xref: /spdk/lib/nvmf/tcp.c (revision c65983c9f2000473107a4a5e01f98c1563e7334a)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2018 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/accel.h"
8 #include "spdk/stdinc.h"
9 #include "spdk/crc32.h"
10 #include "spdk/endian.h"
11 #include "spdk/assert.h"
12 #include "spdk/thread.h"
13 #include "spdk/nvmf_transport.h"
14 #include "spdk/string.h"
15 #include "spdk/trace.h"
16 #include "spdk/util.h"
17 #include "spdk/log.h"
18 #include "spdk/keyring.h"
19 
20 #include "spdk_internal/assert.h"
21 #include "spdk_internal/nvme_tcp.h"
22 #include "spdk_internal/sock.h"
23 
24 #include "nvmf_internal.h"
25 
26 #include "spdk_internal/trace_defs.h"
27 
28 #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
29 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
30 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
31 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
32 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
33 
34 #define SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH 2
35 #define SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH 65535
36 #define SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH 2
37 #define SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH 4096
38 
39 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH 128
40 #define SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH 128
41 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
42 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
43 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
44 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
45 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
46 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX
47 #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
48 #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
49 
50 #define TCP_PSK_INVALID_PERMISSIONS 0177
51 
52 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
53 static bool g_tls_log = false;
54 
55 /* spdk nvmf related structure */
56 enum spdk_nvmf_tcp_req_state {
57 
58 	/* The request is not currently in use */
59 	TCP_REQUEST_STATE_FREE = 0,
60 
61 	/* Initial state when request first received */
62 	TCP_REQUEST_STATE_NEW = 1,
63 
64 	/* The request is queued until a data buffer is available. */
65 	TCP_REQUEST_STATE_NEED_BUFFER = 2,
66 
67 	/* The request is waiting for zcopy_start to finish */
68 	TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 3,
69 
70 	/* The request has received a zero-copy buffer */
71 	TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 4,
72 
73 	/* The request is currently transferring data from the host to the controller. */
74 	TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 5,
75 
76 	/* The request is waiting for the R2T send acknowledgement. */
77 	TCP_REQUEST_STATE_AWAITING_R2T_ACK = 6,
78 
79 	/* The request is ready to execute at the block device */
80 	TCP_REQUEST_STATE_READY_TO_EXECUTE = 7,
81 
82 	/* The request is currently executing at the block device */
83 	TCP_REQUEST_STATE_EXECUTING = 8,
84 
85 	/* The request is waiting for zcopy buffers to be committed */
86 	TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 9,
87 
88 	/* The request finished executing at the block device */
89 	TCP_REQUEST_STATE_EXECUTED = 10,
90 
91 	/* The request is ready to send a completion */
92 	TCP_REQUEST_STATE_READY_TO_COMPLETE = 11,
93 
94 	/* The request is currently transferring final pdus from the controller to the host. */
95 	TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 12,
96 
97 	/* The request is waiting for zcopy buffers to be released (without committing) */
98 	TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 13,
99 
100 	/* The request completed and can be marked free. */
101 	TCP_REQUEST_STATE_COMPLETED = 14,
102 
103 	/* Terminator */
104 	TCP_REQUEST_NUM_STATES,
105 };
106 
107 static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
108 	"Invalid PDU Header Field",
109 	"PDU Sequence Error",
110 	"Header Digiest Error",
111 	"Data Transfer Out of Range",
112 	"R2T Limit Exceeded",
113 	"Unsupported parameter",
114 };
115 
116 SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
117 {
118 	spdk_trace_register_owner_type(OWNER_TYPE_NVMF_TCP, 't');
119 	spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
120 	spdk_trace_register_description("TCP_REQ_NEW",
121 					TRACE_TCP_REQUEST_STATE_NEW,
122 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1,
123 					SPDK_TRACE_ARG_TYPE_INT, "qd");
124 	spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
125 					TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
126 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
127 					SPDK_TRACE_ARG_TYPE_INT, "");
128 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START",
129 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START,
130 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
131 					SPDK_TRACE_ARG_TYPE_INT, "");
132 	spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL",
133 					TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED,
134 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
135 					SPDK_TRACE_ARG_TYPE_INT, "");
136 	spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
137 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
138 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
139 					SPDK_TRACE_ARG_TYPE_INT, "");
140 	spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
141 					TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
142 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
143 					SPDK_TRACE_ARG_TYPE_INT, "");
144 	spdk_trace_register_description("TCP_REQ_EXECUTING",
145 					TRACE_TCP_REQUEST_STATE_EXECUTING,
146 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
147 					SPDK_TRACE_ARG_TYPE_INT, "");
148 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT",
149 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT,
150 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
151 					SPDK_TRACE_ARG_TYPE_INT, "");
152 	spdk_trace_register_description("TCP_REQ_EXECUTED",
153 					TRACE_TCP_REQUEST_STATE_EXECUTED,
154 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
155 					SPDK_TRACE_ARG_TYPE_INT, "");
156 	spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
157 					TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
158 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
159 					SPDK_TRACE_ARG_TYPE_INT, "");
160 	spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
161 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
162 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
163 					SPDK_TRACE_ARG_TYPE_INT, "");
164 	spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS",
165 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE,
166 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
167 					SPDK_TRACE_ARG_TYPE_INT, "");
168 	spdk_trace_register_description("TCP_REQ_COMPLETED",
169 					TRACE_TCP_REQUEST_STATE_COMPLETED,
170 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
171 					SPDK_TRACE_ARG_TYPE_INT, "qd");
172 	spdk_trace_register_description("TCP_READ_DONE",
173 					TRACE_TCP_READ_FROM_SOCKET_DONE,
174 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
175 					SPDK_TRACE_ARG_TYPE_INT, "");
176 	spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
177 					TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
178 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
179 					SPDK_TRACE_ARG_TYPE_INT, "");
180 
181 	spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE,
182 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
183 					SPDK_TRACE_ARG_TYPE_INT, "");
184 	spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT,
185 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
186 					SPDK_TRACE_ARG_TYPE_INT, "");
187 	spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE,
188 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
189 					SPDK_TRACE_ARG_TYPE_INT, "state");
190 	spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT,
191 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
192 					SPDK_TRACE_ARG_TYPE_INT, "");
193 	spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY,
194 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
195 					SPDK_TRACE_ARG_TYPE_INT, "");
196 	spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ,
197 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
198 					SPDK_TRACE_ARG_TYPE_INT, "");
199 	spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE,
200 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
201 					SPDK_TRACE_ARG_TYPE_INT, "state");
202 
203 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1);
204 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0);
205 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_QUEUE, OBJECT_NVMF_TCP_IO, 0);
206 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_PEND, OBJECT_NVMF_TCP_IO, 0);
207 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_COMPLETE, OBJECT_NVMF_TCP_IO, 0);
208 }
209 
210 struct spdk_nvmf_tcp_req  {
211 	struct spdk_nvmf_request		req;
212 	struct spdk_nvme_cpl			rsp;
213 	struct spdk_nvme_cmd			cmd;
214 
215 	/* A PDU that can be used for sending responses. This is
216 	 * not the incoming PDU! */
217 	struct nvme_tcp_pdu			*pdu;
218 
219 	/* In-capsule data buffer */
220 	uint8_t					*buf;
221 
222 	struct spdk_nvmf_tcp_req		*fused_pair;
223 
224 	/*
225 	 * The PDU for a request may be used multiple times in serial over
226 	 * the request's lifetime. For example, first to send an R2T, then
227 	 * to send a completion. To catch mistakes where the PDU is used
228 	 * twice at the same time, add a debug flag here for init/fini.
229 	 */
230 	bool					pdu_in_use;
231 	bool					has_in_capsule_data;
232 	bool					fused_failed;
233 
234 	/* transfer_tag */
235 	uint16_t				ttag;
236 
237 	enum spdk_nvmf_tcp_req_state		state;
238 
239 	/*
240 	 * h2c_offset is used when we receive the h2c_data PDU.
241 	 */
242 	uint32_t				h2c_offset;
243 
244 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		link;
245 	TAILQ_ENTRY(spdk_nvmf_tcp_req)		state_link;
246 };
247 
248 struct spdk_nvmf_tcp_qpair {
249 	struct spdk_nvmf_qpair			qpair;
250 	struct spdk_nvmf_tcp_poll_group		*group;
251 	struct spdk_sock			*sock;
252 
253 	enum nvme_tcp_pdu_recv_state		recv_state;
254 	enum nvme_tcp_qpair_state		state;
255 
256 	/* PDU being actively received */
257 	struct nvme_tcp_pdu			*pdu_in_progress;
258 
259 	struct spdk_nvmf_tcp_req		*fused_first;
260 
261 	/* Queues to track the requests in all states */
262 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_working_queue;
263 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_free_queue;
264 	SLIST_HEAD(, nvme_tcp_pdu)		tcp_pdu_free_queue;
265 	/* Number of working pdus */
266 	uint32_t				tcp_pdu_working_count;
267 
268 	/* Number of requests in each state */
269 	uint32_t				state_cntr[TCP_REQUEST_NUM_STATES];
270 
271 	uint8_t					cpda;
272 
273 	bool					host_hdgst_enable;
274 	bool					host_ddgst_enable;
275 
276 	/* This is a spare PDU used for sending special management
277 	 * operations. Primarily, this is used for the initial
278 	 * connection response and c2h termination request. */
279 	struct nvme_tcp_pdu			*mgmt_pdu;
280 
281 	/* Arrays of in-capsule buffers, requests, and pdus.
282 	 * Each array is 'resource_count' number of elements */
283 	void					*bufs;
284 	struct spdk_nvmf_tcp_req		*reqs;
285 	struct nvme_tcp_pdu			*pdus;
286 	uint32_t				resource_count;
287 	uint32_t				recv_buf_size;
288 
289 	struct spdk_nvmf_tcp_port		*port;
290 
291 	/* IP address */
292 	char					initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
293 	char					target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
294 
295 	/* IP port */
296 	uint16_t				initiator_port;
297 	uint16_t				target_port;
298 
299 	/* Wait until the host terminates the connection (e.g. after sending C2HTermReq) */
300 	bool					wait_terminate;
301 
302 	/* Timer used to destroy qpair after detecting transport error issue if initiator does
303 	 *  not close the connection.
304 	 */
305 	struct spdk_poller			*timeout_poller;
306 
307 	spdk_nvmf_transport_qpair_fini_cb	fini_cb_fn;
308 	void					*fini_cb_arg;
309 
310 	TAILQ_ENTRY(spdk_nvmf_tcp_qpair)	link;
311 };
312 
313 struct spdk_nvmf_tcp_control_msg {
314 	STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
315 };
316 
317 struct spdk_nvmf_tcp_control_msg_list {
318 	void *msg_buf;
319 	STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
320 };
321 
322 struct spdk_nvmf_tcp_poll_group {
323 	struct spdk_nvmf_transport_poll_group	group;
324 	struct spdk_sock_group			*sock_group;
325 
326 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	qpairs;
327 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	await_req;
328 
329 	struct spdk_io_channel			*accel_channel;
330 	struct spdk_nvmf_tcp_control_msg_list	*control_msg_list;
331 
332 	TAILQ_ENTRY(spdk_nvmf_tcp_poll_group)	link;
333 };
334 
335 struct spdk_nvmf_tcp_port {
336 	const struct spdk_nvme_transport_id	*trid;
337 	struct spdk_sock			*listen_sock;
338 	TAILQ_ENTRY(spdk_nvmf_tcp_port)		link;
339 };
340 
341 struct tcp_transport_opts {
342 	bool		c2h_success;
343 	uint16_t	control_msg_num;
344 	uint32_t	sock_priority;
345 };
346 
347 struct tcp_psk_entry {
348 	char				hostnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
349 	char				subnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
350 	char				pskid[NVMF_PSK_IDENTITY_LEN];
351 	uint8_t				psk[SPDK_TLS_PSK_MAX_LEN];
352 	struct spdk_key			*key;
353 
354 	/* Original path saved to emit SPDK configuration via "save_config". */
355 	char				psk_path[PATH_MAX];
356 	uint32_t			psk_size;
357 	enum nvme_tcp_cipher_suite	tls_cipher_suite;
358 	TAILQ_ENTRY(tcp_psk_entry)	link;
359 };
360 
361 struct spdk_nvmf_tcp_transport {
362 	struct spdk_nvmf_transport		transport;
363 	struct tcp_transport_opts               tcp_opts;
364 	uint32_t				ack_timeout;
365 
366 	struct spdk_nvmf_tcp_poll_group		*next_pg;
367 
368 	struct spdk_poller			*accept_poller;
369 
370 	TAILQ_HEAD(, spdk_nvmf_tcp_port)	ports;
371 	TAILQ_HEAD(, spdk_nvmf_tcp_poll_group)	poll_groups;
372 
373 	TAILQ_HEAD(, tcp_psk_entry)		psks;
374 };
375 
376 static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
377 	{
378 		"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
379 		spdk_json_decode_bool, true
380 	},
381 	{
382 		"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
383 		spdk_json_decode_uint16, true
384 	},
385 	{
386 		"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
387 		spdk_json_decode_uint32, true
388 	},
389 };
390 
391 static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
392 				 struct spdk_nvmf_tcp_req *tcp_req);
393 static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
394 
395 static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
396 				    struct spdk_nvmf_tcp_req *tcp_req);
397 
398 static inline void
399 nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
400 		       enum spdk_nvmf_tcp_req_state state)
401 {
402 	struct spdk_nvmf_qpair *qpair;
403 	struct spdk_nvmf_tcp_qpair *tqpair;
404 
405 	qpair = tcp_req->req.qpair;
406 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
407 
408 	assert(tqpair->state_cntr[tcp_req->state] > 0);
409 	tqpair->state_cntr[tcp_req->state]--;
410 	tqpair->state_cntr[state]++;
411 
412 	tcp_req->state = state;
413 }
414 
415 static inline struct nvme_tcp_pdu *
416 nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
417 {
418 	assert(tcp_req->pdu_in_use == false);
419 
420 	memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
421 	tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
422 
423 	return tcp_req->pdu;
424 }
425 
426 static struct spdk_nvmf_tcp_req *
427 nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
428 {
429 	struct spdk_nvmf_tcp_req *tcp_req;
430 
431 	tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
432 	if (spdk_unlikely(!tcp_req)) {
433 		return NULL;
434 	}
435 
436 	memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
437 	tcp_req->h2c_offset = 0;
438 	tcp_req->has_in_capsule_data = false;
439 	tcp_req->req.dif_enabled = false;
440 	tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE;
441 
442 	TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
443 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
444 	tqpair->qpair.queue_depth++;
445 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
446 	return tcp_req;
447 }
448 
449 static inline void
450 nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
451 {
452 	assert(!tcp_req->pdu_in_use);
453 
454 	TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
455 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
456 	tqpair->qpair.queue_depth--;
457 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
458 }
459 
460 static void
461 nvmf_tcp_request_free(void *cb_arg)
462 {
463 	struct spdk_nvmf_tcp_transport *ttransport;
464 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
465 
466 	assert(tcp_req != NULL);
467 
468 	SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
469 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
470 				      struct spdk_nvmf_tcp_transport, transport);
471 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
472 	nvmf_tcp_req_process(ttransport, tcp_req);
473 }
474 
475 static int
476 nvmf_tcp_req_free(struct spdk_nvmf_request *req)
477 {
478 	struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
479 
480 	nvmf_tcp_request_free(tcp_req);
481 
482 	return 0;
483 }
484 
485 static void
486 nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
487 			   enum spdk_nvmf_tcp_req_state state)
488 {
489 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
490 
491 	assert(state != TCP_REQUEST_STATE_FREE);
492 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
493 		if (state == tcp_req->state) {
494 			nvmf_tcp_request_free(tcp_req);
495 		}
496 	}
497 }
498 
499 static void
500 nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
501 {
502 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
503 
504 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
505 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
506 
507 	/* Wipe the requests waiting for buffer from the global list */
508 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
509 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
510 			STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue, &tcp_req->req,
511 				      spdk_nvmf_request, buf_link);
512 		}
513 	}
514 
515 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
516 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
517 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
518 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
519 }
520 
521 static void
522 nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
523 {
524 	int i;
525 	struct spdk_nvmf_tcp_req *tcp_req;
526 
527 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
528 	for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
529 		SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
530 		TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
531 			if ((int)tcp_req->state == i) {
532 				SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
533 				SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
534 			}
535 		}
536 	}
537 }
538 
539 static void
540 _nvmf_tcp_qpair_destroy(void *_tqpair)
541 {
542 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
543 	spdk_nvmf_transport_qpair_fini_cb cb_fn = tqpair->fini_cb_fn;
544 	void *cb_arg = tqpair->fini_cb_arg;
545 	int err = 0;
546 
547 	spdk_trace_record(TRACE_TCP_QP_DESTROY, tqpair->qpair.trace_id, 0, 0);
548 
549 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
550 
551 	err = spdk_sock_close(&tqpair->sock);
552 	assert(err == 0);
553 	nvmf_tcp_cleanup_all_states(tqpair);
554 
555 	if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
556 		SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
557 			    tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
558 			    tqpair->resource_count);
559 		err++;
560 	}
561 
562 	if (err > 0) {
563 		nvmf_tcp_dump_qpair_req_contents(tqpair);
564 	}
565 
566 	/* The timeout poller might still be registered here if we close the qpair before host
567 	 * terminates the connection.
