xref: /spdk/lib/nvmf/tcp.c (revision 927f1fd57bd004df581518466ec4c1b8083e5d23)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation. All rights reserved.
5  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
6  *   Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
7  *
8  *   Redistribution and use in source and binary forms, with or without
9  *   modification, are permitted provided that the following conditions
10  *   are met:
11  *
12  *     * Redistributions of source code must retain the above copyright
13  *       notice, this list of conditions and the following disclaimer.
14  *     * Redistributions in binary form must reproduce the above copyright
15  *       notice, this list of conditions and the following disclaimer in
16  *       the documentation and/or other materials provided with the
17  *       distribution.
18  *     * Neither the name of Intel Corporation nor the names of its
19  *       contributors may be used to endorse or promote products derived
20  *       from this software without specific prior written permission.
21  *
22  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include "spdk/accel_engine.h"
36 #include "spdk/stdinc.h"
37 #include "spdk/crc32.h"
38 #include "spdk/endian.h"
39 #include "spdk/assert.h"
40 #include "spdk/thread.h"
41 #include "spdk/nvmf_transport.h"
42 #include "spdk/string.h"
43 #include "spdk/trace.h"
44 #include "spdk/util.h"
45 #include "spdk/log.h"
46 
47 #include "spdk_internal/assert.h"
48 #include "spdk_internal/nvme_tcp.h"
49 #include "spdk_internal/sock.h"
50 
51 #include "nvmf_internal.h"
52 
53 #include "spdk_internal/trace_defs.h"
54 
55 #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
56 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
57 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
58 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
59 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
60 
61 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
62 
63 /* spdk nvmf related structure */
64 enum spdk_nvmf_tcp_req_state {
65 
66 	/* The request is not currently in use */
67 	TCP_REQUEST_STATE_FREE = 0,
68 
69 	/* Initial state when request first received */
70 	TCP_REQUEST_STATE_NEW = 1,
71 
72 	/* The request is queued until a data buffer is available. */
73 	TCP_REQUEST_STATE_NEED_BUFFER = 2,
74 
75 	/* The request is waiting for zcopy_start to finish */
76 	TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 3,
77 
78 	/* The request has received a zero-copy buffer */
79 	TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 4,
80 
81 	/* The request is currently transferring data from the host to the controller. */
82 	TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 5,
83 
84 	/* The request is waiting for the R2T send acknowledgement. */
85 	TCP_REQUEST_STATE_AWAITING_R2T_ACK = 6,
86 
87 	/* The request is ready to execute at the block device */
88 	TCP_REQUEST_STATE_READY_TO_EXECUTE = 7,
89 
90 	/* The request is currently executing at the block device */
91 	TCP_REQUEST_STATE_EXECUTING = 8,
92 
93 	/* The request is waiting for zcopy buffers to be commited */
94 	TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 9,
95 
96 	/* The request finished executing at the block device */
97 	TCP_REQUEST_STATE_EXECUTED = 10,
98 
99 	/* The request is ready to send a completion */
100 	TCP_REQUEST_STATE_READY_TO_COMPLETE = 11,
101 
102 	/* The request is currently transferring final pdus from the controller to the host. */
103 	TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 12,
104 
105 	/* The request is waiting for zcopy buffers to be released (without committing) */
106 	TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 13,
107 
108 	/* The request completed and can be marked free. */
109 	TCP_REQUEST_STATE_COMPLETED = 14,
110 
111 	/* Terminator */
112 	TCP_REQUEST_NUM_STATES,
113 };
114 
115 static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
116 	"Invalid PDU Header Field",
117 	"PDU Sequence Error",
118 	"Header Digiest Error",
119 	"Data Transfer Out of Range",
120 	"R2T Limit Exceeded",
121 	"Unsupported parameter",
122 };
123 
124 SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
125 {
126 	spdk_trace_register_owner(OWNER_NVMF_TCP, 't');
127 	spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
128 	spdk_trace_register_description("TCP_REQ_NEW",
129 					TRACE_TCP_REQUEST_STATE_NEW,
130 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1,
131 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
132 	spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
133 					TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
134 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
135 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
136 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START",
137 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START,
138 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
139 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
140 	spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL",
141 					TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED,
142 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
143 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
144 	spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
145 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
146 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
147 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
148 	spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
149 					TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
150 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
151 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
152 	spdk_trace_register_description("TCP_REQ_EXECUTING",
153 					TRACE_TCP_REQUEST_STATE_EXECUTING,
154 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
155 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
156 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT",
157 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT,
158 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
159 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
160 	spdk_trace_register_description("TCP_REQ_EXECUTED",
161 					TRACE_TCP_REQUEST_STATE_EXECUTED,
162 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
163 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
164 	spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
165 					TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
166 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
167 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
168 	spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
169 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
170 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
171 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
172 	spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS",
173 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE,
174 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
175 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
176 	spdk_trace_register_description("TCP_REQ_COMPLETED",
177 					TRACE_TCP_REQUEST_STATE_COMPLETED,
178 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
179 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
180 	spdk_trace_register_description("TCP_WRITE_START",
181 					TRACE_TCP_FLUSH_WRITEBUF_START,
182 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
183 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
184 	spdk_trace_register_description("TCP_WRITE_DONE",
185 					TRACE_TCP_FLUSH_WRITEBUF_DONE,
186 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
187 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
188 	spdk_trace_register_description("TCP_READ_DONE",
189 					TRACE_TCP_READ_FROM_SOCKET_DONE,
190 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
191 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
192 	spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
193 					TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
194 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
195 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
196 
197 	spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE,
198 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
199 					SPDK_TRACE_ARG_TYPE_INT, "");
200 	spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT,
201 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
202 					SPDK_TRACE_ARG_TYPE_INT, "");
203 	spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE,
204 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
205 					SPDK_TRACE_ARG_TYPE_INT, "state");
206 	spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT,
207 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
208 					SPDK_TRACE_ARG_TYPE_INT, "");
209 	spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY,
210 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
211 					SPDK_TRACE_ARG_TYPE_INT, "");
212 	spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ,
213 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
214 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
215 	spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE,
216 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
217 					SPDK_TRACE_ARG_TYPE_INT, "state");
218 
219 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1);
220 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0);
221 }
222 
223 struct spdk_nvmf_tcp_req  {
224 	struct spdk_nvmf_request		req;
225 	struct spdk_nvme_cpl			rsp;
226 	struct spdk_nvme_cmd			cmd;
227 
228 	/* A PDU that can be used for sending responses. This is
229 	 * not the incoming PDU! */
230 	struct nvme_tcp_pdu			*pdu;
231 
232 	/* In-capsule data buffer */
233 	uint8_t					*buf;
234 
235 	struct spdk_nvmf_tcp_req		*fused_pair;
236 
237 	/*
238 	 * The PDU for a request may be used multiple times in serial over
239 	 * the request's lifetime. For example, first to send an R2T, then
240 	 * to send a completion. To catch mistakes where the PDU is used
241 	 * twice at the same time, add a debug flag here for init/fini.
242 	 */
243 	bool					pdu_in_use;
244 	bool					has_in_capsule_data;
245 	bool					fused_failed;
246 
247 	/* transfer_tag */
248 	uint16_t				ttag;
249 
250 	enum spdk_nvmf_tcp_req_state		state;
251 
252 	/*
253 	 * h2c_offset is used when we receive the h2c_data PDU.
254 	 */
255 	uint32_t				h2c_offset;
256 
257 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		link;
258 	TAILQ_ENTRY(spdk_nvmf_tcp_req)		state_link;
259 };
260 
261 struct spdk_nvmf_tcp_qpair {
262 	struct spdk_nvmf_qpair			qpair;
263 	struct spdk_nvmf_tcp_poll_group		*group;
264 	struct spdk_sock			*sock;
265 
266 	enum nvme_tcp_pdu_recv_state		recv_state;
267 	enum nvme_tcp_qpair_state		state;
268 
269 	/* PDU being actively received */
270 	struct nvme_tcp_pdu			*pdu_in_progress;
271 
272 	struct spdk_nvmf_tcp_req		*fused_first;
273 
274 	/* Queues to track the requests in all states */
275 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_working_queue;
276 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_free_queue;
277 
278 	/* Number of requests in each state */
279 	uint32_t				state_cntr[TCP_REQUEST_NUM_STATES];
280 
281 	uint8_t					cpda;
282 
283 	bool					host_hdgst_enable;
284 	bool					host_ddgst_enable;
285 
286 	/* This is a spare PDU used for sending special management
287 	 * operations. Primarily, this is used for the initial
288 	 * connection response and c2h termination request. */
289 	struct nvme_tcp_pdu			*mgmt_pdu;
290 
291 	/* Arrays of in-capsule buffers, requests, and pdus.
292 	 * Each array is 'resource_count' number of elements */
293 	void					*bufs;
294 	struct spdk_nvmf_tcp_req		*reqs;
295 	struct nvme_tcp_pdu			*pdus;
296 	uint32_t				resource_count;
297 	uint32_t				recv_buf_size;
298 
299 	struct spdk_nvmf_tcp_port		*port;
300 
301 	/* IP address */
302 	char					initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
303 	char					target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
304 
305 	/* IP port */
306 	uint16_t				initiator_port;
307 	uint16_t				target_port;
308 
309 	/* Timer used to destroy qpair after detecting transport error issue if initiator does
310 	 *  not close the connection.
