xref: /spdk/lib/nvmf/tcp.c (revision b217432fa83bdca50a1723d18a32b9fac1a7d8f9)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2018 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2022, 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/accel.h"
8 #include "spdk/stdinc.h"
9 #include "spdk/crc32.h"
10 #include "spdk/endian.h"
11 #include "spdk/assert.h"
12 #include "spdk/thread.h"
13 #include "spdk/nvmf_transport.h"
14 #include "spdk/string.h"
15 #include "spdk/trace.h"
16 #include "spdk/util.h"
17 #include "spdk/log.h"
18 #include "spdk/keyring.h"
19 
20 #include "spdk_internal/assert.h"
21 #include "spdk_internal/nvme_tcp.h"
22 #include "spdk_internal/sock.h"
23 
24 #include "nvmf_internal.h"
25 
26 #include "spdk_internal/trace_defs.h"
27 
28 #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
29 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
30 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
31 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
32 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
33 
34 #define SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH 2
35 #define SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH 65535
36 #define SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH 2
37 #define SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH 4096
38 
39 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH 128
40 #define SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH 128
41 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
42 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
43 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
44 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
45 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
46 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX
47 #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
48 #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
49 
50 #define TCP_PSK_INVALID_PERMISSIONS 0177
51 
52 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
53 static bool g_tls_log = false;
54 
55 /* spdk nvmf related structure */
56 enum spdk_nvmf_tcp_req_state {
57 
58 	/* The request is not currently in use */
59 	TCP_REQUEST_STATE_FREE = 0,
60 
61 	/* Initial state when request first received */
62 	TCP_REQUEST_STATE_NEW = 1,
63 
64 	/* The request is queued until a data buffer is available. */
65 	TCP_REQUEST_STATE_NEED_BUFFER = 2,
66 
67 	/* The request is waiting for zcopy_start to finish */
68 	TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 3,
69 
70 	/* The request has received a zero-copy buffer */
71 	TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 4,
72 
73 	/* The request is currently transferring data from the host to the controller. */
74 	TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 5,
75 
76 	/* The request is waiting for the R2T send acknowledgement. */
77 	TCP_REQUEST_STATE_AWAITING_R2T_ACK = 6,
78 
79 	/* The request is ready to execute at the block device */
80 	TCP_REQUEST_STATE_READY_TO_EXECUTE = 7,
81 
82 	/* The request is currently executing at the block device */
83 	TCP_REQUEST_STATE_EXECUTING = 8,
84 
85 	/* The request is waiting for zcopy buffers to be committed */
86 	TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 9,
87 
88 	/* The request finished executing at the block device */
89 	TCP_REQUEST_STATE_EXECUTED = 10,
90 
91 	/* The request is ready to send a completion */
92 	TCP_REQUEST_STATE_READY_TO_COMPLETE = 11,
93 
94 	/* The request is currently transferring final pdus from the controller to the host. */
95 	TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 12,
96 
97 	/* The request is waiting for zcopy buffers to be released (without committing) */
98 	TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 13,
99 
100 	/* The request completed and can be marked free. */
101 	TCP_REQUEST_STATE_COMPLETED = 14,
102 
103 	/* Terminator */
104 	TCP_REQUEST_NUM_STATES,
105 };
106 
107 static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
108 	"Invalid PDU Header Field",
109 	"PDU Sequence Error",
110 	"Header Digiest Error",
111 	"Data Transfer Out of Range",
112 	"R2T Limit Exceeded",
113 	"Unsupported parameter",
114 };
115 
116 SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
117 {
118 	spdk_trace_register_owner_type(OWNER_TYPE_NVMF_TCP, 't');
119 	spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
120 	spdk_trace_register_description("TCP_REQ_NEW",
121 					TRACE_TCP_REQUEST_STATE_NEW,
122 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1,
123 					SPDK_TRACE_ARG_TYPE_INT, "");
124 	spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
125 					TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
126 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
127 					SPDK_TRACE_ARG_TYPE_INT, "");
128 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START",
129 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START,
130 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
131 					SPDK_TRACE_ARG_TYPE_INT, "");
132 	spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL",
133 					TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED,
134 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
135 					SPDK_TRACE_ARG_TYPE_INT, "");
136 	spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
137 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
138 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
139 					SPDK_TRACE_ARG_TYPE_INT, "");
140 	spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
141 					TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
142 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
143 					SPDK_TRACE_ARG_TYPE_INT, "");
144 	spdk_trace_register_description("TCP_REQ_EXECUTING",
145 					TRACE_TCP_REQUEST_STATE_EXECUTING,
146 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
147 					SPDK_TRACE_ARG_TYPE_INT, "");
148 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT",
149 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT,
150 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
151 					SPDK_TRACE_ARG_TYPE_INT, "");
152 	spdk_trace_register_description("TCP_REQ_EXECUTED",
153 					TRACE_TCP_REQUEST_STATE_EXECUTED,
154 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
155 					SPDK_TRACE_ARG_TYPE_INT, "");
156 	spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
157 					TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
158 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
159 					SPDK_TRACE_ARG_TYPE_INT, "");
160 	spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
161 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
162 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
163 					SPDK_TRACE_ARG_TYPE_INT, "");
164 	spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS",
165 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE,
166 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
167 					SPDK_TRACE_ARG_TYPE_INT, "");
168 	spdk_trace_register_description("TCP_REQ_COMPLETED",
169 					TRACE_TCP_REQUEST_STATE_COMPLETED,
170 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
171 					SPDK_TRACE_ARG_TYPE_INT, "");
172 	spdk_trace_register_description("TCP_READ_DONE",
173 					TRACE_TCP_READ_FROM_SOCKET_DONE,
174 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
175 					SPDK_TRACE_ARG_TYPE_INT, "");
176 	spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
177 					TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
178 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
179 					SPDK_TRACE_ARG_TYPE_INT, "");
180 
181 	spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE,
182 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
183 					SPDK_TRACE_ARG_TYPE_INT, "");
184 	spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT,
185 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
186 					SPDK_TRACE_ARG_TYPE_INT, "");
187 	spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE,
188 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
189 					SPDK_TRACE_ARG_TYPE_INT, "state");
190 	spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT,
191 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
192 					SPDK_TRACE_ARG_TYPE_INT, "");
193 	spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY,
194 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
195 					SPDK_TRACE_ARG_TYPE_INT, "");
196 	spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ,
197 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
198 					SPDK_TRACE_ARG_TYPE_INT, "");
199 	spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE,
200 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
201 					SPDK_TRACE_ARG_TYPE_INT, "state");
202 
203 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1);
204 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0);
205 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_QUEUE, OBJECT_NVMF_TCP_IO, 0);
206 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_PEND, OBJECT_NVMF_TCP_IO, 0);
207 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_COMPLETE, OBJECT_NVMF_TCP_IO, 0);
208 }
209 
210 struct spdk_nvmf_tcp_req  {
211 	struct spdk_nvmf_request		req;
212 	struct spdk_nvme_cpl			rsp;
213 	struct spdk_nvme_cmd			cmd;
214 
215 	/* A PDU that can be used for sending responses. This is
216 	 * not the incoming PDU! */
217 	struct nvme_tcp_pdu			*pdu;
218 
219 	/* In-capsule data buffer */
220 	uint8_t					*buf;
221 
222 	struct spdk_nvmf_tcp_req		*fused_pair;
223 
224 	/*
225 	 * The PDU for a request may be used multiple times in serial over
226 	 * the request's lifetime. For example, first to send an R2T, then
227 	 * to send a completion. To catch mistakes where the PDU is used
228 	 * twice at the same time, add a debug flag here for init/fini.
229 	 */
230 	bool					pdu_in_use;
231 	bool					has_in_capsule_data;
232 	bool					fused_failed;
233 
234 	/* transfer_tag */
235 	uint16_t				ttag;
236 
237 	enum spdk_nvmf_tcp_req_state		state;
238 
239 	/*
240 	 * h2c_offset is used when we receive the h2c_data PDU.
241 	 */
242 	uint32_t				h2c_offset;
243 
244 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		link;
245 	TAILQ_ENTRY(spdk_nvmf_tcp_req)		state_link;
246 };
247 
248 struct spdk_nvmf_tcp_qpair {
249 	struct spdk_nvmf_qpair			qpair;
250 	struct spdk_nvmf_tcp_poll_group		*group;
251 	struct spdk_sock			*sock;
252 
253 	enum nvme_tcp_pdu_recv_state		recv_state;
254 	enum nvme_tcp_qpair_state		state;
255 
256 	/* PDU being actively received */
257 	struct nvme_tcp_pdu			*pdu_in_progress;
258 
259 	struct spdk_nvmf_tcp_req		*fused_first;
260 
261 	/* Queues to track the requests in all states */
262 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_working_queue;
263 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_free_queue;
264 	SLIST_HEAD(, nvme_tcp_pdu)		tcp_pdu_free_queue;
265 	/* Number of working pdus */
266 	uint32_t				tcp_pdu_working_count;
267 
268 	/* Number of requests in each state */
269 	uint32_t				state_cntr[TCP_REQUEST_NUM_STATES];
270 
271 	uint8_t					cpda;
272 
273 	bool					host_hdgst_enable;
274 	bool					host_ddgst_enable;
275 
276 	/* This is a spare PDU used for sending special management
277 	 * operations. Primarily, this is used for the initial
278 	 * connection response and c2h termination request. */
279 	struct nvme_tcp_pdu			*mgmt_pdu;
280 
281 	/* Arrays of in-capsule buffers, requests, and pdus.
282 	 * Each array is 'resource_count' number of elements */
283 	void					*bufs;
284 	struct spdk_nvmf_tcp_req		*reqs;
285 	struct nvme_tcp_pdu			*pdus;
286 	uint32_t				resource_count;
287 	uint32_t				recv_buf_size;
288 
289 	struct spdk_nvmf_tcp_port		*port;
290 
291 	/* IP address */
292 	char					initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
293 	char					target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
294 
295 	/* IP port */
296 	uint16_t				initiator_port;
297 	uint16_t				target_port;
298 
299 	/* Wait until the host terminates the connection (e.g. after sending C2HTermReq) */
300 	bool					wait_terminate;
301 
302 	/* Timer used to destroy qpair after detecting transport error issue if initiator does
303 	 *  not close the connection.
304 	 */
305 	struct spdk_poller			*timeout_poller;
306 
307 	spdk_nvmf_transport_qpair_fini_cb	fini_cb_fn;
308 	void					*fini_cb_arg;
309 
310 	TAILQ_ENTRY(spdk_nvmf_tcp_qpair)	link;
311 };
312 
313 struct spdk_nvmf_tcp_control_msg {
314 	STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
315 };
316 
317 struct spdk_nvmf_tcp_control_msg_list {
318 	void *msg_buf;
319 	STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
320 };
321 
322 struct spdk_nvmf_tcp_poll_group {
323 	struct spdk_nvmf_transport_poll_group	group;
324 	struct spdk_sock_group			*sock_group;
325 
326 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	qpairs;
327 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	await_req;
328 
329 	struct spdk_io_channel			*accel_channel;
330 	struct spdk_nvmf_tcp_control_msg_list	*control_msg_list;
331 
332 	TAILQ_ENTRY(spdk_nvmf_tcp_poll_group)	link;
333 };
334 
335 struct spdk_nvmf_tcp_port {
336 	const struct spdk_nvme_transport_id	*trid;
337 	struct spdk_sock			*listen_sock;
338 	TAILQ_ENTRY(spdk_nvmf_tcp_port)		link;
339 };
340 
341 struct tcp_transport_opts {
342 	bool		c2h_success;
343 	uint16_t	control_msg_num;
344 	uint32_t	sock_priority;
345 };
346 
347 struct tcp_psk_entry {
348 	char				hostnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
349 	char				subnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
350 	char				pskid[NVMF_PSK_IDENTITY_LEN];
351 	uint8_t				psk[SPDK_TLS_PSK_MAX_LEN];
352 	struct spdk_key			*key;
353 
354 	/* Original path saved to emit SPDK configuration via "save_config". */
355 	char				psk_path[PATH_MAX];
356 	uint32_t			psk_size;
357 	enum nvme_tcp_cipher_suite	tls_cipher_suite;
358 	TAILQ_ENTRY(tcp_psk_entry)	link;
359 };
360 
361 struct spdk_nvmf_tcp_transport {
362 	struct spdk_nvmf_transport		transport;
363 	struct tcp_transport_opts               tcp_opts;
364 	uint32_t				ack_timeout;
365 
366 	struct spdk_nvmf_tcp_poll_group		*next_pg;
367 
368 	struct spdk_poller			*accept_poller;
369 
370 	TAILQ_HEAD(, spdk_nvmf_tcp_port)	ports;
371 	TAILQ_HEAD(, spdk_nvmf_tcp_poll_group)	poll_groups;
372 
373 	TAILQ_HEAD(, tcp_psk_entry)		psks;
374 };
375 
376 static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
377 	{
378 		"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
379 		spdk_json_decode_bool, true
380 	},
381 	{
382 		"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
383 		spdk_json_decode_uint16, true
384 	},
385 	{
386 		"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
387 		spdk_json_decode_uint32, true
388 	},
389 };
390 
391 static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
392 				 struct spdk_nvmf_tcp_req *tcp_req);
393 static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
394 
395 static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
396 				    struct spdk_nvmf_tcp_req *tcp_req);
397 
398 static inline void
399 nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
400 		       enum spdk_nvmf_tcp_req_state state)
401 {
402 	struct spdk_nvmf_qpair *qpair;
403 	struct spdk_nvmf_tcp_qpair *tqpair;
404 
405 	qpair = tcp_req->req.qpair;
406 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
407 
408 	assert(tqpair->state_cntr[tcp_req->state] > 0);
409 	tqpair->state_cntr[tcp_req->state]--;
410 	tqpair->state_cntr[state]++;
411 
412 	tcp_req->state = state;
413 }
414 
415 static inline struct nvme_tcp_pdu *
416 nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
417 {
418 	assert(tcp_req->pdu_in_use == false);
419 
420 	memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
421 	tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
422 
423 	return tcp_req->pdu;
424 }
425 
426 static struct spdk_nvmf_tcp_req *
427 nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
428 {
429 	struct spdk_nvmf_tcp_req *tcp_req;
430 
431 	tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
432 	if (spdk_unlikely(!tcp_req)) {
433 		return NULL;
434 	}
435 
436 	memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
437 	tcp_req->h2c_offset = 0;
438 	tcp_req->has_in_capsule_data = false;
439 	tcp_req->req.dif_enabled = false;
440 	tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE;
441 
442 	TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
443 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
444 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
445 	return tcp_req;
446 }
447 
448 static inline void
449 nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
450 {
451 	assert(!tcp_req->pdu_in_use);
452 
453 	TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
454 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
455 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
456 }
457 
458 static void
459 nvmf_tcp_request_free(void *cb_arg)
460 {
461 	struct spdk_nvmf_tcp_transport *ttransport;
462 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
463 
464 	assert(tcp_req != NULL);
465 
466 	SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
467 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
468 				      struct spdk_nvmf_tcp_transport, transport);
469 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
470 	nvmf_tcp_req_process(ttransport, tcp_req);
471 }
472 
473 static int
474 nvmf_tcp_req_free(struct spdk_nvmf_request *req)
475 {
476 	struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
477 
478 	nvmf_tcp_request_free(tcp_req);
479 
480 	return 0;
481 }
482 
483 static void
484 nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
485 			   enum spdk_nvmf_tcp_req_state state)
486 {
487 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
488 
489 	assert(state != TCP_REQUEST_STATE_FREE);
490 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
491 		if (state == tcp_req->state) {
492 			nvmf_tcp_request_free(tcp_req);
493 		}
494 	}
495 }
496 
497 static void
498 nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
499 {
500 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
501 
502 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
503 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
504 
505 	/* Wipe the requests waiting for buffer from the global list */
506 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
507 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
508 			STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue, &tcp_req->req,
509 				      spdk_nvmf_request, buf_link);
510 		}
511 	}
512 
513 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
514 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
515 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
516 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
517 }
518 
519 static void
520 nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
521 {
522 	int i;
523 	struct spdk_nvmf_tcp_req *tcp_req;
524 
525 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
526 	for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
527 		SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
528 		TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
529 			if ((int)tcp_req->state == i) {
530 				SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
531 				SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
532 			}
533 		}
534 	}
535 }
536 
537 static void
538 _nvmf_tcp_qpair_destroy(void *_tqpair)
539 {
540 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
541 	spdk_nvmf_transport_qpair_fini_cb cb_fn = tqpair->fini_cb_fn;
542 	void *cb_arg = tqpair->fini_cb_arg;
543 	int err = 0;
544 
545 	spdk_trace_record(TRACE_TCP_QP_DESTROY, tqpair->qpair.trace_id, 0, 0);
546 
547 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
548 
549 	err = spdk_sock_close(&tqpair->sock);
550 	assert(err == 0);
551 	nvmf_tcp_cleanup_all_states(tqpair);
552 
553 	if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
554 		SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
555 			    tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
556 			    tqpair->resource_count);
557 		err++;
558 	}
559 
560 	if (err > 0) {
561 		nvmf_tcp_dump_qpair_req_contents(tqpair);
562 	}
563 
564 	/* The timeout poller might still be registered here if we close the qpair before host
565 	 * terminates the connection.