568 	 */
569 	spdk_poller_unregister(&tqpair->timeout_poller);
570 	spdk_dma_free(tqpair->pdus);
571 	free(tqpair->reqs);
572 	spdk_free(tqpair->bufs);
573 	spdk_trace_unregister_owner(tqpair->qpair.trace_id);
574 	free(tqpair);
575 
576 	if (cb_fn != NULL) {
577 		cb_fn(cb_arg);
578 	}
579 
580 	SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
581 }
582 
583 static void
584 nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
585 {
586 	/* Delay the destruction to make sure it isn't performed from the context of a sock
587 	 * callback.  Otherwise, spdk_sock_close() might not abort pending requests, causing their
588 	 * completions to be executed after the qpair is freed.  (Note: this fixed issue #2471.)
589 	 */
590 	spdk_thread_send_msg(spdk_get_thread(), _nvmf_tcp_qpair_destroy, tqpair);
591 }
592 
593 static void
594 nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
595 {
596 	struct spdk_nvmf_tcp_transport	*ttransport;
597 	assert(w != NULL);
598 
599 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
600 	spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
601 	spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
602 }
603 
604 static void
605 nvmf_tcp_free_psk_entry(struct tcp_psk_entry *entry)
606 {
607 	if (entry == NULL) {
608 		return;
609 	}
610 
611 	spdk_memset_s(entry->psk, sizeof(entry->psk), 0, sizeof(entry->psk));
612 	spdk_keyring_put_key(entry->key);
613 	free(entry);
614 }
615 
616 static int
617 nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
618 		 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
619 {
620 	struct spdk_nvmf_tcp_transport	*ttransport;
621 	struct tcp_psk_entry *entry, *tmp;
622 
623 	assert(transport != NULL);
624 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
625 
626 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
627 		TAILQ_REMOVE(&ttransport->psks, entry, link);
628 		nvmf_tcp_free_psk_entry(entry);
629 	}
630 
631 	spdk_poller_unregister(&ttransport->accept_poller);
632 	free(ttransport);
633 
634 	if (cb_fn) {
635 		cb_fn(cb_arg);
636 	}
637 	return 0;
638 }
639 
640 static int nvmf_tcp_accept(void *ctx);
641 
642 static struct spdk_nvmf_transport *
643 nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
644 {
645 	struct spdk_nvmf_tcp_transport *ttransport;
646 	uint32_t sge_count;
647 	uint32_t min_shared_buffers;
648 
649 	ttransport = calloc(1, sizeof(*ttransport));
650 	if (!ttransport) {
651 		return NULL;
652 	}
653 
654 	TAILQ_INIT(&ttransport->ports);
655 	TAILQ_INIT(&ttransport->poll_groups);
656 	TAILQ_INIT(&ttransport->psks);
657 
658 	ttransport->transport.ops = &spdk_nvmf_transport_tcp;
659 
660 	ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
661 	ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
662 	ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
663 	if (opts->transport_specific != NULL &&
664 	    spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
665 					    SPDK_COUNTOF(tcp_transport_opts_decoder),
666 					    &ttransport->tcp_opts)) {
667 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
668 		free(ttransport);
669 		return NULL;
670 	}
671 
672 	SPDK_NOTICELOG("*** TCP Transport Init ***\n");
673 
674 	SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
675 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
676 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
677 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
678 		     "  num_shared_buffers=%d, c2h_success=%d,\n"
679 		     "  dif_insert_or_strip=%d, sock_priority=%d\n"
680 		     "  abort_timeout_sec=%d, control_msg_num=%hu\n"
681 		     "  ack_timeout=%d\n",
682 		     opts->max_queue_depth,
683 		     opts->max_io_size,
684 		     opts->max_qpairs_per_ctrlr - 1,
685 		     opts->io_unit_size,
686 		     opts->in_capsule_data_size,
687 		     opts->max_aq_depth,
688 		     opts->num_shared_buffers,
689 		     ttransport->tcp_opts.c2h_success,
690 		     opts->dif_insert_or_strip,
691 		     ttransport->tcp_opts.sock_priority,
692 		     opts->abort_timeout_sec,
693 		     ttransport->tcp_opts.control_msg_num,
694 		     opts->ack_timeout);
695 
696 	if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
697 		SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
698 			    "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
699 			    ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
700 		free(ttransport);
701 		return NULL;
702 	}
703 
704 	if (ttransport->tcp_opts.control_msg_num == 0 &&
705 	    opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
706 		SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
707 			     SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
708 		ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
709 	}
710 
711 	/* I/O unit size cannot be larger than max I/O size */
712 	if (opts->io_unit_size > opts->max_io_size) {
713 		SPDK_WARNLOG("TCP param io_unit_size %u can't be larger than max_io_size %u. Using max_io_size as io_unit_size\n",
714 			     opts->io_unit_size, opts->max_io_size);
715 		opts->io_unit_size = opts->max_io_size;
716 	}
717 
718 	/* In capsule data size cannot be larger than max I/O size */
719 	if (opts->in_capsule_data_size > opts->max_io_size) {
720 		SPDK_WARNLOG("TCP param ICD size %u can't be larger than max_io_size %u. Using max_io_size as ICD size\n",
721 			     opts->io_unit_size, opts->max_io_size);
722 		opts->in_capsule_data_size = opts->max_io_size;
723 	}
724 
725 	/* max IO queue depth cannot be smaller than 2 or larger than 65535.
726 	 * We will not check SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, because max_queue_depth is 16bits and always not larger than 64k. */
727 	if (opts->max_queue_depth < SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH) {
728 		SPDK_WARNLOG("TCP param max_queue_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
729 			     opts->max_queue_depth, SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH,
730 			     SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH);
731 		opts->max_queue_depth = SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
732 	}
733 
734 	/* max admin queue depth cannot be smaller than 2 or larger than 4096 */
735 	if (opts->max_aq_depth < SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH ||
736 	    opts->max_aq_depth > SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH) {
737 		SPDK_WARNLOG("TCP param max_aq_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
738 			     opts->max_aq_depth, SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH,
739 			     SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH);
740 		opts->max_aq_depth = SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
741 	}
742 
743 	sge_count = opts->max_io_size / opts->io_unit_size;
744 	if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
745 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
746 		free(ttransport);
747 		return NULL;
748 	}
749 
750 	/* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */
751 	if (opts->buf_cache_size < UINT32_MAX) {
752 		min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
753 		if (min_shared_buffers > opts->num_shared_buffers) {
754 			SPDK_ERRLOG("There are not enough buffers to satisfy "
755 				    "per-poll group caches for each thread. (%" PRIu32 ") "
756 				    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
757 			SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
758 			free(ttransport);
759 			return NULL;
760 		}
761 	}
762 
763 	ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport,
764 				    opts->acceptor_poll_rate);
765 	if (!ttransport->accept_poller) {
766 		free(ttransport);
767 		return NULL;
768 	}
769 
770 	return &ttransport->transport;
771 }
772 
773 static int
774 nvmf_tcp_trsvcid_to_int(const char *trsvcid)
775 {
776 	unsigned long long ull;
777 	char *end = NULL;
778 
779 	ull = strtoull(trsvcid, &end, 10);
780 	if (end == NULL || end == trsvcid || *end != '\0') {
781 		return -1;
782 	}
783 
784 	/* Valid TCP/IP port numbers are in [1, 65535] */
785 	if (ull == 0 || ull > 65535) {
786 		return -1;
787 	}
788 
789 	return (int)ull;
790 }
791 
792 /**
793  * Canonicalize a listen address trid.
794  */
795 static int
796 nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
797 			   const struct spdk_nvme_transport_id *trid)
798 {
799 	int trsvcid_int;
800 
801 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
802 	if (trsvcid_int < 0) {
803 		return -EINVAL;
804 	}
805 
806 	memset(canon_trid, 0, sizeof(*canon_trid));
807 	spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
808 	canon_trid->adrfam = trid->adrfam;
809 	snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
810 	snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
811 
812 	return 0;
813 }
814 
815 /**
816  * Find an existing listening port.
817  */
818 static struct spdk_nvmf_tcp_port *
819 nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
820 		   const struct spdk_nvme_transport_id *trid)
821 {
822 	struct spdk_nvme_transport_id canon_trid;
823 	struct spdk_nvmf_tcp_port *port;
824 
825 	if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
826 		return NULL;
827 	}
828 
829 	TAILQ_FOREACH(port, &ttransport->ports, link) {
830 		if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
831 			return port;
832 		}
833 	}
834 
835 	return NULL;
836 }
837 
838 static int
839 tcp_sock_get_key(uint8_t *out, int out_len, const char **cipher, const char *pskid,
840 		 void *get_key_ctx)
841 {
842 	struct tcp_psk_entry *entry;
843 	struct spdk_nvmf_tcp_transport *ttransport = get_key_ctx;
844 	size_t psk_len;
845 	int rc;
846 
847 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
848 		if (strcmp(pskid, entry->pskid) != 0) {
849 			continue;
850 		}
851 
852 		psk_len = entry->psk_size;
853 		if ((size_t)out_len < psk_len) {
854 			SPDK_ERRLOG("Out buffer of size: %" PRIu32 " cannot fit PSK of len: %lu\n",
855 				    out_len, psk_len);
856 			return -ENOBUFS;
857 		}
858 
859 		/* Convert PSK to the TLS PSK format. */
860 		rc = nvme_tcp_derive_tls_psk(entry->psk, psk_len, pskid, out, out_len,
861 					     entry->tls_cipher_suite);
862 		if (rc < 0) {
863 			SPDK_ERRLOG("Could not generate TLS PSK\n");
864 		}
865 
866 		switch (entry->tls_cipher_suite) {
867 		case NVME_TCP_CIPHER_AES_128_GCM_SHA256:
868 			*cipher = "TLS_AES_128_GCM_SHA256";
869 			break;
870 		case NVME_TCP_CIPHER_AES_256_GCM_SHA384:
871 			*cipher = "TLS_AES_256_GCM_SHA384";
872 			break;
873 		default:
874 			*cipher = NULL;
875 			return -ENOTSUP;
876 		}
877 
878 		return rc;
879 	}
880 
881 	SPDK_ERRLOG("Could not find PSK for identity: %s\n", pskid);
882 
883 	return -EINVAL;
884 }
885 
886 static int
887 nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
888 		struct spdk_nvmf_listen_opts *listen_opts)
889 {
890 	struct spdk_nvmf_tcp_transport *ttransport;
891 	struct spdk_nvmf_tcp_port *port;
892 	int trsvcid_int;
893 	uint8_t adrfam;
894 	const char *sock_impl_name;
895 	struct spdk_sock_impl_opts impl_opts;
896 	size_t impl_opts_size = sizeof(impl_opts);
897 	struct spdk_sock_opts opts;
898 
899 	if (!strlen(trid->trsvcid)) {
900 		SPDK_ERRLOG("Service id is required\n");
901 		return -EINVAL;
902 	}
903 
904 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
905 
906 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
907 	if (trsvcid_int < 0) {
908 		SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
909 		return -EINVAL;
910 	}
911 
912 	port = calloc(1, sizeof(*port));
913 	if (!port) {
914 		SPDK_ERRLOG("Port allocation failed\n");
915 		return -ENOMEM;
916 	}
917 
918 	port->trid = trid;
919 
920 	sock_impl_name = NULL;
921 
922 	opts.opts_size = sizeof(opts);
923 	spdk_sock_get_default_opts(&opts);
924 	opts.priority = ttransport->tcp_opts.sock_priority;
925 	opts.ack_timeout = transport->opts.ack_timeout;
926 	if (listen_opts->secure_channel) {
927 		if (listen_opts->sock_impl &&
928 		    strncmp("ssl", listen_opts->sock_impl, strlen(listen_opts->sock_impl))) {
929 			SPDK_ERRLOG("Enabling secure_channel while specifying a sock_impl different from 'ssl' is unsupported");
930 			free(port);
931 			return -EINVAL;
932 		}
933 		listen_opts->sock_impl = "ssl";
934 	}
935 
936 	if (listen_opts->sock_impl) {
937 		sock_impl_name = listen_opts->sock_impl;
938 		spdk_sock_impl_get_opts(sock_impl_name, &impl_opts, &impl_opts_size);
939 
940 		if (!strncmp("ssl", sock_impl_name, strlen(sock_impl_name))) {
941 			if (!g_tls_log) {
942 				SPDK_NOTICELOG("TLS support is considered experimental\n");
943 				g_tls_log = true;
944 			}
945 			impl_opts.tls_version = SPDK_TLS_VERSION_1_3;
946 			impl_opts.get_key = tcp_sock_get_key;
947 			impl_opts.get_key_ctx = ttransport;
948 			impl_opts.tls_cipher_suites = "TLS_AES_256_GCM_SHA384:TLS_AES_128_GCM_SHA256";
949 		}
950 
951 		opts.impl_opts = &impl_opts;
952 		opts.impl_opts_size = sizeof(impl_opts);
953 	}
954 
955 	port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
956 			    sock_impl_name, &opts);
957 	if (port->listen_sock == NULL) {
958 		SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
959 			    trid->traddr, trsvcid_int,
960 			    spdk_strerror(errno), errno);
961 		free(port);
962 		return -errno;
963 	}
964 
965 	if (spdk_sock_is_ipv4(port->listen_sock)) {
966 		adrfam = SPDK_NVMF_ADRFAM_IPV4;
967 	} else if (spdk_sock_is_ipv6(port->listen_sock)) {
968 		adrfam = SPDK_NVMF_ADRFAM_IPV6;
969 	} else {
970 		SPDK_ERRLOG("Unhandled socket type\n");
971 		adrfam = 0;
972 	}
973 
974 	if (adrfam != trid->adrfam) {
975 		SPDK_ERRLOG("Socket address family mismatch\n");
976 		spdk_sock_close(&port->listen_sock);
977 		free(port);
978 		return -EINVAL;
979 	}
980 
981 	SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
982 		       trid->traddr, trid->trsvcid);
983 
984 	TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
985 	return 0;
986 }
987 
988 static void
989 nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
990 		     const struct spdk_nvme_transport_id *trid)
991 {
992 	struct spdk_nvmf_tcp_transport *ttransport;
993 	struct spdk_nvmf_tcp_port *port;
994 
995 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
996 
997 	SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
998 		      trid->traddr, trid->trsvcid);
999 
1000 	port = nvmf_tcp_find_port(ttransport, trid);
1001 	if (port) {
1002 		TAILQ_REMOVE(&ttransport->ports, port, link);
1003 		spdk_sock_close(&port->listen_sock);
1004 		free(port);
1005 	}
1006 }
1007 
1008 static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1009 		enum nvme_tcp_pdu_recv_state state);
1010 
1011 static void
1012 nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvme_tcp_qpair_state state)
1013 {
1014 	tqpair->state = state;
1015 	spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0,
1016 			  (uint64_t)tqpair->state);
1017 }
1018 
1019 static void
1020 nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
1021 {
1022 	SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
1023 
1024 	spdk_trace_record(TRACE_TCP_QP_DISCONNECT, tqpair->qpair.trace_id, 0, 0);
1025 
1026 	if (tqpair->state <= NVME_TCP_QPAIR_STATE_RUNNING) {
1027 		nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITING);
1028 		assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1029 		spdk_poller_unregister(&tqpair->timeout_poller);
1030 
1031 		/* This will end up calling nvmf_tcp_close_qpair */
1032 		spdk_nvmf_qpair_disconnect(&tqpair->qpair);
1033 	}
1034 }
1035 
1036 static void
1037 _mgmt_pdu_write_done(void *_tqpair, int err)
1038 {
1039 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
1040 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1041 
1042 	if (spdk_unlikely(err != 0)) {
1043 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1044 		return;
1045 	}
1046 
1047 	assert(pdu->cb_fn != NULL);
1048 	pdu->cb_fn(pdu->cb_arg);
1049 }
1050 
1051 static void
1052 _req_pdu_write_done(void *req, int err)
1053 {
1054 	struct spdk_nvmf_tcp_req *tcp_req = req;
1055 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1056 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1057 
1058 	assert(tcp_req->pdu_in_use);
1059 	tcp_req->pdu_in_use = false;
1060 
1061 	/* If the request is in a completed state, we're waiting for write completion to free it */
1062 	if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) {
1063 		nvmf_tcp_request_free(tcp_req);
1064 		return;
1065 	}
1066 
1067 	if (spdk_unlikely(err != 0)) {
1068 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1069 		return;
1070 	}
1071 
1072 	assert(pdu->cb_fn != NULL);
1073 	pdu->cb_fn(pdu->cb_arg);
1074 }
1075 
1076 static void
1077 _pdu_write_done(struct nvme_tcp_pdu *pdu, int err)
1078 {
1079 	pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err);
1080 }
1081 
1082 static void
1083 _tcp_write_pdu(struct nvme_tcp_pdu *pdu)
1084 {
1085 	int rc;
1086 	uint32_t mapped_length;
1087 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1088 
1089 	pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
1090 			       tqpair->host_hdgst_enable, tqpair->host_ddgst_enable, &mapped_length);
1091 	spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
1092 
1093 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
1094 	    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
1095 		/* Try to force the send immediately. */
1096 		rc = spdk_sock_flush(tqpair->sock);
1097 		if (rc > 0 && (uint32_t)rc == mapped_length) {
1098 			_pdu_write_done(pdu, 0);
1099 		} else {
1100 			SPDK_ERRLOG("Could not write %s to socket: rc=%d, errno=%d\n",
1101 				    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ?
