xref: /spdk/lib/nvmf/tcp.c (revision a07059e2d187157a4b0d7789e0e82ecfe9eb85d9)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2018 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2022, 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/accel.h"
8 #include "spdk/stdinc.h"
9 #include "spdk/crc32.h"
10 #include "spdk/endian.h"
11 #include "spdk/assert.h"
12 #include "spdk/thread.h"
13 #include "spdk/nvmf_transport.h"
14 #include "spdk/string.h"
15 #include "spdk/trace.h"
16 #include "spdk/util.h"
17 #include "spdk/log.h"
18 #include "spdk/keyring.h"
19 
20 #include "spdk_internal/assert.h"
21 #include "spdk_internal/nvme_tcp.h"
22 #include "spdk_internal/sock.h"
23 
24 #include "nvmf_internal.h"
25 
26 #include "spdk_internal/trace_defs.h"
27 
28 #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
29 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
30 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
31 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
32 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
33 
34 #define SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH 2
35 #define SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH 65535
36 #define SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH 2
37 #define SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH 4096
38 
39 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH 128
40 #define SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH 128
41 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
42 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
43 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
44 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
45 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
46 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX
47 #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
48 #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
49 
50 #define TCP_PSK_INVALID_PERMISSIONS 0177
51 
52 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
53 static bool g_tls_log = false;
54 
55 /* spdk nvmf related structure */
56 enum spdk_nvmf_tcp_req_state {
57 
58 	/* The request is not currently in use */
59 	TCP_REQUEST_STATE_FREE = 0,
60 
61 	/* Initial state when request first received */
62 	TCP_REQUEST_STATE_NEW = 1,
63 
64 	/* The request is queued until a data buffer is available. */
65 	TCP_REQUEST_STATE_NEED_BUFFER = 2,
66 
67 	/* The request is waiting for zcopy_start to finish */
68 	TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 3,
69 
70 	/* The request has received a zero-copy buffer */
71 	TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 4,
72 
73 	/* The request is currently transferring data from the host to the controller. */
74 	TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 5,
75 
76 	/* The request is waiting for the R2T send acknowledgement. */
77 	TCP_REQUEST_STATE_AWAITING_R2T_ACK = 6,
78 
79 	/* The request is ready to execute at the block device */
80 	TCP_REQUEST_STATE_READY_TO_EXECUTE = 7,
81 
82 	/* The request is currently executing at the block device */
83 	TCP_REQUEST_STATE_EXECUTING = 8,
84 
85 	/* The request is waiting for zcopy buffers to be committed */
86 	TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 9,
87 
88 	/* The request finished executing at the block device */
89 	TCP_REQUEST_STATE_EXECUTED = 10,
90 
91 	/* The request is ready to send a completion */
92 	TCP_REQUEST_STATE_READY_TO_COMPLETE = 11,
93 
94 	/* The request is currently transferring final pdus from the controller to the host. */
95 	TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 12,
96 
97 	/* The request is waiting for zcopy buffers to be released (without committing) */
98 	TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 13,
99 
100 	/* The request completed and can be marked free. */
101 	TCP_REQUEST_STATE_COMPLETED = 14,
102 
103 	/* Terminator */
104 	TCP_REQUEST_NUM_STATES,
105 };
106 
107 static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
108 	"Invalid PDU Header Field",
109 	"PDU Sequence Error",
110 	"Header Digiest Error",
111 	"Data Transfer Out of Range",
112 	"R2T Limit Exceeded",
113 	"Unsupported parameter",
114 };
115 
116 SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
117 {
118 	spdk_trace_register_owner_type(OWNER_TYPE_NVMF_TCP, 't');
119 	spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
120 	spdk_trace_register_description("TCP_REQ_NEW",
121 					TRACE_TCP_REQUEST_STATE_NEW,
122 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1,
123 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
124 	spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
125 					TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
126 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
127 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
128 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START",
129 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START,
130 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
131 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
132 	spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL",
133 					TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED,
134 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
135 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
136 	spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
137 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
138 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
139 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
140 	spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
141 					TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
142 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
143 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
144 	spdk_trace_register_description("TCP_REQ_EXECUTING",
145 					TRACE_TCP_REQUEST_STATE_EXECUTING,
146 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
147 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
148 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT",
149 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT,
150 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
151 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
152 	spdk_trace_register_description("TCP_REQ_EXECUTED",
153 					TRACE_TCP_REQUEST_STATE_EXECUTED,
154 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
155 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
156 	spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
157 					TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
158 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
159 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
160 	spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
161 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
162 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
163 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
164 	spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS",
165 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE,
166 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
167 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
168 	spdk_trace_register_description("TCP_REQ_COMPLETED",
169 					TRACE_TCP_REQUEST_STATE_COMPLETED,
170 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
171 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
172 	spdk_trace_register_description("TCP_READ_DONE",
173 					TRACE_TCP_READ_FROM_SOCKET_DONE,
174 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
175 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
176 	spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
177 					TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
178 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
179 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
180 
181 	spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE,
182 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
183 					SPDK_TRACE_ARG_TYPE_INT, "");
184 	spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT,
185 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
186 					SPDK_TRACE_ARG_TYPE_INT, "");
187 	spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE,
188 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
189 					SPDK_TRACE_ARG_TYPE_INT, "state");
190 	spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT,
191 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
192 					SPDK_TRACE_ARG_TYPE_INT, "");
193 	spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY,
194 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
195 					SPDK_TRACE_ARG_TYPE_INT, "");
196 	spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ,
197 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
198 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
199 	spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE,
200 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
201 					SPDK_TRACE_ARG_TYPE_INT, "state");
202 
203 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1);
204 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0);
205 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_QUEUE, OBJECT_NVMF_TCP_IO, 0);
206 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_PEND, OBJECT_NVMF_TCP_IO, 0);
207 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_COMPLETE, OBJECT_NVMF_TCP_IO, 0);
208 }
209 
210 struct spdk_nvmf_tcp_req  {
211 	struct spdk_nvmf_request		req;
212 	struct spdk_nvme_cpl			rsp;
213 	struct spdk_nvme_cmd			cmd;
214 
215 	/* A PDU that can be used for sending responses. This is
216 	 * not the incoming PDU! */
217 	struct nvme_tcp_pdu			*pdu;
218 
219 	/* In-capsule data buffer */
220 	uint8_t					*buf;
221 
222 	struct spdk_nvmf_tcp_req		*fused_pair;
223 
224 	/*
225 	 * The PDU for a request may be used multiple times in serial over
226 	 * the request's lifetime. For example, first to send an R2T, then
227 	 * to send a completion. To catch mistakes where the PDU is used
228 	 * twice at the same time, add a debug flag here for init/fini.
229 	 */
230 	bool					pdu_in_use;
231 	bool					has_in_capsule_data;
232 	bool					fused_failed;
233 
234 	/* transfer_tag */
235 	uint16_t				ttag;
236 
237 	enum spdk_nvmf_tcp_req_state		state;
238 
239 	/*
240 	 * h2c_offset is used when we receive the h2c_data PDU.
241 	 */
242 	uint32_t				h2c_offset;
243 
244 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		link;
245 	TAILQ_ENTRY(spdk_nvmf_tcp_req)		state_link;
246 };
247 
248 struct spdk_nvmf_tcp_qpair {
249 	struct spdk_nvmf_qpair			qpair;
250 	struct spdk_nvmf_tcp_poll_group		*group;
251 	struct spdk_sock			*sock;
252 
253 	enum nvme_tcp_pdu_recv_state		recv_state;
254 	enum nvme_tcp_qpair_state		state;
255 
256 	/* PDU being actively received */
257 	struct nvme_tcp_pdu			*pdu_in_progress;
258 
259 	struct spdk_nvmf_tcp_req		*fused_first;
260 
261 	/* Queues to track the requests in all states */
262 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_working_queue;
263 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_free_queue;
264 	SLIST_HEAD(, nvme_tcp_pdu)		tcp_pdu_free_queue;
265 	/* Number of working pdus */
266 	uint32_t				tcp_pdu_working_count;
267 
268 	/* Number of requests in each state */
269 	uint32_t				state_cntr[TCP_REQUEST_NUM_STATES];
270 
271 	uint8_t					cpda;
272 
273 	bool					host_hdgst_enable;
274 	bool					host_ddgst_enable;
275 
276 	/* This is a spare PDU used for sending special management
277 	 * operations. Primarily, this is used for the initial
278 	 * connection response and c2h termination request. */
279 	struct nvme_tcp_pdu			*mgmt_pdu;
280 
281 	/* Arrays of in-capsule buffers, requests, and pdus.
282 	 * Each array is 'resource_count' number of elements */
283 	void					*bufs;
284 	struct spdk_nvmf_tcp_req		*reqs;
285 	struct nvme_tcp_pdu			*pdus;
286 	uint32_t				resource_count;
287 	uint32_t				recv_buf_size;
288 
289 	struct spdk_nvmf_tcp_port		*port;
290 
291 	/* IP address */
292 	char					initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
293 	char					target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
294 
295 	/* IP port */
296 	uint16_t				initiator_port;
297 	uint16_t				target_port;
298 
299 	/* Wait until the host terminates the connection (e.g. after sending C2HTermReq) */
300 	bool					wait_terminate;
301 
302 	/* Timer used to destroy qpair after detecting transport error issue if initiator does
303 	 *  not close the connection.
304 	 */
305 	struct spdk_poller			*timeout_poller;
306 
307 	spdk_nvmf_transport_qpair_fini_cb	fini_cb_fn;
308 	void					*fini_cb_arg;
309 
310 	TAILQ_ENTRY(spdk_nvmf_tcp_qpair)	link;
311 };
312 
313 struct spdk_nvmf_tcp_control_msg {
314 	STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
315 };
316 
317 struct spdk_nvmf_tcp_control_msg_list {
318 	void *msg_buf;
319 	STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
320 };
321 
322 struct spdk_nvmf_tcp_poll_group {
323 	struct spdk_nvmf_transport_poll_group	group;
324 	struct spdk_sock_group			*sock_group;
325 
326 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	qpairs;
327 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	await_req;
328 
329 	struct spdk_io_channel			*accel_channel;
330 	struct spdk_nvmf_tcp_control_msg_list	*control_msg_list;
331 
332 	TAILQ_ENTRY(spdk_nvmf_tcp_poll_group)	link;
333 };
334 
335 struct spdk_nvmf_tcp_port {
336 	const struct spdk_nvme_transport_id	*trid;
337 	struct spdk_sock			*listen_sock;
338 	TAILQ_ENTRY(spdk_nvmf_tcp_port)		link;
339 };
340 
341 struct tcp_transport_opts {
342 	bool		c2h_success;
343 	uint16_t	control_msg_num;
344 	uint32_t	sock_priority;
345 };
346 
347 struct tcp_psk_entry {
348 	char				hostnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
349 	char				subnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
350 	char				pskid[NVMF_PSK_IDENTITY_LEN];
351 	uint8_t				psk[SPDK_TLS_PSK_MAX_LEN];
352 	struct spdk_key			*key;
353 
354 	/* Original path saved to emit SPDK configuration via "save_config". */
355 	char				psk_path[PATH_MAX];
356 	uint32_t			psk_size;
357 	enum nvme_tcp_cipher_suite	tls_cipher_suite;
358 	TAILQ_ENTRY(tcp_psk_entry)	link;
359 };
360 
361 struct spdk_nvmf_tcp_transport {
362 	struct spdk_nvmf_transport		transport;
363 	struct tcp_transport_opts               tcp_opts;
364 	uint32_t				ack_timeout;
365 
366 	struct spdk_nvmf_tcp_poll_group		*next_pg;
367 
368 	struct spdk_poller			*accept_poller;
369 
370 	TAILQ_HEAD(, spdk_nvmf_tcp_port)	ports;
371 	TAILQ_HEAD(, spdk_nvmf_tcp_poll_group)	poll_groups;
372 
373 	TAILQ_HEAD(, tcp_psk_entry)		psks;
374 };
375 
376 static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
377 	{
378 		"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
379 		spdk_json_decode_bool, true
380 	},
381 	{
382 		"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
383 		spdk_json_decode_uint16, true
384 	},
385 	{
386 		"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
387 		spdk_json_decode_uint32, true
388 	},
389 };
390 
391 static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
392 				 struct spdk_nvmf_tcp_req *tcp_req);
393 static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
394 
395 static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
396 				    struct spdk_nvmf_tcp_req *tcp_req);
397 
398 static inline void
399 nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
400 		       enum spdk_nvmf_tcp_req_state state)
401 {
402 	struct spdk_nvmf_qpair *qpair;
403 	struct spdk_nvmf_tcp_qpair *tqpair;
404 
405 	qpair = tcp_req->req.qpair;
406 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
407 
408 	assert(tqpair->state_cntr[tcp_req->state] > 0);
409 	tqpair->state_cntr[tcp_req->state]--;
410 	tqpair->state_cntr[state]++;
411 
412 	tcp_req->state = state;
413 }
414 
415 static inline struct nvme_tcp_pdu *
416 nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
417 {
418 	assert(tcp_req->pdu_in_use == false);
419 
420 	memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
421 	tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
422 
423 	return tcp_req->pdu;
424 }
425 
426 static struct spdk_nvmf_tcp_req *
427 nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
428 {
429 	struct spdk_nvmf_tcp_req *tcp_req;
430 
431 	tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
432 	if (spdk_unlikely(!tcp_req)) {
433 		return NULL;
434 	}
435 
436 	memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
437 	tcp_req->h2c_offset = 0;
438 	tcp_req->has_in_capsule_data = false;
439 	tcp_req->req.dif_enabled = false;
440 	tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE;
441 
442 	TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
443 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
444 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
445 	return tcp_req;
446 }
447 
448 static inline void
449 nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
450 {
451 	assert(!tcp_req->pdu_in_use);
452 
453 	TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
454 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
455 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
456 }
457 
458 static void
459 nvmf_tcp_request_free(void *cb_arg)
460 {
461 	struct spdk_nvmf_tcp_transport *ttransport;
462 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
463 
464 	assert(tcp_req != NULL);
465 
466 	SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
467 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
468 				      struct spdk_nvmf_tcp_transport, transport);
469 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
470 	nvmf_tcp_req_process(ttransport, tcp_req);
471 }
472 
473 static int
474 nvmf_tcp_req_free(struct spdk_nvmf_request *req)
475 {
476 	struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
477 
478 	nvmf_tcp_request_free(tcp_req);
479 
480 	return 0;
481 }
482 
483 static void
484 nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
485 			   enum spdk_nvmf_tcp_req_state state)
486 {
487 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
488 
489 	assert(state != TCP_REQUEST_STATE_FREE);
490 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
491 		if (state == tcp_req->state) {
492 			nvmf_tcp_request_free(tcp_req);
493 		}
494 	}
495 }
496 
497 static void
498 nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
499 {
500 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
501 
502 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
503 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
504 
505 	/* Wipe the requests waiting for buffer from the global list */
506 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
507 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
508 			STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue, &tcp_req->req,
509 				      spdk_nvmf_request, buf_link);
510 		}
511 	}
512 
513 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
514 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
515 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
516 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
517 }
518 
519 static void
520 nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
521 {
522 	int i;
523 	struct spdk_nvmf_tcp_req *tcp_req;
524 
525 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
526 	for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
527 		SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
528 		TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
529 			if ((int)tcp_req->state == i) {
530 				SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
531 				SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
532 			}
533 		}
534 	}
535 }
536 
537 static void
538 _nvmf_tcp_qpair_destroy(void *_tqpair)
539 {
540 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
541 	spdk_nvmf_transport_qpair_fini_cb cb_fn = tqpair->fini_cb_fn;
542 	void *cb_arg = tqpair->fini_cb_arg;
543 	int err = 0;
544 
545 	spdk_trace_record(TRACE_TCP_QP_DESTROY, 0, 0, (uintptr_t)tqpair);
546 
547 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
548 
549 	err = spdk_sock_close(&tqpair->sock);
550 	assert(err == 0);
551 	nvmf_tcp_cleanup_all_states(tqpair);
552 
553 	if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
554 		SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
555 			    tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
556 			    tqpair->resource_count);
557 		err++;
558 	}
559 
560 	if (err > 0) {
561 		nvmf_tcp_dump_qpair_req_contents(tqpair);
562 	}
563 
564 	/* The timeout poller might still be registered here if we close the qpair before host
565 	 * terminates the connection.