311 	 */
312 	struct spdk_poller			*timeout_poller;
313 
314 	spdk_nvmf_transport_qpair_fini_cb	fini_cb_fn;
315 	void					*fini_cb_arg;
316 
317 	TAILQ_ENTRY(spdk_nvmf_tcp_qpair)	link;
318 };
319 
320 struct spdk_nvmf_tcp_control_msg {
321 	STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
322 };
323 
324 struct spdk_nvmf_tcp_control_msg_list {
325 	void *msg_buf;
326 	STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
327 };
328 
329 struct spdk_nvmf_tcp_poll_group {
330 	struct spdk_nvmf_transport_poll_group	group;
331 	struct spdk_sock_group			*sock_group;
332 
333 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	qpairs;
334 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	await_req;
335 
336 	struct spdk_io_channel			*accel_channel;
337 	struct spdk_nvmf_tcp_control_msg_list	*control_msg_list;
338 
339 	TAILQ_ENTRY(spdk_nvmf_tcp_poll_group)	link;
340 };
341 
342 struct spdk_nvmf_tcp_port {
343 	const struct spdk_nvme_transport_id	*trid;
344 	struct spdk_sock			*listen_sock;
345 	TAILQ_ENTRY(spdk_nvmf_tcp_port)		link;
346 };
347 
348 struct tcp_transport_opts {
349 	bool		c2h_success;
350 	uint16_t	control_msg_num;
351 	uint32_t	sock_priority;
352 };
353 
354 struct spdk_nvmf_tcp_transport {
355 	struct spdk_nvmf_transport		transport;
356 	struct tcp_transport_opts               tcp_opts;
357 
358 	struct spdk_nvmf_tcp_poll_group		*next_pg;
359 
360 	struct spdk_poller			*accept_poller;
361 	pthread_mutex_t				lock;
362 
363 	TAILQ_HEAD(, spdk_nvmf_tcp_port)	ports;
364 	TAILQ_HEAD(, spdk_nvmf_tcp_poll_group)	poll_groups;
365 };
366 
367 static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
368 	{
369 		"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
370 		spdk_json_decode_bool, true
371 	},
372 	{
373 		"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
374 		spdk_json_decode_uint16, true
375 	},
376 	{
377 		"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
378 		spdk_json_decode_uint32, true
379 	},
380 };
381 
382 static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
383 				 struct spdk_nvmf_tcp_req *tcp_req);
384 static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
385 
386 static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
387 				    struct spdk_nvmf_tcp_req *tcp_req);
388 
389 static void
390 nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
391 		       enum spdk_nvmf_tcp_req_state state)
392 {
393 	struct spdk_nvmf_qpair *qpair;
394 	struct spdk_nvmf_tcp_qpair *tqpair;
395 
396 	qpair = tcp_req->req.qpair;
397 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
398 
399 	assert(tqpair->state_cntr[tcp_req->state] > 0);
400 	tqpair->state_cntr[tcp_req->state]--;
401 	tqpair->state_cntr[state]++;
402 
403 	tcp_req->state = state;
404 }
405 
406 static inline struct nvme_tcp_pdu *
407 nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
408 {
409 	assert(tcp_req->pdu_in_use == false);
410 
411 	memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
412 	tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
413 
414 	return tcp_req->pdu;
415 }
416 
417 static struct spdk_nvmf_tcp_req *
418 nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
419 {
420 	struct spdk_nvmf_tcp_req *tcp_req;
421 
422 	tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
423 	if (!tcp_req) {
424 		return NULL;
425 	}
426 
427 	memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
428 	tcp_req->h2c_offset = 0;
429 	tcp_req->has_in_capsule_data = false;
430 	tcp_req->req.dif_enabled = false;
431 	tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE;
432 
433 	TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
434 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
435 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
436 	return tcp_req;
437 }
438 
439 static inline void
440 nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
441 {
442 	assert(!tcp_req->pdu_in_use);
443 
444 	TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
445 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
446 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
447 }
448 
449 static void
450 nvmf_tcp_request_free(void *cb_arg)
451 {
452 	struct spdk_nvmf_tcp_transport *ttransport;
453 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
454 
455 	assert(tcp_req != NULL);
456 
457 	SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
458 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
459 				      struct spdk_nvmf_tcp_transport, transport);
460 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
461 	nvmf_tcp_req_process(ttransport, tcp_req);
462 }
463 
464 static int
465 nvmf_tcp_req_free(struct spdk_nvmf_request *req)
466 {
467 	struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
468 
469 	nvmf_tcp_request_free(tcp_req);
470 
471 	return 0;
472 }
473 
474 static void
475 nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
476 			   enum spdk_nvmf_tcp_req_state state)
477 {
478 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
479 
480 	assert(state != TCP_REQUEST_STATE_FREE);
481 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
482 		if (state == tcp_req->state) {
483 			nvmf_tcp_request_free(tcp_req);
484 		}
485 	}
486 }
487 
488 static void
489 nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
490 {
491 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
492 
493 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
494 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
495 
496 	/* Wipe the requests waiting for buffer from the global list */
497 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
498 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
499 			STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue, &tcp_req->req,
500 				      spdk_nvmf_request, buf_link);
501 		}
502 	}
503 
504 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
505 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
506 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
507 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
508 }
509 
510 static void
511 nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
512 {
513 	int i;
514 	struct spdk_nvmf_tcp_req *tcp_req;
515 
516 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
517 	for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
518 		SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
519 		TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
520 			if ((int)tcp_req->state == i) {
521 				SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
522 				SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
523 			}
524 		}
525 	}
526 }
527 
528 static void
529 _nvmf_tcp_qpair_destroy(void *_tqpair)
530 {
531 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
532 	spdk_nvmf_transport_qpair_fini_cb cb_fn = tqpair->fini_cb_fn;
533 	void *cb_arg = tqpair->fini_cb_arg;
534 	int err = 0;
535 
536 	spdk_trace_record(TRACE_TCP_QP_DESTROY, 0, 0, (uintptr_t)tqpair);
537 
538 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
539 
540 	err = spdk_sock_close(&tqpair->sock);
541 	assert(err == 0);
542 	nvmf_tcp_cleanup_all_states(tqpair);
543 
544 	if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
545 		SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
546 			    tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
547 			    tqpair->resource_count);
548 		err++;
549 	}
550 
551 	if (err > 0) {
552 		nvmf_tcp_dump_qpair_req_contents(tqpair);
553 	}
554 
555 	spdk_dma_free(tqpair->pdus);
556 	free(tqpair->reqs);
557 	spdk_free(tqpair->bufs);
558 	free(tqpair);
559 
560 	if (cb_fn != NULL) {
561 		cb_fn(cb_arg);
562 	}
563 
564 	SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
565 }
566 
567 static void
568 nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
569 {
570 	/* Delay the destruction to make sure it isn't performed from the context of a sock
571 	 * callback.  Otherwise, spdk_sock_close() might not abort pending requests, causing their
572 	 * completions to be executed after the qpair is freed.  (Note: this fixed issue #2471.)
573 	 */
574 	spdk_thread_send_msg(spdk_get_thread(), _nvmf_tcp_qpair_destroy, tqpair);
575 }
576 
577 static void
578 nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
579 {
580 	struct spdk_nvmf_tcp_transport	*ttransport;
581 	assert(w != NULL);
582 
583 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
584 	spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
585 	spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
586 }
587 
588 static int
589 nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
590 		 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
591 {
592 	struct spdk_nvmf_tcp_transport	*ttransport;
593 
594 	assert(transport != NULL);
595 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
596 
597 	spdk_poller_unregister(&ttransport->accept_poller);
598 	pthread_mutex_destroy(&ttransport->lock);
599 	free(ttransport);
600 
601 	if (cb_fn) {
602 		cb_fn(cb_arg);
603 	}
604 	return 0;
605 }
606 
607 static int
608 nvmf_tcp_accept(void *ctx);
609 
610 static struct spdk_nvmf_transport *
611 nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
612 {
613 	struct spdk_nvmf_tcp_transport *ttransport;
614 	uint32_t sge_count;
615 	uint32_t min_shared_buffers;
616 
617 	ttransport = calloc(1, sizeof(*ttransport));
618 	if (!ttransport) {
619 		return NULL;
620 	}
621 
622 	TAILQ_INIT(&ttransport->ports);
623 	TAILQ_INIT(&ttransport->poll_groups);
624 
625 	ttransport->transport.ops = &spdk_nvmf_transport_tcp;
626 
627 	ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
628 	ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
629 	ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
630 	if (opts->transport_specific != NULL &&
631 	    spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
632 					    SPDK_COUNTOF(tcp_transport_opts_decoder),
633 					    &ttransport->tcp_opts)) {
634 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
635 		free(ttransport);
636 		return NULL;
637 	}
638 
639 	SPDK_NOTICELOG("*** TCP Transport Init ***\n");
640 
641 	SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
642 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
643 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
644 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
645 		     "  num_shared_buffers=%d, c2h_success=%d,\n"
646 		     "  dif_insert_or_strip=%d, sock_priority=%d\n"
647 		     "  abort_timeout_sec=%d, control_msg_num=%hu\n",
648 		     opts->max_queue_depth,
649 		     opts->max_io_size,
650 		     opts->max_qpairs_per_ctrlr - 1,
651 		     opts->io_unit_size,
652 		     opts->in_capsule_data_size,
653 		     opts->max_aq_depth,
654 		     opts->num_shared_buffers,
655 		     ttransport->tcp_opts.c2h_success,
656 		     opts->dif_insert_or_strip,
657 		     ttransport->tcp_opts.sock_priority,
658 		     opts->abort_timeout_sec,
659 		     ttransport->tcp_opts.control_msg_num);
660 
661 	if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
662 		SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
663 			    "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
664 			    ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
665 		free(ttransport);
666 		return NULL;
667 	}
668 
669 	if (ttransport->tcp_opts.control_msg_num == 0 &&
670 	    opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
671 		SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
672 			     SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
673 		ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
674 	}
675 
676 	/* I/O unit size cannot be larger than max I/O size */
677 	if (opts->io_unit_size > opts->max_io_size) {
678 		opts->io_unit_size = opts->max_io_size;
679 	}
680 
681 	sge_count = opts->max_io_size / opts->io_unit_size;
682 	if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
683 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
684 		free(ttransport);
685 		return NULL;
686 	}
687 
688 	min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
689 	if (min_shared_buffers > opts->num_shared_buffers) {
690 		SPDK_ERRLOG("There are not enough buffers to satisfy "
691 			    "per-poll group caches for each thread. (%" PRIu32 ") "
692 			    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
693 		SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
694 		free(ttransport);
695 		return NULL;
696 	}
697 
698 	pthread_mutex_init(&ttransport->lock, NULL);
699 
700 	ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport,
701 				    opts->acceptor_poll_rate);
702 	if (!ttransport->accept_poller) {
703 		pthread_mutex_destroy(&ttransport->lock);
704 		free(ttransport);
705 		return NULL;
706 	}
707 
708 	return &ttransport->transport;
709 }
710 
711 static int
712 nvmf_tcp_trsvcid_to_int(const char *trsvcid)
713 {
714 	unsigned long long ull;
715 	char *end = NULL;
716 
717 	ull = strtoull(trsvcid, &end, 10);
718 	if (end == NULL || end == trsvcid || *end != '\0') {
719 		return -1;
720 	}
721 
722 	/* Valid TCP/IP port numbers are in [0, 65535] */
723 	if (ull > 65535) {
724 		return -1;
725 	}
726 
727 	return (int)ull;
728 }
729 
730 /**
731  * Canonicalize a listen address trid.
732  */
733 static int
734 nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
735 			   const struct spdk_nvme_transport_id *trid)
736 {
737 	int trsvcid_int;
738 
739 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
740 	if (trsvcid_int < 0) {
741 		return -EINVAL;
742 	}
743 
744 	memset(canon_trid, 0, sizeof(*canon_trid));
745 	spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
746 	canon_trid->adrfam = trid->adrfam;
747 	snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
748 	snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
749 
750 	return 0;
751 }
752 
753 /**
754  * Find an existing listening port.
755  *
756  * Caller must hold ttransport->lock.
757  */
758 static struct spdk_nvmf_tcp_port *
759 nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
760 		   const struct spdk_nvme_transport_id *trid)
761 {
762 	struct spdk_nvme_transport_id canon_trid;
763 	struct spdk_nvmf_tcp_port *port;
764 
765 	if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
766 		return NULL;
767 	}
768 
769 	TAILQ_FOREACH(port, &ttransport->ports, link) {
770 		if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
771 			return port;
772 		}
773 	}
774 
775 	return NULL;
776 }
777 
778 static int
779 nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
780 		struct spdk_nvmf_listen_opts *listen_opts)
781 {
782 	struct spdk_nvmf_tcp_transport *ttransport;
783 	struct spdk_nvmf_tcp_port *port;
784 	int trsvcid_int;
785 	uint8_t adrfam;
786 	struct spdk_sock_opts opts;
787 
788 	if (!strlen(trid->trsvcid)) {
789 		SPDK_ERRLOG("Service id is required\n");
790 		return -EINVAL;
791 	}
792 
793 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
794 
795 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
796 	if (trsvcid_int < 0) {
797 		SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
798 		return -EINVAL;
799 	}
800 
801 	pthread_mutex_lock(&ttransport->lock);
802 	port = calloc(1, sizeof(*port));
803 	if (!port) {
804 		SPDK_ERRLOG("Port allocation failed\n");
805 		pthread_mutex_unlock(&ttransport->lock);
806 		return -ENOMEM;
807 	}
808 