1102 				    "IC_RESP" : "TERM_REQ", rc, errno);
1103 			_pdu_write_done(pdu, rc >= 0 ? -EAGAIN : -errno);
1104 		}
1105 	}
1106 }
1107 
1108 static void
1109 data_crc32_accel_done(void *cb_arg, int status)
1110 {
1111 	struct nvme_tcp_pdu *pdu = cb_arg;
1112 
1113 	if (spdk_unlikely(status)) {
1114 		SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
1115 		_pdu_write_done(pdu, status);
1116 		return;
1117 	}
1118 
1119 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
1120 	MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
1121 
1122 	_tcp_write_pdu(pdu);
1123 }
1124 
1125 static void
1126 pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
1127 {
1128 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1129 	int rc = 0;
1130 
1131 	/* Data Digest */
1132 	if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
1133 		/* Only support this limitated case for the first step */
1134 		if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
1135 				&& tqpair->group)) {
1136 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
1137 						       pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
1138 			if (spdk_likely(rc == 0)) {
1139 				return;
1140 			}
1141 		} else {
1142 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1143 		}
1144 		data_crc32_accel_done(pdu, rc);
1145 	} else {
1146 		_tcp_write_pdu(pdu);
1147 	}
1148 }
1149 
1150 static void
1151 nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1152 			 struct nvme_tcp_pdu *pdu,
1153 			 nvme_tcp_qpair_xfer_complete_cb cb_fn,
1154 			 void *cb_arg)
1155 {
1156 	int hlen;
1157 	uint32_t crc32c;
1158 
1159 	assert(tqpair->pdu_in_progress != pdu);
1160 
1161 	hlen = pdu->hdr.common.hlen;
1162 	pdu->cb_fn = cb_fn;
1163 	pdu->cb_arg = cb_arg;
1164 
1165 	pdu->iov[0].iov_base = &pdu->hdr.raw;
1166 	pdu->iov[0].iov_len = hlen;
1167 
1168 	/* Header Digest */
1169 	if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) {
1170 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1171 		MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
1172 	}
1173 
1174 	/* Data Digest */
1175 	pdu_data_crc32_compute(pdu);
1176 }
1177 
1178 static void
1179 nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1180 			      nvme_tcp_qpair_xfer_complete_cb cb_fn,
1181 			      void *cb_arg)
1182 {
1183 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1184 
1185 	pdu->sock_req.cb_fn = _mgmt_pdu_write_done;
1186 	pdu->sock_req.cb_arg = tqpair;
1187 
1188 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1189 }
1190 
1191 static void
1192 nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1193 			     struct spdk_nvmf_tcp_req *tcp_req,
1194 			     nvme_tcp_qpair_xfer_complete_cb cb_fn,
1195 			     void *cb_arg)
1196 {
1197 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1198 
1199 	pdu->sock_req.cb_fn = _req_pdu_write_done;
1200 	pdu->sock_req.cb_arg = tcp_req;
1201 
1202 	assert(!tcp_req->pdu_in_use);
1203 	tcp_req->pdu_in_use = true;
1204 
1205 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1206 }
1207 
1208 static int
1209 nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
1210 {
1211 	uint32_t i;
1212 	struct spdk_nvmf_transport_opts *opts;
1213 	uint32_t in_capsule_data_size;
1214 
1215 	opts = &tqpair->qpair.transport->opts;
1216 
1217 	in_capsule_data_size = opts->in_capsule_data_size;
1218 	if (opts->dif_insert_or_strip) {
1219 		in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
1220 	}
1221 
1222 	tqpair->resource_count = opts->max_queue_depth;
1223 
1224 	tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
1225 	if (!tqpair->reqs) {
1226 		SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
1227 		return -1;
1228 	}
1229 
1230 	if (in_capsule_data_size) {
1231 		tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
1232 					    NULL, SPDK_ENV_LCORE_ID_ANY,
1233 					    SPDK_MALLOC_DMA);
1234 		if (!tqpair->bufs) {
1235 			SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
1236 			return -1;
1237 		}
1238 	}
1239 	/* prepare memory space for receiving pdus and tcp_req */
1240 	/* Add additional 1 member, which will be used for mgmt_pdu owned by the tqpair */
1241 	tqpair->pdus = spdk_dma_zmalloc((2 * tqpair->resource_count + 1) * sizeof(*tqpair->pdus), 0x1000,
1242 					NULL);
1243 	if (!tqpair->pdus) {
1244 		SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
1245 		return -1;
1246 	}
1247 
1248 	for (i = 0; i < tqpair->resource_count; i++) {
1249 		struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
1250 
1251 		tcp_req->ttag = i + 1;
1252 		tcp_req->req.qpair = &tqpair->qpair;
1253 
1254 		tcp_req->pdu = &tqpair->pdus[i];
1255 		tcp_req->pdu->qpair = tqpair;
1256 
1257 		/* Set up memory to receive commands */
1258 		if (tqpair->bufs) {
1259 			tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
1260 		}
1261 
1262 		/* Set the cmdn and rsp */
1263 		tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
1264 		tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
1265 
1266 		tcp_req->req.stripped_data = NULL;
1267 
1268 		/* Initialize request state to FREE */
1269 		tcp_req->state = TCP_REQUEST_STATE_FREE;
1270 		TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
1271 		tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
1272 	}
1273 
1274 	for (; i < 2 * tqpair->resource_count; i++) {
1275 		struct nvme_tcp_pdu *pdu = &tqpair->pdus[i];
1276 
1277 		pdu->qpair = tqpair;
1278 		SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1279 	}
1280 
1281 	tqpair->mgmt_pdu = &tqpair->pdus[i];
1282 	tqpair->mgmt_pdu->qpair = tqpair;
1283 	tqpair->pdu_in_progress = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
1284 	SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
1285 	tqpair->tcp_pdu_working_count = 1;
1286 
1287 	tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
1288 				 SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1289 
1290 	return 0;
1291 }
1292 
1293 static int
1294 nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
1295 {
1296 	struct spdk_nvmf_tcp_qpair *tqpair;
1297 
1298 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1299 
1300 	SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
1301 
1302 	spdk_trace_record(TRACE_TCP_QP_CREATE, tqpair->qpair.trace_id, 0, 0);
1303 
1304 	/* Initialise request state queues of the qpair */
1305 	TAILQ_INIT(&tqpair->tcp_req_free_queue);
1306 	TAILQ_INIT(&tqpair->tcp_req_working_queue);
1307 	SLIST_INIT(&tqpair->tcp_pdu_free_queue);
1308 	tqpair->qpair.queue_depth = 0;
1309 
1310 	tqpair->host_hdgst_enable = true;
1311 	tqpair->host_ddgst_enable = true;
1312 
1313 	return 0;
1314 }
1315 
1316 static int
1317 nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
1318 {
1319 	char saddr[32], caddr[32];
1320 	uint16_t sport, cport;
1321 	char owner[256];
1322 	int rc;
1323 
1324 	rc = spdk_sock_getaddr(tqpair->sock, saddr, sizeof(saddr), &sport,
1325 			       caddr, sizeof(caddr), &cport);
1326 	if (rc != 0) {
1327 		SPDK_ERRLOG("spdk_sock_getaddr() failed\n");
1328 		return rc;
1329 	}
1330 	snprintf(owner, sizeof(owner), "%s:%d", caddr, cport);
1331 	tqpair->qpair.trace_id = spdk_trace_register_owner(OWNER_TYPE_NVMF_TCP, owner);
1332 	spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, tqpair->qpair.trace_id, 0, 0);
1333 
1334 	/* set low water mark */
1335 	rc = spdk_sock_set_recvlowat(tqpair->sock, 1);
1336 	if (rc != 0) {
1337 		SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
1338 		return rc;
1339 	}
1340 
1341 	return 0;
1342 }
1343 
1344 static void
1345 nvmf_tcp_handle_connect(struct spdk_nvmf_transport *transport,
1346 			struct spdk_nvmf_tcp_port *port,
1347 			struct spdk_sock *sock)
1348 {
1349 	struct spdk_nvmf_tcp_qpair *tqpair;
1350 	int rc;
1351 
1352 	SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
1353 		      port->trid->traddr, port->trid->trsvcid);
1354 
1355 	tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
1356 	if (tqpair == NULL) {
1357 		SPDK_ERRLOG("Could not allocate new connection.\n");
1358 		spdk_sock_close(&sock);
1359 		return;
1360 	}
1361 
1362 	tqpair->sock = sock;
1363 	tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
1364 	tqpair->port = port;
1365 	tqpair->qpair.transport = transport;
1366 
1367 	rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
1368 			       sizeof(tqpair->target_addr), &tqpair->target_port,
1369 			       tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
1370 			       &tqpair->initiator_port);
1371 	if (rc < 0) {
1372 		SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
1373 		nvmf_tcp_qpair_destroy(tqpair);
1374 		return;
1375 	}
1376 
1377 	spdk_nvmf_tgt_new_qpair(transport->tgt, &tqpair->qpair);
1378 }
1379 
1380 static uint32_t
1381 nvmf_tcp_port_accept(struct spdk_nvmf_transport *transport, struct spdk_nvmf_tcp_port *port)
1382 {
1383 	struct spdk_sock *sock;
1384 	uint32_t count = 0;
1385 	int i;
1386 
1387 	for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
1388 		sock = spdk_sock_accept(port->listen_sock);
1389 		if (sock == NULL) {
1390 			break;
1391 		}
1392 		count++;
1393 		nvmf_tcp_handle_connect(transport, port, sock);
1394 	}
1395 
1396 	return count;
1397 }
1398 
1399 static int
1400 nvmf_tcp_accept(void *ctx)
1401 {
1402 	struct spdk_nvmf_transport *transport = ctx;
1403 	struct spdk_nvmf_tcp_transport *ttransport;
1404 	struct spdk_nvmf_tcp_port *port;
1405 	uint32_t count = 0;
1406 
1407 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1408 
1409 	TAILQ_FOREACH(port, &ttransport->ports, link) {
1410 		count += nvmf_tcp_port_accept(transport, port);
1411 	}
1412 
1413 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1414 }
1415 
1416 static void
1417 nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
1418 		  struct spdk_nvme_transport_id *trid,
1419 		  struct spdk_nvmf_discovery_log_page_entry *entry)
1420 {
1421 	struct spdk_nvmf_tcp_port *port;
1422 	struct spdk_nvmf_tcp_transport *ttransport;
1423 
1424 	entry->trtype = SPDK_NVMF_TRTYPE_TCP;
1425 	entry->adrfam = trid->adrfam;
1426 
1427 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
1428 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
1429 
1430 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1431 	port = nvmf_tcp_find_port(ttransport, trid);
1432 
1433 	assert(port != NULL);
1434 
1435 	if (strcmp(spdk_sock_get_impl_name(port->listen_sock), "ssl") == 0) {
1436 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_REQUIRED;
1437 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_TLS_1_3;
1438 	} else {
1439 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
1440 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
1441 	}
1442 }
1443 
1444 static struct spdk_nvmf_tcp_control_msg_list *
1445 nvmf_tcp_control_msg_list_create(uint16_t num_messages)
1446 {
1447 	struct spdk_nvmf_tcp_control_msg_list *list;
1448 	struct spdk_nvmf_tcp_control_msg *msg;
1449 	uint16_t i;
1450 
1451 	list = calloc(1, sizeof(*list));
1452 	if (!list) {
1453 		SPDK_ERRLOG("Failed to allocate memory for list structure\n");
1454 		return NULL;
1455 	}
1456 
1457 	list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
1458 				     NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
1459 	if (!list->msg_buf) {
1460 		SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
1461 		free(list);
1462 		return NULL;
1463 	}
1464 
1465 	STAILQ_INIT(&list->free_msgs);
1466 
1467 	for (i = 0; i < num_messages; i++) {
1468 		msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
1469 				SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1470 		STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
1471 	}
1472 
1473 	return list;
1474 }
1475 
1476 static void
1477 nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
1478 {
1479 	if (!list) {
1480 		return;
1481 	}
1482 
1483 	spdk_free(list->msg_buf);
1484 	free(list);
1485 }
1486 
1487 static struct spdk_nvmf_transport_poll_group *
1488 nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport,
1489 			   struct spdk_nvmf_poll_group *group)
1490 {
1491 	struct spdk_nvmf_tcp_transport	*ttransport;
1492 	struct spdk_nvmf_tcp_poll_group *tgroup;
1493 
1494 	if (spdk_interrupt_mode_is_enabled()) {
1495 		SPDK_ERRLOG("TCP transport does not support interrupt mode\n");
1496 		return NULL;
1497 	}
1498 
1499 	tgroup = calloc(1, sizeof(*tgroup));
1500 	if (!tgroup) {
1501 		return NULL;
1502 	}
1503 
1504 	tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
1505 	if (!tgroup->sock_group) {
1506 		goto cleanup;
1507 	}
1508 
1509 	TAILQ_INIT(&tgroup->qpairs);
1510 	TAILQ_INIT(&tgroup->await_req);
1511 
1512 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1513 
1514 	if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
1515 		SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
1516 			      "Creating control messages list\n", transport->opts.in_capsule_data_size,
1517 			      SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1518 		tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
1519 		if (!tgroup->control_msg_list) {
1520 			goto cleanup;
1521 		}
1522 	}
1523 
1524 	tgroup->accel_channel = spdk_accel_get_io_channel();
1525 	if (spdk_unlikely(!tgroup->accel_channel)) {
1526 		SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
1527 		goto cleanup;
1528 	}
1529 
1530 	TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link);
1531 	if (ttransport->next_pg == NULL) {
1532 		ttransport->next_pg = tgroup;
1533 	}
1534 
1535 	return &tgroup->group;
1536 
1537 cleanup:
1538 	nvmf_tcp_poll_group_destroy(&tgroup->group);
1539 	return NULL;
1540 }
1541 
1542 static struct spdk_nvmf_transport_poll_group *
1543 nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
1544 {
1545 	struct spdk_nvmf_tcp_transport *ttransport;
1546 	struct spdk_nvmf_tcp_poll_group **pg;
1547 	struct spdk_nvmf_tcp_qpair *tqpair;
1548 	struct spdk_sock_group *group = NULL, *hint = NULL;
1549 	int rc;
1550 
1551 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
1552 
1553 	if (TAILQ_EMPTY(&ttransport->poll_groups)) {
1554 		return NULL;
1555 	}
1556 
1557 	pg = &ttransport->next_pg;
1558 	assert(*pg != NULL);
1559 	hint = (*pg)->sock_group;
1560 
1561 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1562 	rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint);
1563 	if (rc != 0) {
1564 		return NULL;
1565 	} else if (group != NULL) {
1566 		/* Optimal poll group was found */
1567 		return spdk_sock_group_get_ctx(group);
1568 	}
1569 
1570 	/* The hint was used for optimal poll group, advance next_pg. */
1571 	*pg = TAILQ_NEXT(*pg, link);
1572 	if (*pg == NULL) {
1573 		*pg = TAILQ_FIRST(&ttransport->poll_groups);
1574 	}
1575 
1576 	return spdk_sock_group_get_ctx(hint);
1577 }
1578 
1579 static void
1580 nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
1581 {
1582 	struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup;
1583 	struct spdk_nvmf_tcp_transport *ttransport;
1584 
1585 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
1586 	spdk_sock_group_close(&tgroup->sock_group);
1587 	if (tgroup->control_msg_list) {
1588 		nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
1589 	}
1590 
1591 	if (tgroup->accel_channel) {
1592 		spdk_put_io_channel(tgroup->accel_channel);
1593 	}
1594 
1595 	if (tgroup->group.transport == NULL) {
1596 		/* Transport can be NULL when nvmf_tcp_poll_group_create()
1597 		 * calls this function directly in a failure path. */
1598 		free(tgroup);
1599 		return;
1600 	}
1601 
1602 	ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport);
1603 
1604 	next_tgroup = TAILQ_NEXT(tgroup, link);
1605 	TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link);
1606 	if (next_tgroup == NULL) {
1607 		next_tgroup = TAILQ_FIRST(&ttransport->poll_groups);
1608 	}
1609 	if (ttransport->next_pg == tgroup) {
1610 		ttransport->next_pg = next_tgroup;
1611 	}
1612 
1613 	free(tgroup);
1614 }
1615 
1616 static void
1617 nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1618 			      enum nvme_tcp_pdu_recv_state state)
1619 {
1620 	if (tqpair->recv_state == state) {
1621 		SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
1622 			    tqpair, state);
1623 		return;
1624 	}
1625 
1626 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_QUIESCING)) {
1627 		if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH && tqpair->pdu_in_progress) {
1628 			SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, tqpair->pdu_in_progress, slist);
1629 			tqpair->tcp_pdu_working_count--;
1630 		}
1631 	}
1632 
1633 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_ERROR)) {
1634 		assert(tqpair->tcp_pdu_working_count == 0);
1635 	}
1636 
1637 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1638 		/* When leaving the await req state, move the qpair to the main list */
1639 		TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link);
1640 		TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link);
1641 	} else if (state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1642 		TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link);
1643 		TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link);
1644 	}
1645 
1646 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
1647 	tqpair->recv_state = state;
1648 
1649 	spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0,
1650 			  (uint64_t)tqpair->recv_state);
1651 }
1652 
1653 static int
1654 nvmf_tcp_qpair_handle_timeout(void *ctx)
1655 {
1656 	struct spdk_nvmf_tcp_qpair *tqpair = ctx;
1657 
1658 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1659 
1660 	SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
1661 		    SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
1662 
1663 	nvmf_tcp_qpair_disconnect(tqpair);
1664 	return SPDK_POLLER_BUSY;
1665 }
1666 
1667 static void
