xref: /spdk/lib/nvmf/tcp.c (revision b69e3ff279affbf4cbc4a09fa1f9c6c2b72397ff)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2018 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/accel.h"
8 #include "spdk/stdinc.h"
9 #include "spdk/crc32.h"
10 #include "spdk/endian.h"
11 #include "spdk/assert.h"
12 #include "spdk/thread.h"
13 #include "spdk/nvmf_transport.h"
14 #include "spdk/string.h"
15 #include "spdk/trace.h"
16 #include "spdk/util.h"
17 #include "spdk/log.h"
18 #include "spdk/keyring.h"
19 
20 #include "spdk_internal/assert.h"
21 #include "spdk_internal/nvme_tcp.h"
22 #include "spdk_internal/sock.h"
23 
24 #include "nvmf_internal.h"
25 #include "transport.h"
26 
27 #include "spdk_internal/trace_defs.h"
28 
29 #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
30 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
31 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
32 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
33 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
34 
35 #define SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH 2
36 #define SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH 65535
37 #define SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH 2
38 #define SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH 4096
39 
40 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH 128
41 #define SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH 128
42 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
43 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
44 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
45 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
46 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
47 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX
48 #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
49 #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
50 
51 #define TCP_PSK_INVALID_PERMISSIONS 0177
52 
53 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
54 static bool g_tls_log = false;
55 
56 /* spdk nvmf related structure */
57 enum spdk_nvmf_tcp_req_state {
58 
59 	/* The request is not currently in use */
60 	TCP_REQUEST_STATE_FREE = 0,
61 
62 	/* Initial state when request first received */
63 	TCP_REQUEST_STATE_NEW = 1,
64 
65 	/* The request is queued until a data buffer is available. */
66 	TCP_REQUEST_STATE_NEED_BUFFER = 2,
67 
68 	/* The request has the data buffer available */
69 	TCP_REQUEST_STATE_HAVE_BUFFER = 3,
70 
71 	/* The request is waiting for zcopy_start to finish */
72 	TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 4,
73 
74 	/* The request has received a zero-copy buffer */
75 	TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 5,
76 
77 	/* The request is currently transferring data from the host to the controller. */
78 	TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 6,
79 
80 	/* The request is waiting for the R2T send acknowledgement. */
81 	TCP_REQUEST_STATE_AWAITING_R2T_ACK = 7,
82 
83 	/* The request is ready to execute at the block device */
84 	TCP_REQUEST_STATE_READY_TO_EXECUTE = 8,
85 
86 	/* The request is currently executing at the block device */
87 	TCP_REQUEST_STATE_EXECUTING = 9,
88 
89 	/* The request is waiting for zcopy buffers to be committed */
90 	TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 10,
91 
92 	/* The request finished executing at the block device */
93 	TCP_REQUEST_STATE_EXECUTED = 11,
94 
95 	/* The request is ready to send a completion */
96 	TCP_REQUEST_STATE_READY_TO_COMPLETE = 12,
97 
98 	/* The request is currently transferring final pdus from the controller to the host. */
99 	TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 13,
100 
101 	/* The request is waiting for zcopy buffers to be released (without committing) */
102 	TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 14,
103 
104 	/* The request completed and can be marked free. */
105 	TCP_REQUEST_STATE_COMPLETED = 15,
106 
107 	/* Terminator */
108 	TCP_REQUEST_NUM_STATES,
109 };
110 
111 static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
112 	"Invalid PDU Header Field",
113 	"PDU Sequence Error",
114 	"Header Digiest Error",
115 	"Data Transfer Out of Range",
116 	"R2T Limit Exceeded",
117 	"Unsupported parameter",
118 };
119 
120 SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
121 {
122 	spdk_trace_register_owner_type(OWNER_TYPE_NVMF_TCP, 't');
123 	spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
124 	spdk_trace_register_description("TCP_REQ_NEW",
125 					TRACE_TCP_REQUEST_STATE_NEW,
126 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1,
127 					SPDK_TRACE_ARG_TYPE_INT, "qd");
128 	spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
129 					TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
130 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
131 					SPDK_TRACE_ARG_TYPE_INT, "");
132 	spdk_trace_register_description("TCP_REQ_HAVE_BUFFER",
133 					TRACE_TCP_REQUEST_STATE_HAVE_BUFFER,
134 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
135 					SPDK_TRACE_ARG_TYPE_INT, "");
136 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START",
137 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START,
138 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
139 					SPDK_TRACE_ARG_TYPE_INT, "");
140 	spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL",
141 					TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED,
142 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
143 					SPDK_TRACE_ARG_TYPE_INT, "");
144 	spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
145 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
146 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
147 					SPDK_TRACE_ARG_TYPE_INT, "");
148 	spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
149 					TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
150 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
151 					SPDK_TRACE_ARG_TYPE_INT, "");
152 	spdk_trace_register_description("TCP_REQ_EXECUTING",
153 					TRACE_TCP_REQUEST_STATE_EXECUTING,
154 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
155 					SPDK_TRACE_ARG_TYPE_INT, "");
156 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT",
157 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT,
158 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
159 					SPDK_TRACE_ARG_TYPE_INT, "");
160 	spdk_trace_register_description("TCP_REQ_EXECUTED",
161 					TRACE_TCP_REQUEST_STATE_EXECUTED,
162 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
163 					SPDK_TRACE_ARG_TYPE_INT, "");
164 	spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
165 					TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
166 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
167 					SPDK_TRACE_ARG_TYPE_INT, "");
168 	spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
169 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
170 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
171 					SPDK_TRACE_ARG_TYPE_INT, "");
172 	spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS",
173 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE,
174 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
175 					SPDK_TRACE_ARG_TYPE_INT, "");
176 	spdk_trace_register_description("TCP_REQ_COMPLETED",
177 					TRACE_TCP_REQUEST_STATE_COMPLETED,
178 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
179 					SPDK_TRACE_ARG_TYPE_INT, "qd");
180 	spdk_trace_register_description("TCP_READ_DONE",
181 					TRACE_TCP_READ_FROM_SOCKET_DONE,
182 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
183 					SPDK_TRACE_ARG_TYPE_INT, "");
184 	spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
185 					TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
186 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
187 					SPDK_TRACE_ARG_TYPE_INT, "");
188 
189 	spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE,
190 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
191 					SPDK_TRACE_ARG_TYPE_INT, "");
192 	spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT,
193 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
194 					SPDK_TRACE_ARG_TYPE_INT, "");
195 	spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE,
196 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
197 					SPDK_TRACE_ARG_TYPE_INT, "state");
198 	spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT,
199 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
200 					SPDK_TRACE_ARG_TYPE_INT, "");
201 	spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY,
202 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
203 					SPDK_TRACE_ARG_TYPE_INT, "");
204 	spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ,
205 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
206 					SPDK_TRACE_ARG_TYPE_INT, "");
207 	spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE,
208 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
209 					SPDK_TRACE_ARG_TYPE_INT, "state");
210 
211 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1);
212 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0);
213 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_QUEUE, OBJECT_NVMF_TCP_IO, 0);
214 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_PEND, OBJECT_NVMF_TCP_IO, 0);
215 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_COMPLETE, OBJECT_NVMF_TCP_IO, 0);
216 }
217 
218 struct spdk_nvmf_tcp_req  {
219 	struct spdk_nvmf_request		req;
220 	struct spdk_nvme_cpl			rsp;
221 	struct spdk_nvme_cmd			cmd;
222 
223 	/* A PDU that can be used for sending responses. This is
224 	 * not the incoming PDU! */
225 	struct nvme_tcp_pdu			*pdu;
226 
227 	/* In-capsule data buffer */
228 	uint8_t					*buf;
229 
230 	struct spdk_nvmf_tcp_req		*fused_pair;
231 
232 	/*
233 	 * The PDU for a request may be used multiple times in serial over
234 	 * the request's lifetime. For example, first to send an R2T, then
235 	 * to send a completion. To catch mistakes where the PDU is used
236 	 * twice at the same time, add a debug flag here for init/fini.
237 	 */
238 	bool					pdu_in_use;
239 	bool					has_in_capsule_data;
240 	bool					fused_failed;
241 
242 	/* transfer_tag */
243 	uint16_t				ttag;
244 
245 	enum spdk_nvmf_tcp_req_state		state;
246 
247 	/*
248 	 * h2c_offset is used when we receive the h2c_data PDU.
249 	 */
250 	uint32_t				h2c_offset;
251 
252 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		link;
253 	TAILQ_ENTRY(spdk_nvmf_tcp_req)		state_link;
254 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		control_msg_link;
255 };
256 
257 struct spdk_nvmf_tcp_qpair {
258 	struct spdk_nvmf_qpair			qpair;
259 	struct spdk_nvmf_tcp_poll_group		*group;
260 	struct spdk_sock			*sock;
261 
262 	enum nvme_tcp_pdu_recv_state		recv_state;
263 	enum nvme_tcp_qpair_state		state;
264 
265 	/* PDU being actively received */
266 	struct nvme_tcp_pdu			*pdu_in_progress;
267 
268 	struct spdk_nvmf_tcp_req		*fused_first;
269 
270 	/* Queues to track the requests in all states */
271 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_working_queue;
272 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_free_queue;
273 	SLIST_HEAD(, nvme_tcp_pdu)		tcp_pdu_free_queue;
274 	/* Number of working pdus */
275 	uint32_t				tcp_pdu_working_count;
276 
277 	/* Number of requests in each state */
278 	uint32_t				state_cntr[TCP_REQUEST_NUM_STATES];
279 
280 	uint8_t					cpda;
281 
282 	bool					host_hdgst_enable;
283 	bool					host_ddgst_enable;
284 
285 	/* This is a spare PDU used for sending special management
286 	 * operations. Primarily, this is used for the initial
287 	 * connection response and c2h termination request. */
288 	struct nvme_tcp_pdu			*mgmt_pdu;
289 
290 	/* Arrays of in-capsule buffers, requests, and pdus.
291 	 * Each array is 'resource_count' number of elements */
292 	void					*bufs;
293 	struct spdk_nvmf_tcp_req		*reqs;
294 	struct nvme_tcp_pdu			*pdus;
295 	uint32_t				resource_count;
296 	uint32_t				recv_buf_size;
297 
298 	struct spdk_nvmf_tcp_port		*port;
299 
300 	/* IP address */
301 	char					initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
302 	char					target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
303 
304 	/* IP port */
305 	uint16_t				initiator_port;
306 	uint16_t				target_port;
307 
308 	/* Wait until the host terminates the connection (e.g. after sending C2HTermReq) */
309 	bool					wait_terminate;
310 
311 	/* Timer used to destroy qpair after detecting transport error issue if initiator does
312 	 *  not close the connection.
313 	 */
314 	struct spdk_poller			*timeout_poller;
315 
316 	spdk_nvmf_transport_qpair_fini_cb	fini_cb_fn;
317 	void					*fini_cb_arg;
318 
319 	TAILQ_ENTRY(spdk_nvmf_tcp_qpair)	link;
320 };
321 
322 struct spdk_nvmf_tcp_control_msg {
323 	STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
324 };
325 
326 struct spdk_nvmf_tcp_control_msg_list {
327 	void *msg_buf;
328 	STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
329 	STAILQ_HEAD(, spdk_nvmf_tcp_req) waiting_for_msg_reqs;
330 };
331 
332 struct spdk_nvmf_tcp_poll_group {
333 	struct spdk_nvmf_transport_poll_group	group;
334 	struct spdk_sock_group			*sock_group;
335 
336 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	qpairs;
337 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	await_req;
338 
339 	struct spdk_io_channel			*accel_channel;
340 	struct spdk_nvmf_tcp_control_msg_list	*control_msg_list;
341 
342 	TAILQ_ENTRY(spdk_nvmf_tcp_poll_group)	link;
343 };
344 
345 struct spdk_nvmf_tcp_port {
346 	const struct spdk_nvme_transport_id	*trid;
347 	struct spdk_sock			*listen_sock;
348 	struct spdk_nvmf_transport		*transport;
349 	TAILQ_ENTRY(spdk_nvmf_tcp_port)		link;
350 };
351 
352 struct tcp_transport_opts {
353 	bool		c2h_success;
354 	uint16_t	control_msg_num;
355 	uint32_t	sock_priority;
356 };
357 
358 struct tcp_psk_entry {
359 	char				hostnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
360 	char				subnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
361 	char				pskid[NVMF_PSK_IDENTITY_LEN];
362 	uint8_t				psk[SPDK_TLS_PSK_MAX_LEN];
363 	struct spdk_key			*key;
364 
365 	/* Original path saved to emit SPDK configuration via "save_config". */
366 	char				psk_path[PATH_MAX];
367 	uint32_t			psk_size;
368 	enum nvme_tcp_cipher_suite	tls_cipher_suite;
369 	TAILQ_ENTRY(tcp_psk_entry)	link;
370 };
371 
372 struct spdk_nvmf_tcp_transport {
373 	struct spdk_nvmf_transport		transport;
374 	struct tcp_transport_opts               tcp_opts;
375 	uint32_t				ack_timeout;
376 
377 	struct spdk_nvmf_tcp_poll_group		*next_pg;
378 
379 	struct spdk_poller			*accept_poller;
380 	struct spdk_sock_group			*listen_sock_group;
381 
382 	TAILQ_HEAD(, spdk_nvmf_tcp_port)	ports;
383 	TAILQ_HEAD(, spdk_nvmf_tcp_poll_group)	poll_groups;
384 
385 	TAILQ_HEAD(, tcp_psk_entry)		psks;
386 };
387 
388 static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
389 	{
390 		"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
391 		spdk_json_decode_bool, true
392 	},
393 	{
394 		"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
395 		spdk_json_decode_uint16, true
396 	},
397 	{
398 		"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
399 		spdk_json_decode_uint32, true
400 	},
401 };
402 
403 static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
404 				 struct spdk_nvmf_tcp_req *tcp_req);
405 static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
406 
407 static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
408 				    struct spdk_nvmf_tcp_req *tcp_req);
409 
410 static inline void
411 nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
412 		       enum spdk_nvmf_tcp_req_state state)
413 {
414 	struct spdk_nvmf_qpair *qpair;
415 	struct spdk_nvmf_tcp_qpair *tqpair;
416 
417 	qpair = tcp_req->req.qpair;
418 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
419 
420 	assert(tqpair->state_cntr[tcp_req->state] > 0);
421 	tqpair->state_cntr[tcp_req->state]--;
422 	tqpair->state_cntr[state]++;
423 
424 	tcp_req->state = state;
425 }
426 
427 static inline struct nvme_tcp_pdu *
428 nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
429 {
430 	assert(tcp_req->pdu_in_use == false);
431 
432 	memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
433 	tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
434 
435 	return tcp_req->pdu;
436 }
437 
438 static struct spdk_nvmf_tcp_req *
439 nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
440 {
441 	struct spdk_nvmf_tcp_req *tcp_req;
442 
443 	tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
444 	if (spdk_unlikely(!tcp_req)) {
445 		return NULL;
446 	}
447 
448 	memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
449 	tcp_req->h2c_offset = 0;
450 	tcp_req->has_in_capsule_data = false;
451 	tcp_req->req.dif_enabled = false;
452 	tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE;
453 
454 	TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
455 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
456 	tqpair->qpair.queue_depth++;
457 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
458 	return tcp_req;
459 }
460 
461 static inline void
462 nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
463 {
464 	assert(!tcp_req->pdu_in_use);
465 
466 	TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
467 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
468 	tqpair->qpair.queue_depth--;
469 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
470 }
471 
472 static void
473 nvmf_tcp_req_get_buffers_done(struct spdk_nvmf_request *req)
474 {
475 	struct spdk_nvmf_tcp_req *tcp_req;
476 	struct spdk_nvmf_transport *transport;
477 	struct spdk_nvmf_tcp_transport *ttransport;
478 
479 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
480 	transport = req->qpair->transport;
481 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
482 
483 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
484 	nvmf_tcp_req_process(ttransport, tcp_req);
485 }
486 
487 static void
488 nvmf_tcp_request_free(void *cb_arg)
489 {
490 	struct spdk_nvmf_tcp_transport *ttransport;
491 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
492 
493 	assert(tcp_req != NULL);
494 
495 	SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
496 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
497 				      struct spdk_nvmf_tcp_transport, transport);
498 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
499 	nvmf_tcp_req_process(ttransport, tcp_req);
500 }
501 
502 static int
503 nvmf_tcp_req_free(struct spdk_nvmf_request *req)
504 {
505 	struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
506 
507 	nvmf_tcp_request_free(tcp_req);
508 
509 	return 0;
510 }
511 
512 static void
513 nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
514 			   enum spdk_nvmf_tcp_req_state state)
515 {
516 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
517 
518 	assert(state != TCP_REQUEST_STATE_FREE);
519 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
520 		if (state == tcp_req->state) {
521 			nvmf_tcp_request_free(tcp_req);
522 		}
523 	}
524 }
525 
526 static inline void
527 nvmf_tcp_request_get_buffers_abort(struct spdk_nvmf_tcp_req *tcp_req)
528 {
529 	/* Request can wait either for the iobuf or control_msg */
530 	struct spdk_nvmf_poll_group *group = tcp_req->req.qpair->group;
531 	struct spdk_nvmf_transport *transport = tcp_req->req.qpair->transport;
532 	struct spdk_nvmf_transport_poll_group *tgroup = nvmf_get_transport_poll_group(group, transport);
533 	struct spdk_nvmf_tcp_poll_group *tcp_group = SPDK_CONTAINEROF(tgroup,
534 			struct spdk_nvmf_tcp_poll_group, group);
535 	struct spdk_nvmf_tcp_req *tmp_req, *abort_req;
536 
537 	assert(tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER);
538 
539 	STAILQ_FOREACH_SAFE(abort_req, &tcp_group->control_msg_list->waiting_for_msg_reqs, control_msg_link,
540 			    tmp_req) {
541 		if (abort_req == tcp_req) {
542 			STAILQ_REMOVE(&tcp_group->control_msg_list->waiting_for_msg_reqs, abort_req, spdk_nvmf_tcp_req,
543 				      control_msg_link);
544 			return;
545 		}
546 	}
547 
548 	if (!nvmf_request_get_buffers_abort(&tcp_req->req)) {
549 		SPDK_ERRLOG("Failed to abort tcp_req=%p\n", tcp_req);
550 		assert(0 && "Should never happen");
551 	}
552 }
553 
554 static void
555 nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
556 {
557 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
558 
559 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
560 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
561 
562 	/* Wipe the requests waiting for buffer from the waiting list */
563 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
564 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
565 			nvmf_tcp_request_get_buffers_abort(tcp_req);
566 		}
567 	}
568 
569 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
570 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
571 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
572 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
573 }
574 
575 static void
576 nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
577 {
578 	int i;
579 	struct spdk_nvmf_tcp_req *tcp_req;
580 
581 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
582 	for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
583 		SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
584 		TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
585 			if ((int)tcp_req->state == i) {
586 				SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
587 				SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
588 			}
589 		}
590 	}
591 }
592 
593 static void
594 _nvmf_tcp_qpair_destroy(void *_tqpair)
595 {
596 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
597 	spdk_nvmf_transport_qpair_fini_cb cb_fn = tqpair->fini_cb_fn;
598 	void *cb_arg = tqpair->fini_cb_arg;
599 	int err = 0;
600 
601 	spdk_trace_record(TRACE_TCP_QP_DESTROY, tqpair->qpair.trace_id, 0, 0);
602 
603 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
604 
605 	err = spdk_sock_close(&tqpair->sock);
606 	assert(err == 0);
607 	nvmf_tcp_cleanup_all_states(tqpair);
608 
609 	if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
610 		SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
611 			    tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
612 			    tqpair->resource_count);
613 		err++;
614 	}
615 
616 	if (err > 0) {
617 		nvmf_tcp_dump_qpair_req_contents(tqpair);
618 	}
619 
620 	/* The timeout poller might still be registered here if we close the qpair before host
621 	 * terminates the connection.
