 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1980 }
1981 
1982 static void
1983 nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
1984 			       struct spdk_nvmf_tcp_qpair *tqpair)
1985 {
1986 	struct nvme_tcp_pdu *rsp_pdu;
1987 	struct spdk_nvme_tcp_rsp *capsule_resp;
1988 
1989 	SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
1990 
1991 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1992 	assert(rsp_pdu != NULL);
1993 
1994 	capsule_resp = &rsp_pdu->hdr.capsule_resp;
1995 	capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
1996 	capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
1997 	capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
1998 	if (tqpair->host_hdgst_enable) {
1999 		capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2000 		capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
2001 	}
2002 
2003 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req);
2004 }
2005 
2006 static void
2007 nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
2008 {
2009 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
2010 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
2011 					     struct spdk_nvmf_tcp_qpair, qpair);
2012 
2013 	assert(tqpair != NULL);
2014 
2015 	if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
2016 		SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
2017 			      tcp_req->req.length);
2018 		_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2019 		return;
2020 	}
2021 
2022 	if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
2023 		nvmf_tcp_request_free(tcp_req);
2024 	} else {
2025 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2026 	}
2027 }
2028 
2029 static void
2030 nvmf_tcp_r2t_complete(void *cb_arg)
2031 {
2032 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
2033 	struct spdk_nvmf_tcp_transport *ttransport;
2034 
2035 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
2036 				      struct spdk_nvmf_tcp_transport, transport);
2037 
2038 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
2039 
2040 	if (tcp_req->h2c_offset == tcp_req->req.length) {
2041 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2042 		nvmf_tcp_req_process(ttransport, tcp_req);
2043 	}
2044 }
2045 
2046 static void
2047 nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
2048 		      struct spdk_nvmf_tcp_req *tcp_req)
2049 {
2050 	struct nvme_tcp_pdu *rsp_pdu;
2051 	struct spdk_nvme_tcp_r2t_hdr *r2t;
2052 
2053 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
2054 	assert(rsp_pdu != NULL);
2055 
2056 	r2t = &rsp_pdu->hdr.r2t;
2057 	r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
2058 	r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
2059 
2060 	if (tqpair->host_hdgst_enable) {
2061 		r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2062 		r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
2063 	}
2064 
2065 	r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2066 	r2t->ttag = tcp_req->ttag;
2067 	r2t->r2to = tcp_req->h2c_offset;
2068 	r2t->r2tl = tcp_req->req.length;
2069 
2070 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
2071 
2072 	SPDK_DEBUGLOG(nvmf_tcp,
2073 		      "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
2074 		      tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
2075 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req);
2076 }
2077 
2078 static void
2079 nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
2080 				 struct spdk_nvmf_tcp_qpair *tqpair,
2081 				 struct nvme_tcp_pdu *pdu)
2082 {
2083 	struct spdk_nvmf_tcp_req *tcp_req;
2084 	struct spdk_nvme_cpl *rsp;
2085 
2086 	tcp_req = pdu->req;
2087 	assert(tcp_req != NULL);
2088 
2089 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2090 
2091 	tcp_req->h2c_offset += pdu->data_len;
2092 
2093 	/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
2094 	 * acknowledged before moving on. */
2095 	if (tcp_req->h2c_offset == tcp_req->req.length &&
2096 	    tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
2097 		/* After receiving all the h2c data, we need to check whether there is
2098 		 * transient transport error */
2099 		rsp = &tcp_req->req.rsp->nvme_cpl;
2100 		if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
2101 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2102 		} else {
2103 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2104 		}
2105 		nvmf_tcp_req_process(ttransport, tcp_req);
2106 	}
2107 }
2108 
2109 static void
2110 nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
2111 {
2112 	SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
2113 		    spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
2114 	if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
2115 	    (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
2116 		SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
2117 			      DGET32(h2c_term_req->fei));
2118 	}
2119 }
2120 
2121 static void
2122 nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2123 				 struct nvme_tcp_pdu *pdu)
2124 {
2125 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
2126 	uint32_t error_offset = 0;
2127 	enum spdk_nvme_tcp_term_req_fes fes;
2128 
2129 	if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
2130 		SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
2131 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2132 		error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
2133 		goto end;
2134 	}
2135 
2136 	/* set the data buffer */
2137 	nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
2138 			      h2c_term_req->common.plen - h2c_term_req->common.hlen);
2139 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2140 	return;
2141 end:
2142 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2143 }
2144 
2145 static void
2146 nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2147 				     struct nvme_tcp_pdu *pdu)
2148 {
2149 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
2150 
2151 	nvmf_tcp_h2c_term_req_dump(h2c_term_req);
2152 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2153 }
2154 
2155 static void
2156 _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2157 {
2158 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2159 			struct spdk_nvmf_tcp_transport, transport);
2160 
2161 	switch (pdu->hdr.common.pdu_type) {
2162 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2163 		nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
2164 		break;
2165 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2166 		nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
2167 		break;
2168 
2169 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2170 		nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
2171 		break;
2172 
2173 	default:
2174 		/* The code should not go to here */
2175 		SPDK_ERRLOG("ERROR pdu type %d\n", pdu->hdr.common.pdu_type);
2176 		break;
2177 	}
2178 	SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
2179 	tqpair->tcp_pdu_working_count--;
2180 }
2181 
2182 static inline void
2183 nvmf_tcp_req_set_cpl(struct spdk_nvmf_tcp_req *treq, int sct, int sc)
2184 {
2185 	treq->req.rsp->nvme_cpl.status.sct = sct;
2186 	treq->req.rsp->nvme_cpl.status.sc = sc;
2187 	treq->req.rsp->nvme_cpl.cid = treq->req.cmd->nvme_cmd.cid;
2188 }
2189 
2190 static void
2191 data_crc32_calc_done(void *cb_arg, int status)
2192 {
2193 	struct nvme_tcp_pdu *pdu = cb_arg;
2194 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
2195 
2196 	/* async crc32 calculation is failed and use direct calculation to check */
2197 	if (spdk_unlikely(status)) {
2198 		SPDK_ERRLOG("Data digest on tqpair=(%p) with pdu=%p failed to be calculated asynchronously\n",
2199 			    tqpair, pdu);
2200 		pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2201 	}
2202 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
2203 	if (!MATCH_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32)) {
2204 		SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2205 		assert(pdu->req != NULL);
2206 		nvmf_tcp_req_set_cpl(pdu->req, SPDK_NVME_SCT_GENERIC,
2207 				     SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR);
2208 	}
2209 	_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2210 }
2211 
2212 static void
2213 nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2214 {
2215 	int rc = 0;
2216 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2217 	tqpair->pdu_in_progress = NULL;
2218 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2219 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2220 	/* check data digest if need */
2221 	if (pdu->ddgst_enable) {
2222 		if (tqpair->qpair.qid != 0 && !pdu->dif_ctx && tqpair->group &&
2223 		    (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)) {
2224 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
2225 						       pdu->data_iovcnt, 0, data_crc32_calc_done, pdu);
2226 			if (spdk_likely(rc == 0)) {
2227 				return;
2228 			}
2229 		} else {
2230 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2231 		}
2232 		data_crc32_calc_done(pdu, rc);
2233 	} else {
2234 		_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2235 	}
2236 }
2237 
2238 static void
2239 nvmf_tcp_send_icresp_complete(void *cb_arg)
2240 {
2241 	struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
2242 
2243 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_RUNNING);
2244 }
2245 
2246 static void
2247 nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
2248 		      struct spdk_nvmf_tcp_qpair *tqpair,
2249 		      struct nvme_tcp_pdu *pdu)
2250 {
2251 	struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
2252 	struct nvme_tcp_pdu *rsp_pdu;
2253 	struct spdk_nvme_tcp_ic_resp *ic_resp;
2254 	uint32_t error_offset = 0;
2255 	enum spdk_nvme_tcp_term_req_fes fes;
2256 
2257 	/* Only PFV 0 is defined currently */
2258 	if (ic_req->pfv != 0) {