1668 nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
1669 {
1670 	struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
1671 
1672 	if (!tqpair->timeout_poller) {
1673 		tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
1674 					 SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
1675 	}
1676 }
1677 
1678 static void
1679 nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
1680 			   enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
1681 {
1682 	struct nvme_tcp_pdu *rsp_pdu;
1683 	struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
1684 	uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
1685 	uint32_t copy_len;
1686 
1687 	rsp_pdu = tqpair->mgmt_pdu;
1688 
1689 	c2h_term_req = &rsp_pdu->hdr.term_req;
1690 	c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
1691 	c2h_term_req->common.hlen = c2h_term_req_hdr_len;
1692 	c2h_term_req->fes = fes;
1693 
1694 	if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1695 	    (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1696 		DSET32(&c2h_term_req->fei, error_offset);
1697 	}
1698 
1699 	copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
1700 
1701 	/* Copy the error info into the buffer */
1702 	memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
1703 	nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
1704 
1705 	/* Contain the header of the wrong received pdu */
1706 	c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
1707 	tqpair->wait_terminate = true;
1708 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1709 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair);
1710 }
1711 
1712 static void
1713 nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1714 				struct spdk_nvmf_tcp_qpair *tqpair,
1715 				struct nvme_tcp_pdu *pdu)
1716 {
1717 	struct spdk_nvmf_tcp_req *tcp_req;
1718 
1719 	assert(pdu->psh_valid_bytes == pdu->psh_len);
1720 	assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
1721 
1722 	tcp_req = nvmf_tcp_req_get(tqpair);
1723 	if (!tcp_req) {
1724 		/* Directly return and make the allocation retry again.  This can happen if we're
1725 		 * using asynchronous writes to send the response to the host or when releasing
1726 		 * zero-copy buffers after a response has been sent.  In both cases, the host might
1727 		 * receive the response before we've finished processing the request and is free to
1728 		 * send another one.
1729 		 */
1730 		if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 ||
1731 		    tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) {
1732 			return;
1733 		}
1734 
1735 		/* The host sent more commands than the maximum queue depth. */
1736 		SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
1737 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1738 		return;
1739 	}
1740 
1741 	pdu->req = tcp_req;
1742 	assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
1743 	nvmf_tcp_req_process(ttransport, tcp_req);
1744 }
1745 
1746 static void
1747 nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1748 				    struct spdk_nvmf_tcp_qpair *tqpair,
1749 				    struct nvme_tcp_pdu *pdu)
1750 {
1751 	struct spdk_nvmf_tcp_req *tcp_req;
1752 	struct spdk_nvme_tcp_cmd *capsule_cmd;
1753 	uint32_t error_offset = 0;
1754 	enum spdk_nvme_tcp_term_req_fes fes;
1755 	struct spdk_nvme_cpl *rsp;
1756 
1757 	capsule_cmd = &pdu->hdr.capsule_cmd;
1758 	tcp_req = pdu->req;
1759 	assert(tcp_req != NULL);
1760 
1761 	/* Zero-copy requests don't support ICD */
1762 	assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req));
1763 
1764 	if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
1765 		SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
1766 			    SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
1767 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1768 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
1769 		goto err;
1770 	}
1771 
1772 	rsp = &tcp_req->req.rsp->nvme_cpl;
1773 	if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1774 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1775 	} else {
1776 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1777 	}
1778 
1779 	nvmf_tcp_req_process(ttransport, tcp_req);
1780 
1781 	return;
1782 err:
1783 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1784 }
1785 
1786 static void
1787 nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1788 			     struct spdk_nvmf_tcp_qpair *tqpair,
1789 			     struct nvme_tcp_pdu *pdu)
1790 {
1791 	struct spdk_nvmf_tcp_req *tcp_req;
1792 	uint32_t error_offset = 0;
1793 	enum spdk_nvme_tcp_term_req_fes fes = 0;
1794 	struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
1795 
1796 	h2c_data = &pdu->hdr.h2c_data;
1797 
1798 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
1799 		      tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
1800 
1801 	if (h2c_data->ttag > tqpair->resource_count) {
1802 		SPDK_DEBUGLOG(nvmf_tcp, "ttag %u is larger than allowed %u.\n", h2c_data->ttag,
1803 			      tqpair->resource_count);
1804 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1805 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1806 		goto err;
1807 	}
1808 
1809 	tcp_req = &tqpair->reqs[h2c_data->ttag - 1];
1810 
1811 	if (spdk_unlikely(tcp_req->state != TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER &&
1812 			  tcp_req->state != TCP_REQUEST_STATE_AWAITING_R2T_ACK)) {
1813 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, has error state in %d\n", tcp_req, tqpair,
1814 			      tcp_req->state);
1815 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1816 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1817 		goto err;
1818 	}
1819 
1820 	if (spdk_unlikely(tcp_req->req.cmd->nvme_cmd.cid != h2c_data->cccid)) {
1821 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, expected %u but %u for cccid.\n", tcp_req, tqpair,
1822 			      tcp_req->req.cmd->nvme_cmd.cid, h2c_data->cccid);
1823 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1824 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
1825 		goto err;
1826 	}
1827 
1828 	if (tcp_req->h2c_offset != h2c_data->datao) {
1829 		SPDK_DEBUGLOG(nvmf_tcp,
1830 			      "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
1831 			      tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
1832 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1833 		goto err;
1834 	}
1835 
1836 	if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
1837 		SPDK_DEBUGLOG(nvmf_tcp,
1838 			      "tcp_req(%p), tqpair=%p,  (datao=%u + datal=%u) exceeds requested length=%u\n",
1839 			      tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
1840 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1841 		goto err;
1842 	}
1843 
1844 	pdu->req = tcp_req;
1845 
1846 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
1847 		pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
1848 	}
1849 
1850 	nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
1851 				  h2c_data->datao, h2c_data->datal);
1852 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1853 	return;
1854 
1855 err:
1856 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1857 }
1858 
1859 static void
1860 nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
1861 			       struct spdk_nvmf_tcp_qpair *tqpair)
1862 {
1863 	struct nvme_tcp_pdu *rsp_pdu;
1864 	struct spdk_nvme_tcp_rsp *capsule_resp;
1865 
1866 	SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
1867 
1868 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1869 	assert(rsp_pdu != NULL);
1870 
1871 	capsule_resp = &rsp_pdu->hdr.capsule_resp;
1872 	capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
1873 	capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
1874 	capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
1875 	if (tqpair->host_hdgst_enable) {
1876 		capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1877 		capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1878 	}
1879 
1880 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req);
1881 }
1882 
1883 static void
1884 nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
1885 {
1886 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1887 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
1888 					     struct spdk_nvmf_tcp_qpair, qpair);
1889 
1890 	assert(tqpair != NULL);
1891 
1892 	if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
1893 		SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
1894 			      tcp_req->req.length);
1895 		_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
1896 		return;
1897 	}
1898 
1899 	if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
1900 		nvmf_tcp_request_free(tcp_req);
1901 	} else {
1902 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
1903 	}
1904 }
1905 
1906 static void
1907 nvmf_tcp_r2t_complete(void *cb_arg)
1908 {
1909 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1910 	struct spdk_nvmf_tcp_transport *ttransport;
1911 
1912 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
1913 				      struct spdk_nvmf_tcp_transport, transport);
1914 
1915 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
1916 
1917 	if (tcp_req->h2c_offset == tcp_req->req.length) {
1918 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1919 		nvmf_tcp_req_process(ttransport, tcp_req);
1920 	}
1921 }
1922 
1923 static void
1924 nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1925 		      struct spdk_nvmf_tcp_req *tcp_req)
1926 {
1927 	struct nvme_tcp_pdu *rsp_pdu;
1928 	struct spdk_nvme_tcp_r2t_hdr *r2t;
1929 
1930 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1931 	assert(rsp_pdu != NULL);
1932 
1933 	r2t = &rsp_pdu->hdr.r2t;
1934 	r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
1935 	r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
1936 
1937 	if (tqpair->host_hdgst_enable) {
1938 		r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1939 		r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1940 	}
1941 
1942 	r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
1943 	r2t->ttag = tcp_req->ttag;
1944 	r2t->r2to = tcp_req->h2c_offset;
1945 	r2t->r2tl = tcp_req->req.length;
1946 
1947 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
1948 
1949 	SPDK_DEBUGLOG(nvmf_tcp,
1950 		      "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
1951 		      tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
1952 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req);
1953 }
1954 
1955 static void
1956 nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1957 				 struct spdk_nvmf_tcp_qpair *tqpair,
1958 				 struct nvme_tcp_pdu *pdu)
1959 {
1960 	struct spdk_nvmf_tcp_req *tcp_req;
1961 	struct spdk_nvme_cpl *rsp;
1962 
1963 	tcp_req = pdu->req;
1964 	assert(tcp_req != NULL);
1965 
1966 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1967 
1968 	tcp_req->h2c_offset += pdu->data_len;
1969 
1970 	/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
1971 	 * acknowledged before moving on. */
1972 	if (tcp_req->h2c_offset == tcp_req->req.length &&
1973 	    tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
1974 		/* After receiving all the h2c data, we need to check whether there is
1975 		 * transient transport error */
1976 		rsp = &tcp_req->req.rsp->nvme_cpl;
1977 		if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1978 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1979 		} else {
1980 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1981 		}
1982 		nvmf_tcp_req_process(ttransport, tcp_req);
1983 	}
1984 }
1985 
1986 static void
1987 nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
1988 {
1989 	SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
1990 		    spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
1991 	if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1992 	    (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1993 		SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
1994 			      DGET32(h2c_term_req->fei));
1995 	}
1996 }
1997 
1998 static void
1999 nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2000 				 struct nvme_tcp_pdu *pdu)
2001 {
2002 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
2003 	uint32_t error_offset = 0;
2004 	enum spdk_nvme_tcp_term_req_fes fes;
2005 
2006 	if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
2007 		SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
2008 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2009 		error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
2010 		goto end;
2011 	}
2012 
2013 	/* set the data buffer */
2014 	nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
2015 			      h2c_term_req->common.plen - h2c_term_req->common.hlen);
2016 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2017 	return;
2018 end:
2019 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2020 }
2021 
2022 static void
2023 nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2024 				     struct nvme_tcp_pdu *pdu)
2025 {
2026 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
2027 
2028 	nvmf_tcp_h2c_term_req_dump(h2c_term_req);
2029 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2030 }
2031 
2032 static void
2033 _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2034 {
2035 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2036 			struct spdk_nvmf_tcp_transport, transport);
2037 
2038 	switch (pdu->hdr.common.pdu_type) {
2039 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2040 		nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
2041 		break;
2042 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2043 		nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
2044 		break;
2045 
2046 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2047 		nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
2048 		break;
2049 
2050 	default:
2051 		/* The code should not go to here */
2052 		SPDK_ERRLOG("ERROR pdu type %d\n", pdu->hdr.common.pdu_type);
2053 		break;
2054 	}
2055 	SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
2056 	tqpair->tcp_pdu_working_count--;
2057 }
2058 
2059 static inline void
2060 nvmf_tcp_req_set_cpl(struct spdk_nvmf_tcp_req *treq, int sct, int sc)
2061 {
2062 	treq->req.rsp->nvme_cpl.status.sct = sct;
2063 	treq->req.rsp->nvme_cpl.status.sc = sc;
2064 	treq->req.rsp->nvme_cpl.cid = treq->req.cmd->nvme_cmd.cid;
2065 }
2066 
2067 static void
2068 data_crc32_calc_done(void *cb_arg, int status)
2069 {
2070 	struct nvme_tcp_pdu *pdu = cb_arg;
2071 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
2072 
2073 	/* async crc32 calculation is failed and use direct calculation to check */
2074 	if (spdk_unlikely(status)) {
2075 		SPDK_ERRLOG("Data digest on tqpair=(%p) with pdu=%p failed to be calculated asynchronously\n",
2076 			    tqpair, pdu);
2077 		pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2078 	}
2079 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
2080 	if (!MATCH_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32)) {
2081 		SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2082 		assert(pdu->req != NULL);
2083 		nvmf_tcp_req_set_cpl(pdu->req, SPDK_NVME_SCT_GENERIC,
2084 				     SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR);
2085 	}
2086 	_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2087 }
2088 
2089 static void
2090 nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2091 {
2092 	int rc = 0;
2093 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2094 	tqpair->pdu_in_progress = NULL;
2095 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2096 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2097 	/* check data digest if need */
2098 	if (pdu->ddgst_enable) {
2099 		if (tqpair->qpair.qid != 0 && !pdu->dif_ctx && tqpair->group &&
2100 		    (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)) {
2101 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
2102 						       pdu->data_iovcnt, 0, data_crc32_calc_done, pdu);
2103 			if (spdk_likely(rc == 0)) {
2104 				return;
2105 			}
2106 		} else {
2107 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2108 		}
2109 		data_crc32_calc_done(pdu, rc);
2110 	} else {
2111 		_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2112 	}
2113 }
2114 
2115 static void
2116 nvmf_tcp_send_icresp_complete(void *cb_arg)
2117 {
2118 	struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
2119 
2120 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_RUNNING);
2121 }
2122 
2123 static void
2124 nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
2125 		      struct spdk_nvmf_tcp_qpair *tqpair,
2126 		      struct nvme_tcp_pdu *pdu)
2127 {
2128 	struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
2129 	struct nvme_tcp_pdu *rsp_pdu;
2130 	struct spdk_nvme_tcp_ic_resp *ic_resp;
2131 	uint32_t error_offset = 0;
2132 	enum spdk_nvme_tcp_term_req_fes fes;
2133 
2134 	/* Only PFV 0 is defined currently */
2135 	if (ic_req->pfv != 0) {
2136 		SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
2137 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2138 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
2139 		goto end;
2140 	}
2141 
2142 	/* This value is 0’s based value in units of dwords should not be larger than SPDK_NVME_TCP_HPDA_MAX */
2143 	if (ic_req->hpda > SPDK_NVME_TCP_HPDA_MAX) {
2144 		SPDK_ERRLOG("ICReq HPDA out of range 0 to 31, got %u\n", ic_req->hpda);
2145 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2146 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, hpda);
2147 		goto end;
2148 	}
2149 
2150 	/* MAXR2T is 0's based */
2151 	SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
2152 
2153 	tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
2154 	if (!tqpair->host_hdgst_enable) {
2155 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2156 	}
2157 
