xref: /spdk/lib/nvmf/tcp.c (revision 8d3f8fb818735d717730489685debac3c814d0ac)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2018 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/accel.h"
8 #include "spdk/stdinc.h"
9 #include "spdk/crc32.h"
10 #include "spdk/endian.h"
11 #include "spdk/assert.h"
12 #include "spdk/thread.h"
13 #include "spdk/nvmf_transport.h"
14 #include "spdk/string.h"
15 #include "spdk/trace.h"
16 #include "spdk/util.h"
17 #include "spdk/log.h"
18 #include "spdk/keyring.h"
19 
20 #include "spdk_internal/assert.h"
21 #include "spdk_internal/nvme_tcp.h"
22 #include "spdk_internal/sock.h"
23 
24 #include "nvmf_internal.h"
25 #include "transport.h"
26 
27 #include "spdk_internal/trace_defs.h"
28 
29 #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
30 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
31 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
32 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
33 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
34 
35 #define SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH 2
36 #define SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH 65535
37 #define SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH 2
38 #define SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH 4096
39 
40 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH 128
41 #define SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH 128
42 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
43 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
44 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
45 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
46 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
47 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX
48 #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
49 #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
50 
51 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
52 static bool g_tls_log = false;
53 
54 /* spdk nvmf related structure */
55 enum spdk_nvmf_tcp_req_state {
56 
57 	/* The request is not currently in use */
58 	TCP_REQUEST_STATE_FREE = 0,
59 
60 	/* Initial state when request first received */
61 	TCP_REQUEST_STATE_NEW = 1,
62 
63 	/* The request is queued until a data buffer is available. */
64 	TCP_REQUEST_STATE_NEED_BUFFER = 2,
65 
66 	/* The request has the data buffer available */
67 	TCP_REQUEST_STATE_HAVE_BUFFER = 3,
68 
69 	/* The request is waiting for zcopy_start to finish */
70 	TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 4,
71 
72 	/* The request has received a zero-copy buffer */
73 	TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 5,
74 
75 	/* The request is currently transferring data from the host to the controller. */
76 	TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 6,
77 
78 	/* The request is waiting for the R2T send acknowledgement. */
79 	TCP_REQUEST_STATE_AWAITING_R2T_ACK = 7,
80 
81 	/* The request is ready to execute at the block device */
82 	TCP_REQUEST_STATE_READY_TO_EXECUTE = 8,
83 
84 	/* The request is currently executing at the block device */
85 	TCP_REQUEST_STATE_EXECUTING = 9,
86 
87 	/* The request is waiting for zcopy buffers to be committed */
88 	TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 10,
89 
90 	/* The request finished executing at the block device */
91 	TCP_REQUEST_STATE_EXECUTED = 11,
92 
93 	/* The request is ready to send a completion */
94 	TCP_REQUEST_STATE_READY_TO_COMPLETE = 12,
95 
96 	/* The request is currently transferring final pdus from the controller to the host. */
97 	TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 13,
98 
99 	/* The request is waiting for zcopy buffers to be released (without committing) */
100 	TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 14,
101 
102 	/* The request completed and can be marked free. */
103 	TCP_REQUEST_STATE_COMPLETED = 15,
104 
105 	/* Terminator */
106 	TCP_REQUEST_NUM_STATES,
107 };
108 
109 enum nvmf_tcp_qpair_state {
110 	NVMF_TCP_QPAIR_STATE_INVALID = 0,
111 	NVMF_TCP_QPAIR_STATE_INITIALIZING = 1,
112 	NVMF_TCP_QPAIR_STATE_RUNNING = 2,
113 	NVMF_TCP_QPAIR_STATE_EXITING = 3,
114 	NVMF_TCP_QPAIR_STATE_EXITED = 4,
115 };
116 
117 static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
118 	"Invalid PDU Header Field",
119 	"PDU Sequence Error",
120 	"Header Digiest Error",
121 	"Data Transfer Out of Range",
122 	"R2T Limit Exceeded",
123 	"Unsupported parameter",
124 };
125 
126 static void
127 nvmf_tcp_trace(void)
128 {
129 	spdk_trace_register_owner_type(OWNER_TYPE_NVMF_TCP, 't');
130 	spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
131 	spdk_trace_register_description("TCP_REQ_NEW",
132 					TRACE_TCP_REQUEST_STATE_NEW,
133 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1,
134 					SPDK_TRACE_ARG_TYPE_INT, "qd");
135 	spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
136 					TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
137 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
138 					SPDK_TRACE_ARG_TYPE_INT, "");
139 	spdk_trace_register_description("TCP_REQ_HAVE_BUFFER",
140 					TRACE_TCP_REQUEST_STATE_HAVE_BUFFER,
141 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
142 					SPDK_TRACE_ARG_TYPE_INT, "");
143 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START",
144 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START,
145 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
146 					SPDK_TRACE_ARG_TYPE_INT, "");
147 	spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL",
148 					TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED,
149 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
150 					SPDK_TRACE_ARG_TYPE_INT, "");
151 	spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
152 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
153 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
154 					SPDK_TRACE_ARG_TYPE_INT, "");
155 	spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
156 					TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
157 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
158 					SPDK_TRACE_ARG_TYPE_INT, "");
159 	spdk_trace_register_description("TCP_REQ_EXECUTING",
160 					TRACE_TCP_REQUEST_STATE_EXECUTING,
161 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
162 					SPDK_TRACE_ARG_TYPE_INT, "");
163 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT",