622 	 */
623 	spdk_poller_unregister(&tqpair->timeout_poller);
624 	spdk_dma_free(tqpair->pdus);
625 	free(tqpair->reqs);
626 	spdk_free(tqpair->bufs);
627 	spdk_trace_unregister_owner(tqpair->qpair.trace_id);
628 	free(tqpair);
629 
630 	if (cb_fn != NULL) {
631 		cb_fn(cb_arg);
632 	}
633 
634 	SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
635 }
636 
637 static void
638 nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
639 {
640 	/* Delay the destruction to make sure it isn't performed from the context of a sock
641 	 * callback.  Otherwise, spdk_sock_close() might not abort pending requests, causing their
642 	 * completions to be executed after the qpair is freed.  (Note: this fixed issue #2471.)
643 	 */
644 	spdk_thread_send_msg(spdk_get_thread(), _nvmf_tcp_qpair_destroy, tqpair);
645 }
646 
647 static void
648 nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
649 {
650 	struct spdk_nvmf_tcp_transport	*ttransport;
651 	assert(w != NULL);
652 
653 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
654 	spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
655 	spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
656 }
657 
658 static void
659 nvmf_tcp_free_psk_entry(struct tcp_psk_entry *entry)
660 {
661 	if (entry == NULL) {
662 		return;
663 	}
664 
665 	spdk_memset_s(entry->psk, sizeof(entry->psk), 0, sizeof(entry->psk));
666 	spdk_keyring_put_key(entry->key);
667 	free(entry);
668 }
669 
670 static int
671 nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
672 		 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
673 {
674 	struct spdk_nvmf_tcp_transport	*ttransport;
675 	struct tcp_psk_entry *entry, *tmp;
676 
677 	assert(transport != NULL);
678 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
679 
680 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
681 		TAILQ_REMOVE(&ttransport->psks, entry, link);
682 		nvmf_tcp_free_psk_entry(entry);
683 	}
684 
685 	spdk_poller_unregister(&ttransport->accept_poller);
686 	spdk_sock_group_close(&ttransport->listen_sock_group);
687 	free(ttransport);
688 
689 	if (cb_fn) {
690 		cb_fn(cb_arg);
691 	}
692 	return 0;
693 }
694 
695 static int nvmf_tcp_accept(void *ctx);
696 
697 static void nvmf_tcp_accept_cb(void *ctx, struct spdk_sock_group *group, struct spdk_sock *sock);
698 
699 static struct spdk_nvmf_transport *
700 nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
701 {
702 	struct spdk_nvmf_tcp_transport *ttransport;
703 	uint32_t sge_count;
704 	uint32_t min_shared_buffers;
705 
706 	ttransport = calloc(1, sizeof(*ttransport));
707 	if (!ttransport) {
708 		return NULL;
709 	}
710 
711 	TAILQ_INIT(&ttransport->ports);
712 	TAILQ_INIT(&ttransport->poll_groups);
713 	TAILQ_INIT(&ttransport->psks);
714 
715 	ttransport->transport.ops = &spdk_nvmf_transport_tcp;
716 
717 	ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
718 	ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
719 	ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
720 	if (opts->transport_specific != NULL &&
721 	    spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
722 					    SPDK_COUNTOF(tcp_transport_opts_decoder),
723 					    &ttransport->tcp_opts)) {
724 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
725 		free(ttransport);
726 		return NULL;
727 	}
728 
729 	SPDK_NOTICELOG("*** TCP Transport Init ***\n");
730 
731 	SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
732 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
733 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
734 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
735 		     "  num_shared_buffers=%d, c2h_success=%d,\n"
736 		     "  dif_insert_or_strip=%d, sock_priority=%d\n"
737 		     "  abort_timeout_sec=%d, control_msg_num=%hu\n"
738 		     "  ack_timeout=%d\n",
739 		     opts->max_queue_depth,
740 		     opts->max_io_size,
741 		     opts->max_qpairs_per_ctrlr - 1,
742 		     opts->io_unit_size,
743 		     opts->in_capsule_data_size,
744 		     opts->max_aq_depth,
745 		     opts->num_shared_buffers,
746 		     ttransport->tcp_opts.c2h_success,
747 		     opts->dif_insert_or_strip,
748 		     ttransport->tcp_opts.sock_priority,
749 		     opts->abort_timeout_sec,
750 		     ttransport->tcp_opts.control_msg_num,
751 		     opts->ack_timeout);
752 
753 	if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
754 		SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
755 			    "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
756 			    ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
757 		free(ttransport);
758 		return NULL;
759 	}
760 
761 	if (ttransport->tcp_opts.control_msg_num == 0 &&
762 	    opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
763 		SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
764 			     SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
765 		ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
766 	}
767 
768 	/* I/O unit size cannot be larger than max I/O size */
769 	if (opts->io_unit_size > opts->max_io_size) {
770 		SPDK_WARNLOG("TCP param io_unit_size %u can't be larger than max_io_size %u. Using max_io_size as io_unit_size\n",
771 			     opts->io_unit_size, opts->max_io_size);
772 		opts->io_unit_size = opts->max_io_size;
773 	}
774 
775 	/* In capsule data size cannot be larger than max I/O size */
776 	if (opts->in_capsule_data_size > opts->max_io_size) {
777 		SPDK_WARNLOG("TCP param ICD size %u can't be larger than max_io_size %u. Using max_io_size as ICD size\n",
778 			     opts->io_unit_size, opts->max_io_size);
779 		opts->in_capsule_data_size = opts->max_io_size;
780 	}
781 
782 	/* max IO queue depth cannot be smaller than 2 or larger than 65535.
783 	 * We will not check SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, because max_queue_depth is 16bits and always not larger than 64k. */
784 	if (opts->max_queue_depth < SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH) {
785 		SPDK_WARNLOG("TCP param max_queue_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
786 			     opts->max_queue_depth, SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH,
787 			     SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH);
788 		opts->max_queue_depth = SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
789 	}
790 
791 	/* max admin queue depth cannot be smaller than 2 or larger than 4096 */
792 	if (opts->max_aq_depth < SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH ||
793 	    opts->max_aq_depth > SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH) {
794 		SPDK_WARNLOG("TCP param max_aq_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
795 			     opts->max_aq_depth, SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH,
796 			     SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH);
797 		opts->max_aq_depth = SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
798 	}
799 
800 	sge_count = opts->max_io_size / opts->io_unit_size;
801 	if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
802 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
803 		free(ttransport);
804 		return NULL;
805 	}
806 
807 	/* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */
808 	if (opts->buf_cache_size < UINT32_MAX) {
809 		min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
810 		if (min_shared_buffers > opts->num_shared_buffers) {
811 			SPDK_ERRLOG("There are not enough buffers to satisfy "
812 				    "per-poll group caches for each thread. (%" PRIu32 ") "
813 				    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
814 			SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
815 			free(ttransport);
816 			return NULL;
817 		}
818 	}
819 
820 	ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport,
821 				    opts->acceptor_poll_rate);
822 	if (!ttransport->accept_poller) {
823 		free(ttransport);
824 		return NULL;
825 	}
826 
827 	ttransport->listen_sock_group = spdk_sock_group_create(NULL);
828 	if (ttransport->listen_sock_group == NULL) {
829 		SPDK_ERRLOG("Failed to create socket group for listen sockets\n");
830 		spdk_poller_unregister(&ttransport->accept_poller);
831 		free(ttransport);
832 		return NULL;
833 	}
834 
835 	return &ttransport->transport;
836 }
837 
838 static int
839 nvmf_tcp_trsvcid_to_int(const char *trsvcid)
840 {
841 	unsigned long long ull;
842 	char *end = NULL;
843 
844 	ull = strtoull(trsvcid, &end, 10);
845 	if (end == NULL || end == trsvcid || *end != '\0') {
846 		return -1;
847 	}
848 
849 	/* Valid TCP/IP port numbers are in [1, 65535] */
850 	if (ull == 0 || ull > 65535) {
851 		return -1;
852 	}
853 
854 	return (int)ull;
855 }
856 
857 /**
858  * Canonicalize a listen address trid.
859  */
860 static int
861 nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
862 			   const struct spdk_nvme_transport_id *trid)
863 {
864 	int trsvcid_int;
865 
866 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
867 	if (trsvcid_int < 0) {
868 		return -EINVAL;
869 	}
870 
871 	memset(canon_trid, 0, sizeof(*canon_trid));
872 	spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
873 	canon_trid->adrfam = trid->adrfam;
874 	snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
875 	snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
876 
877 	return 0;
878 }
879 
880 /**
881  * Find an existing listening port.