2259 		SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
2260 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2261 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
2262 		goto end;
2263 	}
2264 
2265 	/* This value is 0’s based value in units of dwords should not be larger than SPDK_NVME_TCP_HPDA_MAX */
2266 	if (ic_req->hpda > SPDK_NVME_TCP_HPDA_MAX) {
2267 		SPDK_ERRLOG("ICReq HPDA out of range 0 to 31, got %u\n", ic_req->hpda);
2268 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2269 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, hpda);
2270 		goto end;
2271 	}
2272 
2273 	/* MAXR2T is 0's based */
2274 	SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
2275 
2276 	tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
2277 	if (!tqpair->host_hdgst_enable) {
2278 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2279 	}
2280 
2281 	tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
2282 	if (!tqpair->host_ddgst_enable) {
2283 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2284 	}
2285 
2286 	tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
2287 	/* Now that we know whether digests are enabled, properly size the receive buffer */
2288 	if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
2289 		SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
2290 			     tqpair,
2291 			     tqpair->recv_buf_size);
2292 		/* Not fatal. */
2293 	}
2294 
2295 	tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
2296 	SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
2297 
2298 	rsp_pdu = tqpair->mgmt_pdu;
2299 
2300 	ic_resp = &rsp_pdu->hdr.ic_resp;
2301 	ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
2302 	ic_resp->common.hlen = ic_resp->common.plen =  sizeof(*ic_resp);
2303 	ic_resp->pfv = 0;
2304 	ic_resp->cpda = tqpair->cpda;
2305 	ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
2306 	ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
2307 	ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
2308 
2309 	SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
2310 	SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
2311 
2312 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INITIALIZING);
2313 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair);
2314 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2315 	return;
2316 end:
2317 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2318 }
2319 
2320 static void
2321 nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2322 			struct spdk_nvmf_tcp_transport *ttransport)
2323 {
2324 	struct nvme_tcp_pdu *pdu;
2325 	int rc;
2326 	uint32_t crc32c, error_offset = 0;
2327 	enum spdk_nvme_tcp_term_req_fes fes;
2328 
2329 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2330 	pdu = tqpair->pdu_in_progress;
2331 
2332 	SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
2333 		      pdu->hdr.common.pdu_type);
2334 	/* check header digest if needed */
2335 	if (pdu->has_hdgst) {
2336 		SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
2337 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
2338 		rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
2339 		if (rc == 0) {
2340 			SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2341 			fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
2342 			nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2343 			return;
2344 
2345 		}
2346 	}
2347 
2348 	switch (pdu->hdr.common.pdu_type) {
2349 	case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
2350 		nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
2351 		break;
2352 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2353 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
2354 		break;
2355 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2356 		nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
2357 		break;
2358 
2359 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2360 		nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
2361 		break;
2362 
2363 	default:
2364 		SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
2365 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2366 		error_offset = 1;
2367 		nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2368 		break;
2369 	}
2370 }
2371 
2372 static void
2373 nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
2374 {
2375 	struct nvme_tcp_pdu *pdu;
2376 	uint32_t error_offset = 0;
2377 	enum spdk_nvme_tcp_term_req_fes fes;
2378 	uint8_t expected_hlen, pdo;
2379 	bool plen_error = false, pdo_error = false;
2380 
2381 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2382 	pdu = tqpair->pdu_in_progress;
2383 	assert(pdu);
2384 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
2385 		if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) {
2386 			SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
2387 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2388 			goto err;
2389 		}
2390 		expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
2391 		if (pdu->hdr.common.plen != expected_hlen) {
2392 			plen_error = true;
2393 		}
2394 	} else {
2395 		if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) {
2396 			SPDK_ERRLOG("The TCP/IP connection is not negotiated\n");
2397 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2398 			goto err;
2399 		}
2400 
2401 		switch (pdu->hdr.common.pdu_type) {
2402 		case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2403 			expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
2404 			pdo = pdu->hdr.common.pdo;
2405 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2406 				pdo_error = true;
2407 				break;
2408 			}
2409 
2410 			if (pdu->hdr.common.plen < expected_hlen) {
2411 				plen_error = true;
2412 			}
2413 			break;
2414 		case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2415 			expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
2416 			pdo = pdu->hdr.common.pdo;
2417 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2418 				pdo_error = true;
2419 				break;
2420 			}
2421 			if (pdu->hdr.common.plen < expected_hlen) {
2422 				plen_error = true;
2423 			}
2424 			break;
2425 
2426 		case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2427 			expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
2428 			if ((pdu->hdr.common.plen <= expected_hlen) ||
2429 			    (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
2430 				plen_error = true;
2431 			}
2432 			break;
2433 
2434 		default:
2435 			SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
2436 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2437 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
2438 			goto err;
2439 		}
2440 	}
2441 
2442 	if (pdu->hdr.common.hlen != expected_hlen) {
2443 		SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
2444 			    pdu->hdr.common.pdu_type,
2445 			    expected_hlen, pdu->hdr.common.hlen, tqpair);
2446 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2447 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
2448 		goto err;
2449 	} else if (pdo_error) {
2450 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2451 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
2452 	} else if (plen_error) {
2453 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2454 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2455 		goto err;
2456 	} else {
2457 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2458 		nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
2459 		return;
2460 	}
2461 err:
2462 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2463 }
2464 
2465 static int
2466 nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
2467 {
2468 	int rc = 0;
2469 	struct nvme_tcp_pdu *pdu;
2470 	enum nvme_tcp_pdu_recv_state prev_state;
2471 	uint32_t data_len;
2472 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2473 			struct spdk_nvmf_tcp_transport, transport);
2474 
2475 	/* The loop here is to allow for several back-to-back state changes. */
2476 	do {
2477 		prev_state = tqpair->recv_state;
2478 		SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
2479 
2480 		pdu = tqpair->pdu_in_progress;
2481 		assert(pdu != NULL ||
2482 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY ||
2483 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_QUIESCING ||
2484 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
2485 
2486 		switch (tqpair->recv_state) {
2487 		/* Wait for the common header  */
2488 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
2489 			if (!pdu) {
2490 				pdu = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
2491 				if (spdk_unlikely(!pdu)) {
2492 					return NVME_TCP_PDU_IN_PROGRESS;
2493 				}
2494 				SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
2495 				tqpair->pdu_in_progress = pdu;
2496 				tqpair->tcp_pdu_working_count++;
2497 			}
2498 			memset(pdu, 0, offsetof(struct nvme_tcp_pdu, qpair));
2499 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2500 		/* FALLTHROUGH */
2501 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
2502 			if (spdk_unlikely(tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING)) {
2503 				return rc;
2504 			}
2505 
2506 			rc = nvme_tcp_read_data(tqpair->sock,
2507 						sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
2508 						(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
2509 			if (rc < 0) {
2510 				SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
2511 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2512 				break;
2513 			} else if (rc > 0) {
2514 				pdu->ch_valid_bytes += rc;
2515 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0);
2516 			}
2517 
2518 			if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
2519 				return NVME_TCP_PDU_IN_PROGRESS;
2520 			}
2521 
2522 			/* The command header of this PDU has now been read from the socket. */