164 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT,
165 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
166 					SPDK_TRACE_ARG_TYPE_INT, "");
167 	spdk_trace_register_description("TCP_REQ_EXECUTED",
168 					TRACE_TCP_REQUEST_STATE_EXECUTED,
169 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
170 					SPDK_TRACE_ARG_TYPE_INT, "");
171 	spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
172 					TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
173 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
174 					SPDK_TRACE_ARG_TYPE_INT, "");
175 	spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
176 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
177 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
178 					SPDK_TRACE_ARG_TYPE_INT, "");
179 	spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS",
180 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE,
181 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
182 					SPDK_TRACE_ARG_TYPE_INT, "");
183 	spdk_trace_register_description("TCP_REQ_COMPLETED",
184 					TRACE_TCP_REQUEST_STATE_COMPLETED,
185 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
186 					SPDK_TRACE_ARG_TYPE_INT, "qd");
187 	spdk_trace_register_description("TCP_READ_DONE",
188 					TRACE_TCP_READ_FROM_SOCKET_DONE,
189 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
190 					SPDK_TRACE_ARG_TYPE_INT, "");
191 	spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
192 					TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
193 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
194 					SPDK_TRACE_ARG_TYPE_INT, "");
195 
196 	spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE,
197 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
198 					SPDK_TRACE_ARG_TYPE_INT, "");
199 	spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT,
200 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
201 					SPDK_TRACE_ARG_TYPE_INT, "");
202 	spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE,
203 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
204 					SPDK_TRACE_ARG_TYPE_INT, "state");
205 	spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT,
206 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
207 					SPDK_TRACE_ARG_TYPE_INT, "");
208 	spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY,
209 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
210 					SPDK_TRACE_ARG_TYPE_INT, "");
211 	spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ,
212 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
213 					SPDK_TRACE_ARG_TYPE_INT, "");
214 	spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE,
215 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
216 					SPDK_TRACE_ARG_TYPE_INT, "state");
217 
218 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1);
219 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0);
220 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_QUEUE, OBJECT_NVMF_TCP_IO, 0);
221 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_PEND, OBJECT_NVMF_TCP_IO, 0);
222 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_COMPLETE, OBJECT_NVMF_TCP_IO, 0);
223 }
224 SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
225 
226 struct spdk_nvmf_tcp_req  {
227 	struct spdk_nvmf_request		req;
228 	struct spdk_nvme_cpl			rsp;
229 	struct spdk_nvme_cmd			cmd;
230 
231 	/* A PDU that can be used for sending responses. This is
232 	 * not the incoming PDU! */
233 	struct nvme_tcp_pdu			*pdu;
234 
235 	/* In-capsule data buffer */
236 	uint8_t					*buf;
237 
238 	struct spdk_nvmf_tcp_req		*fused_pair;
239 
240 	/*
241 	 * The PDU for a request may be used multiple times in serial over
242 	 * the request's lifetime. For example, first to send an R2T, then
243 	 * to send a completion. To catch mistakes where the PDU is used
244 	 * twice at the same time, add a debug flag here for init/fini.
245 	 */
246 	bool					pdu_in_use;
247 	bool					has_in_capsule_data;
248 	bool					fused_failed;
249 
250 	/* transfer_tag */
251 	uint16_t				ttag;
252 
253 	enum spdk_nvmf_tcp_req_state		state;
254 
255 	/*
256 	 * h2c_offset is used when we receive the h2c_data PDU.
257 	 */
258 	uint32_t				h2c_offset;
259 
260 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		link;
261 	TAILQ_ENTRY(spdk_nvmf_tcp_req)		state_link;
262 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		control_msg_link;
263 };
264 
265 struct spdk_nvmf_tcp_qpair {
266 	struct spdk_nvmf_qpair			qpair;
267 	struct spdk_nvmf_tcp_poll_group		*group;
268 	struct spdk_sock			*sock;
269 
270 	enum nvme_tcp_pdu_recv_state		recv_state;
271 	enum nvmf_tcp_qpair_state		state;
272 
273 	/* PDU being actively received */
274 	struct nvme_tcp_pdu			*pdu_in_progress;
275 
276 	struct spdk_nvmf_tcp_req		*fused_first;
277 
278 	/* Queues to track the requests in all states */
279 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_working_queue;
280 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_free_queue;
281 	SLIST_HEAD(, nvme_tcp_pdu)		tcp_pdu_free_queue;
282 	/* Number of working pdus */
283 	uint32_t				tcp_pdu_working_count;
284 
285 	/* Number of requests in each state */
286 	uint32_t				state_cntr[TCP_REQUEST_NUM_STATES];
287 
288 	uint8_t					cpda;
289 
290 	bool					host_hdgst_enable;
291 	bool					host_ddgst_enable;
292 
293 	/* This is a spare PDU used for sending special management
294 	 * operations. Primarily, this is used for the initial
295 	 * connection response and c2h termination request. */
296 	struct nvme_tcp_pdu			*mgmt_pdu;
297 
298 	/* Arrays of in-capsule buffers, requests, and pdus.
299 	 * Each array is 'resource_count' number of elements */
300 	void					*bufs;
301 	struct spdk_nvmf_tcp_req		*reqs;
302 	struct nvme_tcp_pdu			*pdus;
303 	uint32_t				resource_count;
304 	uint32_t				recv_buf_size;
305 
306 	struct spdk_nvmf_tcp_port		*port;
307 
308 	/* IP address */
309 	char					initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
310 	char					target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
311 
312 	/* IP port */
313 	uint16_t				initiator_port;
314 	uint16_t				target_port;
315 
316 	/* Wait until the host terminates the connection (e.g. after sending C2HTermReq) */
317 	bool					wait_terminate;
318 
319 	/* Timer used to destroy qpair after detecting transport error issue if initiator does
320 	 *  not close the connection.