882  */
883 static struct spdk_nvmf_tcp_port *
884 nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
885 		   const struct spdk_nvme_transport_id *trid)
886 {
887 	struct spdk_nvme_transport_id canon_trid;
888 	struct spdk_nvmf_tcp_port *port;
889 
890 	if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
891 		return NULL;
892 	}
893 
894 	TAILQ_FOREACH(port, &ttransport->ports, link) {
895 		if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
896 			return port;
897 		}
898 	}
899 
900 	return NULL;
901 }
902 
903 static int
904 tcp_sock_get_key(uint8_t *out, int out_len, const char **cipher, const char *pskid,
905 		 void *get_key_ctx)
906 {
907 	struct tcp_psk_entry *entry;
908 	struct spdk_nvmf_tcp_transport *ttransport = get_key_ctx;
909 	size_t psk_len;
910 	int rc;
911 
912 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
913 		if (strcmp(pskid, entry->pskid) != 0) {
914 			continue;
915 		}
916 
917 		psk_len = entry->psk_size;
918 		if ((size_t)out_len < psk_len) {
919 			SPDK_ERRLOG("Out buffer of size: %" PRIu32 " cannot fit PSK of len: %lu\n",
920 				    out_len, psk_len);
921 			return -ENOBUFS;
922 		}
923 
924 		/* Convert PSK to the TLS PSK format. */
925 		rc = nvme_tcp_derive_tls_psk(entry->psk, psk_len, pskid, out, out_len,
926 					     entry->tls_cipher_suite);
927 		if (rc < 0) {
928 			SPDK_ERRLOG("Could not generate TLS PSK\n");
929 		}
930 
931 		switch (entry->tls_cipher_suite) {
932 		case NVME_TCP_CIPHER_AES_128_GCM_SHA256:
933 			*cipher = "TLS_AES_128_GCM_SHA256";
934 			break;
935 		case NVME_TCP_CIPHER_AES_256_GCM_SHA384:
936 			*cipher = "TLS_AES_256_GCM_SHA384";
937 			break;
938 		default:
939 			*cipher = NULL;
940 			return -ENOTSUP;
941 		}
942 
943 		return rc;
944 	}
945 
946 	SPDK_ERRLOG("Could not find PSK for identity: %s\n", pskid);
947 
948 	return -EINVAL;
949 }
950 
951 static int
952 nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
953 		struct spdk_nvmf_listen_opts *listen_opts)
954 {
955 	struct spdk_nvmf_tcp_transport *ttransport;
956 	struct spdk_nvmf_tcp_port *port;
957 	int trsvcid_int;
958 	uint8_t adrfam;
959 	const char *sock_impl_name;
960 	struct spdk_sock_impl_opts impl_opts;
961 	size_t impl_opts_size = sizeof(impl_opts);
962 	struct spdk_sock_opts opts;
963 	int rc;
964 
965 	if (!strlen(trid->trsvcid)) {
966 		SPDK_ERRLOG("Service id is required\n");
967 		return -EINVAL;
968 	}
969 
970 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
971 
972 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
973 	if (trsvcid_int < 0) {
974 		SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
975 		return -EINVAL;
976 	}
977 
978 	port = calloc(1, sizeof(*port));
979 	if (!port) {
980 		SPDK_ERRLOG("Port allocation failed\n");
981 		return -ENOMEM;
982 	}
983 
984 	port->trid = trid;
985 
986 	sock_impl_name = NULL;
987 
988 	opts.opts_size = sizeof(opts);
989 	spdk_sock_get_default_opts(&opts);
990 	opts.priority = ttransport->tcp_opts.sock_priority;
991 	opts.ack_timeout = transport->opts.ack_timeout;
992 	if (listen_opts->secure_channel) {
993 		if (listen_opts->sock_impl &&
994 		    strncmp("ssl", listen_opts->sock_impl, strlen(listen_opts->sock_impl))) {
995 			SPDK_ERRLOG("Enabling secure_channel while specifying a sock_impl different from 'ssl' is unsupported");
996 			free(port);
997 			return -EINVAL;
998 		}
999 		listen_opts->sock_impl = "ssl";
1000 	}
1001 
1002 	if (listen_opts->sock_impl) {
1003 		sock_impl_name = listen_opts->sock_impl;
1004 		spdk_sock_impl_get_opts(sock_impl_name, &impl_opts, &impl_opts_size);
1005 
1006 		if (!strncmp("ssl", sock_impl_name, strlen(sock_impl_name))) {
1007 			if (!g_tls_log) {
1008 				SPDK_NOTICELOG("TLS support is considered experimental\n");
1009 				g_tls_log = true;
1010 			}
1011 			impl_opts.tls_version = SPDK_TLS_VERSION_1_3;
1012 			impl_opts.get_key = tcp_sock_get_key;
1013 			impl_opts.get_key_ctx = ttransport;
1014 			impl_opts.tls_cipher_suites = "TLS_AES_256_GCM_SHA384:TLS_AES_128_GCM_SHA256";
1015 		}
1016 
1017 		opts.impl_opts = &impl_opts;
1018 		opts.impl_opts_size = sizeof(impl_opts);
1019 	}
1020 
1021 	port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
1022 			    sock_impl_name, &opts);
1023 	if (port->listen_sock == NULL) {
1024 		SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
1025 			    trid->traddr, trsvcid_int,
1026 			    spdk_strerror(errno), errno);
1027 		free(port);
1028 		return -errno;
1029 	}
1030 
1031 	if (spdk_sock_is_ipv4(port->listen_sock)) {
1032 		adrfam = SPDK_NVMF_ADRFAM_IPV4;
1033 	} else if (spdk_sock_is_ipv6(port->listen_sock)) {
1034 		adrfam = SPDK_NVMF_ADRFAM_IPV6;
1035 	} else {
1036 		SPDK_ERRLOG("Unhandled socket type\n");
1037 		adrfam = 0;
1038 	}
1039 
1040 	if (adrfam != trid->adrfam) {
1041 		SPDK_ERRLOG("Socket address family mismatch\n");
1042 		spdk_sock_close(&port->listen_sock);
1043 		free(port);
1044 		return -EINVAL;
1045 	}
1046 
1047 	rc = spdk_sock_group_add_sock(ttransport->listen_sock_group, port->listen_sock, nvmf_tcp_accept_cb,
1048 				      port);
1049 	if (rc < 0) {
1050 		SPDK_ERRLOG("Failed to add socket to the listen socket group\n");
1051 		spdk_sock_close(&port->listen_sock);
1052 		free(port);
1053 		return -errno;
1054 	}
1055 
1056 	port->transport = transport;
1057 
1058 	SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
1059 		       trid->traddr, trid->trsvcid);
1060 
1061 	TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
1062 	return 0;
1063 }
1064 
1065 static void
1066 nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
1067 		     const struct spdk_nvme_transport_id *trid)
1068 {
1069 	struct spdk_nvmf_tcp_transport *ttransport;
1070 	struct spdk_nvmf_tcp_port *port;
1071 
1072 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1073 
1074 	SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
1075 		      trid->traddr, trid->trsvcid);
1076 
1077 	port = nvmf_tcp_find_port(ttransport, trid);
1078 	if (port) {
1079 		spdk_sock_group_remove_sock(ttransport->listen_sock_group, port->listen_sock);
1080 		TAILQ_REMOVE(&ttransport->ports, port, link);
1081 		spdk_sock_close(&port->listen_sock);
1082 		free(port);
1083 	}
1084 }
1085 
1086 static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1087 		enum nvme_tcp_pdu_recv_state state);
1088 
1089 static void
1090 nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvme_tcp_qpair_state state)
1091 {
1092 	tqpair->state = state;
1093 	spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0,
1094 			  (uint64_t)tqpair->state);
1095 }
1096 
1097 static void
1098 nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
1099 {
1100 	SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
1101 
1102 	spdk_trace_record(TRACE_TCP_QP_DISCONNECT, tqpair->qpair.trace_id, 0, 0);
1103 
1104 	if (tqpair->state <= NVME_TCP_QPAIR_STATE_RUNNING) {
1105 		nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITING);
1106 		assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1107 		spdk_poller_unregister(&tqpair->timeout_poller);
1108 
1109 		/* This will end up calling nvmf_tcp_close_qpair */
1110 		spdk_nvmf_qpair_disconnect(&tqpair->qpair);
1111 	}
1112 }
1113 
1114 static void
1115 _mgmt_pdu_write_done(void *_tqpair, int err)
1116 {
1117 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
1118 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1119 
1120 	if (spdk_unlikely(err != 0)) {
1121 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1122 		return;
1123 	}
1124 
1125 	assert(pdu->cb_fn != NULL);
1126 	pdu->cb_fn(pdu->cb_arg);
1127 }
1128 
1129 static void
1130 _req_pdu_write_done(void *req, int err)
1131 {
1132 	struct spdk_nvmf_tcp_req *tcp_req = req;
1133 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1134 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1135 
1136 	assert(tcp_req->pdu_in_use);
1137 	tcp_req->pdu_in_use = false;
1138 
1139 	/* If the request is in a completed state, we're waiting for write completion to free it */
1140 	if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) {
1141 		nvmf_tcp_request_free(tcp_req);
1142 		return;
1143 	}
1144 
1145 	if (spdk_unlikely(err != 0)) {
1146 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1147 		return;
1148 	}
1149 
1150 	assert(pdu->cb_fn != NULL);
1151 	pdu->cb_fn(pdu->cb_arg);
1152 }
1153 
1154 static void
1155 _pdu_write_done(struct nvme_tcp_pdu *pdu, int err)
1156 {
1157 	pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err);
1158 }
1159 
1160 static void
1161 _tcp_write_pdu(struct nvme_tcp_pdu *pdu)
1162 {
1163 	int rc;
1164 	uint32_t mapped_length;
1165 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1166 
1167 	pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
1168 			       tqpair->host_hdgst_enable, tqpair->host_ddgst_enable, &mapped_length);
1169 	spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
1170 
1171 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
1172 	    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
1173 		/* Try to force the send immediately. */
1174 		rc = spdk_sock_flush(tqpair->sock);
1175 		if (rc > 0 && (uint32_t)rc == mapped_length) {
1176 			_pdu_write_done(pdu, 0);
1177 		} else {
1178 			SPDK_ERRLOG("Could not write %s to socket: rc=%d, errno=%d\n",
1179 				    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ?
1180 				    "IC_RESP" : "TERM_REQ", rc, errno);
1181 			_pdu_write_done(pdu, rc >= 0 ? -EAGAIN : -errno);
1182 		}
1183 	}
1184 }
1185 
1186 static void
1187 data_crc32_accel_done(void *cb_arg, int status)
1188 {
1189 	struct nvme_tcp_pdu *pdu = cb_arg;
1190 
1191 	if (spdk_unlikely(status)) {
1192 		SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
1193 		_pdu_write_done(pdu, status);
1194 		return;
1195 	}
1196 
1197 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
1198 	MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
1199 
1200 	_tcp_write_pdu(pdu);
1201 }
1202 
1203 static void
1204 pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
1205 {
1206 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1207 	int rc = 0;
1208 
1209 	/* Data Digest */
1210 	if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
1211 		/* Only support this limitated case for the first step */
1212 		if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
1213 				&& tqpair->group)) {
1214 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
1215 						       pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
1216 			if (spdk_likely(rc == 0)) {
1217 				return;
1218 			}
1219 		} else {
1220 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1221 		}
1222 		data_crc32_accel_done(pdu, rc);
1223 	} else {
1224 		_tcp_write_pdu(pdu);
1225 	}
1226 }
1227 
1228 static void
1229 nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1230 			 struct nvme_tcp_pdu *pdu,
1231 			 nvme_tcp_qpair_xfer_complete_cb cb_fn,
1232 			 void *cb_arg)
1233 {
1234 	int hlen;
1235 	uint32_t crc32c;
1236 
1237 	assert(tqpair->pdu_in_progress != pdu);
1238 
1239 	hlen = pdu->hdr.common.hlen;
1240 	pdu->cb_fn = cb_fn;
1241 	pdu->cb_arg = cb_arg;
1242 
1243 	pdu->iov[0].iov_base = &pdu->hdr.raw;
1244 	pdu->iov[0].iov_len = hlen;
1245 
1246 	/* Header Digest */
1247 	if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) {
1248 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1249 		MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
1250 	}
1251 
1252 	/* Data Digest */
1253 	pdu_data_crc32_compute(pdu);
1254 }
1255 
1256 static void
1257 nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1258 			      nvme_tcp_qpair_xfer_complete_cb cb_fn,
1259 			      void *cb_arg)
1260 {
1261 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1262 
1263 	pdu->sock_req.cb_fn = _mgmt_pdu_write_done;
1264 	pdu->sock_req.cb_arg = tqpair;
1265 
1266 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1267 }
1268 
1269 static void
1270 nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1271 			     struct spdk_nvmf_tcp_req *tcp_req,
1272 			     nvme_tcp_qpair_xfer_complete_cb cb_fn,
1273 			     void *cb_arg)
1274 {
1275 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1276 
1277 	pdu->sock_req.cb_fn = _req_pdu_write_done;
1278 	pdu->sock_req.cb_arg = tcp_req;
1279 
1280 	assert(!tcp_req->pdu_in_use);
1281 	tcp_req->pdu_in_use = true;
1282 
1283 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1284 }
1285 
1286 static int
1287 nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
1288 {
1289 	uint32_t i;
1290 	struct spdk_nvmf_transport_opts *opts;
1291 	uint32_t in_capsule_data_size;
1292 
1293 	opts = &tqpair->qpair.transport->opts;
1294 
1295 	in_capsule_data_size = opts->in_capsule_data_size;
1296 	if (opts->dif_insert_or_strip) {
1297 		in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
1298 	}
1299 
1300 	tqpair->resource_count = opts->max_queue_depth;
1301 
1302 	tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
1303 	if (!tqpair->reqs) {
1304 		SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
1305 		return -1;
1306 	}
1307 
1308 	if (in_capsule_data_size) {
1309 		tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
1310 					    NULL, SPDK_ENV_LCORE_ID_ANY,
1311 					    SPDK_MALLOC_DMA);
1312 		if (!tqpair->bufs) {
1313 			SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
1314 			return -1;
1315 		}
1316 	}
1317 	/* prepare memory space for receiving pdus and tcp_req */
1318 	/* Add additional 1 member, which will be used for mgmt_pdu owned by the tqpair */
1319 	tqpair->pdus = spdk_dma_zmalloc((2 * tqpair->resource_count + 1) * sizeof(*tqpair->pdus), 0x1000,
1320 					NULL);
1321 	if (!tqpair->pdus) {
1322 		SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
1323 		return -1;
1324 	}
1325 
1326 	for (i = 0; i < tqpair->resource_count; i++) {
1327 		struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
1328 
1329 		tcp_req->ttag = i + 1;
1330 		tcp_req->req.qpair = &tqpair->qpair;
1331 
1332 		tcp_req->pdu = &tqpair->pdus[i];
1333 		tcp_req->pdu->qpair = tqpair;
1334 
1335 		/* Set up memory to receive commands */
1336 		if (tqpair->bufs) {
1337 			tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
1338 		}
1339 
1340 		/* Set the cmdn and rsp */
1341 		tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
1342 		tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
1343 
1344 		tcp_req->req.stripped_data = NULL;
1345 
1346 		/* Initialize request state to FREE */
1347 		tcp_req->state = TCP_REQUEST_STATE_FREE;
1348 		TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
1349 		tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
1350 	}
1351 
1352 	for (; i < 2 * tqpair->resource_count; i++) {
1353 		struct nvme_tcp_pdu *pdu = &tqpair->pdus[i];
1354 
1355 		pdu->qpair = tqpair;
1356 		SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1357 	}
1358 
1359 	tqpair->mgmt_pdu = &tqpair->pdus[i];
1360 	tqpair->mgmt_pdu->qpair = tqpair;
1361 	tqpair->pdu_in_progress = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
1362 	SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
1363 	tqpair->tcp_pdu_working_count = 1;
1364 
1365 	tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
1366 				 SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1367 
1368 	return 0;
1369 }
1370 
1371 static int
1372 nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
1373 {
1374 	struct spdk_nvmf_tcp_qpair *tqpair;
1375 
1376 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1377 
1378 	SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
1379 
1380 	spdk_trace_record(TRACE_TCP_QP_CREATE, tqpair->qpair.trace_id, 0, 0);
1381 
1382 	/* Initialise request state queues of the qpair */
1383 	TAILQ_INIT(&tqpair->tcp_req_free_queue);
1384 	TAILQ_INIT(&tqpair->tcp_req_working_queue);
1385 	SLIST_INIT(&tqpair->tcp_pdu_free_queue);
1386 	tqpair->qpair.queue_depth = 0;
1387 
1388 	tqpair->host_hdgst_enable = true;
1389 	tqpair->host_ddgst_enable = true;
1390 
1391 	return 0;
1392 }
1393 
1394 static int
1395 nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
1396 {
1397 	char saddr[32], caddr[32];
1398 	uint16_t sport, cport;
1399 	char owner[256];
1400 	int rc;
1401 
1402 	rc = spdk_sock_getaddr(tqpair->sock, saddr, sizeof(saddr), &sport,
1403 			       caddr, sizeof(caddr), &cport);
1404 	if (rc != 0) {
1405 		SPDK_ERRLOG("spdk_sock_getaddr() failed\n");
1406 		return rc;
1407 	}
1408 	snprintf(owner, sizeof(owner), "%s:%d", caddr, cport);
1409 	tqpair->qpair.trace_id = spdk_trace_register_owner(OWNER_TYPE_NVMF_TCP, owner);
1410 	spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, tqpair->qpair.trace_id, 0, 0);
1411 
1412 	/* set low water mark */
1413 	rc = spdk_sock_set_recvlowat(tqpair->sock, 1);
1414 	if (rc != 0) {
1415 		SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
1416 		return rc;
1417 	}
1418 
1419 	return 0;
1420 }
1421 
1422 static void
1423 nvmf_tcp_handle_connect(struct spdk_nvmf_tcp_port *port, struct spdk_sock *sock)
1424 {
1425 	struct spdk_nvmf_tcp_qpair *tqpair;
1426 	int rc;
1427 
1428 	SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
1429 		      port->trid->traddr, port->trid->trsvcid);
1430 
1431 	tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
1432 	if (tqpair == NULL) {
1433 		SPDK_ERRLOG("Could not allocate new connection.\n");
1434 		spdk_sock_close(&sock);
1435 		return;
1436 	}
1437 
1438 	tqpair->sock = sock;
1439 	tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
1440 	tqpair->port = port;
1441 	tqpair->qpair.transport = port->transport;
1442 
1443 	rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
1444 			       sizeof(tqpair->target_addr), &tqpair->target_port,
1445 			       tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
1446 			       &tqpair->initiator_port);
1447 	if (rc < 0) {
1448 		SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
1449 		nvmf_tcp_qpair_destroy(tqpair);
1450 		return;
1451 	}
1452 
1453 	spdk_nvmf_tgt_new_qpair(port->transport->tgt, &tqpair->qpair);
1454 }
1455 
1456 static uint32_t
1457 nvmf_tcp_port_accept(struct spdk_nvmf_tcp_port *port)
1458 {
