xref: /spdk/lib/nvmf/tcp.c (revision b37db06935181fd0e8f5592a96d860040abaa201)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2018 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/accel.h"
8 #include "spdk/stdinc.h"
9 #include "spdk/crc32.h"
10 #include "spdk/endian.h"
11 #include "spdk/assert.h"
12 #include "spdk/thread.h"
13 #include "spdk/nvmf_transport.h"
14 #include "spdk/string.h"
15 #include "spdk/trace.h"
16 #include "spdk/util.h"
17 #include "spdk/log.h"
18 #include "spdk/keyring.h"
19 
20 #include "spdk_internal/assert.h"
21 #include "spdk_internal/nvme_tcp.h"
22 #include "spdk_internal/sock.h"
23 
24 #include "nvmf_internal.h"
25 #include "transport.h"
26 
27 #include "spdk_internal/trace_defs.h"
28 
29 #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
30 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
31 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
32 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
33 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
34 
35 #define SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH 2
36 #define SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH 65535
37 #define SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH 2
38 #define SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH 4096
39 
40 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH 128
41 #define SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH 128
42 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
43 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
44 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
45 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
46 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
47 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX
48 #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
49 #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
50 
51 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
52 static bool g_tls_log = false;
53 
54 /* spdk nvmf related structure */
55 enum spdk_nvmf_tcp_req_state {
56 
57 	/* The request is not currently in use */
58 	TCP_REQUEST_STATE_FREE = 0,
59 
60 	/* Initial state when request first received */
61 	TCP_REQUEST_STATE_NEW = 1,
62 
63 	/* The request is queued until a data buffer is available. */
64 	TCP_REQUEST_STATE_NEED_BUFFER = 2,
65 
66 	/* The request has the data buffer available */
67 	TCP_REQUEST_STATE_HAVE_BUFFER = 3,
68 
69 	/* The request is waiting for zcopy_start to finish */
70 	TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 4,
71 
72 	/* The request has received a zero-copy buffer */
73 	TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 5,
74 
75 	/* The request is currently transferring data from the host to the controller. */
76 	TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 6,
77 
78 	/* The request is waiting for the R2T send acknowledgement. */
79 	TCP_REQUEST_STATE_AWAITING_R2T_ACK = 7,
80 
81 	/* The request is ready to execute at the block device */
82 	TCP_REQUEST_STATE_READY_TO_EXECUTE = 8,
83 
84 	/* The request is currently executing at the block device */
85 	TCP_REQUEST_STATE_EXECUTING = 9,
86 
87 	/* The request is waiting for zcopy buffers to be committed */
88 	TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 10,
89 
90 	/* The request finished executing at the block device */
91 	TCP_REQUEST_STATE_EXECUTED = 11,
92 
93 	/* The request is ready to send a completion */
94 	TCP_REQUEST_STATE_READY_TO_COMPLETE = 12,
95 
96 	/* The request is currently transferring final pdus from the controller to the host. */
97 	TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 13,
98 
99 	/* The request is waiting for zcopy buffers to be released (without committing) */
100 	TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 14,
101 
102 	/* The request completed and can be marked free. */
103 	TCP_REQUEST_STATE_COMPLETED = 15,
104 
105 	/* Terminator */
106 	TCP_REQUEST_NUM_STATES,
107 };
108 
109 enum nvmf_tcp_qpair_state {
110 	NVMF_TCP_QPAIR_STATE_INVALID = 0,
111 	NVMF_TCP_QPAIR_STATE_INITIALIZING = 1,
112 	NVMF_TCP_QPAIR_STATE_RUNNING = 2,
113 	NVMF_TCP_QPAIR_STATE_EXITING = 3,
114 	NVMF_TCP_QPAIR_STATE_EXITED = 4,
115 };
116 
117 static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
118 	"Invalid PDU Header Field",
119 	"PDU Sequence Error",
120 	"Header Digiest Error",
121 	"Data Transfer Out of Range",
122 	"R2T Limit Exceeded",
123 	"Unsupported parameter",
124 };
125 
126 static void
127 nvmf_tcp_trace(void)
128 {
129 	spdk_trace_register_owner_type(OWNER_TYPE_NVMF_TCP, 't');
130 	spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
131 	spdk_trace_register_description("TCP_REQ_NEW",
132 					TRACE_TCP_REQUEST_STATE_NEW,
133 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1,
134 					SPDK_TRACE_ARG_TYPE_INT, "qd");
135 	spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
136 					TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
137 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
138 					SPDK_TRACE_ARG_TYPE_INT, "");
139 	spdk_trace_register_description("TCP_REQ_HAVE_BUFFER",
140 					TRACE_TCP_REQUEST_STATE_HAVE_BUFFER,
141 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
142 					SPDK_TRACE_ARG_TYPE_INT, "");
143 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START",
144 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START,
145 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
146 					SPDK_TRACE_ARG_TYPE_INT, "");
147 	spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL",
148 					TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED,
149 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
150 					SPDK_TRACE_ARG_TYPE_INT, "");
151 	spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
152 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
153 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
154 					SPDK_TRACE_ARG_TYPE_INT, "");
155 	spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
156 					TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
157 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
158 					SPDK_TRACE_ARG_TYPE_INT, "");
159 	spdk_trace_register_description("TCP_REQ_EXECUTING",
160 					TRACE_TCP_REQUEST_STATE_EXECUTING,
161 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
162 					SPDK_TRACE_ARG_TYPE_INT, "");
163 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT",
164 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT,
165 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
166 					SPDK_TRACE_ARG_TYPE_INT, "");
167 	spdk_trace_register_description("TCP_REQ_EXECUTED",
168 					TRACE_TCP_REQUEST_STATE_EXECUTED,
169 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
170 					SPDK_TRACE_ARG_TYPE_INT, "");
171 	spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
172 					TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
173 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
174 					SPDK_TRACE_ARG_TYPE_INT, "");
175 	spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
176 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
177 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
178 					SPDK_TRACE_ARG_TYPE_INT, "");
179 	spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS",
180 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE,
181 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
182 					SPDK_TRACE_ARG_TYPE_INT, "");
183 	spdk_trace_register_description("TCP_REQ_COMPLETED",
184 					TRACE_TCP_REQUEST_STATE_COMPLETED,
185 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
186 					SPDK_TRACE_ARG_TYPE_INT, "qd");
187 	spdk_trace_register_description("TCP_READ_DONE",
188 					TRACE_TCP_READ_FROM_SOCKET_DONE,
189 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
190 					SPDK_TRACE_ARG_TYPE_INT, "");
191 	spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
192 					TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
193 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
194 					SPDK_TRACE_ARG_TYPE_INT, "");
195 
196 	spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE,
197 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
198 					SPDK_TRACE_ARG_TYPE_INT, "");
199 	spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT,
200 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
201 					SPDK_TRACE_ARG_TYPE_INT, "");
202 	spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE,
203 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
204 					SPDK_TRACE_ARG_TYPE_INT, "state");
205 	spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT,
206 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
207 					SPDK_TRACE_ARG_TYPE_INT, "");
208 	spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY,
209 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
210 					SPDK_TRACE_ARG_TYPE_INT, "");
211 	spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ,
212 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
213 					SPDK_TRACE_ARG_TYPE_INT, "");
214 	spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE,
215 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
216 					SPDK_TRACE_ARG_TYPE_INT, "state");
217 
218 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1);
219 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0);
220 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_QUEUE, OBJECT_NVMF_TCP_IO, 0);
221 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_PEND, OBJECT_NVMF_TCP_IO, 0);
222 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_COMPLETE, OBJECT_NVMF_TCP_IO, 0);
223 }
224 SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
225 
226 struct spdk_nvmf_tcp_req  {
227 	struct spdk_nvmf_request		req;
228 	struct spdk_nvme_cpl			rsp;
229 	struct spdk_nvme_cmd			cmd;
230 
231 	/* A PDU that can be used for sending responses. This is
232 	 * not the incoming PDU! */
233 	struct nvme_tcp_pdu			*pdu;
234 
235 	/* In-capsule data buffer */
236 	uint8_t					*buf;
237 
238 	struct spdk_nvmf_tcp_req		*fused_pair;
239 
240 	/*
241 	 * The PDU for a request may be used multiple times in serial over
242 	 * the request's lifetime. For example, first to send an R2T, then
243 	 * to send a completion. To catch mistakes where the PDU is used
244 	 * twice at the same time, add a debug flag here for init/fini.
245 	 */
246 	bool					pdu_in_use;
247 	bool					has_in_capsule_data;
248 	bool					fused_failed;
249 
250 	/* transfer_tag */
251 	uint16_t				ttag;
252 
253 	enum spdk_nvmf_tcp_req_state		state;
254 
255 	/*
256 	 * h2c_offset is used when we receive the h2c_data PDU.
257 	 */
258 	uint32_t				h2c_offset;
259 
260 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		link;
261 	TAILQ_ENTRY(spdk_nvmf_tcp_req)		state_link;
262 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		control_msg_link;
263 };
264 
265 struct spdk_nvmf_tcp_qpair {
266 	struct spdk_nvmf_qpair			qpair;
267 	struct spdk_nvmf_tcp_poll_group		*group;
268 	struct spdk_sock			*sock;
269 
270 	enum nvme_tcp_pdu_recv_state		recv_state;
271 	enum nvmf_tcp_qpair_state		state;
272 
273 	/* PDU being actively received */
274 	struct nvme_tcp_pdu			*pdu_in_progress;
275 
276 	struct spdk_nvmf_tcp_req		*fused_first;
277 
278 	/* Queues to track the requests in all states */
279 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_working_queue;
280 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_free_queue;
281 	SLIST_HEAD(, nvme_tcp_pdu)		tcp_pdu_free_queue;
282 	/* Number of working pdus */
283 	uint32_t				tcp_pdu_working_count;
284 
285 	/* Number of requests in each state */
286 	uint32_t				state_cntr[TCP_REQUEST_NUM_STATES];
287 
288 	uint8_t					cpda;
289 
290 	bool					host_hdgst_enable;
291 	bool					host_ddgst_enable;
292 
293 	bool					await_req_msg_pending;
294 
295 	/* This is a spare PDU used for sending special management
296 	 * operations. Primarily, this is used for the initial
297 	 * connection response and c2h termination request. */
298 	struct nvme_tcp_pdu			*mgmt_pdu;
299 
300 	/* Arrays of in-capsule buffers, requests, and pdus.
301 	 * Each array is 'resource_count' number of elements */
302 	void					*bufs;
303 	struct spdk_nvmf_tcp_req		*reqs;
304 	struct nvme_tcp_pdu			*pdus;
305 	uint32_t				resource_count;
306 	uint32_t				recv_buf_size;
307 
308 	struct spdk_nvmf_tcp_port		*port;
309 
310 	/* IP address */
311 	char					initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
312 	char					target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
313 
314 	/* IP port */
315 	uint16_t				initiator_port;
316 	uint16_t				target_port;
317 
318 	/* Wait until the host terminates the connection (e.g. after sending C2HTermReq) */
319 	bool					wait_terminate;
320 
321 	/* Timer used to destroy qpair after detecting transport error issue if initiator does
322 	 *  not close the connection.
323 	 */
324 	struct spdk_poller			*timeout_poller;
325 
326 	spdk_nvmf_transport_qpair_fini_cb	fini_cb_fn;
327 	void					*fini_cb_arg;
328 
329 	TAILQ_ENTRY(spdk_nvmf_tcp_qpair)	link;
330 	bool					pending_flush;
331 };
332 
333 struct spdk_nvmf_tcp_control_msg {
334 	STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
335 };
336 
337 struct spdk_nvmf_tcp_control_msg_list {
338 	void *msg_buf;
339 	STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
340 	STAILQ_HEAD(, spdk_nvmf_tcp_req) waiting_for_msg_reqs;
341 };
342 
343 struct spdk_nvmf_tcp_poll_group {
344 	struct spdk_nvmf_transport_poll_group	group;
345 	struct spdk_sock_group			*sock_group;
346 
347 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	qpairs;
348 
349 	struct spdk_io_channel			*accel_channel;
350 	struct spdk_nvmf_tcp_control_msg_list	*control_msg_list;
351 
352 	TAILQ_ENTRY(spdk_nvmf_tcp_poll_group)	link;
353 };
354 
355 struct spdk_nvmf_tcp_port {
356 	const struct spdk_nvme_transport_id	*trid;
357 	struct spdk_sock			*listen_sock;
358 	struct spdk_nvmf_transport		*transport;
359 	TAILQ_ENTRY(spdk_nvmf_tcp_port)		link;
360 };
361 
362 struct tcp_transport_opts {
363 	bool		c2h_success;
364 	uint16_t	control_msg_num;
365 	uint32_t	sock_priority;
366 };
367 
368 struct tcp_psk_entry {
369 	char				hostnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
370 	char				subnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
371 	char				pskid[NVMF_PSK_IDENTITY_LEN];
372 	uint8_t				psk[SPDK_TLS_PSK_MAX_LEN];
373 	struct spdk_key			*key;
374 	uint32_t			psk_size;
375 	enum nvme_tcp_cipher_suite	tls_cipher_suite;
376 	TAILQ_ENTRY(tcp_psk_entry)	link;
377 };
378 
379 struct spdk_nvmf_tcp_transport {
380 	struct spdk_nvmf_transport		transport;
381 	struct tcp_transport_opts               tcp_opts;
382 	uint32_t				ack_timeout;
383 
384 	struct spdk_nvmf_tcp_poll_group		*next_pg;
385 
386 	struct spdk_poller			*accept_poller;
387 	struct spdk_sock_group			*listen_sock_group;
388 
389 	TAILQ_HEAD(, spdk_nvmf_tcp_port)	ports;
390 	TAILQ_HEAD(, spdk_nvmf_tcp_poll_group)	poll_groups;
391 
392 	TAILQ_HEAD(, tcp_psk_entry)		psks;
393 };
394 
395 static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
396 	{
397 		"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
398 		spdk_json_decode_bool, true
399 	},
400 	{
401 		"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
402 		spdk_json_decode_uint16, true
403 	},
404 	{
405 		"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
406 		spdk_json_decode_uint32, true
407 	},
408 };
409 
410 static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
411 				 struct spdk_nvmf_tcp_req *tcp_req);
412 static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
413 
414 static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
415 				    struct spdk_nvmf_tcp_req *tcp_req);
416 static void nvmf_tcp_qpair_process(struct spdk_nvmf_tcp_qpair *tqpair);
417 
418 static inline void
419 nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
420 		       enum spdk_nvmf_tcp_req_state state)
421 {
422 	struct spdk_nvmf_qpair *qpair;
423 	struct spdk_nvmf_tcp_qpair *tqpair;
424 
425 	qpair = tcp_req->req.qpair;
426 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
427 
428 	assert(tqpair->state_cntr[tcp_req->state] > 0);
429 	tqpair->state_cntr[tcp_req->state]--;
430 	tqpair->state_cntr[state]++;
431 
432 	tcp_req->state = state;
433 }
434 
435 static inline struct nvme_tcp_pdu *
436 nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
437 {
438 	assert(tcp_req->pdu_in_use == false);
439 
440 	memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
441 	tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
442 
443 	return tcp_req->pdu;
444 }
445 
446 static struct spdk_nvmf_tcp_req *
447 nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
448 {
449 	struct spdk_nvmf_tcp_req *tcp_req;
450 
451 	tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
452 	if (spdk_unlikely(!tcp_req)) {
453 		return NULL;
454 	}
455 
456 	memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
457 	tcp_req->h2c_offset = 0;
458 	tcp_req->has_in_capsule_data = false;
459 	tcp_req->req.dif_enabled = false;
460 	tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE;
461 
462 	TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
463 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
464 	tqpair->qpair.queue_depth++;
465 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
466 	return tcp_req;
467 }
468 
469 static void
470 handle_await_req(void *arg)
471 {
472 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
473 
474 	tqpair->await_req_msg_pending = false;
475 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
476 		nvmf_tcp_qpair_process(tqpair);
477 	}
478 }
479 
480 static inline void
481 nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
482 {
483 	assert(!tcp_req->pdu_in_use);
484 
485 	TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
486 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
487 	tqpair->qpair.queue_depth--;
488 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
489 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ &&
490 	    !tqpair->await_req_msg_pending) {
491 		tqpair->await_req_msg_pending = true;
492 		spdk_thread_send_msg(spdk_get_thread(), handle_await_req, tqpair);
493 	}
494 }
495 
496 static void
497 nvmf_tcp_req_get_buffers_done(struct spdk_nvmf_request *req)
498 {
499 	struct spdk_nvmf_tcp_req *tcp_req;
500 	struct spdk_nvmf_transport *transport;
501 	struct spdk_nvmf_tcp_transport *ttransport;
502 
503 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
504 	transport = req->qpair->transport;
505 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
506 
507 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
508 	nvmf_tcp_req_process(ttransport, tcp_req);
509 }
510 
511 static void
512 nvmf_tcp_request_free(void *cb_arg)
513 {
514 	struct spdk_nvmf_tcp_transport *ttransport;
515 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
516 
517 	assert(tcp_req != NULL);
518 
519 	SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
520 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
521 				      struct spdk_nvmf_tcp_transport, transport);
522 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
523 	nvmf_tcp_req_process(ttransport, tcp_req);
524 }
525 
526 static int
527 nvmf_tcp_req_free(struct spdk_nvmf_request *req)
528 {
529 	struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
530 
531 	nvmf_tcp_request_free(tcp_req);
532 
533 	return 0;
534 }
535 
536 static void
537 nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
538 			   enum spdk_nvmf_tcp_req_state state)
539 {
540 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
541 
542 	assert(state != TCP_REQUEST_STATE_FREE);
543 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
544 		if (state == tcp_req->state) {
545 			nvmf_tcp_request_free(tcp_req);
546 		}
547 	}
548 }
549 
550 static inline void
551 nvmf_tcp_request_get_buffers_abort(struct spdk_nvmf_tcp_req *tcp_req)
552 {
553 	/* Request can wait either for the iobuf or control_msg */
554 	struct spdk_nvmf_poll_group *group = tcp_req->req.qpair->group;
555 	struct spdk_nvmf_transport *transport = tcp_req->req.qpair->transport;
556 	struct spdk_nvmf_transport_poll_group *tgroup = nvmf_get_transport_poll_group(group, transport);
557 	struct spdk_nvmf_tcp_poll_group *tcp_group = SPDK_CONTAINEROF(tgroup,
558 			struct spdk_nvmf_tcp_poll_group, group);
559 	struct spdk_nvmf_tcp_req *tmp_req, *abort_req;
560 
561 	assert(tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER);
562 
563 	STAILQ_FOREACH_SAFE(abort_req, &tcp_group->control_msg_list->waiting_for_msg_reqs, control_msg_link,
564 			    tmp_req) {
565 		if (abort_req == tcp_req) {
566 			STAILQ_REMOVE(&tcp_group->control_msg_list->waiting_for_msg_reqs, abort_req, spdk_nvmf_tcp_req,
567 				      control_msg_link);
568 			return;
569 		}
570 	}
571 
572 	if (!nvmf_request_get_buffers_abort(&tcp_req->req)) {
573 		SPDK_ERRLOG("Failed to abort tcp_req=%p\n", tcp_req);
574 		assert(0 && "Should never happen");
575 	}
576 }
577 
578 static void
579 nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
580 {
581 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
582 
583 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
584 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
585 
586 	/* Wipe the requests waiting for buffer from the waiting list */
587 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
588 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
589 			nvmf_tcp_request_get_buffers_abort(tcp_req);
590 		}
591 	}
592 
593 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
594 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
595 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
596 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
597 }
598 
599 static void
600 nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
601 {
602 	int i;
603 	struct spdk_nvmf_tcp_req *tcp_req;
604 
605 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
606 	for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
607 		SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
608 		TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
609 			if ((int)tcp_req->state == i) {
610 				SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
611 				SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
612 			}
613 		}
614 	}
615 }
616 
617 static void
618 _nvmf_tcp_qpair_destroy(void *_tqpair)
619 {
620 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
621 	spdk_nvmf_transport_qpair_fini_cb cb_fn = tqpair->fini_cb_fn;
622 	void *cb_arg = tqpair->fini_cb_arg;
623 	int err = 0;
624 
625 	spdk_trace_record(TRACE_TCP_QP_DESTROY, tqpair->qpair.trace_id, 0, 0);
626 
627 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
628 
629 	err = spdk_sock_close(&tqpair->sock);
630 	assert(err == 0);
631 	nvmf_tcp_cleanup_all_states(tqpair);
632 
633 	if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
634 		SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
635 			    tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
636 			    tqpair->resource_count);
637 		err++;
638 	}
639 
640 	if (err > 0) {
641 		nvmf_tcp_dump_qpair_req_contents(tqpair);
642 	}
643 
644 	/* The timeout poller might still be registered here if we close the qpair before host
645 	 * terminates the connection.
