xref: /spdk/lib/nvmf/tcp.c (revision 9bdeb23a42ecfa6fbcdbf952595406cedc2b28de)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2018 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/accel.h"
8 #include "spdk/stdinc.h"
9 #include "spdk/crc32.h"
10 #include "spdk/endian.h"
11 #include "spdk/assert.h"
12 #include "spdk/thread.h"
13 #include "spdk/nvmf_transport.h"
14 #include "spdk/string.h"
15 #include "spdk/trace.h"
16 #include "spdk/util.h"
17 #include "spdk/log.h"
18 #include "spdk/keyring.h"
19 
20 #include "spdk_internal/assert.h"
21 #include "spdk_internal/nvme_tcp.h"
22 #include "spdk_internal/sock.h"
23 
24 #include "nvmf_internal.h"
25 #include "transport.h"
26 
27 #include "spdk_internal/trace_defs.h"
28 
29 #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
30 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
31 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
32 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
33 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
34 
35 #define SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH 2
36 #define SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH 65535
37 #define SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH 2
38 #define SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH 4096
39 
40 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH 128
41 #define SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH 128
42 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
43 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
44 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
45 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
46 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
47 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX
48 #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
49 #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
50 
51 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
52 static bool g_tls_log = false;
53 
54 /* spdk nvmf related structure */
55 enum spdk_nvmf_tcp_req_state {
56 
57 	/* The request is not currently in use */
58 	TCP_REQUEST_STATE_FREE = 0,
59 
60 	/* Initial state when request first received */
61 	TCP_REQUEST_STATE_NEW = 1,
62 
63 	/* The request is queued until a data buffer is available. */
64 	TCP_REQUEST_STATE_NEED_BUFFER = 2,
65 
66 	/* The request has the data buffer available */
67 	TCP_REQUEST_STATE_HAVE_BUFFER = 3,
68 
69 	/* The request is waiting for zcopy_start to finish */
70 	TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 4,
71 
72 	/* The request has received a zero-copy buffer */
73 	TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 5,
74 
75 	/* The request is currently transferring data from the host to the controller. */
76 	TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 6,
77 
78 	/* The request is waiting for the R2T send acknowledgement. */
79 	TCP_REQUEST_STATE_AWAITING_R2T_ACK = 7,
80 
81 	/* The request is ready to execute at the block device */
82 	TCP_REQUEST_STATE_READY_TO_EXECUTE = 8,
83 
84 	/* The request is currently executing at the block device */
85 	TCP_REQUEST_STATE_EXECUTING = 9,
86 
87 	/* The request is waiting for zcopy buffers to be committed */
88 	TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 10,
89 
90 	/* The request finished executing at the block device */
91 	TCP_REQUEST_STATE_EXECUTED = 11,
92 
93 	/* The request is ready to send a completion */
94 	TCP_REQUEST_STATE_READY_TO_COMPLETE = 12,
95 
96 	/* The request is currently transferring final pdus from the controller to the host. */
97 	TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 13,
98 
99 	/* The request is waiting for zcopy buffers to be released (without committing) */
100 	TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 14,
101 
102 	/* The request completed and can be marked free. */
103 	TCP_REQUEST_STATE_COMPLETED = 15,
104 
105 	/* Terminator */
106 	TCP_REQUEST_NUM_STATES,
107 };
108 
109 enum nvmf_tcp_qpair_state {
110 	NVMF_TCP_QPAIR_STATE_INVALID = 0,
111 	NVMF_TCP_QPAIR_STATE_INITIALIZING = 1,
112 	NVMF_TCP_QPAIR_STATE_RUNNING = 2,
113 	NVMF_TCP_QPAIR_STATE_EXITING = 3,
114 	NVMF_TCP_QPAIR_STATE_EXITED = 4,
115 };
116 
117 static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
118 	"Invalid PDU Header Field",
119 	"PDU Sequence Error",
120 	"Header Digiest Error",
121 	"Data Transfer Out of Range",
122 	"R2T Limit Exceeded",
123 	"Unsupported parameter",
124 };
125 
126 SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
127 {
128 	spdk_trace_register_owner_type(OWNER_TYPE_NVMF_TCP, 't');
129 	spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
130 	spdk_trace_register_description("TCP_REQ_NEW",
131 					TRACE_TCP_REQUEST_STATE_NEW,
132 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1,
133 					SPDK_TRACE_ARG_TYPE_INT, "qd");
134 	spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
135 					TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
136 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
137 					SPDK_TRACE_ARG_TYPE_INT, "");
138 	spdk_trace_register_description("TCP_REQ_HAVE_BUFFER",
139 					TRACE_TCP_REQUEST_STATE_HAVE_BUFFER,
140 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
141 					SPDK_TRACE_ARG_TYPE_INT, "");
142 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START",
143 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START,
144 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
145 					SPDK_TRACE_ARG_TYPE_INT, "");
146 	spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL",
147 					TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED,
148 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
149 					SPDK_TRACE_ARG_TYPE_INT, "");
150 	spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
151 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
152 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
153 					SPDK_TRACE_ARG_TYPE_INT, "");
154 	spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
155 					TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
156 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
157 					SPDK_TRACE_ARG_TYPE_INT, "");
158 	spdk_trace_register_description("TCP_REQ_EXECUTING",
159 					TRACE_TCP_REQUEST_STATE_EXECUTING,
160 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
161 					SPDK_TRACE_ARG_TYPE_INT, "");
162 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT",
163 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT,
164 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
165 					SPDK_TRACE_ARG_TYPE_INT, "");
166 	spdk_trace_register_description("TCP_REQ_EXECUTED",
167 					TRACE_TCP_REQUEST_STATE_EXECUTED,
168 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
169 					SPDK_TRACE_ARG_TYPE_INT, "");
170 	spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
171 					TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
172 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
173 					SPDK_TRACE_ARG_TYPE_INT, "");
174 	spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
175 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
176 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
177 					SPDK_TRACE_ARG_TYPE_INT, "");
178 	spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS",
179 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE,
180 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
181 					SPDK_TRACE_ARG_TYPE_INT, "");
182 	spdk_trace_register_description("TCP_REQ_COMPLETED",
183 					TRACE_TCP_REQUEST_STATE_COMPLETED,
184 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
185 					SPDK_TRACE_ARG_TYPE_INT, "qd");
186 	spdk_trace_register_description("TCP_READ_DONE",
187 					TRACE_TCP_READ_FROM_SOCKET_DONE,
188 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
189 					SPDK_TRACE_ARG_TYPE_INT, "");
190 	spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
191 					TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
192 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
193 					SPDK_TRACE_ARG_TYPE_INT, "");
194 
195 	spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE,
196 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
197 					SPDK_TRACE_ARG_TYPE_INT, "");
198 	spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT,
199 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
200 					SPDK_TRACE_ARG_TYPE_INT, "");
201 	spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE,
202 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
203 					SPDK_TRACE_ARG_TYPE_INT, "state");
204 	spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT,
205 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
206 					SPDK_TRACE_ARG_TYPE_INT, "");
207 	spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY,
208 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
209 					SPDK_TRACE_ARG_TYPE_INT, "");
210 	spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ,
211 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
212 					SPDK_TRACE_ARG_TYPE_INT, "");
213 	spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE,
214 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
215 					SPDK_TRACE_ARG_TYPE_INT, "state");
216 
217 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1);
218 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0);
219 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_QUEUE, OBJECT_NVMF_TCP_IO, 0);
220 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_PEND, OBJECT_NVMF_TCP_IO, 0);
221 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_COMPLETE, OBJECT_NVMF_TCP_IO, 0);
222 }
223 
224 struct spdk_nvmf_tcp_req  {
225 	struct spdk_nvmf_request		req;
226 	struct spdk_nvme_cpl			rsp;
227 	struct spdk_nvme_cmd			cmd;
228 
229 	/* A PDU that can be used for sending responses. This is
230 	 * not the incoming PDU! */
231 	struct nvme_tcp_pdu			*pdu;
232 
233 	/* In-capsule data buffer */
234 	uint8_t					*buf;
235 
236 	struct spdk_nvmf_tcp_req		*fused_pair;
237 
238 	/*
239 	 * The PDU for a request may be used multiple times in serial over
240 	 * the request's lifetime. For example, first to send an R2T, then
241 	 * to send a completion. To catch mistakes where the PDU is used
242 	 * twice at the same time, add a debug flag here for init/fini.
243 	 */
244 	bool					pdu_in_use;
245 	bool					has_in_capsule_data;
246 	bool					fused_failed;
247 
248 	/* transfer_tag */
249 	uint16_t				ttag;
250 
251 	enum spdk_nvmf_tcp_req_state		state;
252 
253 	/*
254 	 * h2c_offset is used when we receive the h2c_data PDU.
255 	 */
256 	uint32_t				h2c_offset;
257 
258 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		link;
259 	TAILQ_ENTRY(spdk_nvmf_tcp_req)		state_link;
260 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		control_msg_link;
261 };
262 
263 struct spdk_nvmf_tcp_qpair {
264 	struct spdk_nvmf_qpair			qpair;
265 	struct spdk_nvmf_tcp_poll_group		*group;
266 	struct spdk_sock			*sock;
267 
268 	enum nvme_tcp_pdu_recv_state		recv_state;
269 	enum nvmf_tcp_qpair_state		state;
270 
271 	/* PDU being actively received */
272 	struct nvme_tcp_pdu			*pdu_in_progress;
273 
274 	struct spdk_nvmf_tcp_req		*fused_first;
275 
276 	/* Queues to track the requests in all states */
277 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_working_queue;
278 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_free_queue;
279 	SLIST_HEAD(, nvme_tcp_pdu)		tcp_pdu_free_queue;
280 	/* Number of working pdus */
281 	uint32_t				tcp_pdu_working_count;
282 
283 	/* Number of requests in each state */
284 	uint32_t				state_cntr[TCP_REQUEST_NUM_STATES];
285 
286 	uint8_t					cpda;
287 
288 	bool					host_hdgst_enable;
289 	bool					host_ddgst_enable;
290 
291 	/* This is a spare PDU used for sending special management
292 	 * operations. Primarily, this is used for the initial
293 	 * connection response and c2h termination request. */
294 	struct nvme_tcp_pdu			*mgmt_pdu;
295 
296 	/* Arrays of in-capsule buffers, requests, and pdus.
297 	 * Each array is 'resource_count' number of elements */
298 	void					*bufs;
299 	struct spdk_nvmf_tcp_req		*reqs;
300 	struct nvme_tcp_pdu			*pdus;
301 	uint32_t				resource_count;
302 	uint32_t				recv_buf_size;
303 
304 	struct spdk_nvmf_tcp_port		*port;
305 
306 	/* IP address */
307 	char					initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
308 	char					target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
309 
310 	/* IP port */
311 	uint16_t				initiator_port;
312 	uint16_t				target_port;
313 
314 	/* Wait until the host terminates the connection (e.g. after sending C2HTermReq) */
315 	bool					wait_terminate;
316 
317 	/* Timer used to destroy qpair after detecting transport error issue if initiator does
318 	 *  not close the connection.
319 	 */
320 	struct spdk_poller			*timeout_poller;
321 
322 	spdk_nvmf_transport_qpair_fini_cb	fini_cb_fn;
323 	void					*fini_cb_arg;
324 
325 	TAILQ_ENTRY(spdk_nvmf_tcp_qpair)	link;
326 };
327 
328 struct spdk_nvmf_tcp_control_msg {
329 	STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
330 };
331 
332 struct spdk_nvmf_tcp_control_msg_list {
333 	void *msg_buf;
334 	STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
335 	STAILQ_HEAD(, spdk_nvmf_tcp_req) waiting_for_msg_reqs;
336 };
337 
338 struct spdk_nvmf_tcp_poll_group {
339 	struct spdk_nvmf_transport_poll_group	group;
340 	struct spdk_sock_group			*sock_group;
341 
342 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	qpairs;
343 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	await_req;
344 
345 	struct spdk_io_channel			*accel_channel;
346 	struct spdk_nvmf_tcp_control_msg_list	*control_msg_list;
347 
348 	TAILQ_ENTRY(spdk_nvmf_tcp_poll_group)	link;
349 };
350 
351 struct spdk_nvmf_tcp_port {
352 	const struct spdk_nvme_transport_id	*trid;
353 	struct spdk_sock			*listen_sock;
354 	struct spdk_nvmf_transport		*transport;
355 	TAILQ_ENTRY(spdk_nvmf_tcp_port)		link;
356 };
357 
358 struct tcp_transport_opts {
359 	bool		c2h_success;
360 	uint16_t	control_msg_num;
361 	uint32_t	sock_priority;
362 };
363 
364 struct tcp_psk_entry {
365 	char				hostnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
366 	char				subnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
367 	char				pskid[NVMF_PSK_IDENTITY_LEN];
368 	uint8_t				psk[SPDK_TLS_PSK_MAX_LEN];
369 	struct spdk_key			*key;
370 	uint32_t			psk_size;
371 	enum nvme_tcp_cipher_suite	tls_cipher_suite;
372 	TAILQ_ENTRY(tcp_psk_entry)	link;
373 };
374 
375 struct spdk_nvmf_tcp_transport {
376 	struct spdk_nvmf_transport		transport;
377 	struct tcp_transport_opts               tcp_opts;
378 	uint32_t				ack_timeout;
379 
380 	struct spdk_nvmf_tcp_poll_group		*next_pg;
381 
382 	struct spdk_poller			*accept_poller;
383 	struct spdk_sock_group			*listen_sock_group;
384 
385 	TAILQ_HEAD(, spdk_nvmf_tcp_port)	ports;
386 	TAILQ_HEAD(, spdk_nvmf_tcp_poll_group)	poll_groups;
387 
388 	TAILQ_HEAD(, tcp_psk_entry)		psks;
389 };
390 
391 static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
392 	{
393 		"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
394 		spdk_json_decode_bool, true
395 	},
396 	{
397 		"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
398 		spdk_json_decode_uint16, true
399 	},
400 	{
401 		"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
402 		spdk_json_decode_uint32, true
403 	},
404 };
405 
406 static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
407 				 struct spdk_nvmf_tcp_req *tcp_req);
408 static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
409 
410 static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
411 				    struct spdk_nvmf_tcp_req *tcp_req);
412 
413 static inline void
414 nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
415 		       enum spdk_nvmf_tcp_req_state state)
416 {
417 	struct spdk_nvmf_qpair *qpair;
418 	struct spdk_nvmf_tcp_qpair *tqpair;
419 
420 	qpair = tcp_req->req.qpair;
421 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
422 
423 	assert(tqpair->state_cntr[tcp_req->state] > 0);
424 	tqpair->state_cntr[tcp_req->state]--;
425 	tqpair->state_cntr[state]++;
426 
427 	tcp_req->state = state;
428 }
429 
430 static inline struct nvme_tcp_pdu *
431 nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
432 {
433 	assert(tcp_req->pdu_in_use == false);
434 
435 	memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
436 	tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
437 
438 	return tcp_req->pdu;
439 }
440 
441 static struct spdk_nvmf_tcp_req *
442 nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
443 {
444 	struct spdk_nvmf_tcp_req *tcp_req;
445 
446 	tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
447 	if (spdk_unlikely(!tcp_req)) {
448 		return NULL;
449 	}
450 
451 	memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
452 	tcp_req->h2c_offset = 0;
453 	tcp_req->has_in_capsule_data = false;
454 	tcp_req->req.dif_enabled = false;
455 	tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE;
456 
457 	TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
458 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
459 	tqpair->qpair.queue_depth++;
460 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
461 	return tcp_req;
462 }
463 
464 static inline void
465 nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
466 {
467 	assert(!tcp_req->pdu_in_use);
468 
469 	TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
470 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
471 	tqpair->qpair.queue_depth--;
472 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
473 }
474 
475 static void
476 nvmf_tcp_req_get_buffers_done(struct spdk_nvmf_request *req)
477 {
478 	struct spdk_nvmf_tcp_req *tcp_req;
479 	struct spdk_nvmf_transport *transport;
480 	struct spdk_nvmf_tcp_transport *ttransport;
481 
482 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
483 	transport = req->qpair->transport;
484 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
485 
486 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
487 	nvmf_tcp_req_process(ttransport, tcp_req);
488 }
489 
490 static void
491 nvmf_tcp_request_free(void *cb_arg)
492 {
493 	struct spdk_nvmf_tcp_transport *ttransport;
494 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
495 
496 	assert(tcp_req != NULL);
497 
498 	SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
499 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
500 				      struct spdk_nvmf_tcp_transport, transport);
501 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
502 	nvmf_tcp_req_process(ttransport, tcp_req);
503 }
504 
505 static int
506 nvmf_tcp_req_free(struct spdk_nvmf_request *req)
507 {
508 	struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
509 
510 	nvmf_tcp_request_free(tcp_req);
511 
512 	return 0;
513 }
514 
515 static void
516 nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
517 			   enum spdk_nvmf_tcp_req_state state)
518 {
519 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
520 
521 	assert(state != TCP_REQUEST_STATE_FREE);
522 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
523 		if (state == tcp_req->state) {
524 			nvmf_tcp_request_free(tcp_req);
525 		}
526 	}
527 }
528 
529 static inline void
530 nvmf_tcp_request_get_buffers_abort(struct spdk_nvmf_tcp_req *tcp_req)
531 {
532 	/* Request can wait either for the iobuf or control_msg */
533 	struct spdk_nvmf_poll_group *group = tcp_req->req.qpair->group;
534 	struct spdk_nvmf_transport *transport = tcp_req->req.qpair->transport;
535 	struct spdk_nvmf_transport_poll_group *tgroup = nvmf_get_transport_poll_group(group, transport);
536 	struct spdk_nvmf_tcp_poll_group *tcp_group = SPDK_CONTAINEROF(tgroup,
537 			struct spdk_nvmf_tcp_poll_group, group);
538 	struct spdk_nvmf_tcp_req *tmp_req, *abort_req;
539 
540 	assert(tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER);
541 
542 	STAILQ_FOREACH_SAFE(abort_req, &tcp_group->control_msg_list->waiting_for_msg_reqs, control_msg_link,
543 			    tmp_req) {
544 		if (abort_req == tcp_req) {
545 			STAILQ_REMOVE(&tcp_group->control_msg_list->waiting_for_msg_reqs, abort_req, spdk_nvmf_tcp_req,
546 				      control_msg_link);
547 			return;
548 		}
549 	}
550 
551 	if (!nvmf_request_get_buffers_abort(&tcp_req->req)) {
552 		SPDK_ERRLOG("Failed to abort tcp_req=%p\n", tcp_req);
553 		assert(0 && "Should never happen");
554 	}
555 }
556 
557 static void
558 nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
559 {
560 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
561 
562 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
563 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
564 
565 	/* Wipe the requests waiting for buffer from the waiting list */
566 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
567 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
568 			nvmf_tcp_request_get_buffers_abort(tcp_req);
569 		}
570 	}
571 
572 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
573 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
574 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
575 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
576 }
577 
578 static void
579 nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
580 {
581 	int i;
582 	struct spdk_nvmf_tcp_req *tcp_req;
583 
584 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
585 	for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
586 		SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
587 		TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
588 			if ((int)tcp_req->state == i) {
589 				SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
590 				SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
591 			}
592 		}
593 	}
594 }
595 
596 static void
597 _nvmf_tcp_qpair_destroy(void *_tqpair)
598 {
599 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
600 	spdk_nvmf_transport_qpair_fini_cb cb_fn = tqpair->fini_cb_fn;
601 	void *cb_arg = tqpair->fini_cb_arg;
602 	int err = 0;
603 
604 	spdk_trace_record(TRACE_TCP_QP_DESTROY, tqpair->qpair.trace_id, 0, 0);
605 
606 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
607 
608 	err = spdk_sock_close(&tqpair->sock);
609 	assert(err == 0);
610 	nvmf_tcp_cleanup_all_states(tqpair);
611 
612 	if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
613 		SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
614 			    tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
615 			    tqpair->resource_count);
616 		err++;
617 	}
618 
619 	if (err > 0) {
620 		nvmf_tcp_dump_qpair_req_contents(tqpair);
621 	}
622 
623 	/* The timeout poller might still be registered here if we close the qpair before host
624 	 * terminates the connection.