566 	 */
567 	spdk_poller_unregister(&tqpair->timeout_poller);
568 	spdk_dma_free(tqpair->pdus);
569 	free(tqpair->reqs);
570 	spdk_free(tqpair->bufs);
571 	free(tqpair);
572 
573 	if (cb_fn != NULL) {
574 		cb_fn(cb_arg);
575 	}
576 
577 	SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
578 }
579 
580 static void
581 nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
582 {
583 	/* Delay the destruction to make sure it isn't performed from the context of a sock
584 	 * callback.  Otherwise, spdk_sock_close() might not abort pending requests, causing their
585 	 * completions to be executed after the qpair is freed.  (Note: this fixed issue #2471.)
586 	 */
587 	spdk_thread_send_msg(spdk_get_thread(), _nvmf_tcp_qpair_destroy, tqpair);
588 }
589 
590 static void
591 nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
592 {
593 	struct spdk_nvmf_tcp_transport	*ttransport;
594 	assert(w != NULL);
595 
596 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
597 	spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
598 	spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
599 }
600 
601 static void
602 nvmf_tcp_free_psk_entry(struct tcp_psk_entry *entry)
603 {
604 	if (entry == NULL) {
605 		return;
606 	}
607 
608 	spdk_memset_s(entry->psk, sizeof(entry->psk), 0, sizeof(entry->psk));
609 	spdk_keyring_put_key(entry->key);
610 	free(entry);
611 }
612 
613 static int
614 nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
615 		 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
616 {
617 	struct spdk_nvmf_tcp_transport	*ttransport;
618 	struct tcp_psk_entry *entry, *tmp;
619 
620 	assert(transport != NULL);
621 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
622 
623 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
624 		TAILQ_REMOVE(&ttransport->psks, entry, link);
625 		nvmf_tcp_free_psk_entry(entry);
626 	}
627 
628 	spdk_poller_unregister(&ttransport->accept_poller);
629 	free(ttransport);
630 
631 	if (cb_fn) {
632 		cb_fn(cb_arg);
633 	}
634 	return 0;
635 }
636 
637 static int nvmf_tcp_accept(void *ctx);
638 
639 static struct spdk_nvmf_transport *
640 nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
641 {
642 	struct spdk_nvmf_tcp_transport *ttransport;
643 	uint32_t sge_count;
644 	uint32_t min_shared_buffers;
645 
646 	ttransport = calloc(1, sizeof(*ttransport));
647 	if (!ttransport) {
648 		return NULL;
649 	}
650 
651 	TAILQ_INIT(&ttransport->ports);
652 	TAILQ_INIT(&ttransport->poll_groups);
653 	TAILQ_INIT(&ttransport->psks);
654 
655 	ttransport->transport.ops = &spdk_nvmf_transport_tcp;
656 
657 	ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
658 	ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
659 	ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
660 	if (opts->transport_specific != NULL &&
661 	    spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
662 					    SPDK_COUNTOF(tcp_transport_opts_decoder),
663 					    &ttransport->tcp_opts)) {
664 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
665 		free(ttransport);
666 		return NULL;
667 	}
668 
669 	SPDK_NOTICELOG("*** TCP Transport Init ***\n");
670 
671 	SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
672 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
673 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
674 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
675 		     "  num_shared_buffers=%d, c2h_success=%d,\n"
676 		     "  dif_insert_or_strip=%d, sock_priority=%d\n"
677 		     "  abort_timeout_sec=%d, control_msg_num=%hu\n"
678 		     "  ack_timeout=%d\n",
679 		     opts->max_queue_depth,
680 		     opts->max_io_size,
681 		     opts->max_qpairs_per_ctrlr - 1,
682 		     opts->io_unit_size,
683 		     opts->in_capsule_data_size,
684 		     opts->max_aq_depth,
685 		     opts->num_shared_buffers,
686 		     ttransport->tcp_opts.c2h_success,
687 		     opts->dif_insert_or_strip,
688 		     ttransport->tcp_opts.sock_priority,
689 		     opts->abort_timeout_sec,
690 		     ttransport->tcp_opts.control_msg_num,
691 		     opts->ack_timeout);
692 
693 	if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
694 		SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
695 			    "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
696 			    ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
697 		free(ttransport);
698 		return NULL;
699 	}
700 
701 	if (ttransport->tcp_opts.control_msg_num == 0 &&
702 	    opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
703 		SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
704 			     SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
705 		ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
706 	}
707 
708 	/* I/O unit size cannot be larger than max I/O size */
709 	if (opts->io_unit_size > opts->max_io_size) {
710 		SPDK_WARNLOG("TCP param io_unit_size %u can't be larger than max_io_size %u. Using max_io_size as io_unit_size\n",
711 			     opts->io_unit_size, opts->max_io_size);
712 		opts->io_unit_size = opts->max_io_size;
713 	}
714 
715 	/* In capsule data size cannot be larger than max I/O size */
716 	if (opts->in_capsule_data_size > opts->max_io_size) {
717 		SPDK_WARNLOG("TCP param ICD size %u can't be larger than max_io_size %u. Using max_io_size as ICD size\n",
718 			     opts->io_unit_size, opts->max_io_size);
719 		opts->in_capsule_data_size = opts->max_io_size;
720 	}
721 
722 	/* max IO queue depth cannot be smaller than 2 or larger than 65535.
723 	 * We will not check SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, because max_queue_depth is 16bits and always not larger than 64k. */
724 	if (opts->max_queue_depth < SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH) {
725 		SPDK_WARNLOG("TCP param max_queue_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
726 			     opts->max_queue_depth, SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH,
727 			     SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH);
728 		opts->max_queue_depth = SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
729 	}
730 
731 	/* max admin queue depth cannot be smaller than 2 or larger than 4096 */
732 	if (opts->max_aq_depth < SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH ||
733 	    opts->max_aq_depth > SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH) {
734 		SPDK_WARNLOG("TCP param max_aq_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
735 			     opts->max_aq_depth, SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH,
736 			     SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH);
737 		opts->max_aq_depth = SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
738 	}
739 
740 	sge_count = opts->max_io_size / opts->io_unit_size;
741 	if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
742 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
743 		free(ttransport);
744 		return NULL;
745 	}
746 
747 	/* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */
748 	if (opts->buf_cache_size < UINT32_MAX) {
749 		min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
750 		if (min_shared_buffers > opts->num_shared_buffers) {
751 			SPDK_ERRLOG("There are not enough buffers to satisfy "
752 				    "per-poll group caches for each thread. (%" PRIu32 ") "
753 				    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
754 			SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
755 			free(ttransport);
756 			return NULL;
757 		}
758 	}
759 
760 	ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport,
761 				    opts->acceptor_poll_rate);
762 	if (!ttransport->accept_poller) {
763 		free(ttransport);
764 		return NULL;
765 	}
766 
767 	return &ttransport->transport;
768 }
769 
770 static int
771 nvmf_tcp_trsvcid_to_int(const char *trsvcid)
772 {
773 	unsigned long long ull;
774 	char *end = NULL;
775 
776 	ull = strtoull(trsvcid, &end, 10);
777 	if (end == NULL || end == trsvcid || *end != '\0') {
778 		return -1;
779 	}
780 
781 	/* Valid TCP/IP port numbers are in [1, 65535] */
782 	if (ull == 0 || ull > 65535) {
783 		return -1;
784 	}
785 
786 	return (int)ull;
787 }
788 
789 /**
790  * Canonicalize a listen address trid.
791  */
792 static int
793 nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
794 			   const struct spdk_nvme_transport_id *trid)
795 {
796 	int trsvcid_int;
797 
798 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
799 	if (trsvcid_int < 0) {
800 		return -EINVAL;
801 	}
802 
803 	memset(canon_trid, 0, sizeof(*canon_trid));
804 	spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
805 	canon_trid->adrfam = trid->adrfam;
806 	snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
807 	snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
808 
809 	return 0;
810 }
811 
812 /**
813  * Find an existing listening port.
814  */
815 static struct spdk_nvmf_tcp_port *
816 nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
817 		   const struct spdk_nvme_transport_id *trid)
818 {
819 	struct spdk_nvme_transport_id canon_trid;
820 	struct spdk_nvmf_tcp_port *port;
821 
822 	if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
823 		return NULL;
824 	}
825 
826 	TAILQ_FOREACH(port, &ttransport->ports, link) {
827 		if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
828 			return port;
829 		}
830 	}
831 
832 	return NULL;
833 }
834 
835 static int
836 tcp_sock_get_key(uint8_t *out, int out_len, const char **cipher, const char *pskid,
837 		 void *get_key_ctx)
838 {
839 	struct tcp_psk_entry *entry;
840 	struct spdk_nvmf_tcp_transport *ttransport = get_key_ctx;
841 	size_t psk_len;
842 	int rc;
843 
844 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
845 		if (strcmp(pskid, entry->pskid) != 0) {
846 			continue;
847 		}
848 
849 		psk_len = entry->psk_size;
850 		if ((size_t)out_len < psk_len) {
851 			SPDK_ERRLOG("Out buffer of size: %" PRIu32 " cannot fit PSK of len: %lu\n",
852 				    out_len, psk_len);
853 			return -ENOBUFS;
854 		}
855 
856 		/* Convert PSK to the TLS PSK format. */
857 		rc = nvme_tcp_derive_tls_psk(entry->psk, psk_len, pskid, out, out_len,
858 					     entry->tls_cipher_suite);
859 		if (rc < 0) {
860 			SPDK_ERRLOG("Could not generate TLS PSK\n");
861 		}
862 
863 		switch (entry->tls_cipher_suite) {
864 		case NVME_TCP_CIPHER_AES_128_GCM_SHA256:
865 			*cipher = "TLS_AES_128_GCM_SHA256";
866 			break;
867 		case NVME_TCP_CIPHER_AES_256_GCM_SHA384:
868 			*cipher = "TLS_AES_256_GCM_SHA384";
869 			break;
870 		default:
871 			*cipher = NULL;
872 			return -ENOTSUP;
873 		}
874 
875 		return rc;
876 	}
877 
878 	SPDK_ERRLOG("Could not find PSK for identity: %s\n", pskid);
879 
880 	return -EINVAL;
881 }
882 
883 static int
884 nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
885 		struct spdk_nvmf_listen_opts *listen_opts)
886 {
887 	struct spdk_nvmf_tcp_transport *ttransport;
888 	struct spdk_nvmf_tcp_port *port;
889 	int trsvcid_int;
890 	uint8_t adrfam;
891 	const char *sock_impl_name;
892 	struct spdk_sock_impl_opts impl_opts;
893 	size_t impl_opts_size = sizeof(impl_opts);
894 	struct spdk_sock_opts opts;
895 
896 	if (!strlen(trid->trsvcid)) {
897 		SPDK_ERRLOG("Service id is required\n");
898 		return -EINVAL;
899 	}
900 
901 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
902 
903 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
904 	if (trsvcid_int < 0) {
905 		SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
906 		return -EINVAL;
907 	}
908 
909 	port = calloc(1, sizeof(*port));
910 	if (!port) {
911 		SPDK_ERRLOG("Port allocation failed\n");
912 		return -ENOMEM;
913 	}
914 
915 	port->trid = trid;
916 
917 	sock_impl_name = NULL;
918 
919 	opts.opts_size = sizeof(opts);
920 	spdk_sock_get_default_opts(&opts);
921 	opts.priority = ttransport->tcp_opts.sock_priority;
922 	opts.ack_timeout = transport->opts.ack_timeout;
923 	if (listen_opts->secure_channel) {
924 		if (!g_tls_log) {
925 			SPDK_NOTICELOG("TLS support is considered experimental\n");
926 			g_tls_log = true;
927 		}
928 		sock_impl_name = "ssl";
929 		spdk_sock_impl_get_opts(sock_impl_name, &impl_opts, &impl_opts_size);
930 		impl_opts.tls_version = SPDK_TLS_VERSION_1_3;
931 		impl_opts.get_key = tcp_sock_get_key;
932 		impl_opts.get_key_ctx = ttransport;
933 		impl_opts.tls_cipher_suites = "TLS_AES_256_GCM_SHA384:TLS_AES_128_GCM_SHA256";
934 		opts.impl_opts = &impl_opts;
935 		opts.impl_opts_size = sizeof(impl_opts);
936 	}
937 
938 	port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
939 			    sock_impl_name, &opts);
940 	if (port->listen_sock == NULL) {
941 		SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
942 			    trid->traddr, trsvcid_int,
943 			    spdk_strerror(errno), errno);
944 		free(port);
945 		return -errno;
946 	}
947 
948 	if (spdk_sock_is_ipv4(port->listen_sock)) {
949 		adrfam = SPDK_NVMF_ADRFAM_IPV4;
950 	} else if (spdk_sock_is_ipv6(port->listen_sock)) {
951 		adrfam = SPDK_NVMF_ADRFAM_IPV6;
952 	} else {
953 		SPDK_ERRLOG("Unhandled socket type\n");
954 		adrfam = 0;
955 	}
956 
957 	if (adrfam != trid->adrfam) {
958 		SPDK_ERRLOG("Socket address family mismatch\n");
959 		spdk_sock_close(&port->listen_sock);
960 		free(port);
961 		return -EINVAL;
962 	}
963 
964 	SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
965 		       trid->traddr, trid->trsvcid);
966 
967 	TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
968 	return 0;
969 }
970 
971 static void
972 nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
973 		     const struct spdk_nvme_transport_id *trid)
974 {
975 	struct spdk_nvmf_tcp_transport *ttransport;
976 	struct spdk_nvmf_tcp_port *port;
977 
978 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
979 
980 	SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
981 		      trid->traddr, trid->trsvcid);
982 
983 	port = nvmf_tcp_find_port(ttransport, trid);
984 	if (port) {
985 		TAILQ_REMOVE(&ttransport->ports, port, link);
986 		spdk_sock_close(&port->listen_sock);
987 		free(port);
988 	}
989 }
990 
991 static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
992 		enum nvme_tcp_pdu_recv_state state);
993 
994 static void
995 nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvme_tcp_qpair_state state)
996 {
997 	tqpair->state = state;
998 	spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
999 			  tqpair->state);
1000 }
1001 
1002 static void
1003 nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
1004 {
1005 	SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
1006 
1007 	spdk_trace_record(TRACE_TCP_QP_DISCONNECT, 0, 0, (uintptr_t)tqpair);
1008 
1009 	if (tqpair->state <= NVME_TCP_QPAIR_STATE_RUNNING) {
1010 		nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITING);
1011 		assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1012 		spdk_poller_unregister(&tqpair->timeout_poller);
1013 
1014 		/* This will end up calling nvmf_tcp_close_qpair */
1015 		spdk_nvmf_qpair_disconnect(&tqpair->qpair, NULL, NULL);
1016 	}
1017 }
1018 
1019 static void
1020 _mgmt_pdu_write_done(void *_tqpair, int err)
1021 {
1022 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
1023 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1024 
1025 	if (spdk_unlikely(err != 0)) {
1026 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1027 		return;
1028 	}
1029 
1030 	assert(pdu->cb_fn != NULL);
1031 	pdu->cb_fn(pdu->cb_arg);
1032 }
1033 
1034 static void
1035 _req_pdu_write_done(void *req, int err)
1036 {
1037 	struct spdk_nvmf_tcp_req *tcp_req = req;
1038 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1039 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1040 
1041 	assert(tcp_req->pdu_in_use);
1042 	tcp_req->pdu_in_use = false;
1043 
1044 	/* If the request is in a completed state, we're waiting for write completion to free it */
1045 	if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) {
1046 		nvmf_tcp_request_free(tcp_req);
1047 		return;
1048 	}
1049 
1050 	if (spdk_unlikely(err != 0)) {
1051 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1052 		return;
1053 	}
1054 
1055 	assert(pdu->cb_fn != NULL);
1056 	pdu->cb_fn(pdu->cb_arg);
1057 }
1058 
1059 static void
1060 _pdu_write_done(struct nvme_tcp_pdu *pdu, int err)
1061 {
1062 	pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err);
1063 }
1064 
1065 static void
1066 _tcp_write_pdu(struct nvme_tcp_pdu *pdu)
1067 {
1068 	int rc;
1069 	uint32_t mapped_length;
1070 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1071 
1072 	pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
1073 			       tqpair->host_hdgst_enable, tqpair->host_ddgst_enable, &mapped_length);
1074 	spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
1075 
1076 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
1077 	    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
1078 		/* Try to force the send immediately. */
1079 		rc = spdk_sock_flush(tqpair->sock);
1080 		if (rc > 0 && (uint32_t)rc == mapped_length) {
1081 			_pdu_write_done(pdu, 0);
1082 		} else {
1083 			SPDK_ERRLOG("Could not write %s to socket: rc=%d, errno=%d\n",
1084 				    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ?