809 	port->trid = trid;
810 	opts.opts_size = sizeof(opts);
811 	spdk_sock_get_default_opts(&opts);
812 	opts.priority = ttransport->tcp_opts.sock_priority;
813 	port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
814 			    NULL, &opts);
815 	if (port->listen_sock == NULL) {
816 		SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
817 			    trid->traddr, trsvcid_int,
818 			    spdk_strerror(errno), errno);
819 		free(port);
820 		pthread_mutex_unlock(&ttransport->lock);
821 		return -errno;
822 	}
823 
824 	if (spdk_sock_is_ipv4(port->listen_sock)) {
825 		adrfam = SPDK_NVMF_ADRFAM_IPV4;
826 	} else if (spdk_sock_is_ipv6(port->listen_sock)) {
827 		adrfam = SPDK_NVMF_ADRFAM_IPV6;
828 	} else {
829 		SPDK_ERRLOG("Unhandled socket type\n");
830 		adrfam = 0;
831 	}
832 
833 	if (adrfam != trid->adrfam) {
834 		SPDK_ERRLOG("Socket address family mismatch\n");
835 		spdk_sock_close(&port->listen_sock);
836 		free(port);
837 		pthread_mutex_unlock(&ttransport->lock);
838 		return -EINVAL;
839 	}
840 
841 	SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
842 		       trid->traddr, trid->trsvcid);
843 
844 	TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
845 	pthread_mutex_unlock(&ttransport->lock);
846 	return 0;
847 }
848 
849 static void
850 nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
851 		     const struct spdk_nvme_transport_id *trid)
852 {
853 	struct spdk_nvmf_tcp_transport *ttransport;
854 	struct spdk_nvmf_tcp_port *port;
855 
856 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
857 
858 	SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
859 		      trid->traddr, trid->trsvcid);
860 
861 	pthread_mutex_lock(&ttransport->lock);
862 	port = nvmf_tcp_find_port(ttransport, trid);
863 	if (port) {
864 		TAILQ_REMOVE(&ttransport->ports, port, link);
865 		spdk_sock_close(&port->listen_sock);
866 		free(port);
867 	}
868 
869 	pthread_mutex_unlock(&ttransport->lock);
870 }
871 
872 static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
873 		enum nvme_tcp_pdu_recv_state state);
874 
875 static void
876 nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvme_tcp_qpair_state state)
877 {
878 	tqpair->state = state;
879 	spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
880 			  tqpair->state);
881 }
882 
883 static void
884 nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
885 {
886 	SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
887 
888 	spdk_trace_record(TRACE_TCP_QP_DISCONNECT, 0, 0, (uintptr_t)tqpair);
889 
890 	if (tqpair->state <= NVME_TCP_QPAIR_STATE_RUNNING) {
891 		nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITING);
892 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
893 		spdk_poller_unregister(&tqpair->timeout_poller);
894 
895 		/* This will end up calling nvmf_tcp_close_qpair */
896 		spdk_nvmf_qpair_disconnect(&tqpair->qpair, NULL, NULL);
897 	}
898 }
899 
900 static void
901 _mgmt_pdu_write_done(void *_tqpair, int err)
902 {
903 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
904 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
905 
906 	if (spdk_unlikely(err != 0)) {
907 		nvmf_tcp_qpair_disconnect(tqpair);
908 		return;
909 	}
910 
911 	assert(pdu->cb_fn != NULL);
912 	pdu->cb_fn(pdu->cb_arg);
913 }
914 
915 static void
916 _req_pdu_write_done(void *req, int err)
917 {
918 	struct spdk_nvmf_tcp_req *tcp_req = req;
919 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
920 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
921 
922 	assert(tcp_req->pdu_in_use);
923 	tcp_req->pdu_in_use = false;
924 
925 	/* If the request is in a completed state, we're waiting for write completion to free it */
926 	if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) {
927 		nvmf_tcp_request_free(tcp_req);
928 		return;
929 	}
930 
931 	if (spdk_unlikely(err != 0)) {
932 		nvmf_tcp_qpair_disconnect(tqpair);
933 		return;
934 	}
935 
936 	assert(pdu->cb_fn != NULL);
937 	pdu->cb_fn(pdu->cb_arg);
938 }
939 
940 static void
941 _pdu_write_done(struct nvme_tcp_pdu *pdu, int err)
942 {
943 	pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err);
944 }
945 
946 static void
947 _tcp_write_pdu(struct nvme_tcp_pdu *pdu)
948 {
949 	uint32_t mapped_length = 0;
950 	ssize_t rc;
951 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
952 
953 	pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
954 			       tqpair->host_hdgst_enable, tqpair->host_ddgst_enable,
955 			       &mapped_length);
956 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
957 	    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
958 		rc = spdk_sock_writev(tqpair->sock, pdu->iov, pdu->sock_req.iovcnt);
959 		if (rc == mapped_length) {
960 			_pdu_write_done(pdu, 0);
961 		} else {
962 			SPDK_ERRLOG("IC_RESP or TERM_REQ could not write to socket.\n");
963 			_pdu_write_done(pdu, -1);
964 		}
965 	} else {
966 		spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
967 	}
968 }
969 
970 static void
971 data_crc32_accel_done(void *cb_arg, int status)
972 {
973 	struct nvme_tcp_pdu *pdu = cb_arg;
974 
975 	if (spdk_unlikely(status)) {
976 		SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
977 		_pdu_write_done(pdu, status);
978 		return;
979 	}
980 
981 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
982 	MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
983 
984 	_tcp_write_pdu(pdu);
985 }
986 
987 static void
988 pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
989 {
990 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
991 	uint32_t crc32c;
992 
993 	/* Data Digest */
994 	if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
995 		/* Only suport this limitated case for the first step */
996 		if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
997 				&& tqpair->group)) {
998 			spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32,
999 						  pdu->data_iov, pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
1000 			return;
1001 		}
1002 
1003 		crc32c = nvme_tcp_pdu_calc_data_digest(pdu);
1004 		MAKE_DIGEST_WORD(pdu->data_digest, crc32c);
1005 	}
1006 
1007 	_tcp_write_pdu(pdu);
1008 }
1009 
1010 static void
1011 nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1012 			 struct nvme_tcp_pdu *pdu,
1013 			 nvme_tcp_qpair_xfer_complete_cb cb_fn,
1014 			 void *cb_arg)
1015 {
1016 	int hlen;
1017 	uint32_t crc32c;
1018 
1019 	assert(tqpair->pdu_in_progress != pdu);
1020 
1021 	hlen = pdu->hdr.common.hlen;
1022 	pdu->cb_fn = cb_fn;
1023 	pdu->cb_arg = cb_arg;
1024 
1025 	pdu->iov[0].iov_base = &pdu->hdr.raw;
1026 	pdu->iov[0].iov_len = hlen;
1027 
1028 	/* Header Digest */
1029 	if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) {
1030 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1031 		MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
1032 	}
1033 
1034 	/* Data Digest */
1035 	pdu_data_crc32_compute(pdu);
1036 }
1037 
1038 static void
1039 nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1040 			      nvme_tcp_qpair_xfer_complete_cb cb_fn,
1041 			      void *cb_arg)
1042 {
1043 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1044 
1045 	pdu->sock_req.cb_fn = _mgmt_pdu_write_done;
1046 	pdu->sock_req.cb_arg = tqpair;
1047 
1048 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1049 }
1050 
1051 static void
1052 nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1053 			     struct spdk_nvmf_tcp_req *tcp_req,
1054 			     nvme_tcp_qpair_xfer_complete_cb cb_fn,
1055 			     void *cb_arg)
1056 {
1057 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1058 
1059 	pdu->sock_req.cb_fn = _req_pdu_write_done;
1060 	pdu->sock_req.cb_arg = tcp_req;
1061 
1062 	assert(!tcp_req->pdu_in_use);
1063 	tcp_req->pdu_in_use = true;
1064 
1065 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1066 }
1067 
1068 static int
1069 nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
1070 {
1071 	uint32_t i;
1072 	struct spdk_nvmf_transport_opts *opts;
1073 	uint32_t in_capsule_data_size;
1074 
1075 	opts = &tqpair->qpair.transport->opts;
1076 
1077 	in_capsule_data_size = opts->in_capsule_data_size;
1078 	if (opts->dif_insert_or_strip) {
1079 		in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
1080 	}
1081 
1082 	tqpair->resource_count = opts->max_queue_depth;
1083 
1084 	tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
1085 	if (!tqpair->reqs) {
1086 		SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
1087 		return -1;
1088 	}
1089 
1090 	if (in_capsule_data_size) {
1091 		tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
1092 					    NULL, SPDK_ENV_LCORE_ID_ANY,
1093 					    SPDK_MALLOC_DMA);
1094 		if (!tqpair->bufs) {
1095 			SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
1096 			return -1;
1097 		}
1098 	}
1099 
1100 	/* Add additional 2 members, which will be used for mgmt_pdu and pdu_in_progress owned by the tqpair */
1101 	tqpair->pdus = spdk_dma_zmalloc((tqpair->resource_count + 2) * sizeof(*tqpair->pdus), 0x1000, NULL);
1102 	if (!tqpair->pdus) {
1103 		SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
1104 		return -1;
1105 	}
1106 
1107 	for (i = 0; i < tqpair->resource_count; i++) {
1108 		struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
1109 
1110 		tcp_req->ttag = i + 1;
1111 		tcp_req->req.qpair = &tqpair->qpair;
1112 
1113 		tcp_req->pdu = &tqpair->pdus[i];
1114 		tcp_req->pdu->qpair = tqpair;
1115 
1116 		/* Set up memory to receive commands */
1117 		if (tqpair->bufs) {
1118 			tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
1119 		}
1120 
1121 		/* Set the cmdn and rsp */
1122 		tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
1123 		tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
1124 
1125 		tcp_req->req.stripped_data = NULL;
1126 
1127 		/* Initialize request state to FREE */
1128 		tcp_req->state = TCP_REQUEST_STATE_FREE;
1129 		TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
1130 		tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
1131 	}
1132 
1133 	tqpair->mgmt_pdu = &tqpair->pdus[i];
1134 	tqpair->mgmt_pdu->qpair = tqpair;
1135 	tqpair->pdu_in_progress = &tqpair->pdus[i + 1];
1136 
1137 	tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
1138 				 SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1139 
1140 	return 0;
1141 }
1142 
1143 static int
1144 nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
1145 {
1146 	struct spdk_nvmf_tcp_qpair *tqpair;
1147 
1148 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1149 
1150 	SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
1151 
1152 	spdk_trace_record(TRACE_TCP_QP_CREATE, 0, 0, (uintptr_t)tqpair);
1153 
1154 	/* Initialise request state queues of the qpair */
1155 	TAILQ_INIT(&tqpair->tcp_req_free_queue);
1156 	TAILQ_INIT(&tqpair->tcp_req_working_queue);
1157 
1158 	tqpair->host_hdgst_enable = true;
1159 	tqpair->host_ddgst_enable = true;
1160 
1161 	return 0;
1162 }
1163 
1164 static int
1165 nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
1166 {
1167 	int rc;
1168 
1169 	spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, 0, 0, (uintptr_t)tqpair);
1170 
1171 	/* set low water mark */
1172 	rc = spdk_sock_set_recvlowat(tqpair->sock, sizeof(struct spdk_nvme_tcp_common_pdu_hdr));
1173 	if (rc != 0) {
1174 		SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
1175 		return rc;
1176 	}
1177 
1178 	return 0;
1179 }
1180 
1181 static void
1182 nvmf_tcp_handle_connect(struct spdk_nvmf_transport *transport,
1183 			struct spdk_nvmf_tcp_port *port,
1184 			struct spdk_sock *sock)
1185 {
1186 	struct spdk_nvmf_tcp_qpair *tqpair;
1187 	int rc;
1188 
1189 	SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
1190 		      port->trid->traddr, port->trid->trsvcid);
1191 
1192 	tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
1193 	if (tqpair == NULL) {
1194 		SPDK_ERRLOG("Could not allocate new connection.\n");
1195 		spdk_sock_close(&sock);
1196 		return;
1197 	}
1198 
1199 	tqpair->sock = sock;
1200 	tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
1201 	tqpair->port = port;
1202 	tqpair->qpair.transport = transport;
1203 
1204 	rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
1205 			       sizeof(tqpair->target_addr), &tqpair->target_port,
1206 			       tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
1207 			       &tqpair->initiator_port);
1208 	if (rc < 0) {
1209 		SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
1210 		nvmf_tcp_qpair_destroy(tqpair);
1211 		return;
1212 	}
1213 
1214 	spdk_nvmf_tgt_new_qpair(transport->tgt, &tqpair->qpair);
1215 }
1216 
1217 static uint32_t
1218 nvmf_tcp_port_accept(struct spdk_nvmf_transport *transport, struct spdk_nvmf_tcp_port *port)
1219 {
1220 	struct spdk_sock *sock;
1221 	uint32_t count = 0;
1222 	int i;
1223 
1224 	for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
1225 		sock = spdk_sock_accept(port->listen_sock);
1226 		if (sock == NULL) {
1227 			break;
1228 		}
1229 		count++;
1230 		nvmf_tcp_handle_connect(transport, port, sock);
1231 	}
1232 
1233 	return count;
1234 }
1235 
1236 static int
1237 nvmf_tcp_accept(void *ctx)
1238 {
1239 	struct spdk_nvmf_transport *transport = ctx;
1240 	struct spdk_nvmf_tcp_transport *ttransport;
1241 	struct spdk_nvmf_tcp_port *port;
1242 	uint32_t count = 0;
1243 
1244 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1245 
1246 	TAILQ_FOREACH(port, &ttransport->ports, link) {
1247 		count += nvmf_tcp_port_accept(transport, port);
1248 	}
1249 
1250 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1251 }
1252 
1253 static void
1254 nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
1255 		  struct spdk_nvme_transport_id *trid,
1256 		  struct spdk_nvmf_discovery_log_page_entry *entry)
1257 {
1258 	entry->trtype = SPDK_NVMF_TRTYPE_TCP;
1259 	entry->adrfam = trid->adrfam;
1260 	entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
1261 
1262 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
1263 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
1264 
1265 	entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
1266 }
1267 
1268 static struct spdk_nvmf_tcp_control_msg_list *
1269 nvmf_tcp_control_msg_list_create(uint16_t num_messages)
1270 {
1271 	struct spdk_nvmf_tcp_control_msg_list *list;
1272 	struct spdk_nvmf_tcp_control_msg *msg;
1273 	uint16_t i;
1274 
1275 	list = calloc(1, sizeof(*list));
1276 	if (!list) {
1277 		SPDK_ERRLOG("Failed to allocate memory for list structure\n");
1278 		return NULL;
1279 	}
1280 
1281 	list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
1282 				     NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
1283 	if (!list->msg_buf) {
1284 		SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
1285 		free(list);
1286 		return NULL;
1287 	}
1288 
1289 	STAILQ_INIT(&list->free_msgs);
1290 
1291 	for (i = 0; i < num_messages; i++) {
1292 		msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
1293 				SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1294 		STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
1295 	}
1296 
1297 	return list;
1298 }
1299 
1300 static void
1301 nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
1302 {
1303 	if (!list) {
1304 		return;
1305 	}
1306 
1307 	spdk_free(list->msg_buf);
1308 	free(list);
1309 }
1310 
1311 static struct spdk_nvmf_transport_poll_group *