2158 	tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
2159 	if (!tqpair->host_ddgst_enable) {
2160 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2161 	}
2162 
2163 	tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
2164 	/* Now that we know whether digests are enabled, properly size the receive buffer */
2165 	if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
2166 		SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
2167 			     tqpair,
2168 			     tqpair->recv_buf_size);
2169 		/* Not fatal. */
2170 	}
2171 
2172 	tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
2173 	SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
2174 
2175 	rsp_pdu = tqpair->mgmt_pdu;
2176 
2177 	ic_resp = &rsp_pdu->hdr.ic_resp;
2178 	ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
2179 	ic_resp->common.hlen = ic_resp->common.plen =  sizeof(*ic_resp);
2180 	ic_resp->pfv = 0;
2181 	ic_resp->cpda = tqpair->cpda;
2182 	ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
2183 	ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
2184 	ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
2185 
2186 	SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
2187 	SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
2188 
2189 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INITIALIZING);
2190 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair);
2191 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2192 	return;
2193 end:
2194 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2195 }
2196 
2197 static void
2198 nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2199 			struct spdk_nvmf_tcp_transport *ttransport)
2200 {
2201 	struct nvme_tcp_pdu *pdu;
2202 	int rc;
2203 	uint32_t crc32c, error_offset = 0;
2204 	enum spdk_nvme_tcp_term_req_fes fes;
2205 
2206 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2207 	pdu = tqpair->pdu_in_progress;
2208 
2209 	SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
2210 		      pdu->hdr.common.pdu_type);
2211 	/* check header digest if needed */
2212 	if (pdu->has_hdgst) {
2213 		SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
2214 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
2215 		rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
2216 		if (rc == 0) {
2217 			SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2218 			fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
2219 			nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2220 			return;
2221 
2222 		}
2223 	}
2224 
2225 	switch (pdu->hdr.common.pdu_type) {
2226 	case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
2227 		nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
2228 		break;
2229 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2230 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
2231 		break;
2232 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2233 		nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
2234 		break;
2235 
2236 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2237 		nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
2238 		break;
2239 
2240 	default:
2241 		SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
2242 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2243 		error_offset = 1;
2244 		nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2245 		break;
2246 	}
2247 }
2248 
2249 static void
2250 nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
2251 {
2252 	struct nvme_tcp_pdu *pdu;
2253 	uint32_t error_offset = 0;
2254 	enum spdk_nvme_tcp_term_req_fes fes;
2255 	uint8_t expected_hlen, pdo;
2256 	bool plen_error = false, pdo_error = false;
2257 
2258 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2259 	pdu = tqpair->pdu_in_progress;
2260 	assert(pdu);
2261 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
2262 		if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) {
2263 			SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
2264 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2265 			goto err;
2266 		}
2267 		expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
2268 		if (pdu->hdr.common.plen != expected_hlen) {
2269 			plen_error = true;
2270 		}
2271 	} else {
2272 		if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) {
2273 			SPDK_ERRLOG("The TCP/IP connection is not negotiated\n");
2274 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2275 			goto err;
2276 		}
2277 
2278 		switch (pdu->hdr.common.pdu_type) {
2279 		case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2280 			expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
2281 			pdo = pdu->hdr.common.pdo;
2282 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2283 				pdo_error = true;
2284 				break;
2285 			}
2286 
2287 			if (pdu->hdr.common.plen < expected_hlen) {
2288 				plen_error = true;
2289 			}
2290 			break;
2291 		case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2292 			expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
2293 			pdo = pdu->hdr.common.pdo;
2294 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2295 				pdo_error = true;
2296 				break;
2297 			}
2298 			if (pdu->hdr.common.plen < expected_hlen) {
2299 				plen_error = true;
2300 			}
2301 			break;
2302 
2303 		case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2304 			expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
2305 			if ((pdu->hdr.common.plen <= expected_hlen) ||
2306 			    (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
2307 				plen_error = true;
2308 			}
2309 			break;
2310 
2311 		default:
2312 			SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
2313 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2314 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
2315 			goto err;
2316 		}
2317 	}
2318 
2319 	if (pdu->hdr.common.hlen != expected_hlen) {
2320 		SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
2321 			    pdu->hdr.common.pdu_type,
2322 			    expected_hlen, pdu->hdr.common.hlen, tqpair);
2323 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2324 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
2325 		goto err;
2326 	} else if (pdo_error) {
2327 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2328 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
2329 	} else if (plen_error) {
2330 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2331 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2332 		goto err;
2333 	} else {
2334 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2335 		nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
2336 		return;
2337 	}
2338 err:
2339 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2340 }
2341 
2342 static int
2343 nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
2344 {
2345 	int rc = 0;
2346 	struct nvme_tcp_pdu *pdu;
2347 	enum nvme_tcp_pdu_recv_state prev_state;
2348 	uint32_t data_len;
2349 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2350 			struct spdk_nvmf_tcp_transport, transport);
2351 
2352 	/* The loop here is to allow for several back-to-back state changes. */
2353 	do {
2354 		prev_state = tqpair->recv_state;
2355 		SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
2356 
2357 		pdu = tqpair->pdu_in_progress;
2358 		assert(pdu != NULL ||
2359 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY ||
2360 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_QUIESCING ||
2361 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
2362 
2363 		switch (tqpair->recv_state) {
2364 		/* Wait for the common header  */
2365 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
2366 			if (!pdu) {
2367 				pdu = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
2368 				if (spdk_unlikely(!pdu)) {
2369 					return NVME_TCP_PDU_IN_PROGRESS;
2370 				}
2371 				SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
2372 				tqpair->pdu_in_progress = pdu;
2373 				tqpair->tcp_pdu_working_count++;
2374 			}
2375 			memset(pdu, 0, offsetof(struct nvme_tcp_pdu, qpair));
2376 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2377 		/* FALLTHROUGH */
2378 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
2379 			if (spdk_unlikely(tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING)) {
2380 				return rc;
2381 			}
2382 
2383 			rc = nvme_tcp_read_data(tqpair->sock,
2384 						sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
2385 						(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
2386 			if (rc < 0) {
2387 				SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
2388 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2389 				break;
2390 			} else if (rc > 0) {
2391 				pdu->ch_valid_bytes += rc;
2392 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0);
2393 			}
2394 
2395 			if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
2396 				return NVME_TCP_PDU_IN_PROGRESS;
2397 			}
2398 
2399 			/* The command header of this PDU has now been read from the socket. */
2400 			nvmf_tcp_pdu_ch_handle(tqpair);
2401 			break;
2402 		/* Wait for the pdu specific header  */
2403 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
2404 			rc = nvme_tcp_read_data(tqpair->sock,
2405 						pdu->psh_len - pdu->psh_valid_bytes,
2406 						(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
2407 			if (rc < 0) {
2408 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2409 				break;
2410 			} else if (rc > 0) {
2411 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0);
2412 				pdu->psh_valid_bytes += rc;
2413 			}
2414 
2415 			if (pdu->psh_valid_bytes < pdu->psh_len) {
2416 				return NVME_TCP_PDU_IN_PROGRESS;
2417 			}
2418 
2419 			/* All header(ch, psh, head digist) of this PDU has now been read from the socket. */
2420 			nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
2421 			break;
2422 		/* Wait for the req slot */
2423 		case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
2424 			nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
2425 			break;
2426 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
2427 			/* check whether the data is valid, if not we just return */
2428 			if (!pdu->data_len) {
2429 				return NVME_TCP_PDU_IN_PROGRESS;
2430 			}
2431 
2432 			data_len = pdu->data_len;
2433 			/* data digest */
2434 			if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
2435 					  tqpair->host_ddgst_enable)) {
2436 				data_len += SPDK_NVME_TCP_DIGEST_LEN;
2437 				pdu->ddgst_enable = true;
2438 			}
2439 
2440 			rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
2441 			if (rc < 0) {
2442 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2443 				break;
2444 			}
2445 			pdu->rw_offset += rc;
2446 
2447 			if (pdu->rw_offset < data_len) {
2448 				return NVME_TCP_PDU_IN_PROGRESS;
2449 			}
2450 
2451 			/* Generate and insert DIF to whole data block received if DIF is enabled */
2452 			if (spdk_unlikely(pdu->dif_ctx != NULL) &&
2453 			    spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt, 0, data_len,
2454 						     pdu->dif_ctx) != 0) {
2455 				SPDK_ERRLOG("DIF generate failed\n");
2456 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2457 				break;
2458 			}
2459 
2460 			/* All of this PDU has now been read from the socket. */
2461 			nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2462 			break;
2463 		case NVME_TCP_PDU_RECV_STATE_QUIESCING:
2464 			if (tqpair->tcp_pdu_working_count != 0) {
2465 				return NVME_TCP_PDU_IN_PROGRESS;
2466 			}
2467 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
2468 			break;
2469 		case NVME_TCP_PDU_RECV_STATE_ERROR:
2470 			if (spdk_sock_is_connected(tqpair->sock) && tqpair->wait_terminate) {
2471 				return NVME_TCP_PDU_IN_PROGRESS;
2472 			}
2473 			return NVME_TCP_PDU_FATAL;
2474 		default:
2475 			SPDK_ERRLOG("The state(%d) is invalid\n", tqpair->recv_state);
2476 			abort();
2477 			break;
2478 		}
2479 	} while (tqpair->recv_state != prev_state);
2480 
2481 	return rc;
2482 }
2483 
2484 static inline void *
2485 nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list)
2486 {
2487 	struct spdk_nvmf_tcp_control_msg *msg;
2488 
2489 	assert(list);
2490 
2491 	msg = STAILQ_FIRST(&list->free_msgs);
2492 	if (!msg) {
2493 		SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
2494 		return NULL;
2495 	}
2496 	STAILQ_REMOVE_HEAD(&list->free_msgs, link);
2497 	return msg;
2498 }
2499 
2500 static inline void
2501 nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
2502 {
2503 	struct spdk_nvmf_tcp_control_msg *msg = _msg;
2504 
2505 	assert(list);
2506 	STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
2507 }
2508 
2509 static int
2510 nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
2511 		       struct spdk_nvmf_transport *transport,
2512 		       struct spdk_nvmf_transport_poll_group *group)
2513 {
2514 	struct spdk_nvmf_request		*req = &tcp_req->req;
2515 	struct spdk_nvme_cmd			*cmd;
2516 	struct spdk_nvme_sgl_descriptor		*sgl;
2517 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2518 	enum spdk_nvme_tcp_term_req_fes		fes;
2519 	struct nvme_tcp_pdu			*pdu;
2520 	struct spdk_nvmf_tcp_qpair		*tqpair;
2521 	uint32_t				length, error_offset = 0;
2522 
2523 	cmd = &req->cmd->nvme_cmd;
2524 	sgl = &cmd->dptr.sgl1;
2525 
2526 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
2527 	    sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
2528 		/* get request length from sgl */
2529 		length = sgl->unkeyed.length;
2530 		if (spdk_unlikely(length > transport->opts.max_io_size)) {
2531 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
2532 				    length, transport->opts.max_io_size);
2533 			fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2534 			goto fatal_err;
2535 		}
2536 
2537 		/* fill request length and populate iovs */
2538 		req->length = length;
2539 
2540 		SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
2541 
2542 		if (spdk_unlikely(req->dif_enabled)) {
2543 			req->dif.orig_length = length;
2544 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2545 			req->dif.elba_length = length;
2546 		}
2547 
2548 		if (nvmf_ctrlr_use_zcopy(req)) {
2549 			SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req);
2550 			req->data_from_pool = false;
2551 			return 0;
2552 		}
2553 
2554 		if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
2555 			/* No available buffers. Queue this request up. */
2556 			SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
2557 				      tcp_req);
2558 			return 0;
2559 		}
2560 
2561 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
2562 			      tcp_req, req->iovcnt, req->iov[0].iov_base);
2563 
2564 		return 0;
2565 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
2566 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
2567 		uint64_t offset = sgl->address;
2568 		uint32_t max_len = transport->opts.in_capsule_data_size;
2569 
2570 		assert(tcp_req->has_in_capsule_data);
2571 		/* Capsule Cmd with In-capsule Data should get data length from pdu header */
2572 		tqpair = tcp_req->pdu->qpair;
2573 		/* receiving pdu is not same with the pdu in tcp_req */
2574 		pdu = tqpair->pdu_in_progress;
2575 		length = pdu->hdr.common.plen - pdu->psh_len - sizeof(struct spdk_nvme_tcp_common_pdu_hdr);
2576 		if (tqpair->host_ddgst_enable) {
2577 			length -= SPDK_NVME_TCP_DIGEST_LEN;
2578 		}
2579 		/* This error is not defined in NVMe/TCP spec, take this error as fatal error */
2580 		if (spdk_unlikely(length != sgl->unkeyed.length)) {
2581 			SPDK_ERRLOG("In-Capsule Data length 0x%x is not equal to SGL data length 0x%x\n",
2582 				    length, sgl->unkeyed.length);
2583 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2584 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2585 			goto fatal_err;
2586 		}
2587 
2588 		SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
2589 			      offset, length);
2590 
2591 		/* The NVMe/TCP transport does not use ICDOFF to control the in-capsule data offset. ICDOFF should be '0' */
2592 		if (spdk_unlikely(offset != 0)) {
2593 			/* Not defined fatal error in NVMe/TCP spec, handle this error as a fatal error */
2594 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " should be ZERO in NVMe/TCP\n", offset);
2595 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2596 			error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.address);
2597 			goto fatal_err;
2598 		}
2599 
2600 		if (spdk_unlikely(length > max_len)) {
2601 			/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
2602 			if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
2603 			    (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
2604 
2605 				/* Get a buffer from dedicated list */
2606 				SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
2607 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2608 				assert(tgroup->control_msg_list);
2609 				req->iov[0].iov_base = nvmf_tcp_control_msg_get(tgroup->control_msg_list);
2610 				if (!req->iov[0].iov_base) {
2611 					/* No available buffers. Queue this request up. */
2612 					SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
2613 					return 0;
2614 				}
2615 			} else {
2616 				SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
2617 					    length, max_len);
2618 				fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2619 				goto fatal_err;
2620 			}
2621 		} else {
2622 			req->iov[0].iov_base = tcp_req->buf;
2623 		}
2624 
2625 		req->length = length;
2626 		req->data_from_pool = false;
2627 
2628 		if (spdk_unlikely(req->dif_enabled)) {
2629 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2630 			req->dif.elba_length = length;
2631 		}
2632 
2633 		req->iov[0].iov_len = length;
2634 		req->iovcnt = 1;
2635 
2636 		return 0;
2637 	}
2638 	/* If we want to handle the problem here, then we can't skip the following data segment.