2523 			nvmf_tcp_pdu_ch_handle(tqpair);
2524 			break;
2525 		/* Wait for the pdu specific header  */
2526 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
2527 			rc = nvme_tcp_read_data(tqpair->sock,
2528 						pdu->psh_len - pdu->psh_valid_bytes,
2529 						(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
2530 			if (rc < 0) {
2531 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2532 				break;
2533 			} else if (rc > 0) {
2534 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0);
2535 				pdu->psh_valid_bytes += rc;
2536 			}
2537 
2538 			if (pdu->psh_valid_bytes < pdu->psh_len) {
2539 				return NVME_TCP_PDU_IN_PROGRESS;
2540 			}
2541 
2542 			/* All header(ch, psh, head digits) of this PDU has now been read from the socket. */
2543 			nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
2544 			break;
2545 		/* Wait for the req slot */
2546 		case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
2547 			nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
2548 			break;
2549 		/* Wait for the request processing loop to acquire a buffer for the PDU */
2550 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_BUF:
2551 			break;
2552 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
2553 			/* check whether the data is valid, if not we just return */
2554 			if (!pdu->data_len) {
2555 				return NVME_TCP_PDU_IN_PROGRESS;
2556 			}
2557 
2558 			data_len = pdu->data_len;
2559 			/* data digest */
2560 			if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
2561 					  tqpair->host_ddgst_enable)) {
2562 				data_len += SPDK_NVME_TCP_DIGEST_LEN;
2563 				pdu->ddgst_enable = true;
2564 			}
2565 
2566 			rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
2567 			if (rc < 0) {
2568 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2569 				break;
2570 			}
2571 			pdu->rw_offset += rc;
2572 
2573 			if (pdu->rw_offset < data_len) {
2574 				return NVME_TCP_PDU_IN_PROGRESS;
2575 			}
2576 
2577 			/* Generate and insert DIF to whole data block received if DIF is enabled */
2578 			if (spdk_unlikely(pdu->dif_ctx != NULL) &&
2579 			    spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt, 0, data_len,
2580 						     pdu->dif_ctx) != 0) {
2581 				SPDK_ERRLOG("DIF generate failed\n");
2582 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2583 				break;
2584 			}
2585 
2586 			/* All of this PDU has now been read from the socket. */
2587 			nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2588 			break;
2589 		case NVME_TCP_PDU_RECV_STATE_QUIESCING:
2590 			if (tqpair->tcp_pdu_working_count != 0) {
2591 				return NVME_TCP_PDU_IN_PROGRESS;
2592 			}
2593 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
2594 			break;
2595 		case NVME_TCP_PDU_RECV_STATE_ERROR:
2596 			if (spdk_sock_is_connected(tqpair->sock) && tqpair->wait_terminate) {
2597 				return NVME_TCP_PDU_IN_PROGRESS;
2598 			}
2599 			return NVME_TCP_PDU_FATAL;
2600 		default:
2601 			SPDK_ERRLOG("The state(%d) is invalid\n", tqpair->recv_state);
2602 			abort();
2603 			break;
2604 		}
2605 	} while (tqpair->recv_state != prev_state);
2606 
2607 	return rc;
2608 }
2609 
2610 static inline void *
2611 nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list,
2612 			 struct spdk_nvmf_tcp_req *tcp_req)
2613 {
2614 	struct spdk_nvmf_tcp_control_msg *msg;
2615 
2616 	assert(list);
2617 
2618 	msg = STAILQ_FIRST(&list->free_msgs);
2619 	if (!msg) {
2620 		SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
2621 		STAILQ_INSERT_TAIL(&list->waiting_for_msg_reqs, tcp_req, control_msg_link);
2622 		return NULL;
2623 	}
2624 	STAILQ_REMOVE_HEAD(&list->free_msgs, link);
2625 	return msg;
2626 }
2627 
2628 static inline void
2629 nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
2630 {
2631 	struct spdk_nvmf_tcp_control_msg *msg = _msg;
2632 	struct spdk_nvmf_tcp_req *tcp_req;
2633 	struct spdk_nvmf_tcp_transport *ttransport;
2634 
2635 	assert(list);
2636 	STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
2637 	if (!STAILQ_EMPTY(&list->waiting_for_msg_reqs)) {
2638 		tcp_req = STAILQ_FIRST(&list->waiting_for_msg_reqs);
2639 		STAILQ_REMOVE_HEAD(&list->waiting_for_msg_reqs, control_msg_link);
2640 		ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
2641 					      struct spdk_nvmf_tcp_transport, transport);
2642 		nvmf_tcp_req_process(ttransport, tcp_req);
2643 	}
2644 }
2645 
2646 static void
2647 nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
2648 		       struct spdk_nvmf_transport *transport,
2649 		       struct spdk_nvmf_transport_poll_group *group)
2650 {
2651 	struct spdk_nvmf_request		*req = &tcp_req->req;
2652 	struct spdk_nvme_cmd			*cmd;
2653 	struct spdk_nvme_sgl_descriptor		*sgl;
2654 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2655 	enum spdk_nvme_tcp_term_req_fes		fes;
2656 	struct nvme_tcp_pdu			*pdu;
2657 	struct spdk_nvmf_tcp_qpair		*tqpair;
2658 	uint32_t				length, error_offset = 0;
2659 
2660 	cmd = &req->cmd->nvme_cmd;
2661 	sgl = &cmd->dptr.sgl1;
2662 
2663 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
2664 	    sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
2665 		/* get request length from sgl */
2666 		length = sgl->unkeyed.length;
2667 		if (spdk_unlikely(length > transport->opts.max_io_size)) {
2668 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
2669 				    length, transport->opts.max_io_size);
2670 			fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2671 			goto fatal_err;
2672 		}
2673 
2674 		/* fill request length and populate iovs */
2675 		req->length = length;
2676 
2677 		SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
2678 
2679 		if (spdk_unlikely(req->dif_enabled)) {
2680 			req->dif.orig_length = length;
2681 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2682 			req->dif.elba_length = length;
2683 		}
2684 
2685 		if (nvmf_ctrlr_use_zcopy(req)) {
2686 			SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req);
2687 			req->data_from_pool = false;
2688 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
2689 			return;
2690 		}
2691 
2692 		if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
2693 			/* No available buffers. Queue this request up. */
2694 			SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
2695 				      tcp_req);
2696 			return;
2697 		}
2698 
2699 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
2700 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
2701 			      tcp_req, req->iovcnt, req->iov[0].iov_base);
2702 
2703 		return;
2704 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
2705 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
2706 		uint64_t offset = sgl->address;
2707 		uint32_t max_len = transport->opts.in_capsule_data_size;
2708 
2709 		assert(tcp_req->has_in_capsule_data);
2710 		/* Capsule Cmd with In-capsule Data should get data length from pdu header */
2711 		tqpair = tcp_req->pdu->qpair;
2712 		/* receiving pdu is not same with the pdu in tcp_req */
2713 		pdu = tqpair->pdu_in_progress;
2714 		length = pdu->hdr.common.plen - pdu->psh_len - sizeof(struct spdk_nvme_tcp_common_pdu_hdr);
2715 		if (tqpair->host_ddgst_enable) {
2716 			length -= SPDK_NVME_TCP_DIGEST_LEN;
2717 		}
2718 		/* This error is not defined in NVMe/TCP spec, take this error as fatal error */
2719 		if (spdk_unlikely(length != sgl->unkeyed.length)) {
2720 			SPDK_ERRLOG("In-Capsule Data length 0x%x is not equal to SGL data length 0x%x\n",
2721 				    length, sgl->unkeyed.length);
2722 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2723 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2724 			goto fatal_err;
2725 		}
2726 
2727 		SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
2728 			      offset, length);
2729 
2730 		/* The NVMe/TCP transport does not use ICDOFF to control the in-capsule data offset. ICDOFF should be '0' */
2731 		if (spdk_unlikely(offset != 0)) {
2732 			/* Not defined fatal error in NVMe/TCP spec, handle this error as a fatal error */
2733 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " should be ZERO in NVMe/TCP\n", offset);
2734 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2735 			error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.address);
2736 			goto fatal_err;
2737 		}
2738 
2739 		if (spdk_unlikely(length > max_len)) {
2740 			/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
2741 			if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
2742 			    (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
2743 
2744 				/* Get a buffer from dedicated list */
2745 				SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
2746 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2747 				assert(tgroup->control_msg_list);
2748 				req->iov[0].iov_base = nvmf_tcp_control_msg_get(tgroup->control_msg_list, tcp_req);
2749 				if (!req->iov[0].iov_base) {
2750 					/* No available buffers. Queue this request up. */
2751 					SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
2752 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_BUF);
2753 					return;
2754 				}
2755 			} else {
2756 				SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
2757 					    length, max_len);
2758 				fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2759 				goto fatal_err;
2760 			}
2761 		} else {
2762 			req->iov[0].iov_base = tcp_req->buf;
2763 		}
2764 
2765 		req->length = length;
2766 		req->data_from_pool = false;
2767 
2768 		if (spdk_unlikely(req->dif_enabled)) {
2769 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2770 			req->dif.elba_length = length;
2771 		}
2772 
2773 		req->iov[0].iov_len = length;
2774 		req->iovcnt = 1;
2775 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
2776 
2777 		return;
2778 	}
2779 	/* If we want to handle the problem here, then we can't skip the following data segment.