646 	 */
647 	spdk_poller_unregister(&tqpair->timeout_poller);
648 	spdk_dma_free(tqpair->pdus);
649 	free(tqpair->reqs);
650 	spdk_free(tqpair->bufs);
651 	spdk_trace_unregister_owner(tqpair->qpair.trace_id);
652 	free(tqpair);
653 
654 	if (cb_fn != NULL) {
655 		cb_fn(cb_arg);
656 	}
657 
658 	SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
659 }
660 
661 static void
662 nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
663 {
664 	/* Delay the destruction to make sure it isn't performed from the context of a sock
665 	 * callback.  Otherwise, spdk_sock_close() might not abort pending requests, causing their
666 	 * completions to be executed after the qpair is freed.  (Note: this fixed issue #2471.)
667 	 */
668 	spdk_thread_send_msg(spdk_get_thread(), _nvmf_tcp_qpair_destroy, tqpair);
669 }
670 
671 static void
672 nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
673 {
674 	struct spdk_nvmf_tcp_transport	*ttransport;
675 	assert(w != NULL);
676 
677 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
678 	spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
679 	spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
680 }
681 
682 static void
683 nvmf_tcp_free_psk_entry(struct tcp_psk_entry *entry)
684 {
685 	if (entry == NULL) {
686 		return;
687 	}
688 
689 	spdk_memset_s(entry->psk, sizeof(entry->psk), 0, sizeof(entry->psk));
690 	spdk_keyring_put_key(entry->key);
691 	free(entry);
692 }
693 
694 static int
695 nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
696 		 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
697 {
698 	struct spdk_nvmf_tcp_transport	*ttransport;
699 	struct tcp_psk_entry *entry, *tmp;
700 
701 	assert(transport != NULL);
702 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
703 
704 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
705 		TAILQ_REMOVE(&ttransport->psks, entry, link);
706 		nvmf_tcp_free_psk_entry(entry);
707 	}
708 
709 	spdk_poller_unregister(&ttransport->accept_poller);
710 	spdk_sock_group_unregister_interrupt(ttransport->listen_sock_group);
711 	spdk_sock_group_close(&ttransport->listen_sock_group);
712 	free(ttransport);
713 
714 	if (cb_fn) {
715 		cb_fn(cb_arg);
716 	}
717 	return 0;
718 }
719 
720 static int nvmf_tcp_accept(void *ctx);
721 
722 static void nvmf_tcp_accept_cb(void *ctx, struct spdk_sock_group *group, struct spdk_sock *sock);
723 
724 static struct spdk_nvmf_transport *
725 nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
726 {
727 	struct spdk_nvmf_tcp_transport *ttransport;
728 	uint32_t sge_count;
729 	uint32_t min_shared_buffers;
730 	int rc;
731 	uint64_t period;
732 
733 	ttransport = calloc(1, sizeof(*ttransport));
734 	if (!ttransport) {
735 		return NULL;
736 	}
737 
738 	TAILQ_INIT(&ttransport->ports);
739 	TAILQ_INIT(&ttransport->poll_groups);
740 	TAILQ_INIT(&ttransport->psks);
741 
742 	ttransport->transport.ops = &spdk_nvmf_transport_tcp;
743 
744 	ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
745 	ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
746 	ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
747 	if (opts->transport_specific != NULL &&
748 	    spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
749 					    SPDK_COUNTOF(tcp_transport_opts_decoder),
750 					    &ttransport->tcp_opts)) {
751 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
752 		free(ttransport);
753 		return NULL;
754 	}
755 
756 	SPDK_NOTICELOG("*** TCP Transport Init ***\n");
757 
758 	SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
759 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
760 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
761 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
762 		     "  num_shared_buffers=%d, c2h_success=%d,\n"
763 		     "  dif_insert_or_strip=%d, sock_priority=%d\n"
764 		     "  abort_timeout_sec=%d, control_msg_num=%hu\n"
765 		     "  ack_timeout=%d\n",
766 		     opts->max_queue_depth,
767 		     opts->max_io_size,
768 		     opts->max_qpairs_per_ctrlr - 1,
769 		     opts->io_unit_size,
770 		     opts->in_capsule_data_size,
771 		     opts->max_aq_depth,
772 		     opts->num_shared_buffers,
773 		     ttransport->tcp_opts.c2h_success,
774 		     opts->dif_insert_or_strip,
775 		     ttransport->tcp_opts.sock_priority,
776 		     opts->abort_timeout_sec,
777 		     ttransport->tcp_opts.control_msg_num,
778 		     opts->ack_timeout);
779 
780 	if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
781 		SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
782 			    "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
783 			    ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
784 		free(ttransport);
785 		return NULL;
786 	}
787 
788 	if (ttransport->tcp_opts.control_msg_num == 0 &&
789 	    opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
790 		SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
791 			     SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
792 		ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
793 	}
794 
795 	/* I/O unit size cannot be larger than max I/O size */
796 	if (opts->io_unit_size > opts->max_io_size) {
797 		SPDK_WARNLOG("TCP param io_unit_size %u can't be larger than max_io_size %u. Using max_io_size as io_unit_size\n",
798 			     opts->io_unit_size, opts->max_io_size);
799 		opts->io_unit_size = opts->max_io_size;
800 	}
801 
802 	/* In capsule data size cannot be larger than max I/O size */
803 	if (opts->in_capsule_data_size > opts->max_io_size) {
804 		SPDK_WARNLOG("TCP param ICD size %u can't be larger than max_io_size %u. Using max_io_size as ICD size\n",
805 			     opts->io_unit_size, opts->max_io_size);
806 		opts->in_capsule_data_size = opts->max_io_size;
807 	}
808 
809 	/* max IO queue depth cannot be smaller than 2 or larger than 65535.
810 	 * We will not check SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, because max_queue_depth is 16bits and always not larger than 64k. */
811 	if (opts->max_queue_depth < SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH) {
812 		SPDK_WARNLOG("TCP param max_queue_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
813 			     opts->max_queue_depth, SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH,
814 			     SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH);
815 		opts->max_queue_depth = SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
816 	}
817 
818 	/* max admin queue depth cannot be smaller than 2 or larger than 4096 */
819 	if (opts->max_aq_depth < SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH ||
820 	    opts->max_aq_depth > SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH) {
821 		SPDK_WARNLOG("TCP param max_aq_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
822 			     opts->max_aq_depth, SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH,
823 			     SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH);
824 		opts->max_aq_depth = SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
825 	}
826 
827 	sge_count = opts->max_io_size / opts->io_unit_size;
828 	if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
829 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
830 		free(ttransport);
831 		return NULL;
832 	}
833 
834 	/* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */
835 	if (opts->buf_cache_size < UINT32_MAX) {
836 		min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
837 		if (min_shared_buffers > opts->num_shared_buffers) {
838 			SPDK_ERRLOG("There are not enough buffers to satisfy "
839 				    "per-poll group caches for each thread. (%" PRIu32 ") "
840 				    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
841 			SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
842 			free(ttransport);
843 			return NULL;
844 		}
845 	}
846 
847 	period = spdk_interrupt_mode_is_enabled() ? 0 : opts->acceptor_poll_rate;
848 	ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport, period);
849 	if (!ttransport->accept_poller) {
850 		free(ttransport);
851 		return NULL;
852 	}
853 
854 	spdk_poller_register_interrupt(ttransport->accept_poller, NULL, NULL);
855 
856 	ttransport->listen_sock_group = spdk_sock_group_create(NULL);
857 	if (ttransport->listen_sock_group == NULL) {
858 		SPDK_ERRLOG("Failed to create socket group for listen sockets\n");
859 		spdk_poller_unregister(&ttransport->accept_poller);
860 		free(ttransport);
861 		return NULL;
862 	}
863 
864 	if (spdk_interrupt_mode_is_enabled()) {
865 		rc = SPDK_SOCK_GROUP_REGISTER_INTERRUPT(ttransport->listen_sock_group,
866 							SPDK_INTERRUPT_EVENT_IN | SPDK_INTERRUPT_EVENT_OUT, nvmf_tcp_accept, &ttransport->transport);
867 		if (rc != 0) {
868 			SPDK_ERRLOG("Failed to register interrupt for listen socker sock group\n");
869 			spdk_sock_group_close(&ttransport->listen_sock_group);
870 			spdk_poller_unregister(&ttransport->accept_poller);
871 			free(ttransport);
872 			return NULL;
873 		}
874 	}
875 
876 	return &ttransport->transport;
877 }
878 
879 static int
880 nvmf_tcp_trsvcid_to_int(const char *trsvcid)
881 {
882 	unsigned long long ull;
883 	char *end = NULL;
884 
885 	ull = strtoull(trsvcid, &end, 10);
886 	if (end == NULL || end == trsvcid || *end != '\0') {
887 		return -1;
888 	}
889 
890 	/* Valid TCP/IP port numbers are in [1, 65535] */
891 	if (ull == 0 || ull > 65535) {
892 		return -1;
893 	}
894 
895 	return (int)ull;
896 }
897 
898 /**
899  * Canonicalize a listen address trid.
900  */
901 static int
902 nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
903 			   const struct spdk_nvme_transport_id *trid)
904 {
905 	int trsvcid_int;
906 
907 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
908 	if (trsvcid_int < 0) {
909 		return -EINVAL;
910 	}
911 
912 	memset(canon_trid, 0, sizeof(*canon_trid));
913 	spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
914 	canon_trid->adrfam = trid->adrfam;
915 	snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
916 	snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
917 
918 	return 0;
919 }
920 
921 /**
922  * Find an existing listening port.