2639 	 * Because this function runs before reading data part, now handle all errors as fatal errors. */
2640 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2641 		    sgl->generic.type, sgl->generic.subtype);
2642 	fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2643 	error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.generic);
2644 fatal_err:
2645 	nvmf_tcp_send_c2h_term_req(tcp_req->pdu->qpair, tcp_req->pdu, fes, error_offset);
2646 	return -1;
2647 }
2648 
2649 static inline enum spdk_nvme_media_error_status_code
2650 nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
2651 	enum spdk_nvme_media_error_status_code result;
2652 
2653 	switch (err_type)
2654 	{
2655 	case SPDK_DIF_REFTAG_ERROR:
2656 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
2657 		break;
2658 	case SPDK_DIF_APPTAG_ERROR:
2659 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
2660 		break;
2661 	case SPDK_DIF_GUARD_ERROR:
2662 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
2663 		break;
2664 	default:
2665 		SPDK_UNREACHABLE();
2666 		break;
2667 	}
2668 
2669 	return result;
2670 }
2671 
2672 static void
2673 _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2674 			struct spdk_nvmf_tcp_req *tcp_req)
2675 {
2676 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
2677 				tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
2678 	struct nvme_tcp_pdu *rsp_pdu;
2679 	struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
2680 	uint32_t plen, pdo, alignment;
2681 	int rc;
2682 
2683 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2684 
2685 	rsp_pdu = tcp_req->pdu;
2686 	assert(rsp_pdu != NULL);
2687 
2688 	c2h_data = &rsp_pdu->hdr.c2h_data;
2689 	c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
2690 	plen = c2h_data->common.hlen = sizeof(*c2h_data);
2691 
2692 	if (tqpair->host_hdgst_enable) {
2693 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2694 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2695 	}
2696 
2697 	/* set the psh */
2698 	c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2699 	c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
2700 	c2h_data->datao = tcp_req->pdu->rw_offset;
2701 
2702 	/* set the padding */
2703 	rsp_pdu->padding_len = 0;
2704 	pdo = plen;
2705 	if (tqpair->cpda) {
2706 		alignment = (tqpair->cpda + 1) << 2;
2707 		if (plen % alignment != 0) {
2708 			pdo = (plen + alignment) / alignment * alignment;
2709 			rsp_pdu->padding_len = pdo - plen;
2710 			plen = pdo;
2711 		}
2712 	}
2713 
2714 	c2h_data->common.pdo = pdo;
2715 	plen += c2h_data->datal;
2716 	if (tqpair->host_ddgst_enable) {
2717 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
2718 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2719 	}
2720 
2721 	c2h_data->common.plen = plen;
2722 
2723 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2724 		rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2725 	}
2726 
2727 	nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2728 				  c2h_data->datao, c2h_data->datal);
2729 
2730 
2731 	c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
2732 	/* Need to send the capsule response if response is not all 0 */
2733 	if (ttransport->tcp_opts.c2h_success &&
2734 	    tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
2735 		c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
2736 	}
2737 
2738 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2739 		struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
2740 		struct spdk_dif_error err_blk = {};
2741 		uint32_t mapped_length = 0;
2742 		uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
2743 		uint32_t ddgst_len = 0;
2744 
2745 		if (tqpair->host_ddgst_enable) {
2746 			/* Data digest consumes additional iov entry */
2747 			available_iovs--;
2748 			/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
2749 			ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
2750 			c2h_data->common.plen -= ddgst_len;
2751 		}
2752 		/* Temp call to estimate if data can be described by limited number of iovs.
2753 		 * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
2754 		nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
2755 				    false, &mapped_length);
2756 
2757 		if (mapped_length != c2h_data->common.plen) {
2758 			c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
2759 			SPDK_DEBUGLOG(nvmf_tcp,
2760 				      "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
2761 				      c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
2762 			c2h_data->common.plen = mapped_length;
2763 
2764 			/* Rebuild pdu->data_iov since data length is changed */
2765 			nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
2766 						  c2h_data->datal);
2767 
2768 			c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
2769 						    SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
2770 		}
2771 
2772 		c2h_data->common.plen += ddgst_len;
2773 
2774 		assert(rsp_pdu->rw_offset <= tcp_req->req.length);
2775 
2776 		rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
2777 					    0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
2778 		if (rc != 0) {
2779 			SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
2780 				    err_blk.err_type, err_blk.err_offset);
2781 			rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2782 			rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
2783 			nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2784 			return;
2785 		}
2786 	}
2787 
2788 	rsp_pdu->rw_offset += c2h_data->datal;
2789 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
2790 }
2791 
2792 static void
2793 nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2794 		       struct spdk_nvmf_tcp_req *tcp_req)
2795 {
2796 	nvmf_tcp_req_pdu_init(tcp_req);
2797 	_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2798 }
2799 
2800 static int
2801 request_transfer_out(struct spdk_nvmf_request *req)
2802 {
2803 	struct spdk_nvmf_tcp_req	*tcp_req;
2804 	struct spdk_nvmf_qpair		*qpair;
2805 	struct spdk_nvmf_tcp_qpair	*tqpair;
2806 	struct spdk_nvme_cpl		*rsp;
2807 
2808 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2809 
2810 	qpair = req->qpair;
2811 	rsp = &req->rsp->nvme_cpl;
2812 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
2813 
2814 	/* Advance our sq_head pointer */
2815 	if (qpair->sq_head == qpair->sq_head_max) {
2816 		qpair->sq_head = 0;
2817 	} else {
2818 		qpair->sq_head++;
2819 	}
2820 	rsp->sqhd = qpair->sq_head;
2821 
2822 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2823 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
2824 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2825 		nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2826 	} else {
2827 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2828 	}
2829 
2830 	return 0;
2831 }
2832 
2833 static void
2834 nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport,
2835 			      struct spdk_nvmf_tcp_qpair *tqpair,
2836 			      struct spdk_nvmf_tcp_req *tcp_req)
2837 {
2838 	enum spdk_nvme_cmd_fuse last, next;
2839 
2840 	last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2841 	next = tcp_req->cmd.fuse;
2842 
2843 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2844 
2845 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2846 		return;
2847 	}
2848 
2849 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2850 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2851 			/* This is a valid pair of fused commands.  Point them at each other
2852 			 * so they can be submitted consecutively once ready to be executed.
2853 			 */
2854 			tqpair->fused_first->fused_pair = tcp_req;
2855 			tcp_req->fused_pair = tqpair->fused_first;
2856 			tqpair->fused_first = NULL;
2857 			return;
2858 		} else {
2859 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2860 			tqpair->fused_first->fused_failed = true;
2861 
2862 			/*
2863 			 * If the last req is in READY_TO_EXECUTE state, then call
2864 			 * nvmf_tcp_req_process(), otherwise nothing else will kick it.
2865 			 */
2866 			if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2867 				nvmf_tcp_req_process(ttransport, tqpair->fused_first);
2868 			}
2869 
2870 			tqpair->fused_first = NULL;
2871 		}
2872 	}
2873 
2874 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2875 		/* Set tqpair->fused_first here so that we know to check that the next request
2876 		 * is a SECOND (and to fail this one if it isn't).
2877 		 */
2878 		tqpair->fused_first = tcp_req;
2879 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2880 		/* Mark this req failed since it is a SECOND and the last one was not a FIRST. */
2881 		tcp_req->fused_failed = true;
2882 	}
2883 }
2884 
2885 static bool
2886 nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
2887 		     struct spdk_nvmf_tcp_req *tcp_req)
2888 {
2889 	struct spdk_nvmf_tcp_qpair		*tqpair;
2890 	uint32_t				plen;
2891 	struct nvme_tcp_pdu			*pdu;
2892 	enum spdk_nvmf_tcp_req_state		prev_state;
2893 	bool					progress = false;
2894 	struct spdk_nvmf_transport		*transport = &ttransport->transport;
2895 	struct spdk_nvmf_transport_poll_group	*group;
2896 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2897 
2898 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2899 	group = &tqpair->group->group;
2900 	assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
2901 
2902 	/* If the qpair is not active, we need to abort the outstanding requests. */
2903 	if (!spdk_nvmf_qpair_is_active(&tqpair->qpair)) {
2904 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
2905 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2906 		}
2907 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
2908 	}
2909 
2910 	/* The loop here is to allow for several back-to-back state changes. */
2911 	do {
2912 		prev_state = tcp_req->state;
2913 
2914 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
2915 			      tqpair);
2916 
2917 		switch (tcp_req->state) {
2918 		case TCP_REQUEST_STATE_FREE:
2919 			/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
2920 			 * to escape this state. */
2921 			break;
2922 		case TCP_REQUEST_STATE_NEW:
2923 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req,
2924 					  tqpair->qpair.queue_depth);
2925 
2926 			/* copy the cmd from the receive pdu */
2927 			tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
2928 
2929 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
2930 				tcp_req->req.dif_enabled = true;
2931 				tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
2932 			}
2933 
2934 			nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req);
2935 
2936 			/* The next state transition depends on the data transfer needs of this request. */
2937 			tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
2938 
2939 			if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2940 				nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_INVALID_OPCODE);
2941 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2942 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2943 				SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
2944 				break;
2945 			}
2946 
2947 			/* If no data to transfer, ready to execute. */
2948 			if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
2949 				/* Reset the tqpair receiving pdu state */
2950 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2951 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2952 				break;
2953 			}
2954 
2955 			pdu = tqpair->pdu_in_progress;
2956 			plen = pdu->hdr.common.hlen;
2957 			if (tqpair->host_hdgst_enable) {
2958 				plen += SPDK_NVME_TCP_DIGEST_LEN;
2959 			}
2960 			if (pdu->hdr.common.plen != plen) {
2961 				tcp_req->has_in_capsule_data = true;
2962 			} else {
2963 				/* Data is transmitted by C2H PDUs */
2964 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2965 			}
2966 
2967 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
2968 			STAILQ_INSERT_TAIL(&group->pending_buf_queue, &tcp_req->req, buf_link);
2969 			break;
2970 		case TCP_REQUEST_STATE_NEED_BUFFER:
2971 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.trace_id, 0,
2972 					  (uintptr_t)tcp_req);
2973 
2974 			assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
2975 
2976 			if (!tcp_req->has_in_capsule_data && (&tcp_req->req != STAILQ_FIRST(&group->pending_buf_queue))) {
2977 				SPDK_DEBUGLOG(nvmf_tcp,
2978 					      "Not the first element to wait for the buf for tcp_req(%p) on tqpair=%p\n",
2979 					      tcp_req, tqpair);
2980 				/* This request needs to wait in line to obtain a buffer */
2981 				break;
2982 			}
2983 
2984 			/* Try to get a data buffer */
2985 			if (nvmf_tcp_req_parse_sgl(tcp_req, transport, group) < 0) {
2986 				break;
2987 			}
2988 
2989 			/* Get a zcopy buffer if the request can be serviced through zcopy */
2990 			if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2991 				if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2992 					assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2993 					tcp_req->req.length = tcp_req->req.dif.elba_length;
2994 				}
2995 
2996 				STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2997 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START);
2998 				spdk_nvmf_request_zcopy_start(&tcp_req->req);
2999 				break;
3000 			}
3001 
3002 			if (tcp_req->req.iovcnt < 1) {
3003 				SPDK_DEBUGLOG(nvmf_tcp, "No buffer allocated for tcp_req(%p) on tqpair(%p\n)",
3004 					      tcp_req, tqpair);
3005 				/* No buffers available. */
3006 				break;
3007 			}
3008 
3009 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
3010 
3011 			/* If data is transferring from host to controller, we need to do a transfer from the host. */
3012 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
3013 				if (tcp_req->req.data_from_pool) {
3014 					SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
3015 					nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
3016 				} else {
3017 					struct nvme_tcp_pdu *pdu;
3018 
3019 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
3020 
3021 					pdu = tqpair->pdu_in_progress;
3022 					SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
3023 						      tqpair);
3024 					/* No need to send r2t, contained in the capsuled data */
3025 					nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
3026 								  0, tcp_req->req.length);
3027 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
3028 				}
3029 				break;
3030 			}
3031 
3032 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
3033 			break;
3034 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3035 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.trace_id, 0,
3036 					  (uintptr_t)tcp_req);
3037 			/* Some external code must kick a request into  TCP_REQUEST_STATE_ZCOPY_START_COMPLETED
3038 			 * to escape this state. */
3039 			break;
3040 		case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
3041 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.trace_id, 0,
3042 					  (uintptr_t)tcp_req);
3043 			if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) {
3044 				SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n",
3045 					      tcp_req, tqpair);
3046 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3047 				break;
3048 			}
3049 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
3050 				SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
3051 				nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
3052 			} else {
3053 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3054 			}
3055 			break;
3056 		case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3057 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.trace_id, 0,
3058 					  (uintptr_t)tcp_req);
3059 			/* The R2T completion or the h2c data incoming will kick it out of this state. */
3060 			break;
3061 		case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3062 
3063 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.trace_id,
3064 					  0, (uintptr_t)tcp_req);
3065 			/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
3066 			 * to escape this state. */
3067 			break;
3068 		case TCP_REQUEST_STATE_READY_TO_EXECUTE:
3069 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.trace_id, 0,
3070 					  (uintptr_t)tcp_req);
3071 
3072 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3073 				assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
3074 				tcp_req->req.length = tcp_req->req.dif.elba_length;
3075 			}
3076 
3077 			if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
3078 				if (tcp_req->fused_failed) {
3079 					/* This request failed FUSED semantics.  Fail it immediately, without
3080 					 * even sending it to the target layer.