2780 	 * Because this function runs before reading data part, now handle all errors as fatal errors. */
2781 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2782 		    sgl->generic.type, sgl->generic.subtype);
2783 	fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2784 	error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.generic);
2785 fatal_err:
2786 	nvmf_tcp_send_c2h_term_req(tcp_req->pdu->qpair, tcp_req->pdu, fes, error_offset);
2787 }
2788 
2789 static inline enum spdk_nvme_media_error_status_code
2790 nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
2791 	enum spdk_nvme_media_error_status_code result;
2792 
2793 	switch (err_type)
2794 	{
2795 	case SPDK_DIF_REFTAG_ERROR:
2796 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
2797 		break;
2798 	case SPDK_DIF_APPTAG_ERROR:
2799 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
2800 		break;
2801 	case SPDK_DIF_GUARD_ERROR:
2802 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
2803 		break;
2804 	default:
2805 		SPDK_UNREACHABLE();
2806 		break;
2807 	}
2808 
2809 	return result;
2810 }
2811 
2812 static void
2813 _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2814 			struct spdk_nvmf_tcp_req *tcp_req)
2815 {
2816 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
2817 				tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
2818 	struct nvme_tcp_pdu *rsp_pdu;
2819 	struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
2820 	uint32_t plen, pdo, alignment;
2821 	int rc;
2822 
2823 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2824 
2825 	rsp_pdu = tcp_req->pdu;
2826 	assert(rsp_pdu != NULL);
2827 
2828 	c2h_data = &rsp_pdu->hdr.c2h_data;
2829 	c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
2830 	plen = c2h_data->common.hlen = sizeof(*c2h_data);
2831 
2832 	if (tqpair->host_hdgst_enable) {
2833 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2834 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2835 	}
2836 
2837 	/* set the psh */
2838 	c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2839 	c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
2840 	c2h_data->datao = tcp_req->pdu->rw_offset;
2841 
2842 	/* set the padding */
2843 	rsp_pdu->padding_len = 0;
2844 	pdo = plen;
2845 	if (tqpair->cpda) {
2846 		alignment = (tqpair->cpda + 1) << 2;
2847 		if (plen % alignment != 0) {
2848 			pdo = (plen + alignment) / alignment * alignment;
2849 			rsp_pdu->padding_len = pdo - plen;
2850 			plen = pdo;
2851 		}
2852 	}
2853 
2854 	c2h_data->common.pdo = pdo;
2855 	plen += c2h_data->datal;
2856 	if (tqpair->host_ddgst_enable) {
2857 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
2858 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2859 	}
2860 
2861 	c2h_data->common.plen = plen;
2862 
2863 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2864 		rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2865 	}
2866 
2867 	nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2868 				  c2h_data->datao, c2h_data->datal);
2869 
2870 
2871 	c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
2872 	/* Need to send the capsule response if response is not all 0 */
2873 	if (ttransport->tcp_opts.c2h_success &&
2874 	    tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
2875 		c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
2876 	}
2877 
2878 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2879 		struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
2880 		struct spdk_dif_error err_blk = {};
2881 		uint32_t mapped_length = 0;
2882 		uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
2883 		uint32_t ddgst_len = 0;
2884 
2885 		if (tqpair->host_ddgst_enable) {
2886 			/* Data digest consumes additional iov entry */
2887 			available_iovs--;
2888 			/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
2889 			ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
2890 			c2h_data->common.plen -= ddgst_len;
2891 		}
2892 		/* Temp call to estimate if data can be described by limited number of iovs.
2893 		 * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
2894 		nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
2895 				    false, &mapped_length);
2896 
2897 		if (mapped_length != c2h_data->common.plen) {
2898 			c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
2899 			SPDK_DEBUGLOG(nvmf_tcp,
2900 				      "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
2901 				      c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
2902 			c2h_data->common.plen = mapped_length;
2903 
2904 			/* Rebuild pdu->data_iov since data length is changed */
2905 			nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
2906 						  c2h_data->datal);
2907 
2908 			c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
2909 						    SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
2910 		}
2911 
2912 		c2h_data->common.plen += ddgst_len;
2913 
2914 		assert(rsp_pdu->rw_offset <= tcp_req->req.length);
2915 
2916 		rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
2917 					    0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
2918 		if (rc != 0) {
2919 			SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
2920 				    err_blk.err_type, err_blk.err_offset);
2921 			rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2922 			rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
2923 			nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2924 			return;
2925 		}
2926 	}
2927 
2928 	rsp_pdu->rw_offset += c2h_data->datal;
2929 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
2930 }
2931 
2932 static void
2933 nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2934 		       struct spdk_nvmf_tcp_req *tcp_req)
2935 {
2936 	nvmf_tcp_req_pdu_init(tcp_req);
2937 	_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2938 }
2939 
2940 static int
2941 request_transfer_out(struct spdk_nvmf_request *req)
2942 {
2943 	struct spdk_nvmf_tcp_req	*tcp_req;
2944 	struct spdk_nvmf_qpair		*qpair;
2945 	struct spdk_nvmf_tcp_qpair	*tqpair;
2946 	struct spdk_nvme_cpl		*rsp;
2947 
2948 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2949 
2950 	qpair = req->qpair;
2951 	rsp = &req->rsp->nvme_cpl;
2952 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
2953 
2954 	/* Advance our sq_head pointer */
2955 	if (qpair->sq_head == qpair->sq_head_max) {
2956 		qpair->sq_head = 0;
2957 	} else {
2958 		qpair->sq_head++;
2959 	}
2960 	rsp->sqhd = qpair->sq_head;
2961 
2962 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2963 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
2964 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2965 		nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2966 	} else {
2967 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2968 	}
2969 
2970 	return 0;
2971 }
2972 
2973 static void
2974 nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport,
2975 			      struct spdk_nvmf_tcp_qpair *tqpair,
2976 			      struct spdk_nvmf_tcp_req *tcp_req)
2977 {
2978 	enum spdk_nvme_cmd_fuse last, next;
2979 
2980 	last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2981 	next = tcp_req->cmd.fuse;
2982 
2983 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2984 
2985 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2986 		return;
2987 	}
2988 
2989 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2990 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2991 			/* This is a valid pair of fused commands.  Point them at each other
2992 			 * so they can be submitted consecutively once ready to be executed.
2993 			 */
2994 			tqpair->fused_first->fused_pair = tcp_req;
2995 			tcp_req->fused_pair = tqpair->fused_first;
2996 			tqpair->fused_first = NULL;
2997 			return;
2998 		} else {
2999 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
3000 			tqpair->fused_first->fused_failed = true;
3001 
3002 			/*
3003 			 * If the last req is in READY_TO_EXECUTE state, then call
3004 			 * nvmf_tcp_req_process(), otherwise nothing else will kick it.
3005 			 */
3006 			if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3007 				nvmf_tcp_req_process(ttransport, tqpair->fused_first);
3008 			}
3009 
3010 			tqpair->fused_first = NULL;
3011 		}
3012 	}
3013 
3014 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
3015 		/* Set tqpair->fused_first here so that we know to check that the next request
3016 		 * is a SECOND (and to fail this one if it isn't).