923  */
924 static struct spdk_nvmf_tcp_port *
925 nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
926 		   const struct spdk_nvme_transport_id *trid)
927 {
928 	struct spdk_nvme_transport_id canon_trid;
929 	struct spdk_nvmf_tcp_port *port;
930 
931 	if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
932 		return NULL;
933 	}
934 
935 	TAILQ_FOREACH(port, &ttransport->ports, link) {
936 		if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
937 			return port;
938 		}
939 	}
940 
941 	return NULL;
942 }
943 
944 static int
945 tcp_sock_get_key(uint8_t *out, int out_len, const char **cipher, const char *pskid,
946 		 void *get_key_ctx)
947 {
948 	struct tcp_psk_entry *entry;
949 	struct spdk_nvmf_tcp_transport *ttransport = get_key_ctx;
950 	size_t psk_len;
951 	int rc;
952 
953 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
954 		if (strcmp(pskid, entry->pskid) != 0) {
955 			continue;
956 		}
957 
958 		psk_len = entry->psk_size;
959 		if ((size_t)out_len < psk_len) {
960 			SPDK_ERRLOG("Out buffer of size: %" PRIu32 " cannot fit PSK of len: %lu\n",
961 				    out_len, psk_len);
962 			return -ENOBUFS;
963 		}
964 
965 		/* Convert PSK to the TLS PSK format. */
966 		rc = nvme_tcp_derive_tls_psk(entry->psk, psk_len, pskid, out, out_len,
967 					     entry->tls_cipher_suite);
968 		if (rc < 0) {
969 			SPDK_ERRLOG("Could not generate TLS PSK\n");
970 		}
971 
972 		switch (entry->tls_cipher_suite) {
973 		case NVME_TCP_CIPHER_AES_128_GCM_SHA256:
974 			*cipher = "TLS_AES_128_GCM_SHA256";
975 			break;
976 		case NVME_TCP_CIPHER_AES_256_GCM_SHA384:
977 			*cipher = "TLS_AES_256_GCM_SHA384";
978 			break;
979 		default:
980 			*cipher = NULL;
981 			return -ENOTSUP;
982 		}
983 
984 		return rc;
985 	}
986 
987 	SPDK_ERRLOG("Could not find PSK for identity: %s\n", pskid);
988 
989 	return -EINVAL;
990 }
991 
992 static int
993 nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
994 		struct spdk_nvmf_listen_opts *listen_opts)
995 {
996 	struct spdk_nvmf_tcp_transport *ttransport;
997 	struct spdk_nvmf_tcp_port *port;
998 	int trsvcid_int;
999 	uint8_t adrfam;
1000 	const char *sock_impl_name;
1001 	struct spdk_sock_impl_opts impl_opts;
1002 	size_t impl_opts_size = sizeof(impl_opts);
1003 	struct spdk_sock_opts opts;
1004 	int rc;
1005 
1006 	if (!strlen(trid->trsvcid)) {
1007 		SPDK_ERRLOG("Service id is required\n");
1008 		return -EINVAL;
1009 	}
1010 
1011 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1012 
1013 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
1014 	if (trsvcid_int < 0) {
1015 		SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
1016 		return -EINVAL;
1017 	}
1018 
1019 	port = calloc(1, sizeof(*port));
1020 	if (!port) {
1021 		SPDK_ERRLOG("Port allocation failed\n");
1022 		return -ENOMEM;
1023 	}
1024 
1025 	port->trid = trid;
1026 
1027 	sock_impl_name = NULL;
1028 
1029 	opts.opts_size = sizeof(opts);
1030 	spdk_sock_get_default_opts(&opts);
1031 	opts.priority = ttransport->tcp_opts.sock_priority;
1032 	opts.ack_timeout = transport->opts.ack_timeout;
1033 	if (listen_opts->secure_channel) {
1034 		if (listen_opts->sock_impl &&
1035 		    strncmp("ssl", listen_opts->sock_impl, strlen(listen_opts->sock_impl))) {
1036 			SPDK_ERRLOG("Enabling secure_channel while specifying a sock_impl different from 'ssl' is unsupported");
1037 			free(port);
1038 			return -EINVAL;
1039 		}
1040 		listen_opts->sock_impl = "ssl";
1041 	}
1042 
1043 	if (listen_opts->sock_impl) {
1044 		sock_impl_name = listen_opts->sock_impl;
1045 		spdk_sock_impl_get_opts(sock_impl_name, &impl_opts, &impl_opts_size);
1046 
1047 		if (!strncmp("ssl", sock_impl_name, strlen(sock_impl_name))) {
1048 			if (!g_tls_log) {
1049 				SPDK_NOTICELOG("TLS support is considered experimental\n");
1050 				g_tls_log = true;
1051 			}
1052 			impl_opts.tls_version = SPDK_TLS_VERSION_1_3;
1053 			impl_opts.get_key = tcp_sock_get_key;
1054 			impl_opts.get_key_ctx = ttransport;
1055 			impl_opts.tls_cipher_suites = "TLS_AES_256_GCM_SHA384:TLS_AES_128_GCM_SHA256";
1056 		}
1057 
1058 		opts.impl_opts = &impl_opts;
1059 		opts.impl_opts_size = sizeof(impl_opts);
1060 	}
1061 
1062 	port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
1063 			    sock_impl_name, &opts);
1064 	if (port->listen_sock == NULL) {
1065 		SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
1066 			    trid->traddr, trsvcid_int,
1067 			    spdk_strerror(errno), errno);
1068 		free(port);
1069 		return -errno;
1070 	}
1071 
1072 	if (spdk_sock_is_ipv4(port->listen_sock)) {
1073 		adrfam = SPDK_NVMF_ADRFAM_IPV4;
1074 	} else if (spdk_sock_is_ipv6(port->listen_sock)) {
1075 		adrfam = SPDK_NVMF_ADRFAM_IPV6;
1076 	} else {
1077 		SPDK_ERRLOG("Unhandled socket type\n");
1078 		adrfam = 0;
1079 	}
1080 
1081 	if (adrfam != trid->adrfam) {
1082 		SPDK_ERRLOG("Socket address family mismatch\n");
1083 		spdk_sock_close(&port->listen_sock);
1084 		free(port);
1085 		return -EINVAL;
1086 	}
1087 
1088 	rc = spdk_sock_group_add_sock(ttransport->listen_sock_group, port->listen_sock, nvmf_tcp_accept_cb,
1089 				      port);
1090 	if (rc < 0) {
1091 		SPDK_ERRLOG("Failed to add socket to the listen socket group\n");
1092 		spdk_sock_close(&port->listen_sock);
1093 		free(port);
1094 		return -errno;
1095 	}
1096 
1097 	port->transport = transport;
1098 
1099 	SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
1100 		       trid->traddr, trid->trsvcid);
1101 
1102 	TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
1103 	return 0;
1104 }
1105 
1106 static void
1107 nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
1108 		     const struct spdk_nvme_transport_id *trid)
1109 {
1110 	struct spdk_nvmf_tcp_transport *ttransport;
1111 	struct spdk_nvmf_tcp_port *port;
1112 
1113 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1114 
1115 	SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
1116 		      trid->traddr, trid->trsvcid);
1117 
1118 	port = nvmf_tcp_find_port(ttransport, trid);
1119 	if (port) {
1120 		spdk_sock_group_remove_sock(ttransport->listen_sock_group, port->listen_sock);
1121 		TAILQ_REMOVE(&ttransport->ports, port, link);
1122 		spdk_sock_close(&port->listen_sock);
1123 		free(port);
1124 	}
1125 }
1126 
1127 static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1128 		enum nvme_tcp_pdu_recv_state state);
1129 
1130 static void
1131 nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvmf_tcp_qpair_state state)
1132 {
1133 	tqpair->state = state;
1134 	spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0,
1135 			  (uint64_t)tqpair->state);
1136 }
1137 
1138 static void
1139 nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
1140 {
1141 	SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
1142 
1143 	spdk_trace_record(TRACE_TCP_QP_DISCONNECT, tqpair->qpair.trace_id, 0, 0);
1144 
1145 	if (tqpair->state <= NVMF_TCP_QPAIR_STATE_RUNNING) {
1146 		nvmf_tcp_qpair_set_state(tqpair, NVMF_TCP_QPAIR_STATE_EXITING);
1147 		assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1148 		spdk_poller_unregister(&tqpair->timeout_poller);
1149 
1150 		/* This will end up calling nvmf_tcp_close_qpair */
1151 		spdk_nvmf_qpair_disconnect(&tqpair->qpair);
1152 	}
1153 }
1154 
1155 static void
1156 _mgmt_pdu_write_done(void *_tqpair, int err)
1157 {
1158 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
1159 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1160 
1161 	if (spdk_unlikely(err != 0)) {
1162 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1163 		return;
1164 	}
1165 
1166 	assert(pdu->cb_fn != NULL);
1167 	pdu->cb_fn(pdu->cb_arg);
1168 }
1169 
1170 static void
1171 _req_pdu_write_done(void *req, int err)
1172 {
1173 	struct spdk_nvmf_tcp_req *tcp_req = req;
1174 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1175 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1176 
1177 	assert(tcp_req->pdu_in_use);
1178 	tcp_req->pdu_in_use = false;
1179 
1180 	/* If the request is in a completed state, we're waiting for write completion to free it */
1181 	if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) {
1182 		nvmf_tcp_request_free(tcp_req);
1183 		return;
1184 	}
1185 
1186 	if (spdk_unlikely(err != 0)) {
1187 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1188 		return;
1189 	}
1190 
1191 	assert(pdu->cb_fn != NULL);
1192 	pdu->cb_fn(pdu->cb_arg);
1193 }
1194 
1195 static void
1196 _pdu_write_done(struct nvme_tcp_pdu *pdu, int err)
1197 {
1198 	pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err);
1199 }
1200 
1201 static void
1202 tcp_sock_flush_cb(void *arg)
1203 {
1204 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
1205 	int rc = spdk_sock_flush(tqpair->sock);
1206 
1207 	if (rc < 0 && errno == EAGAIN) {
1208 		spdk_thread_send_msg(spdk_get_thread(), tcp_sock_flush_cb, tqpair);
1209 		return;
1210 	}
1211 
1212 	tqpair->pending_flush = false;
1213 	if (rc < 0) {
1214 		SPDK_ERRLOG("Could not write to socket: rc=%d, errno=%d\n", rc, errno);
1215 	}
1216 }
1217 
1218 static void
1219 _tcp_write_pdu(struct nvme_tcp_pdu *pdu)
1220 {
1221 	int rc;
1222 	uint32_t mapped_length;
1223 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1224 
1225 	pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
1226 			       tqpair->host_hdgst_enable, tqpair->host_ddgst_enable, &mapped_length);
1227 	spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
1228 
1229 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
1230 	    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
1231 		/* Try to force the send immediately. */
1232 		rc = spdk_sock_flush(tqpair->sock);
1233 		if (rc > 0 && (uint32_t)rc == mapped_length) {
1234 			_pdu_write_done(pdu, 0);
1235 		} else {
1236 			SPDK_ERRLOG("Could not write %s to socket: rc=%d, errno=%d\n",
1237 				    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ?
1238 				    "IC_RESP" : "TERM_REQ", rc, errno);
1239 			_pdu_write_done(pdu, rc >= 0 ? -EAGAIN : -errno);
1240 		}
1241 	} else if (spdk_interrupt_mode_is_enabled()) {
1242 		/* Async writes must be flushed */
1243 		if (!tqpair->pending_flush) {
1244 			tqpair->pending_flush = true;
1245 			spdk_thread_send_msg(spdk_get_thread(), tcp_sock_flush_cb, tqpair);
1246 		}
1247 	}
1248 }
1249 
1250 static void
1251 data_crc32_accel_done(void *cb_arg, int status)
1252 {
1253 	struct nvme_tcp_pdu *pdu = cb_arg;
1254 
1255 	if (spdk_unlikely(status)) {
1256 		SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
1257 		_pdu_write_done(pdu, status);
1258 		return;
1259 	}
1260 
1261 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
1262 	MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
1263 
1264 	_tcp_write_pdu(pdu);
1265 }
1266 
1267 static void
1268 pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
1269 {
1270 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1271 	int rc = 0;
1272 
1273 	/* Data Digest */
1274 	if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
1275 		/* Only support this limitated case for the first step */
1276 		if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
1277 				&& tqpair->group)) {
1278 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
1279 						       pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
1280 			if (spdk_likely(rc == 0)) {
1281 				return;
1282 			}
1283 		} else {
1284 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1285 		}
1286 		data_crc32_accel_done(pdu, rc);
1287 	} else {
1288 		_tcp_write_pdu(pdu);
1289 	}
1290 }
1291 
1292 static void
1293 nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1294 			 struct nvme_tcp_pdu *pdu,
1295 			 nvme_tcp_qpair_xfer_complete_cb cb_fn,
1296 			 void *cb_arg)
1297 {
1298 	int hlen;
1299 	uint32_t crc32c;
1300 
1301 	assert(tqpair->pdu_in_progress != pdu);
1302 
1303 	hlen = pdu->hdr.common.hlen;
1304 	pdu->cb_fn = cb_fn;
1305 	pdu->cb_arg = cb_arg;
1306 
1307 	pdu->iov[0].iov_base = &pdu->hdr.raw;
1308 	pdu->iov[0].iov_len = hlen;
1309 
1310 	/* Header Digest */
1311 	if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) {
1312 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1313 		MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
1314 	}
1315 
1316 	/* Data Digest */
1317 	pdu_data_crc32_compute(pdu);
1318 }
1319 
1320 static void
1321 nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1322 			      nvme_tcp_qpair_xfer_complete_cb cb_fn,
1323 			      void *cb_arg)
1324 {
1325 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1326 
1327 	pdu->sock_req.cb_fn = _mgmt_pdu_write_done;
1328 	pdu->sock_req.cb_arg = tqpair;
1329 
1330 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1331 }
1332 
1333 static void
1334 nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1335 			     struct spdk_nvmf_tcp_req *tcp_req,
1336 			     nvme_tcp_qpair_xfer_complete_cb cb_fn,
1337 			     void *cb_arg)
1338 {
1339 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1340 
1341 	pdu->sock_req.cb_fn = _req_pdu_write_done;
1342 	pdu->sock_req.cb_arg = tcp_req;
1343 
1344 	assert(!tcp_req->pdu_in_use);
1345 	tcp_req->pdu_in_use = true;
1346 
1347 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1348 }
1349 
1350 static int
1351 nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
1352 {
1353 	uint32_t i;
1354 	struct spdk_nvmf_transport_opts *opts;
1355 	uint32_t in_capsule_data_size;
1356 
1357 	opts = &tqpair->qpair.transport->opts;
1358 
1359 	in_capsule_data_size = opts->in_capsule_data_size;
1360 	if (opts->dif_insert_or_strip) {
1361 		in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
1362 	}
1363 
1364 	tqpair->resource_count = opts->max_queue_depth;
1365 
1366 	tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
1367 	if (!tqpair->reqs) {
1368 		SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
1369 		return -1;
1370 	}
1371 
1372 	if (in_capsule_data_size) {
1373 		tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
1374 					    NULL, SPDK_ENV_LCORE_ID_ANY,
1375 					    SPDK_MALLOC_DMA);
1376 		if (!tqpair->bufs) {
1377 			SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
1378 			return -1;
1379 		}
1380 	}
1381 	/* prepare memory space for receiving pdus and tcp_req */
1382 	/* Add additional 1 member, which will be used for mgmt_pdu owned by the tqpair */
1383 	tqpair->pdus = spdk_dma_zmalloc((2 * tqpair->resource_count + 1) * sizeof(*tqpair->pdus), 0x1000,
1384 					NULL);
1385 	if (!tqpair->pdus) {
1386 		SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
1387 		return -1;
1388 	}
1389 
1390 	for (i = 0; i < tqpair->resource_count; i++) {
1391 		struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
1392 
1393 		tcp_req->ttag = i + 1;
1394 		tcp_req->req.qpair = &tqpair->qpair;
1395 
1396 		tcp_req->pdu = &tqpair->pdus[i];
1397 		tcp_req->pdu->qpair = tqpair;
1398 
1399 		/* Set up memory to receive commands */
1400 		if (tqpair->bufs) {
1401 			tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
1402 		}
1403 
1404 		/* Set the cmdn and rsp */
1405 		tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
1406 		tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
1407 
1408 		tcp_req->req.stripped_data = NULL;
1409 
1410 		/* Initialize request state to FREE */
1411 		tcp_req->state = TCP_REQUEST_STATE_FREE;
1412 		TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
1413 		tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