3081 					 */
3082 					nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_MISSING_FUSED);
3083 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3084 					break;
3085 				}
3086 
3087 				if (tcp_req->fused_pair == NULL ||
3088 				    tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3089 					/* This request is ready to execute, but either we don't know yet if it's
3090 					 * valid - i.e. this is a FIRST but we haven't received the next request yet),
3091 					 * or the other request of this fused pair isn't ready to execute. So
3092 					 * break here and this request will get processed later either when the
3093 					 * other request is ready or we find that this request isn't valid.
3094 					 */
3095 					break;
3096 				}
3097 			}
3098 
3099 			if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
3100 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
3101 				/* If we get to this point, and this request is a fused command, we know that
3102 				 * it is part of a valid sequence (FIRST followed by a SECOND) and that both
3103 				 * requests are READY_TO_EXECUTE.  So call spdk_nvmf_request_exec() both on this
3104 				 * request, and the other request of the fused pair, in the correct order.
3105 				 * Also clear the ->fused_pair pointers on both requests, since after this point
3106 				 * we no longer need to maintain the relationship between these two requests.
3107 				 */
3108 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
3109 					assert(tcp_req->fused_pair != NULL);
3110 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3111 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3112 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3113 					tcp_req->fused_pair->fused_pair = NULL;
3114 					tcp_req->fused_pair = NULL;
3115 				}
3116 				spdk_nvmf_request_exec(&tcp_req->req);
3117 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
3118 					assert(tcp_req->fused_pair != NULL);
3119 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3120 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3121 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3122 					tcp_req->fused_pair->fused_pair = NULL;
3123 					tcp_req->fused_pair = NULL;
3124 				}
3125 			} else {
3126 				/* For zero-copy, only requests with data coming from host to the
3127 				 * controller can end up here. */
3128 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
3129 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT);
3130 				spdk_nvmf_request_zcopy_end(&tcp_req->req, true);
3131 			}
3132 
3133 			break;
3134 		case TCP_REQUEST_STATE_EXECUTING:
3135 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
3136 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3137 			 * to escape this state. */
3138 			break;
3139 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3140 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.trace_id, 0,
3141 					  (uintptr_t)tcp_req);
3142 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3143 			 * to escape this state. */
3144 			break;
3145 		case TCP_REQUEST_STATE_EXECUTED:
3146 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
3147 
3148 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3149 				tcp_req->req.length = tcp_req->req.dif.orig_length;
3150 			}
3151 
3152 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3153 			break;
3154 		case TCP_REQUEST_STATE_READY_TO_COMPLETE:
3155 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.trace_id, 0,
3156 					  (uintptr_t)tcp_req);
3157 			if (request_transfer_out(&tcp_req->req) != 0) {
3158 				assert(0); /* No good way to handle this currently */
3159 			}
3160 			break;
3161 		case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
3162 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.trace_id,
3163 					  0, (uintptr_t)tcp_req);
3164 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3165 			 * to escape this state. */
3166 			break;
3167 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3168 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.trace_id, 0,
3169 					  (uintptr_t)tcp_req);
3170 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3171 			 * to escape this state. */
3172 			break;
3173 		case TCP_REQUEST_STATE_COMPLETED:
3174 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req,
3175 					  tqpair->qpair.queue_depth);
3176 			/* If there's an outstanding PDU sent to the host, the request is completed
3177 			 * due to the qpair being disconnected.  We must delay the completion until
3178 			 * that write is done to avoid freeing the request twice. */
3179 			if (spdk_unlikely(tcp_req->pdu_in_use)) {
3180 				SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding "
3181 					      "write on req=%p\n", tcp_req);
3182 				/* This can only happen for zcopy requests */
3183 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3184 				assert(!spdk_nvmf_qpair_is_active(&tqpair->qpair));
3185 				break;
3186 			}
3187 
3188 			if (tcp_req->req.data_from_pool) {
3189 				spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
3190 			} else if (spdk_unlikely(tcp_req->has_in_capsule_data &&
3191 						 (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
3192 						  tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
3193 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3194 				assert(tgroup->control_msg_list);
3195 				SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
3196 				nvmf_tcp_control_msg_put(tgroup->control_msg_list,
3197 							 tcp_req->req.iov[0].iov_base);
3198 			} else if (tcp_req->req.zcopy_bdev_io != NULL) {
3199 				/* If the request has an unreleased zcopy bdev_io, it's either a
3200 				 * read, a failed write, or the qpair is being disconnected */
3201 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3202 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
3203 				       spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) ||
3204 				       !spdk_nvmf_qpair_is_active(&tqpair->qpair));
3205 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE);
3206 				spdk_nvmf_request_zcopy_end(&tcp_req->req, false);
3207 				break;
3208 			}
3209 			tcp_req->req.length = 0;
3210 			tcp_req->req.iovcnt = 0;
3211 			tcp_req->fused_failed = false;
3212 			if (tcp_req->fused_pair) {
3213 				/* This req was part of a valid fused pair, but failed before it got to
3214 				 * READ_TO_EXECUTE state.  This means we need to fail the other request
3215 				 * in the pair, because it is no longer part of a valid pair.  If the pair
3216 				 * already reached READY_TO_EXECUTE state, we need to kick it.
3217 				 */
3218 				tcp_req->fused_pair->fused_failed = true;
3219 				if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3220 					nvmf_tcp_req_process(ttransport, tcp_req->fused_pair);
3221 				}
3222 				tcp_req->fused_pair = NULL;
3223 			}
3224 
3225 			nvmf_tcp_req_put(tqpair, tcp_req);
3226 			break;
3227 		case TCP_REQUEST_NUM_STATES:
3228 		default:
3229 			assert(0);
3230 			break;
3231 		}
3232 
3233 		if (tcp_req->state != prev_state) {
3234 			progress = true;
3235 		}
3236 	} while (tcp_req->state != prev_state);
3237 
3238 	return progress;
3239 }
3240 
3241 static void
3242 nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
3243 {
3244 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
3245 	int rc;
3246 
3247 	assert(tqpair != NULL);
3248 	rc = nvmf_tcp_sock_process(tqpair);
3249 
3250 	/* If there was a new socket error, disconnect */
3251 	if (rc < 0) {
3252 		nvmf_tcp_qpair_disconnect(tqpair);
3253 	}
3254 }
3255 
3256 static int
3257 nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3258 			struct spdk_nvmf_qpair *qpair)
3259 {
3260 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3261 	struct spdk_nvmf_tcp_qpair	*tqpair;
3262 	int				rc;
3263 
3264 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3265 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3266 
3267 	rc =  nvmf_tcp_qpair_sock_init(tqpair);
3268 	if (rc != 0) {
3269 		SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
3270 		return -1;
3271 	}
3272 
3273 	rc = nvmf_tcp_qpair_init(&tqpair->qpair);
3274 	if (rc < 0) {
3275 		SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
3276 		return -1;
3277 	}
3278 
3279 	rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
3280 	if (rc < 0) {
3281 		SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
3282 		return -1;
3283 	}
3284 
3285 	rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
3286 				      nvmf_tcp_sock_cb, tqpair);
3287 	if (rc != 0) {
3288 		SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
3289 			    spdk_strerror(errno), errno);
3290 		return -1;
3291 	}
3292 
3293 	tqpair->group = tgroup;
3294 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INVALID);
3295 	TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
3296 
3297 	return 0;
3298 }
3299 
3300 static int
3301 nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3302 			   struct spdk_nvmf_qpair *qpair)
3303 {
3304 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3305 	struct spdk_nvmf_tcp_qpair		*tqpair;
3306 	int				rc;
3307 
3308 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3309 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3310 
3311 	assert(tqpair->group == tgroup);
3312 
3313 	SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
3314 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
3315 		/* Change the state to move the qpair from the await_req list to the main list
3316 		 * and prevent adding it again later by nvmf_tcp_qpair_set_recv_state() */
3317 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
3318 	}
3319 	TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
3320 
3321 	/* Try to force out any pending writes */
3322 	spdk_sock_flush(tqpair->sock);
3323 
3324 	rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
3325 	if (rc != 0) {
3326 		SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
3327 			    spdk_strerror(errno), errno);
3328 	}
3329 
3330 	return rc;
3331 }
3332 
3333 static int
3334 nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
3335 {
3336 	struct spdk_nvmf_tcp_transport *ttransport;
3337 	struct spdk_nvmf_tcp_req *tcp_req;
3338 
3339 	ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3340 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3341 
3342 	switch (tcp_req->state) {
3343 	case TCP_REQUEST_STATE_EXECUTING:
3344 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3345 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3346 		break;
3347 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3348 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED);
3349 		break;
3350 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3351 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3352 		break;
3353 	default:
3354 		SPDK_ERRLOG("Unexpected request state %d (cntlid:%d, qid:%d)\n",
3355 			    tcp_req->state, req->qpair->ctrlr->cntlid, req->qpair->qid);
3356 		assert(0 && "Unexpected request state");
3357 		break;
3358 	}
3359 
3360 	nvmf_tcp_req_process(ttransport, tcp_req);
3361 
3362 	return 0;
3363 }
3364 
3365 static void
3366 nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
3367 		     spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3368 {
3369 	struct spdk_nvmf_tcp_qpair *tqpair;
3370 
3371 	SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
3372 
3373 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3374 
3375 	assert(tqpair->fini_cb_fn == NULL);
3376 	tqpair->fini_cb_fn = cb_fn;
3377 	tqpair->fini_cb_arg = cb_arg;
3378 
3379 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITED);
3380 	nvmf_tcp_qpair_destroy(tqpair);
3381 }
3382 
3383 static int
3384 nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3385 {
3386 	struct spdk_nvmf_tcp_poll_group *tgroup;
3387 	int num_events, rc = 0, rc2;
3388 	struct spdk_nvmf_request *req, *req_tmp;
3389 	struct spdk_nvmf_tcp_req *tcp_req;
3390 	struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp;
3391 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(group->transport,
3392 			struct spdk_nvmf_tcp_transport, transport);
3393 
3394 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3395 
3396 	if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) {
3397 		return 0;
3398 	}
3399 
3400 	STAILQ_FOREACH_SAFE(req, &group->pending_buf_queue, buf_link, req_tmp) {
3401 		tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3402 		if (nvmf_tcp_req_process(ttransport, tcp_req) == false) {
3403 			break;
3404 		}
3405 	}
3406 
3407 	num_events = spdk_sock_group_poll(tgroup->sock_group);
3408 	if (spdk_unlikely(num_events < 0)) {
3409 		SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
3410 	}
3411 
3412 	TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) {
3413 		rc2 = nvmf_tcp_sock_process(tqpair);
3414 
3415 		/* If there was a new socket error, disconnect */
3416 		if (spdk_unlikely(rc2 < 0)) {
3417 			nvmf_tcp_qpair_disconnect(tqpair);
3418 			if (rc == 0) {
3419 				rc = rc2;
3420 			}
3421 		}
3422 	}
3423 
3424 	return rc == 0 ? num_events : rc;
3425 }
3426 
3427 static int
3428 nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
3429 			struct spdk_nvme_transport_id *trid, bool peer)
3430 {
3431 	struct spdk_nvmf_tcp_qpair     *tqpair;
3432 	uint16_t			port;
3433 
3434 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3435 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
3436 
3437 	if (peer) {
3438 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
3439 		port = tqpair->initiator_port;
3440 	} else {
3441 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
3442 		port = tqpair->target_port;
3443 	}
3444 
3445 	if (spdk_sock_is_ipv4(tqpair->sock)) {
3446 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3447 	} else if (spdk_sock_is_ipv6(tqpair->sock)) {
3448 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3449 	} else {
3450 		return -1;
3451 	}
3452 
3453 	snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
3454 	return 0;
3455 }
3456 
3457 static int
3458 nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3459 			      struct spdk_nvme_transport_id *trid)
3460 {
3461 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3462 }
3463 
3464 static int
3465 nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3466 			     struct spdk_nvme_transport_id *trid)
3467 {
3468 	return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
3469 }
3470 
3471 static int
3472 nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3473 			       struct spdk_nvme_transport_id *trid)
3474 {
3475 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3476 }
3477 
3478 static void
3479 nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
3480 			      struct spdk_nvmf_tcp_req *tcp_req_to_abort)
3481 {
3482 	nvmf_tcp_req_set_cpl(tcp_req_to_abort, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_BY_REQUEST);
3483 	nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3484 
3485 	req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
3486 }
3487 
3488 static int
3489 _nvmf_tcp_qpair_abort_request(void *ctx)
3490 {
3491 	struct spdk_nvmf_request *req = ctx;
3492 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
3493 			struct spdk_nvmf_tcp_req, req);
3494 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
3495 					     struct spdk_nvmf_tcp_qpair, qpair);
3496 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
3497 			struct spdk_nvmf_tcp_transport, transport);
3498 	int rc;
3499 
3500 	spdk_poller_unregister(&req->poller);
3501 
3502 	switch (tcp_req_to_abort->state) {
3503 	case TCP_REQUEST_STATE_EXECUTING:
3504 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3505 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3506 		rc = nvmf_ctrlr_abort_request(req);
3507 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
3508 			return SPDK_POLLER_BUSY;
3509 		}
3510 		break;
3511 
3512 	case TCP_REQUEST_STATE_NEED_BUFFER:
3513 		STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue,
3514 			      &tcp_req_to_abort->req, spdk_nvmf_request, buf_link);
3515 
3516 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3517 		nvmf_tcp_req_process(ttransport, tcp_req_to_abort);
3518 		break;
3519 
3520 	case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3521 	case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3522 		if (spdk_get_ticks() < req->timeout_tsc) {
3523 			req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
3524 			return SPDK_POLLER_BUSY;
3525 		}
3526 		break;
3527 
3528 	default:
3529 		/* Requests in other states are either un-abortable (e.g.