625 	 */
626 	spdk_poller_unregister(&tqpair->timeout_poller);
627 	spdk_dma_free(tqpair->pdus);
628 	free(tqpair->reqs);
629 	spdk_free(tqpair->bufs);
630 	spdk_trace_unregister_owner(tqpair->qpair.trace_id);
631 	free(tqpair);
632 
633 	if (cb_fn != NULL) {
634 		cb_fn(cb_arg);
635 	}
636 
637 	SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
638 }
639 
640 static void
641 nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
642 {
643 	/* Delay the destruction to make sure it isn't performed from the context of a sock
644 	 * callback.  Otherwise, spdk_sock_close() might not abort pending requests, causing their
645 	 * completions to be executed after the qpair is freed.  (Note: this fixed issue #2471.)
646 	 */
647 	spdk_thread_send_msg(spdk_get_thread(), _nvmf_tcp_qpair_destroy, tqpair);
648 }
649 
650 static void
651 nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
652 {
653 	struct spdk_nvmf_tcp_transport	*ttransport;
654 	assert(w != NULL);
655 
656 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
657 	spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
658 	spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
659 }
660 
661 static void
662 nvmf_tcp_free_psk_entry(struct tcp_psk_entry *entry)
663 {
664 	if (entry == NULL) {
665 		return;
666 	}
667 
668 	spdk_memset_s(entry->psk, sizeof(entry->psk), 0, sizeof(entry->psk));
669 	spdk_keyring_put_key(entry->key);
670 	free(entry);
671 }
672 
673 static int
674 nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
675 		 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
676 {
677 	struct spdk_nvmf_tcp_transport	*ttransport;
678 	struct tcp_psk_entry *entry, *tmp;
679 
680 	assert(transport != NULL);
681 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
682 
683 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
684 		TAILQ_REMOVE(&ttransport->psks, entry, link);
685 		nvmf_tcp_free_psk_entry(entry);
686 	}
687 
688 	spdk_poller_unregister(&ttransport->accept_poller);
689 	spdk_sock_group_unregister_interrupt(ttransport->listen_sock_group);
690 	spdk_sock_group_close(&ttransport->listen_sock_group);
691 	free(ttransport);
692 
693 	if (cb_fn) {
694 		cb_fn(cb_arg);
695 	}
696 	return 0;
697 }
698 
699 static int nvmf_tcp_accept(void *ctx);
700 
701 static void nvmf_tcp_accept_cb(void *ctx, struct spdk_sock_group *group, struct spdk_sock *sock);
702 
703 static struct spdk_nvmf_transport *
704 nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
705 {
706 	struct spdk_nvmf_tcp_transport *ttransport;
707 	uint32_t sge_count;
708 	uint32_t min_shared_buffers;
709 	int rc;
710 	uint64_t period;
711 
712 	ttransport = calloc(1, sizeof(*ttransport));
713 	if (!ttransport) {
714 		return NULL;
715 	}
716 
717 	TAILQ_INIT(&ttransport->ports);
718 	TAILQ_INIT(&ttransport->poll_groups);
719 	TAILQ_INIT(&ttransport->psks);
720 
721 	ttransport->transport.ops = &spdk_nvmf_transport_tcp;
722 
723 	ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
724 	ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
725 	ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
726 	if (opts->transport_specific != NULL &&
727 	    spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
728 					    SPDK_COUNTOF(tcp_transport_opts_decoder),
729 					    &ttransport->tcp_opts)) {
730 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
731 		free(ttransport);
732 		return NULL;
733 	}
734 
735 	SPDK_NOTICELOG("*** TCP Transport Init ***\n");
736 
737 	SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
738 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
739 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
740 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
741 		     "  num_shared_buffers=%d, c2h_success=%d,\n"
742 		     "  dif_insert_or_strip=%d, sock_priority=%d\n"
743 		     "  abort_timeout_sec=%d, control_msg_num=%hu\n"
744 		     "  ack_timeout=%d\n",
745 		     opts->max_queue_depth,
746 		     opts->max_io_size,
747 		     opts->max_qpairs_per_ctrlr - 1,
748 		     opts->io_unit_size,
749 		     opts->in_capsule_data_size,
750 		     opts->max_aq_depth,
751 		     opts->num_shared_buffers,
752 		     ttransport->tcp_opts.c2h_success,
753 		     opts->dif_insert_or_strip,
754 		     ttransport->tcp_opts.sock_priority,
755 		     opts->abort_timeout_sec,
756 		     ttransport->tcp_opts.control_msg_num,
757 		     opts->ack_timeout);
758 
759 	if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
760 		SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
761 			    "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
762 			    ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
763 		free(ttransport);
764 		return NULL;
765 	}
766 
767 	if (ttransport->tcp_opts.control_msg_num == 0 &&
768 	    opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
769 		SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
770 			     SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
771 		ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
772 	}
773 
774 	/* I/O unit size cannot be larger than max I/O size */
775 	if (opts->io_unit_size > opts->max_io_size) {
776 		SPDK_WARNLOG("TCP param io_unit_size %u can't be larger than max_io_size %u. Using max_io_size as io_unit_size\n",
777 			     opts->io_unit_size, opts->max_io_size);
778 		opts->io_unit_size = opts->max_io_size;
779 	}
780 
781 	/* In capsule data size cannot be larger than max I/O size */
782 	if (opts->in_capsule_data_size > opts->max_io_size) {
783 		SPDK_WARNLOG("TCP param ICD size %u can't be larger than max_io_size %u. Using max_io_size as ICD size\n",
784 			     opts->io_unit_size, opts->max_io_size);
785 		opts->in_capsule_data_size = opts->max_io_size;
786 	}
787 
788 	/* max IO queue depth cannot be smaller than 2 or larger than 65535.
789 	 * We will not check SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, because max_queue_depth is 16bits and always not larger than 64k. */
790 	if (opts->max_queue_depth < SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH) {
791 		SPDK_WARNLOG("TCP param max_queue_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
792 			     opts->max_queue_depth, SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH,
793 			     SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH);
794 		opts->max_queue_depth = SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
795 	}
796 
797 	/* max admin queue depth cannot be smaller than 2 or larger than 4096 */
798 	if (opts->max_aq_depth < SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH ||
799 	    opts->max_aq_depth > SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH) {
800 		SPDK_WARNLOG("TCP param max_aq_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
801 			     opts->max_aq_depth, SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH,
802 			     SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH);
803 		opts->max_aq_depth = SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
804 	}
805 
806 	sge_count = opts->max_io_size / opts->io_unit_size;
807 	if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
808 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
809 		free(ttransport);
810 		return NULL;
811 	}
812 
813 	/* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */
814 	if (opts->buf_cache_size < UINT32_MAX) {
815 		min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
816 		if (min_shared_buffers > opts->num_shared_buffers) {
817 			SPDK_ERRLOG("There are not enough buffers to satisfy "
818 				    "per-poll group caches for each thread. (%" PRIu32 ") "
819 				    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
820 			SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
821 			free(ttransport);
822 			return NULL;
823 		}
824 	}
825 
826 	period = spdk_interrupt_mode_is_enabled() ? 0 : opts->acceptor_poll_rate;
827 	ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport, period);
828 	if (!ttransport->accept_poller) {
829 		free(ttransport);
830 		return NULL;
831 	}
832 
833 	spdk_poller_register_interrupt(ttransport->accept_poller, NULL, NULL);
834 
835 	ttransport->listen_sock_group = spdk_sock_group_create(NULL);
836 	if (ttransport->listen_sock_group == NULL) {
837 		SPDK_ERRLOG("Failed to create socket group for listen sockets\n");
838 		spdk_poller_unregister(&ttransport->accept_poller);
839 		free(ttransport);
840 		return NULL;
841 	}
842 
843 	if (spdk_interrupt_mode_is_enabled()) {
844 		rc = SPDK_SOCK_GROUP_REGISTER_INTERRUPT(ttransport->listen_sock_group,
845 							SPDK_INTERRUPT_EVENT_IN | SPDK_INTERRUPT_EVENT_OUT, nvmf_tcp_accept, &ttransport->transport);
846 		if (rc != 0) {
847 			SPDK_ERRLOG("Failed to register interrupt for listen socker sock group\n");
848 			spdk_sock_group_close(&ttransport->listen_sock_group);
849 			spdk_poller_unregister(&ttransport->accept_poller);
850 			free(ttransport);
851 			return NULL;
852 		}
853 	}
854 
855 	return &ttransport->transport;
856 }
857 
858 static int
859 nvmf_tcp_trsvcid_to_int(const char *trsvcid)
860 {
861 	unsigned long long ull;
862 	char *end = NULL;
863 
864 	ull = strtoull(trsvcid, &end, 10);
865 	if (end == NULL || end == trsvcid || *end != '\0') {
866 		return -1;
867 	}
868 
869 	/* Valid TCP/IP port numbers are in [1, 65535] */
870 	if (ull == 0 || ull > 65535) {
871 		return -1;
872 	}
873 
874 	return (int)ull;
875 }
876 
877 /**
878  * Canonicalize a listen address trid.
879  */
880 static int
881 nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
882 			   const struct spdk_nvme_transport_id *trid)
883 {
884 	int trsvcid_int;
885 
886 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
887 	if (trsvcid_int < 0) {
888 		return -EINVAL;
889 	}
890 
891 	memset(canon_trid, 0, sizeof(*canon_trid));
892 	spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
893 	canon_trid->adrfam = trid->adrfam;
894 	snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
895 	snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
896 
897 	return 0;
898 }
899 
900 /**
901  * Find an existing listening port.