1312 nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport,
1313 			   struct spdk_nvmf_poll_group *group)
1314 {
1315 	struct spdk_nvmf_tcp_transport	*ttransport;
1316 	struct spdk_nvmf_tcp_poll_group *tgroup;
1317 
1318 	tgroup = calloc(1, sizeof(*tgroup));
1319 	if (!tgroup) {
1320 		return NULL;
1321 	}
1322 
1323 	tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
1324 	if (!tgroup->sock_group) {
1325 		goto cleanup;
1326 	}
1327 
1328 	TAILQ_INIT(&tgroup->qpairs);
1329 	TAILQ_INIT(&tgroup->await_req);
1330 
1331 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1332 
1333 	if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
1334 		SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
1335 			      "Creating control messages list\n", transport->opts.in_capsule_data_size,
1336 			      SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1337 		tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
1338 		if (!tgroup->control_msg_list) {
1339 			goto cleanup;
1340 		}
1341 	}
1342 
1343 	tgroup->accel_channel = spdk_accel_engine_get_io_channel();
1344 	if (spdk_unlikely(!tgroup->accel_channel)) {
1345 		SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
1346 		goto cleanup;
1347 	}
1348 
1349 	pthread_mutex_lock(&ttransport->lock);
1350 	TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link);
1351 	if (ttransport->next_pg == NULL) {
1352 		ttransport->next_pg = tgroup;
1353 	}
1354 	pthread_mutex_unlock(&ttransport->lock);
1355 
1356 	return &tgroup->group;
1357 
1358 cleanup:
1359 	nvmf_tcp_poll_group_destroy(&tgroup->group);
1360 	return NULL;
1361 }
1362 
1363 static struct spdk_nvmf_transport_poll_group *
1364 nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
1365 {
1366 	struct spdk_nvmf_tcp_transport *ttransport;
1367 	struct spdk_nvmf_tcp_poll_group **pg;
1368 	struct spdk_nvmf_tcp_qpair *tqpair;
1369 	struct spdk_sock_group *group = NULL, *hint = NULL;
1370 	int rc;
1371 
1372 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
1373 
1374 	pthread_mutex_lock(&ttransport->lock);
1375 
1376 	if (TAILQ_EMPTY(&ttransport->poll_groups)) {
1377 		pthread_mutex_unlock(&ttransport->lock);
1378 		return NULL;
1379 	}
1380 
1381 	pg = &ttransport->next_pg;
1382 	assert(*pg != NULL);
1383 	hint = (*pg)->sock_group;
1384 
1385 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1386 	rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint);
1387 	if (rc != 0) {
1388 		pthread_mutex_unlock(&ttransport->lock);
1389 		return NULL;
1390 	} else if (group != NULL) {
1391 		/* Optimal poll group was found */
1392 		pthread_mutex_unlock(&ttransport->lock);
1393 		return spdk_sock_group_get_ctx(group);
1394 	}
1395 
1396 	/* The hint was used for optimal poll group, advance next_pg. */
1397 	*pg = TAILQ_NEXT(*pg, link);
1398 	if (*pg == NULL) {
1399 		*pg = TAILQ_FIRST(&ttransport->poll_groups);
1400 	}
1401 
1402 	pthread_mutex_unlock(&ttransport->lock);
1403 	return spdk_sock_group_get_ctx(hint);
1404 }
1405 
1406 static void
1407 nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
1408 {
1409 	struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup;
1410 	struct spdk_nvmf_tcp_transport *ttransport;
1411 
1412 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
1413 	spdk_sock_group_close(&tgroup->sock_group);
1414 	if (tgroup->control_msg_list) {
1415 		nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
1416 	}
1417 
1418 	if (tgroup->accel_channel) {
1419 		spdk_put_io_channel(tgroup->accel_channel);
1420 	}
1421 
1422 	ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport);
1423 
1424 	pthread_mutex_lock(&ttransport->lock);
1425 	next_tgroup = TAILQ_NEXT(tgroup, link);
1426 	TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link);
1427 	if (next_tgroup == NULL) {
1428 		next_tgroup = TAILQ_FIRST(&ttransport->poll_groups);
1429 	}
1430 	if (ttransport->next_pg == tgroup) {
1431 		ttransport->next_pg = next_tgroup;
1432 	}
1433 	pthread_mutex_unlock(&ttransport->lock);
1434 
1435 	free(tgroup);
1436 }
1437 
1438 static void
1439 nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1440 			      enum nvme_tcp_pdu_recv_state state)
1441 {
1442 	if (tqpair->recv_state == state) {
1443 		SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
1444 			    tqpair, state);
1445 		return;
1446 	}
1447 
1448 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1449 		/* When leaving the await req state, move the qpair to the main list */
1450 		TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link);
1451 		TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link);
1452 	}
1453 
1454 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
1455 	tqpair->recv_state = state;
1456 
1457 	spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
1458 			  tqpair->recv_state);
1459 
1460 	switch (state) {
1461 	case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
1462 	case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
1463 	case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
1464 		break;
1465 	case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
1466 		TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link);
1467 		TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link);
1468 		break;
1469 	case NVME_TCP_PDU_RECV_STATE_ERROR:
1470 	case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
1471 		memset(tqpair->pdu_in_progress, 0, sizeof(*(tqpair->pdu_in_progress)));
1472 		break;
1473 	default:
1474 		SPDK_ERRLOG("The state(%d) is invalid\n", state);
1475 		abort();
1476 		break;
1477 	}
1478 }
1479 
1480 static int
1481 nvmf_tcp_qpair_handle_timeout(void *ctx)
1482 {
1483 	struct spdk_nvmf_tcp_qpair *tqpair = ctx;
1484 
1485 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1486 
1487 	SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
1488 		    SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
1489 
1490 	nvmf_tcp_qpair_disconnect(tqpair);
1491 	return SPDK_POLLER_BUSY;
1492 }
1493 
1494 static void
1495 nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
1496 {
1497 	struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
1498 
1499 	if (!tqpair->timeout_poller) {
1500 		tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
1501 					 SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
1502 	}
1503 }
1504 
1505 static void
1506 nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
1507 			   enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
1508 {
1509 	struct nvme_tcp_pdu *rsp_pdu;
1510 	struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
1511 	uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
1512 	uint32_t copy_len;
1513 
1514 	rsp_pdu = tqpair->mgmt_pdu;
1515 
1516 	c2h_term_req = &rsp_pdu->hdr.term_req;
1517 	c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
1518 	c2h_term_req->common.hlen = c2h_term_req_hdr_len;
1519 
1520 	if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1521 	    (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1522 		DSET32(&c2h_term_req->fei, error_offset);
1523 	}
1524 
1525 	copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
1526 
1527 	/* Copy the error info into the buffer */
1528 	memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
1529 	nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
1530 
1531 	/* Contain the header of the wrong received pdu */
1532 	c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
1533 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
1534 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair);
1535 }
1536 
1537 static void
1538 nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1539 				struct spdk_nvmf_tcp_qpair *tqpair,
1540 				struct nvme_tcp_pdu *pdu)
1541 {
1542 	struct spdk_nvmf_tcp_req *tcp_req;
1543 
1544 	assert(pdu->psh_valid_bytes == pdu->psh_len);
1545 	assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
1546 
1547 	tcp_req = nvmf_tcp_req_get(tqpair);
1548 	if (!tcp_req) {
1549 		/* Directly return and make the allocation retry again.  This can happen if we're
1550 		 * using asynchronous writes to send the response to the host or when releasing
1551 		 * zero-copy buffers after a response has been sent.  In both cases, the host might
1552 		 * receive the response before we've finished processing the request and is free to
1553 		 * send another one.
1554 		 */
1555 		if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 ||
1556 		    tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) {
1557 			return;
1558 		}
1559 
1560 		/* The host sent more commands than the maximum queue depth. */
1561 		SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
1562 		nvmf_tcp_qpair_disconnect(tqpair);
1563 		return;
1564 	}
1565 
1566 	pdu->req = tcp_req;
1567 	assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
1568 	nvmf_tcp_req_process(ttransport, tcp_req);
1569 }
1570 
1571 static void
1572 nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1573 				    struct spdk_nvmf_tcp_qpair *tqpair,
1574 				    struct nvme_tcp_pdu *pdu)
1575 {
1576 	struct spdk_nvmf_tcp_req *tcp_req;
1577 	struct spdk_nvme_tcp_cmd *capsule_cmd;
1578 	uint32_t error_offset = 0;
1579 	enum spdk_nvme_tcp_term_req_fes fes;
1580 	struct spdk_nvme_cpl *rsp;
1581 
1582 	capsule_cmd = &pdu->hdr.capsule_cmd;
1583 	tcp_req = pdu->req;
1584 	assert(tcp_req != NULL);
1585 
1586 	/* Zero-copy requests don't support ICD */
1587 	assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req));
1588 
1589 	if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
1590 		SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
1591 			    SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
1592 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1593 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
1594 		goto err;
1595 	}
1596 
1597 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
1598 
1599 	rsp = &tcp_req->req.rsp->nvme_cpl;
1600 	if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1601 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1602 	} else {
1603 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1604 	}
1605 
1606 	nvmf_tcp_req_process(ttransport, tcp_req);
1607 
1608 	return;
1609 err:
1610 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1611 }
1612 
1613 static int
1614 nvmf_tcp_find_req_in_state(struct spdk_nvmf_tcp_qpair *tqpair,
1615 			   enum spdk_nvmf_tcp_req_state state,
1616 			   uint16_t cid, uint16_t tag,
1617 			   struct spdk_nvmf_tcp_req **req)
1618 {
1619 	struct spdk_nvmf_tcp_req *tcp_req = NULL;
1620 
1621 	TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
1622 		if (tcp_req->state != state) {
1623 			continue;
1624 		}
1625 
1626 		if (tcp_req->req.cmd->nvme_cmd.cid != cid) {
1627 			continue;
1628 		}
1629 
1630 		if (tcp_req->ttag == tag) {
1631 			*req = tcp_req;
1632 			return 0;
1633 		}
1634 
1635 		*req = NULL;
1636 		return -1;
1637 	}
1638 
1639 	/* Didn't find it, but not an error */
1640 	*req = NULL;
1641 	return 0;
1642 }
1643 
1644 static void
1645 nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1646 			     struct spdk_nvmf_tcp_qpair *tqpair,
1647 			     struct nvme_tcp_pdu *pdu)
1648 {
1649 	struct spdk_nvmf_tcp_req *tcp_req;
1650 	uint32_t error_offset = 0;
1651 	enum spdk_nvme_tcp_term_req_fes fes = 0;
1652 	struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
1653 	int rc;
1654 
1655 	h2c_data = &pdu->hdr.h2c_data;
1656 
1657 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
1658 		      tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
1659 
1660 	rc = nvmf_tcp_find_req_in_state(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
1661 					h2c_data->cccid, h2c_data->ttag, &tcp_req);
1662 	if (rc == 0 && tcp_req == NULL) {
1663 		rc = nvmf_tcp_find_req_in_state(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK, h2c_data->cccid,
1664 						h2c_data->ttag, &tcp_req);
1665 	}
1666 
1667 	if (!tcp_req) {
1668 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req is not found for tqpair=%p\n", tqpair);
1669 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
1670 		if (rc == 0) {
1671 			error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
1672 		} else {
1673 			error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1674 		}
1675 		goto err;
1676 	}
1677 
1678 	if (tcp_req->h2c_offset != h2c_data->datao) {
1679 		SPDK_DEBUGLOG(nvmf_tcp,
1680 			      "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
1681 			      tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
1682 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1683 		goto err;
1684 	}
1685 
1686 	if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
1687 		SPDK_DEBUGLOG(nvmf_tcp,
1688 			      "tcp_req(%p), tqpair=%p,  (datao=%u + datal=%u) exceeds requested length=%u\n",
1689 			      tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
1690 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1691 		goto err;
1692 	}
1693 
1694 	pdu->req = tcp_req;
1695 
1696 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
1697 		pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
1698 	}
1699 
1700 	nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
1701 				  h2c_data->datao, h2c_data->datal);
1702 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1703 	return;
1704 
1705 err:
1706 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1707 }
1708 
1709 static void
1710 nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
1711 			       struct spdk_nvmf_tcp_qpair *tqpair)
1712 {
1713 	struct nvme_tcp_pdu *rsp_pdu;
1714 	struct spdk_nvme_tcp_rsp *capsule_resp;
1715 
1716 	SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
1717 
1718 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1719 	assert(rsp_pdu != NULL);
1720 
1721 	capsule_resp = &rsp_pdu->hdr.capsule_resp;
1722 	capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
1723 	capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
1724 	capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
1725 	if (tqpair->host_hdgst_enable) {
1726 		capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1727 		capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1728 	}
1729 
1730 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req);
1731 }
1732 
1733 static void
1734 nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
1735 {
1736 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1737 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
1738 					     struct spdk_nvmf_tcp_qpair, qpair);
1739 
1740 	assert(tqpair != NULL);
1741 
1742 	if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
1743 		SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
1744 			      tcp_req->req.length);
1745 		_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
1746 		return;
1747 	}
1748 
1749 	if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
1750 		nvmf_tcp_request_free(tcp_req);
1751 	} else {
1752 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
1753 	}
1754 }
1755 
1756 static void
1757 nvmf_tcp_r2t_complete(void *cb_arg)
1758 {
1759 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1760 	struct spdk_nvmf_tcp_transport *ttransport;
1761 
1762 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
1763 				      struct spdk_nvmf_tcp_transport, transport);
1764 
1765 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