1459 	struct spdk_sock *sock;
1460 	uint32_t count = 0;
1461 	int i;
1462 
1463 	for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
1464 		sock = spdk_sock_accept(port->listen_sock);
1465 		if (sock == NULL) {
1466 			break;
1467 		}
1468 		count++;
1469 		nvmf_tcp_handle_connect(port, sock);
1470 	}
1471 
1472 	return count;
1473 }
1474 
1475 static int
1476 nvmf_tcp_accept(void *ctx)
1477 {
1478 	struct spdk_nvmf_transport *transport = ctx;
1479 	struct spdk_nvmf_tcp_transport *ttransport;
1480 	int count;
1481 
1482 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1483 
1484 	count = spdk_sock_group_poll(ttransport->listen_sock_group);
1485 	if (count < 0) {
1486 		SPDK_ERRLOG("Fail in TCP listen socket group poll\n");
1487 	}
1488 
1489 	return count != 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1490 }
1491 
1492 static void
1493 nvmf_tcp_accept_cb(void *ctx, struct spdk_sock_group *group, struct spdk_sock *sock)
1494 {
1495 	struct spdk_nvmf_tcp_port *port = ctx;
1496 
1497 	nvmf_tcp_port_accept(port);
1498 }
1499 
1500 static void
1501 nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
1502 		  struct spdk_nvme_transport_id *trid,
1503 		  struct spdk_nvmf_discovery_log_page_entry *entry)
1504 {
1505 	struct spdk_nvmf_tcp_port *port;
1506 	struct spdk_nvmf_tcp_transport *ttransport;
1507 
1508 	entry->trtype = SPDK_NVMF_TRTYPE_TCP;
1509 	entry->adrfam = trid->adrfam;
1510 
1511 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
1512 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
1513 
1514 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1515 	port = nvmf_tcp_find_port(ttransport, trid);
1516 
1517 	assert(port != NULL);
1518 
1519 	if (strcmp(spdk_sock_get_impl_name(port->listen_sock), "ssl") == 0) {
1520 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_REQUIRED;
1521 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_TLS_1_3;
1522 	} else {
1523 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
1524 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
1525 	}
1526 }
1527 
1528 static struct spdk_nvmf_tcp_control_msg_list *
1529 nvmf_tcp_control_msg_list_create(uint16_t num_messages)
1530 {
1531 	struct spdk_nvmf_tcp_control_msg_list *list;
1532 	struct spdk_nvmf_tcp_control_msg *msg;
1533 	uint16_t i;
1534 
1535 	list = calloc(1, sizeof(*list));
1536 	if (!list) {
1537 		SPDK_ERRLOG("Failed to allocate memory for list structure\n");
1538 		return NULL;
1539 	}
1540 
1541 	list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
1542 				     NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
1543 	if (!list->msg_buf) {
1544 		SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
1545 		free(list);
1546 		return NULL;
1547 	}
1548 
1549 	STAILQ_INIT(&list->free_msgs);
1550 	STAILQ_INIT(&list->waiting_for_msg_reqs);
1551 
1552 	for (i = 0; i < num_messages; i++) {
1553 		msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
1554 				SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1555 		STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
1556 	}
1557 
1558 	return list;
1559 }
1560 
1561 static void
1562 nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
1563 {
1564 	if (!list) {
1565 		return;
1566 	}
1567 
1568 	spdk_free(list->msg_buf);
1569 	free(list);
1570 }
1571 
1572 static struct spdk_nvmf_transport_poll_group *
1573 nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport,
1574 			   struct spdk_nvmf_poll_group *group)
1575 {
1576 	struct spdk_nvmf_tcp_transport	*ttransport;
1577 	struct spdk_nvmf_tcp_poll_group *tgroup;
1578 
1579 	if (spdk_interrupt_mode_is_enabled()) {
1580 		SPDK_ERRLOG("TCP transport does not support interrupt mode\n");
1581 		return NULL;
1582 	}
1583 
1584 	tgroup = calloc(1, sizeof(*tgroup));
1585 	if (!tgroup) {
1586 		return NULL;
1587 	}
1588 
1589 	tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
1590 	if (!tgroup->sock_group) {
1591 		goto cleanup;
1592 	}
1593 
1594 	TAILQ_INIT(&tgroup->qpairs);
1595 	TAILQ_INIT(&tgroup->await_req);
1596 
1597 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1598 
1599 	if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
1600 		SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
1601 			      "Creating control messages list\n", transport->opts.in_capsule_data_size,
1602 			      SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1603 		tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
1604 		if (!tgroup->control_msg_list) {
1605 			goto cleanup;
1606 		}
1607 	}
1608 
1609 	tgroup->accel_channel = spdk_accel_get_io_channel();
1610 	if (spdk_unlikely(!tgroup->accel_channel)) {
1611 		SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
1612 		goto cleanup;
1613 	}
1614 
1615 	TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link);
1616 	if (ttransport->next_pg == NULL) {
1617 		ttransport->next_pg = tgroup;
1618 	}
1619 
1620 	return &tgroup->group;
1621 
1622 cleanup:
1623 	nvmf_tcp_poll_group_destroy(&tgroup->group);
1624 	return NULL;
1625 }
1626 
1627 static struct spdk_nvmf_transport_poll_group *
1628 nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
1629 {
1630 	struct spdk_nvmf_tcp_transport *ttransport;
1631 	struct spdk_nvmf_tcp_poll_group **pg;
1632 	struct spdk_nvmf_tcp_qpair *tqpair;
1633 	struct spdk_sock_group *group = NULL, *hint = NULL;
1634 	int rc;
1635 
1636 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
1637 
1638 	if (TAILQ_EMPTY(&ttransport->poll_groups)) {
1639 		return NULL;
1640 	}
1641 
1642 	pg = &ttransport->next_pg;
1643 	assert(*pg != NULL);
1644 	hint = (*pg)->sock_group;
1645 
1646 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1647 	rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint);
1648 	if (rc != 0) {
1649 		return NULL;
1650 	} else if (group != NULL) {
1651 		/* Optimal poll group was found */
1652 		return spdk_sock_group_get_ctx(group);
1653 	}
1654 
1655 	/* The hint was used for optimal poll group, advance next_pg. */
1656 	*pg = TAILQ_NEXT(*pg, link);
1657 	if (*pg == NULL) {
1658 		*pg = TAILQ_FIRST(&ttransport->poll_groups);
1659 	}
1660 
1661 	return spdk_sock_group_get_ctx(hint);
1662 }
1663 
1664 static void
1665 nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
1666 {
1667 	struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup;
1668 	struct spdk_nvmf_tcp_transport *ttransport;
1669 
1670 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
1671 	spdk_sock_group_close(&tgroup->sock_group);
1672 	if (tgroup->control_msg_list) {
1673 		nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
1674 	}
1675 
1676 	if (tgroup->accel_channel) {
1677 		spdk_put_io_channel(tgroup->accel_channel);
1678 	}
1679 
1680 	if (tgroup->group.transport == NULL) {
1681 		/* Transport can be NULL when nvmf_tcp_poll_group_create()
1682 		 * calls this function directly in a failure path. */
1683 		free(tgroup);
1684 		return;
1685 	}
1686 
1687 	ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport);
1688 
1689 	next_tgroup = TAILQ_NEXT(tgroup, link);
1690 	TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link);
1691 	if (next_tgroup == NULL) {
1692 		next_tgroup = TAILQ_FIRST(&ttransport->poll_groups);
1693 	}
1694 	if (ttransport->next_pg == tgroup) {
1695 		ttransport->next_pg = next_tgroup;
1696 	}
1697 
1698 	free(tgroup);
1699 }
1700 
1701 static void
1702 nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1703 			      enum nvme_tcp_pdu_recv_state state)
1704 {
1705 	if (tqpair->recv_state == state) {
1706 		SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
1707 			    tqpair, state);
1708 		return;
1709 	}
1710 
1711 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_QUIESCING)) {
1712 		if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH && tqpair->pdu_in_progress) {
1713 			SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, tqpair->pdu_in_progress, slist);
1714 			tqpair->tcp_pdu_working_count--;
1715 		}
1716 	}
1717 
1718 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_ERROR)) {
1719 		assert(tqpair->tcp_pdu_working_count == 0);
1720 	}
1721 
1722 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1723 		/* When leaving the await req state, move the qpair to the main list */
1724 		TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link);
1725 		TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link);
1726 	} else if (state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1727 		TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link);
1728 		TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link);
1729 	}
1730 
1731 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
1732 	tqpair->recv_state = state;
1733 
1734 	spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0,
1735 			  (uint64_t)tqpair->recv_state);
1736 }
1737 
1738 static int
1739 nvmf_tcp_qpair_handle_timeout(void *ctx)
1740 {
1741 	struct spdk_nvmf_tcp_qpair *tqpair = ctx;
1742 
1743 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1744 
1745 	SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
1746 		    SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
1747 
1748 	nvmf_tcp_qpair_disconnect(tqpair);
1749 	return SPDK_POLLER_BUSY;
1750 }
1751 
1752 static void
1753 nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
1754 {
1755 	struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
1756 
1757 	if (!tqpair->timeout_poller) {
1758 		tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
1759 					 SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
1760 	}
1761 }
1762 
1763 static void
1764 nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
1765 			   enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
1766 {
1767 	struct nvme_tcp_pdu *rsp_pdu;
1768 	struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
1769 	uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
1770 	uint32_t copy_len;
1771 
1772 	rsp_pdu = tqpair->mgmt_pdu;
1773 
1774 	c2h_term_req = &rsp_pdu->hdr.term_req;
1775 	c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
1776 	c2h_term_req->common.hlen = c2h_term_req_hdr_len;
1777 	c2h_term_req->fes = fes;
1778 
1779 	if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1780 	    (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1781 		DSET32(&c2h_term_req->fei, error_offset);
1782 	}
1783 
1784 	copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
1785 
1786 	/* Copy the error info into the buffer */
1787 	memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
1788 	nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
1789 
1790 	/* Contain the header of the wrong received pdu */
1791 	c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
1792 	tqpair->wait_terminate = true;
1793 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1794 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair);
1795 }
1796 
1797 static void
1798 nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1799 				struct spdk_nvmf_tcp_qpair *tqpair,
1800 				struct nvme_tcp_pdu *pdu)
1801 {
1802 	struct spdk_nvmf_tcp_req *tcp_req;
1803 
1804 	assert(pdu->psh_valid_bytes == pdu->psh_len);
1805 	assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
1806 
1807 	tcp_req = nvmf_tcp_req_get(tqpair);
1808 	if (!tcp_req) {
1809 		/* Directly return and make the allocation retry again.  This can happen if we're
1810 		 * using asynchronous writes to send the response to the host or when releasing
1811 		 * zero-copy buffers after a response has been sent.  In both cases, the host might
1812 		 * receive the response before we've finished processing the request and is free to
1813 		 * send another one.
1814 		 */
1815 		if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 ||
1816 		    tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) {
1817 			return;
1818 		}
1819 
1820 		/* The host sent more commands than the maximum queue depth. */
1821 		SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
1822 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1823 		return;
1824 	}
1825 
1826 	pdu->req = tcp_req;
1827 	assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
1828 	nvmf_tcp_req_process(ttransport, tcp_req);
1829 }
1830 
1831 static void
1832 nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1833 				    struct spdk_nvmf_tcp_qpair *tqpair,
1834 				    struct nvme_tcp_pdu *pdu)
1835 {
1836 	struct spdk_nvmf_tcp_req *tcp_req;
1837 	struct spdk_nvme_tcp_cmd *capsule_cmd;
1838 	uint32_t error_offset = 0;
1839 	enum spdk_nvme_tcp_term_req_fes fes;
1840 	struct spdk_nvme_cpl *rsp;
1841 
1842 	capsule_cmd = &pdu->hdr.capsule_cmd;
1843 	tcp_req = pdu->req;
1844 	assert(tcp_req != NULL);
1845 
1846 	/* Zero-copy requests don't support ICD */
1847 	assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req));
1848 
1849 	if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
1850 		SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
1851 			    SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
1852 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1853 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
1854 		goto err;
1855 	}
1856 
1857 	rsp = &tcp_req->req.rsp->nvme_cpl;
1858 	if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1859 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1860 	} else {
1861 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1862 	}
1863 
1864 	nvmf_tcp_req_process(ttransport, tcp_req);
1865 
1866 	return;
1867 err:
1868 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1869 }
1870 
1871 static void
1872 nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1873 			     struct spdk_nvmf_tcp_qpair *tqpair,
1874 			     struct nvme_tcp_pdu *pdu)
1875 {
1876 	struct spdk_nvmf_tcp_req *tcp_req;
1877 	uint32_t error_offset = 0;
1878 	enum spdk_nvme_tcp_term_req_fes fes = 0;
1879 	struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
1880 
1881 	h2c_data = &pdu->hdr.h2c_data;
1882 
1883 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
1884 		      tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
1885 
1886 	if (h2c_data->ttag > tqpair->resource_count) {
1887 		SPDK_DEBUGLOG(nvmf_tcp, "ttag %u is larger than allowed %u.\n", h2c_data->ttag,
1888 			      tqpair->resource_count);
1889 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1890 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1891 		goto err;
1892 	}
1893 
1894 	tcp_req = &tqpair->reqs[h2c_data->ttag - 1];
1895 
1896 	if (spdk_unlikely(tcp_req->state != TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER &&
1897 			  tcp_req->state != TCP_REQUEST_STATE_AWAITING_R2T_ACK)) {
1898 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, has error state in %d\n", tcp_req, tqpair,
1899 			      tcp_req->state);
1900 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1901 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1902 		goto err;
1903 	}
1904 
1905 	if (spdk_unlikely(tcp_req->req.cmd->nvme_cmd.cid != h2c_data->cccid)) {
1906 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, expected %u but %u for cccid.\n", tcp_req, tqpair,
1907 			      tcp_req->req.cmd->nvme_cmd.cid, h2c_data->cccid);
1908 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1909 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
1910 		goto err;
1911 	}
1912 
1913 	if (tcp_req->h2c_offset != h2c_data->datao) {
1914 		SPDK_DEBUGLOG(nvmf_tcp,
1915 			      "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
1916 			      tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
1917 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1918 		goto err;
1919 	}
1920 
1921 	if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
1922 		SPDK_DEBUGLOG(nvmf_tcp,
1923 			      "tcp_req(%p), tqpair=%p,  (datao=%u + datal=%u) exceeds requested length=%u\n",
1924 			      tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
1925 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1926 		goto err;
1927 	}
1928 
1929 	pdu->req = tcp_req;
1930 
1931 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
1932 		pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
1933 	}
1934 
1935 	nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
1936 				  h2c_data->datao, h2c_data->datal);
1937 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1938 	return;
1939 
1940 err:
1941 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1942 }
1943 
1944 static void
1945 nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
1946 			       struct spdk_nvmf_tcp_qpair *tqpair)
1947 {
1948 	struct nvme_tcp_pdu *rsp_pdu;
1949 	struct spdk_nvme_tcp_rsp *capsule_resp;
1950 
1951 	SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
1952 
1953 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1954 	assert(rsp_pdu != NULL);
1955 
1956 	capsule_resp = &rsp_pdu->hdr.capsule_resp;
1957 	capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
1958 	capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
1959 	capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
1960 	if (tqpair->host_hdgst_enable) {
1961 		capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1962 		capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1963 	}
1964 
1965 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req);
1966 }
1967 
1968 static void
1969 nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
1970 {
1971 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1972 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
1973 					     struct spdk_nvmf_tcp_qpair, qpair);
1974 
1975 	assert(tqpair != NULL);
1976 
1977 	if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
1978 		SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
1979 			      tcp_req->req.length);
1980 		_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
1981 		return;
1982 	}
1983 
1984 	if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
1985 		nvmf_tcp_request_free(tcp_req);
1986 	} else {
1987 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
1988 	}
1989 }
1990 
1991 static void
1992 nvmf_tcp_r2t_complete(void *cb_arg)
1993 {