902  */
903 static struct spdk_nvmf_tcp_port *
904 nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
905 		   const struct spdk_nvme_transport_id *trid)
906 {
907 	struct spdk_nvme_transport_id canon_trid;
908 	struct spdk_nvmf_tcp_port *port;
909 
910 	if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
911 		return NULL;
912 	}
913 
914 	TAILQ_FOREACH(port, &ttransport->ports, link) {
915 		if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
916 			return port;
917 		}
918 	}
919 
920 	return NULL;
921 }
922 
923 static int
924 tcp_sock_get_key(uint8_t *out, int out_len, const char **cipher, const char *pskid,
925 		 void *get_key_ctx)
926 {
927 	struct tcp_psk_entry *entry;
928 	struct spdk_nvmf_tcp_transport *ttransport = get_key_ctx;
929 	size_t psk_len;
930 	int rc;
931 
932 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
933 		if (strcmp(pskid, entry->pskid) != 0) {
934 			continue;
935 		}
936 
937 		psk_len = entry->psk_size;
938 		if ((size_t)out_len < psk_len) {
939 			SPDK_ERRLOG("Out buffer of size: %" PRIu32 " cannot fit PSK of len: %lu\n",
940 				    out_len, psk_len);
941 			return -ENOBUFS;
942 		}
943 
944 		/* Convert PSK to the TLS PSK format. */
945 		rc = nvme_tcp_derive_tls_psk(entry->psk, psk_len, pskid, out, out_len,
946 					     entry->tls_cipher_suite);
947 		if (rc < 0) {
948 			SPDK_ERRLOG("Could not generate TLS PSK\n");
949 		}
950 
951 		switch (entry->tls_cipher_suite) {
952 		case NVME_TCP_CIPHER_AES_128_GCM_SHA256:
953 			*cipher = "TLS_AES_128_GCM_SHA256";
954 			break;
955 		case NVME_TCP_CIPHER_AES_256_GCM_SHA384:
956 			*cipher = "TLS_AES_256_GCM_SHA384";
957 			break;
958 		default:
959 			*cipher = NULL;
960 			return -ENOTSUP;
961 		}
962 
963 		return rc;
964 	}
965 
966 	SPDK_ERRLOG("Could not find PSK for identity: %s\n", pskid);
967 
968 	return -EINVAL;
969 }
970 
971 static int
972 nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
973 		struct spdk_nvmf_listen_opts *listen_opts)
974 {
975 	struct spdk_nvmf_tcp_transport *ttransport;
976 	struct spdk_nvmf_tcp_port *port;
977 	int trsvcid_int;
978 	uint8_t adrfam;
979 	const char *sock_impl_name;
980 	struct spdk_sock_impl_opts impl_opts;
981 	size_t impl_opts_size = sizeof(impl_opts);
982 	struct spdk_sock_opts opts;
983 	int rc;
984 
985 	if (!strlen(trid->trsvcid)) {
986 		SPDK_ERRLOG("Service id is required\n");
987 		return -EINVAL;
988 	}
989 
990 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
991 
992 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
993 	if (trsvcid_int < 0) {
994 		SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
995 		return -EINVAL;
996 	}
997 
998 	port = calloc(1, sizeof(*port));
999 	if (!port) {
1000 		SPDK_ERRLOG("Port allocation failed\n");
1001 		return -ENOMEM;
1002 	}
1003 
1004 	port->trid = trid;
1005 
1006 	sock_impl_name = NULL;
1007 
1008 	opts.opts_size = sizeof(opts);
1009 	spdk_sock_get_default_opts(&opts);
1010 	opts.priority = ttransport->tcp_opts.sock_priority;
1011 	opts.ack_timeout = transport->opts.ack_timeout;
1012 	if (listen_opts->secure_channel) {
1013 		if (listen_opts->sock_impl &&
1014 		    strncmp("ssl", listen_opts->sock_impl, strlen(listen_opts->sock_impl))) {
1015 			SPDK_ERRLOG("Enabling secure_channel while specifying a sock_impl different from 'ssl' is unsupported");
1016 			free(port);
1017 			return -EINVAL;
1018 		}
1019 		listen_opts->sock_impl = "ssl";
1020 	}
1021 
1022 	if (listen_opts->sock_impl) {
1023 		sock_impl_name = listen_opts->sock_impl;
1024 		spdk_sock_impl_get_opts(sock_impl_name, &impl_opts, &impl_opts_size);
1025 
1026 		if (!strncmp("ssl", sock_impl_name, strlen(sock_impl_name))) {
1027 			if (!g_tls_log) {
1028 				SPDK_NOTICELOG("TLS support is considered experimental\n");
1029 				g_tls_log = true;
1030 			}
1031 			impl_opts.tls_version = SPDK_TLS_VERSION_1_3;
1032 			impl_opts.get_key = tcp_sock_get_key;
1033 			impl_opts.get_key_ctx = ttransport;
1034 			impl_opts.tls_cipher_suites = "TLS_AES_256_GCM_SHA384:TLS_AES_128_GCM_SHA256";
1035 		}
1036 
1037 		opts.impl_opts = &impl_opts;
1038 		opts.impl_opts_size = sizeof(impl_opts);
1039 	}
1040 
1041 	port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
1042 			    sock_impl_name, &opts);
1043 	if (port->listen_sock == NULL) {
1044 		SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
1045 			    trid->traddr, trsvcid_int,
1046 			    spdk_strerror(errno), errno);
1047 		free(port);
1048 		return -errno;
1049 	}
1050 
1051 	if (spdk_sock_is_ipv4(port->listen_sock)) {
1052 		adrfam = SPDK_NVMF_ADRFAM_IPV4;
1053 	} else if (spdk_sock_is_ipv6(port->listen_sock)) {
1054 		adrfam = SPDK_NVMF_ADRFAM_IPV6;
1055 	} else {
1056 		SPDK_ERRLOG("Unhandled socket type\n");
1057 		adrfam = 0;
1058 	}
1059 
1060 	if (adrfam != trid->adrfam) {
1061 		SPDK_ERRLOG("Socket address family mismatch\n");
1062 		spdk_sock_close(&port->listen_sock);
1063 		free(port);
1064 		return -EINVAL;
1065 	}
1066 
1067 	rc = spdk_sock_group_add_sock(ttransport->listen_sock_group, port->listen_sock, nvmf_tcp_accept_cb,
1068 				      port);
1069 	if (rc < 0) {
1070 		SPDK_ERRLOG("Failed to add socket to the listen socket group\n");
1071 		spdk_sock_close(&port->listen_sock);
1072 		free(port);
1073 		return -errno;
1074 	}
1075 
1076 	port->transport = transport;
1077 
1078 	SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
1079 		       trid->traddr, trid->trsvcid);
1080 
1081 	TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
1082 	return 0;
1083 }
1084 
1085 static void
1086 nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
1087 		     const struct spdk_nvme_transport_id *trid)
1088 {
1089 	struct spdk_nvmf_tcp_transport *ttransport;
1090 	struct spdk_nvmf_tcp_port *port;
1091 
1092 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1093 
1094 	SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
1095 		      trid->traddr, trid->trsvcid);
1096 
1097 	port = nvmf_tcp_find_port(ttransport, trid);
1098 	if (port) {
1099 		spdk_sock_group_remove_sock(ttransport->listen_sock_group, port->listen_sock);
1100 		TAILQ_REMOVE(&ttransport->ports, port, link);
1101 		spdk_sock_close(&port->listen_sock);
1102 		free(port);
1103 	}
1104 }
1105 
1106 static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1107 		enum nvme_tcp_pdu_recv_state state);
1108 
1109 static void
1110 nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvmf_tcp_qpair_state state)
1111 {
1112 	tqpair->state = state;
1113 	spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0,
1114 			  (uint64_t)tqpair->state);
1115 }
1116 
1117 static void
1118 nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
1119 {
1120 	SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
1121 
1122 	spdk_trace_record(TRACE_TCP_QP_DISCONNECT, tqpair->qpair.trace_id, 0, 0);
1123 
1124 	if (tqpair->state <= NVMF_TCP_QPAIR_STATE_RUNNING) {
1125 		nvmf_tcp_qpair_set_state(tqpair, NVMF_TCP_QPAIR_STATE_EXITING);
1126 		assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1127 		spdk_poller_unregister(&tqpair->timeout_poller);
1128 
1129 		/* This will end up calling nvmf_tcp_close_qpair */
1130 		spdk_nvmf_qpair_disconnect(&tqpair->qpair);
1131 	}
1132 }
1133 
1134 static void
1135 _mgmt_pdu_write_done(void *_tqpair, int err)
1136 {
1137 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
1138 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1139 
1140 	if (spdk_unlikely(err != 0)) {
1141 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1142 		return;
1143 	}
1144 
1145 	assert(pdu->cb_fn != NULL);
1146 	pdu->cb_fn(pdu->cb_arg);
1147 }
1148 
1149 static void
1150 _req_pdu_write_done(void *req, int err)
1151 {
1152 	struct spdk_nvmf_tcp_req *tcp_req = req;
1153 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1154 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1155 
1156 	assert(tcp_req->pdu_in_use);
1157 	tcp_req->pdu_in_use = false;
1158 
1159 	/* If the request is in a completed state, we're waiting for write completion to free it */
1160 	if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) {
1161 		nvmf_tcp_request_free(tcp_req);
1162 		return;
1163 	}
1164 
1165 	if (spdk_unlikely(err != 0)) {
1166 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1167 		return;
1168 	}
1169 
1170 	assert(pdu->cb_fn != NULL);
1171 	pdu->cb_fn(pdu->cb_arg);
1172 }
1173 
1174 static void
1175 _pdu_write_done(struct nvme_tcp_pdu *pdu, int err)
1176 {
1177 	pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err);
1178 }
1179 
1180 static void
1181 _tcp_write_pdu(struct nvme_tcp_pdu *pdu)
1182 {
1183 	int rc;
1184 	uint32_t mapped_length;
1185 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1186 
1187 	pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
1188 			       tqpair->host_hdgst_enable, tqpair->host_ddgst_enable, &mapped_length);
1189 	spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
1190 
1191 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
1192 	    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
1193 		/* Try to force the send immediately. */
1194 		rc = spdk_sock_flush(tqpair->sock);
1195 		if (rc > 0 && (uint32_t)rc == mapped_length) {
1196 			_pdu_write_done(pdu, 0);
1197 		} else {
1198 			SPDK_ERRLOG("Could not write %s to socket: rc=%d, errno=%d\n",
1199 				    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ?
1200 				    "IC_RESP" : "TERM_REQ", rc, errno);
1201 			_pdu_write_done(pdu, rc >= 0 ? -EAGAIN : -errno);
1202 		}
1203 	}
1204 }
1205 
1206 static void
1207 data_crc32_accel_done(void *cb_arg, int status)
1208 {
1209 	struct nvme_tcp_pdu *pdu = cb_arg;
1210 
1211 	if (spdk_unlikely(status)) {
1212 		SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
1213 		_pdu_write_done(pdu, status);
1214 		return;
1215 	}
1216 
1217 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
1218 	MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
1219 
1220 	_tcp_write_pdu(pdu);
1221 }
1222 
1223 static void
1224 pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
1225 {
1226 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1227 	int rc = 0;
1228 
1229 	/* Data Digest */
1230 	if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
1231 		/* Only support this limitated case for the first step */
1232 		if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
1233 				&& tqpair->group)) {
1234 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
1235 						       pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
1236 			if (spdk_likely(rc == 0)) {
1237 				return;
1238 			}
1239 		} else {
1240 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1241 		}
1242 		data_crc32_accel_done(pdu, rc);
1243 	} else {
1244 		_tcp_write_pdu(pdu);
1245 	}
1246 }
1247 
1248 static void
1249 nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1250 			 struct nvme_tcp_pdu *pdu,
1251 			 nvme_tcp_qpair_xfer_complete_cb cb_fn,
1252 			 void *cb_arg)
1253 {
1254 	int hlen;
1255 	uint32_t crc32c;
1256 
1257 	assert(tqpair->pdu_in_progress != pdu);
1258 
1259 	hlen = pdu->hdr.common.hlen;
1260 	pdu->cb_fn = cb_fn;
1261 	pdu->cb_arg = cb_arg;
1262 
1263 	pdu->iov[0].iov_base = &pdu->hdr.raw;
1264 	pdu->iov[0].iov_len = hlen;
1265 
1266 	/* Header Digest */
1267 	if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) {
1268 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1269 		MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
1270 	}
1271 
1272 	/* Data Digest */
1273 	pdu_data_crc32_compute(pdu);
1274 }
1275 
1276 static void
1277 nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1278 			      nvme_tcp_qpair_xfer_complete_cb cb_fn,
1279 			      void *cb_arg)
1280 {
1281 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1282 
1283 	pdu->sock_req.cb_fn = _mgmt_pdu_write_done;
1284 	pdu->sock_req.cb_arg = tqpair;
1285 
1286 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1287 }
1288 
1289 static void
1290 nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1291 			     struct spdk_nvmf_tcp_req *tcp_req,
1292 			     nvme_tcp_qpair_xfer_complete_cb cb_fn,
1293 			     void *cb_arg)
1294 {
1295 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1296 
1297 	pdu->sock_req.cb_fn = _req_pdu_write_done;
1298 	pdu->sock_req.cb_arg = tcp_req;
1299 
1300 	assert(!tcp_req->pdu_in_use);
1301 	tcp_req->pdu_in_use = true;
1302 
1303 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1304 }
1305 
1306 static int
1307 nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
1308 {
1309 	uint32_t i;
1310 	struct spdk_nvmf_transport_opts *opts;
1311 	uint32_t in_capsule_data_size;
1312 
1313 	opts = &tqpair->qpair.transport->opts;
1314 
1315 	in_capsule_data_size = opts->in_capsule_data_size;
1316 	if (opts->dif_insert_or_strip) {
1317 		in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
1318 	}
1319 
1320 	tqpair->resource_count = opts->max_queue_depth;
1321 
1322 	tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
1323 	if (!tqpair->reqs) {
1324 		SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
1325 		return -1;
1326 	}
1327 
1328 	if (in_capsule_data_size) {
1329 		tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
1330 					    NULL, SPDK_ENV_LCORE_ID_ANY,
1331 					    SPDK_MALLOC_DMA);
1332 		if (!tqpair->bufs) {
1333 			SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
1334 			return -1;
1335 		}
1336 	}
1337 	/* prepare memory space for receiving pdus and tcp_req */
1338 	/* Add additional 1 member, which will be used for mgmt_pdu owned by the tqpair */
1339 	tqpair->pdus = spdk_dma_zmalloc((2 * tqpair->resource_count + 1) * sizeof(*tqpair->pdus), 0x1000,
1340 					NULL);
1341 	if (!tqpair->pdus) {
1342 		SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
1343 		return -1;
1344 	}
1345 
1346 	for (i = 0; i < tqpair->resource_count; i++) {
1347 		struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
1348 
1349 		tcp_req->ttag = i + 1;
1350 		tcp_req->req.qpair = &tqpair->qpair;
1351 
1352 		tcp_req->pdu = &tqpair->pdus[i];
1353 		tcp_req->pdu->qpair = tqpair;
1354 
1355 		/* Set up memory to receive commands */
1356 		if (tqpair->bufs) {
1357 			tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
1358 		}
1359 
1360 		/* Set the cmdn and rsp */
1361 		tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
1362 		tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
1363 
1364 		tcp_req->req.stripped_data = NULL;
1365 
1366 		/* Initialize request state to FREE */
1367 		tcp_req->state = TCP_REQUEST_STATE_FREE;
1368 		TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
1369 		tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
1370 	}
1371 
1372 	for (; i < 2 * tqpair->resource_count; i++) {
1373 		struct nvme_tcp_pdu *pdu = &tqpair->pdus[i];
1374 
1375 		pdu->qpair = tqpair;
1376 		SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1377 	}
1378 
1379 	tqpair->mgmt_pdu = &tqpair->pdus[i];
1380 	tqpair->mgmt_pdu->qpair = tqpair;
1381 	tqpair->pdu_in_progress = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
1382 	SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
1383 	tqpair->tcp_pdu_working_count = 1;
1384 
1385 	tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
1386 				 SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1387 