566 	 */
567 	spdk_poller_unregister(&tqpair->timeout_poller);
568 	spdk_dma_free(tqpair->pdus);
569 	free(tqpair->reqs);
570 	spdk_free(tqpair->bufs);
571 	spdk_trace_unregister_owner(tqpair->qpair.trace_id);
572 	free(tqpair);
573 
574 	if (cb_fn != NULL) {
575 		cb_fn(cb_arg);
576 	}
577 
578 	SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
579 }
580 
581 static void
582 nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
583 {
584 	/* Delay the destruction to make sure it isn't performed from the context of a sock
585 	 * callback.  Otherwise, spdk_sock_close() might not abort pending requests, causing their
586 	 * completions to be executed after the qpair is freed.  (Note: this fixed issue #2471.)
587 	 */
588 	spdk_thread_send_msg(spdk_get_thread(), _nvmf_tcp_qpair_destroy, tqpair);
589 }
590 
591 static void
592 nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
593 {
594 	struct spdk_nvmf_tcp_transport	*ttransport;
595 	assert(w != NULL);
596 
597 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
598 	spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
599 	spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
600 }
601 
602 static void
603 nvmf_tcp_free_psk_entry(struct tcp_psk_entry *entry)
604 {
605 	if (entry == NULL) {
606 		return;
607 	}
608 
609 	spdk_memset_s(entry->psk, sizeof(entry->psk), 0, sizeof(entry->psk));
610 	spdk_keyring_put_key(entry->key);
611 	free(entry);
612 }
613 
614 static int
615 nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
616 		 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
617 {
618 	struct spdk_nvmf_tcp_transport	*ttransport;
619 	struct tcp_psk_entry *entry, *tmp;
620 
621 	assert(transport != NULL);
622 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
623 
624 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
625 		TAILQ_REMOVE(&ttransport->psks, entry, link);
626 		nvmf_tcp_free_psk_entry(entry);
627 	}
628 
629 	spdk_poller_unregister(&ttransport->accept_poller);
630 	free(ttransport);
631 
632 	if (cb_fn) {
633 		cb_fn(cb_arg);
634 	}
635 	return 0;
636 }
637 
638 static int nvmf_tcp_accept(void *ctx);
639 
640 static struct spdk_nvmf_transport *
641 nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
642 {
643 	struct spdk_nvmf_tcp_transport *ttransport;
644 	uint32_t sge_count;
645 	uint32_t min_shared_buffers;
646 
647 	ttransport = calloc(1, sizeof(*ttransport));
648 	if (!ttransport) {
649 		return NULL;
650 	}
651 
652 	TAILQ_INIT(&ttransport->ports);
653 	TAILQ_INIT(&ttransport->poll_groups);
654 	TAILQ_INIT(&ttransport->psks);
655 
656 	ttransport->transport.ops = &spdk_nvmf_transport_tcp;
657 
658 	ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
659 	ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
660 	ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
661 	if (opts->transport_specific != NULL &&
662 	    spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
663 					    SPDK_COUNTOF(tcp_transport_opts_decoder),
664 					    &ttransport->tcp_opts)) {
665 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
666 		free(ttransport);
667 		return NULL;
668 	}
669 
670 	SPDK_NOTICELOG("*** TCP Transport Init ***\n");
671 
672 	SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
673 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
674 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
675 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
676 		     "  num_shared_buffers=%d, c2h_success=%d,\n"
677 		     "  dif_insert_or_strip=%d, sock_priority=%d\n"
678 		     "  abort_timeout_sec=%d, control_msg_num=%hu\n"
679 		     "  ack_timeout=%d\n",
680 		     opts->max_queue_depth,
681 		     opts->max_io_size,
682 		     opts->max_qpairs_per_ctrlr - 1,
683 		     opts->io_unit_size,
684 		     opts->in_capsule_data_size,
685 		     opts->max_aq_depth,
686 		     opts->num_shared_buffers,
687 		     ttransport->tcp_opts.c2h_success,
688 		     opts->dif_insert_or_strip,
689 		     ttransport->tcp_opts.sock_priority,
690 		     opts->abort_timeout_sec,
691 		     ttransport->tcp_opts.control_msg_num,
692 		     opts->ack_timeout);
693 
694 	if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
695 		SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
696 			    "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
697 			    ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
698 		free(ttransport);
699 		return NULL;
700 	}
701 
702 	if (ttransport->tcp_opts.control_msg_num == 0 &&
703 	    opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
704 		SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
705 			     SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
706 		ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
707 	}
708 
709 	/* I/O unit size cannot be larger than max I/O size */
710 	if (opts->io_unit_size > opts->max_io_size) {
711 		SPDK_WARNLOG("TCP param io_unit_size %u can't be larger than max_io_size %u. Using max_io_size as io_unit_size\n",
712 			     opts->io_unit_size, opts->max_io_size);
713 		opts->io_unit_size = opts->max_io_size;
714 	}
715 
716 	/* In capsule data size cannot be larger than max I/O size */
717 	if (opts->in_capsule_data_size > opts->max_io_size) {
718 		SPDK_WARNLOG("TCP param ICD size %u can't be larger than max_io_size %u. Using max_io_size as ICD size\n",
719 			     opts->io_unit_size, opts->max_io_size);
720 		opts->in_capsule_data_size = opts->max_io_size;
721 	}
722 
723 	/* max IO queue depth cannot be smaller than 2 or larger than 65535.
724 	 * We will not check SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, because max_queue_depth is 16bits and always not larger than 64k. */
725 	if (opts->max_queue_depth < SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH) {
726 		SPDK_WARNLOG("TCP param max_queue_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
727 			     opts->max_queue_depth, SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH,
728 			     SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH);
729 		opts->max_queue_depth = SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
730 	}
731 
732 	/* max admin queue depth cannot be smaller than 2 or larger than 4096 */
733 	if (opts->max_aq_depth < SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH ||
734 	    opts->max_aq_depth > SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH) {
735 		SPDK_WARNLOG("TCP param max_aq_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
736 			     opts->max_aq_depth, SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH,
737 			     SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH);
738 		opts->max_aq_depth = SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
739 	}
740 
741 	sge_count = opts->max_io_size / opts->io_unit_size;
742 	if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
743 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
744 		free(ttransport);
745 		return NULL;
746 	}
747 
748 	/* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */
749 	if (opts->buf_cache_size < UINT32_MAX) {
750 		min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
751 		if (min_shared_buffers > opts->num_shared_buffers) {
752 			SPDK_ERRLOG("There are not enough buffers to satisfy "
753 				    "per-poll group caches for each thread. (%" PRIu32 ") "
754 				    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
755 			SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
756 			free(ttransport);
757 			return NULL;
758 		}
759 	}
760 
761 	ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport,
762 				    opts->acceptor_poll_rate);
763 	if (!ttransport->accept_poller) {
764 		free(ttransport);
765 		return NULL;
766 	}
767 
768 	return &ttransport->transport;
769 }
770 
771 static int
772 nvmf_tcp_trsvcid_to_int(const char *trsvcid)
773 {
774 	unsigned long long ull;
775 	char *end = NULL;
776 
777 	ull = strtoull(trsvcid, &end, 10);
778 	if (end == NULL || end == trsvcid || *end != '\0') {
779 		return -1;
780 	}
781 
782 	/* Valid TCP/IP port numbers are in [1, 65535] */
783 	if (ull == 0 || ull > 65535) {
784 		return -1;
785 	}
786 
787 	return (int)ull;
788 }
789 
790 /**
791  * Canonicalize a listen address trid.
792  */
793 static int
794 nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
795 			   const struct spdk_nvme_transport_id *trid)
796 {
797 	int trsvcid_int;
798 
799 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
800 	if (trsvcid_int < 0) {
801 		return -EINVAL;
802 	}
803 
804 	memset(canon_trid, 0, sizeof(*canon_trid));
805 	spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
806 	canon_trid->adrfam = trid->adrfam;
807 	snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
808 	snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
809 
810 	return 0;
811 }
812 
813 /**
814  * Find an existing listening port.
815  */
816 static struct spdk_nvmf_tcp_port *
817 nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
818 		   const struct spdk_nvme_transport_id *trid)
819 {
820 	struct spdk_nvme_transport_id canon_trid;
821 	struct spdk_nvmf_tcp_port *port;
822 
823 	if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
824 		return NULL;
825 	}
826 
827 	TAILQ_FOREACH(port, &ttransport->ports, link) {
828 		if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
829 			return port;
830 		}
831 	}
832 
833 	return NULL;
834 }
835 
836 static int
837 tcp_sock_get_key(uint8_t *out, int out_len, const char **cipher, const char *pskid,
838 		 void *get_key_ctx)
839 {
840 	struct tcp_psk_entry *entry;
841 	struct spdk_nvmf_tcp_transport *ttransport = get_key_ctx;
842 	size_t psk_len;
843 	int rc;
844 
845 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
846 		if (strcmp(pskid, entry->pskid) != 0) {
847 			continue;
848 		}
849 
850 		psk_len = entry->psk_size;
851 		if ((size_t)out_len < psk_len) {
852 			SPDK_ERRLOG("Out buffer of size: %" PRIu32 " cannot fit PSK of len: %lu\n",
853 				    out_len, psk_len);
854 			return -ENOBUFS;
855 		}
856 
857 		/* Convert PSK to the TLS PSK format. */
858 		rc = nvme_tcp_derive_tls_psk(entry->psk, psk_len, pskid, out, out_len,
859 					     entry->tls_cipher_suite);
860 		if (rc < 0) {
861 			SPDK_ERRLOG("Could not generate TLS PSK\n");
862 		}
863 
864 		switch (entry->tls_cipher_suite) {
865 		case NVME_TCP_CIPHER_AES_128_GCM_SHA256:
866 			*cipher = "TLS_AES_128_GCM_SHA256";
867 			break;
868 		case NVME_TCP_CIPHER_AES_256_GCM_SHA384:
869 			*cipher = "TLS_AES_256_GCM_SHA384";
870 			break;
871 		default:
872 			*cipher = NULL;
873 			return -ENOTSUP;
874 		}
875 
876 		return rc;
877 	}
878 
879 	SPDK_ERRLOG("Could not find PSK for identity: %s\n", pskid);
880 
881 	return -EINVAL;
882 }
883 
884 static int
885 nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
886 		struct spdk_nvmf_listen_opts *listen_opts)
887 {
888 	struct spdk_nvmf_tcp_transport *ttransport;
889 	struct spdk_nvmf_tcp_port *port;
890 	int trsvcid_int;
891 	uint8_t adrfam;
892 	const char *sock_impl_name;
893 	struct spdk_sock_impl_opts impl_opts;
894 	size_t impl_opts_size = sizeof(impl_opts);
895 	struct spdk_sock_opts opts;
896 
897 	if (!strlen(trid->trsvcid)) {
898 		SPDK_ERRLOG("Service id is required\n");
899 		return -EINVAL;
900 	}
901 
902 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
903 
904 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
905 	if (trsvcid_int < 0) {
906 		SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
907 		return -EINVAL;
908 	}
909 
910 	port = calloc(1, sizeof(*port));
911 	if (!port) {
912 		SPDK_ERRLOG("Port allocation failed\n");
913 		return -ENOMEM;
914 	}
915 
916 	port->trid = trid;
917 
918 	sock_impl_name = NULL;
919 
920 	opts.opts_size = sizeof(opts);
921 	spdk_sock_get_default_opts(&opts);
922 	opts.priority = ttransport->tcp_opts.sock_priority;
923 	opts.ack_timeout = transport->opts.ack_timeout;
924 	if (listen_opts->secure_channel) {
925 		if (!g_tls_log) {
926 			SPDK_NOTICELOG("TLS support is considered experimental\n");
927 			g_tls_log = true;
928 		}
929 		sock_impl_name = "ssl";
930 		spdk_sock_impl_get_opts(sock_impl_name, &impl_opts, &impl_opts_size);
931 		impl_opts.tls_version = SPDK_TLS_VERSION_1_3;
932 		impl_opts.get_key = tcp_sock_get_key;
933 		impl_opts.get_key_ctx = ttransport;
934 		impl_opts.tls_cipher_suites = "TLS_AES_256_GCM_SHA384:TLS_AES_128_GCM_SHA256";
935 		opts.impl_opts = &impl_opts;
936 		opts.impl_opts_size = sizeof(impl_opts);
937 	}
938 
939 	port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
940 			    sock_impl_name, &opts);
941 	if (port->listen_sock == NULL) {
942 		SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
943 			    trid->traddr, trsvcid_int,
944 			    spdk_strerror(errno), errno);
945 		free(port);
946 		return -errno;
947 	}
948 
949 	if (spdk_sock_is_ipv4(port->listen_sock)) {
950 		adrfam = SPDK_NVMF_ADRFAM_IPV4;
951 	} else if (spdk_sock_is_ipv6(port->listen_sock)) {
952 		adrfam = SPDK_NVMF_ADRFAM_IPV6;
953 	} else {
954 		SPDK_ERRLOG("Unhandled socket type\n");
955 		adrfam = 0;
956 	}
957 
958 	if (adrfam != trid->adrfam) {
959 		SPDK_ERRLOG("Socket address family mismatch\n");
960 		spdk_sock_close(&port->listen_sock);
961 		free(port);
962 		return -EINVAL;
963 	}
964 
965 	SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
966 		       trid->traddr, trid->trsvcid);
967 
968 	TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
969 	return 0;
970 }
971 
972 static void
973 nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
974 		     const struct spdk_nvme_transport_id *trid)
975 {
976 	struct spdk_nvmf_tcp_transport *ttransport;
977 	struct spdk_nvmf_tcp_port *port;
978 
979 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
980 
981 	SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
982 		      trid->traddr, trid->trsvcid);
983 
984 	port = nvmf_tcp_find_port(ttransport, trid);
985 	if (port) {
986 		TAILQ_REMOVE(&ttransport->ports, port, link);
987 		spdk_sock_close(&port->listen_sock);
988 		free(port);
989 	}
990 }
991 
992 static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
993 		enum nvme_tcp_pdu_recv_state state);
994 
995 static void
996 nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvme_tcp_qpair_state state)
997 {
998 	tqpair->state = state;
999 	spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0, tqpair->state);
1000 }
1001 
1002 static void
1003 nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
1004 {
1005 	SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
1006 
1007 	spdk_trace_record(TRACE_TCP_QP_DISCONNECT, tqpair->qpair.trace_id, 0, 0);
1008 
1009 	if (tqpair->state <= NVME_TCP_QPAIR_STATE_RUNNING) {
1010 		nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITING);
1011 		assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1012 		spdk_poller_unregister(&tqpair->timeout_poller);
1013 
1014 		/* This will end up calling nvmf_tcp_close_qpair */
1015 		spdk_nvmf_qpair_disconnect(&tqpair->qpair);
1016 	}
1017 }
1018 
1019 static void
1020 _mgmt_pdu_write_done(void *_tqpair, int err)
1021 {
1022 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
1023 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1024 
1025 	if (spdk_unlikely(err != 0)) {
1026 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1027 		return;
1028 	}
1029 
1030 	assert(pdu->cb_fn != NULL);
1031 	pdu->cb_fn(pdu->cb_arg);
1032 }
1033 
1034 static void
1035 _req_pdu_write_done(void *req, int err)
1036 {
1037 	struct spdk_nvmf_tcp_req *tcp_req = req;
1038 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1039 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1040 
1041 	assert(tcp_req->pdu_in_use);
1042 	tcp_req->pdu_in_use = false;
1043 
1044 	/* If the request is in a completed state, we're waiting for write completion to free it */
1045 	if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) {
1046 		nvmf_tcp_request_free(tcp_req);
1047 		return;
1048 	}
1049 
1050 	if (spdk_unlikely(err != 0)) {
1051 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1052 		return;
1053 	}
1054 
1055 	assert(pdu->cb_fn != NULL);
1056 	pdu->cb_fn(pdu->cb_arg);
1057 }
1058 
1059 static void
1060 _pdu_write_done(struct nvme_tcp_pdu *pdu, int err)
1061 {
1062 	pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err);
1063 }
1064 
1065 static void
1066 _tcp_write_pdu(struct nvme_tcp_pdu *pdu)
1067 {
1068 	int rc;
1069 	uint32_t mapped_length;
1070 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1071 
1072 	pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
1073 			       tqpair->host_hdgst_enable, tqpair->host_ddgst_enable, &mapped_length);
1074 	spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
1075 
1076 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
1077 	    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
1078 		/* Try to force the send immediately. */
1079 		rc = spdk_sock_flush(tqpair->sock);
1080 		if (rc > 0 && (uint32_t)rc == mapped_length) {
1081 			_pdu_write_done(pdu, 0);
1082 		} else {
1083 			SPDK_ERRLOG("Could not write %s to socket: rc=%d, errno=%d\n",
1084 				    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ?