1994 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1995 	struct spdk_nvmf_tcp_transport *ttransport;
1996 
1997 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
1998 				      struct spdk_nvmf_tcp_transport, transport);
1999 
2000 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
2001 
2002 	if (tcp_req->h2c_offset == tcp_req->req.length) {
2003 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2004 		nvmf_tcp_req_process(ttransport, tcp_req);
2005 	}
2006 }
2007 
2008 static void
2009 nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
2010 		      struct spdk_nvmf_tcp_req *tcp_req)
2011 {
2012 	struct nvme_tcp_pdu *rsp_pdu;
2013 	struct spdk_nvme_tcp_r2t_hdr *r2t;
2014 
2015 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
2016 	assert(rsp_pdu != NULL);
2017 
2018 	r2t = &rsp_pdu->hdr.r2t;
2019 	r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
2020 	r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
2021 
2022 	if (tqpair->host_hdgst_enable) {
2023 		r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2024 		r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
2025 	}
2026 
2027 	r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2028 	r2t->ttag = tcp_req->ttag;
2029 	r2t->r2to = tcp_req->h2c_offset;
2030 	r2t->r2tl = tcp_req->req.length;
2031 
2032 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
2033 
2034 	SPDK_DEBUGLOG(nvmf_tcp,
2035 		      "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
2036 		      tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
2037 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req);
2038 }
2039 
2040 static void
2041 nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
2042 				 struct spdk_nvmf_tcp_qpair *tqpair,
2043 				 struct nvme_tcp_pdu *pdu)
2044 {
2045 	struct spdk_nvmf_tcp_req *tcp_req;
2046 	struct spdk_nvme_cpl *rsp;
2047 
2048 	tcp_req = pdu->req;
2049 	assert(tcp_req != NULL);
2050 
2051 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2052 
2053 	tcp_req->h2c_offset += pdu->data_len;
2054 
2055 	/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
2056 	 * acknowledged before moving on. */
2057 	if (tcp_req->h2c_offset == tcp_req->req.length &&
2058 	    tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
2059 		/* After receiving all the h2c data, we need to check whether there is
2060 		 * transient transport error */
2061 		rsp = &tcp_req->req.rsp->nvme_cpl;
2062 		if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
2063 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2064 		} else {
2065 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2066 		}
2067 		nvmf_tcp_req_process(ttransport, tcp_req);
2068 	}
2069 }
2070 
2071 static void
2072 nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
2073 {
2074 	SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
2075 		    spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
2076 	if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
2077 	    (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
2078 		SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
2079 			      DGET32(h2c_term_req->fei));
2080 	}
2081 }
2082 
2083 static void
2084 nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2085 				 struct nvme_tcp_pdu *pdu)
2086 {
2087 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
2088 	uint32_t error_offset = 0;
2089 	enum spdk_nvme_tcp_term_req_fes fes;
2090 
2091 	if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
2092 		SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
2093 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2094 		error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
2095 		goto end;
2096 	}
2097 
2098 	/* set the data buffer */
2099 	nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
2100 			      h2c_term_req->common.plen - h2c_term_req->common.hlen);
2101 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2102 	return;
2103 end:
2104 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2105 }
2106 
2107 static void
2108 nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2109 				     struct nvme_tcp_pdu *pdu)
2110 {
2111 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
2112 
2113 	nvmf_tcp_h2c_term_req_dump(h2c_term_req);
2114 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2115 }
2116 
2117 static void
2118 _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2119 {
2120 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2121 			struct spdk_nvmf_tcp_transport, transport);
2122 
2123 	switch (pdu->hdr.common.pdu_type) {
2124 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2125 		nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
2126 		break;
2127 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2128 		nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
2129 		break;
2130 
2131 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2132 		nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
2133 		break;
2134 
2135 	default:
2136 		/* The code should not go to here */
2137 		SPDK_ERRLOG("ERROR pdu type %d\n", pdu->hdr.common.pdu_type);
2138 		break;
2139 	}
2140 	SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
2141 	tqpair->tcp_pdu_working_count--;
2142 }
2143 
2144 static inline void
2145 nvmf_tcp_req_set_cpl(struct spdk_nvmf_tcp_req *treq, int sct, int sc)
2146 {
2147 	treq->req.rsp->nvme_cpl.status.sct = sct;
2148 	treq->req.rsp->nvme_cpl.status.sc = sc;
2149 	treq->req.rsp->nvme_cpl.cid = treq->req.cmd->nvme_cmd.cid;
2150 }
2151 
2152 static void
2153 data_crc32_calc_done(void *cb_arg, int status)
2154 {
2155 	struct nvme_tcp_pdu *pdu = cb_arg;
2156 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
2157 
2158 	/* async crc32 calculation is failed and use direct calculation to check */
2159 	if (spdk_unlikely(status)) {
2160 		SPDK_ERRLOG("Data digest on tqpair=(%p) with pdu=%p failed to be calculated asynchronously\n",
2161 			    tqpair, pdu);
2162 		pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2163 	}
2164 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
2165 	if (!MATCH_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32)) {
2166 		SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2167 		assert(pdu->req != NULL);
2168 		nvmf_tcp_req_set_cpl(pdu->req, SPDK_NVME_SCT_GENERIC,
2169 				     SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR);
2170 	}
2171 	_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2172 }
2173 
2174 static void
2175 nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2176 {
2177 	int rc = 0;
2178 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2179 	tqpair->pdu_in_progress = NULL;
2180 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2181 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2182 	/* check data digest if need */
2183 	if (pdu->ddgst_enable) {
2184 		if (tqpair->qpair.qid != 0 && !pdu->dif_ctx && tqpair->group &&
2185 		    (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)) {
2186 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
2187 						       pdu->data_iovcnt, 0, data_crc32_calc_done, pdu);
2188 			if (spdk_likely(rc == 0)) {
2189 				return;
2190 			}
2191 		} else {
2192 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2193 		}
2194 		data_crc32_calc_done(pdu, rc);
2195 	} else {
2196 		_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2197 	}
2198 }
2199 
2200 static void
2201 nvmf_tcp_send_icresp_complete(void *cb_arg)
2202 {
2203 	struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
2204 
2205 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_RUNNING);
2206 }
2207 
2208 static void
2209 nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
2210 		      struct spdk_nvmf_tcp_qpair *tqpair,
2211 		      struct nvme_tcp_pdu *pdu)
2212 {
2213 	struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
2214 	struct nvme_tcp_pdu *rsp_pdu;
2215 	struct spdk_nvme_tcp_ic_resp *ic_resp;
2216 	uint32_t error_offset = 0;
2217 	enum spdk_nvme_tcp_term_req_fes fes;
2218 
2219 	/* Only PFV 0 is defined currently */
2220 	if (ic_req->pfv != 0) {
2221 		SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
2222 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2223 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
2224 		goto end;
2225 	}
2226 
2227 	/* This value is 0’s based value in units of dwords should not be larger than SPDK_NVME_TCP_HPDA_MAX */
2228 	if (ic_req->hpda > SPDK_NVME_TCP_HPDA_MAX) {
2229 		SPDK_ERRLOG("ICReq HPDA out of range 0 to 31, got %u\n", ic_req->hpda);
2230 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2231 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, hpda);
2232 		goto end;
2233 	}
2234 
2235 	/* MAXR2T is 0's based */
2236 	SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
2237 
2238 	tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
2239 	if (!tqpair->host_hdgst_enable) {
2240 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2241 	}
2242 
2243 	tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
2244 	if (!tqpair->host_ddgst_enable) {
2245 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2246 	}
2247 
2248 	tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
2249 	/* Now that we know whether digests are enabled, properly size the receive buffer */
2250 	if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
2251 		SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
2252 			     tqpair,
2253 			     tqpair->recv_buf_size);
2254 		/* Not fatal. */
2255 	}
2256 
2257 	tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
2258 	SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
2259 
2260 	rsp_pdu = tqpair->mgmt_pdu;
2261 
2262 	ic_resp = &rsp_pdu->hdr.ic_resp;
2263 	ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
2264 	ic_resp->common.hlen = ic_resp->common.plen =  sizeof(*ic_resp);
2265 	ic_resp->pfv = 0;
2266 	ic_resp->cpda = tqpair->cpda;
2267 	ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
2268 	ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
2269 	ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
2270 
2271 	SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
2272 	SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
2273 
2274 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INITIALIZING);
2275 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair);
2276 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2277 	return;
2278 end:
2279 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2280 }
2281 
2282 static void
2283 nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2284 			struct spdk_nvmf_tcp_transport *ttransport)
2285 {
2286 	struct nvme_tcp_pdu *pdu;
2287 	int rc;
2288 	uint32_t crc32c, error_offset = 0;
2289 	enum spdk_nvme_tcp_term_req_fes fes;
2290 
2291 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2292 	pdu = tqpair->pdu_in_progress;
2293 
2294 	SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
2295 		      pdu->hdr.common.pdu_type);
2296 	/* check header digest if needed */
2297 	if (pdu->has_hdgst) {
2298 		SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
2299 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
2300 		rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
2301 		if (rc == 0) {
2302 			SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2303 			fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
2304 			nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2305 			return;
2306 
2307 		}
2308 	}
2309 
2310 	switch (pdu->hdr.common.pdu_type) {
2311 	case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
2312 		nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
2313 		break;
2314 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2315 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
2316 		break;
2317 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2318 		nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
2319 		break;
2320 
2321 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2322 		nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
2323 		break;
2324 
2325 	default:
2326 		SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
2327 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2328 		error_offset = 1;
2329 		nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2330 		break;
2331 	}
2332 }
2333 
2334 static void
2335 nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
2336 {
2337 	struct nvme_tcp_pdu *pdu;
2338 	uint32_t error_offset = 0;
2339 	enum spdk_nvme_tcp_term_req_fes fes;
2340 	uint8_t expected_hlen, pdo;
2341 	bool plen_error = false, pdo_error = false;
2342 
2343 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2344 	pdu = tqpair->pdu_in_progress;
2345 	assert(pdu);
2346 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
2347 		if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) {
2348 			SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
2349 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2350 			goto err;
2351 		}
2352 		expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
2353 		if (pdu->hdr.common.plen != expected_hlen) {
2354 			plen_error = true;
2355 		}
2356 	} else {
2357 		if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) {
2358 			SPDK_ERRLOG("The TCP/IP connection is not negotiated\n");
2359 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2360 			goto err;
2361 		}
2362 
2363 		switch (pdu->hdr.common.pdu_type) {
2364 		case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2365 			expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
2366 			pdo = pdu->hdr.common.pdo;
2367 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2368 				pdo_error = true;
2369 				break;
2370 			}
2371 
2372 			if (pdu->hdr.common.plen < expected_hlen) {
2373 				plen_error = true;
2374 			}
2375 			break;
2376 		case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2377 			expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
2378 			pdo = pdu->hdr.common.pdo;
2379 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2380 				pdo_error = true;
2381 				break;
2382 			}
2383 			if (pdu->hdr.common.plen < expected_hlen) {
2384 				plen_error = true;
2385 			}
2386 			break;
2387 
2388 		case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2389 			expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
2390 			if ((pdu->hdr.common.plen <= expected_hlen) ||
2391 			    (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
2392 				plen_error = true;
2393 			}
2394 			break;
2395 
2396 		default:
2397 			SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
2398 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2399 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
2400 			goto err;
2401 		}
2402 	}
2403 
2404 	if (pdu->hdr.common.hlen != expected_hlen) {
2405 		SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
2406 			    pdu->hdr.common.pdu_type,
2407 			    expected_hlen, pdu->hdr.common.hlen, tqpair);
2408 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2409 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
2410 		goto err;
2411 	} else if (pdo_error) {
2412 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2413 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
2414 	} else if (plen_error) {
2415 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2416 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2417 		goto err;
2418 	} else {
2419 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2420 		nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
2421 		return;
2422 	}
2423 err:
2424 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2425 }
2426 
2427 static int
2428 nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
2429 {
2430 	int rc = 0;
2431 	struct nvme_tcp_pdu *pdu;
2432 	enum nvme_tcp_pdu_recv_state prev_state;
2433 	uint32_t data_len;
2434 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2435 			struct spdk_nvmf_tcp_transport, transport);
2436 
2437 	/* The loop here is to allow for several back-to-back state changes. */
2438 	do {
2439 		prev_state = tqpair->recv_state;
2440 		SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
2441 
2442 		pdu = tqpair->pdu_in_progress;
2443 		assert(pdu != NULL ||
2444 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY ||
2445 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_QUIESCING ||
2446 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
2447 
2448 		switch (tqpair->recv_state) {
2449 		/* Wait for the common header  */
2450 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
2451 			if (!pdu) {
2452 				pdu = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
2453 				if (spdk_unlikely(!pdu)) {
2454 					return NVME_TCP_PDU_IN_PROGRESS;
2455 				}
2456 				SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
2457 				tqpair->pdu_in_progress = pdu;
2458 				tqpair->tcp_pdu_working_count++;
2459 			}
2460 			memset(pdu, 0, offsetof(struct nvme_tcp_pdu, qpair));
2461 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2462 		/* FALLTHROUGH */
2463 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
2464 			if (spdk_unlikely(tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING)) {
2465 				return rc;
2466 			}
2467 
2468 			rc = nvme_tcp_read_data(tqpair->sock,
2469 						sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
2470 						(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
2471 			if (rc < 0) {
2472 				SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
2473 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2474 				break;
2475 			} else if (rc > 0) {
2476 				pdu->ch_valid_bytes += rc;
2477 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0);
2478 			}
2479 
2480 			if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
2481 				return NVME_TCP_PDU_IN_PROGRESS;
2482 			}
2483 
2484 			/* The command header of this PDU has now been read from the socket. */
2485 			nvmf_tcp_pdu_ch_handle(tqpair);
2486 			break;
2487 		/* Wait for the pdu specific header  */
2488 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