1085 				    "IC_RESP" : "TERM_REQ", rc, errno);
1086 			_pdu_write_done(pdu, rc >= 0 ? -EAGAIN : -errno);
1087 		}
1088 	}
1089 }
1090 
1091 static void
1092 data_crc32_accel_done(void *cb_arg, int status)
1093 {
1094 	struct nvme_tcp_pdu *pdu = cb_arg;
1095 
1096 	if (spdk_unlikely(status)) {
1097 		SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
1098 		_pdu_write_done(pdu, status);
1099 		return;
1100 	}
1101 
1102 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
1103 	MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
1104 
1105 	_tcp_write_pdu(pdu);
1106 }
1107 
1108 static void
1109 pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
1110 {
1111 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1112 	int rc = 0;
1113 
1114 	/* Data Digest */
1115 	if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
1116 		/* Only support this limitated case for the first step */
1117 		if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
1118 				&& tqpair->group)) {
1119 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
1120 						       pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
1121 			if (spdk_likely(rc == 0)) {
1122 				return;
1123 			}
1124 		} else {
1125 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1126 		}
1127 		data_crc32_accel_done(pdu, rc);
1128 	} else {
1129 		_tcp_write_pdu(pdu);
1130 	}
1131 }
1132 
1133 static void
1134 nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1135 			 struct nvme_tcp_pdu *pdu,
1136 			 nvme_tcp_qpair_xfer_complete_cb cb_fn,
1137 			 void *cb_arg)
1138 {
1139 	int hlen;
1140 	uint32_t crc32c;
1141 
1142 	assert(tqpair->pdu_in_progress != pdu);
1143 
1144 	hlen = pdu->hdr.common.hlen;
1145 	pdu->cb_fn = cb_fn;
1146 	pdu->cb_arg = cb_arg;
1147 
1148 	pdu->iov[0].iov_base = &pdu->hdr.raw;
1149 	pdu->iov[0].iov_len = hlen;
1150 
1151 	/* Header Digest */
1152 	if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) {
1153 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1154 		MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
1155 	}
1156 
1157 	/* Data Digest */
1158 	pdu_data_crc32_compute(pdu);
1159 }
1160 
1161 static void
1162 nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1163 			      nvme_tcp_qpair_xfer_complete_cb cb_fn,
1164 			      void *cb_arg)
1165 {
1166 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1167 
1168 	pdu->sock_req.cb_fn = _mgmt_pdu_write_done;
1169 	pdu->sock_req.cb_arg = tqpair;
1170 
1171 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1172 }
1173 
1174 static void
1175 nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1176 			     struct spdk_nvmf_tcp_req *tcp_req,
1177 			     nvme_tcp_qpair_xfer_complete_cb cb_fn,
1178 			     void *cb_arg)
1179 {
1180 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1181 
1182 	pdu->sock_req.cb_fn = _req_pdu_write_done;
1183 	pdu->sock_req.cb_arg = tcp_req;
1184 
1185 	assert(!tcp_req->pdu_in_use);
1186 	tcp_req->pdu_in_use = true;
1187 
1188 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1189 }
1190 
1191 static int
1192 nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
1193 {
1194 	uint32_t i;
1195 	struct spdk_nvmf_transport_opts *opts;
1196 	uint32_t in_capsule_data_size;
1197 
1198 	opts = &tqpair->qpair.transport->opts;
1199 
1200 	in_capsule_data_size = opts->in_capsule_data_size;
1201 	if (opts->dif_insert_or_strip) {
1202 		in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
1203 	}
1204 
1205 	tqpair->resource_count = opts->max_queue_depth;
1206 
1207 	tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
1208 	if (!tqpair->reqs) {
1209 		SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
1210 		return -1;
1211 	}
1212 
1213 	if (in_capsule_data_size) {
1214 		tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
1215 					    NULL, SPDK_ENV_LCORE_ID_ANY,
1216 					    SPDK_MALLOC_DMA);
1217 		if (!tqpair->bufs) {
1218 			SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
1219 			return -1;
1220 		}
1221 	}
1222 	/* prepare memory space for receiving pdus and tcp_req */
1223 	/* Add additional 1 member, which will be used for mgmt_pdu owned by the tqpair */
1224 	tqpair->pdus = spdk_dma_zmalloc((2 * tqpair->resource_count + 1) * sizeof(*tqpair->pdus), 0x1000,
1225 					NULL);
1226 	if (!tqpair->pdus) {
1227 		SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
1228 		return -1;
1229 	}
1230 
1231 	for (i = 0; i < tqpair->resource_count; i++) {
1232 		struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
1233 
1234 		tcp_req->ttag = i + 1;
1235 		tcp_req->req.qpair = &tqpair->qpair;
1236 
1237 		tcp_req->pdu = &tqpair->pdus[i];
1238 		tcp_req->pdu->qpair = tqpair;
1239 
1240 		/* Set up memory to receive commands */
1241 		if (tqpair->bufs) {
1242 			tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
1243 		}
1244 
1245 		/* Set the cmdn and rsp */
1246 		tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
1247 		tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
1248 
1249 		tcp_req->req.stripped_data = NULL;
1250 
1251 		/* Initialize request state to FREE */
1252 		tcp_req->state = TCP_REQUEST_STATE_FREE;
1253 		TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
1254 		tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
1255 	}
1256 
1257 	for (; i < 2 * tqpair->resource_count; i++) {
1258 		struct nvme_tcp_pdu *pdu = &tqpair->pdus[i];
1259 
1260 		pdu->qpair = tqpair;
1261 		SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1262 	}
1263 
1264 	tqpair->mgmt_pdu = &tqpair->pdus[i];
1265 	tqpair->mgmt_pdu->qpair = tqpair;
1266 	tqpair->pdu_in_progress = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
1267 	SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
1268 	tqpair->tcp_pdu_working_count = 1;
1269 
1270 	tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
1271 				 SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1272 
1273 	return 0;
1274 }
1275 
1276 static int
1277 nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
1278 {
1279 	struct spdk_nvmf_tcp_qpair *tqpair;
1280 
1281 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1282 
1283 	SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
1284 
1285 	spdk_trace_record(TRACE_TCP_QP_CREATE, 0, 0, (uintptr_t)tqpair);
1286 
1287 	/* Initialise request state queues of the qpair */
1288 	TAILQ_INIT(&tqpair->tcp_req_free_queue);
1289 	TAILQ_INIT(&tqpair->tcp_req_working_queue);
1290 	SLIST_INIT(&tqpair->tcp_pdu_free_queue);
1291 
1292 	tqpair->host_hdgst_enable = true;
1293 	tqpair->host_ddgst_enable = true;
1294 
1295 	return 0;
1296 }
1297 
1298 static int
1299 nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
1300 {
1301 	int rc;
1302 
1303 	spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, 0, 0, (uintptr_t)tqpair);
1304 
1305 	/* set low water mark */
1306 	rc = spdk_sock_set_recvlowat(tqpair->sock, 1);
1307 	if (rc != 0) {
1308 		SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
1309 		return rc;
1310 	}
1311 
1312 	return 0;
1313 }
1314 
1315 static void
1316 nvmf_tcp_handle_connect(struct spdk_nvmf_transport *transport,
1317 			struct spdk_nvmf_tcp_port *port,
1318 			struct spdk_sock *sock)
1319 {
1320 	struct spdk_nvmf_tcp_qpair *tqpair;
1321 	int rc;
1322 
1323 	SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
1324 		      port->trid->traddr, port->trid->trsvcid);
1325 
1326 	tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
1327 	if (tqpair == NULL) {
1328 		SPDK_ERRLOG("Could not allocate new connection.\n");
1329 		spdk_sock_close(&sock);
1330 		return;
1331 	}
1332 
1333 	tqpair->sock = sock;
1334 	tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
1335 	tqpair->port = port;
1336 	tqpair->qpair.transport = transport;
1337 
1338 	rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
1339 			       sizeof(tqpair->target_addr), &tqpair->target_port,
1340 			       tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
1341 			       &tqpair->initiator_port);
1342 	if (rc < 0) {
1343 		SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
1344 		nvmf_tcp_qpair_destroy(tqpair);
1345 		return;
1346 	}
1347 
1348 	spdk_nvmf_tgt_new_qpair(transport->tgt, &tqpair->qpair);
1349 }
1350 
1351 static uint32_t
1352 nvmf_tcp_port_accept(struct spdk_nvmf_transport *transport, struct spdk_nvmf_tcp_port *port)
1353 {
1354 	struct spdk_sock *sock;
1355 	uint32_t count = 0;
1356 	int i;
1357 
1358 	for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
1359 		sock = spdk_sock_accept(port->listen_sock);
1360 		if (sock == NULL) {
1361 			break;
1362 		}
1363 		count++;
1364 		nvmf_tcp_handle_connect(transport, port, sock);
1365 	}
1366 
1367 	return count;
1368 }
1369 
1370 static int
1371 nvmf_tcp_accept(void *ctx)
1372 {
1373 	struct spdk_nvmf_transport *transport = ctx;
1374 	struct spdk_nvmf_tcp_transport *ttransport;
1375 	struct spdk_nvmf_tcp_port *port;
1376 	uint32_t count = 0;
1377 
1378 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1379 
1380 	TAILQ_FOREACH(port, &ttransport->ports, link) {
1381 		count += nvmf_tcp_port_accept(transport, port);
1382 	}
1383 
1384 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1385 }
1386 
1387 static void
1388 nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
1389 		  struct spdk_nvme_transport_id *trid,
1390 		  struct spdk_nvmf_discovery_log_page_entry *entry)
1391 {
1392 	struct spdk_nvmf_tcp_port *port;
1393 	struct spdk_nvmf_tcp_transport *ttransport;
1394 
1395 	entry->trtype = SPDK_NVMF_TRTYPE_TCP;
1396 	entry->adrfam = trid->adrfam;
1397 
1398 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
1399 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
1400 
1401 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1402 	port = nvmf_tcp_find_port(ttransport, trid);
1403 
1404 	assert(port != NULL);
1405 
1406 	if (strcmp(spdk_sock_get_impl_name(port->listen_sock), "ssl") == 0) {
1407 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_REQUIRED;
1408 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_TLS_1_3;
1409 	} else {
1410 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
1411 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
1412 	}
1413 }
1414 
1415 static struct spdk_nvmf_tcp_control_msg_list *
1416 nvmf_tcp_control_msg_list_create(uint16_t num_messages)
1417 {
1418 	struct spdk_nvmf_tcp_control_msg_list *list;
1419 	struct spdk_nvmf_tcp_control_msg *msg;
1420 	uint16_t i;
1421 
1422 	list = calloc(1, sizeof(*list));
1423 	if (!list) {
1424 		SPDK_ERRLOG("Failed to allocate memory for list structure\n");
1425 		return NULL;
1426 	}
1427 
1428 	list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
1429 				     NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
1430 	if (!list->msg_buf) {
1431 		SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
1432 		free(list);
1433 		return NULL;
1434 	}
1435 
1436 	STAILQ_INIT(&list->free_msgs);
1437 
1438 	for (i = 0; i < num_messages; i++) {
1439 		msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
1440 				SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1441 		STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
1442 	}
1443 
1444 	return list;
1445 }
1446 
1447 static void
1448 nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
1449 {
1450 	if (!list) {
1451 		return;
1452 	}
1453 
1454 	spdk_free(list->msg_buf);
1455 	free(list);
1456 }
1457 
1458 static struct spdk_nvmf_transport_poll_group *
1459 nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport,
1460 			   struct spdk_nvmf_poll_group *group)
1461 {
1462 	struct spdk_nvmf_tcp_transport	*ttransport;
1463 	struct spdk_nvmf_tcp_poll_group *tgroup;
1464 
1465 	tgroup = calloc(1, sizeof(*tgroup));
1466 	if (!tgroup) {
1467 		return NULL;
1468 	}
1469 
1470 	tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
1471 	if (!tgroup->sock_group) {
1472 		goto cleanup;
1473 	}
1474 
1475 	TAILQ_INIT(&tgroup->qpairs);
1476 	TAILQ_INIT(&tgroup->await_req);
1477 
1478 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1479 
1480 	if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
1481 		SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
1482 			      "Creating control messages list\n", transport->opts.in_capsule_data_size,
1483 			      SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1484 		tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
1485 		if (!tgroup->control_msg_list) {
1486 			goto cleanup;
1487 		}
1488 	}
1489 
1490 	tgroup->accel_channel = spdk_accel_get_io_channel();
1491 	if (spdk_unlikely(!tgroup->accel_channel)) {
1492 		SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
1493 		goto cleanup;
1494 	}
1495 
1496 	TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link);
1497 	if (ttransport->next_pg == NULL) {
1498 		ttransport->next_pg = tgroup;
1499 	}
1500 
1501 	return &tgroup->group;
1502 
1503 cleanup:
1504 	nvmf_tcp_poll_group_destroy(&tgroup->group);
1505 	return NULL;
1506 }
1507 
1508 static struct spdk_nvmf_transport_poll_group *
1509 nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
1510 {
1511 	struct spdk_nvmf_tcp_transport *ttransport;
1512 	struct spdk_nvmf_tcp_poll_group **pg;
1513 	struct spdk_nvmf_tcp_qpair *tqpair;
1514 	struct spdk_sock_group *group = NULL, *hint = NULL;
1515 	int rc;
1516 
1517 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
1518 
1519 	if (TAILQ_EMPTY(&ttransport->poll_groups)) {
1520 		return NULL;
1521 	}
1522 
1523 	pg = &ttransport->next_pg;
1524 	assert(*pg != NULL);
1525 	hint = (*pg)->sock_group;
1526 
1527 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1528 	rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint);
1529 	if (rc != 0) {
1530 		return NULL;
1531 	} else if (group != NULL) {
1532 		/* Optimal poll group was found */
1533 		return spdk_sock_group_get_ctx(group);
1534 	}
1535 
1536 	/* The hint was used for optimal poll group, advance next_pg. */
1537 	*pg = TAILQ_NEXT(*pg, link);
1538 	if (*pg == NULL) {
1539 		*pg = TAILQ_FIRST(&ttransport->poll_groups);
1540 	}
1541 
1542 	return spdk_sock_group_get_ctx(hint);
1543 }
1544 
1545 static void
1546 nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
1547 {
1548 	struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup;
1549 	struct spdk_nvmf_tcp_transport *ttransport;
1550 
1551 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
1552 	spdk_sock_group_close(&tgroup->sock_group);
1553 	if (tgroup->control_msg_list) {
1554 		nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
1555 	}
1556 
1557 	if (tgroup->accel_channel) {
1558 		spdk_put_io_channel(tgroup->accel_channel);
1559 	}
1560 
1561 	if (tgroup->group.transport == NULL) {
1562 		/* Transport can be NULL when nvmf_tcp_poll_group_create()
1563 		 * calls this function directly in a failure path. */
1564 		free(tgroup);
1565 		return;
1566 	}
1567 
1568 	ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport);
1569 
1570 	next_tgroup = TAILQ_NEXT(tgroup, link);
1571 	TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link);
1572 	if (next_tgroup == NULL) {
1573 		next_tgroup = TAILQ_FIRST(&ttransport->poll_groups);
1574 	}
1575 	if (ttransport->next_pg == tgroup) {
1576 		ttransport->next_pg = next_tgroup;
1577 	}
1578 
1579 	free(tgroup);
1580 }
1581 
1582 static void
1583 nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1584 			      enum nvme_tcp_pdu_recv_state state)
1585 {
1586 	if (tqpair->recv_state == state) {
1587 		SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
1588 			    tqpair, state);
1589 		return;
1590 	}
1591 
1592 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_QUIESCING)) {
1593 		if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH && tqpair->pdu_in_progress) {
1594 			SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, tqpair->pdu_in_progress, slist);
1595 			tqpair->tcp_pdu_working_count--;
1596 		}
1597 	}
1598 
1599 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_ERROR)) {
1600 		assert(tqpair->tcp_pdu_working_count == 0);
1601 	}
1602 
1603 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1604 		/* When leaving the await req state, move the qpair to the main list */
1605 		TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link);
1606 		TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link);
1607 	} else if (state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1608 		TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link);
1609 		TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link);
1610 	}
1611 
1612 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
1613 	tqpair->recv_state = state;
1614 
1615 	spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
1616 			  tqpair->recv_state);
1617 }
1618 
1619 static int
1620 nvmf_tcp_qpair_handle_timeout(void *ctx)
1621 {
1622 	struct spdk_nvmf_tcp_qpair *tqpair = ctx;
1623 
1624 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1625 
1626 	SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
1627 		    SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
1628 
1629 	nvmf_tcp_qpair_disconnect(tqpair);
1630 	return SPDK_POLLER_BUSY;
1631 }
1632 
1633 static void
1634 nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
1635 {
1636 	struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
1637 
1638 	if (!tqpair->timeout_poller) {
1639 		tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
1640 					 SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
1641 	}
1642 }
1643 
1644 static void
1645 nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
1646 			   enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