3017 		 */
3018 		tqpair->fused_first = tcp_req;
3019 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
3020 		/* Mark this req failed since it is a SECOND and the last one was not a FIRST. */
3021 		tcp_req->fused_failed = true;
3022 	}
3023 }
3024 
3025 static bool
3026 nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
3027 		     struct spdk_nvmf_tcp_req *tcp_req)
3028 {
3029 	struct spdk_nvmf_tcp_qpair		*tqpair;
3030 	uint32_t				plen;
3031 	struct nvme_tcp_pdu			*pdu;
3032 	enum spdk_nvmf_tcp_req_state		prev_state;
3033 	bool					progress = false;
3034 	struct spdk_nvmf_transport		*transport = &ttransport->transport;
3035 	struct spdk_nvmf_transport_poll_group	*group;
3036 	struct spdk_nvmf_tcp_poll_group		*tgroup;
3037 
3038 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
3039 	group = &tqpair->group->group;
3040 	assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
3041 
3042 	/* If the qpair is not active, we need to abort the outstanding requests. */
3043 	if (!spdk_nvmf_qpair_is_active(&tqpair->qpair)) {
3044 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
3045 			nvmf_tcp_request_get_buffers_abort(tcp_req);
3046 		}
3047 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3048 	}
3049 
3050 	/* The loop here is to allow for several back-to-back state changes. */
3051 	do {
3052 		prev_state = tcp_req->state;
3053 
3054 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
3055 			      tqpair);
3056 
3057 		switch (tcp_req->state) {
3058 		case TCP_REQUEST_STATE_FREE:
3059 			/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
3060 			 * to escape this state. */
3061 			break;
3062 		case TCP_REQUEST_STATE_NEW:
3063 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req,
3064 					  tqpair->qpair.queue_depth);
3065 
3066 			/* copy the cmd from the receive pdu */
3067 			tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
3068 
3069 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
3070 				tcp_req->req.dif_enabled = true;
3071 				tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
3072 			}
3073 
3074 			nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req);
3075 
3076 			/* The next state transition depends on the data transfer needs of this request. */
3077 			tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
3078 
3079 			if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
3080 				nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_INVALID_OPCODE);
3081 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
3082 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3083 				SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
3084 				break;
3085 			}
3086 
3087 			/* If no data to transfer, ready to execute. */
3088 			if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
3089 				/* Reset the tqpair receiving pdu state */
3090 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
3091 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
3092 				break;
3093 			}
3094 
3095 			pdu = tqpair->pdu_in_progress;
3096 			plen = pdu->hdr.common.hlen;
3097 			if (tqpair->host_hdgst_enable) {
3098 				plen += SPDK_NVME_TCP_DIGEST_LEN;
3099 			}
3100 			if (pdu->hdr.common.plen != plen) {
3101 				tcp_req->has_in_capsule_data = true;
3102 			} else {
3103 				/* Data is transmitted by C2H PDUs */
3104 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
3105 			}
3106 
3107 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
3108 			break;
3109 		case TCP_REQUEST_STATE_NEED_BUFFER:
3110 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.trace_id, 0,
3111 					  (uintptr_t)tcp_req);
3112 
3113 			assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
3114 
3115 			/* Try to get a data buffer */
3116 			nvmf_tcp_req_parse_sgl(tcp_req, transport, group);
3117 			break;
3118 		case TCP_REQUEST_STATE_HAVE_BUFFER:
3119 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_HAVE_BUFFER, tqpair->qpair.trace_id, 0,
3120 					  (uintptr_t)tcp_req);
3121 			/* Get a zcopy buffer if the request can be serviced through zcopy */
3122 			if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
3123 				if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3124 					assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
3125 					tcp_req->req.length = tcp_req->req.dif.elba_length;
3126 				}
3127 
3128 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START);
3129 				spdk_nvmf_request_zcopy_start(&tcp_req->req);
3130 				break;
3131 			}
3132 
3133 			assert(tcp_req->req.iovcnt > 0);
3134 
3135 			/* If data is transferring from host to controller, we need to do a transfer from the host. */
3136 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
3137 				if (tcp_req->req.data_from_pool) {
3138 					SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
3139 					nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
3140 				} else {
3141 					struct nvme_tcp_pdu *pdu;
3142 
3143 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
3144 
3145 					pdu = tqpair->pdu_in_progress;
3146 					SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
3147 						      tqpair);
3148 					/* No need to send r2t, contained in the capsuled data */
3149 					nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
3150 								  0, tcp_req->req.length);
3151 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
3152 				}
3153 				break;
3154 			}
3155 
3156 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
3157 			break;
3158 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3159 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.trace_id, 0,
3160 					  (uintptr_t)tcp_req);
3161 			/* Some external code must kick a request into  TCP_REQUEST_STATE_ZCOPY_START_COMPLETED
3162 			 * to escape this state. */
3163 			break;
3164 		case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
3165 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.trace_id, 0,
3166 					  (uintptr_t)tcp_req);
3167 			if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) {
3168 				SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n",
3169 					      tcp_req, tqpair);
3170 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3171 				break;
3172 			}
3173 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
3174 				SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
3175 				nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
3176 			} else {
3177 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3178 			}
3179 			break;
3180 		case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3181 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.trace_id, 0,
3182 					  (uintptr_t)tcp_req);
3183 			/* The R2T completion or the h2c data incoming will kick it out of this state. */
3184 			break;
3185 		case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3186 
3187 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.trace_id,
3188 					  0, (uintptr_t)tcp_req);
3189 			/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
3190 			 * to escape this state. */
3191 			break;
3192 		case TCP_REQUEST_STATE_READY_TO_EXECUTE:
3193 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.trace_id, 0,
3194 					  (uintptr_t)tcp_req);
3195 
3196 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3197 				assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
3198 				tcp_req->req.length = tcp_req->req.dif.elba_length;
3199 			}
3200 
3201 			if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
3202 				if (tcp_req->fused_failed) {
3203 					/* This request failed FUSED semantics.  Fail it immediately, without
3204 					 * even sending it to the target layer.
3205 					 */
3206 					nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_MISSING_FUSED);
3207 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3208 					break;
3209 				}
3210 
3211 				if (tcp_req->fused_pair == NULL ||
3212 				    tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3213 					/* This request is ready to execute, but either we don't know yet if it's
3214 					 * valid - i.e. this is a FIRST but we haven't received the next request yet),
3215 					 * or the other request of this fused pair isn't ready to execute. So
3216 					 * break here and this request will get processed later either when the
3217 					 * other request is ready or we find that this request isn't valid.
3218 					 */
3219 					break;
3220 				}
3221 			}
3222 
3223 			if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
3224 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
3225 				/* If we get to this point, and this request is a fused command, we know that
3226 				 * it is part of a valid sequence (FIRST followed by a SECOND) and that both
3227 				 * requests are READY_TO_EXECUTE.  So call spdk_nvmf_request_exec() both on this
3228 				 * request, and the other request of the fused pair, in the correct order.
3229 				 * Also clear the ->fused_pair pointers on both requests, since after this point
3230 				 * we no longer need to maintain the relationship between these two requests.
3231 				 */
3232 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
3233 					assert(tcp_req->fused_pair != NULL);
3234 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3235 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3236 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3237 					tcp_req->fused_pair->fused_pair = NULL;
3238 					tcp_req->fused_pair = NULL;
3239 				}
3240 				spdk_nvmf_request_exec(&tcp_req->req);
3241 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
3242 					assert(tcp_req->fused_pair != NULL);
3243 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3244 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3245 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3246 					tcp_req->fused_pair->fused_pair = NULL;
3247 					tcp_req->fused_pair = NULL;
3248 				}
3249 			} else {
3250 				/* For zero-copy, only requests with data coming from host to the
3251 				 * controller can end up here. */
3252 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
3253 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT);
3254 				spdk_nvmf_request_zcopy_end(&tcp_req->req, true);
3255 			}
3256 
3257 			break;
3258 		case TCP_REQUEST_STATE_EXECUTING:
3259 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
3260 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3261 			 * to escape this state. */
3262 			break;
3263 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3264 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.trace_id, 0,
3265 					  (uintptr_t)tcp_req);
3266 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3267 			 * to escape this state. */
3268 			break;
3269 		case TCP_REQUEST_STATE_EXECUTED:
3270 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
3271 
3272 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3273 				tcp_req->req.length = tcp_req->req.dif.orig_length;
3274 			}
3275 
3276 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3277 			break;
3278 		case TCP_REQUEST_STATE_READY_TO_COMPLETE:
3279 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.trace_id, 0,
3280 					  (uintptr_t)tcp_req);
3281 			if (request_transfer_out(&tcp_req->req) != 0) {
3282 				assert(0); /* No good way to handle this currently */
3283 			}
3284 			break;
3285 		case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
3286 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.trace_id,
3287 					  0, (uintptr_t)tcp_req);
3288 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3289 			 * to escape this state. */
3290 			break;
3291 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3292 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.trace_id, 0,
3293 					  (uintptr_t)tcp_req);
3294 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3295 			 * to escape this state. */
3296 			break;
3297 		case TCP_REQUEST_STATE_COMPLETED:
3298 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req,
3299 					  tqpair->qpair.queue_depth);
3300 			/* If there's an outstanding PDU sent to the host, the request is completed
3301 			 * due to the qpair being disconnected.  We must delay the completion until
3302 			 * that write is done to avoid freeing the request twice. */
3303 			if (spdk_unlikely(tcp_req->pdu_in_use)) {
3304 				SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding "
3305 					      "write on req=%p\n", tcp_req);
3306 				/* This can only happen for zcopy requests */
3307 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3308 				assert(!spdk_nvmf_qpair_is_active(&tqpair->qpair));
3309 				break;
3310 			}
3311 
3312 			if (tcp_req->req.data_from_pool) {
3313 				spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
3314 			} else if (spdk_unlikely(tcp_req->has_in_capsule_data &&
3315 						 (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
3316 						  tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
3317 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3318 				assert(tgroup->control_msg_list);
3319 				SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
3320 				nvmf_tcp_control_msg_put(tgroup->control_msg_list,
3321 							 tcp_req->req.iov[0].iov_base);
3322 			} else if (tcp_req->req.zcopy_bdev_io != NULL) {
3323 				/* If the request has an unreleased zcopy bdev_io, it's either a
3324 				 * read, a failed write, or the qpair is being disconnected */
3325 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3326 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
3327 				       spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) ||
3328 				       !spdk_nvmf_qpair_is_active(&tqpair->qpair));
3329 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE);
3330 				spdk_nvmf_request_zcopy_end(&tcp_req->req, false);
3331 				break;
3332 			}
3333 			tcp_req->req.length = 0;
3334 			tcp_req->req.iovcnt = 0;
3335 			tcp_req->fused_failed = false;
3336 			if (tcp_req->fused_pair) {
3337 				/* This req was part of a valid fused pair, but failed before it got to
3338 				 * READ_TO_EXECUTE state.  This means we need to fail the other request
3339 				 * in the pair, because it is no longer part of a valid pair.  If the pair
3340 				 * already reached READY_TO_EXECUTE state, we need to kick it.