1766 
1767 	if (tcp_req->h2c_offset == tcp_req->req.length) {
1768 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1769 		nvmf_tcp_req_process(ttransport, tcp_req);
1770 	}
1771 }
1772 
1773 static void
1774 nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1775 		      struct spdk_nvmf_tcp_req *tcp_req)
1776 {
1777 	struct nvme_tcp_pdu *rsp_pdu;
1778 	struct spdk_nvme_tcp_r2t_hdr *r2t;
1779 
1780 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1781 	assert(rsp_pdu != NULL);
1782 
1783 	r2t = &rsp_pdu->hdr.r2t;
1784 	r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
1785 	r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
1786 
1787 	if (tqpair->host_hdgst_enable) {
1788 		r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1789 		r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1790 	}
1791 
1792 	r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
1793 	r2t->ttag = tcp_req->ttag;
1794 	r2t->r2to = tcp_req->h2c_offset;
1795 	r2t->r2tl = tcp_req->req.length;
1796 
1797 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
1798 
1799 	SPDK_DEBUGLOG(nvmf_tcp,
1800 		      "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
1801 		      tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
1802 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req);
1803 }
1804 
1805 static void
1806 nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1807 				 struct spdk_nvmf_tcp_qpair *tqpair,
1808 				 struct nvme_tcp_pdu *pdu)
1809 {
1810 	struct spdk_nvmf_tcp_req *tcp_req;
1811 	struct spdk_nvme_cpl *rsp;
1812 
1813 	tcp_req = pdu->req;
1814 	assert(tcp_req != NULL);
1815 
1816 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1817 
1818 	tcp_req->h2c_offset += pdu->data_len;
1819 
1820 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
1821 
1822 	/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
1823 	 * acknowledged before moving on. */
1824 	if (tcp_req->h2c_offset == tcp_req->req.length &&
1825 	    tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
1826 		/* After receiving all the h2c data, we need to check whether there is
1827 		 * transient transport error */
1828 		rsp = &tcp_req->req.rsp->nvme_cpl;
1829 		if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1830 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1831 		} else {
1832 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1833 		}
1834 		nvmf_tcp_req_process(ttransport, tcp_req);
1835 	}
1836 }
1837 
1838 static void
1839 nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
1840 {
1841 	SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
1842 		    spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
1843 	if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1844 	    (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1845 		SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
1846 			      DGET32(h2c_term_req->fei));
1847 	}
1848 }
1849 
1850 static void
1851 nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1852 				 struct nvme_tcp_pdu *pdu)
1853 {
1854 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1855 	uint32_t error_offset = 0;
1856 	enum spdk_nvme_tcp_term_req_fes fes;
1857 
1858 	if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
1859 		SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
1860 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1861 		error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
1862 		goto end;
1863 	}
1864 
1865 	/* set the data buffer */
1866 	nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
1867 			      h2c_term_req->common.plen - h2c_term_req->common.hlen);
1868 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1869 	return;
1870 end:
1871 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1872 }
1873 
1874 static void
1875 nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1876 				     struct nvme_tcp_pdu *pdu)
1877 {
1878 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1879 
1880 	nvmf_tcp_h2c_term_req_dump(h2c_term_req);
1881 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
1882 }
1883 
1884 static void
1885 _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1886 			     struct spdk_nvmf_tcp_transport *ttransport)
1887 {
1888 	struct nvme_tcp_pdu *pdu = tqpair->pdu_in_progress;
1889 
1890 	switch (pdu->hdr.common.pdu_type) {
1891 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
1892 		nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
1893 		break;
1894 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
1895 		nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
1896 		break;
1897 
1898 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
1899 		nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
1900 		break;
1901 
1902 	default:
1903 		/* The code should not go to here */
1904 		SPDK_ERRLOG("The code should not go to here\n");
1905 		break;
1906 	}
1907 }
1908 
1909 static void
1910 nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1911 			    struct spdk_nvmf_tcp_transport *ttransport)
1912 {
1913 	int rc = 0;
1914 	struct nvme_tcp_pdu *pdu;
1915 	uint32_t crc32c;
1916 	struct spdk_nvmf_tcp_req *tcp_req;
1917 	struct spdk_nvme_cpl *rsp;
1918 
1919 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1920 	pdu = tqpair->pdu_in_progress;
1921 
1922 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1923 	/* check data digest if need */
1924 	if (pdu->ddgst_enable) {
1925 		crc32c = nvme_tcp_pdu_calc_data_digest(pdu);
1926 		rc = MATCH_DIGEST_WORD(pdu->data_digest, crc32c);
1927 		if (rc == 0) {
1928 			SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
1929 			tcp_req = pdu->req;
1930 			assert(tcp_req != NULL);
1931 			rsp = &tcp_req->req.rsp->nvme_cpl;
1932 			rsp->status.sc = SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR;
1933 		}
1934 	}
1935 
1936 	_nvmf_tcp_pdu_payload_handle(tqpair, ttransport);
1937 }
1938 
1939 static void
1940 nvmf_tcp_send_icresp_complete(void *cb_arg)
1941 {
1942 	struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
1943 
1944 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_RUNNING);
1945 }
1946 
1947 static void
1948 nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
1949 		      struct spdk_nvmf_tcp_qpair *tqpair,
1950 		      struct nvme_tcp_pdu *pdu)
1951 {
1952 	struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
1953 	struct nvme_tcp_pdu *rsp_pdu;
1954 	struct spdk_nvme_tcp_ic_resp *ic_resp;
1955 	uint32_t error_offset = 0;
1956 	enum spdk_nvme_tcp_term_req_fes fes;
1957 
1958 	/* Only PFV 0 is defined currently */
1959 	if (ic_req->pfv != 0) {
1960 		SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
1961 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1962 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
1963 		goto end;
1964 	}
1965 
1966 	/* MAXR2T is 0's based */
1967 	SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
1968 
1969 	tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
1970 	if (!tqpair->host_hdgst_enable) {
1971 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1972 	}
1973 
1974 	tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
1975 	if (!tqpair->host_ddgst_enable) {
1976 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1977 	}
1978 
1979 	tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
1980 	/* Now that we know whether digests are enabled, properly size the receive buffer */
1981 	if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
1982 		SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
1983 			     tqpair,
1984 			     tqpair->recv_buf_size);
1985 		/* Not fatal. */
1986 	}
1987 
1988 	tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
1989 	SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
1990 
1991 	rsp_pdu = tqpair->mgmt_pdu;
1992 
1993 	ic_resp = &rsp_pdu->hdr.ic_resp;
1994 	ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
1995 	ic_resp->common.hlen = ic_resp->common.plen =  sizeof(*ic_resp);
1996 	ic_resp->pfv = 0;
1997 	ic_resp->cpda = tqpair->cpda;
1998 	ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
1999 	ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
2000 	ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
2001 
2002 	SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
2003 	SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
2004 
2005 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INITIALIZING);
2006 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair);
2007 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2008 	return;
2009 end:
2010 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2011 }
2012 
2013 static void
2014 nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2015 			struct spdk_nvmf_tcp_transport *ttransport)
2016 {
2017 	struct nvme_tcp_pdu *pdu;
2018 	int rc;
2019 	uint32_t crc32c, error_offset = 0;
2020 	enum spdk_nvme_tcp_term_req_fes fes;
2021 
2022 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2023 	pdu = tqpair->pdu_in_progress;
2024 
2025 	SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
2026 		      pdu->hdr.common.pdu_type);
2027 	/* check header digest if needed */
2028 	if (pdu->has_hdgst) {
2029 		SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
2030 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
2031 		rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
2032 		if (rc == 0) {
2033 			SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2034 			fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
2035 			nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2036 			return;
2037 
2038 		}
2039 	}
2040 
2041 	switch (pdu->hdr.common.pdu_type) {
2042 	case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
2043 		nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
2044 		break;
2045 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2046 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
2047 		break;
2048 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2049 		nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
2050 		break;
2051 
2052 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2053 		nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
2054 		break;
2055 
2056 	default:
2057 		SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
2058 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2059 		error_offset = 1;
2060 		nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2061 		break;
2062 	}
2063 }
2064 
2065 static void
2066 nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
2067 {
2068 	struct nvme_tcp_pdu *pdu;
2069 	uint32_t error_offset = 0;
2070 	enum spdk_nvme_tcp_term_req_fes fes;
2071 	uint8_t expected_hlen, pdo;
2072 	bool plen_error = false, pdo_error = false;
2073 
2074 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2075 	pdu = tqpair->pdu_in_progress;
2076 
2077 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
2078 		if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) {
2079 			SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
2080 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2081 			goto err;
2082 		}
2083 		expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
2084 		if (pdu->hdr.common.plen != expected_hlen) {
2085 			plen_error = true;
2086 		}
2087 	} else {
2088 		if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) {
2089 			SPDK_ERRLOG("The TCP/IP connection is not negotiated\n");
2090 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2091 			goto err;
2092 		}
2093 
2094 		switch (pdu->hdr.common.pdu_type) {
2095 		case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2096 			expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
2097 			pdo = pdu->hdr.common.pdo;
2098 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2099 				pdo_error = true;
2100 				break;
2101 			}
2102 
2103 			if (pdu->hdr.common.plen < expected_hlen) {
2104 				plen_error = true;
2105 			}
2106 			break;
2107 		case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2108 			expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
2109 			pdo = pdu->hdr.common.pdo;
2110 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2111 				pdo_error = true;
2112 				break;
2113 			}
2114 			if (pdu->hdr.common.plen < expected_hlen) {
2115 				plen_error = true;
2116 			}
2117 			break;
2118 
2119 		case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2120 			expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
2121 			if ((pdu->hdr.common.plen <= expected_hlen) ||
2122 			    (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
2123 				plen_error = true;
2124 			}
2125 			break;
2126 
2127 		default:
2128 			SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
2129 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2130 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
2131 			goto err;
2132 		}
2133 	}
2134 
2135 	if (pdu->hdr.common.hlen != expected_hlen) {
2136 		SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
2137 			    pdu->hdr.common.pdu_type,
2138 			    expected_hlen, pdu->hdr.common.hlen, tqpair);
2139 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2140 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
2141 		goto err;
2142 	} else if (pdo_error) {
2143 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2144 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
2145 	} else if (plen_error) {
2146 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2147 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2148 		goto err;
2149 	} else {
2150 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2151 		nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
2152 		return;
2153 	}
2154 err:
2155 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2156 }
2157 
2158 static int
2159 nvmf_tcp_pdu_payload_insert_dif(struct nvme_tcp_pdu *pdu, uint32_t read_offset,
2160 				int read_len)
2161 {
2162 	int rc;
2163 
2164 	rc = spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt,
2165 				      read_offset, read_len, pdu->dif_ctx);
2166 	if (rc != 0) {
2167 		SPDK_ERRLOG("DIF generate failed\n");
2168 	}
2169 
2170 	return rc;
2171 }
2172 
2173 static int
2174 nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
2175 {
2176 	int rc = 0;
2177 	struct nvme_tcp_pdu *pdu;
2178 	enum nvme_tcp_pdu_recv_state prev_state;
2179 	uint32_t data_len;
2180 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2181 			struct spdk_nvmf_tcp_transport, transport);
2182 
2183 	/* The loop here is to allow for several back-to-back state changes. */
2184 	do {
2185 		prev_state = tqpair->recv_state;
2186 		SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
2187 
2188 		pdu = tqpair->pdu_in_progress;
2189 		switch (tqpair->recv_state) {
2190 		/* Wait for the common header  */
2191 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
2192 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
2193 			if (spdk_unlikely(tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING)) {
2194 				return rc;
2195 			}
2196 
2197 			rc = nvme_tcp_read_data(tqpair->sock,
2198 						sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
2199 						(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
2200 			if (rc < 0) {
2201 				SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
2202 				return NVME_TCP_PDU_FATAL;