1388 	return 0;
1389 }
1390 
1391 static int
1392 nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
1393 {
1394 	struct spdk_nvmf_tcp_qpair *tqpair;
1395 
1396 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1397 
1398 	SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
1399 
1400 	spdk_trace_record(TRACE_TCP_QP_CREATE, tqpair->qpair.trace_id, 0, 0);
1401 
1402 	/* Initialise request state queues of the qpair */
1403 	TAILQ_INIT(&tqpair->tcp_req_free_queue);
1404 	TAILQ_INIT(&tqpair->tcp_req_working_queue);
1405 	SLIST_INIT(&tqpair->tcp_pdu_free_queue);
1406 	tqpair->qpair.queue_depth = 0;
1407 
1408 	tqpair->host_hdgst_enable = true;
1409 	tqpair->host_ddgst_enable = true;
1410 
1411 	return 0;
1412 }
1413 
1414 static int
1415 nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
1416 {
1417 	char saddr[32], caddr[32];
1418 	uint16_t sport, cport;
1419 	char owner[256];
1420 	int rc;
1421 
1422 	rc = spdk_sock_getaddr(tqpair->sock, saddr, sizeof(saddr), &sport,
1423 			       caddr, sizeof(caddr), &cport);
1424 	if (rc != 0) {
1425 		SPDK_ERRLOG("spdk_sock_getaddr() failed\n");
1426 		return rc;
1427 	}
1428 	snprintf(owner, sizeof(owner), "%s:%d", caddr, cport);
1429 	tqpair->qpair.trace_id = spdk_trace_register_owner(OWNER_TYPE_NVMF_TCP, owner);
1430 	spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, tqpair->qpair.trace_id, 0, 0);
1431 
1432 	/* set low water mark */
1433 	rc = spdk_sock_set_recvlowat(tqpair->sock, 1);
1434 	if (rc != 0) {
1435 		SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
1436 		return rc;
1437 	}
1438 
1439 	return 0;
1440 }
1441 
1442 static void
1443 nvmf_tcp_handle_connect(struct spdk_nvmf_tcp_port *port, struct spdk_sock *sock)
1444 {
1445 	struct spdk_nvmf_tcp_qpair *tqpair;
1446 	int rc;
1447 
1448 	SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
1449 		      port->trid->traddr, port->trid->trsvcid);
1450 
1451 	tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
1452 	if (tqpair == NULL) {
1453 		SPDK_ERRLOG("Could not allocate new connection.\n");
1454 		spdk_sock_close(&sock);
1455 		return;
1456 	}
1457 
1458 	tqpair->sock = sock;
1459 	tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
1460 	tqpair->port = port;
1461 	tqpair->qpair.transport = port->transport;
1462 	tqpair->qpair.numa.id_valid = 1;
1463 	tqpair->qpair.numa.id = spdk_sock_get_numa_id(sock);
1464 
1465 	rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
1466 			       sizeof(tqpair->target_addr), &tqpair->target_port,
1467 			       tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
1468 			       &tqpair->initiator_port);
1469 	if (rc < 0) {
1470 		SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
1471 		nvmf_tcp_qpair_destroy(tqpair);
1472 		return;
1473 	}
1474 
1475 	spdk_nvmf_tgt_new_qpair(port->transport->tgt, &tqpair->qpair);
1476 }
1477 
1478 static uint32_t
1479 nvmf_tcp_port_accept(struct spdk_nvmf_tcp_port *port)
1480 {
1481 	struct spdk_sock *sock;
1482 	uint32_t count = 0;
1483 	int i;
1484 
1485 	for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
1486 		sock = spdk_sock_accept(port->listen_sock);
1487 		if (sock == NULL) {
1488 			break;
1489 		}
1490 		count++;
1491 		nvmf_tcp_handle_connect(port, sock);
1492 	}
1493 
1494 	return count;
1495 }
1496 
1497 static int
1498 nvmf_tcp_accept(void *ctx)
1499 {
1500 	struct spdk_nvmf_transport *transport = ctx;
1501 	struct spdk_nvmf_tcp_transport *ttransport;
1502 	int count;
1503 
1504 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1505 
1506 	count = spdk_sock_group_poll(ttransport->listen_sock_group);
1507 	if (count < 0) {
1508 		SPDK_ERRLOG("Fail in TCP listen socket group poll\n");
1509 	}
1510 
1511 	return count != 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1512 }
1513 
1514 static void
1515 nvmf_tcp_accept_cb(void *ctx, struct spdk_sock_group *group, struct spdk_sock *sock)
1516 {
1517 	struct spdk_nvmf_tcp_port *port = ctx;
1518 
1519 	nvmf_tcp_port_accept(port);
1520 }
1521 
1522 static void
1523 nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
1524 		  struct spdk_nvme_transport_id *trid,
1525 		  struct spdk_nvmf_discovery_log_page_entry *entry)
1526 {
1527 	struct spdk_nvmf_tcp_port *port;
1528 	struct spdk_nvmf_tcp_transport *ttransport;
1529 
1530 	entry->trtype = SPDK_NVMF_TRTYPE_TCP;
1531 	entry->adrfam = trid->adrfam;
1532 
1533 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
1534 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
1535 
1536 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1537 	port = nvmf_tcp_find_port(ttransport, trid);
1538 
1539 	assert(port != NULL);
1540 
1541 	if (strcmp(spdk_sock_get_impl_name(port->listen_sock), "ssl") == 0) {
1542 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_REQUIRED;
1543 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_TLS_1_3;
1544 	} else {
1545 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
1546 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
1547 	}
1548 }
1549 
1550 static struct spdk_nvmf_tcp_control_msg_list *
1551 nvmf_tcp_control_msg_list_create(uint16_t num_messages)
1552 {
1553 	struct spdk_nvmf_tcp_control_msg_list *list;
1554 	struct spdk_nvmf_tcp_control_msg *msg;
1555 	uint16_t i;
1556 
1557 	list = calloc(1, sizeof(*list));
1558 	if (!list) {
1559 		SPDK_ERRLOG("Failed to allocate memory for list structure\n");
1560 		return NULL;
1561 	}
1562 
1563 	list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
1564 				     NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
1565 	if (!list->msg_buf) {
1566 		SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
1567 		free(list);
1568 		return NULL;
1569 	}
1570 
1571 	STAILQ_INIT(&list->free_msgs);
1572 	STAILQ_INIT(&list->waiting_for_msg_reqs);
1573 
1574 	for (i = 0; i < num_messages; i++) {
1575 		msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
1576 				SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1577 		STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
1578 	}
1579 
1580 	return list;
1581 }
1582 
1583 static void
1584 nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
1585 {
1586 	if (!list) {
1587 		return;
1588 	}
1589 
1590 	spdk_free(list->msg_buf);
1591 	free(list);
1592 }
1593 
1594 static int nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group);
1595 
1596 static int
1597 nvmf_tcp_poll_group_intr(void *ctx)
1598 {
1599 	struct spdk_nvmf_transport_poll_group *group = ctx;
1600 	int ret = 0;
1601 
1602 	ret = nvmf_tcp_poll_group_poll(group);
1603 
1604 	return ret != 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1605 }
1606 
1607 static struct spdk_nvmf_transport_poll_group *
1608 nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport,
1609 			   struct spdk_nvmf_poll_group *group)
1610 {
1611 	struct spdk_nvmf_tcp_transport	*ttransport;
1612 	struct spdk_nvmf_tcp_poll_group *tgroup;
1613 	int rc;
1614 
1615 	tgroup = calloc(1, sizeof(*tgroup));
1616 	if (!tgroup) {
1617 		return NULL;
1618 	}
1619 
1620 	tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
1621 	if (!tgroup->sock_group) {
1622 		goto cleanup;
1623 	}
1624 
1625 	TAILQ_INIT(&tgroup->qpairs);
1626 	TAILQ_INIT(&tgroup->await_req);
1627 
1628 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1629 
1630 	if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
1631 		SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
1632 			      "Creating control messages list\n", transport->opts.in_capsule_data_size,
1633 			      SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1634 		tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
1635 		if (!tgroup->control_msg_list) {
1636 			goto cleanup;
1637 		}
1638 	}
1639 
1640 	tgroup->accel_channel = spdk_accel_get_io_channel();
1641 	if (spdk_unlikely(!tgroup->accel_channel)) {
1642 		SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
1643 		goto cleanup;
1644 	}
1645 
1646 	TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link);
1647 	if (ttransport->next_pg == NULL) {
1648 		ttransport->next_pg = tgroup;
1649 	}
1650 
1651 	if (spdk_interrupt_mode_is_enabled()) {
1652 		rc = SPDK_SOCK_GROUP_REGISTER_INTERRUPT(tgroup->sock_group,
1653 							SPDK_INTERRUPT_EVENT_IN | SPDK_INTERRUPT_EVENT_OUT, nvmf_tcp_poll_group_intr, &tgroup->group);
1654 		if (rc != 0) {
1655 			SPDK_ERRLOG("Failed to register interrupt for sock group\n");
1656 			goto cleanup;
1657 		}
1658 	}
1659 
1660 	return &tgroup->group;
1661 
1662 cleanup:
1663 	nvmf_tcp_poll_group_destroy(&tgroup->group);
1664 	return NULL;
1665 }
1666 
1667 static struct spdk_nvmf_transport_poll_group *
1668 nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
1669 {
1670 	struct spdk_nvmf_tcp_transport *ttransport;
1671 	struct spdk_nvmf_tcp_poll_group **pg;
1672 	struct spdk_nvmf_tcp_qpair *tqpair;
1673 	struct spdk_sock_group *group = NULL, *hint = NULL;
1674 	int rc;
1675 
1676 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
1677 
1678 	if (TAILQ_EMPTY(&ttransport->poll_groups)) {
1679 		return NULL;
1680 	}
1681 
1682 	pg = &ttransport->next_pg;
1683 	assert(*pg != NULL);
1684 	hint = (*pg)->sock_group;
1685 
1686 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1687 	rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint);
1688 	if (rc != 0) {
1689 		return NULL;
1690 	} else if (group != NULL) {
1691 		/* Optimal poll group was found */
1692 		return spdk_sock_group_get_ctx(group);
1693 	}
1694 
1695 	/* The hint was used for optimal poll group, advance next_pg. */
1696 	*pg = TAILQ_NEXT(*pg, link);
1697 	if (*pg == NULL) {
1698 		*pg = TAILQ_FIRST(&ttransport->poll_groups);
1699 	}
1700 
1701 	return spdk_sock_group_get_ctx(hint);
1702 }
1703 
1704 static void
1705 nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
1706 {
1707 	struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup;
1708 	struct spdk_nvmf_tcp_transport *ttransport;
1709 
1710 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
1711 	spdk_sock_group_unregister_interrupt(tgroup->sock_group);
1712 	spdk_sock_group_close(&tgroup->sock_group);
1713 	if (tgroup->control_msg_list) {
1714 		nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
1715 	}
1716 
1717 	if (tgroup->accel_channel) {
1718 		spdk_put_io_channel(tgroup->accel_channel);
1719 	}
1720 
1721 	if (tgroup->group.transport == NULL) {
1722 		/* Transport can be NULL when nvmf_tcp_poll_group_create()
1723 		 * calls this function directly in a failure path. */
1724 		free(tgroup);
1725 		return;
1726 	}
1727 
1728 	ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport);
1729 
1730 	next_tgroup = TAILQ_NEXT(tgroup, link);
1731 	TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link);
1732 	if (next_tgroup == NULL) {
1733 		next_tgroup = TAILQ_FIRST(&ttransport->poll_groups);
1734 	}
1735 	if (ttransport->next_pg == tgroup) {
1736 		ttransport->next_pg = next_tgroup;
1737 	}
1738 
1739 	free(tgroup);
1740 }
1741 
1742 static void
1743 nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1744 			      enum nvme_tcp_pdu_recv_state state)
1745 {
1746 	if (tqpair->recv_state == state) {
1747 		SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
1748 			    tqpair, state);
1749 		return;
1750 	}
1751 
1752 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_QUIESCING)) {
1753 		if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH && tqpair->pdu_in_progress) {
1754 			SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, tqpair->pdu_in_progress, slist);
1755 			tqpair->tcp_pdu_working_count--;
1756 		}
1757 	}
1758 
1759 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_ERROR)) {
1760 		assert(tqpair->tcp_pdu_working_count == 0);
1761 	}
1762 
1763 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1764 		/* When leaving the await req state, move the qpair to the main list */
1765 		TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link);
1766 		TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link);
1767 	} else if (state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1768 		TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link);
1769 		TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link);
1770 	}
1771 
1772 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
1773 	tqpair->recv_state = state;
1774 
1775 	spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0,
1776 			  (uint64_t)tqpair->recv_state);
1777 }
1778 
1779 static int
1780 nvmf_tcp_qpair_handle_timeout(void *ctx)
1781 {
1782 	struct spdk_nvmf_tcp_qpair *tqpair = ctx;
1783 
1784 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1785 
1786 	SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
1787 		    SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
1788 
1789 	nvmf_tcp_qpair_disconnect(tqpair);
1790 	return SPDK_POLLER_BUSY;
1791 }
1792 
1793 static void
1794 nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
1795 {
1796 	struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
1797 
1798 	if (!tqpair->timeout_poller) {
1799 		tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
1800 					 SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
1801 	}
1802 }
1803 
1804 static void
1805 nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
1806 			   enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
1807 {
1808 	struct nvme_tcp_pdu *rsp_pdu;
1809 	struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
1810 	uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
1811 	uint32_t copy_len;
1812 
1813 	rsp_pdu = tqpair->mgmt_pdu;
1814 
1815 	c2h_term_req = &rsp_pdu->hdr.term_req;
1816 	c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
1817 	c2h_term_req->common.hlen = c2h_term_req_hdr_len;
1818 	c2h_term_req->fes = fes;
1819 
1820 	if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1821 	    (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1822 		DSET32(&c2h_term_req->fei, error_offset);
1823 	}
1824 
1825 	copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
1826 
1827 	/* Copy the error info into the buffer */
1828 	memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
1829 	nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
1830 
1831 	/* Contain the header of the wrong received pdu */
1832 	c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
1833 	tqpair->wait_terminate = true;
1834 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1835 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair);
1836 }
1837 
1838 static void
1839 nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1840 				struct spdk_nvmf_tcp_qpair *tqpair,
1841 				struct nvme_tcp_pdu *pdu)
1842 {
1843 	struct spdk_nvmf_tcp_req *tcp_req;
1844 
1845 	assert(pdu->psh_valid_bytes == pdu->psh_len);
1846 	assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
1847 
1848 	tcp_req = nvmf_tcp_req_get(tqpair);
1849 	if (!tcp_req) {
1850 		/* Directly return and make the allocation retry again.  This can happen if we're
1851 		 * using asynchronous writes to send the response to the host or when releasing
1852 		 * zero-copy buffers after a response has been sent.  In both cases, the host might
1853 		 * receive the response before we've finished processing the request and is free to
1854 		 * send another one.