3341 				 */
3342 				tcp_req->fused_pair->fused_failed = true;
3343 				if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3344 					nvmf_tcp_req_process(ttransport, tcp_req->fused_pair);
3345 				}
3346 				tcp_req->fused_pair = NULL;
3347 			}
3348 
3349 			nvmf_tcp_req_put(tqpair, tcp_req);
3350 			break;
3351 		case TCP_REQUEST_NUM_STATES:
3352 		default:
3353 			assert(0);
3354 			break;
3355 		}
3356 
3357 		if (tcp_req->state != prev_state) {
3358 			progress = true;
3359 		}
3360 	} while (tcp_req->state != prev_state);
3361 
3362 	return progress;
3363 }
3364 
3365 static void
3366 tcp_sock_cb(void *arg)
3367 {
3368 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
3369 	int rc;
3370 
3371 	assert(tqpair != NULL);
3372 	rc = nvmf_tcp_sock_process(tqpair);
3373 
3374 	/* If there was a new socket error, disconnect */
3375 	if (rc < 0) {
3376 		nvmf_tcp_qpair_disconnect(tqpair);
3377 	}
3378 }
3379 
3380 static void
3381 nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
3382 {
3383 	tcp_sock_cb(arg);
3384 }
3385 
3386 static int
3387 nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3388 			struct spdk_nvmf_qpair *qpair)
3389 {
3390 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3391 	struct spdk_nvmf_tcp_qpair	*tqpair;
3392 	int				rc;
3393 
3394 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3395 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3396 
3397 	rc =  nvmf_tcp_qpair_sock_init(tqpair);
3398 	if (rc != 0) {
3399 		SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
3400 		return -1;
3401 	}
3402 
3403 	rc = nvmf_tcp_qpair_init(&tqpair->qpair);
3404 	if (rc < 0) {
3405 		SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
3406 		return -1;
3407 	}
3408 
3409 	rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
3410 	if (rc < 0) {
3411 		SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
3412 		return -1;
3413 	}
3414 
3415 	rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
3416 				      nvmf_tcp_sock_cb, tqpair);
3417 	if (rc != 0) {
3418 		SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
3419 			    spdk_strerror(errno), errno);
3420 		return -1;
3421 	}
3422 
3423 	tqpair->group = tgroup;
3424 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INVALID);
3425 	TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
3426 
3427 	return 0;
3428 }
3429 
3430 static int
3431 nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3432 			   struct spdk_nvmf_qpair *qpair)
3433 {
3434 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3435 	struct spdk_nvmf_tcp_qpair		*tqpair;
3436 	int				rc;
3437 
3438 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3439 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3440 
3441 	assert(tqpair->group == tgroup);
3442 
3443 	SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
3444 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
3445 		/* Change the state to move the qpair from the await_req list to the main list
3446 		 * and prevent adding it again later by nvmf_tcp_qpair_set_recv_state() */
3447 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
3448 	}
3449 	TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
3450 
3451 	/* Try to force out any pending writes */
3452 	spdk_sock_flush(tqpair->sock);
3453 
3454 	rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
3455 	if (rc != 0) {
3456 		SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
3457 			    spdk_strerror(errno), errno);
3458 	}
3459 
3460 	return rc;
3461 }
3462 
3463 static int
3464 nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
3465 {
3466 	struct spdk_nvmf_tcp_transport *ttransport;
3467 	struct spdk_nvmf_tcp_req *tcp_req;
3468 	struct spdk_nvmf_tcp_qpair *tqpair;
3469 
3470 	ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3471 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3472 	tqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_tcp_qpair, qpair);
3473 
3474 	switch (tcp_req->state) {
3475 	case TCP_REQUEST_STATE_EXECUTING:
3476 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3477 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3478 		break;
3479 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3480 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED);
3481 		break;
3482 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3483 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3484 		/* In the interrupt mode it's possible that all responses are already written out over
3485 		 * the socket but zero-copy buffers are still not released. In that case there won't be
3486 		 * any event to trigger further socket processing. Send msg to a thread to avoid deadlock.
3487 		 */
3488 		if (spdk_unlikely(spdk_interrupt_mode_is_enabled() &&
3489 				  tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ &&
3490 				  spdk_nvmf_qpair_is_active(&tqpair->qpair))) {
3491 			spdk_thread_send_msg(spdk_get_thread(), tcp_sock_cb, tqpair);
3492 		}
3493 		break;
3494 	default:
3495 		SPDK_ERRLOG("Unexpected request state %d (cntlid:%d, qid:%d)\n",
3496 			    tcp_req->state, req->qpair->ctrlr->cntlid, req->qpair->qid);
3497 		assert(0 && "Unexpected request state");
3498 		break;
3499 	}
3500 
3501 	nvmf_tcp_req_process(ttransport, tcp_req);
3502 
3503 	return 0;
3504 }
3505 
3506 static void
3507 nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
3508 		     spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3509 {
3510 	struct spdk_nvmf_tcp_qpair *tqpair;
3511 
3512 	SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
3513 
3514 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3515 
3516 	assert(tqpair->fini_cb_fn == NULL);
3517 	tqpair->fini_cb_fn = cb_fn;
3518 	tqpair->fini_cb_arg = cb_arg;
3519 
3520 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITED);
3521 	nvmf_tcp_qpair_destroy(tqpair);
3522 }
3523 
3524 static int
3525 nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3526 {
3527 	struct spdk_nvmf_tcp_poll_group *tgroup;
3528 	int num_events, rc = 0, rc2;
3529 	struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp;
3530 
3531 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3532 
3533 	if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) {
3534 		return 0;
3535 	}
3536 
3537 	num_events = spdk_sock_group_poll(tgroup->sock_group);
3538 	if (spdk_unlikely(num_events < 0)) {
3539 		SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
3540 	}
3541 
3542 	TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) {
3543 		rc2 = nvmf_tcp_sock_process(tqpair);
3544 
3545 		/* If there was a new socket error, disconnect */
3546 		if (spdk_unlikely(rc2 < 0)) {
3547 			nvmf_tcp_qpair_disconnect(tqpair);
3548 			if (rc == 0) {
3549 				rc = rc2;
3550 			}
3551 		}
3552 	}
3553 
3554 	return rc == 0 ? num_events : rc;
3555 }
3556 
3557 static int
3558 nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
3559 			struct spdk_nvme_transport_id *trid, bool peer)
3560 {
3561 	struct spdk_nvmf_tcp_qpair     *tqpair;
3562 	uint16_t			port;
3563 
3564 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3565 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
3566 
3567 	if (peer) {
3568 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
3569 		port = tqpair->initiator_port;
3570 	} else {
3571 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
3572 		port = tqpair->target_port;
3573 	}
3574 
3575 	if (spdk_sock_is_ipv4(tqpair->sock)) {
3576 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3577 	} else if (spdk_sock_is_ipv6(tqpair->sock)) {
3578 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3579 	} else {
3580 		return -1;
3581 	}
3582 
3583 	snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
3584 	return 0;
3585 }
3586 
3587 static int
3588 nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3589 			      struct spdk_nvme_transport_id *trid)
3590 {
3591 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3592 }
3593 
3594 static int
3595 nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3596 			     struct spdk_nvme_transport_id *trid)
3597 {
3598 	return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
3599 }
3600 
3601 static int
3602 nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3603 			       struct spdk_nvme_transport_id *trid)
3604 {
3605 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3606 }
3607 
3608 static void
3609 nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
3610 			      struct spdk_nvmf_tcp_req *tcp_req_to_abort)
3611 {
3612 	nvmf_tcp_req_set_cpl(tcp_req_to_abort, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_BY_REQUEST);
3613 	nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3614 
3615 	req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
3616 }
3617 
3618 static int
3619 _nvmf_tcp_qpair_abort_request(void *ctx)
3620 {
3621 	struct spdk_nvmf_request *req = ctx;
3622 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
3623 			struct spdk_nvmf_tcp_req, req);
3624 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
3625 					     struct spdk_nvmf_tcp_qpair, qpair);
3626 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
3627 			struct spdk_nvmf_tcp_transport, transport);
3628 	int rc;
3629 
3630 	spdk_poller_unregister(&req->poller);
3631 
3632 	switch (tcp_req_to_abort->state) {
3633 	case TCP_REQUEST_STATE_EXECUTING:
3634 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3635 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3636 		rc = nvmf_ctrlr_abort_request(req);
3637 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
3638 			return SPDK_POLLER_BUSY;
3639 		}
3640 		break;
3641 
3642 	case TCP_REQUEST_STATE_NEED_BUFFER:
3643 		nvmf_tcp_request_get_buffers_abort(tcp_req_to_abort);
3644 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3645 		nvmf_tcp_req_process(ttransport, tcp_req_to_abort);
3646 		break;
3647 
3648 	case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3649 	case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3650 		if (spdk_get_ticks() < req->timeout_tsc) {
3651 			req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
3652 			return SPDK_POLLER_BUSY;
3653 		}
3654 		break;
3655 
3656 	default:
3657 		/* Requests in other states are either un-abortable (e.g.