321 	 */
322 	struct spdk_poller			*timeout_poller;
323 
324 	spdk_nvmf_transport_qpair_fini_cb	fini_cb_fn;
325 	void					*fini_cb_arg;
326 
327 	TAILQ_ENTRY(spdk_nvmf_tcp_qpair)	link;
328 	bool					pending_flush;
329 };
330 
331 struct spdk_nvmf_tcp_control_msg {
332 	STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
333 };
334 
335 struct spdk_nvmf_tcp_control_msg_list {
336 	void *msg_buf;
337 	STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
338 	STAILQ_HEAD(, spdk_nvmf_tcp_req) waiting_for_msg_reqs;
339 };
340 
341 struct spdk_nvmf_tcp_poll_group {
342 	struct spdk_nvmf_transport_poll_group	group;
343 	struct spdk_sock_group			*sock_group;
344 
345 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	qpairs;
346 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	await_req;
347 
348 	struct spdk_io_channel			*accel_channel;
349 	struct spdk_nvmf_tcp_control_msg_list	*control_msg_list;
350 
351 	TAILQ_ENTRY(spdk_nvmf_tcp_poll_group)	link;
352 };
353 
354 struct spdk_nvmf_tcp_port {
355 	const struct spdk_nvme_transport_id	*trid;
356 	struct spdk_sock			*listen_sock;
357 	struct spdk_nvmf_transport		*transport;
358 	TAILQ_ENTRY(spdk_nvmf_tcp_port)		link;
359 };
360 
361 struct tcp_transport_opts {
362 	bool		c2h_success;
363 	uint16_t	control_msg_num;
364 	uint32_t	sock_priority;
365 };
366 
367 struct tcp_psk_entry {
368 	char				hostnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
369 	char				subnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
370 	char				pskid[NVMF_PSK_IDENTITY_LEN];
371 	uint8_t				psk[SPDK_TLS_PSK_MAX_LEN];
372 	struct spdk_key			*key;
373 	uint32_t			psk_size;
374 	enum nvme_tcp_cipher_suite	tls_cipher_suite;
375 	TAILQ_ENTRY(tcp_psk_entry)	link;
376 };
377 
378 struct spdk_nvmf_tcp_transport {
379 	struct spdk_nvmf_transport		transport;
380 	struct tcp_transport_opts               tcp_opts;
381 	uint32_t				ack_timeout;
382 
383 	struct spdk_nvmf_tcp_poll_group		*next_pg;
384 
385 	struct spdk_poller			*accept_poller;
386 	struct spdk_sock_group			*listen_sock_group;
387 
388 	TAILQ_HEAD(, spdk_nvmf_tcp_port)	ports;
389 	TAILQ_HEAD(, spdk_nvmf_tcp_poll_group)	poll_groups;
390 
391 	TAILQ_HEAD(, tcp_psk_entry)		psks;
392 };
393 
394 static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
395 	{
396 		"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
397 		spdk_json_decode_bool, true
398 	},
399 	{
400 		"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
401 		spdk_json_decode_uint16, true
402 	},
403 	{
404 		"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
405 		spdk_json_decode_uint32, true
406 	},
407 };
408 
409 static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
410 				 struct spdk_nvmf_tcp_req *tcp_req);
411 static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
412 
413 static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
414 				    struct spdk_nvmf_tcp_req *tcp_req);
415 
416 static inline void
417 nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
418 		       enum spdk_nvmf_tcp_req_state state)
419 {
420 	struct spdk_nvmf_qpair *qpair;
421 	struct spdk_nvmf_tcp_qpair *tqpair;
422 
423 	qpair = tcp_req->req.qpair;
424 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
425 
426 	assert(tqpair->state_cntr[tcp_req->state] > 0);
427 	tqpair->state_cntr[tcp_req->state]--;
428 	tqpair->state_cntr[state]++;
429 
430 	tcp_req->state = state;
431 }
432 
433 static inline struct nvme_tcp_pdu *
434 nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
435 {
436 	assert(tcp_req->pdu_in_use == false);
437 
438 	memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
439 	tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
440 
441 	return tcp_req->pdu;
442 }
443 
444 static struct spdk_nvmf_tcp_req *
445 nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
446 {
447 	struct spdk_nvmf_tcp_req *tcp_req;
448 
449 	tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
450 	if (spdk_unlikely(!tcp_req)) {
451 		return NULL;
452 	}
453 
454 	memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
455 	tcp_req->h2c_offset = 0;
456 	tcp_req->has_in_capsule_data = false;
457 	tcp_req->req.dif_enabled = false;
458 	tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE;
459 
460 	TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
461 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
462 	tqpair->qpair.queue_depth++;
463 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
464 	return tcp_req;
465 }
466 
467 static inline void
468 nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
469 {
470 	assert(!tcp_req->pdu_in_use);
471 
472 	TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
473 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
474 	tqpair->qpair.queue_depth--;
475 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
476 }
477 
478 static void
479 nvmf_tcp_req_get_buffers_done(struct spdk_nvmf_request *req)
480 {
481 	struct spdk_nvmf_tcp_req *tcp_req;
482 	struct spdk_nvmf_transport *transport;
483 	struct spdk_nvmf_tcp_transport *ttransport;
484 
485 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
486 	transport = req->qpair->transport;
487 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
488 
489 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
490 	nvmf_tcp_req_process(ttransport, tcp_req);
491 }
492 
493 static void
494 nvmf_tcp_request_free(void *cb_arg)
495 {
496 	struct spdk_nvmf_tcp_transport *ttransport;
497 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
498 
499 	assert(tcp_req != NULL);
500 
501 	SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
502 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
503 				      struct spdk_nvmf_tcp_transport, transport);
504 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
505 	nvmf_tcp_req_process(ttransport, tcp_req);
506 }
507 
508 static int
509 nvmf_tcp_req_free(struct spdk_nvmf_request *req)
510 {
511 	struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
512 
513 	nvmf_tcp_request_free(tcp_req);
514 
515 	return 0;
516 }
517 
518 static void
519 nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
520 			   enum spdk_nvmf_tcp_req_state state)
521 {
522 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
523 
524 	assert(state != TCP_REQUEST_STATE_FREE);
525 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
526 		if (state == tcp_req->state) {
527 			nvmf_tcp_request_free(tcp_req);
528 		}
529 	}
530 }
531 
532 static inline void