2203 			} else if (rc > 0) {
2204 				pdu->ch_valid_bytes += rc;
2205 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2206 				if (spdk_likely(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY)) {
2207 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2208 				}
2209 			}
2210 
2211 			if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
2212 				return NVME_TCP_PDU_IN_PROGRESS;
2213 			}
2214 
2215 			/* The command header of this PDU has now been read from the socket. */
2216 			nvmf_tcp_pdu_ch_handle(tqpair);
2217 			break;
2218 		/* Wait for the pdu specific header  */
2219 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
2220 			rc = nvme_tcp_read_data(tqpair->sock,
2221 						pdu->psh_len - pdu->psh_valid_bytes,
2222 						(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
2223 			if (rc < 0) {
2224 				return NVME_TCP_PDU_FATAL;
2225 			} else if (rc > 0) {
2226 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2227 				pdu->psh_valid_bytes += rc;
2228 			}
2229 
2230 			if (pdu->psh_valid_bytes < pdu->psh_len) {
2231 				return NVME_TCP_PDU_IN_PROGRESS;
2232 			}
2233 
2234 			/* All header(ch, psh, head digist) of this PDU has now been read from the socket. */
2235 			nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
2236 			break;
2237 		/* Wait for the req slot */
2238 		case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
2239 			nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
2240 			break;
2241 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
2242 			/* check whether the data is valid, if not we just return */
2243 			if (!pdu->data_len) {
2244 				return NVME_TCP_PDU_IN_PROGRESS;
2245 			}
2246 
2247 			data_len = pdu->data_len;
2248 			/* data digest */
2249 			if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
2250 					  tqpair->host_ddgst_enable)) {
2251 				data_len += SPDK_NVME_TCP_DIGEST_LEN;
2252 				pdu->ddgst_enable = true;
2253 			}
2254 
2255 			rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
2256 			if (rc < 0) {
2257 				return NVME_TCP_PDU_FATAL;
2258 			}
2259 			pdu->rw_offset += rc;
2260 
2261 			if (spdk_unlikely(pdu->dif_ctx != NULL)) {
2262 				rc = nvmf_tcp_pdu_payload_insert_dif(pdu, pdu->rw_offset - rc, rc);
2263 				if (rc != 0) {
2264 					return NVME_TCP_PDU_FATAL;
2265 				}
2266 			}
2267 
2268 			if (pdu->rw_offset < data_len) {
2269 				return NVME_TCP_PDU_IN_PROGRESS;
2270 			}
2271 
2272 			/* All of this PDU has now been read from the socket. */
2273 			nvmf_tcp_pdu_payload_handle(tqpair, ttransport);
2274 			break;
2275 		case NVME_TCP_PDU_RECV_STATE_ERROR:
2276 			if (!spdk_sock_is_connected(tqpair->sock)) {
2277 				return NVME_TCP_PDU_FATAL;
2278 			}
2279 			break;
2280 		default:
2281 			assert(0);
2282 			SPDK_ERRLOG("code should not come to here");
2283 			break;
2284 		}
2285 	} while (tqpair->recv_state != prev_state);
2286 
2287 	return rc;
2288 }
2289 
2290 static inline void *
2291 nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list)
2292 {
2293 	struct spdk_nvmf_tcp_control_msg *msg;
2294 
2295 	assert(list);
2296 
2297 	msg = STAILQ_FIRST(&list->free_msgs);
2298 	if (!msg) {
2299 		SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
2300 		return NULL;
2301 	}
2302 	STAILQ_REMOVE_HEAD(&list->free_msgs, link);
2303 	return msg;
2304 }
2305 
2306 static inline void
2307 nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
2308 {
2309 	struct spdk_nvmf_tcp_control_msg *msg = _msg;
2310 
2311 	assert(list);
2312 	STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
2313 }
2314 
2315 static int
2316 nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
2317 		       struct spdk_nvmf_transport *transport,
2318 		       struct spdk_nvmf_transport_poll_group *group)
2319 {
2320 	struct spdk_nvmf_request		*req = &tcp_req->req;
2321 	struct spdk_nvme_cmd			*cmd;
2322 	struct spdk_nvme_cpl			*rsp;
2323 	struct spdk_nvme_sgl_descriptor		*sgl;
2324 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2325 	uint32_t				length;
2326 
2327 	cmd = &req->cmd->nvme_cmd;
2328 	rsp = &req->rsp->nvme_cpl;
2329 	sgl = &cmd->dptr.sgl1;
2330 
2331 	length = sgl->unkeyed.length;
2332 
2333 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
2334 	    sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
2335 		if (length > transport->opts.max_io_size) {
2336 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
2337 				    length, transport->opts.max_io_size);
2338 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
2339 			return -1;
2340 		}
2341 
2342 		/* fill request length and populate iovs */
2343 		req->length = length;
2344 
2345 		SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
2346 
2347 		if (spdk_unlikely(req->dif_enabled)) {
2348 			req->dif.orig_length = length;
2349 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2350 			req->dif.elba_length = length;
2351 		}
2352 
2353 		if (nvmf_ctrlr_use_zcopy(req)) {
2354 			SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req);
2355 			req->data_from_pool = false;
2356 			return 0;
2357 		}
2358 
2359 		if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
2360 			/* No available buffers. Queue this request up. */
2361 			SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
2362 				      tcp_req);
2363 			return 0;
2364 		}
2365 
2366 		/* backward compatible */
2367 		req->data = req->iov[0].iov_base;
2368 
2369 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
2370 			      tcp_req, req->iovcnt, req->data);
2371 
2372 		return 0;
2373 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
2374 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
2375 		uint64_t offset = sgl->address;
2376 		uint32_t max_len = transport->opts.in_capsule_data_size;
2377 		assert(tcp_req->has_in_capsule_data);
2378 
2379 		SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
2380 			      offset, length);
2381 
2382 		if (offset > max_len) {
2383 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
2384 				    offset, max_len);
2385 			rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
2386 			return -1;
2387 		}
2388 		max_len -= (uint32_t)offset;
2389 
2390 		if (spdk_unlikely(length > max_len)) {
2391 			/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
2392 			if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
2393 			    (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
2394 
2395 				/* Get a buffer from dedicated list */
2396 				SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
2397 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2398 				assert(tgroup->control_msg_list);
2399 				req->data = nvmf_tcp_control_msg_get(tgroup->control_msg_list);
2400 				if (!req->data) {
2401 					/* No available buffers. Queue this request up. */
2402 					SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
2403 					return 0;
2404 				}
2405 			} else {
2406 				SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
2407 					    length, max_len);
2408 				rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
2409 				return -1;
2410 			}
2411 		} else {
2412 			req->data = tcp_req->buf;
2413 		}
2414 
2415 		req->length = length;
2416 		req->data_from_pool = false;
2417 
2418 		if (spdk_unlikely(req->dif_enabled)) {
2419 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2420 			req->dif.elba_length = length;
2421 		}
2422 
2423 		req->iov[0].iov_base = req->data;
2424 		req->iov[0].iov_len = length;
2425 		req->iovcnt = 1;
2426 
2427 		return 0;
2428 	}
2429 
2430 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2431 		    sgl->generic.type, sgl->generic.subtype);
2432 	rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
2433 	return -1;
2434 }
2435 
2436 static inline enum spdk_nvme_media_error_status_code
2437 nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
2438 	enum spdk_nvme_media_error_status_code result;
2439 
2440 	switch (err_type)
2441 	{
2442 	case SPDK_DIF_REFTAG_ERROR:
2443 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
2444 		break;
2445 	case SPDK_DIF_APPTAG_ERROR:
2446 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
2447 		break;
2448 	case SPDK_DIF_GUARD_ERROR:
2449 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
2450 		break;
2451 	default:
2452 		SPDK_UNREACHABLE();
2453 		break;
2454 	}
2455 
2456 	return result;
2457 }
2458 
2459 static void
2460 _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2461 			struct spdk_nvmf_tcp_req *tcp_req)
2462 {
2463 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
2464 				tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
2465 	struct nvme_tcp_pdu *rsp_pdu;
2466 	struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
2467 	uint32_t plen, pdo, alignment;
2468 	int rc;
2469 
2470 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2471 
2472 	rsp_pdu = tcp_req->pdu;
2473 	assert(rsp_pdu != NULL);
2474 
2475 	c2h_data = &rsp_pdu->hdr.c2h_data;
2476 	c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
2477 	plen = c2h_data->common.hlen = sizeof(*c2h_data);
2478 
2479 	if (tqpair->host_hdgst_enable) {
2480 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2481 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2482 	}
2483 
2484 	/* set the psh */
2485 	c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2486 	c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
2487 	c2h_data->datao = tcp_req->pdu->rw_offset;
2488 
2489 	/* set the padding */
2490 	rsp_pdu->padding_len = 0;
2491 	pdo = plen;
2492 	if (tqpair->cpda) {
2493 		alignment = (tqpair->cpda + 1) << 2;
2494 		if (plen % alignment != 0) {
2495 			pdo = (plen + alignment) / alignment * alignment;
2496 			rsp_pdu->padding_len = pdo - plen;
2497 			plen = pdo;
2498 		}
2499 	}
2500 
2501 	c2h_data->common.pdo = pdo;
2502 	plen += c2h_data->datal;
2503 	if (tqpair->host_ddgst_enable) {
2504 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
2505 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2506 	}
2507 
2508 	c2h_data->common.plen = plen;
2509 
2510 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2511 		rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2512 	}
2513 
2514 	nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2515 				  c2h_data->datao, c2h_data->datal);
2516 
2517 
2518 	c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
2519 	/* Need to send the capsule response if response is not all 0 */
2520 	if (ttransport->tcp_opts.c2h_success &&
2521 	    tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
2522 		c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
2523 	}
2524 
2525 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2526 		struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
2527 		struct spdk_dif_error err_blk = {};
2528 		uint32_t mapped_length = 0;
2529 		uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
2530 		uint32_t ddgst_len = 0;
2531 
2532 		if (tqpair->host_ddgst_enable) {
2533 			/* Data digest consumes additional iov entry */
2534 			available_iovs--;
2535 			/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
2536 			ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
2537 			c2h_data->common.plen -= ddgst_len;
2538 		}
2539 		/* Temp call to estimate if data can be described by limited number of iovs.
2540 		 * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
2541 		nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
2542 				    false, &mapped_length);
2543 
2544 		if (mapped_length != c2h_data->common.plen) {
2545 			c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
2546 			SPDK_DEBUGLOG(nvmf_tcp,
2547 				      "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
2548 				      c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
2549 			c2h_data->common.plen = mapped_length;
2550 
2551 			/* Rebuild pdu->data_iov since data length is changed */
2552 			nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
2553 						  c2h_data->datal);
2554 
2555 			c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
2556 						    SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
2557 		}
2558 
2559 		c2h_data->common.plen += ddgst_len;
2560 
2561 		assert(rsp_pdu->rw_offset <= tcp_req->req.length);
2562 
2563 		rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
2564 					    0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
2565 		if (rc != 0) {
2566 			SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
2567 				    err_blk.err_type, err_blk.err_offset);
2568 			rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2569 			rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
2570 			nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2571 			return;
2572 		}
2573 	}
2574 
2575 	rsp_pdu->rw_offset += c2h_data->datal;
2576 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
2577 }
2578 
2579 static void
2580 nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2581 		       struct spdk_nvmf_tcp_req *tcp_req)
2582 {
2583 	nvmf_tcp_req_pdu_init(tcp_req);
2584 	_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2585 }
2586 
2587 static int
2588 request_transfer_out(struct spdk_nvmf_request *req)
2589 {
2590 	struct spdk_nvmf_tcp_req	*tcp_req;
2591 	struct spdk_nvmf_qpair		*qpair;
2592 	struct spdk_nvmf_tcp_qpair	*tqpair;
2593 	struct spdk_nvme_cpl		*rsp;
2594 
2595 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2596 
2597 	qpair = req->qpair;
2598 	rsp = &req->rsp->nvme_cpl;
2599 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
2600 
2601 	/* Advance our sq_head pointer */
2602 	if (qpair->sq_head == qpair->sq_head_max) {
2603 		qpair->sq_head = 0;
2604 	} else {
2605 		qpair->sq_head++;
2606 	}
2607 	rsp->sqhd = qpair->sq_head;
2608 
2609 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2610 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
2611 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2612 		nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2613 	} else {
2614 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2615 	}
2616 
2617 	return 0;
2618 }
2619 
2620 static void
2621 nvmf_tcp_set_in_capsule_data(struct spdk_nvmf_tcp_qpair *tqpair,
2622 			     struct spdk_nvmf_tcp_req *tcp_req)
2623 {
2624 	struct nvme_tcp_pdu *pdu;
2625 	uint32_t plen = 0;
2626 
2627 	pdu = tqpair->pdu_in_progress;
2628 	plen = pdu->hdr.common.hlen;
2629 
2630 	if (tqpair->host_hdgst_enable) {
2631 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2632 	}
2633 
2634 	if (pdu->hdr.common.plen != plen) {
2635 		tcp_req->has_in_capsule_data = true;
2636 	}
2637 }
2638 
2639 static void
2640 nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport,
2641 			      struct spdk_nvmf_tcp_qpair *tqpair,
2642 			      struct spdk_nvmf_tcp_req *tcp_req)
2643 {
2644 	enum spdk_nvme_cmd_fuse last, next;
2645 
2646 	last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2647 	next = tcp_req->cmd.fuse;
2648 
2649 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2650 
2651 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2652 		return;
2653 	}
2654 
2655 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2656 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2657 			/* This is a valid pair of fused commands.  Point them at each other
2658 			 * so they can be submitted consecutively once ready to be executed.