1414 	}
1415 
1416 	for (; i < 2 * tqpair->resource_count; i++) {
1417 		struct nvme_tcp_pdu *pdu = &tqpair->pdus[i];
1418 
1419 		pdu->qpair = tqpair;
1420 		SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1421 	}
1422 
1423 	tqpair->mgmt_pdu = &tqpair->pdus[i];
1424 	tqpair->mgmt_pdu->qpair = tqpair;
1425 	tqpair->pdu_in_progress = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
1426 	SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
1427 	tqpair->tcp_pdu_working_count = 1;
1428 
1429 	tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
1430 				 SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1431 
1432 	return 0;
1433 }
1434 
1435 static int
1436 nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
1437 {
1438 	struct spdk_nvmf_tcp_qpair *tqpair;
1439 
1440 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1441 
1442 	SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
1443 
1444 	spdk_trace_record(TRACE_TCP_QP_CREATE, tqpair->qpair.trace_id, 0, 0);
1445 
1446 	/* Initialise request state queues of the qpair */
1447 	TAILQ_INIT(&tqpair->tcp_req_free_queue);
1448 	TAILQ_INIT(&tqpair->tcp_req_working_queue);
1449 	SLIST_INIT(&tqpair->tcp_pdu_free_queue);
1450 	tqpair->qpair.queue_depth = 0;
1451 
1452 	tqpair->host_hdgst_enable = true;
1453 	tqpair->host_ddgst_enable = true;
1454 
1455 	return 0;
1456 }
1457 
1458 static int
1459 nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
1460 {
1461 	char saddr[32], caddr[32];
1462 	uint16_t sport, cport;
1463 	char owner[256];
1464 	int rc;
1465 
1466 	rc = spdk_sock_getaddr(tqpair->sock, saddr, sizeof(saddr), &sport,
1467 			       caddr, sizeof(caddr), &cport);
1468 	if (rc != 0) {
1469 		SPDK_ERRLOG("spdk_sock_getaddr() failed\n");
1470 		return rc;
1471 	}
1472 	snprintf(owner, sizeof(owner), "%s:%d", caddr, cport);
1473 	tqpair->qpair.trace_id = spdk_trace_register_owner(OWNER_TYPE_NVMF_TCP, owner);
1474 	spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, tqpair->qpair.trace_id, 0, 0);
1475 
1476 	/* set low water mark */
1477 	rc = spdk_sock_set_recvlowat(tqpair->sock, 1);
1478 	if (rc != 0) {
1479 		SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
1480 		return rc;
1481 	}
1482 
1483 	return 0;
1484 }
1485 
1486 static void
1487 nvmf_tcp_handle_connect(struct spdk_nvmf_tcp_port *port, struct spdk_sock *sock)
1488 {
1489 	struct spdk_nvmf_tcp_qpair *tqpair;
1490 	int rc;
1491 
1492 	SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
1493 		      port->trid->traddr, port->trid->trsvcid);
1494 
1495 	tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
1496 	if (tqpair == NULL) {
1497 		SPDK_ERRLOG("Could not allocate new connection.\n");
1498 		spdk_sock_close(&sock);
1499 		return;
1500 	}
1501 
1502 	tqpair->sock = sock;
1503 	tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
1504 	tqpair->port = port;
1505 	tqpair->qpair.transport = port->transport;
1506 	tqpair->qpair.numa.id_valid = 1;
1507 	tqpair->qpair.numa.id = spdk_sock_get_numa_id(sock);
1508 
1509 	rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
1510 			       sizeof(tqpair->target_addr), &tqpair->target_port,
1511 			       tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
1512 			       &tqpair->initiator_port);
1513 	if (rc < 0) {
1514 		SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
1515 		nvmf_tcp_qpair_destroy(tqpair);
1516 		return;
1517 	}
1518 
1519 	spdk_nvmf_tgt_new_qpair(port->transport->tgt, &tqpair->qpair);
1520 }
1521 
1522 static uint32_t
1523 nvmf_tcp_port_accept(struct spdk_nvmf_tcp_port *port)
1524 {
1525 	struct spdk_sock *sock;
1526 	uint32_t count = 0;
1527 	int i;
1528 
1529 	for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
1530 		sock = spdk_sock_accept(port->listen_sock);
1531 		if (sock == NULL) {
1532 			break;
1533 		}
1534 		count++;
1535 		nvmf_tcp_handle_connect(port, sock);
1536 	}
1537 
1538 	return count;
1539 }
1540 
1541 static int
1542 nvmf_tcp_accept(void *ctx)
1543 {
1544 	struct spdk_nvmf_transport *transport = ctx;
1545 	struct spdk_nvmf_tcp_transport *ttransport;
1546 	int count;
1547 
1548 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1549 
1550 	count = spdk_sock_group_poll(ttransport->listen_sock_group);
1551 	if (count < 0) {
1552 		SPDK_ERRLOG("Fail in TCP listen socket group poll\n");
1553 	}
1554 
1555 	return count != 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1556 }
1557 
1558 static void
1559 nvmf_tcp_accept_cb(void *ctx, struct spdk_sock_group *group, struct spdk_sock *sock)
1560 {
1561 	struct spdk_nvmf_tcp_port *port = ctx;
1562 
1563 	nvmf_tcp_port_accept(port);
1564 }
1565 
1566 static void
1567 nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
1568 		  struct spdk_nvme_transport_id *trid,
1569 		  struct spdk_nvmf_discovery_log_page_entry *entry)
1570 {
1571 	struct spdk_nvmf_tcp_port *port;
1572 	struct spdk_nvmf_tcp_transport *ttransport;
1573 
1574 	entry->trtype = SPDK_NVMF_TRTYPE_TCP;
1575 	entry->adrfam = trid->adrfam;
1576 
1577 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
1578 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
1579 
1580 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1581 	port = nvmf_tcp_find_port(ttransport, trid);
1582 
1583 	assert(port != NULL);
1584 
1585 	if (strcmp(spdk_sock_get_impl_name(port->listen_sock), "ssl") == 0) {
1586 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_REQUIRED;
1587 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_TLS_1_3;
1588 	} else {
1589 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
1590 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
1591 	}
1592 }
1593 
1594 static struct spdk_nvmf_tcp_control_msg_list *
1595 nvmf_tcp_control_msg_list_create(uint16_t num_messages)
1596 {
1597 	struct spdk_nvmf_tcp_control_msg_list *list;
1598 	struct spdk_nvmf_tcp_control_msg *msg;
1599 	uint16_t i;
1600 
1601 	list = calloc(1, sizeof(*list));
1602 	if (!list) {
1603 		SPDK_ERRLOG("Failed to allocate memory for list structure\n");
1604 		return NULL;
1605 	}
1606 
1607 	list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
1608 				     NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
1609 	if (!list->msg_buf) {
1610 		SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
1611 		free(list);
1612 		return NULL;
1613 	}
1614 
1615 	STAILQ_INIT(&list->free_msgs);
1616 	STAILQ_INIT(&list->waiting_for_msg_reqs);
1617 
1618 	for (i = 0; i < num_messages; i++) {
1619 		msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
1620 				SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1621 		STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
1622 	}
1623 
1624 	return list;
1625 }
1626 
1627 static void
1628 nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
1629 {
1630 	if (!list) {
1631 		return;
1632 	}
1633 
1634 	spdk_free(list->msg_buf);
1635 	free(list);
1636 }
1637 
1638 static int nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group);
1639 
1640 static int
1641 nvmf_tcp_poll_group_intr(void *ctx)
1642 {
1643 	struct spdk_nvmf_transport_poll_group *group = ctx;
1644 	int ret = 0;
1645 
1646 	ret = nvmf_tcp_poll_group_poll(group);
1647 
1648 	return ret != 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1649 }
1650 
1651 static struct spdk_nvmf_transport_poll_group *
1652 nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport,
1653 			   struct spdk_nvmf_poll_group *group)
1654 {
1655 	struct spdk_nvmf_tcp_transport	*ttransport;
1656 	struct spdk_nvmf_tcp_poll_group *tgroup;
1657 	int rc;
1658 
1659 	tgroup = calloc(1, sizeof(*tgroup));
1660 	if (!tgroup) {
1661 		return NULL;
1662 	}
1663 
1664 	tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
1665 	if (!tgroup->sock_group) {
1666 		goto cleanup;
1667 	}
1668 
1669 	TAILQ_INIT(&tgroup->qpairs);
1670 
1671 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1672 
1673 	if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
1674 		SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
1675 			      "Creating control messages list\n", transport->opts.in_capsule_data_size,
1676 			      SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1677 		tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
1678 		if (!tgroup->control_msg_list) {
1679 			goto cleanup;
1680 		}
1681 	}
1682 
1683 	tgroup->accel_channel = spdk_accel_get_io_channel();
1684 	if (spdk_unlikely(!tgroup->accel_channel)) {
1685 		SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
1686 		goto cleanup;
1687 	}
1688 
1689 	TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link);
1690 	if (ttransport->next_pg == NULL) {
1691 		ttransport->next_pg = tgroup;
1692 	}
1693 
1694 	if (spdk_interrupt_mode_is_enabled()) {
1695 		rc = SPDK_SOCK_GROUP_REGISTER_INTERRUPT(tgroup->sock_group,
1696 							SPDK_INTERRUPT_EVENT_IN | SPDK_INTERRUPT_EVENT_OUT, nvmf_tcp_poll_group_intr, &tgroup->group);
1697 		if (rc != 0) {
1698 			SPDK_ERRLOG("Failed to register interrupt for sock group\n");
1699 			goto cleanup;
1700 		}
1701 	}
1702 
1703 	return &tgroup->group;
1704 
1705 cleanup:
1706 	nvmf_tcp_poll_group_destroy(&tgroup->group);
1707 	return NULL;
1708 }
1709 
1710 static struct spdk_nvmf_transport_poll_group *
1711 nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
1712 {
1713 	struct spdk_nvmf_tcp_transport *ttransport;
1714 	struct spdk_nvmf_tcp_poll_group **pg;
1715 	struct spdk_nvmf_tcp_qpair *tqpair;
1716 	struct spdk_sock_group *group = NULL, *hint = NULL;
1717 	int rc;
1718 
1719 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
1720 
1721 	if (TAILQ_EMPTY(&ttransport->poll_groups)) {
1722 		return NULL;
1723 	}
1724 
1725 	pg = &ttransport->next_pg;
1726 	assert(*pg != NULL);
1727 	hint = (*pg)->sock_group;
1728 
1729 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1730 	rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint);
1731 	if (rc != 0) {
1732 		return NULL;
1733 	} else if (group != NULL) {
1734 		/* Optimal poll group was found */
1735 		return spdk_sock_group_get_ctx(group);
1736 	}
1737 
1738 	/* The hint was used for optimal poll group, advance next_pg. */
1739 	*pg = TAILQ_NEXT(*pg, link);
1740 	if (*pg == NULL) {
1741 		*pg = TAILQ_FIRST(&ttransport->poll_groups);
1742 	}
1743 
1744 	return spdk_sock_group_get_ctx(hint);
1745 }
1746 
1747 static void
1748 nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
1749 {
1750 	struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup;
1751 	struct spdk_nvmf_tcp_transport *ttransport;
1752 
1753 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
1754 	spdk_sock_group_unregister_interrupt(tgroup->sock_group);
1755 	spdk_sock_group_close(&tgroup->sock_group);
1756 	if (tgroup->control_msg_list) {
1757 		nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
1758 	}
1759 
1760 	if (tgroup->accel_channel) {
1761 		spdk_put_io_channel(tgroup->accel_channel);
1762 	}
1763 
1764 	if (tgroup->group.transport == NULL) {
1765 		/* Transport can be NULL when nvmf_tcp_poll_group_create()
1766 		 * calls this function directly in a failure path. */
1767 		free(tgroup);
1768 		return;
1769 	}
1770 
1771 	ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport);
1772 
1773 	next_tgroup = TAILQ_NEXT(tgroup, link);
1774 	TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link);
1775 	if (next_tgroup == NULL) {
1776 		next_tgroup = TAILQ_FIRST(&ttransport->poll_groups);
1777 	}
1778 	if (ttransport->next_pg == tgroup) {
1779 		ttransport->next_pg = next_tgroup;
1780 	}
1781 
1782 	free(tgroup);
1783 }
1784 
1785 static void
1786 nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1787 			      enum nvme_tcp_pdu_recv_state state)
1788 {
1789 	if (tqpair->recv_state == state) {
1790 		SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
1791 			    tqpair, state);
1792 		return;
1793 	}
1794 
1795 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_QUIESCING)) {
1796 		if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH && tqpair->pdu_in_progress) {
1797 			SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, tqpair->pdu_in_progress, slist);
1798 			tqpair->tcp_pdu_working_count--;
1799 		}
1800 	}
1801 
1802 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_ERROR)) {
1803 		assert(tqpair->tcp_pdu_working_count == 0);
1804 	}
1805 
1806 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
1807 	tqpair->recv_state = state;
1808 
1809 	spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0,
1810 			  (uint64_t)tqpair->recv_state);
1811 }
1812 
1813 static int
1814 nvmf_tcp_qpair_handle_timeout(void *ctx)
1815 {
1816 	struct spdk_nvmf_tcp_qpair *tqpair = ctx;
1817 
1818 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1819 
1820 	SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
1821 		    SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
1822 
1823 	nvmf_tcp_qpair_disconnect(tqpair);
1824 	return SPDK_POLLER_BUSY;
1825 }
1826 
1827 static void
1828 nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
1829 {
1830 	struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
1831 
1832 	if (!tqpair->timeout_poller) {
1833 		tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
1834 					 SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
1835 	}
1836 }
1837 
1838 static void
1839 nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
1840 			   enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
1841 {
1842 	struct nvme_tcp_pdu *rsp_pdu;
1843 	struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
1844 	uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
1845 	uint32_t copy_len;
1846 
1847 	rsp_pdu = tqpair->mgmt_pdu;
1848 
1849 	c2h_term_req = &rsp_pdu->hdr.term_req;
1850 	c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
1851 	c2h_term_req->common.hlen = c2h_term_req_hdr_len;
1852 	c2h_term_req->fes = fes;
1853 
1854 	if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1855 	    (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1856 		DSET32(&c2h_term_req->fei, error_offset);
1857 	}
1858 
1859 	copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
1860 
1861 	/* Copy the error info into the buffer */
1862 	memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
1863 	nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
1864 
1865 	/* Contain the header of the wrong received pdu */
1866 	c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
1867 	tqpair->wait_terminate = true;
1868 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1869 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair);
1870 }
1871 
1872 static void
1873 nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1874 				struct spdk_nvmf_tcp_qpair *tqpair,
1875 				struct nvme_tcp_pdu *pdu)
1876 {
1877 	struct spdk_nvmf_tcp_req *tcp_req;
1878 
1879 	assert(pdu->psh_valid_bytes == pdu->psh_len);
1880 	assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
1881 
1882 	tcp_req = nvmf_tcp_req_get(tqpair);
1883 	if (!tcp_req) {
1884 		/* Directly return and make the allocation retry again.  This can happen if we're
1885 		 * using asynchronous writes to send the response to the host or when releasing
1886 		 * zero-copy buffers after a response has been sent.  In both cases, the host might
1887 		 * receive the response before we've finished processing the request and is free to
1888 		 * send another one.