533 nvmf_tcp_request_get_buffers_abort(struct spdk_nvmf_tcp_req *tcp_req)
534 {
535 	/* Request can wait either for the iobuf or control_msg */
536 	struct spdk_nvmf_poll_group *group = tcp_req->req.qpair->group;
537 	struct spdk_nvmf_transport *transport = tcp_req->req.qpair->transport;
538 	struct spdk_nvmf_transport_poll_group *tgroup = nvmf_get_transport_poll_group(group, transport);
539 	struct spdk_nvmf_tcp_poll_group *tcp_group = SPDK_CONTAINEROF(tgroup,
540 			struct spdk_nvmf_tcp_poll_group, group);
541 	struct spdk_nvmf_tcp_req *tmp_req, *abort_req;
542 
543 	assert(tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER);
544 
545 	STAILQ_FOREACH_SAFE(abort_req, &tcp_group->control_msg_list->waiting_for_msg_reqs, control_msg_link,
546 			    tmp_req) {
547 		if (abort_req == tcp_req) {
548 			STAILQ_REMOVE(&tcp_group->control_msg_list->waiting_for_msg_reqs, abort_req, spdk_nvmf_tcp_req,
549 				      control_msg_link);
550 			return;
551 		}
552 	}
553 
554 	if (!nvmf_request_get_buffers_abort(&tcp_req->req)) {
555 		SPDK_ERRLOG("Failed to abort tcp_req=%p\n", tcp_req);
556 		assert(0 && "Should never happen");
557 	}
558 }
559 
560 static void
561 nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
562 {
563 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
564 
565 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
566 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
567 
568 	/* Wipe the requests waiting for buffer from the waiting list */
569 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
570 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
571 			nvmf_tcp_request_get_buffers_abort(tcp_req);
572 		}
573 	}
574 
575 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
576 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
577 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
578 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
579 }
580 
581 static void
582 nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
583 {
584 	int i;
585 	struct spdk_nvmf_tcp_req *tcp_req;
586 
587 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
588 	for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
589 		SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
590 		TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
591 			if ((int)tcp_req->state == i) {
592 				SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
593 				SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
594 			}
595 		}
596 	}
597 }
598 
599 static void
600 _nvmf_tcp_qpair_destroy(void *_tqpair)
601 {
602 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
603 	spdk_nvmf_transport_qpair_fini_cb cb_fn = tqpair->fini_cb_fn;
604 	void *cb_arg = tqpair->fini_cb_arg;
605 	int err = 0;
606 
607 	spdk_trace_record(TRACE_TCP_QP_DESTROY, tqpair->qpair.trace_id, 0, 0);
608 
609 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
610 
611 	err = spdk_sock_close(&tqpair->sock);
612 	assert(err == 0);
613 	nvmf_tcp_cleanup_all_states(tqpair);
614 
615 	if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
616 		SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
617 			    tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
618 			    tqpair->resource_count);
619 		err++;
620 	}
621 
622 	if (err > 0) {
623 		nvmf_tcp_dump_qpair_req_contents(tqpair);
624 	}
625 
626 	/* The timeout poller might still be registered here if we close the qpair before host
627 	 * terminates the connection.
628 	 */
629 	spdk_poller_unregister(&tqpair->timeout_poller);
630 	spdk_dma_free(tqpair->pdus);
631 	free(tqpair->reqs);
632 	spdk_free(tqpair->bufs);
633 	spdk_trace_unregister_owner(tqpair->qpair.trace_id);
634 	free(tqpair);
635 
636 	if (cb_fn != NULL) {
637 		cb_fn(cb_arg);
638 	}
639 
640 	SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
641 }
642 
643 static void
644 nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
645 {
646 	/* Delay the destruction to make sure it isn't performed from the context of a sock
647 	 * callback.  Otherwise, spdk_sock_close() might not abort pending requests, causing their
648 	 * completions to be executed after the qpair is freed.  (Note: this fixed issue #2471.)
649 	 */
650 	spdk_thread_send_msg(spdk_get_thread(), _nvmf_tcp_qpair_destroy, tqpair);
651 }
652 
653 static void
654 nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
655 {
656 	struct spdk_nvmf_tcp_transport	*ttransport;
657 	assert(w != NULL);
658 
659 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
660 	spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
661 	spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
662 }
663 
664 static void
665 nvmf_tcp_free_psk_entry(struct tcp_psk_entry *entry)
666 {
667 	if (entry == NULL) {
668 		return;
669 	}
670 
671 	spdk_memset_s(entry->psk, sizeof(entry->psk), 0, sizeof(entry->psk));
672 	spdk_keyring_put_key(entry->key);
673 	free(entry);
674 }
675 
676 static int
677 nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
678 		 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
679 {
680 	struct spdk_nvmf_tcp_transport	*ttransport;
681 	struct tcp_psk_entry *entry, *tmp;
682 
683 	assert(transport != NULL);
684 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
685 
686 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
687 		TAILQ_REMOVE(&ttransport->psks, entry, link);
688 		nvmf_tcp_free_psk_entry(entry);
689 	}
690 
691 	spdk_poller_unregister(&ttransport->accept_poller);
692 	spdk_sock_group_unregister_interrupt(ttransport->listen_sock_group);
693 	spdk_sock_group_close(&ttransport->listen_sock_group);
694 	free(ttransport);
695 
696 	if (cb_fn) {
697 		cb_fn(cb_arg);
698 	}
699 	return 0;
700 }
701 
702 static int nvmf_tcp_accept(void *ctx);
703 
704 static void nvmf_tcp_accept_cb(void *ctx, struct spdk_sock_group *group, struct spdk_sock *sock);
705 
706 static struct spdk_nvmf_transport *
707 nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
708 {
709 	struct spdk_nvmf_tcp_transport *ttransport;
710 	uint32_t sge_count;
711 	uint32_t min_shared_buffers;
712 	int rc;
713 	uint64_t period;
714 
715 	ttransport = calloc(1, sizeof(*ttransport));
716 	if (!ttransport) {
717 		return NULL;
718 	}
719 
720 	TAILQ_INIT(&ttransport->ports);
721 	TAILQ_INIT(&ttransport->poll_groups);
722 	TAILQ_INIT(&ttransport->psks);
723 
724 	ttransport->transport.ops = &spdk_nvmf_transport_tcp;
725 
726 	ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