1085 				    "IC_RESP" : "TERM_REQ", rc, errno);
1086 			_pdu_write_done(pdu, rc >= 0 ? -EAGAIN : -errno);
1087 		}
1088 	}
1089 }
1090 
1091 static void
1092 data_crc32_accel_done(void *cb_arg, int status)
1093 {
1094 	struct nvme_tcp_pdu *pdu = cb_arg;
1095 
1096 	if (spdk_unlikely(status)) {
1097 		SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
1098 		_pdu_write_done(pdu, status);
1099 		return;
1100 	}
1101 
1102 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
1103 	MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
1104 
1105 	_tcp_write_pdu(pdu);
1106 }
1107 
1108 static void
1109 pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
1110 {
1111 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1112 	int rc = 0;
1113 
1114 	/* Data Digest */
1115 	if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
1116 		/* Only support this limitated case for the first step */
1117 		if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
1118 				&& tqpair->group)) {
1119 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
1120 						       pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
1121 			if (spdk_likely(rc == 0)) {
1122 				return;
1123 			}
1124 		} else {
1125 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1126 		}
1127 		data_crc32_accel_done(pdu, rc);
1128 	} else {
1129 		_tcp_write_pdu(pdu);
1130 	}
1131 }
1132 
1133 static void
1134 nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1135 			 struct nvme_tcp_pdu *pdu,
1136 			 nvme_tcp_qpair_xfer_complete_cb cb_fn,
1137 			 void *cb_arg)
1138 {
1139 	int hlen;
1140 	uint32_t crc32c;
1141 
1142 	assert(tqpair->pdu_in_progress != pdu);
1143 
1144 	hlen = pdu->hdr.common.hlen;
1145 	pdu->cb_fn = cb_fn;
1146 	pdu->cb_arg = cb_arg;
1147 
1148 	pdu->iov[0].iov_base = &pdu->hdr.raw;
1149 	pdu->iov[0].iov_len = hlen;
1150 
1151 	/* Header Digest */
1152 	if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) {
1153 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1154 		MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
1155 	}
1156 
1157 	/* Data Digest */
1158 	pdu_data_crc32_compute(pdu);
1159 }
1160 
1161 static void
1162 nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1163 			      nvme_tcp_qpair_xfer_complete_cb cb_fn,
1164 			      void *cb_arg)
1165 {
1166 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1167 
1168 	pdu->sock_req.cb_fn = _mgmt_pdu_write_done;
1169 	pdu->sock_req.cb_arg = tqpair;
1170 
1171 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1172 }
1173 
1174 static void
1175 nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1176 			     struct spdk_nvmf_tcp_req *tcp_req,
1177 			     nvme_tcp_qpair_xfer_complete_cb cb_fn,
1178 			     void *cb_arg)
1179 {
1180 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1181 
1182 	pdu->sock_req.cb_fn = _req_pdu_write_done;
1183 	pdu->sock_req.cb_arg = tcp_req;
1184 
1185 	assert(!tcp_req->pdu_in_use);
1186 	tcp_req->pdu_in_use = true;
1187 
1188 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1189 }
1190 
1191 static int
1192 nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
1193 {
1194 	uint32_t i;
1195 	struct spdk_nvmf_transport_opts *opts;
1196 	uint32_t in_capsule_data_size;
1197 
1198 	opts = &tqpair->qpair.transport->opts;
1199 
1200 	in_capsule_data_size = opts->in_capsule_data_size;
1201 	if (opts->dif_insert_or_strip) {
1202 		in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
1203 	}
1204 
1205 	tqpair->resource_count = opts->max_queue_depth;
1206 
1207 	tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
1208 	if (!tqpair->reqs) {
1209 		SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
1210 		return -1;
1211 	}
1212 
1213 	if (in_capsule_data_size) {
1214 		tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
1215 					    NULL, SPDK_ENV_LCORE_ID_ANY,
1216 					    SPDK_MALLOC_DMA);
1217 		if (!tqpair->bufs) {
1218 			SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
1219 			return -1;
1220 		}
1221 	}
1222 	/* prepare memory space for receiving pdus and tcp_req */
1223 	/* Add additional 1 member, which will be used for mgmt_pdu owned by the tqpair */
1224 	tqpair->pdus = spdk_dma_zmalloc((2 * tqpair->resource_count + 1) * sizeof(*tqpair->pdus), 0x1000,
1225 					NULL);
1226 	if (!tqpair->pdus) {
1227 		SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
1228 		return -1;
1229 	}
1230 
1231 	for (i = 0; i < tqpair->resource_count; i++) {
1232 		struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
1233 
1234 		tcp_req->ttag = i + 1;
1235 		tcp_req->req.qpair = &tqpair->qpair;
1236 
1237 		tcp_req->pdu = &tqpair->pdus[i];
1238 		tcp_req->pdu->qpair = tqpair;
1239 
1240 		/* Set up memory to receive commands */
1241 		if (tqpair->bufs) {
1242 			tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
1243 		}
1244 
1245 		/* Set the cmdn and rsp */
1246 		tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
1247 		tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
1248 
1249 		tcp_req->req.stripped_data = NULL;
1250 
1251 		/* Initialize request state to FREE */
1252 		tcp_req->state = TCP_REQUEST_STATE_FREE;
1253 		TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
1254 		tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
1255 	}
1256 
1257 	for (; i < 2 * tqpair->resource_count; i++) {
1258 		struct nvme_tcp_pdu *pdu = &tqpair->pdus[i];
1259 
1260 		pdu->qpair = tqpair;
1261 		SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1262 	}
1263 
1264 	tqpair->mgmt_pdu = &tqpair->pdus[i];
1265 	tqpair->mgmt_pdu->qpair = tqpair;
1266 	tqpair->pdu_in_progress = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
1267 	SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
1268 	tqpair->tcp_pdu_working_count = 1;
1269 
1270 	tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
1271 				 SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1272 
1273 	return 0;
1274 }
1275 
1276 static int
1277 nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
1278 {
1279 	struct spdk_nvmf_tcp_qpair *tqpair;
1280 
1281 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1282 
1283 	SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
1284 
1285 	spdk_trace_record(TRACE_TCP_QP_CREATE, tqpair->qpair.trace_id, 0, 0);
1286 
1287 	/* Initialise request state queues of the qpair */
1288 	TAILQ_INIT(&tqpair->tcp_req_free_queue);
1289 	TAILQ_INIT(&tqpair->tcp_req_working_queue);
1290 	SLIST_INIT(&tqpair->tcp_pdu_free_queue);
1291 
1292 	tqpair->host_hdgst_enable = true;
1293 	tqpair->host_ddgst_enable = true;
1294 
1295 	return 0;
1296 }
1297 
1298 static int
1299 nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
1300 {
1301 	char saddr[32], caddr[32];
1302 	uint16_t sport, cport;
1303 	char owner[256];
1304 	int rc;
1305 
1306 	spdk_sock_getaddr(tqpair->sock, saddr, sizeof(saddr), &sport,
1307 			  caddr, sizeof(caddr), &cport);
1308 	snprintf(owner, sizeof(owner), "%s:%d", caddr, cport);
1309 	tqpair->qpair.trace_id = spdk_trace_register_owner(OWNER_TYPE_NVMF_TCP, owner);
1310 	spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, tqpair->qpair.trace_id, 0, 0);
1311 
1312 	/* set low water mark */
1313 	rc = spdk_sock_set_recvlowat(tqpair->sock, 1);
1314 	if (rc != 0) {
1315 		SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
1316 		return rc;
1317 	}
1318 
1319 	return 0;
1320 }
1321 
1322 static void
1323 nvmf_tcp_handle_connect(struct spdk_nvmf_transport *transport,
1324 			struct spdk_nvmf_tcp_port *port,
1325 			struct spdk_sock *sock)
1326 {
1327 	struct spdk_nvmf_tcp_qpair *tqpair;
1328 	int rc;
1329 
1330 	SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
1331 		      port->trid->traddr, port->trid->trsvcid);
1332 
1333 	tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
1334 	if (tqpair == NULL) {
1335 		SPDK_ERRLOG("Could not allocate new connection.\n");
1336 		spdk_sock_close(&sock);
1337 		return;
1338 	}
1339 
1340 	tqpair->sock = sock;
1341 	tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
1342 	tqpair->port = port;
1343 	tqpair->qpair.transport = transport;
1344 
1345 	rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
1346 			       sizeof(tqpair->target_addr), &tqpair->target_port,
1347 			       tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
1348 			       &tqpair->initiator_port);
1349 	if (rc < 0) {
1350 		SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
1351 		nvmf_tcp_qpair_destroy(tqpair);
1352 		return;
1353 	}
1354 
1355 	spdk_nvmf_tgt_new_qpair(transport->tgt, &tqpair->qpair);
1356 }
1357 
1358 static uint32_t
1359 nvmf_tcp_port_accept(struct spdk_nvmf_transport *transport, struct spdk_nvmf_tcp_port *port)
1360 {
1361 	struct spdk_sock *sock;
1362 	uint32_t count = 0;
1363 	int i;
1364 
1365 	for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
1366 		sock = spdk_sock_accept(port->listen_sock);
1367 		if (sock == NULL) {
1368 			break;
1369 		}
1370 		count++;
1371 		nvmf_tcp_handle_connect(transport, port, sock);
1372 	}
1373 
1374 	return count;
1375 }
1376 
1377 static int
1378 nvmf_tcp_accept(void *ctx)
1379 {
1380 	struct spdk_nvmf_transport *transport = ctx;
1381 	struct spdk_nvmf_tcp_transport *ttransport;
1382 	struct spdk_nvmf_tcp_port *port;
1383 	uint32_t count = 0;
1384 
1385 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1386 
1387 	TAILQ_FOREACH(port, &ttransport->ports, link) {
1388 		count += nvmf_tcp_port_accept(transport, port);
1389 	}
1390 
1391 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1392 }
1393 
1394 static void
1395 nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
1396 		  struct spdk_nvme_transport_id *trid,
1397 		  struct spdk_nvmf_discovery_log_page_entry *entry)
1398 {
1399 	struct spdk_nvmf_tcp_port *port;
1400 	struct spdk_nvmf_tcp_transport *ttransport;
1401 
1402 	entry->trtype = SPDK_NVMF_TRTYPE_TCP;
1403 	entry->adrfam = trid->adrfam;
1404 
1405 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
1406 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
1407 
1408 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1409 	port = nvmf_tcp_find_port(ttransport, trid);
1410 
1411 	assert(port != NULL);
1412 
1413 	if (strcmp(spdk_sock_get_impl_name(port->listen_sock), "ssl") == 0) {
1414 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_REQUIRED;
1415 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_TLS_1_3;
1416 	} else {
1417 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
1418 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
1419 	}
1420 }
1421 
1422 static struct spdk_nvmf_tcp_control_msg_list *
1423 nvmf_tcp_control_msg_list_create(uint16_t num_messages)
1424 {
1425 	struct spdk_nvmf_tcp_control_msg_list *list;
1426 	struct spdk_nvmf_tcp_control_msg *msg;
1427 	uint16_t i;
1428 
1429 	list = calloc(1, sizeof(*list));
1430 	if (!list) {
1431 		SPDK_ERRLOG("Failed to allocate memory for list structure\n");
1432 		return NULL;
1433 	}
1434 
1435 	list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
1436 				     NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
1437 	if (!list->msg_buf) {
1438 		SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
1439 		free(list);
1440 		return NULL;
1441 	}
1442 
1443 	STAILQ_INIT(&list->free_msgs);
1444 
1445 	for (i = 0; i < num_messages; i++) {
1446 		msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
1447 				SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1448 		STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
1449 	}
1450 
1451 	return list;
1452 }
1453 
1454 static void
1455 nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
1456 {
1457 	if (!list) {
1458 		return;
1459 	}
1460 
1461 	spdk_free(list->msg_buf);
1462 	free(list);
1463 }
1464 
1465 static struct spdk_nvmf_transport_poll_group *
1466 nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport,
1467 			   struct spdk_nvmf_poll_group *group)
1468 {
1469 	struct spdk_nvmf_tcp_transport	*ttransport;
1470 	struct spdk_nvmf_tcp_poll_group *tgroup;
1471 
1472 	tgroup = calloc(1, sizeof(*tgroup));
1473 	if (!tgroup) {
1474 		return NULL;
1475 	}
1476 
1477 	tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
1478 	if (!tgroup->sock_group) {
1479 		goto cleanup;
1480 	}
1481 
1482 	TAILQ_INIT(&tgroup->qpairs);
1483 	TAILQ_INIT(&tgroup->await_req);
1484 
1485 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1486 
1487 	if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
1488 		SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
1489 			      "Creating control messages list\n", transport->opts.in_capsule_data_size,
1490 			      SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1491 		tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
1492 		if (!tgroup->control_msg_list) {
1493 			goto cleanup;
1494 		}
1495 	}
1496 
1497 	tgroup->accel_channel = spdk_accel_get_io_channel();
1498 	if (spdk_unlikely(!tgroup->accel_channel)) {
1499 		SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
1500 		goto cleanup;
1501 	}
1502 
1503 	TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link);
1504 	if (ttransport->next_pg == NULL) {
1505 		ttransport->next_pg = tgroup;
1506 	}
1507 
1508 	return &tgroup->group;
1509 
1510 cleanup:
1511 	nvmf_tcp_poll_group_destroy(&tgroup->group);
1512 	return NULL;
1513 }
1514 
1515 static struct spdk_nvmf_transport_poll_group *
1516 nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
1517 {
1518 	struct spdk_nvmf_tcp_transport *ttransport;
1519 	struct spdk_nvmf_tcp_poll_group **pg;
1520 	struct spdk_nvmf_tcp_qpair *tqpair;
1521 	struct spdk_sock_group *group = NULL, *hint = NULL;
1522 	int rc;
1523 
1524 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
1525 
1526 	if (TAILQ_EMPTY(&ttransport->poll_groups)) {
1527 		return NULL;
1528 	}
1529 
1530 	pg = &ttransport->next_pg;
1531 	assert(*pg != NULL);
1532 	hint = (*pg)->sock_group;
1533 
1534 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1535 	rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint);
1536 	if (rc != 0) {
1537 		return NULL;
1538 	} else if (group != NULL) {
1539 		/* Optimal poll group was found */
1540 		return spdk_sock_group_get_ctx(group);
1541 	}
1542 
1543 	/* The hint was used for optimal poll group, advance next_pg. */
1544 	*pg = TAILQ_NEXT(*pg, link);
1545 	if (*pg == NULL) {
1546 		*pg = TAILQ_FIRST(&ttransport->poll_groups);
1547 	}
1548 
1549 	return spdk_sock_group_get_ctx(hint);
1550 }
1551 
1552 static void
1553 nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
1554 {
1555 	struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup;
1556 	struct spdk_nvmf_tcp_transport *ttransport;
1557 
1558 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
1559 	spdk_sock_group_close(&tgroup->sock_group);
1560 	if (tgroup->control_msg_list) {
1561 		nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
1562 	}
1563 
1564 	if (tgroup->accel_channel) {
1565 		spdk_put_io_channel(tgroup->accel_channel);
1566 	}
1567 
1568 	if (tgroup->group.transport == NULL) {
1569 		/* Transport can be NULL when nvmf_tcp_poll_group_create()
1570 		 * calls this function directly in a failure path. */
1571 		free(tgroup);
1572 		return;
1573 	}
1574 
1575 	ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport);
1576 
1577 	next_tgroup = TAILQ_NEXT(tgroup, link);
1578 	TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link);
1579 	if (next_tgroup == NULL) {
1580 		next_tgroup = TAILQ_FIRST(&ttransport->poll_groups);
1581 	}
1582 	if (ttransport->next_pg == tgroup) {
1583 		ttransport->next_pg = next_tgroup;
1584 	}
1585 
1586 	free(tgroup);
1587 }
1588 
1589 static void
1590 nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1591 			      enum nvme_tcp_pdu_recv_state state)
1592 {
1593 	if (tqpair->recv_state == state) {
1594 		SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
1595 			    tqpair, state);
1596 		return;
1597 	}
1598 
1599 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_QUIESCING)) {
1600 		if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH && tqpair->pdu_in_progress) {
1601 			SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, tqpair->pdu_in_progress, slist);
1602 			tqpair->tcp_pdu_working_count--;
1603 		}
1604 	}
1605 
1606 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_ERROR)) {
1607 		assert(tqpair->tcp_pdu_working_count == 0);
1608 	}
1609 
1610 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1611 		/* When leaving the await req state, move the qpair to the main list */
1612 		TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link);
1613 		TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link);
1614 	} else if (state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1615 		TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link);
1616 		TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link);
1617 	}
1618 
1619 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
1620 	tqpair->recv_state = state;
1621 
1622 	spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0, tqpair->recv_state);
1623 }
1624 
1625 static int
1626 nvmf_tcp_qpair_handle_timeout(void *ctx)
1627 {
1628 	struct spdk_nvmf_tcp_qpair *tqpair = ctx;
1629 
1630 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1631 
1632 	SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
1633 		    SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
1634 
1635 	nvmf_tcp_qpair_disconnect(tqpair);
1636 	return SPDK_POLLER_BUSY;
1637 }
1638 
1639 static void
1640 nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
1641 {
1642 	struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
1643 
1644 	if (!tqpair->timeout_poller) {
1645 		tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