2489 			rc = nvme_tcp_read_data(tqpair->sock,
2490 						pdu->psh_len - pdu->psh_valid_bytes,
2491 						(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
2492 			if (rc < 0) {
2493 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2494 				break;
2495 			} else if (rc > 0) {
2496 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0);
2497 				pdu->psh_valid_bytes += rc;
2498 			}
2499 
2500 			if (pdu->psh_valid_bytes < pdu->psh_len) {
2501 				return NVME_TCP_PDU_IN_PROGRESS;
2502 			}
2503 
2504 			/* All header(ch, psh, head digits) of this PDU has now been read from the socket. */
2505 			nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
2506 			break;
2507 		/* Wait for the req slot */
2508 		case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
2509 			nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
2510 			break;
2511 		/* Wait for the request processing loop to acquire a buffer for the PDU */
2512 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_BUF:
2513 			break;
2514 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
2515 			/* check whether the data is valid, if not we just return */
2516 			if (!pdu->data_len) {
2517 				return NVME_TCP_PDU_IN_PROGRESS;
2518 			}
2519 
2520 			data_len = pdu->data_len;
2521 			/* data digest */
2522 			if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
2523 					  tqpair->host_ddgst_enable)) {
2524 				data_len += SPDK_NVME_TCP_DIGEST_LEN;
2525 				pdu->ddgst_enable = true;
2526 			}
2527 
2528 			rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
2529 			if (rc < 0) {
2530 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2531 				break;
2532 			}
2533 			pdu->rw_offset += rc;
2534 
2535 			if (pdu->rw_offset < data_len) {
2536 				return NVME_TCP_PDU_IN_PROGRESS;
2537 			}
2538 
2539 			/* Generate and insert DIF to whole data block received if DIF is enabled */
2540 			if (spdk_unlikely(pdu->dif_ctx != NULL) &&
2541 			    spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt, 0, data_len,
2542 						     pdu->dif_ctx) != 0) {
2543 				SPDK_ERRLOG("DIF generate failed\n");
2544 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2545 				break;
2546 			}
2547 
2548 			/* All of this PDU has now been read from the socket. */
2549 			nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2550 			break;
2551 		case NVME_TCP_PDU_RECV_STATE_QUIESCING:
2552 			if (tqpair->tcp_pdu_working_count != 0) {
2553 				return NVME_TCP_PDU_IN_PROGRESS;
2554 			}
2555 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
2556 			break;
2557 		case NVME_TCP_PDU_RECV_STATE_ERROR:
2558 			if (spdk_sock_is_connected(tqpair->sock) && tqpair->wait_terminate) {
2559 				return NVME_TCP_PDU_IN_PROGRESS;
2560 			}
2561 			return NVME_TCP_PDU_FATAL;
2562 		default:
2563 			SPDK_ERRLOG("The state(%d) is invalid\n", tqpair->recv_state);
2564 			abort();
2565 			break;
2566 		}
2567 	} while (tqpair->recv_state != prev_state);
2568 
2569 	return rc;
2570 }
2571 
2572 static inline void *
2573 nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list,
2574 			 struct spdk_nvmf_tcp_req *tcp_req)
2575 {
2576 	struct spdk_nvmf_tcp_control_msg *msg;
2577 
2578 	assert(list);
2579 
2580 	msg = STAILQ_FIRST(&list->free_msgs);
2581 	if (!msg) {
2582 		SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
2583 		STAILQ_INSERT_TAIL(&list->waiting_for_msg_reqs, tcp_req, control_msg_link);
2584 		return NULL;
2585 	}
2586 	STAILQ_REMOVE_HEAD(&list->free_msgs, link);
2587 	return msg;
2588 }
2589 
2590 static inline void
2591 nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
2592 {
2593 	struct spdk_nvmf_tcp_control_msg *msg = _msg;
2594 	struct spdk_nvmf_tcp_req *tcp_req;
2595 	struct spdk_nvmf_tcp_transport *ttransport;
2596 
2597 	assert(list);
2598 	STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
2599 	if (!STAILQ_EMPTY(&list->waiting_for_msg_reqs)) {
2600 		tcp_req = STAILQ_FIRST(&list->waiting_for_msg_reqs);
2601 		STAILQ_REMOVE_HEAD(&list->waiting_for_msg_reqs, control_msg_link);
2602 		ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
2603 					      struct spdk_nvmf_tcp_transport, transport);
2604 		nvmf_tcp_req_process(ttransport, tcp_req);
2605 	}
2606 }
2607 
2608 static void
2609 nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
2610 		       struct spdk_nvmf_transport *transport,
2611 		       struct spdk_nvmf_transport_poll_group *group)
2612 {
2613 	struct spdk_nvmf_request		*req = &tcp_req->req;
2614 	struct spdk_nvme_cmd			*cmd;
2615 	struct spdk_nvme_sgl_descriptor		*sgl;
2616 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2617 	enum spdk_nvme_tcp_term_req_fes		fes;
2618 	struct nvme_tcp_pdu			*pdu;
2619 	struct spdk_nvmf_tcp_qpair		*tqpair;
2620 	uint32_t				length, error_offset = 0;
2621 
2622 	cmd = &req->cmd->nvme_cmd;
2623 	sgl = &cmd->dptr.sgl1;
2624 
2625 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
2626 	    sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
2627 		/* get request length from sgl */
2628 		length = sgl->unkeyed.length;
2629 		if (spdk_unlikely(length > transport->opts.max_io_size)) {
2630 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
2631 				    length, transport->opts.max_io_size);
2632 			fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2633 			goto fatal_err;
2634 		}
2635 
2636 		/* fill request length and populate iovs */
2637 		req->length = length;
2638 
2639 		SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
2640 
2641 		if (spdk_unlikely(req->dif_enabled)) {
2642 			req->dif.orig_length = length;
2643 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2644 			req->dif.elba_length = length;
2645 		}
2646 
2647 		if (nvmf_ctrlr_use_zcopy(req)) {
2648 			SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req);
2649 			req->data_from_pool = false;
2650 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
2651 			return;
2652 		}
2653 
2654 		if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
2655 			/* No available buffers. Queue this request up. */
2656 			SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
2657 				      tcp_req);
2658 			return;
2659 		}
2660 
2661 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
2662 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
2663 			      tcp_req, req->iovcnt, req->iov[0].iov_base);
2664 
2665 		return;
2666 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
2667 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
2668 		uint64_t offset = sgl->address;
2669 		uint32_t max_len = transport->opts.in_capsule_data_size;
2670 
2671 		assert(tcp_req->has_in_capsule_data);
2672 		/* Capsule Cmd with In-capsule Data should get data length from pdu header */
2673 		tqpair = tcp_req->pdu->qpair;
2674 		/* receiving pdu is not same with the pdu in tcp_req */
2675 		pdu = tqpair->pdu_in_progress;
2676 		length = pdu->hdr.common.plen - pdu->psh_len - sizeof(struct spdk_nvme_tcp_common_pdu_hdr);
2677 		if (tqpair->host_ddgst_enable) {
2678 			length -= SPDK_NVME_TCP_DIGEST_LEN;
2679 		}
2680 		/* This error is not defined in NVMe/TCP spec, take this error as fatal error */
2681 		if (spdk_unlikely(length != sgl->unkeyed.length)) {
2682 			SPDK_ERRLOG("In-Capsule Data length 0x%x is not equal to SGL data length 0x%x\n",
2683 				    length, sgl->unkeyed.length);
2684 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2685 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2686 			goto fatal_err;
2687 		}
2688 
2689 		SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
2690 			      offset, length);
2691 
2692 		/* The NVMe/TCP transport does not use ICDOFF to control the in-capsule data offset. ICDOFF should be '0' */
2693 		if (spdk_unlikely(offset != 0)) {
2694 			/* Not defined fatal error in NVMe/TCP spec, handle this error as a fatal error */
2695 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " should be ZERO in NVMe/TCP\n", offset);
2696 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2697 			error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.address);
2698 			goto fatal_err;
2699 		}
2700 
2701 		if (spdk_unlikely(length > max_len)) {
2702 			/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
2703 			if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
2704 			    (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
2705 
2706 				/* Get a buffer from dedicated list */
2707 				SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
2708 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2709 				assert(tgroup->control_msg_list);
2710 				req->iov[0].iov_base = nvmf_tcp_control_msg_get(tgroup->control_msg_list, tcp_req);
2711 				if (!req->iov[0].iov_base) {
2712 					/* No available buffers. Queue this request up. */
2713 					SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
2714 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_BUF);
2715 					return;
2716 				}
2717 			} else {
2718 				SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
2719 					    length, max_len);
2720 				fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2721 				goto fatal_err;
2722 			}
2723 		} else {
2724 			req->iov[0].iov_base = tcp_req->buf;
2725 		}
2726 
2727 		req->length = length;
2728 		req->data_from_pool = false;
2729 
2730 		if (spdk_unlikely(req->dif_enabled)) {
2731 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2732 			req->dif.elba_length = length;
2733 		}
2734 
2735 		req->iov[0].iov_len = length;
2736 		req->iovcnt = 1;
2737 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
2738 
2739 		return;
2740 	}
2741 	/* If we want to handle the problem here, then we can't skip the following data segment.
2742 	 * Because this function runs before reading data part, now handle all errors as fatal errors. */
2743 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2744 		    sgl->generic.type, sgl->generic.subtype);
2745 	fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2746 	error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.generic);
2747 fatal_err:
2748 	nvmf_tcp_send_c2h_term_req(tcp_req->pdu->qpair, tcp_req->pdu, fes, error_offset);
2749 }
2750 
2751 static inline enum spdk_nvme_media_error_status_code
2752 nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
2753 	enum spdk_nvme_media_error_status_code result;
2754 
2755 	switch (err_type)
2756 	{
2757 	case SPDK_DIF_REFTAG_ERROR:
2758 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
2759 		break;
2760 	case SPDK_DIF_APPTAG_ERROR:
2761 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
2762 		break;
2763 	case SPDK_DIF_GUARD_ERROR:
2764 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
2765 		break;
2766 	default:
2767 		SPDK_UNREACHABLE();
2768 		break;
2769 	}
2770 
2771 	return result;
2772 }
2773 
2774 static void
2775 _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2776 			struct spdk_nvmf_tcp_req *tcp_req)
2777 {
2778 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
2779 				tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
2780 	struct nvme_tcp_pdu *rsp_pdu;
2781 	struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
2782 	uint32_t plen, pdo, alignment;
2783 	int rc;
2784 
2785 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2786 
2787 	rsp_pdu = tcp_req->pdu;
2788 	assert(rsp_pdu != NULL);
2789 
2790 	c2h_data = &rsp_pdu->hdr.c2h_data;
2791 	c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
2792 	plen = c2h_data->common.hlen = sizeof(*c2h_data);
2793 
2794 	if (tqpair->host_hdgst_enable) {
2795 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2796 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2797 	}
2798 
2799 	/* set the psh */
2800 	c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2801 	c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
2802 	c2h_data->datao = tcp_req->pdu->rw_offset;
2803 
2804 	/* set the padding */
2805 	rsp_pdu->padding_len = 0;
2806 	pdo = plen;
2807 	if (tqpair->cpda) {
2808 		alignment = (tqpair->cpda + 1) << 2;
2809 		if (plen % alignment != 0) {
2810 			pdo = (plen + alignment) / alignment * alignment;
2811 			rsp_pdu->padding_len = pdo - plen;
2812 			plen = pdo;
2813 		}
2814 	}
2815 
2816 	c2h_data->common.pdo = pdo;
2817 	plen += c2h_data->datal;
2818 	if (tqpair->host_ddgst_enable) {
2819 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
2820 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2821 	}
2822 
2823 	c2h_data->common.plen = plen;
2824 
2825 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2826 		rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2827 	}
2828 
2829 	nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2830 				  c2h_data->datao, c2h_data->datal);
2831 
2832 
2833 	c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
2834 	/* Need to send the capsule response if response is not all 0 */
2835 	if (ttransport->tcp_opts.c2h_success &&
2836 	    tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
2837 		c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
2838 	}
2839 
2840 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2841 		struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
2842 		struct spdk_dif_error err_blk = {};
2843 		uint32_t mapped_length = 0;
2844 		uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
2845 		uint32_t ddgst_len = 0;
2846 
2847 		if (tqpair->host_ddgst_enable) {
2848 			/* Data digest consumes additional iov entry */
2849 			available_iovs--;
2850 			/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
2851 			ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
2852 			c2h_data->common.plen -= ddgst_len;
2853 		}
2854 		/* Temp call to estimate if data can be described by limited number of iovs.
2855 		 * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
2856 		nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
2857 				    false, &mapped_length);
2858 
2859 		if (mapped_length != c2h_data->common.plen) {
2860 			c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
2861 			SPDK_DEBUGLOG(nvmf_tcp,
2862 				      "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
2863 				      c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
2864 			c2h_data->common.plen = mapped_length;
2865 
2866 			/* Rebuild pdu->data_iov since data length is changed */
2867 			nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
2868 						  c2h_data->datal);
2869 
2870 			c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
2871 						    SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
2872 		}
2873 
2874 		c2h_data->common.plen += ddgst_len;
2875 
2876 		assert(rsp_pdu->rw_offset <= tcp_req->req.length);
2877 
2878 		rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
2879 					    0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
2880 		if (rc != 0) {
2881 			SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
2882 				    err_blk.err_type, err_blk.err_offset);
2883 			rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2884 			rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
2885 			nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2886 			return;
2887 		}
2888 	}
2889 
2890 	rsp_pdu->rw_offset += c2h_data->datal;
2891 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
2892 }
2893 
2894 static void
2895 nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2896 		       struct spdk_nvmf_tcp_req *tcp_req)
2897 {
2898 	nvmf_tcp_req_pdu_init(tcp_req);
2899 	_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2900 }
2901 
2902 static int
2903 request_transfer_out(struct spdk_nvmf_request *req)
2904 {
2905 	struct spdk_nvmf_tcp_req	*tcp_req;
2906 	struct spdk_nvmf_qpair		*qpair;
2907 	struct spdk_nvmf_tcp_qpair	*tqpair;
2908 	struct spdk_nvme_cpl		*rsp;
2909 
2910 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2911 
2912 	qpair = req->qpair;
2913 	rsp = &req->rsp->nvme_cpl;
2914 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
2915 
2916 	/* Advance our sq_head pointer */
2917 	if (qpair->sq_head == qpair->sq_head_max) {
2918 		qpair->sq_head = 0;
2919 	} else {
2920 		qpair->sq_head++;
2921 	}
2922 	rsp->sqhd = qpair->sq_head;
2923 
2924 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2925 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
2926 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2927 		nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2928 	} else {
2929 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2930 	}
2931 
2932 	return 0;
2933 }
2934 
2935 static void
2936 nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport,
2937 			      struct spdk_nvmf_tcp_qpair *tqpair,
2938 			      struct spdk_nvmf_tcp_req *tcp_req)
2939 {
2940 	enum spdk_nvme_cmd_fuse last, next;
2941 
2942 	last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2943 	next = tcp_req->cmd.fuse;
2944 
2945 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2946 
2947 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2948 		return;
2949 	}
2950 
2951 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2952 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2953 			/* This is a valid pair of fused commands.  Point them at each other
2954 			 * so they can be submitted consecutively once ready to be executed.
2955 			 */
2956 			tqpair->fused_first->fused_pair = tcp_req;
2957 			tcp_req->fused_pair = tqpair->fused_first;
2958 			tqpair->fused_first = NULL;
2959 			return;
2960 		} else {
2961 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2962 			tqpair->fused_first->fused_failed = true;
2963 
2964 			/*
2965 			 * If the last req is in READY_TO_EXECUTE state, then call
2966 			 * nvmf_tcp_req_process(), otherwise nothing else will kick it.
2967 			 */
2968 			if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2969 				nvmf_tcp_req_process(ttransport, tqpair->fused_first);
2970 			}
2971 
2972 			tqpair->fused_first = NULL;
2973 		}
2974 	}
2975 
2976 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2977 		/* Set tqpair->fused_first here so that we know to check that the next request
2978 		 * is a SECOND (and to fail this one if it isn't).