1647 {
1648 	struct nvme_tcp_pdu *rsp_pdu;
1649 	struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
1650 	uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
1651 	uint32_t copy_len;
1652 
1653 	rsp_pdu = tqpair->mgmt_pdu;
1654 
1655 	c2h_term_req = &rsp_pdu->hdr.term_req;
1656 	c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
1657 	c2h_term_req->common.hlen = c2h_term_req_hdr_len;
1658 	c2h_term_req->fes = fes;
1659 
1660 	if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1661 	    (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1662 		DSET32(&c2h_term_req->fei, error_offset);
1663 	}
1664 
1665 	copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
1666 
1667 	/* Copy the error info into the buffer */
1668 	memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
1669 	nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
1670 
1671 	/* Contain the header of the wrong received pdu */
1672 	c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
1673 	tqpair->wait_terminate = true;
1674 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1675 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair);
1676 }
1677 
1678 static void
1679 nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1680 				struct spdk_nvmf_tcp_qpair *tqpair,
1681 				struct nvme_tcp_pdu *pdu)
1682 {
1683 	struct spdk_nvmf_tcp_req *tcp_req;
1684 
1685 	assert(pdu->psh_valid_bytes == pdu->psh_len);
1686 	assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
1687 
1688 	tcp_req = nvmf_tcp_req_get(tqpair);
1689 	if (!tcp_req) {
1690 		/* Directly return and make the allocation retry again.  This can happen if we're
1691 		 * using asynchronous writes to send the response to the host or when releasing
1692 		 * zero-copy buffers after a response has been sent.  In both cases, the host might
1693 		 * receive the response before we've finished processing the request and is free to
1694 		 * send another one.
1695 		 */
1696 		if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 ||
1697 		    tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) {
1698 			return;
1699 		}
1700 
1701 		/* The host sent more commands than the maximum queue depth. */
1702 		SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
1703 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1704 		return;
1705 	}
1706 
1707 	pdu->req = tcp_req;
1708 	assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
1709 	nvmf_tcp_req_process(ttransport, tcp_req);
1710 }
1711 
1712 static void
1713 nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1714 				    struct spdk_nvmf_tcp_qpair *tqpair,
1715 				    struct nvme_tcp_pdu *pdu)
1716 {
1717 	struct spdk_nvmf_tcp_req *tcp_req;
1718 	struct spdk_nvme_tcp_cmd *capsule_cmd;
1719 	uint32_t error_offset = 0;
1720 	enum spdk_nvme_tcp_term_req_fes fes;
1721 	struct spdk_nvme_cpl *rsp;
1722 
1723 	capsule_cmd = &pdu->hdr.capsule_cmd;
1724 	tcp_req = pdu->req;
1725 	assert(tcp_req != NULL);
1726 
1727 	/* Zero-copy requests don't support ICD */
1728 	assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req));
1729 
1730 	if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
1731 		SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
1732 			    SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
1733 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1734 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
1735 		goto err;
1736 	}
1737 
1738 	rsp = &tcp_req->req.rsp->nvme_cpl;
1739 	if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1740 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1741 	} else {
1742 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1743 	}
1744 
1745 	nvmf_tcp_req_process(ttransport, tcp_req);
1746 
1747 	return;
1748 err:
1749 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1750 }
1751 
1752 static void
1753 nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1754 			     struct spdk_nvmf_tcp_qpair *tqpair,
1755 			     struct nvme_tcp_pdu *pdu)
1756 {
1757 	struct spdk_nvmf_tcp_req *tcp_req;
1758 	uint32_t error_offset = 0;
1759 	enum spdk_nvme_tcp_term_req_fes fes = 0;
1760 	struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
1761 
1762 	h2c_data = &pdu->hdr.h2c_data;
1763 
1764 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
1765 		      tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
1766 
1767 	if (h2c_data->ttag > tqpair->resource_count) {
1768 		SPDK_DEBUGLOG(nvmf_tcp, "ttag %u is larger than allowed %u.\n", h2c_data->ttag,
1769 			      tqpair->resource_count);
1770 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1771 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1772 		goto err;
1773 	}
1774 
1775 	tcp_req = &tqpair->reqs[h2c_data->ttag - 1];
1776 
1777 	if (spdk_unlikely(tcp_req->state != TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER &&
1778 			  tcp_req->state != TCP_REQUEST_STATE_AWAITING_R2T_ACK)) {
1779 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, has error state in %d\n", tcp_req, tqpair,
1780 			      tcp_req->state);
1781 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1782 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1783 		goto err;
1784 	}
1785 
1786 	if (spdk_unlikely(tcp_req->req.cmd->nvme_cmd.cid != h2c_data->cccid)) {
1787 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, expected %u but %u for cccid.\n", tcp_req, tqpair,
1788 			      tcp_req->req.cmd->nvme_cmd.cid, h2c_data->cccid);
1789 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1790 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
1791 		goto err;
1792 	}
1793 
1794 	if (tcp_req->h2c_offset != h2c_data->datao) {
1795 		SPDK_DEBUGLOG(nvmf_tcp,
1796 			      "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
1797 			      tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
1798 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1799 		goto err;
1800 	}
1801 
1802 	if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
1803 		SPDK_DEBUGLOG(nvmf_tcp,
1804 			      "tcp_req(%p), tqpair=%p,  (datao=%u + datal=%u) exceeds requested length=%u\n",
1805 			      tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
1806 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1807 		goto err;
1808 	}
1809 
1810 	pdu->req = tcp_req;
1811 
1812 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
1813 		pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
1814 	}
1815 
1816 	nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
1817 				  h2c_data->datao, h2c_data->datal);
1818 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1819 	return;
1820 
1821 err:
1822 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1823 }
1824 
1825 static void
1826 nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
1827 			       struct spdk_nvmf_tcp_qpair *tqpair)
1828 {
1829 	struct nvme_tcp_pdu *rsp_pdu;
1830 	struct spdk_nvme_tcp_rsp *capsule_resp;
1831 
1832 	SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
1833 
1834 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1835 	assert(rsp_pdu != NULL);
1836 
1837 	capsule_resp = &rsp_pdu->hdr.capsule_resp;
1838 	capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
1839 	capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
1840 	capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
1841 	if (tqpair->host_hdgst_enable) {
1842 		capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1843 		capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1844 	}
1845 
1846 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req);
1847 }
1848 
1849 static void
1850 nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
1851 {
1852 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1853 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
1854 					     struct spdk_nvmf_tcp_qpair, qpair);
1855 
1856 	assert(tqpair != NULL);
1857 
1858 	if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
1859 		SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
1860 			      tcp_req->req.length);
1861 		_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
1862 		return;
1863 	}
1864 
1865 	if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
1866 		nvmf_tcp_request_free(tcp_req);
1867 	} else {
1868 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
1869 	}
1870 }
1871 
1872 static void
1873 nvmf_tcp_r2t_complete(void *cb_arg)
1874 {
1875 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1876 	struct spdk_nvmf_tcp_transport *ttransport;
1877 
1878 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
1879 				      struct spdk_nvmf_tcp_transport, transport);
1880 
1881 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
1882 
1883 	if (tcp_req->h2c_offset == tcp_req->req.length) {
1884 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1885 		nvmf_tcp_req_process(ttransport, tcp_req);
1886 	}
1887 }
1888 
1889 static void
1890 nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1891 		      struct spdk_nvmf_tcp_req *tcp_req)
1892 {
1893 	struct nvme_tcp_pdu *rsp_pdu;
1894 	struct spdk_nvme_tcp_r2t_hdr *r2t;
1895 
1896 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1897 	assert(rsp_pdu != NULL);
1898 
1899 	r2t = &rsp_pdu->hdr.r2t;
1900 	r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
1901 	r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
1902 
1903 	if (tqpair->host_hdgst_enable) {
1904 		r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1905 		r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1906 	}
1907 
1908 	r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
1909 	r2t->ttag = tcp_req->ttag;
1910 	r2t->r2to = tcp_req->h2c_offset;
1911 	r2t->r2tl = tcp_req->req.length;
1912 
1913 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
1914 
1915 	SPDK_DEBUGLOG(nvmf_tcp,
1916 		      "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
1917 		      tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
1918 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req);
1919 }
1920 
1921 static void
1922 nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1923 				 struct spdk_nvmf_tcp_qpair *tqpair,
1924 				 struct nvme_tcp_pdu *pdu)
1925 {
1926 	struct spdk_nvmf_tcp_req *tcp_req;
1927 	struct spdk_nvme_cpl *rsp;
1928 
1929 	tcp_req = pdu->req;
1930 	assert(tcp_req != NULL);
1931 
1932 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1933 
1934 	tcp_req->h2c_offset += pdu->data_len;
1935 
1936 	/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
1937 	 * acknowledged before moving on. */
1938 	if (tcp_req->h2c_offset == tcp_req->req.length &&
1939 	    tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
1940 		/* After receiving all the h2c data, we need to check whether there is
1941 		 * transient transport error */
1942 		rsp = &tcp_req->req.rsp->nvme_cpl;
1943 		if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1944 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1945 		} else {
1946 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1947 		}
1948 		nvmf_tcp_req_process(ttransport, tcp_req);
1949 	}
1950 }
1951 
1952 static void
1953 nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
1954 {
1955 	SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
1956 		    spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
1957 	if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1958 	    (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1959 		SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
1960 			      DGET32(h2c_term_req->fei));
1961 	}
1962 }
1963 
1964 static void
1965 nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1966 				 struct nvme_tcp_pdu *pdu)
1967 {
1968 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1969 	uint32_t error_offset = 0;
1970 	enum spdk_nvme_tcp_term_req_fes fes;
1971 
1972 	if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
1973 		SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
1974 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1975 		error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
1976 		goto end;
1977 	}
1978 
1979 	/* set the data buffer */
1980 	nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
1981 			      h2c_term_req->common.plen - h2c_term_req->common.hlen);
1982 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1983 	return;
1984 end:
1985 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1986 }
1987 
1988 static void
1989 nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1990 				     struct nvme_tcp_pdu *pdu)
1991 {
1992 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1993 
1994 	nvmf_tcp_h2c_term_req_dump(h2c_term_req);
1995 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1996 }
1997 
1998 static void
1999 _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2000 {
2001 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2002 			struct spdk_nvmf_tcp_transport, transport);
2003 
2004 	switch (pdu->hdr.common.pdu_type) {
2005 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2006 		nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
2007 		break;
2008 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2009 		nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
2010 		break;
2011 
2012 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2013 		nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
2014 		break;
2015 
2016 	default:
2017 		/* The code should not go to here */
2018 		SPDK_ERRLOG("ERROR pdu type %d\n", pdu->hdr.common.pdu_type);
2019 		break;
2020 	}
2021 	SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
2022 	tqpair->tcp_pdu_working_count--;
2023 }
2024 
2025 static inline void
2026 nvmf_tcp_req_set_cpl(struct spdk_nvmf_tcp_req *treq, int sct, int sc)
2027 {
2028 	treq->req.rsp->nvme_cpl.status.sct = sct;
2029 	treq->req.rsp->nvme_cpl.status.sc = sc;
2030 	treq->req.rsp->nvme_cpl.cid = treq->req.cmd->nvme_cmd.cid;
2031 }
2032 
2033 static void
2034 data_crc32_calc_done(void *cb_arg, int status)
2035 {
2036 	struct nvme_tcp_pdu *pdu = cb_arg;
2037 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
2038 
2039 	/* async crc32 calculation is failed and use direct calculation to check */
2040 	if (spdk_unlikely(status)) {
2041 		SPDK_ERRLOG("Data digest on tqpair=(%p) with pdu=%p failed to be calculated asynchronously\n",
2042 			    tqpair, pdu);
2043 		pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2044 	}
2045 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
2046 	if (!MATCH_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32)) {
2047 		SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2048 		assert(pdu->req != NULL);
2049 		nvmf_tcp_req_set_cpl(pdu->req, SPDK_NVME_SCT_GENERIC,
2050 				     SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR);
2051 	}
2052 	_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2053 }
2054 
2055 static void
2056 nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2057 {
2058 	int rc = 0;
2059 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2060 	tqpair->pdu_in_progress = NULL;
2061 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2062 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2063 	/* check data digest if need */
2064 	if (pdu->ddgst_enable) {
2065 		if (tqpair->qpair.qid != 0 && !pdu->dif_ctx && tqpair->group &&
2066 		    (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)) {
2067 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
2068 						       pdu->data_iovcnt, 0, data_crc32_calc_done, pdu);
2069 			if (spdk_likely(rc == 0)) {
2070 				return;
2071 			}
2072 		} else {
2073 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2074 		}
2075 		data_crc32_calc_done(pdu, rc);
2076 	} else {
2077 		_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2078 	}
2079 }
2080 
2081 static void
2082 nvmf_tcp_send_icresp_complete(void *cb_arg)
2083 {
2084 	struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
2085 
2086 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_RUNNING);
2087 }
2088 
2089 static void
2090 nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
2091 		      struct spdk_nvmf_tcp_qpair *tqpair,
2092 		      struct nvme_tcp_pdu *pdu)
2093 {
2094 	struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
2095 	struct nvme_tcp_pdu *rsp_pdu;
2096 	struct spdk_nvme_tcp_ic_resp *ic_resp;
2097 	uint32_t error_offset = 0;
2098 	enum spdk_nvme_tcp_term_req_fes fes;
2099 
2100 	/* Only PFV 0 is defined currently */
2101 	if (ic_req->pfv != 0) {
2102 		SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
2103 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2104 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
2105 		goto end;
2106 	}
2107 
2108 	/* This value is 0’s based value in units of dwords should not be larger than SPDK_NVME_TCP_HPDA_MAX */
2109 	if (ic_req->hpda > SPDK_NVME_TCP_HPDA_MAX) {
2110 		SPDK_ERRLOG("ICReq HPDA out of range 0 to 31, got %u\n", ic_req->hpda);
2111 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2112 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, hpda);
2113 		goto end;
2114 	}
2115 
2116 	/* MAXR2T is 0's based */
2117 	SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
2118 
2119 	tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
2120 	if (!tqpair->host_hdgst_enable) {
2121 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2122 	}
2123 
2124 	tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
2125 	if (!tqpair->host_ddgst_enable) {
2126 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2127 	}
2128 
2129 	tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