1646 					 SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
1647 	}
1648 }
1649 
1650 static void
1651 nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
1652 			   enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
1653 {
1654 	struct nvme_tcp_pdu *rsp_pdu;
1655 	struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
1656 	uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
1657 	uint32_t copy_len;
1658 
1659 	rsp_pdu = tqpair->mgmt_pdu;
1660 
1661 	c2h_term_req = &rsp_pdu->hdr.term_req;
1662 	c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
1663 	c2h_term_req->common.hlen = c2h_term_req_hdr_len;
1664 	c2h_term_req->fes = fes;
1665 
1666 	if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1667 	    (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1668 		DSET32(&c2h_term_req->fei, error_offset);
1669 	}
1670 
1671 	copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
1672 
1673 	/* Copy the error info into the buffer */
1674 	memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
1675 	nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
1676 
1677 	/* Contain the header of the wrong received pdu */
1678 	c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
1679 	tqpair->wait_terminate = true;
1680 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1681 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair);
1682 }
1683 
1684 static void
1685 nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1686 				struct spdk_nvmf_tcp_qpair *tqpair,
1687 				struct nvme_tcp_pdu *pdu)
1688 {
1689 	struct spdk_nvmf_tcp_req *tcp_req;
1690 
1691 	assert(pdu->psh_valid_bytes == pdu->psh_len);
1692 	assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
1693 
1694 	tcp_req = nvmf_tcp_req_get(tqpair);
1695 	if (!tcp_req) {
1696 		/* Directly return and make the allocation retry again.  This can happen if we're
1697 		 * using asynchronous writes to send the response to the host or when releasing
1698 		 * zero-copy buffers after a response has been sent.  In both cases, the host might
1699 		 * receive the response before we've finished processing the request and is free to
1700 		 * send another one.
1701 		 */
1702 		if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 ||
1703 		    tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) {
1704 			return;
1705 		}
1706 
1707 		/* The host sent more commands than the maximum queue depth. */
1708 		SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
1709 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1710 		return;
1711 	}
1712 
1713 	pdu->req = tcp_req;
1714 	assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
1715 	nvmf_tcp_req_process(ttransport, tcp_req);
1716 }
1717 
1718 static void
1719 nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1720 				    struct spdk_nvmf_tcp_qpair *tqpair,
1721 				    struct nvme_tcp_pdu *pdu)
1722 {
1723 	struct spdk_nvmf_tcp_req *tcp_req;
1724 	struct spdk_nvme_tcp_cmd *capsule_cmd;
1725 	uint32_t error_offset = 0;
1726 	enum spdk_nvme_tcp_term_req_fes fes;
1727 	struct spdk_nvme_cpl *rsp;
1728 
1729 	capsule_cmd = &pdu->hdr.capsule_cmd;
1730 	tcp_req = pdu->req;
1731 	assert(tcp_req != NULL);
1732 
1733 	/* Zero-copy requests don't support ICD */
1734 	assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req));
1735 
1736 	if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
1737 		SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
1738 			    SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
1739 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1740 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
1741 		goto err;
1742 	}
1743 
1744 	rsp = &tcp_req->req.rsp->nvme_cpl;
1745 	if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1746 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1747 	} else {
1748 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1749 	}
1750 
1751 	nvmf_tcp_req_process(ttransport, tcp_req);
1752 
1753 	return;
1754 err:
1755 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1756 }
1757 
1758 static void
1759 nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1760 			     struct spdk_nvmf_tcp_qpair *tqpair,
1761 			     struct nvme_tcp_pdu *pdu)
1762 {
1763 	struct spdk_nvmf_tcp_req *tcp_req;
1764 	uint32_t error_offset = 0;
1765 	enum spdk_nvme_tcp_term_req_fes fes = 0;
1766 	struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
1767 
1768 	h2c_data = &pdu->hdr.h2c_data;
1769 
1770 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
1771 		      tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
1772 
1773 	if (h2c_data->ttag > tqpair->resource_count) {
1774 		SPDK_DEBUGLOG(nvmf_tcp, "ttag %u is larger than allowed %u.\n", h2c_data->ttag,
1775 			      tqpair->resource_count);
1776 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1777 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1778 		goto err;
1779 	}
1780 
1781 	tcp_req = &tqpair->reqs[h2c_data->ttag - 1];
1782 
1783 	if (spdk_unlikely(tcp_req->state != TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER &&
1784 			  tcp_req->state != TCP_REQUEST_STATE_AWAITING_R2T_ACK)) {
1785 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, has error state in %d\n", tcp_req, tqpair,
1786 			      tcp_req->state);
1787 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1788 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1789 		goto err;
1790 	}
1791 
1792 	if (spdk_unlikely(tcp_req->req.cmd->nvme_cmd.cid != h2c_data->cccid)) {
1793 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, expected %u but %u for cccid.\n", tcp_req, tqpair,
1794 			      tcp_req->req.cmd->nvme_cmd.cid, h2c_data->cccid);
1795 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1796 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
1797 		goto err;
1798 	}
1799 
1800 	if (tcp_req->h2c_offset != h2c_data->datao) {
1801 		SPDK_DEBUGLOG(nvmf_tcp,
1802 			      "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
1803 			      tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
1804 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1805 		goto err;
1806 	}
1807 
1808 	if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
1809 		SPDK_DEBUGLOG(nvmf_tcp,
1810 			      "tcp_req(%p), tqpair=%p,  (datao=%u + datal=%u) exceeds requested length=%u\n",
1811 			      tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
1812 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1813 		goto err;
1814 	}
1815 
1816 	pdu->req = tcp_req;
1817 
1818 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
1819 		pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
1820 	}
1821 
1822 	nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
1823 				  h2c_data->datao, h2c_data->datal);
1824 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1825 	return;
1826 
1827 err:
1828 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1829 }
1830 
1831 static void
1832 nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
1833 			       struct spdk_nvmf_tcp_qpair *tqpair)
1834 {
1835 	struct nvme_tcp_pdu *rsp_pdu;
1836 	struct spdk_nvme_tcp_rsp *capsule_resp;
1837 
1838 	SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
1839 
1840 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1841 	assert(rsp_pdu != NULL);
1842 
1843 	capsule_resp = &rsp_pdu->hdr.capsule_resp;
1844 	capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
1845 	capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
1846 	capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
1847 	if (tqpair->host_hdgst_enable) {
1848 		capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1849 		capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1850 	}
1851 
1852 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req);
1853 }
1854 
1855 static void
1856 nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
1857 {
1858 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1859 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
1860 					     struct spdk_nvmf_tcp_qpair, qpair);
1861 
1862 	assert(tqpair != NULL);
1863 
1864 	if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
1865 		SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
1866 			      tcp_req->req.length);
1867 		_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
1868 		return;
1869 	}
1870 
1871 	if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
1872 		nvmf_tcp_request_free(tcp_req);
1873 	} else {
1874 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
1875 	}
1876 }
1877 
1878 static void
1879 nvmf_tcp_r2t_complete(void *cb_arg)
1880 {
1881 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1882 	struct spdk_nvmf_tcp_transport *ttransport;
1883 
1884 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
1885 				      struct spdk_nvmf_tcp_transport, transport);
1886 
1887 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
1888 
1889 	if (tcp_req->h2c_offset == tcp_req->req.length) {
1890 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1891 		nvmf_tcp_req_process(ttransport, tcp_req);
1892 	}
1893 }
1894 
1895 static void
1896 nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1897 		      struct spdk_nvmf_tcp_req *tcp_req)
1898 {
1899 	struct nvme_tcp_pdu *rsp_pdu;
1900 	struct spdk_nvme_tcp_r2t_hdr *r2t;
1901 
1902 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1903 	assert(rsp_pdu != NULL);
1904 
1905 	r2t = &rsp_pdu->hdr.r2t;
1906 	r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
1907 	r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
1908 
1909 	if (tqpair->host_hdgst_enable) {
1910 		r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1911 		r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1912 	}
1913 
1914 	r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
1915 	r2t->ttag = tcp_req->ttag;
1916 	r2t->r2to = tcp_req->h2c_offset;
1917 	r2t->r2tl = tcp_req->req.length;
1918 
1919 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
1920 
1921 	SPDK_DEBUGLOG(nvmf_tcp,
1922 		      "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
1923 		      tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
1924 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req);
1925 }
1926 
1927 static void
1928 nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1929 				 struct spdk_nvmf_tcp_qpair *tqpair,
1930 				 struct nvme_tcp_pdu *pdu)
1931 {
1932 	struct spdk_nvmf_tcp_req *tcp_req;
1933 	struct spdk_nvme_cpl *rsp;
1934 
1935 	tcp_req = pdu->req;
1936 	assert(tcp_req != NULL);
1937 
1938 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1939 
1940 	tcp_req->h2c_offset += pdu->data_len;
1941 
1942 	/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
1943 	 * acknowledged before moving on. */
1944 	if (tcp_req->h2c_offset == tcp_req->req.length &&
1945 	    tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
1946 		/* After receiving all the h2c data, we need to check whether there is
1947 		 * transient transport error */
1948 		rsp = &tcp_req->req.rsp->nvme_cpl;
1949 		if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1950 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1951 		} else {
1952 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1953 		}
1954 		nvmf_tcp_req_process(ttransport, tcp_req);
1955 	}
1956 }
1957 
1958 static void
1959 nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
1960 {
1961 	SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
1962 		    spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
1963 	if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1964 	    (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1965 		SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
1966 			      DGET32(h2c_term_req->fei));
1967 	}
1968 }
1969 
1970 static void
1971 nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1972 				 struct nvme_tcp_pdu *pdu)
1973 {
1974 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1975 	uint32_t error_offset = 0;
1976 	enum spdk_nvme_tcp_term_req_fes fes;
1977 
1978 	if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
1979 		SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
1980 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1981 		error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
1982 		goto end;
1983 	}
1984 
1985 	/* set the data buffer */
1986 	nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
1987 			      h2c_term_req->common.plen - h2c_term_req->common.hlen);
1988 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1989 	return;
1990 end:
1991 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1992 }
1993 
1994 static void
1995 nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1996 				     struct nvme_tcp_pdu *pdu)
1997 {
1998 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1999 
2000 	nvmf_tcp_h2c_term_req_dump(h2c_term_req);
2001 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2002 }
2003 
2004 static void
2005 _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2006 {
2007 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2008 			struct spdk_nvmf_tcp_transport, transport);
2009 
2010 	switch (pdu->hdr.common.pdu_type) {
2011 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2012 		nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
2013 		break;
2014 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2015 		nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
2016 		break;
2017 
2018 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2019 		nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
2020 		break;
2021 
2022 	default:
2023 		/* The code should not go to here */
2024 		SPDK_ERRLOG("ERROR pdu type %d\n", pdu->hdr.common.pdu_type);
2025 		break;
2026 	}
2027 	SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
2028 	tqpair->tcp_pdu_working_count--;
2029 }
2030 
2031 static inline void
2032 nvmf_tcp_req_set_cpl(struct spdk_nvmf_tcp_req *treq, int sct, int sc)
2033 {
2034 	treq->req.rsp->nvme_cpl.status.sct = sct;
2035 	treq->req.rsp->nvme_cpl.status.sc = sc;
2036 	treq->req.rsp->nvme_cpl.cid = treq->req.cmd->nvme_cmd.cid;
2037 }
2038 
2039 static void
2040 data_crc32_calc_done(void *cb_arg, int status)
2041 {
2042 	struct nvme_tcp_pdu *pdu = cb_arg;
2043 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
2044 
2045 	/* async crc32 calculation is failed and use direct calculation to check */
2046 	if (spdk_unlikely(status)) {
2047 		SPDK_ERRLOG("Data digest on tqpair=(%p) with pdu=%p failed to be calculated asynchronously\n",
2048 			    tqpair, pdu);
2049 		pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2050 	}
2051 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
2052 	if (!MATCH_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32)) {
2053 		SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2054 		assert(pdu->req != NULL);
2055 		nvmf_tcp_req_set_cpl(pdu->req, SPDK_NVME_SCT_GENERIC,
2056 				     SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR);
2057 	}
2058 	_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2059 }
2060 
2061 static void
2062 nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2063 {
2064 	int rc = 0;
2065 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2066 	tqpair->pdu_in_progress = NULL;
2067 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2068 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2069 	/* check data digest if need */
2070 	if (pdu->ddgst_enable) {
2071 		if (tqpair->qpair.qid != 0 && !pdu->dif_ctx && tqpair->group &&
2072 		    (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)) {
2073 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
2074 						       pdu->data_iovcnt, 0, data_crc32_calc_done, pdu);
2075 			if (spdk_likely(rc == 0)) {
2076 				return;
2077 			}
2078 		} else {
2079 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2080 		}
2081 		data_crc32_calc_done(pdu, rc);
2082 	} else {
2083 		_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2084 	}
2085 }
2086 
2087 static void
2088 nvmf_tcp_send_icresp_complete(void *cb_arg)
2089 {
2090 	struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
2091 
2092 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_RUNNING);
2093 }
2094 
2095 static void
2096 nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
2097 		      struct spdk_nvmf_tcp_qpair *tqpair,
2098 		      struct nvme_tcp_pdu *pdu)
2099 {
2100 	struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
2101 	struct nvme_tcp_pdu *rsp_pdu;
2102 	struct spdk_nvme_tcp_ic_resp *ic_resp;
2103 	uint32_t error_offset = 0;
2104 	enum spdk_nvme_tcp_term_req_fes fes;
2105 
2106 	/* Only PFV 0 is defined currently */
2107 	if (ic_req->pfv != 0) {
2108 		SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
2109 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2110 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
2111 		goto end;
2112 	}
2113 
2114 	/* This value is 0’s based value in units of dwords should not be larger than SPDK_NVME_TCP_HPDA_MAX */
2115 	if (ic_req->hpda > SPDK_NVME_TCP_HPDA_MAX) {
2116 		SPDK_ERRLOG("ICReq HPDA out of range 0 to 31, got %u\n", ic_req->hpda);
2117 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2118 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, hpda);
2119 		goto end;
2120 	}
2121 
2122 	/* MAXR2T is 0's based */
2123 	SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
2124 
2125 	tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
2126 	if (!tqpair->host_hdgst_enable) {
2127 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2128 	}
2129 
2130 	tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
2131 	if (!tqpair->host_ddgst_enable) {