3658 		 * TRANSFERRING_CONTROLLER_TO_HOST) or should never end up here, as they're
3659 		 * immediately transitioned to other states in nvmf_tcp_req_process() (e.g.
3660 		 * READY_TO_EXECUTE).  But it is fine to end up here, as we'll simply complete the
3661 		 * abort request with the bit0 of dword0 set (command not aborted).
3662 		 */
3663 		break;
3664 	}
3665 
3666 	spdk_nvmf_request_complete(req);
3667 	return SPDK_POLLER_BUSY;
3668 }
3669 
3670 static void
3671 nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
3672 			     struct spdk_nvmf_request *req)
3673 {
3674 	struct spdk_nvmf_tcp_qpair *tqpair;
3675 	struct spdk_nvmf_tcp_transport *ttransport;
3676 	struct spdk_nvmf_transport *transport;
3677 	uint16_t cid;
3678 	uint32_t i;
3679 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
3680 
3681 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3682 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3683 	transport = &ttransport->transport;
3684 
3685 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
3686 
3687 	for (i = 0; i < tqpair->resource_count; i++) {
3688 		if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
3689 		    tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
3690 			tcp_req_to_abort = &tqpair->reqs[i];
3691 			break;
3692 		}
3693 	}
3694 
3695 	spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, tqpair->qpair.trace_id, 0, (uintptr_t)req);
3696 
3697 	if (tcp_req_to_abort == NULL) {
3698 		spdk_nvmf_request_complete(req);
3699 		return;
3700 	}
3701 
3702 	req->req_to_abort = &tcp_req_to_abort->req;
3703 	req->timeout_tsc = spdk_get_ticks() +
3704 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
3705 	req->poller = NULL;
3706 
3707 	_nvmf_tcp_qpair_abort_request(req);
3708 }
3709 
3710 struct tcp_subsystem_add_host_opts {
3711 	char *psk;
3712 };
3713 
3714 static const struct spdk_json_object_decoder tcp_subsystem_add_host_opts_decoder[] = {
3715 	{"psk", offsetof(struct tcp_subsystem_add_host_opts, psk), spdk_json_decode_string, true},
3716 };
3717 
3718 static int
3719 tcp_load_psk(const char *fname, char *buf, size_t bufsz)
3720 {
3721 	FILE *psk_file;
3722 	struct stat statbuf;
3723 	int rc;
3724 
3725 	if (stat(fname, &statbuf) != 0) {
3726 		SPDK_ERRLOG("Could not read permissions for PSK file\n");
3727 		return -EACCES;
3728 	}
3729 
3730 	if ((statbuf.st_mode & TCP_PSK_INVALID_PERMISSIONS) != 0) {
3731 		SPDK_ERRLOG("Incorrect permissions for PSK file\n");
3732 		return -EPERM;
3733 	}
3734 	if ((size_t)statbuf.st_size > bufsz) {
3735 		SPDK_ERRLOG("Invalid PSK: too long\n");
3736 		return -EINVAL;
3737 	}
3738 	psk_file = fopen(fname, "r");
3739 	if (psk_file == NULL) {
3740 		SPDK_ERRLOG("Could not open PSK file\n");
3741 		return -EINVAL;
3742 	}
3743 
3744 	rc = fread(buf, 1, statbuf.st_size, psk_file);
3745 	if (rc != statbuf.st_size) {
3746 		SPDK_ERRLOG("Failed to read PSK\n");
3747 		fclose(psk_file);
3748 		return -EINVAL;
3749 	}
3750 
3751 	fclose(psk_file);
3752 	return 0;
3753 }
3754 
3755 SPDK_LOG_DEPRECATION_REGISTER(nvmf_tcp_psk_path, "PSK path", "v24.09", 0);
3756 
3757 static int
3758 nvmf_tcp_subsystem_add_host(struct spdk_nvmf_transport *transport,
3759 			    const struct spdk_nvmf_subsystem *subsystem,
3760 			    const char *hostnqn,
3761 			    const struct spdk_json_val *transport_specific)
3762 {
3763 	struct tcp_subsystem_add_host_opts opts;
3764 	struct spdk_nvmf_tcp_transport *ttransport;
3765 	struct tcp_psk_entry *tmp, *entry = NULL;
3766 	uint8_t psk_configured[SPDK_TLS_PSK_MAX_LEN] = {};
3767 	char psk_interchange[SPDK_TLS_PSK_MAX_LEN + 1] = {};
3768 	uint8_t tls_cipher_suite;
3769 	int rc = 0;
3770 	uint8_t psk_retained_hash;
3771 	uint64_t psk_configured_size;
3772 
3773 	if (transport_specific == NULL) {
3774 		return 0;
3775 	}
3776 
3777 	assert(transport != NULL);
3778 	assert(subsystem != NULL);
3779 
3780 	memset(&opts, 0, sizeof(opts));
3781 
3782 	/* Decode PSK (either name of a key or file path) */
3783 	if (spdk_json_decode_object_relaxed(transport_specific, tcp_subsystem_add_host_opts_decoder,
3784 					    SPDK_COUNTOF(tcp_subsystem_add_host_opts_decoder), &opts)) {
3785 		SPDK_ERRLOG("spdk_json_decode_object failed\n");
3786 		return -EINVAL;
3787 	}
3788 
3789 	if (opts.psk == NULL) {
3790 		return 0;
3791 	}
3792 
3793 	entry = calloc(1, sizeof(struct tcp_psk_entry));
3794 	if (entry == NULL) {
3795 		SPDK_ERRLOG("Unable to allocate memory for PSK entry!\n");
3796 		rc = -ENOMEM;
3797 		goto end;
3798 	}
3799 
3800 	entry->key = spdk_keyring_get_key(opts.psk);
3801 	if (entry->key != NULL) {
3802 		rc = spdk_key_get_key(entry->key, psk_interchange, SPDK_TLS_PSK_MAX_LEN);
3803 		if (rc < 0) {
3804 			SPDK_ERRLOG("Failed to retrieve PSK '%s'\n", opts.psk);
3805 			rc = -EINVAL;
3806 			goto end;
3807 		}
3808 	} else {
3809 		if (strlen(opts.psk) >= sizeof(entry->psk)) {
3810 			SPDK_ERRLOG("PSK path too long\n");
3811 			rc = -EINVAL;
3812 			goto end;
3813 		}
3814 
3815 		rc = tcp_load_psk(opts.psk, psk_interchange, SPDK_TLS_PSK_MAX_LEN);
3816 		if (rc) {
3817 			SPDK_ERRLOG("Could not retrieve PSK from file\n");
3818 			goto end;
3819 		}
3820 
3821 		SPDK_LOG_DEPRECATED(nvmf_tcp_psk_path);
3822 	}
3823 
3824 	/* Parse PSK interchange to get length of base64 encoded data.