2130 	/* Now that we know whether digests are enabled, properly size the receive buffer */
2131 	if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
2132 		SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
2133 			     tqpair,
2134 			     tqpair->recv_buf_size);
2135 		/* Not fatal. */
2136 	}
2137 
2138 	tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
2139 	SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
2140 
2141 	rsp_pdu = tqpair->mgmt_pdu;
2142 
2143 	ic_resp = &rsp_pdu->hdr.ic_resp;
2144 	ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
2145 	ic_resp->common.hlen = ic_resp->common.plen =  sizeof(*ic_resp);
2146 	ic_resp->pfv = 0;
2147 	ic_resp->cpda = tqpair->cpda;
2148 	ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
2149 	ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
2150 	ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
2151 
2152 	SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
2153 	SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
2154 
2155 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INITIALIZING);
2156 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair);
2157 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2158 	return;
2159 end:
2160 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2161 }
2162 
2163 static void
2164 nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2165 			struct spdk_nvmf_tcp_transport *ttransport)
2166 {
2167 	struct nvme_tcp_pdu *pdu;
2168 	int rc;
2169 	uint32_t crc32c, error_offset = 0;
2170 	enum spdk_nvme_tcp_term_req_fes fes;
2171 
2172 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2173 	pdu = tqpair->pdu_in_progress;
2174 
2175 	SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
2176 		      pdu->hdr.common.pdu_type);
2177 	/* check header digest if needed */
2178 	if (pdu->has_hdgst) {
2179 		SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
2180 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
2181 		rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
2182 		if (rc == 0) {
2183 			SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2184 			fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
2185 			nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2186 			return;
2187 
2188 		}
2189 	}
2190 
2191 	switch (pdu->hdr.common.pdu_type) {
2192 	case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
2193 		nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
2194 		break;
2195 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2196 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
2197 		break;
2198 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2199 		nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
2200 		break;
2201 
2202 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2203 		nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
2204 		break;
2205 
2206 	default:
2207 		SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
2208 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2209 		error_offset = 1;
2210 		nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2211 		break;
2212 	}
2213 }
2214 
2215 static void
2216 nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
2217 {
2218 	struct nvme_tcp_pdu *pdu;
2219 	uint32_t error_offset = 0;
2220 	enum spdk_nvme_tcp_term_req_fes fes;
2221 	uint8_t expected_hlen, pdo;
2222 	bool plen_error = false, pdo_error = false;
2223 
2224 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2225 	pdu = tqpair->pdu_in_progress;
2226 	assert(pdu);
2227 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
2228 		if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) {
2229 			SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
2230 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2231 			goto err;
2232 		}
2233 		expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
2234 		if (pdu->hdr.common.plen != expected_hlen) {
2235 			plen_error = true;
2236 		}
2237 	} else {
2238 		if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) {
2239 			SPDK_ERRLOG("The TCP/IP connection is not negotiated\n");
2240 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2241 			goto err;
2242 		}
2243 
2244 		switch (pdu->hdr.common.pdu_type) {
2245 		case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2246 			expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
2247 			pdo = pdu->hdr.common.pdo;
2248 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2249 				pdo_error = true;
2250 				break;
2251 			}
2252 
2253 			if (pdu->hdr.common.plen < expected_hlen) {
2254 				plen_error = true;
2255 			}
2256 			break;
2257 		case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2258 			expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
2259 			pdo = pdu->hdr.common.pdo;
2260 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2261 				pdo_error = true;
2262 				break;
2263 			}
2264 			if (pdu->hdr.common.plen < expected_hlen) {
2265 				plen_error = true;
2266 			}
2267 			break;
2268 
2269 		case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2270 			expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
2271 			if ((pdu->hdr.common.plen <= expected_hlen) ||
2272 			    (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
2273 				plen_error = true;
2274 			}
2275 			break;
2276 
2277 		default:
2278 			SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
2279 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2280 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
2281 			goto err;
2282 		}
2283 	}
2284 
2285 	if (pdu->hdr.common.hlen != expected_hlen) {
2286 		SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
2287 			    pdu->hdr.common.pdu_type,
2288 			    expected_hlen, pdu->hdr.common.hlen, tqpair);
2289 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2290 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
2291 		goto err;
2292 	} else if (pdo_error) {
2293 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2294 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
2295 	} else if (plen_error) {
2296 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2297 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2298 		goto err;
2299 	} else {
2300 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2301 		nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
2302 		return;
2303 	}
2304 err:
2305 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2306 }
2307 
2308 static int
2309 nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
2310 {
2311 	int rc = 0;
2312 	struct nvme_tcp_pdu *pdu;
2313 	enum nvme_tcp_pdu_recv_state prev_state;
2314 	uint32_t data_len;
2315 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2316 			struct spdk_nvmf_tcp_transport, transport);
2317 
2318 	/* The loop here is to allow for several back-to-back state changes. */
2319 	do {
2320 		prev_state = tqpair->recv_state;
2321 		SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
2322 
2323 		pdu = tqpair->pdu_in_progress;
2324 		assert(pdu != NULL ||
2325 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY ||
2326 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_QUIESCING ||
2327 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
2328 
2329 		switch (tqpair->recv_state) {
2330 		/* Wait for the common header  */
2331 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
2332 			if (!pdu) {
2333 				pdu = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
2334 				if (spdk_unlikely(!pdu)) {
2335 					return NVME_TCP_PDU_IN_PROGRESS;
2336 				}
2337 				SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
2338 				tqpair->pdu_in_progress = pdu;
2339 				tqpair->tcp_pdu_working_count++;
2340 			}
2341 			memset(pdu, 0, offsetof(struct nvme_tcp_pdu, qpair));
2342 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2343 		/* FALLTHROUGH */
2344 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
2345 			if (spdk_unlikely(tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING)) {
2346 				return rc;
2347 			}
2348 
2349 			rc = nvme_tcp_read_data(tqpair->sock,
2350 						sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
2351 						(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
2352 			if (rc < 0) {
2353 				SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
2354 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2355 				break;
2356 			} else if (rc > 0) {
2357 				pdu->ch_valid_bytes += rc;
2358 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2359 			}
2360 
2361 			if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
2362 				return NVME_TCP_PDU_IN_PROGRESS;
2363 			}
2364 
2365 			/* The command header of this PDU has now been read from the socket. */
2366 			nvmf_tcp_pdu_ch_handle(tqpair);
2367 			break;
2368 		/* Wait for the pdu specific header  */
2369 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
2370 			rc = nvme_tcp_read_data(tqpair->sock,
2371 						pdu->psh_len - pdu->psh_valid_bytes,
2372 						(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
2373 			if (rc < 0) {
2374 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2375 				break;
2376 			} else if (rc > 0) {
2377 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2378 				pdu->psh_valid_bytes += rc;
2379 			}
2380 
2381 			if (pdu->psh_valid_bytes < pdu->psh_len) {
2382 				return NVME_TCP_PDU_IN_PROGRESS;
2383 			}
2384 
2385 			/* All header(ch, psh, head digist) of this PDU has now been read from the socket. */
2386 			nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
2387 			break;
2388 		/* Wait for the req slot */
2389 		case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
2390 			nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
2391 			break;
2392 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
2393 			/* check whether the data is valid, if not we just return */
2394 			if (!pdu->data_len) {
2395 				return NVME_TCP_PDU_IN_PROGRESS;
2396 			}
2397 
2398 			data_len = pdu->data_len;
2399 			/* data digest */
2400 			if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
2401 					  tqpair->host_ddgst_enable)) {
2402 				data_len += SPDK_NVME_TCP_DIGEST_LEN;
2403 				pdu->ddgst_enable = true;
2404 			}
2405 
2406 			rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
2407 			if (rc < 0) {
2408 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2409 				break;
2410 			}
2411 			pdu->rw_offset += rc;
2412 
2413 			if (pdu->rw_offset < data_len) {
2414 				return NVME_TCP_PDU_IN_PROGRESS;
2415 			}
2416 
2417 			/* Generate and insert DIF to whole data block received if DIF is enabled */
2418 			if (spdk_unlikely(pdu->dif_ctx != NULL) &&
2419 			    spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt, 0, data_len,
2420 						     pdu->dif_ctx) != 0) {
2421 				SPDK_ERRLOG("DIF generate failed\n");
2422 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2423 				break;
2424 			}
2425 
2426 			/* All of this PDU has now been read from the socket. */
2427 			nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2428 			break;
2429 		case NVME_TCP_PDU_RECV_STATE_QUIESCING:
2430 			if (tqpair->tcp_pdu_working_count != 0) {
2431 				return NVME_TCP_PDU_IN_PROGRESS;
2432 			}
2433 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
2434 			break;
2435 		case NVME_TCP_PDU_RECV_STATE_ERROR:
2436 			if (spdk_sock_is_connected(tqpair->sock) && tqpair->wait_terminate) {
2437 				return NVME_TCP_PDU_IN_PROGRESS;
2438 			}
2439 			return NVME_TCP_PDU_FATAL;
2440 		default:
2441 			SPDK_ERRLOG("The state(%d) is invalid\n", tqpair->recv_state);
2442 			abort();
2443 			break;
2444 		}
2445 	} while (tqpair->recv_state != prev_state);
2446 
2447 	return rc;
2448 }
2449 
2450 static inline void *
2451 nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list)
2452 {
2453 	struct spdk_nvmf_tcp_control_msg *msg;
2454 
2455 	assert(list);
2456 
2457 	msg = STAILQ_FIRST(&list->free_msgs);
2458 	if (!msg) {
2459 		SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
2460 		return NULL;
2461 	}
2462 	STAILQ_REMOVE_HEAD(&list->free_msgs, link);
2463 	return msg;
2464 }
2465 
2466 static inline void
2467 nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
2468 {
2469 	struct spdk_nvmf_tcp_control_msg *msg = _msg;
2470 
2471 	assert(list);
2472 	STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
2473 }
2474 
2475 static int
2476 nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
2477 		       struct spdk_nvmf_transport *transport,
2478 		       struct spdk_nvmf_transport_poll_group *group)
2479 {
2480 	struct spdk_nvmf_request		*req = &tcp_req->req;
2481 	struct spdk_nvme_cmd			*cmd;
2482 	struct spdk_nvme_sgl_descriptor		*sgl;
2483 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2484 	enum spdk_nvme_tcp_term_req_fes		fes;
2485 	struct nvme_tcp_pdu			*pdu;
2486 	struct spdk_nvmf_tcp_qpair		*tqpair;
2487 	uint32_t				length, error_offset = 0;
2488 
2489 	cmd = &req->cmd->nvme_cmd;
2490 	sgl = &cmd->dptr.sgl1;
2491 
2492 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
2493 	    sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
2494 		/* get request length from sgl */
2495 		length = sgl->unkeyed.length;
2496 		if (spdk_unlikely(length > transport->opts.max_io_size)) {
2497 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
2498 				    length, transport->opts.max_io_size);
2499 			fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2500 			goto fatal_err;
2501 		}
2502 
2503 		/* fill request length and populate iovs */
2504 		req->length = length;
2505 
2506 		SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
2507 
2508 		if (spdk_unlikely(req->dif_enabled)) {
2509 			req->dif.orig_length = length;
2510 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2511 			req->dif.elba_length = length;
2512 		}
2513 
2514 		if (nvmf_ctrlr_use_zcopy(req)) {
2515 			SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req);
2516 			req->data_from_pool = false;
2517 			return 0;
2518 		}
2519 
2520 		if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
2521 			/* No available buffers. Queue this request up. */
2522 			SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
2523 				      tcp_req);
2524 			return 0;
2525 		}
2526 
2527 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
2528 			      tcp_req, req->iovcnt, req->iov[0].iov_base);
2529 
2530 		return 0;
2531 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
2532 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
2533 		uint64_t offset = sgl->address;
2534 		uint32_t max_len = transport->opts.in_capsule_data_size;
2535 
2536 		assert(tcp_req->has_in_capsule_data);
2537 		/* Capsule Cmd with In-capsule Data should get data length from pdu header */
2538 		tqpair = tcp_req->pdu->qpair;
2539 		/* receiving pdu is not same with the pdu in tcp_req */
2540 		pdu = tqpair->pdu_in_progress;
2541 		length = pdu->hdr.common.plen - pdu->psh_len - sizeof(struct spdk_nvme_tcp_common_pdu_hdr);
2542 		if (tqpair->host_ddgst_enable) {
2543 			length -= SPDK_NVME_TCP_DIGEST_LEN;
2544 		}
2545 		/* This error is not defined in NVMe/TCP spec, take this error as fatal error */
2546 		if (spdk_unlikely(length != sgl->unkeyed.length)) {
2547 			SPDK_ERRLOG("In-Capsule Data length 0x%x is not equal to SGL data length 0x%x\n",
2548 				    length, sgl->unkeyed.length);
2549 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2550 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2551 			goto fatal_err;
2552 		}
2553 
2554 		SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
2555 			      offset, length);
2556 
2557 		/* The NVMe/TCP transport does not use ICDOFF to control the in-capsule data offset. ICDOFF should be '0' */
2558 		if (spdk_unlikely(offset != 0)) {
2559 			/* Not defined fatal error in NVMe/TCP spec, handle this error as a fatal error */
2560 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " should be ZERO in NVMe/TCP\n", offset);
2561 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2562 			error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.address);
2563 			goto fatal_err;
2564 		}
2565 
2566 		if (spdk_unlikely(length > max_len)) {
2567 			/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
2568 			if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
2569 			    (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
2570 
2571 				/* Get a buffer from dedicated list */
2572 				SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
2573 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2574 				assert(tgroup->control_msg_list);
2575 				req->iov[0].iov_base = nvmf_tcp_control_msg_get(tgroup->control_msg_list);
2576 				if (!req->iov[0].iov_base) {
2577 					/* No available buffers. Queue this request up. */
2578 					SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
2579 					return 0;
2580 				}
2581 			} else {
2582 				SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
2583 					    length, max_len);
2584 				fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2585 				goto fatal_err;
2586 			}
2587 		} else {
2588 			req->iov[0].iov_base = tcp_req->buf;
2589 		}
2590 
2591 		req->length = length;
2592 		req->data_from_pool = false;
2593 
2594 		if (spdk_unlikely(req->dif_enabled)) {
2595 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2596 			req->dif.elba_length = length;
2597 		}
2598 
2599 		req->iov[0].iov_len = length;
2600 		req->iovcnt = 1;
2601 
2602 		return 0;
2603 	}
2604 	/* If we want to handle the problem here, then we can't skip the following data segment.