1889 		 */
1890 		if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 ||
1891 		    tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) {
1892 			return;
1893 		}
1894 
1895 		/* The host sent more commands than the maximum queue depth. */
1896 		SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
1897 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1898 		return;
1899 	}
1900 
1901 	pdu->req = tcp_req;
1902 	assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
1903 	nvmf_tcp_req_process(ttransport, tcp_req);
1904 }
1905 
1906 static void
1907 nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1908 				    struct spdk_nvmf_tcp_qpair *tqpair,
1909 				    struct nvme_tcp_pdu *pdu)
1910 {
1911 	struct spdk_nvmf_tcp_req *tcp_req;
1912 	struct spdk_nvme_tcp_cmd *capsule_cmd;
1913 	uint32_t error_offset = 0;
1914 	enum spdk_nvme_tcp_term_req_fes fes;
1915 	struct spdk_nvme_cpl *rsp;
1916 
1917 	capsule_cmd = &pdu->hdr.capsule_cmd;
1918 	tcp_req = pdu->req;
1919 	assert(tcp_req != NULL);
1920 
1921 	/* Zero-copy requests don't support ICD */
1922 	assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req));
1923 
1924 	if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
1925 		SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
1926 			    SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
1927 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1928 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
1929 		goto err;
1930 	}
1931 
1932 	rsp = &tcp_req->req.rsp->nvme_cpl;
1933 	if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1934 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1935 	} else {
1936 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1937 	}
1938 
1939 	nvmf_tcp_req_process(ttransport, tcp_req);
1940 
1941 	return;
1942 err:
1943 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1944 }
1945 
1946 static void
1947 nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1948 			     struct spdk_nvmf_tcp_qpair *tqpair,
1949 			     struct nvme_tcp_pdu *pdu)
1950 {
1951 	struct spdk_nvmf_tcp_req *tcp_req;
1952 	uint32_t error_offset = 0;
1953 	enum spdk_nvme_tcp_term_req_fes fes = 0;
1954 	struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
1955 
1956 	h2c_data = &pdu->hdr.h2c_data;
1957 
1958 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
1959 		      tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
1960 
1961 	if (h2c_data->ttag > tqpair->resource_count) {
1962 		SPDK_DEBUGLOG(nvmf_tcp, "ttag %u is larger than allowed %u.\n", h2c_data->ttag,
1963 			      tqpair->resource_count);
1964 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1965 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1966 		goto err;
1967 	}
1968 
1969 	tcp_req = &tqpair->reqs[h2c_data->ttag - 1];
1970 
1971 	if (spdk_unlikely(tcp_req->state != TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER &&
1972 			  tcp_req->state != TCP_REQUEST_STATE_AWAITING_R2T_ACK)) {
1973 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, has error state in %d\n", tcp_req, tqpair,
1974 			      tcp_req->state);
1975 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1976 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1977 		goto err;
1978 	}
1979 
1980 	if (spdk_unlikely(tcp_req->req.cmd->nvme_cmd.cid != h2c_data->cccid)) {
1981 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, expected %u but %u for cccid.\n", tcp_req, tqpair,
1982 			      tcp_req->req.cmd->nvme_cmd.cid, h2c_data->cccid);
1983 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1984 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
1985 		goto err;
1986 	}
1987 
1988 	if (tcp_req->h2c_offset != h2c_data->datao) {
1989 		SPDK_DEBUGLOG(nvmf_tcp,
1990 			      "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
1991 			      tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
1992 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1993 		goto err;
1994 	}
1995 
1996 	if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
1997 		SPDK_DEBUGLOG(nvmf_tcp,
1998 			      "tcp_req(%p), tqpair=%p,  (datao=%u + datal=%u) exceeds requested length=%u\n",
1999 			      tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
2000 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
2001 		goto err;
2002 	}
2003 
2004 	pdu->req = tcp_req;
2005 
2006 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2007 		pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2008 	}
2009 
2010 	nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2011 				  h2c_data->datao, h2c_data->datal);
2012 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2013 	return;
2014 
2015 err:
2016 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2017 }
2018 
2019 static void
2020 nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
2021 			       struct spdk_nvmf_tcp_qpair *tqpair)
2022 {
2023 	struct nvme_tcp_pdu *rsp_pdu;
2024 	struct spdk_nvme_tcp_rsp *capsule_resp;
2025 
2026 	SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
2027 
2028 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
2029 	assert(rsp_pdu != NULL);
2030 
2031 	capsule_resp = &rsp_pdu->hdr.capsule_resp;
2032 	capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
2033 	capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
2034 	capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
2035 	if (tqpair->host_hdgst_enable) {
2036 		capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2037 		capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
2038 	}
2039 
2040 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req);
2041 }
2042 
2043 static void
2044 nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
2045 {
2046 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
2047 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
2048 					     struct spdk_nvmf_tcp_qpair, qpair);
2049 
2050 	assert(tqpair != NULL);
2051 
2052 	if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
2053 		SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
2054 			      tcp_req->req.length);
2055 		_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2056 		return;
2057 	}
2058 
2059 	if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
2060 		nvmf_tcp_request_free(tcp_req);
2061 	} else {
2062 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2063 	}
2064 }
2065 
2066 static void
2067 nvmf_tcp_r2t_complete(void *cb_arg)
2068 {
2069 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
2070 	struct spdk_nvmf_tcp_transport *ttransport;
2071 
2072 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
2073 				      struct spdk_nvmf_tcp_transport, transport);
2074 
2075 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
2076 
2077 	if (tcp_req->h2c_offset == tcp_req->req.length) {
2078 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2079 		nvmf_tcp_req_process(ttransport, tcp_req);
2080 	}
2081 }
2082 
2083 static void
2084 nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
2085 		      struct spdk_nvmf_tcp_req *tcp_req)
2086 {
2087 	struct nvme_tcp_pdu *rsp_pdu;
2088 	struct spdk_nvme_tcp_r2t_hdr *r2t;
2089 
2090 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
2091 	assert(rsp_pdu != NULL);
2092 
2093 	r2t = &rsp_pdu->hdr.r2t;
2094 	r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
2095 	r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
2096 
2097 	if (tqpair->host_hdgst_enable) {
2098 		r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2099 		r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
2100 	}
2101 
2102 	r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2103 	r2t->ttag = tcp_req->ttag;
2104 	r2t->r2to = tcp_req->h2c_offset;
2105 	r2t->r2tl = tcp_req->req.length;
2106 
2107 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
2108 
2109 	SPDK_DEBUGLOG(nvmf_tcp,
2110 		      "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
2111 		      tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
2112 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req);
2113 }
2114 
2115 static void
2116 nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
2117 				 struct spdk_nvmf_tcp_qpair *tqpair,
2118 				 struct nvme_tcp_pdu *pdu)
2119 {
2120 	struct spdk_nvmf_tcp_req *tcp_req;
2121 	struct spdk_nvme_cpl *rsp;
2122 
2123 	tcp_req = pdu->req;
2124 	assert(tcp_req != NULL);
2125 
2126 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2127 
2128 	tcp_req->h2c_offset += pdu->data_len;
2129 
2130 	/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
2131 	 * acknowledged before moving on. */
2132 	if (tcp_req->h2c_offset == tcp_req->req.length &&
2133 	    tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
2134 		/* After receiving all the h2c data, we need to check whether there is
2135 		 * transient transport error */
2136 		rsp = &tcp_req->req.rsp->nvme_cpl;
2137 		if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
2138 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2139 		} else {
2140 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2141 		}
2142 		nvmf_tcp_req_process(ttransport, tcp_req);
2143 	}
2144 }
2145 
2146 static void
2147 nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
2148 {
2149 	SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
2150 		    spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
2151 	if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
2152 	    (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
2153 		SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
2154 			      DGET32(h2c_term_req->fei));
2155 	}
2156 }
2157 
2158 static void
2159 nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2160 				 struct nvme_tcp_pdu *pdu)
2161 {
2162 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
2163 	uint32_t error_offset = 0;
2164 	enum spdk_nvme_tcp_term_req_fes fes;
2165 
2166 	if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
2167 		SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
2168 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2169 		error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
2170 		goto end;
2171 	}
2172 
2173 	/* set the data buffer */
2174 	nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
2175 			      h2c_term_req->common.plen - h2c_term_req->common.hlen);
2176 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2177 	return;
2178 end:
2179 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2180 }
2181 
2182 static void
2183 nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2184 				     struct nvme_tcp_pdu *pdu)
2185 {
2186 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
2187 
2188 	nvmf_tcp_h2c_term_req_dump(h2c_term_req);
2189 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2190 }
2191 
2192 static void
2193 _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2194 {
2195 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2196 			struct spdk_nvmf_tcp_transport, transport);
2197 
2198 	switch (pdu->hdr.common.pdu_type) {
2199 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2200 		nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
2201 		break;
2202 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2203 		nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
2204 		break;
2205 
2206 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2207 		nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
2208 		break;
2209 
2210 	default:
2211 		/* The code should not go to here */
2212 		SPDK_ERRLOG("ERROR pdu type %d\n", pdu->hdr.common.pdu_type);
2213 		break;
2214 	}
2215 	SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
2216 	tqpair->tcp_pdu_working_count--;
2217 }
2218 
2219 static inline void
2220 nvmf_tcp_req_set_cpl(struct spdk_nvmf_tcp_req *treq, int sct, int sc)
2221 {
2222 	treq->req.rsp->nvme_cpl.status.sct = sct;
2223 	treq->req.rsp->nvme_cpl.status.sc = sc;
2224 	treq->req.rsp->nvme_cpl.cid = treq->req.cmd->nvme_cmd.cid;
2225 }
2226 
2227 static void
2228 data_crc32_calc_done(void *cb_arg, int status)
2229 {
2230 	struct nvme_tcp_pdu *pdu = cb_arg;
2231 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
2232 
2233 	/* async crc32 calculation is failed and use direct calculation to check */
2234 	if (spdk_unlikely(status)) {
2235 		SPDK_ERRLOG("Data digest on tqpair=(%p) with pdu=%p failed to be calculated asynchronously\n",
2236 			    tqpair, pdu);
2237 		pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2238 	}
2239 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
2240 	if (!MATCH_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32)) {
2241 		SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2242 		assert(pdu->req != NULL);
2243 		nvmf_tcp_req_set_cpl(pdu->req, SPDK_NVME_SCT_GENERIC,
2244 				     SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR);
2245 	}
2246 	_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2247 }
2248 
2249 static void
2250 nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2251 {
2252 	int rc = 0;
2253 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2254 	tqpair->pdu_in_progress = NULL;
2255 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2256 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2257 	/* check data digest if need */
2258 	if (pdu->ddgst_enable) {
2259 		if (tqpair->qpair.qid != 0 && !pdu->dif_ctx && tqpair->group &&
2260 		    (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)) {
2261 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
2262 						       pdu->data_iovcnt, 0, data_crc32_calc_done, pdu);
2263 			if (spdk_likely(rc == 0)) {
2264 				return;
2265 			}
2266 		} else {
2267 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2268 		}
2269 		data_crc32_calc_done(pdu, rc);
2270 	} else {
2271 		_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2272 	}
2273 }
2274 
2275 static void
2276 nvmf_tcp_send_icresp_complete(void *cb_arg)
2277 {
2278 	struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
2279 
2280 	nvmf_tcp_qpair_set_state(tqpair, NVMF_TCP_QPAIR_STATE_RUNNING);
2281 }
2282 
2283 static void
2284 nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
2285 		      struct spdk_nvmf_tcp_qpair *tqpair,
2286 		      struct nvme_tcp_pdu *pdu)
2287 {
2288 	struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
2289 	struct nvme_tcp_pdu *rsp_pdu;
2290 	struct spdk_nvme_tcp_ic_resp *ic_resp;
2291 	uint32_t error_offset = 0;
2292 	enum spdk_nvme_tcp_term_req_fes fes;
2293 
2294 	/* Only PFV 0 is defined currently */
2295 	if (ic_req->pfv != 0) {
2296 		SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
2297 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2298 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
2299 		goto end;
2300 	}
2301 
2302 	/* This value is 0’s based value in units of dwords should not be larger than SPDK_NVME_TCP_HPDA_MAX */
2303 	if (ic_req->hpda > SPDK_NVME_TCP_HPDA_MAX) {
2304 		SPDK_ERRLOG("ICReq HPDA out of range 0 to 31, got %u\n", ic_req->hpda);
2305 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2306 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, hpda);
2307 		goto end;
2308 	}
2309 
2310 	/* MAXR2T is 0's based */
2311 	SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
2312 
2313 	tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
2314 	if (!tqpair->host_hdgst_enable) {
2315 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2316 	}
2317 
2318 	tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
2319 	if (!tqpair->host_ddgst_enable) {
2320 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2321 	}
2322 
2323 	tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
2324 	/* Now that we know whether digests are enabled, properly size the receive buffer */
2325 	if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
2326 		SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
2327 			     tqpair,
2328 			     tqpair->recv_buf_size);
2329 		/* Not fatal. */
2330 	}
2331 
2332 	tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
2333 	SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
2334 
2335 	rsp_pdu = tqpair->mgmt_pdu;
2336 
2337 	ic_resp = &rsp_pdu->hdr.ic_resp;
2338 	ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
2339 	ic_resp->common.hlen = ic_resp->common.plen =  sizeof(*ic_resp);
2340 	ic_resp->pfv = 0;
2341 	ic_resp->cpda = tqpair->cpda;
2342 	ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
2343 	ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
2344 	ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
2345 
2346 	SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
2347 	SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
2348 
2349 	nvmf_tcp_qpair_set_state(tqpair, NVMF_TCP_QPAIR_STATE_INITIALIZING);
2350 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair);
2351 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2352 	return;
2353 end:
2354 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2355 }
2356 
2357 static void
2358 nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2359 			struct spdk_nvmf_tcp_transport *ttransport)
2360 {
2361 	struct nvme_tcp_pdu *pdu;
2362 	int rc;
2363 	uint32_t crc32c, error_offset = 0;
2364 	enum spdk_nvme_tcp_term_req_fes fes;
2365 
2366 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2367 	pdu = tqpair->pdu_in_progress;
2368 
2369 	SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
2370 		      pdu->hdr.common.pdu_type);
2371 	/* check header digest if needed */
2372 	if (pdu->has_hdgst) {
2373 		SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
2374 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
2375 		rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
2376 		if (rc == 0) {
2377 			SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2378 			fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
2379 			nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2380 			return;
2381 
2382 		}
2383 	}
2384 
2385 	switch (pdu->hdr.common.pdu_type) {
2386 	case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
2387 		nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
2388 		break;
2389 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2390 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
2391 		break;
2392 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2393 		nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
2394 		break;
2395 
2396 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2397 		nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
2398 		break;
2399 
2400 	default:
2401 		SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
2402 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2403 		error_offset = 1;
2404 		nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2405 		break;
2406 	}
2407 }
2408 
2409 static void
2410 nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
2411 {
2412 	struct nvme_tcp_pdu *pdu;
2413 	uint32_t error_offset = 0;
2414 	enum spdk_nvme_tcp_term_req_fes fes;
2415 	uint8_t expected_hlen, pdo;
2416 	bool plen_error = false, pdo_error = false;
2417 
2418 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2419 	pdu = tqpair->pdu_in_progress;
2420 	assert(pdu);
2421 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
2422 		if (tqpair->state != NVMF_TCP_QPAIR_STATE_INVALID) {
2423 			SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
2424 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2425 			goto err;
2426 		}
2427 		expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
2428 		if (pdu->hdr.common.plen != expected_hlen) {
2429 			plen_error = true;
2430 		}
2431 	} else {
2432 		if (tqpair->state != NVMF_TCP_QPAIR_STATE_RUNNING) {
2433 			SPDK_ERRLOG("The TCP/IP connection is not negotiated\n");
2434 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2435 			goto err;
2436 		}
2437 
2438 		switch (pdu->hdr.common.pdu_type) {
2439 		case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2440 			expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
2441 			pdo = pdu->hdr.common.pdo;
2442 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2443 				pdo_error = true;
2444 				break;
2445 			}
2446 
2447 			if (pdu->hdr.common.plen < expected_hlen) {
2448 				plen_error = true;
2449 			}
2450 			break;
2451 		case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2452 			expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
2453 			pdo = pdu->hdr.common.pdo;
2454 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2455 				pdo_error = true;
2456 				break;
2457 			}
2458 			if (pdu->hdr.common.plen < expected_hlen) {
2459 				plen_error = true;
2460 			}
2461 			break;
2462 
2463 		case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2464 			expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
2465 			if ((pdu->hdr.common.plen <= expected_hlen) ||
2466 			    (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