727 	ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
728 	ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
729 	if (opts->transport_specific != NULL &&
730 	    spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
731 					    SPDK_COUNTOF(tcp_transport_opts_decoder),
732 					    &ttransport->tcp_opts)) {
733 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
734 		free(ttransport);
735 		return NULL;
736 	}
737 
738 	SPDK_NOTICELOG("*** TCP Transport Init ***\n");
739 
740 	SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
741 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
742 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
743 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
744 		     "  num_shared_buffers=%d, c2h_success=%d,\n"
745 		     "  dif_insert_or_strip=%d, sock_priority=%d\n"
746 		     "  abort_timeout_sec=%d, control_msg_num=%hu\n"
747 		     "  ack_timeout=%d\n",
748 		     opts->max_queue_depth,
749 		     opts->max_io_size,
750 		     opts->max_qpairs_per_ctrlr - 1,
751 		     opts->io_unit_size,
752 		     opts->in_capsule_data_size,
753 		     opts->max_aq_depth,
754 		     opts->num_shared_buffers,
755 		     ttransport->tcp_opts.c2h_success,
756 		     opts->dif_insert_or_strip,
757 		     ttransport->tcp_opts.sock_priority,
758 		     opts->abort_timeout_sec,
759 		     ttransport->tcp_opts.control_msg_num,
760 		     opts->ack_timeout);
761 
762 	if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
763 		SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
764 			    "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
765 			    ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
766 		free(ttransport);
767 		return NULL;
768 	}
769 
770 	if (ttransport->tcp_opts.control_msg_num == 0 &&
771 	    opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
772 		SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
773 			     SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
774 		ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
775 	}
776 
777 	/* I/O unit size cannot be larger than max I/O size */
778 	if (opts->io_unit_size > opts->max_io_size) {
779 		SPDK_WARNLOG("TCP param io_unit_size %u can't be larger than max_io_size %u. Using max_io_size as io_unit_size\n",
780 			     opts->io_unit_size, opts->max_io_size);
781 		opts->io_unit_size = opts->max_io_size;
782 	}
783 
784 	/* In capsule data size cannot be larger than max I/O size */
785 	if (opts->in_capsule_data_size > opts->max_io_size) {
786 		SPDK_WARNLOG("TCP param ICD size %u can't be larger than max_io_size %u. Using max_io_size as ICD size\n",
787 			     opts->io_unit_size, opts->max_io_size);
788 		opts->in_capsule_data_size = opts->max_io_size;
789 	}
790 
791 	/* max IO queue depth cannot be smaller than 2 or larger than 65535.
792 	 * We will not check SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, because max_queue_depth is 16bits and always not larger than 64k. */
793 	if (opts->max_queue_depth < SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH) {
794 		SPDK_WARNLOG("TCP param max_queue_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
795 			     opts->max_queue_depth, SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH,
796 			     SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH);
797 		opts->max_queue_depth = SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
798 	}
799 
800 	/* max admin queue depth cannot be smaller than 2 or larger than 4096 */
801 	if (opts->max_aq_depth < SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH ||
802 	    opts->max_aq_depth > SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH) {
803 		SPDK_WARNLOG("TCP param max_aq_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
804 			     opts->max_aq_depth, SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH,
805 			     SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH);
806 		opts->max_aq_depth = SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
807 	}
808 
809 	sge_count = opts->max_io_size / opts->io_unit_size;
810 	if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
811 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
812 		free(ttransport);
813 		return NULL;
814 	}
815 
816 	/* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */
817 	if (opts->buf_cache_size < UINT32_MAX) {
818 		min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
819 		if (min_shared_buffers > opts->num_shared_buffers) {
820 			SPDK_ERRLOG("There are not enough buffers to satisfy "
821 				    "per-poll group caches for each thread. (%" PRIu32 ") "
822 				    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
823 			SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
824 			free(ttransport);
825 			return NULL;
826 		}
827 	}
828 
829 	period = spdk_interrupt_mode_is_enabled() ? 0 : opts->acceptor_poll_rate;
830 	ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport, period);
831 	if (!ttransport->accept_poller) {
832 		free(ttransport);
833 		return NULL;
834 	}
835 
836 	spdk_poller_register_interrupt(ttransport->accept_poller, NULL, NULL);
837 
838 	ttransport->listen_sock_group = spdk_sock_group_create(NULL);
839 	if (ttransport->listen_sock_group == NULL) {
840 		SPDK_ERRLOG("Failed to create socket group for listen sockets\n");
841 		spdk_poller_unregister(&ttransport->accept_poller);
842 		free(ttransport);
843 		return NULL;
844 	}
845 
846 	if (spdk_interrupt_mode_is_enabled()) {
847 		rc = SPDK_SOCK_GROUP_REGISTER_INTERRUPT(ttransport->listen_sock_group,
848 							SPDK_INTERRUPT_EVENT_IN | SPDK_INTERRUPT_EVENT_OUT, nvmf_tcp_accept, &ttransport->transport);
849 		if (rc != 0) {
850 			SPDK_ERRLOG("Failed to register interrupt for listen socker sock group\n");
851 			spdk_sock_group_close(&ttransport->listen_sock_group);
852 			spdk_poller_unregister(&ttransport->accept_poller);
853 			free(ttransport);
854 			return NULL;
855 		}
856 	}
857 
858 	return &ttransport->transport;
859 }
860 
861 static int
862 nvmf_tcp_trsvcid_to_int(const char *trsvcid)
863 {
864 	unsigned long long ull;
865 	char *end = NULL;
866 
867 	ull = strtoull(trsvcid, &end, 10);
868 	if (end == NULL || end == trsvcid || *end != '\0') {
869 		return -1;
870 	}
871 
872 	/* Valid TCP/IP port numbers are in [1, 65535] */
873 	if (ull == 0 || ull > 65535) {
874 		return -1;
875 	}
876 
877 	return (int)ull;
878 }
879 
880 /**
881  * Canonicalize a listen address trid.