2605 	 * Because this function runs before reading data part, now handle all errors as fatal errors. */
2606 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2607 		    sgl->generic.type, sgl->generic.subtype);
2608 	fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2609 	error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.generic);
2610 fatal_err:
2611 	nvmf_tcp_send_c2h_term_req(tcp_req->pdu->qpair, tcp_req->pdu, fes, error_offset);
2612 	return -1;
2613 }
2614 
2615 static inline enum spdk_nvme_media_error_status_code
2616 nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
2617 	enum spdk_nvme_media_error_status_code result;
2618 
2619 	switch (err_type)
2620 	{
2621 	case SPDK_DIF_REFTAG_ERROR:
2622 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
2623 		break;
2624 	case SPDK_DIF_APPTAG_ERROR:
2625 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
2626 		break;
2627 	case SPDK_DIF_GUARD_ERROR:
2628 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
2629 		break;
2630 	default:
2631 		SPDK_UNREACHABLE();
2632 		break;
2633 	}
2634 
2635 	return result;
2636 }
2637 
2638 static void
2639 _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2640 			struct spdk_nvmf_tcp_req *tcp_req)
2641 {
2642 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
2643 				tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
2644 	struct nvme_tcp_pdu *rsp_pdu;
2645 	struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
2646 	uint32_t plen, pdo, alignment;
2647 	int rc;
2648 
2649 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2650 
2651 	rsp_pdu = tcp_req->pdu;
2652 	assert(rsp_pdu != NULL);
2653 
2654 	c2h_data = &rsp_pdu->hdr.c2h_data;
2655 	c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
2656 	plen = c2h_data->common.hlen = sizeof(*c2h_data);
2657 
2658 	if (tqpair->host_hdgst_enable) {
2659 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2660 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2661 	}
2662 
2663 	/* set the psh */
2664 	c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2665 	c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
2666 	c2h_data->datao = tcp_req->pdu->rw_offset;
2667 
2668 	/* set the padding */
2669 	rsp_pdu->padding_len = 0;
2670 	pdo = plen;
2671 	if (tqpair->cpda) {
2672 		alignment = (tqpair->cpda + 1) << 2;
2673 		if (plen % alignment != 0) {
2674 			pdo = (plen + alignment) / alignment * alignment;
2675 			rsp_pdu->padding_len = pdo - plen;
2676 			plen = pdo;
2677 		}
2678 	}
2679 
2680 	c2h_data->common.pdo = pdo;
2681 	plen += c2h_data->datal;
2682 	if (tqpair->host_ddgst_enable) {
2683 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
2684 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2685 	}
2686 
2687 	c2h_data->common.plen = plen;
2688 
2689 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2690 		rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2691 	}
2692 
2693 	nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2694 				  c2h_data->datao, c2h_data->datal);
2695 
2696 
2697 	c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
2698 	/* Need to send the capsule response if response is not all 0 */
2699 	if (ttransport->tcp_opts.c2h_success &&
2700 	    tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
2701 		c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
2702 	}
2703 
2704 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2705 		struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
2706 		struct spdk_dif_error err_blk = {};
2707 		uint32_t mapped_length = 0;
2708 		uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
2709 		uint32_t ddgst_len = 0;
2710 
2711 		if (tqpair->host_ddgst_enable) {
2712 			/* Data digest consumes additional iov entry */
2713 			available_iovs--;
2714 			/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
2715 			ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
2716 			c2h_data->common.plen -= ddgst_len;
2717 		}
2718 		/* Temp call to estimate if data can be described by limited number of iovs.
2719 		 * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
2720 		nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
2721 				    false, &mapped_length);
2722 
2723 		if (mapped_length != c2h_data->common.plen) {
2724 			c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
2725 			SPDK_DEBUGLOG(nvmf_tcp,
2726 				      "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
2727 				      c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
2728 			c2h_data->common.plen = mapped_length;
2729 
2730 			/* Rebuild pdu->data_iov since data length is changed */
2731 			nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
2732 						  c2h_data->datal);
2733 
2734 			c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
2735 						    SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
2736 		}
2737 
2738 		c2h_data->common.plen += ddgst_len;
2739 
2740 		assert(rsp_pdu->rw_offset <= tcp_req->req.length);
2741 
2742 		rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
2743 					    0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
2744 		if (rc != 0) {
2745 			SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
2746 				    err_blk.err_type, err_blk.err_offset);
2747 			rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2748 			rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
2749 			nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2750 			return;
2751 		}
2752 	}
2753 
2754 	rsp_pdu->rw_offset += c2h_data->datal;
2755 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
2756 }
2757 
2758 static void
2759 nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2760 		       struct spdk_nvmf_tcp_req *tcp_req)
2761 {
2762 	nvmf_tcp_req_pdu_init(tcp_req);
2763 	_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2764 }
2765 
2766 static int
2767 request_transfer_out(struct spdk_nvmf_request *req)
2768 {
2769 	struct spdk_nvmf_tcp_req	*tcp_req;
2770 	struct spdk_nvmf_qpair		*qpair;
2771 	struct spdk_nvmf_tcp_qpair	*tqpair;
2772 	struct spdk_nvme_cpl		*rsp;
2773 
2774 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2775 
2776 	qpair = req->qpair;
2777 	rsp = &req->rsp->nvme_cpl;
2778 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
2779 
2780 	/* Advance our sq_head pointer */
2781 	if (qpair->sq_head == qpair->sq_head_max) {
2782 		qpair->sq_head = 0;
2783 	} else {
2784 		qpair->sq_head++;
2785 	}
2786 	rsp->sqhd = qpair->sq_head;
2787 
2788 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2789 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
2790 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2791 		nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2792 	} else {
2793 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2794 	}
2795 
2796 	return 0;
2797 }
2798 
2799 static void
2800 nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport,
2801 			      struct spdk_nvmf_tcp_qpair *tqpair,
2802 			      struct spdk_nvmf_tcp_req *tcp_req)
2803 {
2804 	enum spdk_nvme_cmd_fuse last, next;
2805 
2806 	last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2807 	next = tcp_req->cmd.fuse;
2808 
2809 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2810 
2811 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2812 		return;
2813 	}
2814 
2815 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2816 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2817 			/* This is a valid pair of fused commands.  Point them at each other
2818 			 * so they can be submitted consecutively once ready to be executed.
2819 			 */
2820 			tqpair->fused_first->fused_pair = tcp_req;
2821 			tcp_req->fused_pair = tqpair->fused_first;
2822 			tqpair->fused_first = NULL;
2823 			return;
2824 		} else {
2825 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2826 			tqpair->fused_first->fused_failed = true;
2827 
2828 			/*
2829 			 * If the last req is in READY_TO_EXECUTE state, then call
2830 			 * nvmf_tcp_req_process(), otherwise nothing else will kick it.
2831 			 */
2832 			if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2833 				nvmf_tcp_req_process(ttransport, tqpair->fused_first);
2834 			}
2835 
2836 			tqpair->fused_first = NULL;
2837 		}
2838 	}
2839 
2840 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2841 		/* Set tqpair->fused_first here so that we know to check that the next request
2842 		 * is a SECOND (and to fail this one if it isn't).
2843 		 */
2844 		tqpair->fused_first = tcp_req;
2845 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2846 		/* Mark this req failed since it is a SECOND and the last one was not a FIRST. */
2847 		tcp_req->fused_failed = true;
2848 	}
2849 }
2850 
2851 static bool
2852 nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
2853 		     struct spdk_nvmf_tcp_req *tcp_req)
2854 {
2855 	struct spdk_nvmf_tcp_qpair		*tqpair;
2856 	uint32_t				plen;
2857 	struct nvme_tcp_pdu			*pdu;
2858 	enum spdk_nvmf_tcp_req_state		prev_state;
2859 	bool					progress = false;
2860 	struct spdk_nvmf_transport		*transport = &ttransport->transport;
2861 	struct spdk_nvmf_transport_poll_group	*group;
2862 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2863 
2864 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2865 	group = &tqpair->group->group;
2866 	assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
2867 
2868 	/* If the qpair is not active, we need to abort the outstanding requests. */
2869 	if (tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2870 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
2871 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2872 		}
2873 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
2874 	}
2875 
2876 	/* The loop here is to allow for several back-to-back state changes. */
2877 	do {
2878 		prev_state = tcp_req->state;
2879 
2880 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
2881 			      tqpair);
2882 
2883 		switch (tcp_req->state) {
2884 		case TCP_REQUEST_STATE_FREE:
2885 			/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
2886 			 * to escape this state. */
2887 			break;
2888 		case TCP_REQUEST_STATE_NEW:
2889 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.qid, 0, (uintptr_t)tcp_req, tqpair);
2890 
2891 			/* copy the cmd from the receive pdu */
2892 			tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
2893 
2894 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
2895 				tcp_req->req.dif_enabled = true;
2896 				tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
2897 			}
2898 
2899 			nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req);
2900 
2901 			/* The next state transition depends on the data transfer needs of this request. */
2902 			tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
2903 
2904 			if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2905 				nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_INVALID_OPCODE);
2906 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2907 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2908 				SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
2909 				break;
2910 			}
2911 
2912 			/* If no data to transfer, ready to execute. */
2913 			if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
2914 				/* Reset the tqpair receiving pdu state */
2915 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2916 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2917 				break;
2918 			}
2919 
2920 			pdu = tqpair->pdu_in_progress;
2921 			plen = pdu->hdr.common.hlen;
2922 			if (tqpair->host_hdgst_enable) {
2923 				plen += SPDK_NVME_TCP_DIGEST_LEN;
2924 			}
2925 			if (pdu->hdr.common.plen != plen) {
2926 				tcp_req->has_in_capsule_data = true;
2927 			} else {
2928 				/* Data is transmitted by C2H PDUs */
2929 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2930 			}
2931 
2932 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
2933 			STAILQ_INSERT_TAIL(&group->pending_buf_queue, &tcp_req->req, buf_link);
2934 			break;
2935 		case TCP_REQUEST_STATE_NEED_BUFFER:
2936 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2937 					  tqpair);
2938 
2939 			assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
2940 
2941 			if (!tcp_req->has_in_capsule_data && (&tcp_req->req != STAILQ_FIRST(&group->pending_buf_queue))) {
2942 				SPDK_DEBUGLOG(nvmf_tcp,
2943 					      "Not the first element to wait for the buf for tcp_req(%p) on tqpair=%p\n",
2944 					      tcp_req, tqpair);
2945 				/* This request needs to wait in line to obtain a buffer */
2946 				break;
2947 			}
2948 
2949 			/* Try to get a data buffer */
2950 			if (nvmf_tcp_req_parse_sgl(tcp_req, transport, group) < 0) {
2951 				break;
2952 			}
2953 
2954 			/* Get a zcopy buffer if the request can be serviced through zcopy */
2955 			if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2956 				if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2957 					assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2958 					tcp_req->req.length = tcp_req->req.dif.elba_length;
2959 				}
2960 
2961 				STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2962 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START);
2963 				spdk_nvmf_request_zcopy_start(&tcp_req->req);
2964 				break;
2965 			}
2966 
2967 			if (tcp_req->req.iovcnt < 1) {
2968 				SPDK_DEBUGLOG(nvmf_tcp, "No buffer allocated for tcp_req(%p) on tqpair(%p\n)",
2969 					      tcp_req, tqpair);
2970 				/* No buffers available. */
2971 				break;
2972 			}
2973 
2974 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2975 
2976 			/* If data is transferring from host to controller, we need to do a transfer from the host. */
2977 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2978 				if (tcp_req->req.data_from_pool) {
2979 					SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2980 					nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2981 				} else {
2982 					struct nvme_tcp_pdu *pdu;
2983 
2984 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
2985 
2986 					pdu = tqpair->pdu_in_progress;
2987 					SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
2988 						      tqpair);
2989 					/* No need to send r2t, contained in the capsuled data */
2990 					nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2991 								  0, tcp_req->req.length);
2992 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2993 				}
2994 				break;
2995 			}
2996 
2997 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2998 			break;
2999 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3000 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.qid, 0,
3001 					  (uintptr_t)tcp_req, tqpair);
3002 			/* Some external code must kick a request into  TCP_REQUEST_STATE_ZCOPY_START_COMPLETED
3003 			 * to escape this state. */
3004 			break;
3005 		case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
3006 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.qid, 0,
3007 					  (uintptr_t)tcp_req, tqpair);
3008 			if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) {
3009 				SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n",
3010 					      tcp_req, tqpair);
3011 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3012 				break;
3013 			}
3014 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
3015 				SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
3016 				nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
3017 			} else {
3018 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3019 			}
3020 			break;
3021 		case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3022 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
3023 					  tqpair);
3024 			/* The R2T completion or the h2c data incoming will kick it out of this state. */
3025 			break;
3026 		case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3027 
3028 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.qid, 0,
3029 					  (uintptr_t)tcp_req, tqpair);
3030 			/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
3031 			 * to escape this state. */
3032 			break;
3033 		case TCP_REQUEST_STATE_READY_TO_EXECUTE:
3034 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.qid, 0,
3035 					  (uintptr_t)tcp_req, tqpair);
3036 
3037 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3038 				assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
3039 				tcp_req->req.length = tcp_req->req.dif.elba_length;
3040 			}
3041 
3042 			if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
3043 				if (tcp_req->fused_failed) {
3044 					/* This request failed FUSED semantics.  Fail it immediately, without
3045 					 * even sending it to the target layer.