2467 				plen_error = true;
2468 			}
2469 			break;
2470 
2471 		default:
2472 			SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
2473 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2474 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
2475 			goto err;
2476 		}
2477 	}
2478 
2479 	if (pdu->hdr.common.hlen != expected_hlen) {
2480 		SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
2481 			    pdu->hdr.common.pdu_type,
2482 			    expected_hlen, pdu->hdr.common.hlen, tqpair);
2483 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2484 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
2485 		goto err;
2486 	} else if (pdo_error) {
2487 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2488 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
2489 	} else if (plen_error) {
2490 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2491 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2492 		goto err;
2493 	} else {
2494 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2495 		nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
2496 		return;
2497 	}
2498 err:
2499 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2500 }
2501 
2502 static int
2503 nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
2504 {
2505 	int rc = 0;
2506 	struct nvme_tcp_pdu *pdu;
2507 	enum nvme_tcp_pdu_recv_state prev_state;
2508 	uint32_t data_len;
2509 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2510 			struct spdk_nvmf_tcp_transport, transport);
2511 
2512 	/* The loop here is to allow for several back-to-back state changes. */
2513 	do {
2514 		prev_state = tqpair->recv_state;
2515 		SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
2516 
2517 		pdu = tqpair->pdu_in_progress;
2518 		assert(pdu != NULL ||
2519 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY ||
2520 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_QUIESCING ||
2521 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
2522 
2523 		switch (tqpair->recv_state) {
2524 		/* Wait for the common header  */
2525 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
2526 			if (!pdu) {
2527 				pdu = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
2528 				if (spdk_unlikely(!pdu)) {
2529 					return NVME_TCP_PDU_IN_PROGRESS;
2530 				}
2531 				SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
2532 				tqpair->pdu_in_progress = pdu;
2533 				tqpair->tcp_pdu_working_count++;
2534 			}
2535 			memset(pdu, 0, offsetof(struct nvme_tcp_pdu, qpair));
2536 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2537 		/* FALLTHROUGH */
2538 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
2539 			if (spdk_unlikely(tqpair->state == NVMF_TCP_QPAIR_STATE_INITIALIZING)) {
2540 				return rc;
2541 			}
2542 
2543 			rc = nvme_tcp_read_data(tqpair->sock,
2544 						sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
2545 						(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
2546 			if (rc < 0) {
2547 				SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
2548 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2549 				break;
2550 			} else if (rc > 0) {
2551 				pdu->ch_valid_bytes += rc;
2552 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0);
2553 			}
2554 
2555 			if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
2556 				return NVME_TCP_PDU_IN_PROGRESS;
2557 			}
2558 
2559 			/* The command header of this PDU has now been read from the socket. */
2560 			nvmf_tcp_pdu_ch_handle(tqpair);
2561 			break;
2562 		/* Wait for the pdu specific header  */
2563 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
2564 			rc = nvme_tcp_read_data(tqpair->sock,
2565 						pdu->psh_len - pdu->psh_valid_bytes,
2566 						(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
2567 			if (rc < 0) {
2568 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2569 				break;
2570 			} else if (rc > 0) {
2571 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0);
2572 				pdu->psh_valid_bytes += rc;
2573 			}
2574 
2575 			if (pdu->psh_valid_bytes < pdu->psh_len) {
2576 				return NVME_TCP_PDU_IN_PROGRESS;
2577 			}
2578 
2579 			/* All header(ch, psh, head digits) of this PDU has now been read from the socket. */
2580 			nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
2581 			break;
2582 		/* Wait for the req slot */
2583 		case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
2584 			nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
2585 			break;
2586 		/* Wait for the request processing loop to acquire a buffer for the PDU */
2587 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_BUF:
2588 			break;
2589 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
2590 			/* check whether the data is valid, if not we just return */
2591 			if (!pdu->data_len) {
2592 				return NVME_TCP_PDU_IN_PROGRESS;
2593 			}
2594 
2595 			data_len = pdu->data_len;
2596 			/* data digest */
2597 			if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
2598 					  tqpair->host_ddgst_enable)) {
2599 				data_len += SPDK_NVME_TCP_DIGEST_LEN;
2600 				pdu->ddgst_enable = true;
2601 			}
2602 
2603 			rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
2604 			if (rc < 0) {
2605 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2606 				break;
2607 			}
2608 			pdu->rw_offset += rc;
2609 
2610 			if (pdu->rw_offset < data_len) {
2611 				return NVME_TCP_PDU_IN_PROGRESS;
2612 			}
2613 
2614 			/* Generate and insert DIF to whole data block received if DIF is enabled */
2615 			if (spdk_unlikely(pdu->dif_ctx != NULL) &&
2616 			    spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt, 0, data_len,
2617 						     pdu->dif_ctx) != 0) {
2618 				SPDK_ERRLOG("DIF generate failed\n");
2619 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2620 				break;
2621 			}
2622 
2623 			/* All of this PDU has now been read from the socket. */
2624 			nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2625 			break;
2626 		case NVME_TCP_PDU_RECV_STATE_QUIESCING:
2627 			if (tqpair->tcp_pdu_working_count != 0) {
2628 				return NVME_TCP_PDU_IN_PROGRESS;
2629 			}
2630 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
2631 			break;
2632 		case NVME_TCP_PDU_RECV_STATE_ERROR:
2633 			if (spdk_sock_is_connected(tqpair->sock) && tqpair->wait_terminate) {
2634 				return NVME_TCP_PDU_IN_PROGRESS;
2635 			}
2636 			return NVME_TCP_PDU_FATAL;
2637 		default:
2638 			SPDK_ERRLOG("The state(%d) is invalid\n", tqpair->recv_state);
2639 			abort();
2640 			break;
2641 		}
2642 	} while (tqpair->recv_state != prev_state);
2643 
2644 	return rc;
2645 }
2646 
2647 static inline void *
2648 nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list,
2649 			 struct spdk_nvmf_tcp_req *tcp_req)
2650 {
2651 	struct spdk_nvmf_tcp_control_msg *msg;
2652 
2653 	assert(list);
2654 
2655 	msg = STAILQ_FIRST(&list->free_msgs);
2656 	if (!msg) {
2657 		SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
2658 		STAILQ_INSERT_TAIL(&list->waiting_for_msg_reqs, tcp_req, control_msg_link);
2659 		return NULL;
2660 	}
2661 	STAILQ_REMOVE_HEAD(&list->free_msgs, link);
2662 	return msg;
2663 }
2664 
2665 static inline void
2666 nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
2667 {
2668 	struct spdk_nvmf_tcp_control_msg *msg = _msg;
2669 	struct spdk_nvmf_tcp_req *tcp_req;
2670 	struct spdk_nvmf_tcp_transport *ttransport;
2671 
2672 	assert(list);
2673 	STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
2674 	if (!STAILQ_EMPTY(&list->waiting_for_msg_reqs)) {
2675 		tcp_req = STAILQ_FIRST(&list->waiting_for_msg_reqs);
2676 		STAILQ_REMOVE_HEAD(&list->waiting_for_msg_reqs, control_msg_link);
2677 		ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
2678 					      struct spdk_nvmf_tcp_transport, transport);
2679 		nvmf_tcp_req_process(ttransport, tcp_req);
2680 	}
2681 }
2682 
2683 static void
2684 nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
2685 		       struct spdk_nvmf_transport *transport,
2686 		       struct spdk_nvmf_transport_poll_group *group)
2687 {
2688 	struct spdk_nvmf_request		*req = &tcp_req->req;
2689 	struct spdk_nvme_cmd			*cmd;
2690 	struct spdk_nvme_sgl_descriptor		*sgl;
2691 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2692 	enum spdk_nvme_tcp_term_req_fes		fes;
2693 	struct nvme_tcp_pdu			*pdu;
2694 	struct spdk_nvmf_tcp_qpair		*tqpair;
2695 	uint32_t				length, error_offset = 0;
2696 
2697 	cmd = &req->cmd->nvme_cmd;
2698 	sgl = &cmd->dptr.sgl1;
2699 
2700 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
2701 	    sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
2702 		/* get request length from sgl */
2703 		length = sgl->unkeyed.length;
2704 		if (spdk_unlikely(length > transport->opts.max_io_size)) {
2705 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
2706 				    length, transport->opts.max_io_size);
2707 			fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2708 			goto fatal_err;
2709 		}
2710 
2711 		/* fill request length and populate iovs */
2712 		req->length = length;
2713 
2714 		SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
2715 
2716 		if (spdk_unlikely(req->dif_enabled)) {
2717 			req->dif.orig_length = length;
2718 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2719 			req->dif.elba_length = length;
2720 		}
2721 
2722 		if (nvmf_ctrlr_use_zcopy(req)) {
2723 			SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req);
2724 			req->data_from_pool = false;
2725 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
2726 			return;
2727 		}
2728 
2729 		if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
2730 			/* No available buffers. Queue this request up. */
2731 			SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
2732 				      tcp_req);
2733 			return;
2734 		}
2735 
2736 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
2737 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
2738 			      tcp_req, req->iovcnt, req->iov[0].iov_base);
2739 
2740 		return;
2741 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
2742 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
2743 		uint64_t offset = sgl->address;
2744 		uint32_t max_len = transport->opts.in_capsule_data_size;
2745 
2746 		assert(tcp_req->has_in_capsule_data);
2747 		/* Capsule Cmd with In-capsule Data should get data length from pdu header */
2748 		tqpair = tcp_req->pdu->qpair;
2749 		/* receiving pdu is not same with the pdu in tcp_req */
2750 		pdu = tqpair->pdu_in_progress;
2751 		length = pdu->hdr.common.plen - pdu->psh_len - sizeof(struct spdk_nvme_tcp_common_pdu_hdr);
2752 		if (tqpair->host_ddgst_enable) {
2753 			length -= SPDK_NVME_TCP_DIGEST_LEN;
2754 		}
2755 		/* This error is not defined in NVMe/TCP spec, take this error as fatal error */
2756 		if (spdk_unlikely(length != sgl->unkeyed.length)) {
2757 			SPDK_ERRLOG("In-Capsule Data length 0x%x is not equal to SGL data length 0x%x\n",
2758 				    length, sgl->unkeyed.length);
2759 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2760 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2761 			goto fatal_err;
2762 		}
2763 
2764 		SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
2765 			      offset, length);
2766 
2767 		/* The NVMe/TCP transport does not use ICDOFF to control the in-capsule data offset. ICDOFF should be '0' */
2768 		if (spdk_unlikely(offset != 0)) {
2769 			/* Not defined fatal error in NVMe/TCP spec, handle this error as a fatal error */
2770 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " should be ZERO in NVMe/TCP\n", offset);
2771 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2772 			error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.address);
2773 			goto fatal_err;
2774 		}
2775 
2776 		if (spdk_unlikely(length > max_len)) {
2777 			/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
2778 			if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
2779 			    (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
2780 
2781 				/* Get a buffer from dedicated list */
2782 				SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
2783 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2784 				assert(tgroup->control_msg_list);
2785 				req->iov[0].iov_base = nvmf_tcp_control_msg_get(tgroup->control_msg_list, tcp_req);
2786 				if (!req->iov[0].iov_base) {
2787 					/* No available buffers. Queue this request up. */
2788 					SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
2789 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_BUF);
2790 					return;
2791 				}
2792 			} else {
2793 				SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
2794 					    length, max_len);
2795 				fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2796 				goto fatal_err;
2797 			}
2798 		} else {
2799 			req->iov[0].iov_base = tcp_req->buf;
2800 		}
2801 
2802 		req->length = length;
2803 		req->data_from_pool = false;
2804 
2805 		if (spdk_unlikely(req->dif_enabled)) {
2806 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2807 			req->dif.elba_length = length;
2808 		}
2809 
2810 		req->iov[0].iov_len = length;
2811 		req->iovcnt = 1;
2812 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
2813 
2814 		return;
2815 	}
2816 	/* If we want to handle the problem here, then we can't skip the following data segment.
2817 	 * Because this function runs before reading data part, now handle all errors as fatal errors. */
2818 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2819 		    sgl->generic.type, sgl->generic.subtype);
2820 	fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2821 	error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.generic);
2822 fatal_err:
2823 	nvmf_tcp_send_c2h_term_req(tcp_req->pdu->qpair, tcp_req->pdu, fes, error_offset);
2824 }
2825 
2826 static inline enum spdk_nvme_media_error_status_code
2827 nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
2828 	enum spdk_nvme_media_error_status_code result;
2829 
2830 	switch (err_type)
2831 	{
2832 	case SPDK_DIF_REFTAG_ERROR:
2833 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
2834 		break;
2835 	case SPDK_DIF_APPTAG_ERROR:
2836 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
2837 		break;
2838 	case SPDK_DIF_GUARD_ERROR:
2839 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
2840 		break;
2841 	default:
2842 		SPDK_UNREACHABLE();
2843 		break;
2844 	}
2845 
2846 	return result;
2847 }
2848 
2849 static void
2850 _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2851 			struct spdk_nvmf_tcp_req *tcp_req)
2852 {
2853 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
2854 				tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
2855 	struct nvme_tcp_pdu *rsp_pdu;
2856 	struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
2857 	uint32_t plen, pdo, alignment;
2858 	int rc;
2859 
2860 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2861 
2862 	rsp_pdu = tcp_req->pdu;
2863 	assert(rsp_pdu != NULL);
2864 
2865 	c2h_data = &rsp_pdu->hdr.c2h_data;
2866 	c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
2867 	plen = c2h_data->common.hlen = sizeof(*c2h_data);
2868 
2869 	if (tqpair->host_hdgst_enable) {
2870 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2871 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2872 	}
2873 
2874 	/* set the psh */
2875 	c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2876 	c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
2877 	c2h_data->datao = tcp_req->pdu->rw_offset;
2878 
2879 	/* set the padding */
2880 	rsp_pdu->padding_len = 0;
2881 	pdo = plen;
2882 	if (tqpair->cpda) {
2883 		alignment = (tqpair->cpda + 1) << 2;
2884 		if (plen % alignment != 0) {
2885 			pdo = (plen + alignment) / alignment * alignment;
2886 			rsp_pdu->padding_len = pdo - plen;
2887 			plen = pdo;
2888 		}
2889 	}
2890 
2891 	c2h_data->common.pdo = pdo;
2892 	plen += c2h_data->datal;
2893 	if (tqpair->host_ddgst_enable) {
2894 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
2895 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2896 	}
2897 
2898 	c2h_data->common.plen = plen;
2899 
2900 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2901 		rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2902 	}
2903 
2904 	nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2905 				  c2h_data->datao, c2h_data->datal);
2906 
2907 
2908 	c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
2909 	/* Need to send the capsule response if response is not all 0 */
2910 	if (ttransport->tcp_opts.c2h_success &&
2911 	    tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
2912 		c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
2913 	}
2914 
2915 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2916 		struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
2917 		struct spdk_dif_error err_blk = {};
2918 		uint32_t mapped_length = 0;
2919 		uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
2920 		uint32_t ddgst_len = 0;
2921 
2922 		if (tqpair->host_ddgst_enable) {
2923 			/* Data digest consumes additional iov entry */
2924 			available_iovs--;
2925 			/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
2926 			ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
2927 			c2h_data->common.plen -= ddgst_len;
2928 		}
2929 		/* Temp call to estimate if data can be described by limited number of iovs.
2930 		 * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
2931 		nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
2932 				    false, &mapped_length);
2933 
2934 		if (mapped_length != c2h_data->common.plen) {
2935 			c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
2936 			SPDK_DEBUGLOG(nvmf_tcp,
2937 				      "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
2938 				      c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
2939 			c2h_data->common.plen = mapped_length;
2940 
2941 			/* Rebuild pdu->data_iov since data length is changed */
2942 			nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
2943 						  c2h_data->datal);
2944 
2945 			c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
2946 						    SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
2947 		}
2948 
2949 		c2h_data->common.plen += ddgst_len;
2950 
2951 		assert(rsp_pdu->rw_offset <= tcp_req->req.length);
2952 
2953 		rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
2954 					    0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
2955 		if (rc != 0) {
2956 			SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
2957 				    err_blk.err_type, err_blk.err_offset);
2958 			rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2959 			rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
2960 			nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2961 			return;
2962 		}
2963 	}
2964 
2965 	rsp_pdu->rw_offset += c2h_data->datal;
2966 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
2967 }
2968 
2969 static void
2970 nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2971 		       struct spdk_nvmf_tcp_req *tcp_req)
2972 {
2973 	nvmf_tcp_req_pdu_init(tcp_req);
2974 	_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2975 }
2976 
2977 static int
2978 request_transfer_out(struct spdk_nvmf_request *req)
2979 {
2980 	struct spdk_nvmf_tcp_req	*tcp_req;
2981 	struct spdk_nvmf_qpair		*qpair;
2982 	struct spdk_nvmf_tcp_qpair	*tqpair;
2983 	struct spdk_nvme_cpl		*rsp;
2984 
2985 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2986 
2987 	qpair = req->qpair;
2988 	rsp = &req->rsp->nvme_cpl;
2989 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
2990 
2991 	/* Advance our sq_head pointer */
2992 	if (qpair->sq_head == qpair->sq_head_max) {
2993 		qpair->sq_head = 0;
2994 	} else {
2995 		qpair->sq_head++;
2996 	}
2997 	rsp->sqhd = qpair->sq_head;
2998 
2999 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
3000 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
3001 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
3002 		nvmf_tcp_send_c2h_data(tqpair, tcp_req);
3003 	} else {
3004 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
3005 	}
3006 
3007 	return 0;
3008 }
3009 
3010 static void
3011 nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport,
3012 			      struct spdk_nvmf_tcp_qpair *tqpair,
3013 			      struct spdk_nvmf_tcp_req *tcp_req)
3014 {
3015 	enum spdk_nvme_cmd_fuse last, next;
3016 
3017 	last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
3018 	next = tcp_req->cmd.fuse;
3019 
3020 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
3021 
3022 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
3023 		return;
3024 	}
3025 
3026 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
3027 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
3028 			/* This is a valid pair of fused commands.  Point them at each other
3029 			 * so they can be submitted consecutively once ready to be executed.