882  */
883 static int
884 nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
885 			   const struct spdk_nvme_transport_id *trid)
886 {
887 	int trsvcid_int;
888 
889 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
890 	if (trsvcid_int < 0) {
891 		return -EINVAL;
892 	}
893 
894 	memset(canon_trid, 0, sizeof(*canon_trid));
895 	spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
896 	canon_trid->adrfam = trid->adrfam;
897 	snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
898 	snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
899 
900 	return 0;
901 }
902 
903 /**
904  * Find an existing listening port.
905  */
906 static struct spdk_nvmf_tcp_port *
907 nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
908 		   const struct spdk_nvme_transport_id *trid)
909 {
910 	struct spdk_nvme_transport_id canon_trid;
911 	struct spdk_nvmf_tcp_port *port;
912 
913 	if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
914 		return NULL;
915 	}
916 
917 	TAILQ_FOREACH(port, &ttransport->ports, link) {
918 		if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
919 			return port;
920 		}
921 	}
922 
923 	return NULL;
924 }
925 
926 static int
927 tcp_sock_get_key(uint8_t *out, int out_len, const char **cipher, const char *pskid,
928 		 void *get_key_ctx)
929 {
930 	struct tcp_psk_entry *entry;
931 	struct spdk_nvmf_tcp_transport *ttransport = get_key_ctx;
932 	size_t psk_len;
933 	int rc;
934 
935 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
936 		if (strcmp(pskid, entry->pskid) != 0) {
937 			continue;
938 		}
939 
940 		psk_len = entry->psk_size;
941 		if ((size_t)out_len < psk_len) {
942 			SPDK_ERRLOG("Out buffer of size: %" PRIu32 " cannot fit PSK of len: %lu\n",
943 				    out_len, psk_len);
944 			return -ENOBUFS;
945 		}
946 
947 		/* Convert PSK to the TLS PSK format. */
948 		rc = nvme_tcp_derive_tls_psk(entry->psk, psk_len, pskid, out, out_len,
949 					     entry->tls_cipher_suite);
950 		if (rc < 0) {
951 			SPDK_ERRLOG("Could not generate TLS PSK\n");
952 		}
953 
954 		switch (entry->tls_cipher_suite) {
955 		case NVME_TCP_CIPHER_AES_128_GCM_SHA256:
956 			*cipher = "TLS_AES_128_GCM_SHA256";
957 			break;
958 		case NVME_TCP_CIPHER_AES_256_GCM_SHA384:
959 			*cipher = "TLS_AES_256_GCM_SHA384";
960 			break;
961 		default:
962 			*cipher = NULL;
963 			return -ENOTSUP;
964 		}
965 
966 		return rc;
967 	}
968 
969 	SPDK_ERRLOG("Could not find PSK for identity: %s\n", pskid);
970 
971 	return -EINVAL;
972 }
973 
974 static int
975 nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
976 		struct spdk_nvmf_listen_opts *listen_opts)
977 {
978 	struct spdk_nvmf_tcp_transport *ttransport;
979 	struct spdk_nvmf_tcp_port *port;
980 	int trsvcid_int;
981 	uint8_t adrfam;
982 	const char *sock_impl_name;
983 	struct spdk_sock_impl_opts impl_opts;
984 	size_t impl_opts_size = sizeof(impl_opts);
985 	struct spdk_sock_opts opts;
986 	int rc;
987 
988 	if (!strlen(trid->trsvcid)) {
989 		SPDK_ERRLOG("Service id is required\n");
990 		return -EINVAL;
991 	}
992 
993 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
994 
995 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
996 	if (trsvcid_int < 0) {
997 		SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
998 		return -EINVAL;
999 	}
1000 
1001 	port = calloc(1, sizeof(*port));
1002 	if (!port) {
1003 		SPDK_ERRLOG("Port allocation failed\n");
1004 		return -ENOMEM;
1005 	}
1006 
1007 	port->trid = trid;
1008 
1009 	sock_impl_name = NULL;
1010 
1011 	opts.opts_size = sizeof(opts);
1012 	spdk_sock_get_default_opts(&opts);
1013 	opts.priority = ttransport->tcp_opts.sock_priority;
1014 	opts.ack_timeout = transport->opts.ack_timeout;
1015 	if (listen_opts->secure_channel) {
1016 		if (listen_opts->sock_impl &&
1017 		    strncmp("ssl", listen_opts->sock_impl, strlen(listen_opts->sock_impl))) {
1018 			SPDK_ERRLOG("Enabling secure_channel while specifying a sock_impl different from 'ssl' is unsupported");
1019 			free(port);
1020 			return -EINVAL;
1021 		}
1022 		listen_opts->sock_impl = "ssl";
1023 	}
1024 
1025 	if (listen_opts->sock_impl) {
1026 		sock_impl_name = listen_opts->sock_impl;
1027 		spdk_sock_impl_get_opts(sock_impl_name, &impl_opts, &impl_opts_size);
1028 
1029 		if (!strncmp("ssl", sock_impl_name, strlen(sock_impl_name))) {
1030 			if (!g_tls_log) {
1031 				SPDK_NOTICELOG("TLS support is considered experimental\n");
1032 				g_tls_log = true;
1033 			}
1034 			impl_opts.tls_version = SPDK_TLS_VERSION_1_3;
1035 			impl_opts.get_key = tcp_sock_get_key;
1036 			impl_opts.get_key_ctx = ttransport;
1037 			impl_opts.tls_cipher_suites = "TLS_AES_256_GCM_SHA384:TLS_AES_128_GCM_SHA256";
1038 		}
1039 
1040 		opts.impl_opts = &impl_opts;
1041 		opts.impl_opts_size = sizeof(impl_opts);
1042 	}
1043 
1044 	port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
1045 			    sock_impl_name, &opts);
1046 	if (port->listen_sock == NULL) {
1047 		SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
1048 			    trid->traddr, trsvcid_int,
1049 			    spdk_strerror(errno), errno);
1050 		free(port);
1051 		return -errno;
1052 	}
1053 
1054 	if (spdk_sock_is_ipv4(port->listen_sock)) {
1055 		adrfam = SPDK_NVMF_ADRFAM_IPV4;