3530 		 * TRANSFERRING_CONTROLLER_TO_HOST) or should never end up here, as they're
3531 		 * immediately transitioned to other states in nvmf_tcp_req_process() (e.g.
3532 		 * READY_TO_EXECUTE).  But it is fine to end up here, as we'll simply complete the
3533 		 * abort request with the bit0 of dword0 set (command not aborted).
3534 		 */
3535 		break;
3536 	}
3537 
3538 	spdk_nvmf_request_complete(req);
3539 	return SPDK_POLLER_BUSY;
3540 }
3541 
3542 static void
3543 nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
3544 			     struct spdk_nvmf_request *req)
3545 {
3546 	struct spdk_nvmf_tcp_qpair *tqpair;
3547 	struct spdk_nvmf_tcp_transport *ttransport;
3548 	struct spdk_nvmf_transport *transport;
3549 	uint16_t cid;
3550 	uint32_t i;
3551 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
3552 
3553 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3554 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3555 	transport = &ttransport->transport;
3556 
3557 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
3558 
3559 	for (i = 0; i < tqpair->resource_count; i++) {
3560 		if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
3561 		    tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
3562 			tcp_req_to_abort = &tqpair->reqs[i];
3563 			break;
3564 		}
3565 	}
3566 
3567 	spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, tqpair->qpair.trace_id, 0, (uintptr_t)req);
3568 
3569 	if (tcp_req_to_abort == NULL) {
3570 		spdk_nvmf_request_complete(req);
3571 		return;
3572 	}
3573 
3574 	req->req_to_abort = &tcp_req_to_abort->req;
3575 	req->timeout_tsc = spdk_get_ticks() +
3576 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
3577 	req->poller = NULL;
3578 
3579 	_nvmf_tcp_qpair_abort_request(req);
3580 }
3581 
3582 struct tcp_subsystem_add_host_opts {
3583 	char *psk;
3584 };
3585 
3586 static const struct spdk_json_object_decoder tcp_subsystem_add_host_opts_decoder[] = {
3587 	{"psk", offsetof(struct tcp_subsystem_add_host_opts, psk), spdk_json_decode_string, true},
3588 };
3589 
3590 static int
3591 tcp_load_psk(const char *fname, char *buf, size_t bufsz)
3592 {
3593 	FILE *psk_file;
3594 	struct stat statbuf;
3595 	int rc;
3596 
3597 	if (stat(fname, &statbuf) != 0) {
3598 		SPDK_ERRLOG("Could not read permissions for PSK file\n");
3599 		return -EACCES;
3600 	}
3601 
3602 	if ((statbuf.st_mode & TCP_PSK_INVALID_PERMISSIONS) != 0) {
3603 		SPDK_ERRLOG("Incorrect permissions for PSK file\n");
3604 		return -EPERM;
3605 	}
3606 	if ((size_t)statbuf.st_size > bufsz) {
3607 		SPDK_ERRLOG("Invalid PSK: too long\n");
3608 		return -EINVAL;
3609 	}
3610 	psk_file = fopen(fname, "r");
3611 	if (psk_file == NULL) {
3612 		SPDK_ERRLOG("Could not open PSK file\n");
3613 		return -EINVAL;
3614 	}
3615 
3616 	rc = fread(buf, 1, statbuf.st_size, psk_file);
3617 	if (rc != statbuf.st_size) {
3618 		SPDK_ERRLOG("Failed to read PSK\n");
3619 		fclose(psk_file);
3620 		return -EINVAL;
3621 	}
3622 
3623 	fclose(psk_file);
3624 	return 0;
3625 }
3626 
3627 SPDK_LOG_DEPRECATION_REGISTER(nvmf_tcp_psk_path, "PSK path", "v24.09", 0);
3628 
3629 static int
3630 nvmf_tcp_subsystem_add_host(struct spdk_nvmf_transport *transport,
3631 			    const struct spdk_nvmf_subsystem *subsystem,
3632 			    const char *hostnqn,
3633 			    const struct spdk_json_val *transport_specific)
3634 {
3635 	struct tcp_subsystem_add_host_opts opts;
3636 	struct spdk_nvmf_tcp_transport *ttransport;
3637 	struct tcp_psk_entry *tmp, *entry = NULL;
3638 	uint8_t psk_configured[SPDK_TLS_PSK_MAX_LEN] = {};
3639 	char psk_interchange[SPDK_TLS_PSK_MAX_LEN + 1] = {};
3640 	uint8_t tls_cipher_suite;
3641 	int rc = 0;
3642 	uint8_t psk_retained_hash;
3643 	uint64_t psk_configured_size;
3644 
3645 	if (transport_specific == NULL) {
3646 		return 0;
3647 	}
3648 
3649 	assert(transport != NULL);
3650 	assert(subsystem != NULL);
3651 
3652 	memset(&opts, 0, sizeof(opts));
3653 
3654 	/* Decode PSK (either name of a key or file path) */
3655 	if (spdk_json_decode_object_relaxed(transport_specific, tcp_subsystem_add_host_opts_decoder,
3656 					    SPDK_COUNTOF(tcp_subsystem_add_host_opts_decoder), &opts)) {
3657 		SPDK_ERRLOG("spdk_json_decode_object failed\n");
3658 		return -EINVAL;
3659 	}
3660 
3661 	if (opts.psk == NULL) {
3662 		return 0;
3663 	}
3664 
3665 	entry = calloc(1, sizeof(struct tcp_psk_entry));
3666 	if (entry == NULL) {
3667 		SPDK_ERRLOG("Unable to allocate memory for PSK entry!\n");
3668 		rc = -ENOMEM;
3669 		goto end;
3670 	}
3671 
3672 	entry->key = spdk_keyring_get_key(opts.psk);
3673 	if (entry->key != NULL) {
3674 		rc = spdk_key_get_key(entry->key, psk_interchange, SPDK_TLS_PSK_MAX_LEN);
3675 		if (rc < 0) {
3676 			SPDK_ERRLOG("Failed to retreive PSK '%s'\n", opts.psk);
3677 			rc = -EINVAL;
3678 			goto end;
3679 		}
3680 	} else {
3681 		if (strlen(opts.psk) >= sizeof(entry->psk)) {
3682 			SPDK_ERRLOG("PSK path too long\n");
3683 			rc = -EINVAL;
3684 			goto end;
3685 		}
3686 
3687 		rc = tcp_load_psk(opts.psk, psk_interchange, SPDK_TLS_PSK_MAX_LEN);
3688 		if (rc) {
3689 			SPDK_ERRLOG("Could not retrieve PSK from file\n");
3690 			goto end;
3691 		}
3692 
3693 		SPDK_LOG_DEPRECATED(nvmf_tcp_psk_path);
3694 	}
3695 
3696 	/* Parse PSK interchange to get length of base64 encoded data.
3697 	 * This is then used to decide which cipher suite should be used
3698 	 * to generate PSK identity and TLS PSK later on. */
3699 	rc = nvme_tcp_parse_interchange_psk(psk_interchange, psk_configured, sizeof(psk_configured),
3700 					    &psk_configured_size, &psk_retained_hash);
3701 	if (rc < 0) {
3702 		SPDK_ERRLOG("Failed to parse PSK interchange!\n");
3703 		goto end;
3704 	}
3705 
3706 	/* The Base64 string encodes the configured PSK (32 or 48 bytes binary).
3707 	 * This check also ensures that psk_configured_size is smaller than
3708 	 * psk_retained buffer size. */
3709 	if (psk_configured_size == SHA256_DIGEST_LENGTH) {
3710 		tls_cipher_suite = NVME_TCP_CIPHER_AES_128_GCM_SHA256;
3711 	} else if (psk_configured_size == SHA384_DIGEST_LENGTH) {
3712 		tls_cipher_suite = NVME_TCP_CIPHER_AES_256_GCM_SHA384;
3713 	} else {
3714 		SPDK_ERRLOG("Unrecognized cipher suite!\n");
3715 		rc = -EINVAL;
3716 		goto end;
3717 	}
3718 
3719 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3720 	/* Generate PSK identity. */
3721 	rc = nvme_tcp_generate_psk_identity(entry->pskid, sizeof(entry->pskid), hostnqn,
3722 					    subsystem->subnqn, tls_cipher_suite);
3723 	if (rc) {
3724 		rc = -EINVAL;
3725 		goto end;
3726 	}
3727 	/* Check if PSK identity entry already exists. */
3728 	TAILQ_FOREACH(tmp, &ttransport->psks, link) {
3729 		if (strncmp(tmp->pskid, entry->pskid, NVMF_PSK_IDENTITY_LEN) == 0) {
3730 			SPDK_ERRLOG("Given PSK identity: %s entry already exists!\n", entry->pskid);
3731 			rc = -EEXIST;
3732 			goto end;
3733 		}
3734 	}
3735 
3736 	if (snprintf(entry->hostnqn, sizeof(entry->hostnqn), "%s", hostnqn) < 0) {
3737 		SPDK_ERRLOG("Could not write hostnqn string!\n");
3738 		rc = -EINVAL;
3739 		goto end;
3740 	}
3741 	if (snprintf(entry->subnqn, sizeof(entry->subnqn), "%s", subsystem->subnqn) < 0) {
3742 		SPDK_ERRLOG("Could not write subnqn string!\n");
3743 		rc = -EINVAL;
3744 		goto end;
3745 	}
3746 
3747 	entry->tls_cipher_suite = tls_cipher_suite;
3748 
3749 	/* No hash indicates that Configured PSK must be used as Retained PSK. */
3750 	if (psk_retained_hash == NVME_TCP_HASH_ALGORITHM_NONE) {
3751 		/* Psk configured is either 32 or 48 bytes long. */
3752 		memcpy(entry->psk, psk_configured, psk_configured_size);
3753 		entry->psk_size = psk_configured_size;
3754 	} else {
3755 		/* Derive retained PSK. */
3756 		rc = nvme_tcp_derive_retained_psk(psk_configured, psk_configured_size, hostnqn, entry->psk,
3757 						  SPDK_TLS_PSK_MAX_LEN, psk_retained_hash);
3758 		if (rc < 0) {
3759 			SPDK_ERRLOG("Unable to derive retained PSK!\n");
3760 			goto end;
3761 		}
3762 		entry->psk_size = rc;
3763 	}
3764 
3765 	if (entry->key == NULL) {
3766 		rc = snprintf(entry->psk_path, sizeof(entry->psk_path), "%s", opts.psk);
3767 		if (rc < 0 || (size_t)rc >= sizeof(entry->psk_path)) {
3768 			SPDK_ERRLOG("Could not save PSK path!\n");
3769 			rc = -ENAMETOOLONG;
3770 			goto end;
3771 		}
3772 	}
3773 
3774 	TAILQ_INSERT_TAIL(&ttransport->psks, entry, link);
3775 	rc = 0;
3776 
3777 end:
3778 	spdk_memset_s(psk_configured, sizeof(psk_configured), 0, sizeof(psk_configured));
3779 	spdk_memset_s(psk_interchange, sizeof(psk_interchange), 0, sizeof(psk_interchange));
3780 
3781 	free(opts.psk);
3782 	if (rc != 0) {
3783 		nvmf_tcp_free_psk_entry(entry);
3784 	}
3785 
3786 	return rc;
3787 }
3788 
3789 static void
3790 nvmf_tcp_subsystem_remove_host(struct spdk_nvmf_transport *transport,
3791 			       const struct spdk_nvmf_subsystem *subsystem,
3792 			       const char *hostnqn)
3793 {
3794 	struct spdk_nvmf_tcp_transport *ttransport;
3795 	struct tcp_psk_entry *entry, *tmp;
3796 
3797 	assert(transport != NULL);
3798 	assert(subsystem != NULL);
3799 
3800 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3801 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
3802 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3803 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3804 			TAILQ_REMOVE(&ttransport->psks, entry, link);
3805 			nvmf_tcp_free_psk_entry(entry);
3806 			break;
3807 		}
3808 	}
3809 }
3810 
3811 static void
3812 nvmf_tcp_subsystem_dump_host(struct spdk_nvmf_transport *transport,
3813 			     const struct spdk_nvmf_subsystem *subsystem, const char *hostnqn,
3814 			     struct spdk_json_write_ctx *w)
3815 {
3816 	struct spdk_nvmf_tcp_transport *ttransport;
3817 	struct tcp_psk_entry *entry;
3818 
3819 	assert(transport != NULL);
3820 	assert(subsystem != NULL);
3821 
3822 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3823 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
3824 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3825 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3826 			spdk_json_write_named_string(w, "psk", entry->key ?
3827 						     spdk_key_get_name(entry->key) : entry->psk_path);
3828 			break;
3829 		}
3830 	}
3831 }
3832 
3833 static void
3834 nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
3835 {
3836 	opts->max_queue_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
3837 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
3838 	opts->in_capsule_data_size =	SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
3839 	opts->max_io_size =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
3840 	opts->io_unit_size =		SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
3841 	opts->max_aq_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
3842 	opts->num_shared_buffers =	SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
3843 	opts->buf_cache_size =		SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
3844 	opts->dif_insert_or_strip =	SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
3845 	opts->abort_timeout_sec =	SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
3846 	opts->transport_specific =      NULL;
3847 }
3848 
3849 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
3850 	.name = "TCP",
3851 	.type = SPDK_NVME_TRANSPORT_TCP,
3852 	.opts_init = nvmf_tcp_opts_init,
3853 	.create = nvmf_tcp_create,
3854 	.dump_opts = nvmf_tcp_dump_opts,
3855 	.destroy = nvmf_tcp_destroy,
3856 
3857 	.listen = nvmf_tcp_listen,
3858 	.stop_listen = nvmf_tcp_stop_listen,
3859 
3860 	.listener_discover = nvmf_tcp_discover,
3861 
3862 	.poll_group_create = nvmf_tcp_poll_group_create,
3863 	.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
3864 	.poll_group_destroy = nvmf_tcp_poll_group_destroy,
3865 	.poll_group_add = nvmf_tcp_poll_group_add,
3866 	.poll_group_remove = nvmf_tcp_poll_group_remove,
3867 	.poll_group_poll = nvmf_tcp_poll_group_poll,
3868 
3869 	.req_free = nvmf_tcp_req_free,
3870 	.req_complete = nvmf_tcp_req_complete,
3871 
3872 	.qpair_fini = nvmf_tcp_close_qpair,
3873 	.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
3874 	.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
3875 	.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
3876 	.qpair_abort_request = nvmf_tcp_qpair_abort_request,
3877 	.subsystem_add_host = nvmf_tcp_subsystem_add_host,
3878 	.subsystem_remove_host = nvmf_tcp_subsystem_remove_host,
3879 	.subsystem_dump_host = nvmf_tcp_subsystem_dump_host,
3880 };
3881 
3882 SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
3883 SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)
3884