3030 			 */
3031 			tqpair->fused_first->fused_pair = tcp_req;
3032 			tcp_req->fused_pair = tqpair->fused_first;
3033 			tqpair->fused_first = NULL;
3034 			return;
3035 		} else {
3036 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
3037 			tqpair->fused_first->fused_failed = true;
3038 
3039 			/*
3040 			 * If the last req is in READY_TO_EXECUTE state, then call
3041 			 * nvmf_tcp_req_process(), otherwise nothing else will kick it.
3042 			 */
3043 			if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3044 				nvmf_tcp_req_process(ttransport, tqpair->fused_first);
3045 			}
3046 
3047 			tqpair->fused_first = NULL;
3048 		}
3049 	}
3050 
3051 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
3052 		/* Set tqpair->fused_first here so that we know to check that the next request
3053 		 * is a SECOND (and to fail this one if it isn't).
3054 		 */
3055 		tqpair->fused_first = tcp_req;
3056 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
3057 		/* Mark this req failed since it is a SECOND and the last one was not a FIRST. */
3058 		tcp_req->fused_failed = true;
3059 	}
3060 }
3061 
3062 static bool
3063 nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
3064 		     struct spdk_nvmf_tcp_req *tcp_req)
3065 {
3066 	struct spdk_nvmf_tcp_qpair		*tqpair;
3067 	uint32_t				plen;
3068 	struct nvme_tcp_pdu			*pdu;
3069 	enum spdk_nvmf_tcp_req_state		prev_state;
3070 	bool					progress = false;
3071 	struct spdk_nvmf_transport		*transport = &ttransport->transport;
3072 	struct spdk_nvmf_transport_poll_group	*group;
3073 	struct spdk_nvmf_tcp_poll_group		*tgroup;
3074 
3075 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
3076 	group = &tqpair->group->group;
3077 	assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
3078 
3079 	/* If the qpair is not active, we need to abort the outstanding requests. */
3080 	if (!spdk_nvmf_qpair_is_active(&tqpair->qpair)) {
3081 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
3082 			nvmf_tcp_request_get_buffers_abort(tcp_req);
3083 		}
3084 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3085 	}
3086 
3087 	/* The loop here is to allow for several back-to-back state changes. */
3088 	do {
3089 		prev_state = tcp_req->state;
3090 
3091 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
3092 			      tqpair);
3093 
3094 		switch (tcp_req->state) {
3095 		case TCP_REQUEST_STATE_FREE:
3096 			/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
3097 			 * to escape this state. */
3098 			break;
3099 		case TCP_REQUEST_STATE_NEW:
3100 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req,
3101 					  tqpair->qpair.queue_depth);
3102 
3103 			/* copy the cmd from the receive pdu */
3104 			tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
3105 
3106 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
3107 				tcp_req->req.dif_enabled = true;
3108 				tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
3109 			}
3110 
3111 			nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req);
3112 
3113 			/* The next state transition depends on the data transfer needs of this request. */
3114 			tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
3115 
3116 			if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
3117 				nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_INVALID_OPCODE);
3118 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
3119 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3120 				SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
3121 				break;
3122 			}
3123 
3124 			/* If no data to transfer, ready to execute. */
3125 			if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
3126 				/* Reset the tqpair receiving pdu state */
3127 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
3128 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
3129 				break;
3130 			}
3131 
3132 			pdu = tqpair->pdu_in_progress;
3133 			plen = pdu->hdr.common.hlen;
3134 			if (tqpair->host_hdgst_enable) {
3135 				plen += SPDK_NVME_TCP_DIGEST_LEN;
3136 			}
3137 			if (pdu->hdr.common.plen != plen) {
3138 				tcp_req->has_in_capsule_data = true;
3139 			} else {
3140 				/* Data is transmitted by C2H PDUs */
3141 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
3142 			}
3143 
3144 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
3145 			break;
3146 		case TCP_REQUEST_STATE_NEED_BUFFER:
3147 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.trace_id, 0,
3148 					  (uintptr_t)tcp_req);
3149 
3150 			assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
3151 
3152 			/* Try to get a data buffer */
3153 			nvmf_tcp_req_parse_sgl(tcp_req, transport, group);
3154 			break;
3155 		case TCP_REQUEST_STATE_HAVE_BUFFER:
3156 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_HAVE_BUFFER, tqpair->qpair.trace_id, 0,
3157 					  (uintptr_t)tcp_req);
3158 			/* Get a zcopy buffer if the request can be serviced through zcopy */
3159 			if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
3160 				if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3161 					assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
3162 					tcp_req->req.length = tcp_req->req.dif.elba_length;
3163 				}
3164 
3165 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START);
3166 				spdk_nvmf_request_zcopy_start(&tcp_req->req);
3167 				break;
3168 			}
3169 
3170 			assert(tcp_req->req.iovcnt > 0);
3171 
3172 			/* If data is transferring from host to controller, we need to do a transfer from the host. */
3173 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
3174 				if (tcp_req->req.data_from_pool) {
3175 					SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
3176 					nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
3177 				} else {
3178 					struct nvme_tcp_pdu *pdu;
3179 
3180 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
3181 
3182 					pdu = tqpair->pdu_in_progress;
3183 					SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
3184 						      tqpair);
3185 					/* No need to send r2t, contained in the capsuled data */
3186 					nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
3187 								  0, tcp_req->req.length);
3188 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
3189 				}
3190 				break;
3191 			}
3192 
3193 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
3194 			break;
3195 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3196 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.trace_id, 0,
3197 					  (uintptr_t)tcp_req);
3198 			/* Some external code must kick a request into  TCP_REQUEST_STATE_ZCOPY_START_COMPLETED
3199 			 * to escape this state. */
3200 			break;
3201 		case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
3202 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.trace_id, 0,
3203 					  (uintptr_t)tcp_req);
3204 			if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) {
3205 				SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n",
3206 					      tcp_req, tqpair);
3207 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3208 				break;
3209 			}
3210 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
3211 				SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
3212 				nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
3213 			} else {
3214 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3215 			}
3216 			break;
3217 		case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3218 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.trace_id, 0,
3219 					  (uintptr_t)tcp_req);
3220 			/* The R2T completion or the h2c data incoming will kick it out of this state. */
3221 			break;
3222 		case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3223 
3224 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.trace_id,
3225 					  0, (uintptr_t)tcp_req);
3226 			/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
3227 			 * to escape this state. */
3228 			break;
3229 		case TCP_REQUEST_STATE_READY_TO_EXECUTE:
3230 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.trace_id, 0,
3231 					  (uintptr_t)tcp_req);
3232 
3233 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3234 				assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
3235 				tcp_req->req.length = tcp_req->req.dif.elba_length;
3236 			}
3237 
3238 			if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
3239 				if (tcp_req->fused_failed) {
3240 					/* This request failed FUSED semantics.  Fail it immediately, without
3241 					 * even sending it to the target layer.
3242 					 */
3243 					nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_MISSING_FUSED);
3244 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3245 					break;
3246 				}
3247 
3248 				if (tcp_req->fused_pair == NULL ||
3249 				    tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3250 					/* This request is ready to execute, but either we don't know yet if it's
3251 					 * valid - i.e. this is a FIRST but we haven't received the next request yet),
3252 					 * or the other request of this fused pair isn't ready to execute. So
3253 					 * break here and this request will get processed later either when the
3254 					 * other request is ready or we find that this request isn't valid.
3255 					 */
3256 					break;
3257 				}
3258 			}
3259 
3260 			if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
3261 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
3262 				/* If we get to this point, and this request is a fused command, we know that
3263 				 * it is part of a valid sequence (FIRST followed by a SECOND) and that both
3264 				 * requests are READY_TO_EXECUTE.  So call spdk_nvmf_request_exec() both on this
3265 				 * request, and the other request of the fused pair, in the correct order.
3266 				 * Also clear the ->fused_pair pointers on both requests, since after this point
3267 				 * we no longer need to maintain the relationship between these two requests.
3268 				 */
3269 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
3270 					assert(tcp_req->fused_pair != NULL);
3271 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3272 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3273 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3274 					tcp_req->fused_pair->fused_pair = NULL;
3275 					tcp_req->fused_pair = NULL;
3276 				}
3277 				spdk_nvmf_request_exec(&tcp_req->req);
3278 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
3279 					assert(tcp_req->fused_pair != NULL);
3280 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3281 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3282 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3283 					tcp_req->fused_pair->fused_pair = NULL;
3284 					tcp_req->fused_pair = NULL;
3285 				}
3286 			} else {
3287 				/* For zero-copy, only requests with data coming from host to the
3288 				 * controller can end up here. */
3289 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
3290 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT);
3291 				spdk_nvmf_request_zcopy_end(&tcp_req->req, true);
3292 			}
3293 
3294 			break;
3295 		case TCP_REQUEST_STATE_EXECUTING:
3296 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
3297 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3298 			 * to escape this state. */
3299 			break;
3300 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3301 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.trace_id, 0,
3302 					  (uintptr_t)tcp_req);
3303 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3304 			 * to escape this state. */
3305 			break;
3306 		case TCP_REQUEST_STATE_EXECUTED:
3307 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
3308 
3309 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3310 				tcp_req->req.length = tcp_req->req.dif.orig_length;
3311 			}
3312 
3313 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3314 			break;
3315 		case TCP_REQUEST_STATE_READY_TO_COMPLETE:
3316 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.trace_id, 0,
3317 					  (uintptr_t)tcp_req);
3318 			if (request_transfer_out(&tcp_req->req) != 0) {
3319 				assert(0); /* No good way to handle this currently */
3320 			}
3321 			break;
3322 		case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
3323 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.trace_id,
3324 					  0, (uintptr_t)tcp_req);
3325 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3326 			 * to escape this state. */
3327 			break;
3328 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3329 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.trace_id, 0,
3330 					  (uintptr_t)tcp_req);
3331 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3332 			 * to escape this state. */
3333 			break;
3334 		case TCP_REQUEST_STATE_COMPLETED:
3335 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req,
3336 					  tqpair->qpair.queue_depth);
3337 			/* If there's an outstanding PDU sent to the host, the request is completed
3338 			 * due to the qpair being disconnected.  We must delay the completion until
3339 			 * that write is done to avoid freeing the request twice. */
3340 			if (spdk_unlikely(tcp_req->pdu_in_use)) {
3341 				SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding "
3342 					      "write on req=%p\n", tcp_req);
3343 				/* This can only happen for zcopy requests */
3344 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3345 				assert(!spdk_nvmf_qpair_is_active(&tqpair->qpair));
3346 				break;
3347 			}
3348 
3349 			if (tcp_req->req.data_from_pool) {
3350 				spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
3351 			} else if (spdk_unlikely(tcp_req->has_in_capsule_data &&
3352 						 (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
3353 						  tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
3354 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3355 				assert(tgroup->control_msg_list);
3356 				SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
3357 				nvmf_tcp_control_msg_put(tgroup->control_msg_list,
3358 							 tcp_req->req.iov[0].iov_base);
3359 			} else if (tcp_req->req.zcopy_bdev_io != NULL) {
3360 				/* If the request has an unreleased zcopy bdev_io, it's either a
3361 				 * read, a failed write, or the qpair is being disconnected */
3362 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3363 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
3364 				       spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) ||
3365 				       !spdk_nvmf_qpair_is_active(&tqpair->qpair));
3366 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE);
3367 				spdk_nvmf_request_zcopy_end(&tcp_req->req, false);
3368 				break;
3369 			}
3370 			tcp_req->req.length = 0;
3371 			tcp_req->req.iovcnt = 0;
3372 			tcp_req->fused_failed = false;
3373 			if (tcp_req->fused_pair) {
3374 				/* This req was part of a valid fused pair, but failed before it got to
3375 				 * READ_TO_EXECUTE state.  This means we need to fail the other request
3376 				 * in the pair, because it is no longer part of a valid pair.  If the pair
3377 				 * already reached READY_TO_EXECUTE state, we need to kick it.
3378 				 */
3379 				tcp_req->fused_pair->fused_failed = true;
3380 				if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3381 					nvmf_tcp_req_process(ttransport, tcp_req->fused_pair);
3382 				}
3383 				tcp_req->fused_pair = NULL;
3384 			}
3385 
3386 			nvmf_tcp_req_put(tqpair, tcp_req);
3387 			break;
3388 		case TCP_REQUEST_NUM_STATES:
3389 		default:
3390 			assert(0);
3391 			break;
3392 		}
3393 
3394 		if (tcp_req->state != prev_state) {
3395 			progress = true;
3396 		}
3397 	} while (tcp_req->state != prev_state);
3398 
3399 	return progress;
3400 }
3401 
3402 static void
3403 nvmf_tcp_qpair_process(struct spdk_nvmf_tcp_qpair *tqpair)
3404 {
3405 	int rc;
3406 
3407 	assert(tqpair != NULL);
3408 	rc = nvmf_tcp_sock_process(tqpair);
3409 
3410 	/* If there was a new socket error, disconnect */
3411 	if (rc < 0) {
3412 		nvmf_tcp_qpair_disconnect(tqpair);
3413 	}
3414 }
3415 
3416 static void
3417 nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
3418 {
3419 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
3420 
3421 	nvmf_tcp_qpair_process(tqpair);
3422 }
3423 
3424 static int
3425 nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3426 			struct spdk_nvmf_qpair *qpair)
3427 {
3428 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3429 	struct spdk_nvmf_tcp_qpair	*tqpair;
3430 	int				rc;
3431 
3432 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3433 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3434 
3435 	rc =  nvmf_tcp_qpair_sock_init(tqpair);
3436 	if (rc != 0) {
3437 		SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
3438 		return -1;
3439 	}
3440 
3441 	rc = nvmf_tcp_qpair_init(&tqpair->qpair);
3442 	if (rc < 0) {
3443 		SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
3444 		return -1;
3445 	}
3446 
3447 	rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
3448 	if (rc < 0) {
3449 		SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
3450 		return -1;
3451 	}
3452 
3453 	rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
3454 				      nvmf_tcp_sock_cb, tqpair);
3455 	if (rc != 0) {
3456 		SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
3457 			    spdk_strerror(errno), errno);
3458 		return -1;
3459 	}
3460 
3461 	tqpair->group = tgroup;
3462 	nvmf_tcp_qpair_set_state(tqpair, NVMF_TCP_QPAIR_STATE_INVALID);
3463 	TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
3464 
3465 	return 0;
3466 }
3467 
3468 static int
3469 nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3470 			   struct spdk_nvmf_qpair *qpair)
3471 {
3472 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3473 	struct spdk_nvmf_tcp_qpair		*tqpair;
3474 	int				rc;
3475 
3476 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3477 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3478 
3479 	assert(tqpair->group == tgroup);
3480 
3481 	SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
3482 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
3483 		/* Change the state to move the qpair from the await_req list to the main list
3484 		 * and prevent adding it again later by nvmf_tcp_qpair_set_recv_state() */
3485 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
3486 	}
3487 	TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
3488 
3489 	/* Try to force out any pending writes */
3490 	spdk_sock_flush(tqpair->sock);
3491 
3492 	rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
3493 	if (rc != 0) {
3494 		SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
3495 			    spdk_strerror(errno), errno);
3496 	}
3497 
3498 	return rc;
3499 }
3500 
3501 static int
3502 nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
3503 {
3504 	struct spdk_nvmf_tcp_transport *ttransport;
3505 	struct spdk_nvmf_tcp_req *tcp_req;
3506 
3507 	ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3508 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3509 
3510 	switch (tcp_req->state) {
3511 	case TCP_REQUEST_STATE_EXECUTING:
3512 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3513 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3514 		break;
3515 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3516 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED);
3517 		break;
3518 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3519 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3520 		break;
3521 	default:
3522 		SPDK_ERRLOG("Unexpected request state %d (cntlid:%d, qid:%d)\n",
3523 			    tcp_req->state, req->qpair->ctrlr->cntlid, req->qpair->qid);
3524 		assert(0 && "Unexpected request state");
3525 		break;
3526 	}
3527 
3528 	nvmf_tcp_req_process(ttransport, tcp_req);
3529 
3530 	return 0;
3531 }
3532 
3533 static void
3534 nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
3535 		     spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3536 {
3537 	struct spdk_nvmf_tcp_qpair *tqpair;
3538 
3539 	SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
3540 
3541 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3542 
3543 	assert(tqpair->fini_cb_fn == NULL);
3544 	tqpair->fini_cb_fn = cb_fn;
3545 	tqpair->fini_cb_arg = cb_arg;
3546 
3547 	nvmf_tcp_qpair_set_state(tqpair, NVMF_TCP_QPAIR_STATE_EXITED);
3548 	nvmf_tcp_qpair_destroy(tqpair);
3549 }
3550 
3551 static int
3552 nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3553 {
3554 	struct spdk_nvmf_tcp_poll_group *tgroup;
3555 	int num_events;
3556 
3557 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3558 
3559 	if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs))) {
3560 		return 0;
3561 	}
3562 
3563 	num_events = spdk_sock_group_poll(tgroup->sock_group);
3564 	if (spdk_unlikely(num_events < 0)) {
3565 		SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
3566 	}
3567 
3568 	return num_events;
3569 }
3570 
3571 static int
3572 nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
3573 			struct spdk_nvme_transport_id *trid, bool peer)
3574 {
3575 	struct spdk_nvmf_tcp_qpair     *tqpair;
3576 	uint16_t			port;
3577 
3578 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3579 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
3580 
3581 	if (peer) {
3582 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
3583 		port = tqpair->initiator_port;
3584 	} else {
3585 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
3586 		port = tqpair->target_port;
3587 	}
3588 
3589 	if (spdk_sock_is_ipv4(tqpair->sock)) {
3590 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3591 	} else if (spdk_sock_is_ipv6(tqpair->sock)) {
3592 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3593 	} else {
3594 		return -1;
3595 	}
3596 
3597 	snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
3598 	return 0;
3599 }
3600 
3601 static int
3602 nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3603 			      struct spdk_nvme_transport_id *trid)
3604 {
3605 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3606 }
3607 
3608 static int
3609 nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3610 			     struct spdk_nvme_transport_id *trid)
3611 {
3612 	return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
3613 }
3614 
3615 static int
3616 nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3617 			       struct spdk_nvme_transport_id *trid)
3618 {
3619 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3620 }
3621 
3622 static void
3623 nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
3624 			      struct spdk_nvmf_tcp_req *tcp_req_to_abort)
3625 {
3626 	nvmf_tcp_req_set_cpl(tcp_req_to_abort, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_BY_REQUEST);
3627 	nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3628 
3629 	req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
3630 }
3631 
3632 static int
3633 _nvmf_tcp_qpair_abort_request(void *ctx)
3634 {
3635 	struct spdk_nvmf_request *req = ctx;
3636 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
3637 			struct spdk_nvmf_tcp_req, req);
3638 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
3639 					     struct spdk_nvmf_tcp_qpair, qpair);
3640 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
3641 			struct spdk_nvmf_tcp_transport, transport);
3642 	int rc;
3643 
3644 	spdk_poller_unregister(&req->poller);
3645 
3646 	switch (tcp_req_to_abort->state) {
3647 	case TCP_REQUEST_STATE_EXECUTING:
3648 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3649 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3650 		rc = nvmf_ctrlr_abort_request(req);
3651 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
3652 			return SPDK_POLLER_BUSY;
3653 		}
3654 		break;
3655 
3656 	case TCP_REQUEST_STATE_NEED_BUFFER:
3657 		nvmf_tcp_request_get_buffers_abort(tcp_req_to_abort);
3658 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3659 		nvmf_tcp_req_process(ttransport, tcp_req_to_abort);
3660 		break;
3661 
3662 	case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3663 	case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3664 		if (spdk_get_ticks() < req->timeout_tsc) {
3665 			req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
3666 			return SPDK_POLLER_BUSY;
3667 		}
3668 		break;
3669 
3670 	default:
3671 		/* Requests in other states are either un-abortable (e.g.