2132 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2133 	}
2134 
2135 	tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
2136 	/* Now that we know whether digests are enabled, properly size the receive buffer */
2137 	if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
2138 		SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
2139 			     tqpair,
2140 			     tqpair->recv_buf_size);
2141 		/* Not fatal. */
2142 	}
2143 
2144 	tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
2145 	SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
2146 
2147 	rsp_pdu = tqpair->mgmt_pdu;
2148 
2149 	ic_resp = &rsp_pdu->hdr.ic_resp;
2150 	ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
2151 	ic_resp->common.hlen = ic_resp->common.plen =  sizeof(*ic_resp);
2152 	ic_resp->pfv = 0;
2153 	ic_resp->cpda = tqpair->cpda;
2154 	ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
2155 	ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
2156 	ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
2157 
2158 	SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
2159 	SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
2160 
2161 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INITIALIZING);
2162 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair);
2163 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2164 	return;
2165 end:
2166 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2167 }
2168 
2169 static void
2170 nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2171 			struct spdk_nvmf_tcp_transport *ttransport)
2172 {
2173 	struct nvme_tcp_pdu *pdu;
2174 	int rc;
2175 	uint32_t crc32c, error_offset = 0;
2176 	enum spdk_nvme_tcp_term_req_fes fes;
2177 
2178 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2179 	pdu = tqpair->pdu_in_progress;
2180 
2181 	SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
2182 		      pdu->hdr.common.pdu_type);
2183 	/* check header digest if needed */
2184 	if (pdu->has_hdgst) {
2185 		SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
2186 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
2187 		rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
2188 		if (rc == 0) {
2189 			SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2190 			fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
2191 			nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2192 			return;
2193 
2194 		}
2195 	}
2196 
2197 	switch (pdu->hdr.common.pdu_type) {
2198 	case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
2199 		nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
2200 		break;
2201 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2202 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
2203 		break;
2204 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2205 		nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
2206 		break;
2207 
2208 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2209 		nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
2210 		break;
2211 
2212 	default:
2213 		SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
2214 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2215 		error_offset = 1;
2216 		nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2217 		break;
2218 	}
2219 }
2220 
2221 static void
2222 nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
2223 {
2224 	struct nvme_tcp_pdu *pdu;
2225 	uint32_t error_offset = 0;
2226 	enum spdk_nvme_tcp_term_req_fes fes;
2227 	uint8_t expected_hlen, pdo;
2228 	bool plen_error = false, pdo_error = false;
2229 
2230 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2231 	pdu = tqpair->pdu_in_progress;
2232 	assert(pdu);
2233 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
2234 		if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) {
2235 			SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
2236 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2237 			goto err;
2238 		}
2239 		expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
2240 		if (pdu->hdr.common.plen != expected_hlen) {
2241 			plen_error = true;
2242 		}
2243 	} else {
2244 		if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) {
2245 			SPDK_ERRLOG("The TCP/IP connection is not negotiated\n");
2246 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2247 			goto err;
2248 		}
2249 
2250 		switch (pdu->hdr.common.pdu_type) {
2251 		case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2252 			expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
2253 			pdo = pdu->hdr.common.pdo;
2254 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2255 				pdo_error = true;
2256 				break;
2257 			}
2258 
2259 			if (pdu->hdr.common.plen < expected_hlen) {
2260 				plen_error = true;
2261 			}
2262 			break;
2263 		case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2264 			expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
2265 			pdo = pdu->hdr.common.pdo;
2266 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2267 				pdo_error = true;
2268 				break;
2269 			}
2270 			if (pdu->hdr.common.plen < expected_hlen) {
2271 				plen_error = true;
2272 			}
2273 			break;
2274 
2275 		case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2276 			expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
2277 			if ((pdu->hdr.common.plen <= expected_hlen) ||
2278 			    (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
2279 				plen_error = true;
2280 			}
2281 			break;
2282 
2283 		default:
2284 			SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
2285 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2286 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
2287 			goto err;
2288 		}
2289 	}
2290 
2291 	if (pdu->hdr.common.hlen != expected_hlen) {
2292 		SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
2293 			    pdu->hdr.common.pdu_type,
2294 			    expected_hlen, pdu->hdr.common.hlen, tqpair);
2295 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2296 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
2297 		goto err;
2298 	} else if (pdo_error) {
2299 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2300 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
2301 	} else if (plen_error) {
2302 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2303 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2304 		goto err;
2305 	} else {
2306 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2307 		nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
2308 		return;
2309 	}
2310 err:
2311 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2312 }
2313 
2314 static int
2315 nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
2316 {
2317 	int rc = 0;
2318 	struct nvme_tcp_pdu *pdu;
2319 	enum nvme_tcp_pdu_recv_state prev_state;
2320 	uint32_t data_len;
2321 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2322 			struct spdk_nvmf_tcp_transport, transport);
2323 
2324 	/* The loop here is to allow for several back-to-back state changes. */
2325 	do {
2326 		prev_state = tqpair->recv_state;
2327 		SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
2328 
2329 		pdu = tqpair->pdu_in_progress;
2330 		assert(pdu != NULL ||
2331 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY ||
2332 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_QUIESCING ||
2333 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
2334 
2335 		switch (tqpair->recv_state) {
2336 		/* Wait for the common header  */
2337 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
2338 			if (!pdu) {
2339 				pdu = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
2340 				if (spdk_unlikely(!pdu)) {
2341 					return NVME_TCP_PDU_IN_PROGRESS;
2342 				}
2343 				SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
2344 				tqpair->pdu_in_progress = pdu;
2345 				tqpair->tcp_pdu_working_count++;
2346 			}
2347 			memset(pdu, 0, offsetof(struct nvme_tcp_pdu, qpair));
2348 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2349 		/* FALLTHROUGH */
2350 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
2351 			if (spdk_unlikely(tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING)) {
2352 				return rc;
2353 			}
2354 
2355 			rc = nvme_tcp_read_data(tqpair->sock,
2356 						sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
2357 						(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
2358 			if (rc < 0) {
2359 				SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
2360 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2361 				break;
2362 			} else if (rc > 0) {
2363 				pdu->ch_valid_bytes += rc;
2364 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0);
2365 			}
2366 
2367 			if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
2368 				return NVME_TCP_PDU_IN_PROGRESS;
2369 			}
2370 
2371 			/* The command header of this PDU has now been read from the socket. */
2372 			nvmf_tcp_pdu_ch_handle(tqpair);
2373 			break;
2374 		/* Wait for the pdu specific header  */
2375 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
2376 			rc = nvme_tcp_read_data(tqpair->sock,
2377 						pdu->psh_len - pdu->psh_valid_bytes,
2378 						(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
2379 			if (rc < 0) {
2380 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2381 				break;
2382 			} else if (rc > 0) {
2383 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0);
2384 				pdu->psh_valid_bytes += rc;
2385 			}
2386 
2387 			if (pdu->psh_valid_bytes < pdu->psh_len) {
2388 				return NVME_TCP_PDU_IN_PROGRESS;
2389 			}
2390 
2391 			/* All header(ch, psh, head digist) of this PDU has now been read from the socket. */
2392 			nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
2393 			break;
2394 		/* Wait for the req slot */
2395 		case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
2396 			nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
2397 			break;
2398 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
2399 			/* check whether the data is valid, if not we just return */
2400 			if (!pdu->data_len) {
2401 				return NVME_TCP_PDU_IN_PROGRESS;
2402 			}
2403 
2404 			data_len = pdu->data_len;
2405 			/* data digest */
2406 			if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
2407 					  tqpair->host_ddgst_enable)) {
2408 				data_len += SPDK_NVME_TCP_DIGEST_LEN;
2409 				pdu->ddgst_enable = true;
2410 			}
2411 
2412 			rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
2413 			if (rc < 0) {
2414 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2415 				break;
2416 			}
2417 			pdu->rw_offset += rc;
2418 
2419 			if (pdu->rw_offset < data_len) {
2420 				return NVME_TCP_PDU_IN_PROGRESS;
2421 			}
2422 
2423 			/* Generate and insert DIF to whole data block received if DIF is enabled */
2424 			if (spdk_unlikely(pdu->dif_ctx != NULL) &&
2425 			    spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt, 0, data_len,
2426 						     pdu->dif_ctx) != 0) {
2427 				SPDK_ERRLOG("DIF generate failed\n");
2428 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2429 				break;
2430 			}
2431 
2432 			/* All of this PDU has now been read from the socket. */
2433 			nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2434 			break;
2435 		case NVME_TCP_PDU_RECV_STATE_QUIESCING:
2436 			if (tqpair->tcp_pdu_working_count != 0) {
2437 				return NVME_TCP_PDU_IN_PROGRESS;
2438 			}
2439 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
2440 			break;
2441 		case NVME_TCP_PDU_RECV_STATE_ERROR:
2442 			if (spdk_sock_is_connected(tqpair->sock) && tqpair->wait_terminate) {
2443 				return NVME_TCP_PDU_IN_PROGRESS;
2444 			}
2445 			return NVME_TCP_PDU_FATAL;
2446 		default:
2447 			SPDK_ERRLOG("The state(%d) is invalid\n", tqpair->recv_state);
2448 			abort();
2449 			break;
2450 		}
2451 	} while (tqpair->recv_state != prev_state);
2452 
2453 	return rc;
2454 }
2455 
2456 static inline void *
2457 nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list)
2458 {
2459 	struct spdk_nvmf_tcp_control_msg *msg;
2460 
2461 	assert(list);
2462 
2463 	msg = STAILQ_FIRST(&list->free_msgs);
2464 	if (!msg) {
2465 		SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
2466 		return NULL;
2467 	}
2468 	STAILQ_REMOVE_HEAD(&list->free_msgs, link);
2469 	return msg;
2470 }
2471 
2472 static inline void
2473 nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
2474 {
2475 	struct spdk_nvmf_tcp_control_msg *msg = _msg;
2476 
2477 	assert(list);
2478 	STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
2479 }
2480 
2481 static int
2482 nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
2483 		       struct spdk_nvmf_transport *transport,
2484 		       struct spdk_nvmf_transport_poll_group *group)
2485 {
2486 	struct spdk_nvmf_request		*req = &tcp_req->req;
2487 	struct spdk_nvme_cmd			*cmd;
2488 	struct spdk_nvme_sgl_descriptor		*sgl;
2489 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2490 	enum spdk_nvme_tcp_term_req_fes		fes;
2491 	struct nvme_tcp_pdu			*pdu;
2492 	struct spdk_nvmf_tcp_qpair		*tqpair;
2493 	uint32_t				length, error_offset = 0;
2494 
2495 	cmd = &req->cmd->nvme_cmd;
2496 	sgl = &cmd->dptr.sgl1;
2497 
2498 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
2499 	    sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
2500 		/* get request length from sgl */
2501 		length = sgl->unkeyed.length;
2502 		if (spdk_unlikely(length > transport->opts.max_io_size)) {
2503 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
2504 				    length, transport->opts.max_io_size);
2505 			fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2506 			goto fatal_err;
2507 		}
2508 
2509 		/* fill request length and populate iovs */
2510 		req->length = length;
2511 
2512 		SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
2513 
2514 		if (spdk_unlikely(req->dif_enabled)) {
2515 			req->dif.orig_length = length;
2516 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2517 			req->dif.elba_length = length;
2518 		}
2519 
2520 		if (nvmf_ctrlr_use_zcopy(req)) {
2521 			SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req);
2522 			req->data_from_pool = false;
2523 			return 0;
2524 		}
2525 
2526 		if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
2527 			/* No available buffers. Queue this request up. */
2528 			SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
2529 				      tcp_req);
2530 			return 0;
2531 		}
2532 
2533 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
2534 			      tcp_req, req->iovcnt, req->iov[0].iov_base);
2535 
2536 		return 0;
2537 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
2538 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
2539 		uint64_t offset = sgl->address;
2540 		uint32_t max_len = transport->opts.in_capsule_data_size;
2541 
2542 		assert(tcp_req->has_in_capsule_data);
2543 		/* Capsule Cmd with In-capsule Data should get data length from pdu header */
2544 		tqpair = tcp_req->pdu->qpair;
2545 		/* receiving pdu is not same with the pdu in tcp_req */
2546 		pdu = tqpair->pdu_in_progress;
2547 		length = pdu->hdr.common.plen - pdu->psh_len - sizeof(struct spdk_nvme_tcp_common_pdu_hdr);
2548 		if (tqpair->host_ddgst_enable) {
2549 			length -= SPDK_NVME_TCP_DIGEST_LEN;
2550 		}
2551 		/* This error is not defined in NVMe/TCP spec, take this error as fatal error */
2552 		if (spdk_unlikely(length != sgl->unkeyed.length)) {
2553 			SPDK_ERRLOG("In-Capsule Data length 0x%x is not equal to SGL data length 0x%x\n",
2554 				    length, sgl->unkeyed.length);
2555 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2556 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2557 			goto fatal_err;
2558 		}
2559 
2560 		SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
2561 			      offset, length);
2562 
2563 		/* The NVMe/TCP transport does not use ICDOFF to control the in-capsule data offset. ICDOFF should be '0' */
2564 		if (spdk_unlikely(offset != 0)) {
2565 			/* Not defined fatal error in NVMe/TCP spec, handle this error as a fatal error */
2566 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " should be ZERO in NVMe/TCP\n", offset);
2567 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2568 			error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.address);
2569 			goto fatal_err;
2570 		}
2571 
2572 		if (spdk_unlikely(length > max_len)) {
2573 			/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
2574 			if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
2575 			    (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
2576 
2577 				/* Get a buffer from dedicated list */
2578 				SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
2579 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2580 				assert(tgroup->control_msg_list);
2581 				req->iov[0].iov_base = nvmf_tcp_control_msg_get(tgroup->control_msg_list);
2582 				if (!req->iov[0].iov_base) {
2583 					/* No available buffers. Queue this request up. */
2584 					SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
2585 					return 0;
2586 				}
2587 			} else {
2588 				SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
2589 					    length, max_len);
2590 				fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2591 				goto fatal_err;
2592 			}
2593 		} else {
2594 			req->iov[0].iov_base = tcp_req->buf;
2595 		}
2596 
2597 		req->length = length;
2598 		req->data_from_pool = false;
2599 
2600 		if (spdk_unlikely(req->dif_enabled)) {
2601 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2602 			req->dif.elba_length = length;
2603 		}
2604 
2605 		req->iov[0].iov_len = length;
2606 		req->iovcnt = 1;
2607 
2608 		return 0;
2609 	}
2610 	/* If we want to handle the problem here, then we can't skip the following data segment.