3046 					 */
3047 					nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_MISSING_FUSED);
3048 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3049 					break;
3050 				}
3051 
3052 				if (tcp_req->fused_pair == NULL ||
3053 				    tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3054 					/* This request is ready to execute, but either we don't know yet if it's
3055 					 * valid - i.e. this is a FIRST but we haven't received the next request yet),
3056 					 * or the other request of this fused pair isn't ready to execute. So
3057 					 * break here and this request will get processed later either when the
3058 					 * other request is ready or we find that this request isn't valid.
3059 					 */
3060 					break;
3061 				}
3062 			}
3063 
3064 			if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
3065 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
3066 				/* If we get to this point, and this request is a fused command, we know that
3067 				 * it is part of a valid sequence (FIRST followed by a SECOND) and that both
3068 				 * requests are READY_TO_EXECUTE.  So call spdk_nvmf_request_exec() both on this
3069 				 * request, and the other request of the fused pair, in the correct order.
3070 				 * Also clear the ->fused_pair pointers on both requests, since after this point
3071 				 * we no longer need to maintain the relationship between these two requests.
3072 				 */
3073 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
3074 					assert(tcp_req->fused_pair != NULL);
3075 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3076 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3077 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3078 					tcp_req->fused_pair->fused_pair = NULL;
3079 					tcp_req->fused_pair = NULL;
3080 				}
3081 				spdk_nvmf_request_exec(&tcp_req->req);
3082 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
3083 					assert(tcp_req->fused_pair != NULL);
3084 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3085 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3086 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3087 					tcp_req->fused_pair->fused_pair = NULL;
3088 					tcp_req->fused_pair = NULL;
3089 				}
3090 			} else {
3091 				/* For zero-copy, only requests with data coming from host to the
3092 				 * controller can end up here. */
3093 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
3094 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT);
3095 				spdk_nvmf_request_zcopy_end(&tcp_req->req, true);
3096 			}
3097 
3098 			break;
3099 		case TCP_REQUEST_STATE_EXECUTING:
3100 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
3101 					  tqpair);
3102 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3103 			 * to escape this state. */
3104 			break;
3105 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3106 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.qid, 0,
3107 					  (uintptr_t)tcp_req, tqpair);
3108 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3109 			 * to escape this state. */
3110 			break;
3111 		case TCP_REQUEST_STATE_EXECUTED:
3112 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
3113 					  tqpair);
3114 
3115 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3116 				tcp_req->req.length = tcp_req->req.dif.orig_length;
3117 			}
3118 
3119 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3120 			break;
3121 		case TCP_REQUEST_STATE_READY_TO_COMPLETE:
3122 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.qid, 0,
3123 					  (uintptr_t)tcp_req, tqpair);
3124 			if (request_transfer_out(&tcp_req->req) != 0) {
3125 				assert(0); /* No good way to handle this currently */
3126 			}
3127 			break;
3128 		case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
3129 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.qid, 0,
3130 					  (uintptr_t)tcp_req, tqpair);
3131 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3132 			 * to escape this state. */
3133 			break;
3134 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3135 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.qid, 0,
3136 					  (uintptr_t)tcp_req, tqpair);
3137 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3138 			 * to escape this state. */
3139 			break;
3140 		case TCP_REQUEST_STATE_COMPLETED:
3141 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
3142 					  tqpair);
3143 			/* If there's an outstanding PDU sent to the host, the request is completed
3144 			 * due to the qpair being disconnected.  We must delay the completion until
3145 			 * that write is done to avoid freeing the request twice. */
3146 			if (spdk_unlikely(tcp_req->pdu_in_use)) {
3147 				SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding "
3148 					      "write on req=%p\n", tcp_req);
3149 				/* This can only happen for zcopy requests */
3150 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3151 				assert(tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
3152 				break;
3153 			}
3154 
3155 			if (tcp_req->req.data_from_pool) {
3156 				spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
3157 			} else if (spdk_unlikely(tcp_req->has_in_capsule_data &&
3158 						 (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
3159 						  tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
3160 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3161 				assert(tgroup->control_msg_list);
3162 				SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
3163 				nvmf_tcp_control_msg_put(tgroup->control_msg_list,
3164 							 tcp_req->req.iov[0].iov_base);
3165 			} else if (tcp_req->req.zcopy_bdev_io != NULL) {
3166 				/* If the request has an unreleased zcopy bdev_io, it's either a
3167 				 * read, a failed write, or the qpair is being disconnected */
3168 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3169 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
3170 				       spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) ||
3171 				       tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
3172 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE);
3173 				spdk_nvmf_request_zcopy_end(&tcp_req->req, false);
3174 				break;
3175 			}
3176 			tcp_req->req.length = 0;
3177 			tcp_req->req.iovcnt = 0;
3178 			tcp_req->fused_failed = false;
3179 			if (tcp_req->fused_pair) {
3180 				/* This req was part of a valid fused pair, but failed before it got to
3181 				 * READ_TO_EXECUTE state.  This means we need to fail the other request
3182 				 * in the pair, because it is no longer part of a valid pair.  If the pair
3183 				 * already reached READY_TO_EXECUTE state, we need to kick it.
3184 				 */
3185 				tcp_req->fused_pair->fused_failed = true;
3186 				if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3187 					nvmf_tcp_req_process(ttransport, tcp_req->fused_pair);
3188 				}
3189 				tcp_req->fused_pair = NULL;
3190 			}
3191 
3192 			nvmf_tcp_req_put(tqpair, tcp_req);
3193 			break;
3194 		case TCP_REQUEST_NUM_STATES:
3195 		default:
3196 			assert(0);
3197 			break;
3198 		}
3199 
3200 		if (tcp_req->state != prev_state) {
3201 			progress = true;
3202 		}
3203 	} while (tcp_req->state != prev_state);
3204 
3205 	return progress;
3206 }
3207 
3208 static void
3209 nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
3210 {
3211 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
3212 	int rc;
3213 
3214 	assert(tqpair != NULL);
3215 	rc = nvmf_tcp_sock_process(tqpair);
3216 
3217 	/* If there was a new socket error, disconnect */
3218 	if (rc < 0) {
3219 		nvmf_tcp_qpair_disconnect(tqpair);
3220 	}
3221 }
3222 
3223 static int
3224 nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3225 			struct spdk_nvmf_qpair *qpair)
3226 {
3227 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3228 	struct spdk_nvmf_tcp_qpair	*tqpair;
3229 	int				rc;
3230 
3231 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3232 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3233 
3234 	rc =  nvmf_tcp_qpair_sock_init(tqpair);
3235 	if (rc != 0) {
3236 		SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
3237 		return -1;
3238 	}
3239 
3240 	rc = nvmf_tcp_qpair_init(&tqpair->qpair);
3241 	if (rc < 0) {
3242 		SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
3243 		return -1;
3244 	}
3245 
3246 	rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
3247 	if (rc < 0) {
3248 		SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
3249 		return -1;
3250 	}
3251 
3252 	rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
3253 				      nvmf_tcp_sock_cb, tqpair);
3254 	if (rc != 0) {
3255 		SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
3256 			    spdk_strerror(errno), errno);
3257 		return -1;
3258 	}
3259 
3260 	tqpair->group = tgroup;
3261 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INVALID);
3262 	TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
3263 
3264 	return 0;
3265 }
3266 
3267 static int
3268 nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3269 			   struct spdk_nvmf_qpair *qpair)
3270 {
3271 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3272 	struct spdk_nvmf_tcp_qpair		*tqpair;
3273 	int				rc;
3274 
3275 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3276 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3277 
3278 	assert(tqpair->group == tgroup);
3279 
3280 	SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
3281 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
3282 		/* Change the state to move the qpair from the await_req list to the main list
3283 		 * and prevent adding it again later by nvmf_tcp_qpair_set_recv_state() */
3284 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
3285 	}
3286 	TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
3287 
3288 	rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
3289 	if (rc != 0) {
3290 		SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
3291 			    spdk_strerror(errno), errno);
3292 	}
3293 
3294 	return rc;
3295 }
3296 
3297 static int
3298 nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
3299 {
3300 	struct spdk_nvmf_tcp_transport *ttransport;
3301 	struct spdk_nvmf_tcp_req *tcp_req;
3302 
3303 	ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3304 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3305 
3306 	switch (tcp_req->state) {
3307 	case TCP_REQUEST_STATE_EXECUTING:
3308 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3309 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3310 		break;
3311 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3312 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED);
3313 		break;
3314 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3315 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3316 		break;
3317 	default:
3318 		assert(0 && "Unexpected request state");
3319 		break;
3320 	}
3321 
3322 	nvmf_tcp_req_process(ttransport, tcp_req);
3323 
3324 	return 0;
3325 }
3326 
3327 static void
3328 nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
3329 		     spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3330 {
3331 	struct spdk_nvmf_tcp_qpair *tqpair;
3332 
3333 	SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
3334 
3335 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3336 
3337 	assert(tqpair->fini_cb_fn == NULL);
3338 	tqpair->fini_cb_fn = cb_fn;
3339 	tqpair->fini_cb_arg = cb_arg;
3340 
3341 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITED);
3342 	nvmf_tcp_qpair_destroy(tqpair);
3343 }
3344 
3345 static int
3346 nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3347 {
3348 	struct spdk_nvmf_tcp_poll_group *tgroup;
3349 	int rc;
3350 	struct spdk_nvmf_request *req, *req_tmp;
3351 	struct spdk_nvmf_tcp_req *tcp_req;
3352 	struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp;
3353 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(group->transport,
3354 			struct spdk_nvmf_tcp_transport, transport);
3355 
3356 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3357 
3358 	if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) {
3359 		return 0;
3360 	}
3361 
3362 	STAILQ_FOREACH_SAFE(req, &group->pending_buf_queue, buf_link, req_tmp) {
3363 		tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3364 		if (nvmf_tcp_req_process(ttransport, tcp_req) == false) {
3365 			break;
3366 		}
3367 	}
3368 
3369 	rc = spdk_sock_group_poll(tgroup->sock_group);
3370 	if (rc < 0) {
3371 		SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
3372 	}
3373 
3374 	TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) {
3375 		rc = nvmf_tcp_sock_process(tqpair);
3376 
3377 		/* If there was a new socket error, disconnect */
3378 		if (rc < 0) {
3379 			nvmf_tcp_qpair_disconnect(tqpair);
3380 		}
3381 	}
3382 
3383 	return rc;
3384 }
3385 
3386 static int
3387 nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
3388 			struct spdk_nvme_transport_id *trid, bool peer)
3389 {
3390 	struct spdk_nvmf_tcp_qpair     *tqpair;
3391 	uint16_t			port;
3392 
3393 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3394 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
3395 
3396 	if (peer) {
3397 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
3398 		port = tqpair->initiator_port;
3399 	} else {
3400 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
3401 		port = tqpair->target_port;
3402 	}
3403 
3404 	if (spdk_sock_is_ipv4(tqpair->sock)) {
3405 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3406 	} else if (spdk_sock_is_ipv6(tqpair->sock)) {
3407 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3408 	} else {
3409 		return -1;
3410 	}
3411 
3412 	snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
3413 	return 0;
3414 }
3415 
3416 static int
3417 nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3418 			      struct spdk_nvme_transport_id *trid)
3419 {
3420 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3421 }
3422 
3423 static int
3424 nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3425 			     struct spdk_nvme_transport_id *trid)
3426 {
3427 	return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
3428 }
3429 
3430 static int
3431 nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3432 			       struct spdk_nvme_transport_id *trid)
3433 {
3434 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3435 }
3436 
3437 static void
3438 nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
3439 			      struct spdk_nvmf_tcp_req *tcp_req_to_abort)
3440 {
3441 	nvmf_tcp_req_set_cpl(tcp_req_to_abort, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_BY_REQUEST);
3442 	nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3443 
3444 	req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
3445 }
3446 
3447 static int
3448 _nvmf_tcp_qpair_abort_request(void *ctx)
3449 {
3450 	struct spdk_nvmf_request *req = ctx;
3451 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
3452 			struct spdk_nvmf_tcp_req, req);
3453 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
3454 					     struct spdk_nvmf_tcp_qpair, qpair);
3455 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
3456 			struct spdk_nvmf_tcp_transport, transport);
3457 	int rc;
3458 
3459 	spdk_poller_unregister(&req->poller);
3460 
3461 	switch (tcp_req_to_abort->state) {
3462 	case TCP_REQUEST_STATE_EXECUTING:
3463 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3464 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3465 		rc = nvmf_ctrlr_abort_request(req);
3466 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
3467 			return SPDK_POLLER_BUSY;
3468 		}
3469 		break;
3470 
3471 	case TCP_REQUEST_STATE_NEED_BUFFER:
3472 		STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue,
3473 			      &tcp_req_to_abort->req, spdk_nvmf_request, buf_link);
3474 
3475 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3476 		nvmf_tcp_req_process(ttransport, tcp_req_to_abort);
3477 		break;
3478 
3479 	case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3480 	case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3481 		if (spdk_get_ticks() < req->timeout_tsc) {
3482 			req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
3483 			return SPDK_POLLER_BUSY;
3484 		}
3485 		break;
3486 
3487 	default:
3488 		/* Requests in other states are either un-abortable (e.g.