3825 	 * This is then used to decide which cipher suite should be used
3826 	 * to generate PSK identity and TLS PSK later on. */
3827 	rc = nvme_tcp_parse_interchange_psk(psk_interchange, psk_configured, sizeof(psk_configured),
3828 					    &psk_configured_size, &psk_retained_hash);
3829 	if (rc < 0) {
3830 		SPDK_ERRLOG("Failed to parse PSK interchange!\n");
3831 		goto end;
3832 	}
3833 
3834 	/* The Base64 string encodes the configured PSK (32 or 48 bytes binary).
3835 	 * This check also ensures that psk_configured_size is smaller than
3836 	 * psk_retained buffer size. */
3837 	if (psk_configured_size == SHA256_DIGEST_LENGTH) {
3838 		tls_cipher_suite = NVME_TCP_CIPHER_AES_128_GCM_SHA256;
3839 	} else if (psk_configured_size == SHA384_DIGEST_LENGTH) {
3840 		tls_cipher_suite = NVME_TCP_CIPHER_AES_256_GCM_SHA384;
3841 	} else {
3842 		SPDK_ERRLOG("Unrecognized cipher suite!\n");
3843 		rc = -EINVAL;
3844 		goto end;
3845 	}
3846 
3847 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3848 	/* Generate PSK identity. */
3849 	rc = nvme_tcp_generate_psk_identity(entry->pskid, sizeof(entry->pskid), hostnqn,
3850 					    subsystem->subnqn, tls_cipher_suite);
3851 	if (rc) {
3852 		rc = -EINVAL;
3853 		goto end;
3854 	}
3855 	/* Check if PSK identity entry already exists. */
3856 	TAILQ_FOREACH(tmp, &ttransport->psks, link) {
3857 		if (strncmp(tmp->pskid, entry->pskid, NVMF_PSK_IDENTITY_LEN) == 0) {
3858 			SPDK_ERRLOG("Given PSK identity: %s entry already exists!\n", entry->pskid);
3859 			rc = -EEXIST;
3860 			goto end;
3861 		}
3862 	}
3863 
3864 	if (snprintf(entry->hostnqn, sizeof(entry->hostnqn), "%s", hostnqn) < 0) {
3865 		SPDK_ERRLOG("Could not write hostnqn string!\n");
3866 		rc = -EINVAL;
3867 		goto end;
3868 	}
3869 	if (snprintf(entry->subnqn, sizeof(entry->subnqn), "%s", subsystem->subnqn) < 0) {
3870 		SPDK_ERRLOG("Could not write subnqn string!\n");
3871 		rc = -EINVAL;
3872 		goto end;
3873 	}
3874 
3875 	entry->tls_cipher_suite = tls_cipher_suite;
3876 
3877 	/* No hash indicates that Configured PSK must be used as Retained PSK. */
3878 	if (psk_retained_hash == NVME_TCP_HASH_ALGORITHM_NONE) {
3879 		/* Psk configured is either 32 or 48 bytes long. */
3880 		memcpy(entry->psk, psk_configured, psk_configured_size);
3881 		entry->psk_size = psk_configured_size;
3882 	} else {
3883 		/* Derive retained PSK. */
3884 		rc = nvme_tcp_derive_retained_psk(psk_configured, psk_configured_size, hostnqn, entry->psk,
3885 						  SPDK_TLS_PSK_MAX_LEN, psk_retained_hash);
3886 		if (rc < 0) {
3887 			SPDK_ERRLOG("Unable to derive retained PSK!\n");
3888 			goto end;
3889 		}
3890 		entry->psk_size = rc;
3891 	}
3892 
3893 	if (entry->key == NULL) {
3894 		rc = snprintf(entry->psk_path, sizeof(entry->psk_path), "%s", opts.psk);
3895 		if (rc < 0 || (size_t)rc >= sizeof(entry->psk_path)) {
3896 			SPDK_ERRLOG("Could not save PSK path!\n");
3897 			rc = -ENAMETOOLONG;
3898 			goto end;
3899 		}
3900 	}
3901 
3902 	TAILQ_INSERT_TAIL(&ttransport->psks, entry, link);
3903 	rc = 0;
3904 
3905 end:
3906 	spdk_memset_s(psk_configured, sizeof(psk_configured), 0, sizeof(psk_configured));
3907 	spdk_memset_s(psk_interchange, sizeof(psk_interchange), 0, sizeof(psk_interchange));
3908 
3909 	free(opts.psk);
3910 	if (rc != 0) {
3911 		nvmf_tcp_free_psk_entry(entry);
3912 	}
3913 
3914 	return rc;
3915 }
3916 
3917 static void
3918 nvmf_tcp_subsystem_remove_host(struct spdk_nvmf_transport *transport,
3919 			       const struct spdk_nvmf_subsystem *subsystem,
3920 			       const char *hostnqn)
3921 {
3922 	struct spdk_nvmf_tcp_transport *ttransport;
3923 	struct tcp_psk_entry *entry, *tmp;
3924 
3925 	assert(transport != NULL);
3926 	assert(subsystem != NULL);
3927 
3928 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3929 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
3930 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3931 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3932 			TAILQ_REMOVE(&ttransport->psks, entry, link);
3933 			nvmf_tcp_free_psk_entry(entry);
3934 			break;
3935 		}
3936 	}
3937 }
3938 
3939 static void
3940 nvmf_tcp_subsystem_dump_host(struct spdk_nvmf_transport *transport,
3941 			     const struct spdk_nvmf_subsystem *subsystem, const char *hostnqn,
3942 			     struct spdk_json_write_ctx *w)
3943 {
3944 	struct spdk_nvmf_tcp_transport *ttransport;
3945 	struct tcp_psk_entry *entry;
3946 
3947 	assert(transport != NULL);
3948 	assert(subsystem != NULL);
3949 
3950 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3951 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
3952 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3953 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3954 			spdk_json_write_named_string(w, "psk", entry->key ?
3955 						     spdk_key_get_name(entry->key) : entry->psk_path);
3956 			break;
3957 		}
3958 	}
3959 }
3960 
3961 static void
3962 nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
3963 {
3964 	opts->max_queue_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
3965 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
3966 	opts->in_capsule_data_size =	SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
3967 	opts->max_io_size =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
3968 	opts->io_unit_size =		SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
3969 	opts->max_aq_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
3970 	opts->num_shared_buffers =	SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
3971 	opts->buf_cache_size =		SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
3972 	opts->dif_insert_or_strip =	SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
3973 	opts->abort_timeout_sec =	SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
3974 	opts->transport_specific =      NULL;
3975 }
3976 
3977 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
3978 	.name = "TCP",
3979 	.type = SPDK_NVME_TRANSPORT_TCP,
3980 	.opts_init = nvmf_tcp_opts_init,
3981 	.create = nvmf_tcp_create,
3982 	.dump_opts = nvmf_tcp_dump_opts,
3983 	.destroy = nvmf_tcp_destroy,
3984 
3985 	.listen = nvmf_tcp_listen,
3986 	.stop_listen = nvmf_tcp_stop_listen,
3987 
3988 	.listener_discover = nvmf_tcp_discover,
3989 
3990 	.poll_group_create = nvmf_tcp_poll_group_create,
3991 	.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
3992 	.poll_group_destroy = nvmf_tcp_poll_group_destroy,
3993 	.poll_group_add = nvmf_tcp_poll_group_add,
3994 	.poll_group_remove = nvmf_tcp_poll_group_remove,
3995 	.poll_group_poll = nvmf_tcp_poll_group_poll,
3996 
3997 	.req_free = nvmf_tcp_req_free,
3998 	.req_complete = nvmf_tcp_req_complete,
3999 	.req_get_buffers_done = nvmf_tcp_req_get_buffers_done,
4000 
4001 	.qpair_fini = nvmf_tcp_close_qpair,
4002 	.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
4003 	.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
4004 	.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
4005 	.qpair_abort_request = nvmf_tcp_qpair_abort_request,
4006 	.subsystem_add_host = nvmf_tcp_subsystem_add_host,
4007 	.subsystem_remove_host = nvmf_tcp_subsystem_remove_host,
4008 	.subsystem_dump_host = nvmf_tcp_subsystem_dump_host,
4009 };
4010 
4011 SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
4012 SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)
4013