2611 	 * Because this function runs before reading data part, now handle all errors as fatal errors. */
2612 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2613 		    sgl->generic.type, sgl->generic.subtype);
2614 	fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2615 	error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.generic);
2616 fatal_err:
2617 	nvmf_tcp_send_c2h_term_req(tcp_req->pdu->qpair, tcp_req->pdu, fes, error_offset);
2618 	return -1;
2619 }
2620 
2621 static inline enum spdk_nvme_media_error_status_code
2622 nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
2623 	enum spdk_nvme_media_error_status_code result;
2624 
2625 	switch (err_type)
2626 	{
2627 	case SPDK_DIF_REFTAG_ERROR:
2628 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
2629 		break;
2630 	case SPDK_DIF_APPTAG_ERROR:
2631 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
2632 		break;
2633 	case SPDK_DIF_GUARD_ERROR:
2634 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
2635 		break;
2636 	default:
2637 		SPDK_UNREACHABLE();
2638 		break;
2639 	}
2640 
2641 	return result;
2642 }
2643 
2644 static void
2645 _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2646 			struct spdk_nvmf_tcp_req *tcp_req)
2647 {
2648 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
2649 				tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
2650 	struct nvme_tcp_pdu *rsp_pdu;
2651 	struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
2652 	uint32_t plen, pdo, alignment;
2653 	int rc;
2654 
2655 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2656 
2657 	rsp_pdu = tcp_req->pdu;
2658 	assert(rsp_pdu != NULL);
2659 
2660 	c2h_data = &rsp_pdu->hdr.c2h_data;
2661 	c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
2662 	plen = c2h_data->common.hlen = sizeof(*c2h_data);
2663 
2664 	if (tqpair->host_hdgst_enable) {
2665 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2666 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2667 	}
2668 
2669 	/* set the psh */
2670 	c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2671 	c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
2672 	c2h_data->datao = tcp_req->pdu->rw_offset;
2673 
2674 	/* set the padding */
2675 	rsp_pdu->padding_len = 0;
2676 	pdo = plen;
2677 	if (tqpair->cpda) {
2678 		alignment = (tqpair->cpda + 1) << 2;
2679 		if (plen % alignment != 0) {
2680 			pdo = (plen + alignment) / alignment * alignment;
2681 			rsp_pdu->padding_len = pdo - plen;
2682 			plen = pdo;
2683 		}
2684 	}
2685 
2686 	c2h_data->common.pdo = pdo;
2687 	plen += c2h_data->datal;
2688 	if (tqpair->host_ddgst_enable) {
2689 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
2690 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2691 	}
2692 
2693 	c2h_data->common.plen = plen;
2694 
2695 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2696 		rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2697 	}
2698 
2699 	nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2700 				  c2h_data->datao, c2h_data->datal);
2701 
2702 
2703 	c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
2704 	/* Need to send the capsule response if response is not all 0 */
2705 	if (ttransport->tcp_opts.c2h_success &&
2706 	    tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
2707 		c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
2708 	}
2709 
2710 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2711 		struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
2712 		struct spdk_dif_error err_blk = {};
2713 		uint32_t mapped_length = 0;
2714 		uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
2715 		uint32_t ddgst_len = 0;
2716 
2717 		if (tqpair->host_ddgst_enable) {
2718 			/* Data digest consumes additional iov entry */
2719 			available_iovs--;
2720 			/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
2721 			ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
2722 			c2h_data->common.plen -= ddgst_len;
2723 		}
2724 		/* Temp call to estimate if data can be described by limited number of iovs.
2725 		 * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
2726 		nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
2727 				    false, &mapped_length);
2728 
2729 		if (mapped_length != c2h_data->common.plen) {
2730 			c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
2731 			SPDK_DEBUGLOG(nvmf_tcp,
2732 				      "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
2733 				      c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
2734 			c2h_data->common.plen = mapped_length;
2735 
2736 			/* Rebuild pdu->data_iov since data length is changed */
2737 			nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
2738 						  c2h_data->datal);
2739 
2740 			c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
2741 						    SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
2742 		}
2743 
2744 		c2h_data->common.plen += ddgst_len;
2745 
2746 		assert(rsp_pdu->rw_offset <= tcp_req->req.length);
2747 
2748 		rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
2749 					    0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
2750 		if (rc != 0) {
2751 			SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
2752 				    err_blk.err_type, err_blk.err_offset);
2753 			rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2754 			rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
2755 			nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2756 			return;
2757 		}
2758 	}
2759 
2760 	rsp_pdu->rw_offset += c2h_data->datal;
2761 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
2762 }
2763 
2764 static void
2765 nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2766 		       struct spdk_nvmf_tcp_req *tcp_req)
2767 {
2768 	nvmf_tcp_req_pdu_init(tcp_req);
2769 	_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2770 }
2771 
2772 static int
2773 request_transfer_out(struct spdk_nvmf_request *req)
2774 {
2775 	struct spdk_nvmf_tcp_req	*tcp_req;
2776 	struct spdk_nvmf_qpair		*qpair;
2777 	struct spdk_nvmf_tcp_qpair	*tqpair;
2778 	struct spdk_nvme_cpl		*rsp;
2779 
2780 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2781 
2782 	qpair = req->qpair;
2783 	rsp = &req->rsp->nvme_cpl;
2784 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
2785 
2786 	/* Advance our sq_head pointer */
2787 	if (qpair->sq_head == qpair->sq_head_max) {
2788 		qpair->sq_head = 0;
2789 	} else {
2790 		qpair->sq_head++;
2791 	}
2792 	rsp->sqhd = qpair->sq_head;
2793 
2794 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2795 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
2796 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2797 		nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2798 	} else {
2799 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2800 	}
2801 
2802 	return 0;
2803 }
2804 
2805 static void
2806 nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport,
2807 			      struct spdk_nvmf_tcp_qpair *tqpair,
2808 			      struct spdk_nvmf_tcp_req *tcp_req)
2809 {
2810 	enum spdk_nvme_cmd_fuse last, next;
2811 
2812 	last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2813 	next = tcp_req->cmd.fuse;
2814 
2815 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2816 
2817 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2818 		return;
2819 	}
2820 
2821 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2822 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2823 			/* This is a valid pair of fused commands.  Point them at each other
2824 			 * so they can be submitted consecutively once ready to be executed.
2825 			 */
2826 			tqpair->fused_first->fused_pair = tcp_req;
2827 			tcp_req->fused_pair = tqpair->fused_first;
2828 			tqpair->fused_first = NULL;
2829 			return;
2830 		} else {
2831 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2832 			tqpair->fused_first->fused_failed = true;
2833 
2834 			/*
2835 			 * If the last req is in READY_TO_EXECUTE state, then call
2836 			 * nvmf_tcp_req_process(), otherwise nothing else will kick it.
2837 			 */
2838 			if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2839 				nvmf_tcp_req_process(ttransport, tqpair->fused_first);
2840 			}
2841 
2842 			tqpair->fused_first = NULL;
2843 		}
2844 	}
2845 
2846 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2847 		/* Set tqpair->fused_first here so that we know to check that the next request
2848 		 * is a SECOND (and to fail this one if it isn't).
2849 		 */
2850 		tqpair->fused_first = tcp_req;
2851 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2852 		/* Mark this req failed since it is a SECOND and the last one was not a FIRST. */
2853 		tcp_req->fused_failed = true;
2854 	}
2855 }
2856 
2857 static bool
2858 nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
2859 		     struct spdk_nvmf_tcp_req *tcp_req)
2860 {
2861 	struct spdk_nvmf_tcp_qpair		*tqpair;
2862 	uint32_t				plen;
2863 	struct nvme_tcp_pdu			*pdu;
2864 	enum spdk_nvmf_tcp_req_state		prev_state;
2865 	bool					progress = false;
2866 	struct spdk_nvmf_transport		*transport = &ttransport->transport;
2867 	struct spdk_nvmf_transport_poll_group	*group;
2868 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2869 
2870 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2871 	group = &tqpair->group->group;
2872 	assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
2873 
2874 	/* If the qpair is not active, we need to abort the outstanding requests. */
2875 	if (tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2876 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
2877 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2878 		}
2879 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
2880 	}
2881 
2882 	/* The loop here is to allow for several back-to-back state changes. */
2883 	do {
2884 		prev_state = tcp_req->state;
2885 
2886 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
2887 			      tqpair);
2888 
2889 		switch (tcp_req->state) {
2890 		case TCP_REQUEST_STATE_FREE:
2891 			/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
2892 			 * to escape this state. */
2893 			break;
2894 		case TCP_REQUEST_STATE_NEW:
2895 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
2896 
2897 			/* copy the cmd from the receive pdu */
2898 			tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
2899 
2900 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
2901 				tcp_req->req.dif_enabled = true;
2902 				tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
2903 			}
2904 
2905 			nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req);
2906 
2907 			/* The next state transition depends on the data transfer needs of this request. */
2908 			tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
2909 
2910 			if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2911 				nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_INVALID_OPCODE);
2912 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2913 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2914 				SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
2915 				break;
2916 			}
2917 
2918 			/* If no data to transfer, ready to execute. */
2919 			if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
2920 				/* Reset the tqpair receiving pdu state */
2921 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2922 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2923 				break;
2924 			}
2925 
2926 			pdu = tqpair->pdu_in_progress;
2927 			plen = pdu->hdr.common.hlen;
2928 			if (tqpair->host_hdgst_enable) {
2929 				plen += SPDK_NVME_TCP_DIGEST_LEN;
2930 			}
2931 			if (pdu->hdr.common.plen != plen) {
2932 				tcp_req->has_in_capsule_data = true;
2933 			} else {
2934 				/* Data is transmitted by C2H PDUs */
2935 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2936 			}
2937 
2938 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
2939 			STAILQ_INSERT_TAIL(&group->pending_buf_queue, &tcp_req->req, buf_link);
2940 			break;
2941 		case TCP_REQUEST_STATE_NEED_BUFFER:
2942 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.trace_id, 0,
2943 					  (uintptr_t)tcp_req);
2944 
2945 			assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
2946 
2947 			if (!tcp_req->has_in_capsule_data && (&tcp_req->req != STAILQ_FIRST(&group->pending_buf_queue))) {
2948 				SPDK_DEBUGLOG(nvmf_tcp,
2949 					      "Not the first element to wait for the buf for tcp_req(%p) on tqpair=%p\n",
2950 					      tcp_req, tqpair);
2951 				/* This request needs to wait in line to obtain a buffer */
2952 				break;
2953 			}
2954 
2955 			/* Try to get a data buffer */
2956 			if (nvmf_tcp_req_parse_sgl(tcp_req, transport, group) < 0) {
2957 				break;
2958 			}
2959 
2960 			/* Get a zcopy buffer if the request can be serviced through zcopy */
2961 			if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2962 				if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2963 					assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2964 					tcp_req->req.length = tcp_req->req.dif.elba_length;
2965 				}
2966 
2967 				STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2968 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START);
2969 				spdk_nvmf_request_zcopy_start(&tcp_req->req);
2970 				break;
2971 			}
2972 
2973 			if (tcp_req->req.iovcnt < 1) {
2974 				SPDK_DEBUGLOG(nvmf_tcp, "No buffer allocated for tcp_req(%p) on tqpair(%p\n)",
2975 					      tcp_req, tqpair);
2976 				/* No buffers available. */
2977 				break;
2978 			}
2979 
2980 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2981 
2982 			/* If data is transferring from host to controller, we need to do a transfer from the host. */
2983 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2984 				if (tcp_req->req.data_from_pool) {
2985 					SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2986 					nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2987 				} else {
2988 					struct nvme_tcp_pdu *pdu;
2989 
2990 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
2991 
2992 					pdu = tqpair->pdu_in_progress;
2993 					SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
2994 						      tqpair);
2995 					/* No need to send r2t, contained in the capsuled data */
2996 					nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2997 								  0, tcp_req->req.length);
2998 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2999 				}
3000 				break;
3001 			}
3002 
3003 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
3004 			break;
3005 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3006 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.trace_id, 0,
3007 					  (uintptr_t)tcp_req);
3008 			/* Some external code must kick a request into  TCP_REQUEST_STATE_ZCOPY_START_COMPLETED
3009 			 * to escape this state. */
3010 			break;
3011 		case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
3012 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.trace_id, 0,
3013 					  (uintptr_t)tcp_req);
3014 			if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) {
3015 				SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n",
3016 					      tcp_req, tqpair);
3017 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3018 				break;
3019 			}
3020 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
3021 				SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
3022 				nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
3023 			} else {
3024 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3025 			}
3026 			break;
3027 		case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3028 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.trace_id, 0,
3029 					  (uintptr_t)tcp_req);
3030 			/* The R2T completion or the h2c data incoming will kick it out of this state. */
3031 			break;
3032 		case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3033 
3034 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.trace_id,
3035 					  0, (uintptr_t)tcp_req);
3036 			/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
3037 			 * to escape this state. */
3038 			break;
3039 		case TCP_REQUEST_STATE_READY_TO_EXECUTE:
3040 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.trace_id, 0,
3041 					  (uintptr_t)tcp_req);
3042 
3043 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3044 				assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
3045 				tcp_req->req.length = tcp_req->req.dif.elba_length;
3046 			}
3047 
3048 			if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
3049 				if (tcp_req->fused_failed) {
3050 					/* This request failed FUSED semantics.  Fail it immediately, without
3051 					 * even sending it to the target layer.