3489 		 * TRANSFERRING_CONTROLLER_TO_HOST) or should never end up here, as they're
3490 		 * immediately transitioned to other states in nvmf_tcp_req_process() (e.g.
3491 		 * READY_TO_EXECUTE).  But it is fine to end up here, as we'll simply complete the
3492 		 * abort request with the bit0 of dword0 set (command not aborted).
3493 		 */
3494 		break;
3495 	}
3496 
3497 	spdk_nvmf_request_complete(req);
3498 	return SPDK_POLLER_BUSY;
3499 }
3500 
3501 static void
3502 nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
3503 			     struct spdk_nvmf_request *req)
3504 {
3505 	struct spdk_nvmf_tcp_qpair *tqpair;
3506 	struct spdk_nvmf_tcp_transport *ttransport;
3507 	struct spdk_nvmf_transport *transport;
3508 	uint16_t cid;
3509 	uint32_t i;
3510 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
3511 
3512 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3513 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3514 	transport = &ttransport->transport;
3515 
3516 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
3517 
3518 	for (i = 0; i < tqpair->resource_count; i++) {
3519 		if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
3520 		    tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
3521 			tcp_req_to_abort = &tqpair->reqs[i];
3522 			break;
3523 		}
3524 	}
3525 
3526 	spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, qpair->qid, 0, (uintptr_t)req, tqpair);
3527 
3528 	if (tcp_req_to_abort == NULL) {
3529 		spdk_nvmf_request_complete(req);
3530 		return;
3531 	}
3532 
3533 	req->req_to_abort = &tcp_req_to_abort->req;
3534 	req->timeout_tsc = spdk_get_ticks() +
3535 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
3536 	req->poller = NULL;
3537 
3538 	_nvmf_tcp_qpair_abort_request(req);
3539 }
3540 
3541 struct tcp_subsystem_add_host_opts {
3542 	char *psk;
3543 };
3544 
3545 static const struct spdk_json_object_decoder tcp_subsystem_add_host_opts_decoder[] = {
3546 	{"psk", offsetof(struct tcp_subsystem_add_host_opts, psk), spdk_json_decode_string, true},
3547 };
3548 
3549 static int
3550 tcp_load_psk(const char *fname, char *buf, size_t bufsz)
3551 {
3552 	FILE *psk_file;
3553 	struct stat statbuf;
3554 	int rc;
3555 
3556 	if (stat(fname, &statbuf) != 0) {
3557 		SPDK_ERRLOG("Could not read permissions for PSK file\n");
3558 		return -EACCES;
3559 	}
3560 
3561 	if ((statbuf.st_mode & TCP_PSK_INVALID_PERMISSIONS) != 0) {
3562 		SPDK_ERRLOG("Incorrect permissions for PSK file\n");
3563 		return -EPERM;
3564 	}
3565 	if ((size_t)statbuf.st_size > bufsz) {
3566 		SPDK_ERRLOG("Invalid PSK: too long\n");
3567 		return -EINVAL;
3568 	}
3569 	psk_file = fopen(fname, "r");
3570 	if (psk_file == NULL) {
3571 		SPDK_ERRLOG("Could not open PSK file\n");
3572 		return -EINVAL;
3573 	}
3574 
3575 	rc = fread(buf, 1, statbuf.st_size, psk_file);
3576 	if (rc != statbuf.st_size) {
3577 		SPDK_ERRLOG("Failed to read PSK\n");
3578 		fclose(psk_file);
3579 		return -EINVAL;
3580 	}
3581 
3582 	fclose(psk_file);
3583 	return 0;
3584 }
3585 
3586 SPDK_LOG_DEPRECATION_REGISTER(nvmf_tcp_psk_path, "PSK path", "v24.09", 0);
3587 
3588 static int
3589 nvmf_tcp_subsystem_add_host(struct spdk_nvmf_transport *transport,
3590 			    const struct spdk_nvmf_subsystem *subsystem,
3591 			    const char *hostnqn,
3592 			    const struct spdk_json_val *transport_specific)
3593 {
3594 	struct tcp_subsystem_add_host_opts opts;
3595 	struct spdk_nvmf_tcp_transport *ttransport;
3596 	struct tcp_psk_entry *tmp, *entry = NULL;
3597 	uint8_t psk_configured[SPDK_TLS_PSK_MAX_LEN] = {};
3598 	char psk_interchange[SPDK_TLS_PSK_MAX_LEN + 1] = {};
3599 	uint8_t tls_cipher_suite;
3600 	int rc = 0;
3601 	uint8_t psk_retained_hash;
3602 	uint64_t psk_configured_size;
3603 
3604 	if (transport_specific == NULL) {
3605 		return 0;
3606 	}
3607 
3608 	assert(transport != NULL);
3609 	assert(subsystem != NULL);
3610 
3611 	memset(&opts, 0, sizeof(opts));
3612 
3613 	/* Decode PSK (either name of a key or file path) */
3614 	if (spdk_json_decode_object_relaxed(transport_specific, tcp_subsystem_add_host_opts_decoder,
3615 					    SPDK_COUNTOF(tcp_subsystem_add_host_opts_decoder), &opts)) {
3616 		SPDK_ERRLOG("spdk_json_decode_object failed\n");
3617 		return -EINVAL;
3618 	}
3619 
3620 	if (opts.psk == NULL) {
3621 		return 0;
3622 	}
3623 
3624 	entry = calloc(1, sizeof(struct tcp_psk_entry));
3625 	if (entry == NULL) {
3626 		SPDK_ERRLOG("Unable to allocate memory for PSK entry!\n");
3627 		rc = -ENOMEM;
3628 		goto end;
3629 	}
3630 
3631 	entry->key = spdk_keyring_get_key(opts.psk);
3632 	if (entry->key != NULL) {
3633 		rc = spdk_key_get_key(entry->key, psk_interchange, SPDK_TLS_PSK_MAX_LEN);
3634 		if (rc < 0) {
3635 			SPDK_ERRLOG("Failed to retreive PSK '%s'\n", opts.psk);
3636 			rc = -EINVAL;
3637 			goto end;
3638 		}
3639 	} else {
3640 		if (strlen(opts.psk) >= sizeof(entry->psk)) {
3641 			SPDK_ERRLOG("PSK path too long\n");
3642 			rc = -EINVAL;
3643 			goto end;
3644 		}
3645 
3646 		rc = tcp_load_psk(opts.psk, psk_interchange, SPDK_TLS_PSK_MAX_LEN);
3647 		if (rc) {
3648 			SPDK_ERRLOG("Could not retrieve PSK from file\n");
3649 			goto end;
3650 		}
3651 
3652 		SPDK_LOG_DEPRECATED(nvmf_tcp_psk_path);
3653 	}
3654 
3655 	/* Parse PSK interchange to get length of base64 encoded data.
3656 	 * This is then used to decide which cipher suite should be used
3657 	 * to generate PSK identity and TLS PSK later on. */
3658 	rc = nvme_tcp_parse_interchange_psk(psk_interchange, psk_configured, sizeof(psk_configured),
3659 					    &psk_configured_size, &psk_retained_hash);
3660 	if (rc < 0) {
3661 		SPDK_ERRLOG("Failed to parse PSK interchange!\n");
3662 		goto end;
3663 	}
3664 
3665 	/* The Base64 string encodes the configured PSK (32 or 48 bytes binary).
3666 	 * This check also ensures that psk_configured_size is smaller than
3667 	 * psk_retained buffer size. */
3668 	if (psk_configured_size == SHA256_DIGEST_LENGTH) {
3669 		tls_cipher_suite = NVME_TCP_CIPHER_AES_128_GCM_SHA256;
3670 	} else if (psk_configured_size == SHA384_DIGEST_LENGTH) {
3671 		tls_cipher_suite = NVME_TCP_CIPHER_AES_256_GCM_SHA384;
3672 	} else {
3673 		SPDK_ERRLOG("Unrecognized cipher suite!\n");
3674 		rc = -EINVAL;
3675 		goto end;
3676 	}
3677 
3678 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3679 	/* Generate PSK identity. */
3680 	rc = nvme_tcp_generate_psk_identity(entry->pskid, sizeof(entry->pskid), hostnqn,
3681 					    subsystem->subnqn, tls_cipher_suite);
3682 	if (rc) {
3683 		rc = -EINVAL;
3684 		goto end;
3685 	}
3686 	/* Check if PSK identity entry already exists. */
3687 	TAILQ_FOREACH(tmp, &ttransport->psks, link) {
3688 		if (strncmp(tmp->pskid, entry->pskid, NVMF_PSK_IDENTITY_LEN) == 0) {
3689 			SPDK_ERRLOG("Given PSK identity: %s entry already exists!\n", entry->pskid);
3690 			rc = -EEXIST;
3691 			goto end;
3692 		}
3693 	}
3694 
3695 	if (snprintf(entry->hostnqn, sizeof(entry->hostnqn), "%s", hostnqn) < 0) {
3696 		SPDK_ERRLOG("Could not write hostnqn string!\n");
3697 		rc = -EINVAL;
3698 		goto end;
3699 	}
3700 	if (snprintf(entry->subnqn, sizeof(entry->subnqn), "%s", subsystem->subnqn) < 0) {
3701 		SPDK_ERRLOG("Could not write subnqn string!\n");
3702 		rc = -EINVAL;
3703 		goto end;
3704 	}
3705 
3706 	entry->tls_cipher_suite = tls_cipher_suite;
3707 
3708 	/* No hash indicates that Configured PSK must be used as Retained PSK. */
3709 	if (psk_retained_hash == NVME_TCP_HASH_ALGORITHM_NONE) {
3710 		/* Psk configured is either 32 or 48 bytes long. */
3711 		memcpy(entry->psk, psk_configured, psk_configured_size);
3712 		entry->psk_size = psk_configured_size;
3713 	} else {
3714 		/* Derive retained PSK. */
3715 		rc = nvme_tcp_derive_retained_psk(psk_configured, psk_configured_size, hostnqn, entry->psk,
3716 						  SPDK_TLS_PSK_MAX_LEN, psk_retained_hash);
3717 		if (rc < 0) {
3718 			SPDK_ERRLOG("Unable to derive retained PSK!\n");
3719 			goto end;
3720 		}
3721 		entry->psk_size = rc;
3722 	}
3723 
3724 	if (entry->key == NULL) {
3725 		rc = snprintf(entry->psk_path, sizeof(entry->psk_path), "%s", opts.psk);
3726 		if (rc < 0 || (size_t)rc >= sizeof(entry->psk_path)) {
3727 			SPDK_ERRLOG("Could not save PSK path!\n");
3728 			rc = -ENAMETOOLONG;
3729 			goto end;
3730 		}
3731 	}
3732 
3733 	TAILQ_INSERT_TAIL(&ttransport->psks, entry, link);
3734 	rc = 0;
3735 
3736 end:
3737 	spdk_memset_s(psk_configured, sizeof(psk_configured), 0, sizeof(psk_configured));
3738 	spdk_memset_s(psk_interchange, sizeof(psk_interchange), 0, sizeof(psk_interchange));
3739 
3740 	free(opts.psk);
3741 	if (rc != 0) {
3742 		nvmf_tcp_free_psk_entry(entry);
3743 	}
3744 
3745 	return rc;
3746 }
3747 
3748 static void
3749 nvmf_tcp_subsystem_remove_host(struct spdk_nvmf_transport *transport,
3750 			       const struct spdk_nvmf_subsystem *subsystem,
3751 			       const char *hostnqn)
3752 {
3753 	struct spdk_nvmf_tcp_transport *ttransport;
3754 	struct tcp_psk_entry *entry, *tmp;
3755 
3756 	assert(transport != NULL);
3757 	assert(subsystem != NULL);
3758 
3759 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3760 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
3761 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3762 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3763 			TAILQ_REMOVE(&ttransport->psks, entry, link);
3764 			nvmf_tcp_free_psk_entry(entry);
3765 			break;
3766 		}
3767 	}
3768 }
3769 
3770 static void
3771 nvmf_tcp_subsystem_dump_host(struct spdk_nvmf_transport *transport,
3772 			     const struct spdk_nvmf_subsystem *subsystem, const char *hostnqn,
3773 			     struct spdk_json_write_ctx *w)
3774 {
3775 	struct spdk_nvmf_tcp_transport *ttransport;
3776 	struct tcp_psk_entry *entry;
3777 
3778 	assert(transport != NULL);
3779 	assert(subsystem != NULL);
3780 
3781 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3782 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
3783 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3784 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3785 			spdk_json_write_named_string(w, "psk", entry->key ?
3786 						     spdk_key_get_name(entry->key) : entry->psk_path);
3787 			break;
3788 		}
3789 	}
3790 }
3791 
3792 static void
3793 nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
3794 {
3795 	opts->max_queue_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
3796 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
3797 	opts->in_capsule_data_size =	SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
3798 	opts->max_io_size =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
3799 	opts->io_unit_size =		SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
3800 	opts->max_aq_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
3801 	opts->num_shared_buffers =	SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
3802 	opts->buf_cache_size =		SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
3803 	opts->dif_insert_or_strip =	SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
3804 	opts->abort_timeout_sec =	SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
3805 	opts->transport_specific =      NULL;
3806 }
3807 
3808 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
3809 	.name = "TCP",
3810 	.type = SPDK_NVME_TRANSPORT_TCP,
3811 	.opts_init = nvmf_tcp_opts_init,
3812 	.create = nvmf_tcp_create,
3813 	.dump_opts = nvmf_tcp_dump_opts,
3814 	.destroy = nvmf_tcp_destroy,
3815 
3816 	.listen = nvmf_tcp_listen,
3817 	.stop_listen = nvmf_tcp_stop_listen,
3818 
3819 	.listener_discover = nvmf_tcp_discover,
3820 
3821 	.poll_group_create = nvmf_tcp_poll_group_create,
3822 	.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
3823 	.poll_group_destroy = nvmf_tcp_poll_group_destroy,
3824 	.poll_group_add = nvmf_tcp_poll_group_add,
3825 	.poll_group_remove = nvmf_tcp_poll_group_remove,
3826 	.poll_group_poll = nvmf_tcp_poll_group_poll,
3827 
3828 	.req_free = nvmf_tcp_req_free,
3829 	.req_complete = nvmf_tcp_req_complete,
3830 
3831 	.qpair_fini = nvmf_tcp_close_qpair,
3832 	.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
3833 	.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
3834 	.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
3835 	.qpair_abort_request = nvmf_tcp_qpair_abort_request,
3836 	.subsystem_add_host = nvmf_tcp_subsystem_add_host,
3837 	.subsystem_remove_host = nvmf_tcp_subsystem_remove_host,
3838 	.subsystem_dump_host = nvmf_tcp_subsystem_dump_host,
3839 };
3840 
3841 SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
3842 SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)
3843