2979 		 */
2980 		tqpair->fused_first = tcp_req;
2981 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2982 		/* Mark this req failed since it is a SECOND and the last one was not a FIRST. */
2983 		tcp_req->fused_failed = true;
2984 	}
2985 }
2986 
2987 static bool
2988 nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
2989 		     struct spdk_nvmf_tcp_req *tcp_req)
2990 {
2991 	struct spdk_nvmf_tcp_qpair		*tqpair;
2992 	uint32_t				plen;
2993 	struct nvme_tcp_pdu			*pdu;
2994 	enum spdk_nvmf_tcp_req_state		prev_state;
2995 	bool					progress = false;
2996 	struct spdk_nvmf_transport		*transport = &ttransport->transport;
2997 	struct spdk_nvmf_transport_poll_group	*group;
2998 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2999 
3000 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
3001 	group = &tqpair->group->group;
3002 	assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
3003 
3004 	/* If the qpair is not active, we need to abort the outstanding requests. */
3005 	if (!spdk_nvmf_qpair_is_active(&tqpair->qpair)) {
3006 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
3007 			nvmf_tcp_request_get_buffers_abort(tcp_req);
3008 		}
3009 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3010 	}
3011 
3012 	/* The loop here is to allow for several back-to-back state changes. */
3013 	do {
3014 		prev_state = tcp_req->state;
3015 
3016 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
3017 			      tqpair);
3018 
3019 		switch (tcp_req->state) {
3020 		case TCP_REQUEST_STATE_FREE:
3021 			/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
3022 			 * to escape this state. */
3023 			break;
3024 		case TCP_REQUEST_STATE_NEW:
3025 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req,
3026 					  tqpair->qpair.queue_depth);
3027 
3028 			/* copy the cmd from the receive pdu */
3029 			tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
3030 
3031 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
3032 				tcp_req->req.dif_enabled = true;
3033 				tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
3034 			}
3035 
3036 			nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req);
3037 
3038 			/* The next state transition depends on the data transfer needs of this request. */
3039 			tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
3040 
3041 			if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
3042 				nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_INVALID_OPCODE);
3043 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
3044 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3045 				SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
3046 				break;
3047 			}
3048 
3049 			/* If no data to transfer, ready to execute. */
3050 			if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
3051 				/* Reset the tqpair receiving pdu state */
3052 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
3053 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
3054 				break;
3055 			}
3056 
3057 			pdu = tqpair->pdu_in_progress;
3058 			plen = pdu->hdr.common.hlen;
3059 			if (tqpair->host_hdgst_enable) {
3060 				plen += SPDK_NVME_TCP_DIGEST_LEN;
3061 			}
3062 			if (pdu->hdr.common.plen != plen) {
3063 				tcp_req->has_in_capsule_data = true;
3064 			} else {
3065 				/* Data is transmitted by C2H PDUs */
3066 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
3067 			}
3068 
3069 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
3070 			break;
3071 		case TCP_REQUEST_STATE_NEED_BUFFER:
3072 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.trace_id, 0,
3073 					  (uintptr_t)tcp_req);
3074 
3075 			assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
3076 
3077 			/* Try to get a data buffer */
3078 			nvmf_tcp_req_parse_sgl(tcp_req, transport, group);
3079 			break;
3080 		case TCP_REQUEST_STATE_HAVE_BUFFER:
3081 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_HAVE_BUFFER, tqpair->qpair.trace_id, 0,
3082 					  (uintptr_t)tcp_req);
3083 			/* Get a zcopy buffer if the request can be serviced through zcopy */
3084 			if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
3085 				if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3086 					assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
3087 					tcp_req->req.length = tcp_req->req.dif.elba_length;
3088 				}
3089 
3090 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START);
3091 				spdk_nvmf_request_zcopy_start(&tcp_req->req);
3092 				break;
3093 			}
3094 
3095 			assert(tcp_req->req.iovcnt > 0);
3096 
3097 			/* If data is transferring from host to controller, we need to do a transfer from the host. */
3098 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
3099 				if (tcp_req->req.data_from_pool) {
3100 					SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
3101 					nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
3102 				} else {
3103 					struct nvme_tcp_pdu *pdu;
3104 
3105 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
3106 
3107 					pdu = tqpair->pdu_in_progress;
3108 					SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
3109 						      tqpair);
3110 					/* No need to send r2t, contained in the capsuled data */
3111 					nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
3112 								  0, tcp_req->req.length);
3113 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
3114 				}
3115 				break;
3116 			}
3117 
3118 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
3119 			break;
3120 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3121 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.trace_id, 0,
3122 					  (uintptr_t)tcp_req);
3123 			/* Some external code must kick a request into  TCP_REQUEST_STATE_ZCOPY_START_COMPLETED
3124 			 * to escape this state. */
3125 			break;
3126 		case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
3127 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.trace_id, 0,
3128 					  (uintptr_t)tcp_req);
3129 			if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) {
3130 				SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n",
3131 					      tcp_req, tqpair);
3132 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3133 				break;
3134 			}
3135 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
3136 				SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
3137 				nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
3138 			} else {
3139 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3140 			}
3141 			break;
3142 		case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3143 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.trace_id, 0,
3144 					  (uintptr_t)tcp_req);
3145 			/* The R2T completion or the h2c data incoming will kick it out of this state. */
3146 			break;
3147 		case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3148 
3149 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.trace_id,
3150 					  0, (uintptr_t)tcp_req);
3151 			/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
3152 			 * to escape this state. */
3153 			break;
3154 		case TCP_REQUEST_STATE_READY_TO_EXECUTE:
3155 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.trace_id, 0,
3156 					  (uintptr_t)tcp_req);
3157 
3158 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3159 				assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
3160 				tcp_req->req.length = tcp_req->req.dif.elba_length;
3161 			}
3162 
3163 			if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
3164 				if (tcp_req->fused_failed) {
3165 					/* This request failed FUSED semantics.  Fail it immediately, without
3166 					 * even sending it to the target layer.
3167 					 */
3168 					nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_MISSING_FUSED);
3169 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3170 					break;
3171 				}
3172 
3173 				if (tcp_req->fused_pair == NULL ||
3174 				    tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3175 					/* This request is ready to execute, but either we don't know yet if it's
3176 					 * valid - i.e. this is a FIRST but we haven't received the next request yet),
3177 					 * or the other request of this fused pair isn't ready to execute. So
3178 					 * break here and this request will get processed later either when the
3179 					 * other request is ready or we find that this request isn't valid.
3180 					 */
3181 					break;
3182 				}
3183 			}
3184 
3185 			if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
3186 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
3187 				/* If we get to this point, and this request is a fused command, we know that
3188 				 * it is part of a valid sequence (FIRST followed by a SECOND) and that both
3189 				 * requests are READY_TO_EXECUTE.  So call spdk_nvmf_request_exec() both on this
3190 				 * request, and the other request of the fused pair, in the correct order.
3191 				 * Also clear the ->fused_pair pointers on both requests, since after this point
3192 				 * we no longer need to maintain the relationship between these two requests.
3193 				 */
3194 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
3195 					assert(tcp_req->fused_pair != NULL);
3196 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3197 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3198 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3199 					tcp_req->fused_pair->fused_pair = NULL;
3200 					tcp_req->fused_pair = NULL;
3201 				}
3202 				spdk_nvmf_request_exec(&tcp_req->req);
3203 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
3204 					assert(tcp_req->fused_pair != NULL);
3205 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3206 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3207 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3208 					tcp_req->fused_pair->fused_pair = NULL;
3209 					tcp_req->fused_pair = NULL;
3210 				}
3211 			} else {
3212 				/* For zero-copy, only requests with data coming from host to the
3213 				 * controller can end up here. */
3214 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
3215 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT);
3216 				spdk_nvmf_request_zcopy_end(&tcp_req->req, true);
3217 			}
3218 
3219 			break;
3220 		case TCP_REQUEST_STATE_EXECUTING:
3221 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
3222 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3223 			 * to escape this state. */
3224 			break;
3225 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3226 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.trace_id, 0,
3227 					  (uintptr_t)tcp_req);
3228 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3229 			 * to escape this state. */
3230 			break;
3231 		case TCP_REQUEST_STATE_EXECUTED:
3232 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
3233 
3234 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3235 				tcp_req->req.length = tcp_req->req.dif.orig_length;
3236 			}
3237 
3238 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3239 			break;
3240 		case TCP_REQUEST_STATE_READY_TO_COMPLETE:
3241 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.trace_id, 0,
3242 					  (uintptr_t)tcp_req);
3243 			if (request_transfer_out(&tcp_req->req) != 0) {
3244 				assert(0); /* No good way to handle this currently */
3245 			}
3246 			break;
3247 		case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
3248 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.trace_id,
3249 					  0, (uintptr_t)tcp_req);
3250 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3251 			 * to escape this state. */
3252 			break;
3253 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3254 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.trace_id, 0,
3255 					  (uintptr_t)tcp_req);
3256 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3257 			 * to escape this state. */
3258 			break;
3259 		case TCP_REQUEST_STATE_COMPLETED:
3260 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req,
3261 					  tqpair->qpair.queue_depth);
3262 			/* If there's an outstanding PDU sent to the host, the request is completed
3263 			 * due to the qpair being disconnected.  We must delay the completion until
3264 			 * that write is done to avoid freeing the request twice. */
3265 			if (spdk_unlikely(tcp_req->pdu_in_use)) {
3266 				SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding "
3267 					      "write on req=%p\n", tcp_req);
3268 				/* This can only happen for zcopy requests */
3269 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3270 				assert(!spdk_nvmf_qpair_is_active(&tqpair->qpair));
3271 				break;
3272 			}
3273 
3274 			if (tcp_req->req.data_from_pool) {
3275 				spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
3276 			} else if (spdk_unlikely(tcp_req->has_in_capsule_data &&
3277 						 (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
3278 						  tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
3279 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3280 				assert(tgroup->control_msg_list);
3281 				SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
3282 				nvmf_tcp_control_msg_put(tgroup->control_msg_list,
3283 							 tcp_req->req.iov[0].iov_base);
3284 			} else if (tcp_req->req.zcopy_bdev_io != NULL) {
3285 				/* If the request has an unreleased zcopy bdev_io, it's either a
3286 				 * read, a failed write, or the qpair is being disconnected */
3287 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3288 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
3289 				       spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) ||
3290 				       !spdk_nvmf_qpair_is_active(&tqpair->qpair));
3291 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE);
3292 				spdk_nvmf_request_zcopy_end(&tcp_req->req, false);
3293 				break;
3294 			}
3295 			tcp_req->req.length = 0;
3296 			tcp_req->req.iovcnt = 0;
3297 			tcp_req->fused_failed = false;
3298 			if (tcp_req->fused_pair) {
3299 				/* This req was part of a valid fused pair, but failed before it got to
3300 				 * READ_TO_EXECUTE state.  This means we need to fail the other request
3301 				 * in the pair, because it is no longer part of a valid pair.  If the pair
3302 				 * already reached READY_TO_EXECUTE state, we need to kick it.
3303 				 */
3304 				tcp_req->fused_pair->fused_failed = true;
3305 				if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3306 					nvmf_tcp_req_process(ttransport, tcp_req->fused_pair);
3307 				}
3308 				tcp_req->fused_pair = NULL;
3309 			}
3310 
3311 			nvmf_tcp_req_put(tqpair, tcp_req);
3312 			break;
3313 		case TCP_REQUEST_NUM_STATES:
3314 		default:
3315 			assert(0);
3316 			break;
3317 		}
3318 
3319 		if (tcp_req->state != prev_state) {
3320 			progress = true;
3321 		}
3322 	} while (tcp_req->state != prev_state);
3323 
3324 	return progress;
3325 }
3326 
3327 static void
3328 nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
3329 {
3330 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
3331 	int rc;
3332 
3333 	assert(tqpair != NULL);
3334 	rc = nvmf_tcp_sock_process(tqpair);
3335 
3336 	/* If there was a new socket error, disconnect */
3337 	if (rc < 0) {
3338 		nvmf_tcp_qpair_disconnect(tqpair);
3339 	}
3340 }
3341 
3342 static int
3343 nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3344 			struct spdk_nvmf_qpair *qpair)
3345 {
3346 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3347 	struct spdk_nvmf_tcp_qpair	*tqpair;
3348 	int				rc;
3349 
3350 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3351 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3352 
3353 	rc =  nvmf_tcp_qpair_sock_init(tqpair);
3354 	if (rc != 0) {
3355 		SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
3356 		return -1;
3357 	}
3358 
3359 	rc = nvmf_tcp_qpair_init(&tqpair->qpair);
3360 	if (rc < 0) {
3361 		SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
3362 		return -1;
3363 	}
3364 
3365 	rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
3366 	if (rc < 0) {
3367 		SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
3368 		return -1;
3369 	}
3370 
3371 	rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
3372 				      nvmf_tcp_sock_cb, tqpair);
3373 	if (rc != 0) {
3374 		SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
3375 			    spdk_strerror(errno), errno);
3376 		return -1;
3377 	}
3378 
3379 	tqpair->group = tgroup;
3380 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INVALID);
3381 	TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
3382 
3383 	return 0;
3384 }
3385 
3386 static int
3387 nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3388 			   struct spdk_nvmf_qpair *qpair)
3389 {
3390 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3391 	struct spdk_nvmf_tcp_qpair		*tqpair;
3392 	int				rc;
3393 
3394 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3395 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3396 
3397 	assert(tqpair->group == tgroup);
3398 
3399 	SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
3400 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
3401 		/* Change the state to move the qpair from the await_req list to the main list
3402 		 * and prevent adding it again later by nvmf_tcp_qpair_set_recv_state() */
3403 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
3404 	}
3405 	TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
3406 
3407 	/* Try to force out any pending writes */
3408 	spdk_sock_flush(tqpair->sock);
3409 
3410 	rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
3411 	if (rc != 0) {
3412 		SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
3413 			    spdk_strerror(errno), errno);
3414 	}
3415 
3416 	return rc;
3417 }
3418 
3419 static int
3420 nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
3421 {
3422 	struct spdk_nvmf_tcp_transport *ttransport;
3423 	struct spdk_nvmf_tcp_req *tcp_req;
3424 
3425 	ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3426 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3427 
3428 	switch (tcp_req->state) {
3429 	case TCP_REQUEST_STATE_EXECUTING:
3430 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3431 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3432 		break;
3433 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3434 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED);
3435 		break;
3436 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3437 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3438 		break;
3439 	default:
3440 		SPDK_ERRLOG("Unexpected request state %d (cntlid:%d, qid:%d)\n",
3441 			    tcp_req->state, req->qpair->ctrlr->cntlid, req->qpair->qid);
3442 		assert(0 && "Unexpected request state");
3443 		break;
3444 	}
3445 
3446 	nvmf_tcp_req_process(ttransport, tcp_req);
3447 
3448 	return 0;
3449 }
3450 
3451 static void
3452 nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
3453 		     spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3454 {
3455 	struct spdk_nvmf_tcp_qpair *tqpair;
3456 
3457 	SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
3458 
3459 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3460 
3461 	assert(tqpair->fini_cb_fn == NULL);
3462 	tqpair->fini_cb_fn = cb_fn;
3463 	tqpair->fini_cb_arg = cb_arg;
3464 
3465 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITED);
3466 	nvmf_tcp_qpair_destroy(tqpair);
3467 }
3468 
3469 static int
3470 nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3471 {
3472 	struct spdk_nvmf_tcp_poll_group *tgroup;
3473 	int num_events, rc = 0, rc2;
3474 	struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp;
3475 
3476 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3477 
3478 	if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) {
3479 		return 0;
3480 	}
3481 
3482 	num_events = spdk_sock_group_poll(tgroup->sock_group);
3483 	if (spdk_unlikely(num_events < 0)) {
3484 		SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
3485 	}
3486 
3487 	TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) {
3488 		rc2 = nvmf_tcp_sock_process(tqpair);
3489 
3490 		/* If there was a new socket error, disconnect */
3491 		if (spdk_unlikely(rc2 < 0)) {
3492 			nvmf_tcp_qpair_disconnect(tqpair);
3493 			if (rc == 0) {
3494 				rc = rc2;
3495 			}
3496 		}
3497 	}
3498 
3499 	return rc == 0 ? num_events : rc;
3500 }
3501 
3502 static int
3503 nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
3504 			struct spdk_nvme_transport_id *trid, bool peer)
3505 {
3506 	struct spdk_nvmf_tcp_qpair     *tqpair;
3507 	uint16_t			port;
3508 
3509 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3510 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
3511 
3512 	if (peer) {
3513 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
3514 		port = tqpair->initiator_port;
3515 	} else {
3516 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
3517 		port = tqpair->target_port;
3518 	}
3519 
3520 	if (spdk_sock_is_ipv4(tqpair->sock)) {
3521 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3522 	} else if (spdk_sock_is_ipv6(tqpair->sock)) {
3523 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3524 	} else {
3525 		return -1;
3526 	}
3527 
3528 	snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
3529 	return 0;
3530 }
3531 
3532 static int
3533 nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3534 			      struct spdk_nvme_transport_id *trid)
3535 {
3536 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3537 }
3538 
3539 static int
3540 nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3541 			     struct spdk_nvme_transport_id *trid)
3542 {
3543 	return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
3544 }
3545 
3546 static int
3547 nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3548 			       struct spdk_nvme_transport_id *trid)
3549 {
3550 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3551 }
3552 
3553 static void
3554 nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
3555 			      struct spdk_nvmf_tcp_req *tcp_req_to_abort)
3556 {
3557 	nvmf_tcp_req_set_cpl(tcp_req_to_abort, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_BY_REQUEST);
3558 	nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3559 
3560 	req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
3561 }
3562 
3563 static int
3564 _nvmf_tcp_qpair_abort_request(void *ctx)
3565 {
3566 	struct spdk_nvmf_request *req = ctx;
3567 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
3568 			struct spdk_nvmf_tcp_req, req);
3569 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
3570 					     struct spdk_nvmf_tcp_qpair, qpair);
3571 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
3572 			struct spdk_nvmf_tcp_transport, transport);
3573 	int rc;
3574 
3575 	spdk_poller_unregister(&req->poller);
3576 
3577 	switch (tcp_req_to_abort->state) {
3578 	case TCP_REQUEST_STATE_EXECUTING:
3579 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3580 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3581 		rc = nvmf_ctrlr_abort_request(req);
3582 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
3583 			return SPDK_POLLER_BUSY;
3584 		}
3585 		break;
3586 
3587 	case TCP_REQUEST_STATE_NEED_BUFFER:
3588 		nvmf_tcp_request_get_buffers_abort(tcp_req_to_abort);
3589 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3590 		nvmf_tcp_req_process(ttransport, tcp_req_to_abort);
3591 		break;
3592 
3593 	case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3594 	case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3595 		if (spdk_get_ticks() < req->timeout_tsc) {
3596 			req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
3597 			return SPDK_POLLER_BUSY;
3598 		}
3599 		break;
3600 
3601 	default:
3602 		/* Requests in other states are either un-abortable (e.g.