1855 		 */
1856 		if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 ||
1857 		    tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) {
1858 			return;
1859 		}
1860 
1861 		/* The host sent more commands than the maximum queue depth. */
1862 		SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
1863 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1864 		return;
1865 	}
1866 
1867 	pdu->req = tcp_req;
1868 	assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
1869 	nvmf_tcp_req_process(ttransport, tcp_req);
1870 }
1871 
1872 static void
1873 nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1874 				    struct spdk_nvmf_tcp_qpair *tqpair,
1875 				    struct nvme_tcp_pdu *pdu)
1876 {
1877 	struct spdk_nvmf_tcp_req *tcp_req;
1878 	struct spdk_nvme_tcp_cmd *capsule_cmd;
1879 	uint32_t error_offset = 0;
1880 	enum spdk_nvme_tcp_term_req_fes fes;
1881 	struct spdk_nvme_cpl *rsp;
1882 
1883 	capsule_cmd = &pdu->hdr.capsule_cmd;
1884 	tcp_req = pdu->req;
1885 	assert(tcp_req != NULL);
1886 
1887 	/* Zero-copy requests don't support ICD */
1888 	assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req));
1889 
1890 	if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
1891 		SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
1892 			    SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
1893 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1894 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
1895 		goto err;
1896 	}
1897 
1898 	rsp = &tcp_req->req.rsp->nvme_cpl;
1899 	if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1900 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1901 	} else {
1902 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1903 	}
1904 
1905 	nvmf_tcp_req_process(ttransport, tcp_req);
1906 
1907 	return;
1908 err:
1909 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1910 }
1911 
1912 static void
1913 nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1914 			     struct spdk_nvmf_tcp_qpair *tqpair,
1915 			     struct nvme_tcp_pdu *pdu)
1916 {
1917 	struct spdk_nvmf_tcp_req *tcp_req;
1918 	uint32_t error_offset = 0;
1919 	enum spdk_nvme_tcp_term_req_fes fes = 0;
1920 	struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
1921 
1922 	h2c_data = &pdu->hdr.h2c_data;
1923 
1924 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
1925 		      tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
1926 
1927 	if (h2c_data->ttag > tqpair->resource_count) {
1928 		SPDK_DEBUGLOG(nvmf_tcp, "ttag %u is larger than allowed %u.\n", h2c_data->ttag,
1929 			      tqpair->resource_count);
1930 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1931 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1932 		goto err;
1933 	}
1934 
1935 	tcp_req = &tqpair->reqs[h2c_data->ttag - 1];
1936 
1937 	if (spdk_unlikely(tcp_req->state != TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER &&
1938 			  tcp_req->state != TCP_REQUEST_STATE_AWAITING_R2T_ACK)) {
1939 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, has error state in %d\n", tcp_req, tqpair,
1940 			      tcp_req->state);
1941 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1942 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1943 		goto err;
1944 	}
1945 
1946 	if (spdk_unlikely(tcp_req->req.cmd->nvme_cmd.cid != h2c_data->cccid)) {
1947 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, expected %u but %u for cccid.\n", tcp_req, tqpair,
1948 			      tcp_req->req.cmd->nvme_cmd.cid, h2c_data->cccid);
1949 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1950 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
1951 		goto err;
1952 	}
1953 
1954 	if (tcp_req->h2c_offset != h2c_data->datao) {
1955 		SPDK_DEBUGLOG(nvmf_tcp,
1956 			      "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
1957 			      tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
1958 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1959 		goto err;
1960 	}
1961 
1962 	if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
1963 		SPDK_DEBUGLOG(nvmf_tcp,
1964 			      "tcp_req(%p), tqpair=%p,  (datao=%u + datal=%u) exceeds requested length=%u\n",
1965 			      tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
1966 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1967 		goto err;
1968 	}
1969 
1970 	pdu->req = tcp_req;
1971 
1972 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
1973 		pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
1974 	}
1975 
1976 	nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
1977 				  h2c_data->datao, h2c_data->datal);
1978 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1979 	return;
1980 
1981 err:
1982 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1983 }
1984 
1985 static void
1986 nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
1987 			       struct spdk_nvmf_tcp_qpair *tqpair)
1988 {
1989 	struct nvme_tcp_pdu *rsp_pdu;
1990 	struct spdk_nvme_tcp_rsp *capsule_resp;
1991 
1992 	SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
1993 
1994 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1995 	assert(rsp_pdu != NULL);
1996 
1997 	capsule_resp = &rsp_pdu->hdr.capsule_resp;
1998 	capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
1999 	capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
2000 	capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
2001 	if (tqpair->host_hdgst_enable) {
2002 		capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2003 		capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
2004 	}
2005 
2006 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req);
2007 }
2008 
2009 static void
2010 nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
2011 {
2012 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
2013 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
2014 					     struct spdk_nvmf_tcp_qpair, qpair);
2015 
2016 	assert(tqpair != NULL);
2017 
2018 	if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
2019 		SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
2020 			      tcp_req->req.length);
2021 		_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2022 		return;
2023 	}
2024 
2025 	if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
2026 		nvmf_tcp_request_free(tcp_req);
2027 	} else {
2028 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2029 	}
2030 }
2031 
2032 static void
2033 nvmf_tcp_r2t_complete(void *cb_arg)
2034 {
2035 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
2036 	struct spdk_nvmf_tcp_transport *ttransport;
2037 
2038 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
2039 				      struct spdk_nvmf_tcp_transport, transport);
2040 
2041 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
2042 
2043 	if (tcp_req->h2c_offset == tcp_req->req.length) {
2044 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2045 		nvmf_tcp_req_process(ttransport, tcp_req);
2046 	}
2047 }
2048 
2049 static void
2050 nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
2051 		      struct spdk_nvmf_tcp_req *tcp_req)
2052 {
2053 	struct nvme_tcp_pdu *rsp_pdu;
2054 	struct spdk_nvme_tcp_r2t_hdr *r2t;
2055 
2056 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
2057 	assert(rsp_pdu != NULL);
2058 
2059 	r2t = &rsp_pdu->hdr.r2t;
2060 	r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
2061 	r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
2062 
2063 	if (tqpair->host_hdgst_enable) {
2064 		r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2065 		r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
2066 	}
2067 
2068 	r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2069 	r2t->ttag = tcp_req->ttag;
2070 	r2t->r2to = tcp_req->h2c_offset;
2071 	r2t->r2tl = tcp_req->req.length;
2072 
2073 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
2074 
2075 	SPDK_DEBUGLOG(nvmf_tcp,
2076 		      "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
2077 		      tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
2078 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req);
2079 }
2080 
2081 static void
2082 nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
2083 				 struct spdk_nvmf_tcp_qpair *tqpair,
2084 				 struct nvme_tcp_pdu *pdu)
2085 {
2086 	struct spdk_nvmf_tcp_req *tcp_req;
2087 	struct spdk_nvme_cpl *rsp;
2088 
2089 	tcp_req = pdu->req;
2090 	assert(tcp_req != NULL);
2091 
2092 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2093 
2094 	tcp_req->h2c_offset += pdu->data_len;
2095 
2096 	/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
2097 	 * acknowledged before moving on. */
2098 	if (tcp_req->h2c_offset == tcp_req->req.length &&
2099 	    tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
2100 		/* After receiving all the h2c data, we need to check whether there is
2101 		 * transient transport error */
2102 		rsp = &tcp_req->req.rsp->nvme_cpl;
2103 		if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
2104 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2105 		} else {
2106 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2107 		}
2108 		nvmf_tcp_req_process(ttransport, tcp_req);
2109 	}
2110 }
2111 
2112 static void
2113 nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
2114 {
2115 	SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
2116 		    spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
2117 	if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
2118 	    (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
2119 		SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
2120 			      DGET32(h2c_term_req->fei));
2121 	}
2122 }
2123 
2124 static void
2125 nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2126 				 struct nvme_tcp_pdu *pdu)
2127 {
2128 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
2129 	uint32_t error_offset = 0;
2130 	enum spdk_nvme_tcp_term_req_fes fes;
2131 
2132 	if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
2133 		SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
2134 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2135 		error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
2136 		goto end;
2137 	}
2138 
2139 	/* set the data buffer */
2140 	nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
2141 			      h2c_term_req->common.plen - h2c_term_req->common.hlen);
2142 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2143 	return;
2144 end:
2145 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2146 }
2147 
2148 static void
2149 nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2150 				     struct nvme_tcp_pdu *pdu)
2151 {
2152 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
2153 
2154 	nvmf_tcp_h2c_term_req_dump(h2c_term_req);
2155 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2156 }
2157 
2158 static void
2159 _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2160 {
2161 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2162 			struct spdk_nvmf_tcp_transport, transport);
2163 
2164 	switch (pdu->hdr.common.pdu_type) {
2165 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2166 		nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
2167 		break;
2168 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2169 		nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
2170 		break;
2171 
2172 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2173 		nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
2174 		break;
2175 
2176 	default:
2177 		/* The code should not go to here */
2178 		SPDK_ERRLOG("ERROR pdu type %d\n", pdu->hdr.common.pdu_type);
2179 		break;
2180 	}
2181 	SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
2182 	tqpair->tcp_pdu_working_count--;
2183 }
2184 
2185 static inline void
2186 nvmf_tcp_req_set_cpl(struct spdk_nvmf_tcp_req *treq, int sct, int sc)
2187 {
2188 	treq->req.rsp->nvme_cpl.status.sct = sct;
2189 	treq->req.rsp->nvme_cpl.status.sc = sc;
2190 	treq->req.rsp->nvme_cpl.cid = treq->req.cmd->nvme_cmd.cid;
2191 }
2192 
2193 static void
2194 data_crc32_calc_done(void *cb_arg, int status)
2195 {
2196 	struct nvme_tcp_pdu *pdu = cb_arg;
2197 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
2198 
2199 	/* async crc32 calculation is failed and use direct calculation to check */
2200 	if (spdk_unlikely(status)) {
2201 		SPDK_ERRLOG("Data digest on tqpair=(%p) with pdu=%p failed to be calculated asynchronously\n",
2202 			    tqpair, pdu);
2203 		pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2204 	}
2205 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
2206 	if (!MATCH_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32)) {
2207 		SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2208 		assert(pdu->req != NULL);
2209 		nvmf_tcp_req_set_cpl(pdu->req, SPDK_NVME_SCT_GENERIC,
2210 				     SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR);
2211 	}
2212 	_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2213 }
2214 
2215 static void
2216 nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2217 {
2218 	int rc = 0;
2219 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2220 	tqpair->pdu_in_progress = NULL;
2221 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2222 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2223 	/* check data digest if need */
2224 	if (pdu->ddgst_enable) {
2225 		if (tqpair->qpair.qid != 0 && !pdu->dif_ctx && tqpair->group &&
2226 		    (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)) {
2227 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
2228 						       pdu->data_iovcnt, 0, data_crc32_calc_done, pdu);
2229 			if (spdk_likely(rc == 0)) {
2230 				return;
2231 			}
2232 		} else {
2233 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2234 		}
2235 		data_crc32_calc_done(pdu, rc);
2236 	} else {
2237 		_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2238 	}
2239 }
2240 
2241 static void
2242 nvmf_tcp_send_icresp_complete(void *cb_arg)
2243 {
2244 	struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
2245 
2246 	nvmf_tcp_qpair_set_state(tqpair, NVMF_TCP_QPAIR_STATE_RUNNING);
2247 }
2248 
2249 static void
2250 nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
2251 		      struct spdk_nvmf_tcp_qpair *tqpair,
2252 		      struct nvme_tcp_pdu *pdu)
2253 {
2254 	struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
2255 	struct nvme_tcp_pdu *rsp_pdu;
2256 	struct spdk_nvme_tcp_ic_resp *ic_resp;
2257 	uint32_t error_offset = 0;
2258 	enum spdk_nvme_tcp_term_req_fes fes;
2259 
2260 	/* Only PFV 0 is defined currently */
2261 	if (ic_req->pfv != 0) {
2262 		SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
2263 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2264 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
2265 		goto end;
2266 	}
2267 
2268 	/* This value is 0’s based value in units of dwords should not be larger than SPDK_NVME_TCP_HPDA_MAX */
2269 	if (ic_req->hpda > SPDK_NVME_TCP_HPDA_MAX) {
2270 		SPDK_ERRLOG("ICReq HPDA out of range 0 to 31, got %u\n", ic_req->hpda);
2271 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2272 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, hpda);
2273 		goto end;
2274 	}
2275 
2276 	/* MAXR2T is 0's based */
2277 	SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
2278 
2279 	tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
2280 	if (!tqpair->host_hdgst_enable) {
2281 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2282 	}
2283 
2284 	tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
2285 	if (!tqpair->host_ddgst_enable) {
2286 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2287 	}
2288 
2289 	tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
2290 	/* Now that we know whether digests are enabled, properly size the receive buffer */
2291 	if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
2292 		SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
2293 			     tqpair,
2294 			     tqpair->recv_buf_size);
2295 		/* Not fatal. */
2296 	}
2297 
2298 	tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
2299 	SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
2300 
2301 	rsp_pdu = tqpair->mgmt_pdu;
2302 
2303 	ic_resp = &rsp_pdu->hdr.ic_resp;
2304 	ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
2305 	ic_resp->common.hlen = ic_resp->common.plen =  sizeof(*ic_resp);
2306 	ic_resp->pfv = 0;
2307 	ic_resp->cpda = tqpair->cpda;
2308 	ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
2309 	ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
2310 	ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
2311 
2312 	SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
2313 	SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
2314 
2315 	nvmf_tcp_qpair_set_state(tqpair, NVMF_TCP_QPAIR_STATE_INITIALIZING);
2316 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair);
2317 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2318 	return;
2319 end:
2320 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2321 }
2322 
2323 static void
2324 nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2325 			struct spdk_nvmf_tcp_transport *ttransport)
2326 {
2327 	struct nvme_tcp_pdu *pdu;
2328 	int rc;
2329 	uint32_t crc32c, error_offset = 0;
2330 	enum spdk_nvme_tcp_term_req_fes fes;
2331 
2332 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2333 	pdu = tqpair->pdu_in_progress;
2334 
2335 	SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
2336 		      pdu->hdr.common.pdu_type);
2337 	/* check header digest if needed */
2338 	if (pdu->has_hdgst) {
2339 		SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
2340 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
2341 		rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
2342 		if (rc == 0) {
2343 			SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2344 			fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
2345 			nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2346 			return;
2347 
2348 		}
2349 	}
2350 
2351 	switch (pdu->hdr.common.pdu_type) {
2352 	case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
2353 		nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
2354 		break;
2355 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2356 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
2357 		break;
2358 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2359 		nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
2360 		break;
2361 
2362 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2363 		nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
2364 		break;
2365 
2366 	default:
2367 		SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
2368 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2369 		error_offset = 1;
2370 		nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2371 		break;
2372 	}
2373 }
2374 
2375 static void
2376 nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
2377 {
2378 	struct nvme_tcp_pdu *pdu;
2379 	uint32_t error_offset = 0;
2380 	enum spdk_nvme_tcp_term_req_fes fes;
2381 	uint8_t expected_hlen, pdo;
2382 	bool plen_error = false, pdo_error = false;
2383 
2384 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2385 	pdu = tqpair->pdu_in_progress;
2386 	assert(pdu);
2387 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
2388 		if (tqpair->state != NVMF_TCP_QPAIR_STATE_INVALID) {
2389 			SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
2390 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2391 			goto err;
2392 		}
2393 		expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
2394 		if (pdu->hdr.common.plen != expected_hlen) {
2395 			plen_error = true;
2396 		}
2397 	} else {
2398 		if (tqpair->state != NVMF_TCP_QPAIR_STATE_RUNNING) {
2399 			SPDK_ERRLOG("The TCP/IP connection is not negotiated\n");
2400 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2401 			goto err;
2402 		}
2403 
2404 		switch (pdu->hdr.common.pdu_type) {
2405 		case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2406 			expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
2407 			pdo = pdu->hdr.common.pdo;
2408 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2409 				pdo_error = true;
2410 				break;
2411 			}
2412 
2413 			if (pdu->hdr.common.plen < expected_hlen) {
2414 				plen_error = true;
2415 			}
2416 			break;
2417 		case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2418 			expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
2419 			pdo = pdu->hdr.common.pdo;
2420 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2421 				pdo_error = true;
2422 				break;
2423 			}
2424 			if (pdu->hdr.common.plen < expected_hlen) {
2425 				plen_error = true;
2426 			}
2427 			break;
2428 
2429 		case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2430 			expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
2431 			if ((pdu->hdr.common.plen <= expected_hlen) ||
2432 			    (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
2433 				plen_error = true;
2434 			}
2435 			break;
2436 
2437 		default:
2438 			SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
2439 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2440 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
2441 			goto err;
2442 		}
2443 	}
2444 
2445 	if (pdu->hdr.common.hlen != expected_hlen) {
2446 		SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