1056 	} else if (spdk_sock_is_ipv6(port->listen_sock)) {
1057 		adrfam = SPDK_NVMF_ADRFAM_IPV6;
1058 	} else {
1059 		SPDK_ERRLOG("Unhandled socket type\n");
1060 		adrfam = 0;
1061 	}
1062 
1063 	if (adrfam != trid->adrfam) {
1064 		SPDK_ERRLOG("Socket address family mismatch\n");
1065 		spdk_sock_close(&port->listen_sock);
1066 		free(port);
1067 		return -EINVAL;
1068 	}
1069 
1070 	rc = spdk_sock_group_add_sock(ttransport->listen_sock_group, port->listen_sock, nvmf_tcp_accept_cb,
1071 				      port);
1072 	if (rc < 0) {
1073 		SPDK_ERRLOG("Failed to add socket to the listen socket group\n");
1074 		spdk_sock_close(&port->listen_sock);
1075 		free(port);
1076 		return -errno;
1077 	}
1078 
1079 	port->transport = transport;
1080 
1081 	SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
1082 		       trid->traddr, trid->trsvcid);
1083 
1084 	TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
1085 	return 0;
1086 }
1087 
1088 static void
1089 nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
1090 		     const struct spdk_nvme_transport_id *trid)
1091 {
1092 	struct spdk_nvmf_tcp_transport *ttransport;
1093 	struct spdk_nvmf_tcp_port *port;
1094 
1095 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1096 
1097 	SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
1098 		      trid->traddr, trid->trsvcid);
1099 
1100 	port = nvmf_tcp_find_port(ttransport, trid);
1101 	if (port) {
1102 		spdk_sock_group_remove_sock(ttransport->listen_sock_group, port->listen_sock);
1103 		TAILQ_REMOVE(&ttransport->ports, port, link);
1104 		spdk_sock_close(&port->listen_sock);
1105 		free(port);
1106 	}
1107 }
1108 
1109 static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1110 		enum nvme_tcp_pdu_recv_state state);
1111 
1112 static void
1113 nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvmf_tcp_qpair_state state)
1114 {
1115 	tqpair->state = state;
1116 	spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0,
1117 			  (uint64_t)tqpair->state);
1118 }
1119 
1120 static void
1121 nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
1122 {
1123 	SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
1124 
1125 	spdk_trace_record(TRACE_TCP_QP_DISCONNECT, tqpair->qpair.trace_id, 0, 0);
1126 
1127 	if (tqpair->state <= NVMF_TCP_QPAIR_STATE_RUNNING) {
1128 		nvmf_tcp_qpair_set_state(tqpair, NVMF_TCP_QPAIR_STATE_EXITING);
1129 		assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1130 		spdk_poller_unregister(&tqpair->timeout_poller);
1131 
1132 		/* This will end up calling nvmf_tcp_close_qpair */
1133 		spdk_nvmf_qpair_disconnect(&tqpair->qpair);
1134 	}
1135 }
1136 
1137 static void
1138 _mgmt_pdu_write_done(void *_tqpair, int err)
1139 {
1140 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
1141 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1142 
1143 	if (spdk_unlikely(err != 0)) {
1144 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1145 		return;
1146 	}
1147 
1148 	assert(pdu->cb_fn != NULL);
1149 	pdu->cb_fn(pdu->cb_arg);
1150 }
1151 
1152 static void
1153 _req_pdu_write_done(void *req, int err)
1154 {
1155 	struct spdk_nvmf_tcp_req *tcp_req = req;
1156 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1157 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1158 
1159 	assert(tcp_req->pdu_in_use);
1160 	tcp_req->pdu_in_use = false;
1161 
1162 	/* If the request is in a completed state, we're waiting for write completion to free it */
1163 	if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) {
1164 		nvmf_tcp_request_free(tcp_req);
1165 		return;
1166 	}
1167 
1168 	if (spdk_unlikely(err != 0)) {
1169 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1170 		return;
1171 	}
1172 
1173 	assert(pdu->cb_fn != NULL);
1174 	pdu->cb_fn(pdu->cb_arg);
1175 }
1176 
1177 static void
1178 _pdu_write_done(struct nvme_tcp_pdu *pdu, int err)
1179 {
1180 	pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err);
1181 }
1182 
1183 static void
1184 tcp_sock_flush_cb(void *arg)
1185 {
1186 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
1187 	int rc = spdk_sock_flush(tqpair->sock);
1188 
1189 	if (rc < 0 && errno == EAGAIN) {
1190 		spdk_thread_send_msg(spdk_get_thread(), tcp_sock_flush_cb, tqpair);
1191 		return;
1192 	}
1193 
1194 	tqpair->pending_flush = false;
1195 	if (rc < 0) {
1196 		SPDK_ERRLOG("Could not write to socket: rc=%d, errno=%d\n", rc, errno);
1197 	}
1198 }
1199 
1200 static void
1201 _tcp_write_pdu(struct nvme_tcp_pdu *pdu)
1202 {
1203 	int rc;
1204 	uint32_t mapped_length;
1205 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1206 
1207 	pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
1208 			       tqpair->host_hdgst_enable, tqpair->host_ddgst_enable, &mapped_length);
1209 	spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
1210 
1211 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
1212 	    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
1213 		/* Try to force the send immediately. */
1214 		rc = spdk_sock_flush(tqpair->sock);
1215 		if (rc > 0 && (uint32_t)rc == mapped_length) {
1216 			_pdu_write_done(pdu, 0);
1217 		} else {
1218 			SPDK_ERRLOG("Could not write %s to socket: rc=%d, errno=%d\n",
1219 				    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ?