2659 			 */
2660 			tqpair->fused_first->fused_pair = tcp_req;
2661 			tcp_req->fused_pair = tqpair->fused_first;
2662 			tqpair->fused_first = NULL;
2663 			return;
2664 		} else {
2665 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2666 			tqpair->fused_first->fused_failed = true;
2667 
2668 			/*
2669 			 * If the last req is in READY_TO_EXECUTE state, then call
2670 			 * nvmf_tcp_req_process(), otherwise nothing else will kick it.
2671 			 */
2672 			if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2673 				nvmf_tcp_req_process(ttransport, tqpair->fused_first);
2674 			}
2675 
2676 			tqpair->fused_first = NULL;
2677 		}
2678 	}
2679 
2680 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2681 		/* Set tqpair->fused_first here so that we know to check that the next request
2682 		 * is a SECOND (and to fail this one if it isn't).
2683 		 */
2684 		tqpair->fused_first = tcp_req;
2685 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2686 		/* Mark this req failed since it is a SECOND and the last one was not a FIRST. */
2687 		tcp_req->fused_failed = true;
2688 	}
2689 }
2690 
2691 static bool
2692 nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
2693 		     struct spdk_nvmf_tcp_req *tcp_req)
2694 {
2695 	struct spdk_nvmf_tcp_qpair		*tqpair;
2696 	int					rc;
2697 	enum spdk_nvmf_tcp_req_state		prev_state;
2698 	bool					progress = false;
2699 	struct spdk_nvmf_transport		*transport = &ttransport->transport;
2700 	struct spdk_nvmf_transport_poll_group	*group;
2701 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2702 
2703 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2704 	group = &tqpair->group->group;
2705 	assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
2706 
2707 	/* If the qpair is not active, we need to abort the outstanding requests. */
2708 	if (tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2709 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
2710 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2711 		}
2712 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
2713 	}
2714 
2715 	/* The loop here is to allow for several back-to-back state changes. */
2716 	do {
2717 		prev_state = tcp_req->state;
2718 
2719 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
2720 			      tqpair);
2721 
2722 		switch (tcp_req->state) {
2723 		case TCP_REQUEST_STATE_FREE:
2724 			/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
2725 			 * to escape this state. */
2726 			break;
2727 		case TCP_REQUEST_STATE_NEW:
2728 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.qid, 0, (uintptr_t)tcp_req, tqpair);
2729 
2730 			/* copy the cmd from the receive pdu */
2731 			tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
2732 
2733 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
2734 				tcp_req->req.dif_enabled = true;
2735 				tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
2736 			}
2737 
2738 			nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req);
2739 
2740 			/* The next state transition depends on the data transfer needs of this request. */
2741 			tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
2742 
2743 			if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2744 				tcp_req->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2745 				tcp_req->req.rsp->nvme_cpl.status.sc  = SPDK_NVME_SC_INVALID_OPCODE;
2746 				tcp_req->req.rsp->nvme_cpl.cid = tcp_req->req.cmd->nvme_cmd.cid;
2747 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2748 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2749 				SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
2750 				break;
2751 			}
2752 
2753 			/* If no data to transfer, ready to execute. */
2754 			if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
2755 				/* Reset the tqpair receiving pdu state */
2756 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2757 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2758 				break;
2759 			}
2760 
2761 			nvmf_tcp_set_in_capsule_data(tqpair, tcp_req);
2762 
2763 			if (!tcp_req->has_in_capsule_data) {
2764 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2765 			}
2766 
2767 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
2768 			STAILQ_INSERT_TAIL(&group->pending_buf_queue, &tcp_req->req, buf_link);
2769 			break;
2770 		case TCP_REQUEST_STATE_NEED_BUFFER:
2771 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2772 					  tqpair);
2773 
2774 			assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
2775 
2776 			if (!tcp_req->has_in_capsule_data && (&tcp_req->req != STAILQ_FIRST(&group->pending_buf_queue))) {
2777 				SPDK_DEBUGLOG(nvmf_tcp,
2778 					      "Not the first element to wait for the buf for tcp_req(%p) on tqpair=%p\n",
2779 					      tcp_req, tqpair);
2780 				/* This request needs to wait in line to obtain a buffer */
2781 				break;
2782 			}
2783 
2784 			/* Try to get a data buffer */
2785 			rc = nvmf_tcp_req_parse_sgl(tcp_req, transport, group);
2786 			if (rc < 0) {
2787 				STAILQ_REMOVE_HEAD(&group->pending_buf_queue, buf_link);
2788 				/* Reset the tqpair receiving pdu state */
2789 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
2790 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2791 				tcp_req->req.rsp->nvme_cpl.cid = tcp_req->req.cmd->nvme_cmd.cid;
2792 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2793 				break;
2794 			}
2795 
2796 			/* Get a zcopy buffer if the request can be serviced through zcopy */
2797 			if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2798 				if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2799 					assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2800 					tcp_req->req.length = tcp_req->req.dif.elba_length;
2801 				}
2802 
2803 				STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2804 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START);
2805 				spdk_nvmf_request_zcopy_start(&tcp_req->req);
2806 				break;
2807 			}
2808 
2809 			if (!tcp_req->req.data) {
2810 				SPDK_DEBUGLOG(nvmf_tcp, "No buffer allocated for tcp_req(%p) on tqpair(%p\n)",
2811 					      tcp_req, tqpair);
2812 				/* No buffers available. */
2813 				break;
2814 			}
2815 
2816 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2817 
2818 			/* If data is transferring from host to controller, we need to do a transfer from the host. */
2819 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2820 				if (tcp_req->req.data_from_pool) {
2821 					SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2822 					nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2823 				} else {
2824 					struct nvme_tcp_pdu *pdu;
2825 
2826 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
2827 
2828 					pdu = tqpair->pdu_in_progress;
2829 					SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
2830 						      tqpair);
2831 					/* No need to send r2t, contained in the capsuled data */
2832 					nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2833 								  0, tcp_req->req.length);
2834 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2835 				}
2836 				break;
2837 			}
2838 
2839 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2840 			break;
2841 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
2842 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.qid, 0,
2843 					  (uintptr_t)tcp_req, tqpair);
2844 			/* Some external code must kick a request into  TCP_REQUEST_STATE_ZCOPY_START_COMPLETED
2845 			 * to escape this state. */
2846 			break;
2847 		case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
2848 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.qid, 0,
2849 					  (uintptr_t)tcp_req, tqpair);
2850 			if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) {
2851 				SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n",
2852 					      tcp_req, tqpair);
2853 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2854 				break;
2855 			}
2856 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2857 				SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2858 				nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2859 			} else {
2860 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
2861 			}
2862 			break;
2863 		case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
2864 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2865 					  tqpair);
2866 			/* The R2T completion or the h2c data incoming will kick it out of this state. */
2867 			break;
2868 		case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
2869 
2870 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.qid, 0,
2871 					  (uintptr_t)tcp_req, tqpair);
2872 			/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
2873 			 * to escape this state. */
2874 			break;
2875 		case TCP_REQUEST_STATE_READY_TO_EXECUTE:
2876 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.qid, 0,
2877 					  (uintptr_t)tcp_req, tqpair);
2878 
2879 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2880 				assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2881 				tcp_req->req.length = tcp_req->req.dif.elba_length;
2882 			}
2883 
2884 			if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
2885 				if (tcp_req->fused_failed) {
2886 					/* This request failed FUSED semantics.  Fail it immediately, without
2887 					 * even sending it to the target layer.
2888 					 */
2889 					tcp_req->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2890 					tcp_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED;
2891 					tcp_req->req.rsp->nvme_cpl.cid = tcp_req->req.cmd->nvme_cmd.cid;
2892 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2893 					break;
2894 				}
2895 
2896 				if (tcp_req->fused_pair == NULL ||
2897 				    tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2898 					/* This request is ready to execute, but either we don't know yet if it's
2899 					 * valid - i.e. this is a FIRST but we haven't received the next request yet),
2900 					 * or the other request of this fused pair isn't ready to execute. So
2901 					 * break here and this request will get processed later either when the
2902 					 * other request is ready or we find that this request isn't valid.
2903 					 */
2904 					break;
2905 				}
2906 			}
2907 
2908 			if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2909 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
2910 				/* If we get to this point, and this request is a fused command, we know that
2911 				 * it is part of a valid sequence (FIRST followed by a SECOND) and that both
2912 				 * requests are READY_TO_EXECUTE.  So call spdk_nvmf_request_exec() both on this
2913 				 * request, and the other request of the fused pair, in the correct order.
2914 				 * Also clear the ->fused_pair pointers on both requests, since after this point
2915 				 * we no longer need to maintain the relationship between these two requests.
2916 				 */
2917 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
2918 					assert(tcp_req->fused_pair != NULL);
2919 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
2920 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
2921 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
2922 					tcp_req->fused_pair->fused_pair = NULL;
2923 					tcp_req->fused_pair = NULL;
2924 				}
2925 				spdk_nvmf_request_exec(&tcp_req->req);
2926 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
2927 					assert(tcp_req->fused_pair != NULL);
2928 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
2929 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
2930 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
2931 					tcp_req->fused_pair->fused_pair = NULL;
2932 					tcp_req->fused_pair = NULL;
2933 				}
2934 			} else {
2935 				/* For zero-copy, only requests with data coming from host to the
2936 				 * controller can end up here. */
2937 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
2938 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT);
2939 				spdk_nvmf_request_zcopy_end(&tcp_req->req, true);
2940 			}
2941 
2942 			break;
2943 		case TCP_REQUEST_STATE_EXECUTING:
2944 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2945 					  tqpair);
2946 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
2947 			 * to escape this state. */
2948 			break;
2949 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
2950 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.qid, 0,
2951 					  (uintptr_t)tcp_req, tqpair);
2952 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
2953 			 * to escape this state. */
2954 			break;
2955 		case TCP_REQUEST_STATE_EXECUTED:
2956 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2957 					  tqpair);
2958 
2959 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2960 				tcp_req->req.length = tcp_req->req.dif.orig_length;
2961 			}
2962 
2963 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2964 			break;
2965 		case TCP_REQUEST_STATE_READY_TO_COMPLETE:
2966 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.qid, 0,
2967 					  (uintptr_t)tcp_req, tqpair);
2968 			rc = request_transfer_out(&tcp_req->req);
2969 			assert(rc == 0); /* No good way to handle this currently */
2970 			break;
2971 		case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
2972 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.qid, 0,
2973 					  (uintptr_t)tcp_req, tqpair);
2974 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
2975 			 * to escape this state. */
2976 			break;
2977 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
2978 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.qid, 0,
2979 					  (uintptr_t)tcp_req, tqpair);
2980 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
2981 			 * to escape this state. */
2982 			break;
2983 		case TCP_REQUEST_STATE_COMPLETED:
2984 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2985 					  tqpair);
2986 			/* If there's an outstanding PDU sent to the host, the request is completed
2987 			 * due to the qpair being disconnected.  We must delay the completion until
2988 			 * that write is done to avoid freeing the request twice. */
2989 			if (spdk_unlikely(tcp_req->pdu_in_use)) {
2990 				SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding "
2991 					      "write on req=%p\n", tcp_req);
2992 				/* This can only happen for zcopy requests */
2993 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
2994 				assert(tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
2995 				break;
2996 			}
2997 
2998 			if (tcp_req->req.data_from_pool) {
2999 				spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
3000 			} else if (spdk_unlikely(tcp_req->has_in_capsule_data &&
3001 						 (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
3002 						  tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
3003 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3004 				assert(tgroup->control_msg_list);
3005 				SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
3006 				nvmf_tcp_control_msg_put(tgroup->control_msg_list, tcp_req->req.data);
3007 			} else if (tcp_req->req.zcopy_bdev_io != NULL) {
3008 				/* If the request has an unreleased zcopy bdev_io, it's either a
3009 				 * read, a failed write, or the qpair is being disconnected */
3010 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3011 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
3012 				       spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) ||
3013 				       tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
3014 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE);
3015 				spdk_nvmf_request_zcopy_end(&tcp_req->req, false);
3016 				break;
3017 			}
3018 			tcp_req->req.length = 0;
3019 			tcp_req->req.iovcnt = 0;
3020 			tcp_req->req.data = NULL;
3021 			tcp_req->fused_failed = false;
3022 			if (tcp_req->fused_pair) {
3023 				/* This req was part of a valid fused pair, but failed before it got to
3024 				 * READ_TO_EXECUTE state.  This means we need to fail the other request
3025 				 * in the pair, because it is no longer part of a valid pair.  If the pair
3026 				 * already reached READY_TO_EXECUTE state, we need to kick it.