2447 			    pdu->hdr.common.pdu_type,
2448 			    expected_hlen, pdu->hdr.common.hlen, tqpair);
2449 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2450 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
2451 		goto err;
2452 	} else if (pdo_error) {
2453 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2454 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
2455 	} else if (plen_error) {
2456 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2457 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2458 		goto err;
2459 	} else {
2460 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2461 		nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
2462 		return;
2463 	}
2464 err:
2465 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2466 }
2467 
2468 static int
2469 nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
2470 {
2471 	int rc = 0;
2472 	struct nvme_tcp_pdu *pdu;
2473 	enum nvme_tcp_pdu_recv_state prev_state;
2474 	uint32_t data_len;
2475 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2476 			struct spdk_nvmf_tcp_transport, transport);
2477 
2478 	/* The loop here is to allow for several back-to-back state changes. */
2479 	do {
2480 		prev_state = tqpair->recv_state;
2481 		SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
2482 
2483 		pdu = tqpair->pdu_in_progress;
2484 		assert(pdu != NULL ||
2485 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY ||
2486 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_QUIESCING ||
2487 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
2488 
2489 		switch (tqpair->recv_state) {
2490 		/* Wait for the common header  */
2491 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
2492 			if (!pdu) {
2493 				pdu = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
2494 				if (spdk_unlikely(!pdu)) {
2495 					return NVME_TCP_PDU_IN_PROGRESS;
2496 				}
2497 				SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
2498 				tqpair->pdu_in_progress = pdu;
2499 				tqpair->tcp_pdu_working_count++;
2500 			}
2501 			memset(pdu, 0, offsetof(struct nvme_tcp_pdu, qpair));
2502 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2503 		/* FALLTHROUGH */
2504 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
2505 			if (spdk_unlikely(tqpair->state == NVMF_TCP_QPAIR_STATE_INITIALIZING)) {
2506 				return rc;
2507 			}
2508 
2509 			rc = nvme_tcp_read_data(tqpair->sock,
2510 						sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
2511 						(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
2512 			if (rc < 0) {
2513 				SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
2514 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2515 				break;
2516 			} else if (rc > 0) {
2517 				pdu->ch_valid_bytes += rc;
2518 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0);
2519 			}
2520 
2521 			if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
2522 				return NVME_TCP_PDU_IN_PROGRESS;
2523 			}
2524 
2525 			/* The command header of this PDU has now been read from the socket. */
2526 			nvmf_tcp_pdu_ch_handle(tqpair);
2527 			break;
2528 		/* Wait for the pdu specific header  */
2529 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
2530 			rc = nvme_tcp_read_data(tqpair->sock,
2531 						pdu->psh_len - pdu->psh_valid_bytes,
2532 						(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
2533 			if (rc < 0) {
2534 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2535 				break;
2536 			} else if (rc > 0) {
2537 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0);
2538 				pdu->psh_valid_bytes += rc;
2539 			}
2540 
2541 			if (pdu->psh_valid_bytes < pdu->psh_len) {
2542 				return NVME_TCP_PDU_IN_PROGRESS;
2543 			}
2544 
2545 			/* All header(ch, psh, head digits) of this PDU has now been read from the socket. */
2546 			nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
2547 			break;
2548 		/* Wait for the req slot */
2549 		case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
2550 			nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
2551 			break;
2552 		/* Wait for the request processing loop to acquire a buffer for the PDU */
2553 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_BUF:
2554 			break;
2555 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
2556 			/* check whether the data is valid, if not we just return */
2557 			if (!pdu->data_len) {
2558 				return NVME_TCP_PDU_IN_PROGRESS;
2559 			}
2560 
2561 			data_len = pdu->data_len;
2562 			/* data digest */
2563 			if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
2564 					  tqpair->host_ddgst_enable)) {
2565 				data_len += SPDK_NVME_TCP_DIGEST_LEN;
2566 				pdu->ddgst_enable = true;
2567 			}
2568 
2569 			rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
2570 			if (rc < 0) {
2571 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2572 				break;
2573 			}
2574 			pdu->rw_offset += rc;
2575 
2576 			if (pdu->rw_offset < data_len) {
2577 				return NVME_TCP_PDU_IN_PROGRESS;
2578 			}
2579 
2580 			/* Generate and insert DIF to whole data block received if DIF is enabled */
2581 			if (spdk_unlikely(pdu->dif_ctx != NULL) &&
2582 			    spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt, 0, data_len,
2583 						     pdu->dif_ctx) != 0) {
2584 				SPDK_ERRLOG("DIF generate failed\n");
2585 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2586 				break;
2587 			}
2588 
2589 			/* All of this PDU has now been read from the socket. */
2590 			nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2591 			break;
2592 		case NVME_TCP_PDU_RECV_STATE_QUIESCING:
2593 			if (tqpair->tcp_pdu_working_count != 0) {
2594 				return NVME_TCP_PDU_IN_PROGRESS;
2595 			}
2596 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
2597 			break;
2598 		case NVME_TCP_PDU_RECV_STATE_ERROR:
2599 			if (spdk_sock_is_connected(tqpair->sock) && tqpair->wait_terminate) {
2600 				return NVME_TCP_PDU_IN_PROGRESS;
2601 			}
2602 			return NVME_TCP_PDU_FATAL;
2603 		default:
2604 			SPDK_ERRLOG("The state(%d) is invalid\n", tqpair->recv_state);
2605 			abort();
2606 			break;
2607 		}
2608 	} while (tqpair->recv_state != prev_state);
2609 
2610 	return rc;
2611 }
2612 
2613 static inline void *
2614 nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list,
2615 			 struct spdk_nvmf_tcp_req *tcp_req)
2616 {
2617 	struct spdk_nvmf_tcp_control_msg *msg;
2618 
2619 	assert(list);
2620 
2621 	msg = STAILQ_FIRST(&list->free_msgs);
2622 	if (!msg) {
2623 		SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
2624 		STAILQ_INSERT_TAIL(&list->waiting_for_msg_reqs, tcp_req, control_msg_link);
2625 		return NULL;
2626 	}
2627 	STAILQ_REMOVE_HEAD(&list->free_msgs, link);
2628 	return msg;
2629 }
2630 
2631 static inline void
2632 nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
2633 {
2634 	struct spdk_nvmf_tcp_control_msg *msg = _msg;
2635 	struct spdk_nvmf_tcp_req *tcp_req;
2636 	struct spdk_nvmf_tcp_transport *ttransport;
2637 
2638 	assert(list);
2639 	STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
2640 	if (!STAILQ_EMPTY(&list->waiting_for_msg_reqs)) {
2641 		tcp_req = STAILQ_FIRST(&list->waiting_for_msg_reqs);
2642 		STAILQ_REMOVE_HEAD(&list->waiting_for_msg_reqs, control_msg_link);
2643 		ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
2644 					      struct spdk_nvmf_tcp_transport, transport);
2645 		nvmf_tcp_req_process(ttransport, tcp_req);
2646 	}
2647 }
2648 
2649 static void
2650 nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
2651 		       struct spdk_nvmf_transport *transport,
2652 		       struct spdk_nvmf_transport_poll_group *group)
2653 {
2654 	struct spdk_nvmf_request		*req = &tcp_req->req;
2655 	struct spdk_nvme_cmd			*cmd;
2656 	struct spdk_nvme_sgl_descriptor		*sgl;
2657 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2658 	enum spdk_nvme_tcp_term_req_fes		fes;
2659 	struct nvme_tcp_pdu			*pdu;
2660 	struct spdk_nvmf_tcp_qpair		*tqpair;
2661 	uint32_t				length, error_offset = 0;
2662 
2663 	cmd = &req->cmd->nvme_cmd;
2664 	sgl = &cmd->dptr.sgl1;
2665 
2666 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
2667 	    sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
2668 		/* get request length from sgl */
2669 		length = sgl->unkeyed.length;
2670 		if (spdk_unlikely(length > transport->opts.max_io_size)) {
2671 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
2672 				    length, transport->opts.max_io_size);
2673 			fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2674 			goto fatal_err;
2675 		}
2676 
2677 		/* fill request length and populate iovs */
2678 		req->length = length;
2679 
2680 		SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
2681 
2682 		if (spdk_unlikely(req->dif_enabled)) {
2683 			req->dif.orig_length = length;
2684 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2685 			req->dif.elba_length = length;
2686 		}
2687 
2688 		if (nvmf_ctrlr_use_zcopy(req)) {
2689 			SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req);
2690 			req->data_from_pool = false;
2691 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
2692 			return;
2693 		}
2694 
2695 		if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
2696 			/* No available buffers. Queue this request up. */
2697 			SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
2698 				      tcp_req);
2699 			return;
2700 		}
2701 
2702 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
2703 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
2704 			      tcp_req, req->iovcnt, req->iov[0].iov_base);
2705 
2706 		return;
2707 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
2708 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
2709 		uint64_t offset = sgl->address;
2710 		uint32_t max_len = transport->opts.in_capsule_data_size;
2711 
2712 		assert(tcp_req->has_in_capsule_data);
2713 		/* Capsule Cmd with In-capsule Data should get data length from pdu header */
2714 		tqpair = tcp_req->pdu->qpair;
2715 		/* receiving pdu is not same with the pdu in tcp_req */
2716 		pdu = tqpair->pdu_in_progress;
2717 		length = pdu->hdr.common.plen - pdu->psh_len - sizeof(struct spdk_nvme_tcp_common_pdu_hdr);
2718 		if (tqpair->host_ddgst_enable) {
2719 			length -= SPDK_NVME_TCP_DIGEST_LEN;
2720 		}
2721 		/* This error is not defined in NVMe/TCP spec, take this error as fatal error */
2722 		if (spdk_unlikely(length != sgl->unkeyed.length)) {
2723 			SPDK_ERRLOG("In-Capsule Data length 0x%x is not equal to SGL data length 0x%x\n",
2724 				    length, sgl->unkeyed.length);
2725 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2726 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2727 			goto fatal_err;
2728 		}
2729 
2730 		SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
2731 			      offset, length);
2732 
2733 		/* The NVMe/TCP transport does not use ICDOFF to control the in-capsule data offset. ICDOFF should be '0' */
2734 		if (spdk_unlikely(offset != 0)) {
2735 			/* Not defined fatal error in NVMe/TCP spec, handle this error as a fatal error */
2736 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " should be ZERO in NVMe/TCP\n", offset);
2737 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2738 			error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.address);
2739 			goto fatal_err;
2740 		}
2741 
2742 		if (spdk_unlikely(length > max_len)) {
2743 			/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
2744 			if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
2745 			    (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
2746 
2747 				/* Get a buffer from dedicated list */
2748 				SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
2749 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2750 				assert(tgroup->control_msg_list);
2751 				req->iov[0].iov_base = nvmf_tcp_control_msg_get(tgroup->control_msg_list, tcp_req);
2752 				if (!req->iov[0].iov_base) {
2753 					/* No available buffers. Queue this request up. */
2754 					SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
2755 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_BUF);
2756 					return;
2757 				}
2758 			} else {
2759 				SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
2760 					    length, max_len);
2761 				fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2762 				goto fatal_err;
2763 			}
2764 		} else {
2765 			req->iov[0].iov_base = tcp_req->buf;
2766 		}
2767 
2768 		req->length = length;
2769 		req->data_from_pool = false;
2770 
2771 		if (spdk_unlikely(req->dif_enabled)) {
2772 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2773 			req->dif.elba_length = length;
2774 		}
2775 
2776 		req->iov[0].iov_len = length;
2777 		req->iovcnt = 1;
2778 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
2779 
2780 		return;
2781 	}
2782 	/* If we want to handle the problem here, then we can't skip the following data segment.
2783 	 * Because this function runs before reading data part, now handle all errors as fatal errors. */
2784 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2785 		    sgl->generic.type, sgl->generic.subtype);
2786 	fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2787 	error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.generic);
2788 fatal_err:
2789 	nvmf_tcp_send_c2h_term_req(tcp_req->pdu->qpair, tcp_req->pdu, fes, error_offset);
2790 }
2791 
2792 static inline enum spdk_nvme_media_error_status_code
2793 nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
2794 	enum spdk_nvme_media_error_status_code result;
2795 
2796 	switch (err_type)
2797 	{
2798 	case SPDK_DIF_REFTAG_ERROR:
2799 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
2800 		break;
2801 	case SPDK_DIF_APPTAG_ERROR:
2802 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
2803 		break;
2804 	case SPDK_DIF_GUARD_ERROR:
2805 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
2806 		break;
2807 	default:
2808 		SPDK_UNREACHABLE();
2809 		break;
2810 	}
2811 
2812 	return result;
2813 }
2814 
2815 static void
2816 _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2817 			struct spdk_nvmf_tcp_req *tcp_req)
2818 {
2819 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
2820 				tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
2821 	struct nvme_tcp_pdu *rsp_pdu;
2822 	struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
2823 	uint32_t plen, pdo, alignment;
2824 	int rc;
2825 
2826 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2827 
2828 	rsp_pdu = tcp_req->pdu;
2829 	assert(rsp_pdu != NULL);
2830 
2831 	c2h_data = &rsp_pdu->hdr.c2h_data;
2832 	c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
2833 	plen = c2h_data->common.hlen = sizeof(*c2h_data);
2834 
2835 	if (tqpair->host_hdgst_enable) {
2836 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2837 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2838 	}
2839 
2840 	/* set the psh */
2841 	c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2842 	c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
2843 	c2h_data->datao = tcp_req->pdu->rw_offset;
2844 
2845 	/* set the padding */
2846 	rsp_pdu->padding_len = 0;
2847 	pdo = plen;
2848 	if (tqpair->cpda) {
2849 		alignment = (tqpair->cpda + 1) << 2;
2850 		if (plen % alignment != 0) {
2851 			pdo = (plen + alignment) / alignment * alignment;
2852 			rsp_pdu->padding_len = pdo - plen;
2853 			plen = pdo;
2854 		}
2855 	}
2856 
2857 	c2h_data->common.pdo = pdo;
2858 	plen += c2h_data->datal;
2859 	if (tqpair->host_ddgst_enable) {
2860 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
2861 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2862 	}
2863 
2864 	c2h_data->common.plen = plen;
2865 
2866 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2867 		rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2868 	}
2869 
2870 	nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2871 				  c2h_data->datao, c2h_data->datal);
2872 
2873 
2874 	c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
2875 	/* Need to send the capsule response if response is not all 0 */
2876 	if (ttransport->tcp_opts.c2h_success &&
2877 	    tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
2878 		c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
2879 	}
2880 
2881 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2882 		struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
2883 		struct spdk_dif_error err_blk = {};
2884 		uint32_t mapped_length = 0;
2885 		uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
2886 		uint32_t ddgst_len = 0;
2887 
2888 		if (tqpair->host_ddgst_enable) {
2889 			/* Data digest consumes additional iov entry */
2890 			available_iovs--;
2891 			/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
2892 			ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
2893 			c2h_data->common.plen -= ddgst_len;
2894 		}
2895 		/* Temp call to estimate if data can be described by limited number of iovs.
2896 		 * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
2897 		nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
2898 				    false, &mapped_length);
2899 
2900 		if (mapped_length != c2h_data->common.plen) {
2901 			c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
2902 			SPDK_DEBUGLOG(nvmf_tcp,
2903 				      "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
2904 				      c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
2905 			c2h_data->common.plen = mapped_length;
2906 
2907 			/* Rebuild pdu->data_iov since data length is changed */
2908 			nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
2909 						  c2h_data->datal);
2910 
2911 			c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
2912 						    SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
2913 		}
2914 
2915 		c2h_data->common.plen += ddgst_len;
2916 
2917 		assert(rsp_pdu->rw_offset <= tcp_req->req.length);
2918 
2919 		rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
2920 					    0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
2921 		if (rc != 0) {
2922 			SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
2923 				    err_blk.err_type, err_blk.err_offset);
2924 			rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2925 			rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
2926 			nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2927 			return;
2928 		}
2929 	}
2930 
2931 	rsp_pdu->rw_offset += c2h_data->datal;
2932 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
2933 }
2934 
2935 static void
2936 nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2937 		       struct spdk_nvmf_tcp_req *tcp_req)
2938 {
2939 	nvmf_tcp_req_pdu_init(tcp_req);
2940 	_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2941 }
2942 
2943 static int
2944 request_transfer_out(struct spdk_nvmf_request *req)
2945 {
2946 	struct spdk_nvmf_tcp_req	*tcp_req;
2947 	struct spdk_nvmf_qpair		*qpair;
2948 	struct spdk_nvmf_tcp_qpair	*tqpair;
2949 	struct spdk_nvme_cpl		*rsp;
2950 
2951 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2952 
2953 	qpair = req->qpair;
2954 	rsp = &req->rsp->nvme_cpl;
2955 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
2956 
2957 	/* Advance our sq_head pointer */
2958 	if (qpair->sq_head == qpair->sq_head_max) {
2959 		qpair->sq_head = 0;
2960 	} else {
2961 		qpair->sq_head++;
2962 	}
2963 	rsp->sqhd = qpair->sq_head;
2964 
2965 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2966 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
2967 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2968 		nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2969 	} else {
2970 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2971 	}
2972 
2973 	return 0;
2974 }
2975 
2976 static void
2977 nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport,
2978 			      struct spdk_nvmf_tcp_qpair *tqpair,
2979 			      struct spdk_nvmf_tcp_req *tcp_req)
2980 {
2981 	enum spdk_nvme_cmd_fuse last, next;
2982 
2983 	last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2984 	next = tcp_req->cmd.fuse;
2985 
2986 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2987 
2988 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2989 		return;
2990 	}
2991 
2992 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2993 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2994 			/* This is a valid pair of fused commands.  Point them at each other
2995 			 * so they can be submitted consecutively once ready to be executed.
2996 			 */
2997 			tqpair->fused_first->fused_pair = tcp_req;
2998 			tcp_req->fused_pair = tqpair->fused_first;
2999 			tqpair->fused_first = NULL;
3000 			return;
3001 		} else {
3002 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
3003 			tqpair->fused_first->fused_failed = true;
3004 
3005 			/*
3006 			 * If the last req is in READY_TO_EXECUTE state, then call
3007 			 * nvmf_tcp_req_process(), otherwise nothing else will kick it.
3008 			 */
3009 			if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3010 				nvmf_tcp_req_process(ttransport, tqpair->fused_first);
3011 			}
3012 
3013 			tqpair->fused_first = NULL;
3014 		}
3015 	}
3016 
3017 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
3018 		/* Set tqpair->fused_first here so that we know to check that the next request
3019 		 * is a SECOND (and to fail this one if it isn't).