3052 					 */
3053 					nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_MISSING_FUSED);
3054 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3055 					break;
3056 				}
3057 
3058 				if (tcp_req->fused_pair == NULL ||
3059 				    tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3060 					/* This request is ready to execute, but either we don't know yet if it's
3061 					 * valid - i.e. this is a FIRST but we haven't received the next request yet),
3062 					 * or the other request of this fused pair isn't ready to execute. So
3063 					 * break here and this request will get processed later either when the
3064 					 * other request is ready or we find that this request isn't valid.
3065 					 */
3066 					break;
3067 				}
3068 			}
3069 
3070 			if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
3071 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
3072 				/* If we get to this point, and this request is a fused command, we know that
3073 				 * it is part of a valid sequence (FIRST followed by a SECOND) and that both
3074 				 * requests are READY_TO_EXECUTE.  So call spdk_nvmf_request_exec() both on this
3075 				 * request, and the other request of the fused pair, in the correct order.
3076 				 * Also clear the ->fused_pair pointers on both requests, since after this point
3077 				 * we no longer need to maintain the relationship between these two requests.
3078 				 */
3079 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
3080 					assert(tcp_req->fused_pair != NULL);
3081 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3082 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3083 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3084 					tcp_req->fused_pair->fused_pair = NULL;
3085 					tcp_req->fused_pair = NULL;
3086 				}
3087 				spdk_nvmf_request_exec(&tcp_req->req);
3088 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
3089 					assert(tcp_req->fused_pair != NULL);
3090 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3091 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3092 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3093 					tcp_req->fused_pair->fused_pair = NULL;
3094 					tcp_req->fused_pair = NULL;
3095 				}
3096 			} else {
3097 				/* For zero-copy, only requests with data coming from host to the
3098 				 * controller can end up here. */
3099 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
3100 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT);
3101 				spdk_nvmf_request_zcopy_end(&tcp_req->req, true);
3102 			}
3103 
3104 			break;
3105 		case TCP_REQUEST_STATE_EXECUTING:
3106 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
3107 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3108 			 * to escape this state. */
3109 			break;
3110 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3111 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.trace_id, 0,
3112 					  (uintptr_t)tcp_req);
3113 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3114 			 * to escape this state. */
3115 			break;
3116 		case TCP_REQUEST_STATE_EXECUTED:
3117 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
3118 
3119 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3120 				tcp_req->req.length = tcp_req->req.dif.orig_length;
3121 			}
3122 
3123 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3124 			break;
3125 		case TCP_REQUEST_STATE_READY_TO_COMPLETE:
3126 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.trace_id, 0,
3127 					  (uintptr_t)tcp_req);
3128 			if (request_transfer_out(&tcp_req->req) != 0) {
3129 				assert(0); /* No good way to handle this currently */
3130 			}
3131 			break;
3132 		case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
3133 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.trace_id,
3134 					  0, (uintptr_t)tcp_req);
3135 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3136 			 * to escape this state. */
3137 			break;
3138 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3139 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.trace_id, 0,
3140 					  (uintptr_t)tcp_req);
3141 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3142 			 * to escape this state. */
3143 			break;
3144 		case TCP_REQUEST_STATE_COMPLETED:
3145 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
3146 			/* If there's an outstanding PDU sent to the host, the request is completed
3147 			 * due to the qpair being disconnected.  We must delay the completion until
3148 			 * that write is done to avoid freeing the request twice. */
3149 			if (spdk_unlikely(tcp_req->pdu_in_use)) {
3150 				SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding "
3151 					      "write on req=%p\n", tcp_req);
3152 				/* This can only happen for zcopy requests */
3153 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3154 				assert(tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
3155 				break;
3156 			}
3157 
3158 			if (tcp_req->req.data_from_pool) {
3159 				spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
3160 			} else if (spdk_unlikely(tcp_req->has_in_capsule_data &&
3161 						 (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
3162 						  tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
3163 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3164 				assert(tgroup->control_msg_list);
3165 				SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
3166 				nvmf_tcp_control_msg_put(tgroup->control_msg_list,
3167 							 tcp_req->req.iov[0].iov_base);
3168 			} else if (tcp_req->req.zcopy_bdev_io != NULL) {
3169 				/* If the request has an unreleased zcopy bdev_io, it's either a
3170 				 * read, a failed write, or the qpair is being disconnected */
3171 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3172 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
3173 				       spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) ||
3174 				       tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
3175 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE);
3176 				spdk_nvmf_request_zcopy_end(&tcp_req->req, false);
3177 				break;
3178 			}
3179 			tcp_req->req.length = 0;
3180 			tcp_req->req.iovcnt = 0;
3181 			tcp_req->fused_failed = false;
3182 			if (tcp_req->fused_pair) {
3183 				/* This req was part of a valid fused pair, but failed before it got to
3184 				 * READ_TO_EXECUTE state.  This means we need to fail the other request
3185 				 * in the pair, because it is no longer part of a valid pair.  If the pair
3186 				 * already reached READY_TO_EXECUTE state, we need to kick it.
3187 				 */
3188 				tcp_req->fused_pair->fused_failed = true;
3189 				if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3190 					nvmf_tcp_req_process(ttransport, tcp_req->fused_pair);
3191 				}
3192 				tcp_req->fused_pair = NULL;
3193 			}
3194 
3195 			nvmf_tcp_req_put(tqpair, tcp_req);
3196 			break;
3197 		case TCP_REQUEST_NUM_STATES:
3198 		default:
3199 			assert(0);
3200 			break;
3201 		}
3202 
3203 		if (tcp_req->state != prev_state) {
3204 			progress = true;
3205 		}
3206 	} while (tcp_req->state != prev_state);
3207 
3208 	return progress;
3209 }
3210 
3211 static void
3212 nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
3213 {
3214 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
3215 	int rc;
3216 
3217 	assert(tqpair != NULL);
3218 	rc = nvmf_tcp_sock_process(tqpair);
3219 
3220 	/* If there was a new socket error, disconnect */
3221 	if (rc < 0) {
3222 		nvmf_tcp_qpair_disconnect(tqpair);
3223 	}
3224 }
3225 
3226 static int
3227 nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3228 			struct spdk_nvmf_qpair *qpair)
3229 {
3230 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3231 	struct spdk_nvmf_tcp_qpair	*tqpair;
3232 	int				rc;
3233 
3234 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3235 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3236 
3237 	rc =  nvmf_tcp_qpair_sock_init(tqpair);
3238 	if (rc != 0) {
3239 		SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
3240 		return -1;
3241 	}
3242 
3243 	rc = nvmf_tcp_qpair_init(&tqpair->qpair);
3244 	if (rc < 0) {
3245 		SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
3246 		return -1;
3247 	}
3248 
3249 	rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
3250 	if (rc < 0) {
3251 		SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
3252 		return -1;
3253 	}
3254 
3255 	rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
3256 				      nvmf_tcp_sock_cb, tqpair);
3257 	if (rc != 0) {
3258 		SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
3259 			    spdk_strerror(errno), errno);
3260 		return -1;
3261 	}
3262 
3263 	tqpair->group = tgroup;
3264 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INVALID);
3265 	TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
3266 
3267 	return 0;
3268 }
3269 
3270 static int
3271 nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3272 			   struct spdk_nvmf_qpair *qpair)
3273 {
3274 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3275 	struct spdk_nvmf_tcp_qpair		*tqpair;
3276 	int				rc;
3277 
3278 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3279 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3280 
3281 	assert(tqpair->group == tgroup);
3282 
3283 	SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
3284 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
3285 		/* Change the state to move the qpair from the await_req list to the main list
3286 		 * and prevent adding it again later by nvmf_tcp_qpair_set_recv_state() */
3287 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
3288 	}
3289 	TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
3290 
3291 	rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
3292 	if (rc != 0) {
3293 		SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
3294 			    spdk_strerror(errno), errno);
3295 	}
3296 
3297 	return rc;
3298 }
3299 
3300 static int
3301 nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
3302 {
3303 	struct spdk_nvmf_tcp_transport *ttransport;
3304 	struct spdk_nvmf_tcp_req *tcp_req;
3305 
3306 	ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3307 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3308 
3309 	switch (tcp_req->state) {
3310 	case TCP_REQUEST_STATE_EXECUTING:
3311 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3312 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3313 		break;
3314 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3315 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED);
3316 		break;
3317 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3318 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3319 		break;
3320 	default:
3321 		assert(0 && "Unexpected request state");
3322 		break;
3323 	}
3324 
3325 	nvmf_tcp_req_process(ttransport, tcp_req);
3326 
3327 	return 0;
3328 }
3329 
3330 static void
3331 nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
3332 		     spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3333 {
3334 	struct spdk_nvmf_tcp_qpair *tqpair;
3335 
3336 	SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
3337 
3338 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3339 
3340 	assert(tqpair->fini_cb_fn == NULL);
3341 	tqpair->fini_cb_fn = cb_fn;
3342 	tqpair->fini_cb_arg = cb_arg;
3343 
3344 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITED);
3345 	nvmf_tcp_qpair_destroy(tqpair);
3346 }
3347 
3348 static int
3349 nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3350 {
3351 	struct spdk_nvmf_tcp_poll_group *tgroup;
3352 	int rc;
3353 	struct spdk_nvmf_request *req, *req_tmp;
3354 	struct spdk_nvmf_tcp_req *tcp_req;
3355 	struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp;
3356 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(group->transport,
3357 			struct spdk_nvmf_tcp_transport, transport);
3358 
3359 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3360 
3361 	if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) {
3362 		return 0;
3363 	}
3364 
3365 	STAILQ_FOREACH_SAFE(req, &group->pending_buf_queue, buf_link, req_tmp) {
3366 		tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3367 		if (nvmf_tcp_req_process(ttransport, tcp_req) == false) {
3368 			break;
3369 		}
3370 	}
3371 
3372 	rc = spdk_sock_group_poll(tgroup->sock_group);
3373 	if (rc < 0) {
3374 		SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
3375 	}
3376 
3377 	TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) {
3378 		rc = nvmf_tcp_sock_process(tqpair);
3379 
3380 		/* If there was a new socket error, disconnect */
3381 		if (rc < 0) {
3382 			nvmf_tcp_qpair_disconnect(tqpair);
3383 		}
3384 	}
3385 
3386 	return rc;
3387 }
3388 
3389 static int
3390 nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
3391 			struct spdk_nvme_transport_id *trid, bool peer)
3392 {
3393 	struct spdk_nvmf_tcp_qpair     *tqpair;
3394 	uint16_t			port;
3395 
3396 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3397 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
3398 
3399 	if (peer) {
3400 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
3401 		port = tqpair->initiator_port;
3402 	} else {
3403 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
3404 		port = tqpair->target_port;
3405 	}
3406 
3407 	if (spdk_sock_is_ipv4(tqpair->sock)) {
3408 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3409 	} else if (spdk_sock_is_ipv6(tqpair->sock)) {
3410 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3411 	} else {
3412 		return -1;
3413 	}
3414 
3415 	snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
3416 	return 0;
3417 }
3418 
3419 static int
3420 nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3421 			      struct spdk_nvme_transport_id *trid)
3422 {
3423 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3424 }
3425 
3426 static int
3427 nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3428 			     struct spdk_nvme_transport_id *trid)
3429 {
3430 	return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
3431 }
3432 
3433 static int
3434 nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3435 			       struct spdk_nvme_transport_id *trid)
3436 {
3437 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3438 }
3439 
3440 static void
3441 nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
3442 			      struct spdk_nvmf_tcp_req *tcp_req_to_abort)
3443 {
3444 	nvmf_tcp_req_set_cpl(tcp_req_to_abort, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_BY_REQUEST);
3445 	nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3446 
3447 	req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
3448 }
3449 
3450 static int
3451 _nvmf_tcp_qpair_abort_request(void *ctx)
3452 {
3453 	struct spdk_nvmf_request *req = ctx;
3454 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
3455 			struct spdk_nvmf_tcp_req, req);
3456 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
3457 					     struct spdk_nvmf_tcp_qpair, qpair);
3458 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
3459 			struct spdk_nvmf_tcp_transport, transport);
3460 	int rc;
3461 
3462 	spdk_poller_unregister(&req->poller);
3463 
3464 	switch (tcp_req_to_abort->state) {
3465 	case TCP_REQUEST_STATE_EXECUTING:
3466 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3467 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3468 		rc = nvmf_ctrlr_abort_request(req);
3469 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
3470 			return SPDK_POLLER_BUSY;
3471 		}
3472 		break;
3473 
3474 	case TCP_REQUEST_STATE_NEED_BUFFER:
3475 		STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue,
3476 			      &tcp_req_to_abort->req, spdk_nvmf_request, buf_link);
3477 
3478 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3479 		nvmf_tcp_req_process(ttransport, tcp_req_to_abort);
3480 		break;
3481 
3482 	case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3483 	case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3484 		if (spdk_get_ticks() < req->timeout_tsc) {
3485 			req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
3486 			return SPDK_POLLER_BUSY;
3487 		}
3488 		break;
3489 
3490 	default:
3491 		/* Requests in other states are either un-abortable (e.g.