3027 				 */
3028 				tcp_req->fused_pair->fused_failed = true;
3029 				if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3030 					nvmf_tcp_req_process(ttransport, tcp_req->fused_pair);
3031 				}
3032 				tcp_req->fused_pair = NULL;
3033 			}
3034 
3035 			nvmf_tcp_req_put(tqpair, tcp_req);
3036 			break;
3037 		case TCP_REQUEST_NUM_STATES:
3038 		default:
3039 			assert(0);
3040 			break;
3041 		}
3042 
3043 		if (tcp_req->state != prev_state) {
3044 			progress = true;
3045 		}
3046 	} while (tcp_req->state != prev_state);
3047 
3048 	return progress;
3049 }
3050 
3051 static void
3052 nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
3053 {
3054 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
3055 	int rc;
3056 
3057 	assert(tqpair != NULL);
3058 	rc = nvmf_tcp_sock_process(tqpair);
3059 
3060 	/* If there was a new socket error, disconnect */
3061 	if (rc < 0) {
3062 		nvmf_tcp_qpair_disconnect(tqpair);
3063 	}
3064 }
3065 
3066 static int
3067 nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3068 			struct spdk_nvmf_qpair *qpair)
3069 {
3070 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3071 	struct spdk_nvmf_tcp_qpair	*tqpair;
3072 	int				rc;
3073 
3074 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3075 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3076 
3077 	rc =  nvmf_tcp_qpair_sock_init(tqpair);
3078 	if (rc != 0) {
3079 		SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
3080 		return -1;
3081 	}
3082 
3083 	rc = nvmf_tcp_qpair_init(&tqpair->qpair);
3084 	if (rc < 0) {
3085 		SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
3086 		return -1;
3087 	}
3088 
3089 	rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
3090 	if (rc < 0) {
3091 		SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
3092 		return -1;
3093 	}
3094 
3095 	rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
3096 				      nvmf_tcp_sock_cb, tqpair);
3097 	if (rc != 0) {
3098 		SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
3099 			    spdk_strerror(errno), errno);
3100 		return -1;
3101 	}
3102 
3103 	tqpair->group = tgroup;
3104 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INVALID);
3105 	TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
3106 
3107 	return 0;
3108 }
3109 
3110 static int
3111 nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3112 			   struct spdk_nvmf_qpair *qpair)
3113 {
3114 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3115 	struct spdk_nvmf_tcp_qpair		*tqpair;
3116 	int				rc;
3117 
3118 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3119 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3120 
3121 	assert(tqpair->group == tgroup);
3122 
3123 	SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
3124 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
3125 		TAILQ_REMOVE(&tgroup->await_req, tqpair, link);
3126 	} else {
3127 		TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
3128 	}
3129 
3130 	rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
3131 	if (rc != 0) {
3132 		SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
3133 			    spdk_strerror(errno), errno);
3134 	}
3135 
3136 	return rc;
3137 }
3138 
3139 static int
3140 nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
3141 {
3142 	struct spdk_nvmf_tcp_transport *ttransport;
3143 	struct spdk_nvmf_tcp_req *tcp_req;
3144 
3145 	ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3146 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3147 
3148 	switch (tcp_req->state) {
3149 	case TCP_REQUEST_STATE_EXECUTING:
3150 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3151 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3152 		break;
3153 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3154 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED);
3155 		break;
3156 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3157 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3158 		break;
3159 	default:
3160 		assert(0 && "Unexpected request state");
3161 		break;
3162 	}
3163 
3164 	nvmf_tcp_req_process(ttransport, tcp_req);
3165 
3166 	return 0;
3167 }
3168 
3169 static void
3170 nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
3171 		     spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3172 {
3173 	struct spdk_nvmf_tcp_qpair *tqpair;
3174 
3175 	SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
3176 
3177 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3178 
3179 	assert(tqpair->fini_cb_fn == NULL);
3180 	tqpair->fini_cb_fn = cb_fn;
3181 	tqpair->fini_cb_arg = cb_arg;
3182 
3183 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITED);
3184 	nvmf_tcp_qpair_destroy(tqpair);
3185 }
3186 
3187 static int
3188 nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3189 {
3190 	struct spdk_nvmf_tcp_poll_group *tgroup;
3191 	int rc;
3192 	struct spdk_nvmf_request *req, *req_tmp;
3193 	struct spdk_nvmf_tcp_req *tcp_req;
3194 	struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp;
3195 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(group->transport,
3196 			struct spdk_nvmf_tcp_transport, transport);
3197 
3198 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3199 
3200 	if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) {
3201 		return 0;
3202 	}
3203 
3204 	STAILQ_FOREACH_SAFE(req, &group->pending_buf_queue, buf_link, req_tmp) {
3205 		tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3206 		if (nvmf_tcp_req_process(ttransport, tcp_req) == false) {
3207 			break;
3208 		}
3209 	}
3210 
3211 	rc = spdk_sock_group_poll(tgroup->sock_group);
3212 	if (rc < 0) {
3213 		SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
3214 	}
3215 
3216 	TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) {
3217 		nvmf_tcp_sock_process(tqpair);
3218 	}
3219 
3220 	return rc;
3221 }
3222 
3223 static int
3224 nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
3225 			struct spdk_nvme_transport_id *trid, bool peer)
3226 {
3227 	struct spdk_nvmf_tcp_qpair     *tqpair;
3228 	uint16_t			port;
3229 
3230 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3231 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
3232 
3233 	if (peer) {
3234 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
3235 		port = tqpair->initiator_port;
3236 	} else {
3237 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
3238 		port = tqpair->target_port;
3239 	}
3240 
3241 	if (spdk_sock_is_ipv4(tqpair->sock)) {
3242 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3243 	} else if (spdk_sock_is_ipv6(tqpair->sock)) {
3244 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3245 	} else {
3246 		return -1;
3247 	}
3248 
3249 	snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
3250 	return 0;
3251 }
3252 
3253 static int
3254 nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3255 			      struct spdk_nvme_transport_id *trid)
3256 {
3257 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3258 }
3259 
3260 static int
3261 nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3262 			     struct spdk_nvme_transport_id *trid)
3263 {
3264 	return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
3265 }
3266 
3267 static int
3268 nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3269 			       struct spdk_nvme_transport_id *trid)
3270 {
3271 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3272 }
3273 
3274 static void
3275 nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
3276 			      struct spdk_nvmf_tcp_req *tcp_req_to_abort)
3277 {
3278 	tcp_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
3279 	tcp_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
3280 	tcp_req_to_abort->req.rsp->nvme_cpl.cid = tcp_req_to_abort->req.cmd->nvme_cmd.cid;
3281 
3282 	nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3283 
3284 	req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
3285 }
3286 
3287 static int
3288 _nvmf_tcp_qpair_abort_request(void *ctx)
3289 {
3290 	struct spdk_nvmf_request *req = ctx;
3291 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
3292 			struct spdk_nvmf_tcp_req, req);
3293 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
3294 					     struct spdk_nvmf_tcp_qpair, qpair);
3295 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
3296 			struct spdk_nvmf_tcp_transport, transport);
3297 	int rc;
3298 
3299 	spdk_poller_unregister(&req->poller);
3300 
3301 	switch (tcp_req_to_abort->state) {
3302 	case TCP_REQUEST_STATE_EXECUTING:
3303 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3304 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3305 		rc = nvmf_ctrlr_abort_request(req);
3306 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
3307 			return SPDK_POLLER_BUSY;
3308 		}
3309 		break;
3310 
3311 	case TCP_REQUEST_STATE_NEED_BUFFER:
3312 		STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue,
3313 			      &tcp_req_to_abort->req, spdk_nvmf_request, buf_link);
3314 
3315 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3316 		nvmf_tcp_req_process(ttransport, tcp_req_to_abort);
3317 		break;
3318 
3319 	case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3320 	case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
3321 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3322 		break;
3323 
3324 	case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3325 		if (spdk_get_ticks() < req->timeout_tsc) {
3326 			req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
3327 			return SPDK_POLLER_BUSY;
3328 		}
3329 		break;
3330 
3331 	default:
3332 		break;
3333 	}
3334 
3335 	spdk_nvmf_request_complete(req);
3336 	return SPDK_POLLER_BUSY;
3337 }
3338 
3339 static void
3340 nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
3341 			     struct spdk_nvmf_request *req)
3342 {
3343 	struct spdk_nvmf_tcp_qpair *tqpair;
3344 	struct spdk_nvmf_tcp_transport *ttransport;
3345 	struct spdk_nvmf_transport *transport;
3346 	uint16_t cid;
3347 	uint32_t i;
3348 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
3349 
3350 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3351 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3352 	transport = &ttransport->transport;
3353 
3354 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
3355 
3356 	for (i = 0; i < tqpair->resource_count; i++) {
3357 		if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
3358 		    tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
3359 			tcp_req_to_abort = &tqpair->reqs[i];
3360 			break;
3361 		}
3362 	}
3363 
3364 	spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, qpair->qid, 0, (uintptr_t)req, tqpair);
3365 
3366 	if (tcp_req_to_abort == NULL) {
3367 		spdk_nvmf_request_complete(req);
3368 		return;
3369 	}
3370 
3371 	req->req_to_abort = &tcp_req_to_abort->req;
3372 	req->timeout_tsc = spdk_get_ticks() +
3373 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
3374 	req->poller = NULL;
3375 
3376 	_nvmf_tcp_qpair_abort_request(req);
3377 }
3378 
3379 #define SPDK_NVMF_TCP_DEFAULT_MAX_QUEUE_DEPTH 128
3380 #define SPDK_NVMF_TCP_DEFAULT_AQ_DEPTH 128
3381 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
3382 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
3383 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
3384 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
3385 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
3386 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE 32
3387 #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
3388 #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
3389 
3390 static void
3391 nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
3392 {
3393 	opts->max_queue_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_QUEUE_DEPTH;
3394 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
3395 	opts->in_capsule_data_size =	SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
3396 	opts->max_io_size =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
3397 	opts->io_unit_size =		SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
3398 	opts->max_aq_depth =		SPDK_NVMF_TCP_DEFAULT_AQ_DEPTH;
3399 	opts->num_shared_buffers =	SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
3400 	opts->buf_cache_size =		SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
3401 	opts->dif_insert_or_strip =	SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
3402 	opts->abort_timeout_sec =	SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
3403 	opts->transport_specific =      NULL;
3404 }
3405 
3406 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
3407 	.name = "TCP",
3408 	.type = SPDK_NVME_TRANSPORT_TCP,
3409 	.opts_init = nvmf_tcp_opts_init,
3410 	.create = nvmf_tcp_create,
3411 	.dump_opts = nvmf_tcp_dump_opts,
3412 	.destroy = nvmf_tcp_destroy,
3413 
3414 	.listen = nvmf_tcp_listen,
3415 	.stop_listen = nvmf_tcp_stop_listen,
3416 
3417 	.listener_discover = nvmf_tcp_discover,
3418 
3419 	.poll_group_create = nvmf_tcp_poll_group_create,
3420 	.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
3421 	.poll_group_destroy = nvmf_tcp_poll_group_destroy,
3422 	.poll_group_add = nvmf_tcp_poll_group_add,
3423 	.poll_group_remove = nvmf_tcp_poll_group_remove,
3424 	.poll_group_poll = nvmf_tcp_poll_group_poll,
3425 
3426 	.req_free = nvmf_tcp_req_free,
3427 	.req_complete = nvmf_tcp_req_complete,
3428 
3429 	.qpair_fini = nvmf_tcp_close_qpair,
3430 	.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
3431 	.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
3432 	.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
3433 	.qpair_abort_request = nvmf_tcp_qpair_abort_request,
3434 };
3435 
3436 SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
3437 SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)
3438