3020 		 */
3021 		tqpair->fused_first = tcp_req;
3022 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
3023 		/* Mark this req failed since it is a SECOND and the last one was not a FIRST. */
3024 		tcp_req->fused_failed = true;
3025 	}
3026 }
3027 
3028 static bool
3029 nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
3030 		     struct spdk_nvmf_tcp_req *tcp_req)
3031 {
3032 	struct spdk_nvmf_tcp_qpair		*tqpair;
3033 	uint32_t				plen;
3034 	struct nvme_tcp_pdu			*pdu;
3035 	enum spdk_nvmf_tcp_req_state		prev_state;
3036 	bool					progress = false;
3037 	struct spdk_nvmf_transport		*transport = &ttransport->transport;
3038 	struct spdk_nvmf_transport_poll_group	*group;
3039 	struct spdk_nvmf_tcp_poll_group		*tgroup;
3040 
3041 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
3042 	group = &tqpair->group->group;
3043 	assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
3044 
3045 	/* If the qpair is not active, we need to abort the outstanding requests. */
3046 	if (!spdk_nvmf_qpair_is_active(&tqpair->qpair)) {
3047 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
3048 			nvmf_tcp_request_get_buffers_abort(tcp_req);
3049 		}
3050 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3051 	}
3052 
3053 	/* The loop here is to allow for several back-to-back state changes. */
3054 	do {
3055 		prev_state = tcp_req->state;
3056 
3057 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
3058 			      tqpair);
3059 
3060 		switch (tcp_req->state) {
3061 		case TCP_REQUEST_STATE_FREE:
3062 			/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
3063 			 * to escape this state. */
3064 			break;
3065 		case TCP_REQUEST_STATE_NEW:
3066 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req,
3067 					  tqpair->qpair.queue_depth);
3068 
3069 			/* copy the cmd from the receive pdu */
3070 			tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
3071 
3072 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
3073 				tcp_req->req.dif_enabled = true;
3074 				tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
3075 			}
3076 
3077 			nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req);
3078 
3079 			/* The next state transition depends on the data transfer needs of this request. */
3080 			tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
3081 
3082 			if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
3083 				nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_INVALID_OPCODE);
3084 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
3085 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3086 				SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
3087 				break;
3088 			}
3089 
3090 			/* If no data to transfer, ready to execute. */
3091 			if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
3092 				/* Reset the tqpair receiving pdu state */
3093 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
3094 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
3095 				break;
3096 			}
3097 
3098 			pdu = tqpair->pdu_in_progress;
3099 			plen = pdu->hdr.common.hlen;
3100 			if (tqpair->host_hdgst_enable) {
3101 				plen += SPDK_NVME_TCP_DIGEST_LEN;
3102 			}
3103 			if (pdu->hdr.common.plen != plen) {
3104 				tcp_req->has_in_capsule_data = true;
3105 			} else {
3106 				/* Data is transmitted by C2H PDUs */
3107 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
3108 			}
3109 
3110 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
3111 			break;
3112 		case TCP_REQUEST_STATE_NEED_BUFFER:
3113 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.trace_id, 0,
3114 					  (uintptr_t)tcp_req);
3115 
3116 			assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
3117 
3118 			/* Try to get a data buffer */
3119 			nvmf_tcp_req_parse_sgl(tcp_req, transport, group);
3120 			break;
3121 		case TCP_REQUEST_STATE_HAVE_BUFFER:
3122 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_HAVE_BUFFER, tqpair->qpair.trace_id, 0,
3123 					  (uintptr_t)tcp_req);
3124 			/* Get a zcopy buffer if the request can be serviced through zcopy */
3125 			if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
3126 				if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3127 					assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
3128 					tcp_req->req.length = tcp_req->req.dif.elba_length;
3129 				}
3130 
3131 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START);
3132 				spdk_nvmf_request_zcopy_start(&tcp_req->req);
3133 				break;
3134 			}
3135 
3136 			assert(tcp_req->req.iovcnt > 0);
3137 
3138 			/* If data is transferring from host to controller, we need to do a transfer from the host. */
3139 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
3140 				if (tcp_req->req.data_from_pool) {
3141 					SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
3142 					nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
3143 				} else {
3144 					struct nvme_tcp_pdu *pdu;
3145 
3146 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
3147 
3148 					pdu = tqpair->pdu_in_progress;
3149 					SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
3150 						      tqpair);
3151 					/* No need to send r2t, contained in the capsuled data */
3152 					nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
3153 								  0, tcp_req->req.length);
3154 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
3155 				}
3156 				break;
3157 			}
3158 
3159 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
3160 			break;
3161 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3162 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.trace_id, 0,
3163 					  (uintptr_t)tcp_req);
3164 			/* Some external code must kick a request into  TCP_REQUEST_STATE_ZCOPY_START_COMPLETED
3165 			 * to escape this state. */
3166 			break;
3167 		case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
3168 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.trace_id, 0,
3169 					  (uintptr_t)tcp_req);
3170 			if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) {
3171 				SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n",
3172 					      tcp_req, tqpair);
3173 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3174 				break;
3175 			}
3176 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
3177 				SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
3178 				nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
3179 			} else {
3180 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3181 			}
3182 			break;
3183 		case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3184 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.trace_id, 0,
3185 					  (uintptr_t)tcp_req);
3186 			/* The R2T completion or the h2c data incoming will kick it out of this state. */
3187 			break;
3188 		case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3189 
3190 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.trace_id,
3191 					  0, (uintptr_t)tcp_req);
3192 			/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
3193 			 * to escape this state. */
3194 			break;
3195 		case TCP_REQUEST_STATE_READY_TO_EXECUTE:
3196 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.trace_id, 0,
3197 					  (uintptr_t)tcp_req);
3198 
3199 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3200 				assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
3201 				tcp_req->req.length = tcp_req->req.dif.elba_length;
3202 			}
3203 
3204 			if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
3205 				if (tcp_req->fused_failed) {
3206 					/* This request failed FUSED semantics.  Fail it immediately, without
3207 					 * even sending it to the target layer.
3208 					 */
3209 					nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_MISSING_FUSED);
3210 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3211 					break;
3212 				}
3213 
3214 				if (tcp_req->fused_pair == NULL ||
3215 				    tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3216 					/* This request is ready to execute, but either we don't know yet if it's
3217 					 * valid - i.e. this is a FIRST but we haven't received the next request yet),
3218 					 * or the other request of this fused pair isn't ready to execute. So
3219 					 * break here and this request will get processed later either when the
3220 					 * other request is ready or we find that this request isn't valid.
3221 					 */
3222 					break;
3223 				}
3224 			}
3225 
3226 			if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
3227 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
3228 				/* If we get to this point, and this request is a fused command, we know that
3229 				 * it is part of a valid sequence (FIRST followed by a SECOND) and that both
3230 				 * requests are READY_TO_EXECUTE.  So call spdk_nvmf_request_exec() both on this
3231 				 * request, and the other request of the fused pair, in the correct order.
3232 				 * Also clear the ->fused_pair pointers on both requests, since after this point
3233 				 * we no longer need to maintain the relationship between these two requests.
3234 				 */
3235 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
3236 					assert(tcp_req->fused_pair != NULL);
3237 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3238 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3239 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3240 					tcp_req->fused_pair->fused_pair = NULL;
3241 					tcp_req->fused_pair = NULL;
3242 				}
3243 				spdk_nvmf_request_exec(&tcp_req->req);
3244 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
3245 					assert(tcp_req->fused_pair != NULL);
3246 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3247 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3248 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3249 					tcp_req->fused_pair->fused_pair = NULL;
3250 					tcp_req->fused_pair = NULL;
3251 				}
3252 			} else {
3253 				/* For zero-copy, only requests with data coming from host to the
3254 				 * controller can end up here. */
3255 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
3256 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT);
3257 				spdk_nvmf_request_zcopy_end(&tcp_req->req, true);
3258 			}
3259 
3260 			break;
3261 		case TCP_REQUEST_STATE_EXECUTING:
3262 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
3263 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3264 			 * to escape this state. */
3265 			break;
3266 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3267 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.trace_id, 0,
3268 					  (uintptr_t)tcp_req);
3269 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3270 			 * to escape this state. */
3271 			break;
3272 		case TCP_REQUEST_STATE_EXECUTED:
3273 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
3274 
3275 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3276 				tcp_req->req.length = tcp_req->req.dif.orig_length;
3277 			}
3278 
3279 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3280 			break;
3281 		case TCP_REQUEST_STATE_READY_TO_COMPLETE:
3282 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.trace_id, 0,
3283 					  (uintptr_t)tcp_req);
3284 			if (request_transfer_out(&tcp_req->req) != 0) {
3285 				assert(0); /* No good way to handle this currently */
3286 			}
3287 			break;
3288 		case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
3289 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.trace_id,
3290 					  0, (uintptr_t)tcp_req);
3291 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3292 			 * to escape this state. */
3293 			break;
3294 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3295 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.trace_id, 0,
3296 					  (uintptr_t)tcp_req);
3297 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3298 			 * to escape this state. */
3299 			break;
3300 		case TCP_REQUEST_STATE_COMPLETED:
3301 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req,
3302 					  tqpair->qpair.queue_depth);
3303 			/* If there's an outstanding PDU sent to the host, the request is completed
3304 			 * due to the qpair being disconnected.  We must delay the completion until
3305 			 * that write is done to avoid freeing the request twice. */
3306 			if (spdk_unlikely(tcp_req->pdu_in_use)) {
3307 				SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding "
3308 					      "write on req=%p\n", tcp_req);
3309 				/* This can only happen for zcopy requests */
3310 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3311 				assert(!spdk_nvmf_qpair_is_active(&tqpair->qpair));
3312 				break;
3313 			}
3314 
3315 			if (tcp_req->req.data_from_pool) {
3316 				spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
3317 			} else if (spdk_unlikely(tcp_req->has_in_capsule_data &&
3318 						 (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
3319 						  tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
3320 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3321 				assert(tgroup->control_msg_list);
3322 				SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
3323 				nvmf_tcp_control_msg_put(tgroup->control_msg_list,
3324 							 tcp_req->req.iov[0].iov_base);
3325 			} else if (tcp_req->req.zcopy_bdev_io != NULL) {
3326 				/* If the request has an unreleased zcopy bdev_io, it's either a
3327 				 * read, a failed write, or the qpair is being disconnected */
3328 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3329 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
3330 				       spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) ||
3331 				       !spdk_nvmf_qpair_is_active(&tqpair->qpair));
3332 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE);
3333 				spdk_nvmf_request_zcopy_end(&tcp_req->req, false);
3334 				break;
3335 			}
3336 			tcp_req->req.length = 0;
3337 			tcp_req->req.iovcnt = 0;
3338 			tcp_req->fused_failed = false;
3339 			if (tcp_req->fused_pair) {
3340 				/* This req was part of a valid fused pair, but failed before it got to
3341 				 * READ_TO_EXECUTE state.  This means we need to fail the other request
3342 				 * in the pair, because it is no longer part of a valid pair.  If the pair
3343 				 * already reached READY_TO_EXECUTE state, we need to kick it.
3344 				 */
3345 				tcp_req->fused_pair->fused_failed = true;
3346 				if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3347 					nvmf_tcp_req_process(ttransport, tcp_req->fused_pair);
3348 				}
3349 				tcp_req->fused_pair = NULL;
3350 			}
3351 
3352 			nvmf_tcp_req_put(tqpair, tcp_req);
3353 			break;
3354 		case TCP_REQUEST_NUM_STATES:
3355 		default:
3356 			assert(0);
3357 			break;
3358 		}
3359 
3360 		if (tcp_req->state != prev_state) {
3361 			progress = true;
3362 		}
3363 	} while (tcp_req->state != prev_state);
3364 
3365 	return progress;
3366 }
3367 
3368 static void
3369 tcp_sock_cb(void *arg)
3370 {
3371 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
3372 	int rc;
3373 
3374 	assert(tqpair != NULL);
3375 	rc = nvmf_tcp_sock_process(tqpair);
3376 
3377 	/* If there was a new socket error, disconnect */
3378 	if (rc < 0) {
3379 		nvmf_tcp_qpair_disconnect(tqpair);
3380 	}
3381 }
3382 
3383 static void
3384 nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
3385 {
3386 	tcp_sock_cb(arg);
3387 }
3388 
3389 static int
3390 nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3391 			struct spdk_nvmf_qpair *qpair)
3392 {
3393 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3394 	struct spdk_nvmf_tcp_qpair	*tqpair;
3395 	int				rc;
3396 
3397 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3398 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3399 
3400 	rc =  nvmf_tcp_qpair_sock_init(tqpair);
3401 	if (rc != 0) {
3402 		SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
3403 		return -1;
3404 	}
3405 
3406 	rc = nvmf_tcp_qpair_init(&tqpair->qpair);
3407 	if (rc < 0) {
3408 		SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
3409 		return -1;
3410 	}
3411 
3412 	rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
3413 	if (rc < 0) {
3414 		SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
3415 		return -1;
3416 	}
3417 
3418 	rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
3419 				      nvmf_tcp_sock_cb, tqpair);
3420 	if (rc != 0) {
3421 		SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
3422 			    spdk_strerror(errno), errno);
3423 		return -1;
3424 	}
3425 
3426 	tqpair->group = tgroup;
3427 	nvmf_tcp_qpair_set_state(tqpair, NVMF_TCP_QPAIR_STATE_INVALID);
3428 	TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
3429 
3430 	return 0;
3431 }
3432 
3433 static int
3434 nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3435 			   struct spdk_nvmf_qpair *qpair)
3436 {
3437 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3438 	struct spdk_nvmf_tcp_qpair		*tqpair;
3439 	int				rc;
3440 
3441 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3442 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3443 
3444 	assert(tqpair->group == tgroup);
3445 
3446 	SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
3447 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
3448 		/* Change the state to move the qpair from the await_req list to the main list
3449 		 * and prevent adding it again later by nvmf_tcp_qpair_set_recv_state() */
3450 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
3451 	}
3452 	TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
3453 
3454 	/* Try to force out any pending writes */
3455 	spdk_sock_flush(tqpair->sock);
3456 
3457 	rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
3458 	if (rc != 0) {
3459 		SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
3460 			    spdk_strerror(errno), errno);
3461 	}
3462 
3463 	return rc;
3464 }
3465 
3466 static int
3467 nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
3468 {
3469 	struct spdk_nvmf_tcp_transport *ttransport;
3470 	struct spdk_nvmf_tcp_req *tcp_req;
3471 	struct spdk_nvmf_tcp_qpair *tqpair;
3472 
3473 	ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3474 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3475 	tqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_tcp_qpair, qpair);
3476 
3477 	switch (tcp_req->state) {
3478 	case TCP_REQUEST_STATE_EXECUTING:
3479 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3480 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3481 		break;
3482 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3483 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED);
3484 		break;
3485 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3486 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3487 		/* In the interrupt mode it's possible that all responses are already written out over
3488 		 * the socket but zero-copy buffers are still not released. In that case there won't be
3489 		 * any event to trigger further socket processing. Send msg to a thread to avoid deadlock.