3492 		 * TRANSFERRING_CONTROLLER_TO_HOST) or should never end up here, as they're
3493 		 * immediately transitioned to other states in nvmf_tcp_req_process() (e.g.
3494 		 * READY_TO_EXECUTE).  But it is fine to end up here, as we'll simply complete the
3495 		 * abort request with the bit0 of dword0 set (command not aborted).
3496 		 */
3497 		break;
3498 	}
3499 
3500 	spdk_nvmf_request_complete(req);
3501 	return SPDK_POLLER_BUSY;
3502 }
3503 
3504 static void
3505 nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
3506 			     struct spdk_nvmf_request *req)
3507 {
3508 	struct spdk_nvmf_tcp_qpair *tqpair;
3509 	struct spdk_nvmf_tcp_transport *ttransport;
3510 	struct spdk_nvmf_transport *transport;
3511 	uint16_t cid;
3512 	uint32_t i;
3513 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
3514 
3515 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3516 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3517 	transport = &ttransport->transport;
3518 
3519 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
3520 
3521 	for (i = 0; i < tqpair->resource_count; i++) {
3522 		if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
3523 		    tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
3524 			tcp_req_to_abort = &tqpair->reqs[i];
3525 			break;
3526 		}
3527 	}
3528 
3529 	spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, tqpair->qpair.trace_id, 0, (uintptr_t)req);
3530 
3531 	if (tcp_req_to_abort == NULL) {
3532 		spdk_nvmf_request_complete(req);
3533 		return;
3534 	}
3535 
3536 	req->req_to_abort = &tcp_req_to_abort->req;
3537 	req->timeout_tsc = spdk_get_ticks() +
3538 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
3539 	req->poller = NULL;
3540 
3541 	_nvmf_tcp_qpair_abort_request(req);
3542 }
3543 
3544 struct tcp_subsystem_add_host_opts {
3545 	char *psk;
3546 };
3547 
3548 static const struct spdk_json_object_decoder tcp_subsystem_add_host_opts_decoder[] = {
3549 	{"psk", offsetof(struct tcp_subsystem_add_host_opts, psk), spdk_json_decode_string, true},
3550 };
3551 
3552 static int
3553 tcp_load_psk(const char *fname, char *buf, size_t bufsz)
3554 {
3555 	FILE *psk_file;
3556 	struct stat statbuf;
3557 	int rc;
3558 
3559 	if (stat(fname, &statbuf) != 0) {
3560 		SPDK_ERRLOG("Could not read permissions for PSK file\n");
3561 		return -EACCES;
3562 	}
3563 
3564 	if ((statbuf.st_mode & TCP_PSK_INVALID_PERMISSIONS) != 0) {
3565 		SPDK_ERRLOG("Incorrect permissions for PSK file\n");
3566 		return -EPERM;
3567 	}
3568 	if ((size_t)statbuf.st_size > bufsz) {
3569 		SPDK_ERRLOG("Invalid PSK: too long\n");
3570 		return -EINVAL;
3571 	}
3572 	psk_file = fopen(fname, "r");
3573 	if (psk_file == NULL) {
3574 		SPDK_ERRLOG("Could not open PSK file\n");
3575 		return -EINVAL;
3576 	}
3577 
3578 	rc = fread(buf, 1, statbuf.st_size, psk_file);
3579 	if (rc != statbuf.st_size) {
3580 		SPDK_ERRLOG("Failed to read PSK\n");
3581 		fclose(psk_file);
3582 		return -EINVAL;
3583 	}
3584 
3585 	fclose(psk_file);
3586 	return 0;
3587 }
3588 
3589 SPDK_LOG_DEPRECATION_REGISTER(nvmf_tcp_psk_path, "PSK path", "v24.09", 0);
3590 
3591 static int
3592 nvmf_tcp_subsystem_add_host(struct spdk_nvmf_transport *transport,
3593 			    const struct spdk_nvmf_subsystem *subsystem,
3594 			    const char *hostnqn,
3595 			    const struct spdk_json_val *transport_specific)
3596 {
3597 	struct tcp_subsystem_add_host_opts opts;
3598 	struct spdk_nvmf_tcp_transport *ttransport;
3599 	struct tcp_psk_entry *tmp, *entry = NULL;
3600 	uint8_t psk_configured[SPDK_TLS_PSK_MAX_LEN] = {};
3601 	char psk_interchange[SPDK_TLS_PSK_MAX_LEN + 1] = {};
3602 	uint8_t tls_cipher_suite;
3603 	int rc = 0;
3604 	uint8_t psk_retained_hash;
3605 	uint64_t psk_configured_size;
3606 
3607 	if (transport_specific == NULL) {
3608 		return 0;
3609 	}
3610 
3611 	assert(transport != NULL);
3612 	assert(subsystem != NULL);
3613 
3614 	memset(&opts, 0, sizeof(opts));
3615 
3616 	/* Decode PSK (either name of a key or file path) */
3617 	if (spdk_json_decode_object_relaxed(transport_specific, tcp_subsystem_add_host_opts_decoder,
3618 					    SPDK_COUNTOF(tcp_subsystem_add_host_opts_decoder), &opts)) {
3619 		SPDK_ERRLOG("spdk_json_decode_object failed\n");
3620 		return -EINVAL;
3621 	}
3622 
3623 	if (opts.psk == NULL) {
3624 		return 0;
3625 	}
3626 
3627 	entry = calloc(1, sizeof(struct tcp_psk_entry));
3628 	if (entry == NULL) {
3629 		SPDK_ERRLOG("Unable to allocate memory for PSK entry!\n");
3630 		rc = -ENOMEM;
3631 		goto end;
3632 	}
3633 
3634 	entry->key = spdk_keyring_get_key(opts.psk);
3635 	if (entry->key != NULL) {
3636 		rc = spdk_key_get_key(entry->key, psk_interchange, SPDK_TLS_PSK_MAX_LEN);
3637 		if (rc < 0) {
3638 			SPDK_ERRLOG("Failed to retreive PSK '%s'\n", opts.psk);
3639 			rc = -EINVAL;
3640 			goto end;
3641 		}
3642 	} else {
3643 		if (strlen(opts.psk) >= sizeof(entry->psk)) {
3644 			SPDK_ERRLOG("PSK path too long\n");
3645 			rc = -EINVAL;
3646 			goto end;
3647 		}
3648 
3649 		rc = tcp_load_psk(opts.psk, psk_interchange, SPDK_TLS_PSK_MAX_LEN);
3650 		if (rc) {
3651 			SPDK_ERRLOG("Could not retrieve PSK from file\n");
3652 			goto end;
3653 		}
3654 
3655 		SPDK_LOG_DEPRECATED(nvmf_tcp_psk_path);
3656 	}
3657 
3658 	/* Parse PSK interchange to get length of base64 encoded data.
3659 	 * This is then used to decide which cipher suite should be used
3660 	 * to generate PSK identity and TLS PSK later on. */
3661 	rc = nvme_tcp_parse_interchange_psk(psk_interchange, psk_configured, sizeof(psk_configured),
3662 					    &psk_configured_size, &psk_retained_hash);
3663 	if (rc < 0) {
3664 		SPDK_ERRLOG("Failed to parse PSK interchange!\n");
3665 		goto end;
3666 	}
3667 
3668 	/* The Base64 string encodes the configured PSK (32 or 48 bytes binary).
3669 	 * This check also ensures that psk_configured_size is smaller than
3670 	 * psk_retained buffer size. */
3671 	if (psk_configured_size == SHA256_DIGEST_LENGTH) {
3672 		tls_cipher_suite = NVME_TCP_CIPHER_AES_128_GCM_SHA256;
3673 	} else if (psk_configured_size == SHA384_DIGEST_LENGTH) {
3674 		tls_cipher_suite = NVME_TCP_CIPHER_AES_256_GCM_SHA384;
3675 	} else {
3676 		SPDK_ERRLOG("Unrecognized cipher suite!\n");
3677 		rc = -EINVAL;
3678 		goto end;
3679 	}
3680 
3681 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3682 	/* Generate PSK identity. */
3683 	rc = nvme_tcp_generate_psk_identity(entry->pskid, sizeof(entry->pskid), hostnqn,
3684 					    subsystem->subnqn, tls_cipher_suite);
3685 	if (rc) {
3686 		rc = -EINVAL;
3687 		goto end;
3688 	}
3689 	/* Check if PSK identity entry already exists. */
3690 	TAILQ_FOREACH(tmp, &ttransport->psks, link) {
3691 		if (strncmp(tmp->pskid, entry->pskid, NVMF_PSK_IDENTITY_LEN) == 0) {
3692 			SPDK_ERRLOG("Given PSK identity: %s entry already exists!\n", entry->pskid);
3693 			rc = -EEXIST;
3694 			goto end;
3695 		}
3696 	}
3697 
3698 	if (snprintf(entry->hostnqn, sizeof(entry->hostnqn), "%s", hostnqn) < 0) {
3699 		SPDK_ERRLOG("Could not write hostnqn string!\n");
3700 		rc = -EINVAL;
3701 		goto end;
3702 	}
3703 	if (snprintf(entry->subnqn, sizeof(entry->subnqn), "%s", subsystem->subnqn) < 0) {
3704 		SPDK_ERRLOG("Could not write subnqn string!\n");
3705 		rc = -EINVAL;
3706 		goto end;
3707 	}
3708 
3709 	entry->tls_cipher_suite = tls_cipher_suite;
3710 
3711 	/* No hash indicates that Configured PSK must be used as Retained PSK. */
3712 	if (psk_retained_hash == NVME_TCP_HASH_ALGORITHM_NONE) {
3713 		/* Psk configured is either 32 or 48 bytes long. */
3714 		memcpy(entry->psk, psk_configured, psk_configured_size);
3715 		entry->psk_size = psk_configured_size;
3716 	} else {
3717 		/* Derive retained PSK. */
3718 		rc = nvme_tcp_derive_retained_psk(psk_configured, psk_configured_size, hostnqn, entry->psk,
3719 						  SPDK_TLS_PSK_MAX_LEN, psk_retained_hash);
3720 		if (rc < 0) {
3721 			SPDK_ERRLOG("Unable to derive retained PSK!\n");
3722 			goto end;
3723 		}
3724 		entry->psk_size = rc;
3725 	}
3726 
3727 	if (entry->key == NULL) {
3728 		rc = snprintf(entry->psk_path, sizeof(entry->psk_path), "%s", opts.psk);
3729 		if (rc < 0 || (size_t)rc >= sizeof(entry->psk_path)) {
3730 			SPDK_ERRLOG("Could not save PSK path!\n");
3731 			rc = -ENAMETOOLONG;
3732 			goto end;
3733 		}
3734 	}
3735 
3736 	TAILQ_INSERT_TAIL(&ttransport->psks, entry, link);
3737 	rc = 0;
3738 
3739 end:
3740 	spdk_memset_s(psk_configured, sizeof(psk_configured), 0, sizeof(psk_configured));
3741 	spdk_memset_s(psk_interchange, sizeof(psk_interchange), 0, sizeof(psk_interchange));
3742 
3743 	free(opts.psk);
3744 	if (rc != 0) {
3745 		nvmf_tcp_free_psk_entry(entry);
3746 	}
3747 
3748 	return rc;
3749 }
3750 
3751 static void
3752 nvmf_tcp_subsystem_remove_host(struct spdk_nvmf_transport *transport,
3753 			       const struct spdk_nvmf_subsystem *subsystem,
3754 			       const char *hostnqn)
3755 {
3756 	struct spdk_nvmf_tcp_transport *ttransport;
3757 	struct tcp_psk_entry *entry, *tmp;
3758 
3759 	assert(transport != NULL);
3760 	assert(subsystem != NULL);
3761 
3762 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3763 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
3764 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3765 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3766 			TAILQ_REMOVE(&ttransport->psks, entry, link);
3767 			nvmf_tcp_free_psk_entry(entry);
3768 			break;
3769 		}
3770 	}
3771 }
3772 
3773 static void
3774 nvmf_tcp_subsystem_dump_host(struct spdk_nvmf_transport *transport,
3775 			     const struct spdk_nvmf_subsystem *subsystem, const char *hostnqn,
3776 			     struct spdk_json_write_ctx *w)
3777 {
3778 	struct spdk_nvmf_tcp_transport *ttransport;
3779 	struct tcp_psk_entry *entry;
3780 
3781 	assert(transport != NULL);
3782 	assert(subsystem != NULL);
3783 
3784 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3785 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
3786 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3787 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3788 			spdk_json_write_named_string(w, "psk", entry->key ?
3789 						     spdk_key_get_name(entry->key) : entry->psk_path);
3790 			break;
3791 		}
3792 	}
3793 }
3794 
3795 static void
3796 nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
3797 {
3798 	opts->max_queue_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
3799 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
3800 	opts->in_capsule_data_size =	SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
3801 	opts->max_io_size =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
3802 	opts->io_unit_size =		SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
3803 	opts->max_aq_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
3804 	opts->num_shared_buffers =	SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
3805 	opts->buf_cache_size =		SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
3806 	opts->dif_insert_or_strip =	SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
3807 	opts->abort_timeout_sec =	SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
3808 	opts->transport_specific =      NULL;
3809 }
3810 
3811 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
3812 	.name = "TCP",
3813 	.type = SPDK_NVME_TRANSPORT_TCP,
3814 	.opts_init = nvmf_tcp_opts_init,
3815 	.create = nvmf_tcp_create,
3816 	.dump_opts = nvmf_tcp_dump_opts,
3817 	.destroy = nvmf_tcp_destroy,
3818 
3819 	.listen = nvmf_tcp_listen,
3820 	.stop_listen = nvmf_tcp_stop_listen,
3821 
3822 	.listener_discover = nvmf_tcp_discover,
3823 
3824 	.poll_group_create = nvmf_tcp_poll_group_create,
3825 	.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
3826 	.poll_group_destroy = nvmf_tcp_poll_group_destroy,
3827 	.poll_group_add = nvmf_tcp_poll_group_add,
3828 	.poll_group_remove = nvmf_tcp_poll_group_remove,
3829 	.poll_group_poll = nvmf_tcp_poll_group_poll,
3830 
3831 	.req_free = nvmf_tcp_req_free,
3832 	.req_complete = nvmf_tcp_req_complete,
3833 
3834 	.qpair_fini = nvmf_tcp_close_qpair,
3835 	.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
3836 	.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
3837 	.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
3838 	.qpair_abort_request = nvmf_tcp_qpair_abort_request,
3839 	.subsystem_add_host = nvmf_tcp_subsystem_add_host,
3840 	.subsystem_remove_host = nvmf_tcp_subsystem_remove_host,
3841 	.subsystem_dump_host = nvmf_tcp_subsystem_dump_host,
3842 };
3843 
3844 SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
3845 SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)
3846