3672 		 * TRANSFERRING_CONTROLLER_TO_HOST) or should never end up here, as they're
3673 		 * immediately transitioned to other states in nvmf_tcp_req_process() (e.g.
3674 		 * READY_TO_EXECUTE).  But it is fine to end up here, as we'll simply complete the
3675 		 * abort request with the bit0 of dword0 set (command not aborted).
3676 		 */
3677 		break;
3678 	}
3679 
3680 	spdk_nvmf_request_complete(req);
3681 	return SPDK_POLLER_BUSY;
3682 }
3683 
3684 static void
3685 nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
3686 			     struct spdk_nvmf_request *req)
3687 {
3688 	struct spdk_nvmf_tcp_qpair *tqpair;
3689 	struct spdk_nvmf_tcp_transport *ttransport;
3690 	struct spdk_nvmf_transport *transport;
3691 	uint16_t cid;
3692 	uint32_t i;
3693 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
3694 
3695 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3696 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3697 	transport = &ttransport->transport;
3698 
3699 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
3700 
3701 	for (i = 0; i < tqpair->resource_count; i++) {
3702 		if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
3703 		    tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
3704 			tcp_req_to_abort = &tqpair->reqs[i];
3705 			break;
3706 		}
3707 	}
3708 
3709 	spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, tqpair->qpair.trace_id, 0, (uintptr_t)req);
3710 
3711 	if (tcp_req_to_abort == NULL) {
3712 		spdk_nvmf_request_complete(req);
3713 		return;
3714 	}
3715 
3716 	req->req_to_abort = &tcp_req_to_abort->req;
3717 	req->timeout_tsc = spdk_get_ticks() +
3718 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
3719 	req->poller = NULL;
3720 
3721 	_nvmf_tcp_qpair_abort_request(req);
3722 }
3723 
3724 struct tcp_subsystem_add_host_opts {
3725 	char *psk;
3726 };
3727 
3728 static const struct spdk_json_object_decoder tcp_subsystem_add_host_opts_decoder[] = {
3729 	{"psk", offsetof(struct tcp_subsystem_add_host_opts, psk), spdk_json_decode_string, true},
3730 };
3731 
3732 static int
3733 nvmf_tcp_subsystem_add_host(struct spdk_nvmf_transport *transport,
3734 			    const struct spdk_nvmf_subsystem *subsystem,
3735 			    const char *hostnqn,
3736 			    const struct spdk_json_val *transport_specific)
3737 {
3738 	struct tcp_subsystem_add_host_opts opts;
3739 	struct spdk_nvmf_tcp_transport *ttransport;
3740 	struct tcp_psk_entry *tmp, *entry = NULL;
3741 	uint8_t psk_configured[SPDK_TLS_PSK_MAX_LEN] = {};
3742 	char psk_interchange[SPDK_TLS_PSK_MAX_LEN + 1] = {};
3743 	uint8_t tls_cipher_suite;
3744 	int rc = 0;
3745 	uint8_t psk_retained_hash;
3746 	uint64_t psk_configured_size;
3747 
3748 	if (transport_specific == NULL) {
3749 		return 0;
3750 	}
3751 
3752 	assert(transport != NULL);
3753 	assert(subsystem != NULL);
3754 
3755 	memset(&opts, 0, sizeof(opts));
3756 
3757 	/* Decode PSK (either name of a key or file path) */
3758 	if (spdk_json_decode_object_relaxed(transport_specific, tcp_subsystem_add_host_opts_decoder,
3759 					    SPDK_COUNTOF(tcp_subsystem_add_host_opts_decoder), &opts)) {
3760 		SPDK_ERRLOG("spdk_json_decode_object failed\n");
3761 		return -EINVAL;
3762 	}
3763 
3764 	if (opts.psk == NULL) {
3765 		return 0;
3766 	}
3767 
3768 	entry = calloc(1, sizeof(struct tcp_psk_entry));
3769 	if (entry == NULL) {
3770 		SPDK_ERRLOG("Unable to allocate memory for PSK entry!\n");
3771 		rc = -ENOMEM;
3772 		goto end;
3773 	}
3774 
3775 	entry->key = spdk_keyring_get_key(opts.psk);
3776 	if (entry->key == NULL) {
3777 		SPDK_ERRLOG("Key '%s' does not exist\n", opts.psk);
3778 		rc = -EINVAL;
3779 		goto end;
3780 	}
3781 
3782 	rc = spdk_key_get_key(entry->key, psk_interchange, SPDK_TLS_PSK_MAX_LEN);
3783 	if (rc < 0) {
3784 		SPDK_ERRLOG("Failed to retrieve PSK '%s'\n", opts.psk);
3785 		rc = -EINVAL;
3786 		goto end;
3787 	}
3788 
3789 	/* Parse PSK interchange to get length of base64 encoded data.
3790 	 * This is then used to decide which cipher suite should be used
3791 	 * to generate PSK identity and TLS PSK later on. */
3792 	rc = nvme_tcp_parse_interchange_psk(psk_interchange, psk_configured, sizeof(psk_configured),
3793 					    &psk_configured_size, &psk_retained_hash);
3794 	if (rc < 0) {
3795 		SPDK_ERRLOG("Failed to parse PSK interchange!\n");
3796 		goto end;
3797 	}
3798 
3799 	/* The Base64 string encodes the configured PSK (32 or 48 bytes binary).
3800 	 * This check also ensures that psk_configured_size is smaller than
3801 	 * psk_retained buffer size. */
3802 	if (psk_configured_size == SHA256_DIGEST_LENGTH) {
3803 		tls_cipher_suite = NVME_TCP_CIPHER_AES_128_GCM_SHA256;
3804 	} else if (psk_configured_size == SHA384_DIGEST_LENGTH) {
3805 		tls_cipher_suite = NVME_TCP_CIPHER_AES_256_GCM_SHA384;
3806 	} else {
3807 		SPDK_ERRLOG("Unrecognized cipher suite!\n");
3808 		rc = -EINVAL;
3809 		goto end;
3810 	}
3811 
3812 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3813 	/* Generate PSK identity. */
3814 	rc = nvme_tcp_generate_psk_identity(entry->pskid, sizeof(entry->pskid), hostnqn,
3815 					    subsystem->subnqn, tls_cipher_suite);
3816 	if (rc) {
3817 		rc = -EINVAL;
3818 		goto end;
3819 	}
3820 	/* Check if PSK identity entry already exists. */
3821 	TAILQ_FOREACH(tmp, &ttransport->psks, link) {
3822 		if (strncmp(tmp->pskid, entry->pskid, NVMF_PSK_IDENTITY_LEN) == 0) {
3823 			SPDK_ERRLOG("Given PSK identity: %s entry already exists!\n", entry->pskid);
3824 			rc = -EEXIST;
3825 			goto end;
3826 		}
3827 	}
3828 
3829 	if (snprintf(entry->hostnqn, sizeof(entry->hostnqn), "%s", hostnqn) < 0) {
3830 		SPDK_ERRLOG("Could not write hostnqn string!\n");
3831 		rc = -EINVAL;
3832 		goto end;
3833 	}
3834 	if (snprintf(entry->subnqn, sizeof(entry->subnqn), "%s", subsystem->subnqn) < 0) {
3835 		SPDK_ERRLOG("Could not write subnqn string!\n");
3836 		rc = -EINVAL;
3837 		goto end;
3838 	}
3839 
3840 	entry->tls_cipher_suite = tls_cipher_suite;
3841 
3842 	/* No hash indicates that Configured PSK must be used as Retained PSK. */
3843 	if (psk_retained_hash == NVME_TCP_HASH_ALGORITHM_NONE) {
3844 		/* Psk configured is either 32 or 48 bytes long. */
3845 		memcpy(entry->psk, psk_configured, psk_configured_size);
3846 		entry->psk_size = psk_configured_size;
3847 	} else {
3848 		/* Derive retained PSK. */
3849 		rc = nvme_tcp_derive_retained_psk(psk_configured, psk_configured_size, hostnqn, entry->psk,
3850 						  SPDK_TLS_PSK_MAX_LEN, psk_retained_hash);
3851 		if (rc < 0) {
3852 			SPDK_ERRLOG("Unable to derive retained PSK!\n");
3853 			goto end;
3854 		}
3855 		entry->psk_size = rc;
3856 	}
3857 
3858 	TAILQ_INSERT_TAIL(&ttransport->psks, entry, link);
3859 	rc = 0;
3860 
3861 end:
3862 	spdk_memset_s(psk_configured, sizeof(psk_configured), 0, sizeof(psk_configured));
3863 	spdk_memset_s(psk_interchange, sizeof(psk_interchange), 0, sizeof(psk_interchange));
3864 
3865 	free(opts.psk);
3866 	if (rc != 0) {
3867 		nvmf_tcp_free_psk_entry(entry);
3868 	}
3869 
3870 	return rc;
3871 }
3872 
3873 static void
3874 nvmf_tcp_subsystem_remove_host(struct spdk_nvmf_transport *transport,
3875 			       const struct spdk_nvmf_subsystem *subsystem,
3876 			       const char *hostnqn)
3877 {
3878 	struct spdk_nvmf_tcp_transport *ttransport;
3879 	struct tcp_psk_entry *entry, *tmp;
3880 
3881 	assert(transport != NULL);
3882 	assert(subsystem != NULL);
3883 
3884 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3885 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
3886 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3887 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3888 			TAILQ_REMOVE(&ttransport->psks, entry, link);
3889 			nvmf_tcp_free_psk_entry(entry);
3890 			break;
3891 		}
3892 	}
3893 }
3894 
3895 static void
3896 nvmf_tcp_subsystem_dump_host(struct spdk_nvmf_transport *transport,
3897 			     const struct spdk_nvmf_subsystem *subsystem, const char *hostnqn,
3898 			     struct spdk_json_write_ctx *w)
3899 {
3900 	struct spdk_nvmf_tcp_transport *ttransport;
3901 	struct tcp_psk_entry *entry;
3902 
3903 	assert(transport != NULL);
3904 	assert(subsystem != NULL);
3905 
3906 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3907 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
3908 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3909 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3910 			spdk_json_write_named_string(w, "psk",  spdk_key_get_name(entry->key));
3911 			break;
3912 		}
3913 	}
3914 }
3915 
3916 static void
3917 nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
3918 {
3919 	opts->max_queue_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
3920 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
3921 	opts->in_capsule_data_size =	SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
3922 	opts->max_io_size =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
3923 	opts->io_unit_size =		SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
3924 	opts->max_aq_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
3925 	opts->num_shared_buffers =	SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
3926 	opts->buf_cache_size =		SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
3927 	opts->dif_insert_or_strip =	SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
3928 	opts->abort_timeout_sec =	SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
3929 	opts->transport_specific =      NULL;
3930 }
3931 
3932 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
3933 	.name = "TCP",
3934 	.type = SPDK_NVME_TRANSPORT_TCP,
3935 	.opts_init = nvmf_tcp_opts_init,
3936 	.create = nvmf_tcp_create,
3937 	.dump_opts = nvmf_tcp_dump_opts,
3938 	.destroy = nvmf_tcp_destroy,
3939 
3940 	.listen = nvmf_tcp_listen,
3941 	.stop_listen = nvmf_tcp_stop_listen,
3942 
3943 	.listener_discover = nvmf_tcp_discover,
3944 
3945 	.poll_group_create = nvmf_tcp_poll_group_create,
3946 	.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
3947 	.poll_group_destroy = nvmf_tcp_poll_group_destroy,
3948 	.poll_group_add = nvmf_tcp_poll_group_add,
3949 	.poll_group_remove = nvmf_tcp_poll_group_remove,
3950 	.poll_group_poll = nvmf_tcp_poll_group_poll,
3951 
3952 	.req_free = nvmf_tcp_req_free,
3953 	.req_complete = nvmf_tcp_req_complete,
3954 	.req_get_buffers_done = nvmf_tcp_req_get_buffers_done,
3955 
3956 	.qpair_fini = nvmf_tcp_close_qpair,
3957 	.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
3958 	.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
3959 	.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
3960 	.qpair_abort_request = nvmf_tcp_qpair_abort_request,
3961 	.subsystem_add_host = nvmf_tcp_subsystem_add_host,
3962 	.subsystem_remove_host = nvmf_tcp_subsystem_remove_host,
3963 	.subsystem_dump_host = nvmf_tcp_subsystem_dump_host,
3964 };
3965 
3966 SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
3967 SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)
3968