3490 		 */
3491 		if (spdk_unlikely(spdk_interrupt_mode_is_enabled() &&
3492 				  tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ &&
3493 				  spdk_nvmf_qpair_is_active(&tqpair->qpair))) {
3494 			spdk_thread_send_msg(spdk_get_thread(), tcp_sock_cb, tqpair);
3495 		}
3496 		break;
3497 	default:
3498 		SPDK_ERRLOG("Unexpected request state %d (cntlid:%d, qid:%d)\n",
3499 			    tcp_req->state, req->qpair->ctrlr->cntlid, req->qpair->qid);
3500 		assert(0 && "Unexpected request state");
3501 		break;
3502 	}
3503 
3504 	nvmf_tcp_req_process(ttransport, tcp_req);
3505 
3506 	return 0;
3507 }
3508 
3509 static void
3510 nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
3511 		     spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3512 {
3513 	struct spdk_nvmf_tcp_qpair *tqpair;
3514 
3515 	SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
3516 
3517 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3518 
3519 	assert(tqpair->fini_cb_fn == NULL);
3520 	tqpair->fini_cb_fn = cb_fn;
3521 	tqpair->fini_cb_arg = cb_arg;
3522 
3523 	nvmf_tcp_qpair_set_state(tqpair, NVMF_TCP_QPAIR_STATE_EXITED);
3524 	nvmf_tcp_qpair_destroy(tqpair);
3525 }
3526 
3527 static int
3528 nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3529 {
3530 	struct spdk_nvmf_tcp_poll_group *tgroup;
3531 	int num_events, rc = 0, rc2;
3532 	struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp;
3533 
3534 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3535 
3536 	if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) {
3537 		return 0;
3538 	}
3539 
3540 	num_events = spdk_sock_group_poll(tgroup->sock_group);
3541 	if (spdk_unlikely(num_events < 0)) {
3542 		SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
3543 	}
3544 
3545 	TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) {
3546 		rc2 = nvmf_tcp_sock_process(tqpair);
3547 
3548 		/* If there was a new socket error, disconnect */
3549 		if (spdk_unlikely(rc2 < 0)) {
3550 			nvmf_tcp_qpair_disconnect(tqpair);
3551 			if (rc == 0) {
3552 				rc = rc2;
3553 			}
3554 		}
3555 	}
3556 
3557 	return rc == 0 ? num_events : rc;
3558 }
3559 
3560 static int
3561 nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
3562 			struct spdk_nvme_transport_id *trid, bool peer)
3563 {
3564 	struct spdk_nvmf_tcp_qpair     *tqpair;
3565 	uint16_t			port;
3566 
3567 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3568 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
3569 
3570 	if (peer) {
3571 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
3572 		port = tqpair->initiator_port;
3573 	} else {
3574 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
3575 		port = tqpair->target_port;
3576 	}
3577 
3578 	if (spdk_sock_is_ipv4(tqpair->sock)) {
3579 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3580 	} else if (spdk_sock_is_ipv6(tqpair->sock)) {
3581 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3582 	} else {
3583 		return -1;
3584 	}
3585 
3586 	snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
3587 	return 0;
3588 }
3589 
3590 static int
3591 nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3592 			      struct spdk_nvme_transport_id *trid)
3593 {
3594 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3595 }
3596 
3597 static int
3598 nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3599 			     struct spdk_nvme_transport_id *trid)
3600 {
3601 	return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
3602 }
3603 
3604 static int
3605 nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3606 			       struct spdk_nvme_transport_id *trid)
3607 {
3608 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3609 }
3610 
3611 static void
3612 nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
3613 			      struct spdk_nvmf_tcp_req *tcp_req_to_abort)
3614 {
3615 	nvmf_tcp_req_set_cpl(tcp_req_to_abort, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_BY_REQUEST);
3616 	nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3617 
3618 	req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
3619 }
3620 
3621 static int
3622 _nvmf_tcp_qpair_abort_request(void *ctx)
3623 {
3624 	struct spdk_nvmf_request *req = ctx;
3625 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
3626 			struct spdk_nvmf_tcp_req, req);
3627 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
3628 					     struct spdk_nvmf_tcp_qpair, qpair);
3629 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
3630 			struct spdk_nvmf_tcp_transport, transport);
3631 	int rc;
3632 
3633 	spdk_poller_unregister(&req->poller);
3634 
3635 	switch (tcp_req_to_abort->state) {
3636 	case TCP_REQUEST_STATE_EXECUTING:
3637 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3638 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3639 		rc = nvmf_ctrlr_abort_request(req);
3640 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
3641 			return SPDK_POLLER_BUSY;
3642 		}
3643 		break;
3644 
3645 	case TCP_REQUEST_STATE_NEED_BUFFER:
3646 		nvmf_tcp_request_get_buffers_abort(tcp_req_to_abort);
3647 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3648 		nvmf_tcp_req_process(ttransport, tcp_req_to_abort);
3649 		break;
3650 
3651 	case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3652 	case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3653 		if (spdk_get_ticks() < req->timeout_tsc) {
3654 			req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
3655 			return SPDK_POLLER_BUSY;
3656 		}
3657 		break;
3658 
3659 	default:
3660 		/* Requests in other states are either un-abortable (e.g.
3661 		 * TRANSFERRING_CONTROLLER_TO_HOST) or should never end up here, as they're
3662 		 * immediately transitioned to other states in nvmf_tcp_req_process() (e.g.
3663 		 * READY_TO_EXECUTE).  But it is fine to end up here, as we'll simply complete the
3664 		 * abort request with the bit0 of dword0 set (command not aborted).
3665 		 */
3666 		break;
3667 	}
3668 
3669 	spdk_nvmf_request_complete(req);
3670 	return SPDK_POLLER_BUSY;
3671 }
3672 
3673 static void
3674 nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
3675 			     struct spdk_nvmf_request *req)
3676 {
3677 	struct spdk_nvmf_tcp_qpair *tqpair;
3678 	struct spdk_nvmf_tcp_transport *ttransport;
3679 	struct spdk_nvmf_transport *transport;
3680 	uint16_t cid;
3681 	uint32_t i;
3682 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
3683 
3684 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3685 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3686 	transport = &ttransport->transport;
3687 
3688 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
3689 
3690 	for (i = 0; i < tqpair->resource_count; i++) {
3691 		if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
3692 		    tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
3693 			tcp_req_to_abort = &tqpair->reqs[i];
3694 			break;
3695 		}
3696 	}
3697 
3698 	spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, tqpair->qpair.trace_id, 0, (uintptr_t)req);
3699 
3700 	if (tcp_req_to_abort == NULL) {
3701 		spdk_nvmf_request_complete(req);
3702 		return;
3703 	}
3704 
3705 	req->req_to_abort = &tcp_req_to_abort->req;
3706 	req->timeout_tsc = spdk_get_ticks() +
3707 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
3708 	req->poller = NULL;
3709 
3710 	_nvmf_tcp_qpair_abort_request(req);
3711 }
3712 
3713 struct tcp_subsystem_add_host_opts {
3714 	char *psk;
3715 };
3716 
3717 static const struct spdk_json_object_decoder tcp_subsystem_add_host_opts_decoder[] = {
3718 	{"psk", offsetof(struct tcp_subsystem_add_host_opts, psk), spdk_json_decode_string, true},
3719 };
3720 
3721 static int
3722 nvmf_tcp_subsystem_add_host(struct spdk_nvmf_transport *transport,
3723 			    const struct spdk_nvmf_subsystem *subsystem,
3724 			    const char *hostnqn,
3725 			    const struct spdk_json_val *transport_specific)
3726 {
3727 	struct tcp_subsystem_add_host_opts opts;
3728 	struct spdk_nvmf_tcp_transport *ttransport;
3729 	struct tcp_psk_entry *tmp, *entry = NULL;
3730 	uint8_t psk_configured[SPDK_TLS_PSK_MAX_LEN] = {};
3731 	char psk_interchange[SPDK_TLS_PSK_MAX_LEN + 1] = {};
3732 	uint8_t tls_cipher_suite;
3733 	int rc = 0;
3734 	uint8_t psk_retained_hash;
3735 	uint64_t psk_configured_size;
3736 
3737 	if (transport_specific == NULL) {
3738 		return 0;
3739 	}
3740 
3741 	assert(transport != NULL);
3742 	assert(subsystem != NULL);
3743 
3744 	memset(&opts, 0, sizeof(opts));
3745 
3746 	/* Decode PSK (either name of a key or file path) */
3747 	if (spdk_json_decode_object_relaxed(transport_specific, tcp_subsystem_add_host_opts_decoder,
3748 					    SPDK_COUNTOF(tcp_subsystem_add_host_opts_decoder), &opts)) {
3749 		SPDK_ERRLOG("spdk_json_decode_object failed\n");
3750 		return -EINVAL;
3751 	}
3752 
3753 	if (opts.psk == NULL) {
3754 		return 0;
3755 	}
3756 
3757 	entry = calloc(1, sizeof(struct tcp_psk_entry));
3758 	if (entry == NULL) {
3759 		SPDK_ERRLOG("Unable to allocate memory for PSK entry!\n");
3760 		rc = -ENOMEM;
3761 		goto end;
3762 	}
3763 
3764 	entry->key = spdk_keyring_get_key(opts.psk);
3765 	if (entry->key == NULL) {
3766 		SPDK_ERRLOG("Key '%s' does not exist\n", opts.psk);
3767 		rc = -EINVAL;
3768 		goto end;
3769 	}
3770 
3771 	rc = spdk_key_get_key(entry->key, psk_interchange, SPDK_TLS_PSK_MAX_LEN);
3772 	if (rc < 0) {
3773 		SPDK_ERRLOG("Failed to retrieve PSK '%s'\n", opts.psk);
3774 		rc = -EINVAL;
3775 		goto end;
3776 	}
3777 
3778 	/* Parse PSK interchange to get length of base64 encoded data.
3779 	 * This is then used to decide which cipher suite should be used
3780 	 * to generate PSK identity and TLS PSK later on. */
3781 	rc = nvme_tcp_parse_interchange_psk(psk_interchange, psk_configured, sizeof(psk_configured),
3782 					    &psk_configured_size, &psk_retained_hash);
3783 	if (rc < 0) {
3784 		SPDK_ERRLOG("Failed to parse PSK interchange!\n");
3785 		goto end;
3786 	}
3787 
3788 	/* The Base64 string encodes the configured PSK (32 or 48 bytes binary).
3789 	 * This check also ensures that psk_configured_size is smaller than
3790 	 * psk_retained buffer size. */
3791 	if (psk_configured_size == SHA256_DIGEST_LENGTH) {
3792 		tls_cipher_suite = NVME_TCP_CIPHER_AES_128_GCM_SHA256;
3793 	} else if (psk_configured_size == SHA384_DIGEST_LENGTH) {
3794 		tls_cipher_suite = NVME_TCP_CIPHER_AES_256_GCM_SHA384;
3795 	} else {
3796 		SPDK_ERRLOG("Unrecognized cipher suite!\n");
3797 		rc = -EINVAL;
3798 		goto end;
3799 	}
3800 
3801 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3802 	/* Generate PSK identity. */
3803 	rc = nvme_tcp_generate_psk_identity(entry->pskid, sizeof(entry->pskid), hostnqn,
3804 					    subsystem->subnqn, tls_cipher_suite);
3805 	if (rc) {
3806 		rc = -EINVAL;
3807 		goto end;
3808 	}
3809 	/* Check if PSK identity entry already exists. */
3810 	TAILQ_FOREACH(tmp, &ttransport->psks, link) {
3811 		if (strncmp(tmp->pskid, entry->pskid, NVMF_PSK_IDENTITY_LEN) == 0) {
3812 			SPDK_ERRLOG("Given PSK identity: %s entry already exists!\n", entry->pskid);
3813 			rc = -EEXIST;
3814 			goto end;
3815 		}
3816 	}
3817 
3818 	if (snprintf(entry->hostnqn, sizeof(entry->hostnqn), "%s", hostnqn) < 0) {
3819 		SPDK_ERRLOG("Could not write hostnqn string!\n");
3820 		rc = -EINVAL;
3821 		goto end;
3822 	}
3823 	if (snprintf(entry->subnqn, sizeof(entry->subnqn), "%s", subsystem->subnqn) < 0) {
3824 		SPDK_ERRLOG("Could not write subnqn string!\n");
3825 		rc = -EINVAL;
3826 		goto end;
3827 	}
3828 
3829 	entry->tls_cipher_suite = tls_cipher_suite;
3830 
3831 	/* No hash indicates that Configured PSK must be used as Retained PSK. */
3832 	if (psk_retained_hash == NVME_TCP_HASH_ALGORITHM_NONE) {
3833 		/* Psk configured is either 32 or 48 bytes long. */
3834 		memcpy(entry->psk, psk_configured, psk_configured_size);
3835 		entry->psk_size = psk_configured_size;
3836 	} else {
3837 		/* Derive retained PSK. */
3838 		rc = nvme_tcp_derive_retained_psk(psk_configured, psk_configured_size, hostnqn, entry->psk,
3839 						  SPDK_TLS_PSK_MAX_LEN, psk_retained_hash);
3840 		if (rc < 0) {
3841 			SPDK_ERRLOG("Unable to derive retained PSK!\n");
3842 			goto end;
3843 		}
3844 		entry->psk_size = rc;
3845 	}
3846 
3847 	TAILQ_INSERT_TAIL(&ttransport->psks, entry, link);
3848 	rc = 0;
3849 
3850 end:
3851 	spdk_memset_s(psk_configured, sizeof(psk_configured), 0, sizeof(psk_configured));
3852 	spdk_memset_s(psk_interchange, sizeof(psk_interchange), 0, sizeof(psk_interchange));
3853 
3854 	free(opts.psk);
3855 	if (rc != 0) {
3856 		nvmf_tcp_free_psk_entry(entry);
3857 	}
3858 
3859 	return rc;
3860 }
3861 
3862 static void
3863 nvmf_tcp_subsystem_remove_host(struct spdk_nvmf_transport *transport,
3864 			       const struct spdk_nvmf_subsystem *subsystem,
3865 			       const char *hostnqn)
3866 {
3867 	struct spdk_nvmf_tcp_transport *ttransport;
3868 	struct tcp_psk_entry *entry, *tmp;
3869 
3870 	assert(transport != NULL);
3871 	assert(subsystem != NULL);
3872 
3873 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3874 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
3875 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3876 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3877 			TAILQ_REMOVE(&ttransport->psks, entry, link);
3878 			nvmf_tcp_free_psk_entry(entry);
3879 			break;
3880 		}
3881 	}
3882 }
3883 
3884 static void
3885 nvmf_tcp_subsystem_dump_host(struct spdk_nvmf_transport *transport,
3886 			     const struct spdk_nvmf_subsystem *subsystem, const char *hostnqn,
3887 			     struct spdk_json_write_ctx *w)
3888 {
3889 	struct spdk_nvmf_tcp_transport *ttransport;
3890 	struct tcp_psk_entry *entry;
3891 
3892 	assert(transport != NULL);
3893 	assert(subsystem != NULL);
3894 
3895 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3896 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
3897 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3898 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3899 			spdk_json_write_named_string(w, "psk",  spdk_key_get_name(entry->key));
3900 			break;
3901 		}
3902 	}
3903 }
3904 
3905 static void
3906 nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
3907 {
3908 	opts->max_queue_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
3909 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
3910 	opts->in_capsule_data_size =	SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
3911 	opts->max_io_size =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
3912 	opts->io_unit_size =		SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
3913 	opts->max_aq_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
3914 	opts->num_shared_buffers =	SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
3915 	opts->buf_cache_size =		SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
3916 	opts->dif_insert_or_strip =	SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
3917 	opts->abort_timeout_sec =	SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
3918 	opts->transport_specific =      NULL;
3919 }
3920 
3921 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
3922 	.name = "TCP",
3923 	.type = SPDK_NVME_TRANSPORT_TCP,
3924 	.opts_init = nvmf_tcp_opts_init,
3925 	.create = nvmf_tcp_create,
3926 	.dump_opts = nvmf_tcp_dump_opts,
3927 	.destroy = nvmf_tcp_destroy,
3928 
3929 	.listen = nvmf_tcp_listen,
3930 	.stop_listen = nvmf_tcp_stop_listen,
3931 
3932 	.listener_discover = nvmf_tcp_discover,
3933 
3934 	.poll_group_create = nvmf_tcp_poll_group_create,
3935 	.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
3936 	.poll_group_destroy = nvmf_tcp_poll_group_destroy,
3937 	.poll_group_add = nvmf_tcp_poll_group_add,
3938 	.poll_group_remove = nvmf_tcp_poll_group_remove,
3939 	.poll_group_poll = nvmf_tcp_poll_group_poll,
3940 
3941 	.req_free = nvmf_tcp_req_free,
3942 	.req_complete = nvmf_tcp_req_complete,
3943 	.req_get_buffers_done = nvmf_tcp_req_get_buffers_done,
3944 
3945 	.qpair_fini = nvmf_tcp_close_qpair,
3946 	.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
3947 	.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
3948 	.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
3949 	.qpair_abort_request = nvmf_tcp_qpair_abort_request,
3950 	.subsystem_add_host = nvmf_tcp_subsystem_add_host,
3951 	.subsystem_remove_host = nvmf_tcp_subsystem_remove_host,
3952 	.subsystem_dump_host = nvmf_tcp_subsystem_dump_host,
3953 };
3954 
3955 SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
3956 SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)
3957