3603 		 * TRANSFERRING_CONTROLLER_TO_HOST) or should never end up here, as they're
3604 		 * immediately transitioned to other states in nvmf_tcp_req_process() (e.g.
3605 		 * READY_TO_EXECUTE).  But it is fine to end up here, as we'll simply complete the
3606 		 * abort request with the bit0 of dword0 set (command not aborted).
3607 		 */
3608 		break;
3609 	}
3610 
3611 	spdk_nvmf_request_complete(req);
3612 	return SPDK_POLLER_BUSY;
3613 }
3614 
3615 static void
3616 nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
3617 			     struct spdk_nvmf_request *req)
3618 {
3619 	struct spdk_nvmf_tcp_qpair *tqpair;
3620 	struct spdk_nvmf_tcp_transport *ttransport;
3621 	struct spdk_nvmf_transport *transport;
3622 	uint16_t cid;
3623 	uint32_t i;
3624 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
3625 
3626 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3627 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3628 	transport = &ttransport->transport;
3629 
3630 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
3631 
3632 	for (i = 0; i < tqpair->resource_count; i++) {
3633 		if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
3634 		    tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
3635 			tcp_req_to_abort = &tqpair->reqs[i];
3636 			break;
3637 		}
3638 	}
3639 
3640 	spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, tqpair->qpair.trace_id, 0, (uintptr_t)req);
3641 
3642 	if (tcp_req_to_abort == NULL) {
3643 		spdk_nvmf_request_complete(req);
3644 		return;
3645 	}
3646 
3647 	req->req_to_abort = &tcp_req_to_abort->req;
3648 	req->timeout_tsc = spdk_get_ticks() +
3649 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
3650 	req->poller = NULL;
3651 
3652 	_nvmf_tcp_qpair_abort_request(req);
3653 }
3654 
3655 struct tcp_subsystem_add_host_opts {
3656 	char *psk;
3657 };
3658 
3659 static const struct spdk_json_object_decoder tcp_subsystem_add_host_opts_decoder[] = {
3660 	{"psk", offsetof(struct tcp_subsystem_add_host_opts, psk), spdk_json_decode_string, true},
3661 };
3662 
3663 static int
3664 tcp_load_psk(const char *fname, char *buf, size_t bufsz)
3665 {
3666 	FILE *psk_file;
3667 	struct stat statbuf;
3668 	int rc;
3669 
3670 	if (stat(fname, &statbuf) != 0) {
3671 		SPDK_ERRLOG("Could not read permissions for PSK file\n");
3672 		return -EACCES;
3673 	}
3674 
3675 	if ((statbuf.st_mode & TCP_PSK_INVALID_PERMISSIONS) != 0) {
3676 		SPDK_ERRLOG("Incorrect permissions for PSK file\n");
3677 		return -EPERM;
3678 	}
3679 	if ((size_t)statbuf.st_size > bufsz) {
3680 		SPDK_ERRLOG("Invalid PSK: too long\n");
3681 		return -EINVAL;
3682 	}
3683 	psk_file = fopen(fname, "r");
3684 	if (psk_file == NULL) {
3685 		SPDK_ERRLOG("Could not open PSK file\n");
3686 		return -EINVAL;
3687 	}
3688 
3689 	rc = fread(buf, 1, statbuf.st_size, psk_file);
3690 	if (rc != statbuf.st_size) {
3691 		SPDK_ERRLOG("Failed to read PSK\n");
3692 		fclose(psk_file);
3693 		return -EINVAL;
3694 	}
3695 
3696 	fclose(psk_file);
3697 	return 0;
3698 }
3699 
3700 SPDK_LOG_DEPRECATION_REGISTER(nvmf_tcp_psk_path, "PSK path", "v24.09", 0);
3701 
3702 static int
3703 nvmf_tcp_subsystem_add_host(struct spdk_nvmf_transport *transport,
3704 			    const struct spdk_nvmf_subsystem *subsystem,
3705 			    const char *hostnqn,
3706 			    const struct spdk_json_val *transport_specific)
3707 {
3708 	struct tcp_subsystem_add_host_opts opts;
3709 	struct spdk_nvmf_tcp_transport *ttransport;
3710 	struct tcp_psk_entry *tmp, *entry = NULL;
3711 	uint8_t psk_configured[SPDK_TLS_PSK_MAX_LEN] = {};
3712 	char psk_interchange[SPDK_TLS_PSK_MAX_LEN + 1] = {};
3713 	uint8_t tls_cipher_suite;
3714 	int rc = 0;
3715 	uint8_t psk_retained_hash;
3716 	uint64_t psk_configured_size;
3717 
3718 	if (transport_specific == NULL) {
3719 		return 0;
3720 	}
3721 
3722 	assert(transport != NULL);
3723 	assert(subsystem != NULL);
3724 
3725 	memset(&opts, 0, sizeof(opts));
3726 
3727 	/* Decode PSK (either name of a key or file path) */
3728 	if (spdk_json_decode_object_relaxed(transport_specific, tcp_subsystem_add_host_opts_decoder,
3729 					    SPDK_COUNTOF(tcp_subsystem_add_host_opts_decoder), &opts)) {
3730 		SPDK_ERRLOG("spdk_json_decode_object failed\n");
3731 		return -EINVAL;
3732 	}
3733 
3734 	if (opts.psk == NULL) {
3735 		return 0;
3736 	}
3737 
3738 	entry = calloc(1, sizeof(struct tcp_psk_entry));
3739 	if (entry == NULL) {
3740 		SPDK_ERRLOG("Unable to allocate memory for PSK entry!\n");
3741 		rc = -ENOMEM;
3742 		goto end;
3743 	}
3744 
3745 	entry->key = spdk_keyring_get_key(opts.psk);
3746 	if (entry->key != NULL) {
3747 		rc = spdk_key_get_key(entry->key, psk_interchange, SPDK_TLS_PSK_MAX_LEN);
3748 		if (rc < 0) {
3749 			SPDK_ERRLOG("Failed to retrieve PSK '%s'\n", opts.psk);
3750 			rc = -EINVAL;
3751 			goto end;
3752 		}
3753 	} else {
3754 		if (strlen(opts.psk) >= sizeof(entry->psk)) {
3755 			SPDK_ERRLOG("PSK path too long\n");
3756 			rc = -EINVAL;
3757 			goto end;
3758 		}
3759 
3760 		rc = tcp_load_psk(opts.psk, psk_interchange, SPDK_TLS_PSK_MAX_LEN);
3761 		if (rc) {
3762 			SPDK_ERRLOG("Could not retrieve PSK from file\n");
3763 			goto end;
3764 		}
3765 
3766 		SPDK_LOG_DEPRECATED(nvmf_tcp_psk_path);
3767 	}
3768 
3769 	/* Parse PSK interchange to get length of base64 encoded data.
3770 	 * This is then used to decide which cipher suite should be used
3771 	 * to generate PSK identity and TLS PSK later on. */
3772 	rc = nvme_tcp_parse_interchange_psk(psk_interchange, psk_configured, sizeof(psk_configured),
3773 					    &psk_configured_size, &psk_retained_hash);
3774 	if (rc < 0) {
3775 		SPDK_ERRLOG("Failed to parse PSK interchange!\n");
3776 		goto end;
3777 	}
3778 
3779 	/* The Base64 string encodes the configured PSK (32 or 48 bytes binary).
3780 	 * This check also ensures that psk_configured_size is smaller than
3781 	 * psk_retained buffer size. */
3782 	if (psk_configured_size == SHA256_DIGEST_LENGTH) {
3783 		tls_cipher_suite = NVME_TCP_CIPHER_AES_128_GCM_SHA256;
3784 	} else if (psk_configured_size == SHA384_DIGEST_LENGTH) {
3785 		tls_cipher_suite = NVME_TCP_CIPHER_AES_256_GCM_SHA384;
3786 	} else {
3787 		SPDK_ERRLOG("Unrecognized cipher suite!\n");
3788 		rc = -EINVAL;
3789 		goto end;
3790 	}
3791 
3792 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3793 	/* Generate PSK identity. */
3794 	rc = nvme_tcp_generate_psk_identity(entry->pskid, sizeof(entry->pskid), hostnqn,
3795 					    subsystem->subnqn, tls_cipher_suite);
3796 	if (rc) {
3797 		rc = -EINVAL;
3798 		goto end;
3799 	}
3800 	/* Check if PSK identity entry already exists. */
3801 	TAILQ_FOREACH(tmp, &ttransport->psks, link) {
3802 		if (strncmp(tmp->pskid, entry->pskid, NVMF_PSK_IDENTITY_LEN) == 0) {
3803 			SPDK_ERRLOG("Given PSK identity: %s entry already exists!\n", entry->pskid);
3804 			rc = -EEXIST;
3805 			goto end;
3806 		}
3807 	}
3808 
3809 	if (snprintf(entry->hostnqn, sizeof(entry->hostnqn), "%s", hostnqn) < 0) {
3810 		SPDK_ERRLOG("Could not write hostnqn string!\n");
3811 		rc = -EINVAL;
3812 		goto end;
3813 	}
3814 	if (snprintf(entry->subnqn, sizeof(entry->subnqn), "%s", subsystem->subnqn) < 0) {
3815 		SPDK_ERRLOG("Could not write subnqn string!\n");
3816 		rc = -EINVAL;
3817 		goto end;
3818 	}
3819 
3820 	entry->tls_cipher_suite = tls_cipher_suite;
3821 
3822 	/* No hash indicates that Configured PSK must be used as Retained PSK. */
3823 	if (psk_retained_hash == NVME_TCP_HASH_ALGORITHM_NONE) {
3824 		/* Psk configured is either 32 or 48 bytes long. */
3825 		memcpy(entry->psk, psk_configured, psk_configured_size);
3826 		entry->psk_size = psk_configured_size;
3827 	} else {
3828 		/* Derive retained PSK. */
3829 		rc = nvme_tcp_derive_retained_psk(psk_configured, psk_configured_size, hostnqn, entry->psk,
3830 						  SPDK_TLS_PSK_MAX_LEN, psk_retained_hash);
3831 		if (rc < 0) {
3832 			SPDK_ERRLOG("Unable to derive retained PSK!\n");
3833 			goto end;
3834 		}
3835 		entry->psk_size = rc;
3836 	}
3837 
3838 	if (entry->key == NULL) {
3839 		rc = snprintf(entry->psk_path, sizeof(entry->psk_path), "%s", opts.psk);
3840 		if (rc < 0 || (size_t)rc >= sizeof(entry->psk_path)) {
3841 			SPDK_ERRLOG("Could not save PSK path!\n");
3842 			rc = -ENAMETOOLONG;
3843 			goto end;
3844 		}
3845 	}
3846 
3847 	TAILQ_INSERT_TAIL(&ttransport->psks, entry, link);
3848 	rc = 0;
3849 
3850 end:
3851 	spdk_memset_s(psk_configured, sizeof(psk_configured), 0, sizeof(psk_configured));
3852 	spdk_memset_s(psk_interchange, sizeof(psk_interchange), 0, sizeof(psk_interchange));
3853 
3854 	free(opts.psk);
3855 	if (rc != 0) {
3856 		nvmf_tcp_free_psk_entry(entry);
3857 	}
3858 
3859 	return rc;
3860 }
3861 
3862 static void
3863 nvmf_tcp_subsystem_remove_host(struct spdk_nvmf_transport *transport,
3864 			       const struct spdk_nvmf_subsystem *subsystem,
3865 			       const char *hostnqn)
3866 {
3867 	struct spdk_nvmf_tcp_transport *ttransport;
3868 	struct tcp_psk_entry *entry, *tmp;
3869 
3870 	assert(transport != NULL);
3871 	assert(subsystem != NULL);
3872 
3873 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3874 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
3875 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3876 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3877 			TAILQ_REMOVE(&ttransport->psks, entry, link);
3878 			nvmf_tcp_free_psk_entry(entry);
3879 			break;
3880 		}
3881 	}
3882 }
3883 
3884 static void
3885 nvmf_tcp_subsystem_dump_host(struct spdk_nvmf_transport *transport,
3886 			     const struct spdk_nvmf_subsystem *subsystem, const char *hostnqn,
3887 			     struct spdk_json_write_ctx *w)
3888 {
3889 	struct spdk_nvmf_tcp_transport *ttransport;
3890 	struct tcp_psk_entry *entry;
3891 
3892 	assert(transport != NULL);
3893 	assert(subsystem != NULL);
3894 
3895 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3896 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
3897 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3898 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3899 			spdk_json_write_named_string(w, "psk", entry->key ?
3900 						     spdk_key_get_name(entry->key) : entry->psk_path);
3901 			break;
3902 		}
3903 	}
3904 }
3905 
3906 static void
3907 nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
3908 {
3909 	opts->max_queue_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
3910 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
3911 	opts->in_capsule_data_size =	SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
3912 	opts->max_io_size =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
3913 	opts->io_unit_size =		SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
3914 	opts->max_aq_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
3915 	opts->num_shared_buffers =	SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
3916 	opts->buf_cache_size =		SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
3917 	opts->dif_insert_or_strip =	SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
3918 	opts->abort_timeout_sec =	SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
3919 	opts->transport_specific =      NULL;
3920 }
3921 
3922 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
3923 	.name = "TCP",
3924 	.type = SPDK_NVME_TRANSPORT_TCP,
3925 	.opts_init = nvmf_tcp_opts_init,
3926 	.create = nvmf_tcp_create,
3927 	.dump_opts = nvmf_tcp_dump_opts,
3928 	.destroy = nvmf_tcp_destroy,
3929 
3930 	.listen = nvmf_tcp_listen,
3931 	.stop_listen = nvmf_tcp_stop_listen,
3932 
3933 	.listener_discover = nvmf_tcp_discover,
3934 
3935 	.poll_group_create = nvmf_tcp_poll_group_create,
3936 	.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
3937 	.poll_group_destroy = nvmf_tcp_poll_group_destroy,
3938 	.poll_group_add = nvmf_tcp_poll_group_add,
3939 	.poll_group_remove = nvmf_tcp_poll_group_remove,
3940 	.poll_group_poll = nvmf_tcp_poll_group_poll,
3941 
3942 	.req_free = nvmf_tcp_req_free,
3943 	.req_complete = nvmf_tcp_req_complete,
3944 	.req_get_buffers_done = nvmf_tcp_req_get_buffers_done,
3945 
3946 	.qpair_fini = nvmf_tcp_close_qpair,
3947 	.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
3948 	.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
3949 	.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
3950 	.qpair_abort_request = nvmf_tcp_qpair_abort_request,
3951 	.subsystem_add_host = nvmf_tcp_subsystem_add_host,
3952 	.subsystem_remove_host = nvmf_tcp_subsystem_remove_host,
3953 	.subsystem_dump_host = nvmf_tcp_subsystem_dump_host,
3954 };
3955 
3956 SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
3957 SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)
3958