1220 				    "IC_RESP" : "TERM_REQ", rc, errno);
1221 			_pdu_write_done(pdu, rc >= 0 ? -EAGAIN : -errno);
1222 		}
1223 	} else if (spdk_interrupt_mode_is_enabled()) {
1224 		/* Async writes must be flushed */
1225 		if (!tqpair->pending_flush) {
1226 			tqpair->pending_flush = true;
1227 			spdk_thread_send_msg(spdk_get_thread(), tcp_sock_flush_cb, tqpair);
1228 		}
1229 	}
1230 }
1231 
1232 static void
1233 data_crc32_accel_done(void *cb_arg, int status)
1234 {
1235 	struct nvme_tcp_pdu *pdu = cb_arg;
1236 
1237 	if (spdk_unlikely(status)) {
1238 		SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
1239 		_pdu_write_done(pdu, status);
1240 		return;
1241 	}
1242 
1243 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
1244 	MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
1245 
1246 	_tcp_write_pdu(pdu);
1247 }
1248 
1249 static void
1250 pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
1251 {
1252 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1253 	int rc = 0;
1254 
1255 	/* Data Digest */
1256 	if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
1257 		/* Only support this limitated case for the first step */
1258 		if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
1259 				&& tqpair->group)) {
1260 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
1261 						       pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
1262 			if (spdk_likely(rc == 0)) {
1263 				return;
1264 			}
1265 		} else {
1266 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1267 		}
1268 		data_crc32_accel_done(pdu, rc);
1269 	} else {
1270 		_tcp_write_pdu(pdu);
1271 	}
1272 }
1273 
1274 static void
1275 nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1276 			 struct nvme_tcp_pdu *pdu,
1277 			 nvme_tcp_qpair_xfer_complete_cb cb_fn,
1278 			 void *cb_arg)
1279 {
1280 	int hlen;
1281 	uint32_t crc32c;
1282 
1283 	assert(tqpair->pdu_in_progress != pdu);
1284 
1285 	hlen = pdu->hdr.common.hlen;
1286 	pdu->cb_fn = cb_fn;
1287 	pdu->cb_arg = cb_arg;
1288 
1289 	pdu->iov[0].iov_base = &pdu->hdr.raw;
1290 	pdu->iov[0].iov_len = hlen;
1291 
1292 	/* Header Digest */
1293 	if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) {
1294 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1295 		MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
1296 	}
1297 
1298 	/* Data Digest */
1299 	pdu_data_crc32_compute(pdu);
1300 }
1301 
1302 static void
1303 nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1304 			      nvme_tcp_qpair_xfer_complete_cb cb_fn,
1305 			      void *cb_arg)
1306 {
1307 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1308 
1309 	pdu->sock_req.cb_fn = _mgmt_pdu_write_done;
1310 	pdu->sock_req.cb_arg = tqpair;
1311 
1312 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1313 }
1314 
1315 static void
1316 nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1317 			     struct spdk_nvmf_tcp_req *tcp_req,
1318 			     nvme_tcp_qpair_xfer_complete_cb cb_fn,
1319 			     void *cb_arg)
1320 {
1321 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1322 
1323 	pdu->sock_req.cb_fn = _req_pdu_write_done;
1324 	pdu->sock_req.cb_arg = tcp_req;
1325 
1326 	assert(!tcp_req->pdu_in_use);
1327 	tcp_req->pdu_in_use = true;
1328 
1329 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1330 }
1331 
1332 static int
1333 nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
1334 {
1335 	uint32_t i;
1336 	struct spdk_nvmf_transport_opts *opts;
1337 	uint32_t in_capsule_data_size;
1338 
1339 	opts = &tqpair->qpair.transport->opts;
1340 
1341 	in_capsule_data_size = opts->in_capsule_data_size;
1342 	if (opts->dif_insert_or_strip) {
1343 		in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
1344 	}
1345 
1346 	tqpair->resource_count = opts->max_queue_depth;
1347 
1348 	tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
1349 	if (!tqpair->reqs) {
1350 		SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
1351 		return -1;
1352 	}
1353 
1354 	if (in_capsule_data_size) {
1355 		tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
1356 					    NULL, SPDK_ENV_LCORE_ID_ANY,
1357 					    SPDK_MALLOC_DMA);
1358 		if (!tqpair->bufs) {
1359 			SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
1360 			return -1;
1361 		}
1362 	}
1363 	/* prepare memory space for receiving pdus and tcp_req */
1364 	/* Add additional 1 member, which will be used for mgmt_pdu owned by the tqpair */
1365 	tqpair->pdus = spdk_dma_zmalloc((2 * tqpair->resource_count + 1) * sizeof(*tqpair->pdus), 0x1000,
1366 					NULL);
1367 	if (!tqpair->pdus) {
1368 		SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
1369 		return -1;
1370 	}
1371 
1372 	for (i = 0; i < tqpair->resource_count; i++) {
1373 		struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
1374 
1375 		tcp_req->ttag = i + 1;
1376 		tcp_req->req.qpair = &tqpair->qpair;
1377 
1378 		tcp_req->pdu = &tqpair->pdus[i];
1379 		tcp_req->pdu->qpair = tqpair;
1380 
1381 		/* Set up memory to receive commands */
1382 		if (tqpair->bufs) {
1383 			tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
1384 		}
1385 
1386 		/* Set the cmdn and rsp */
1387 		tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
1388 		tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
1389 
1390 		tcp_req->req.stripped_data = NULL;
1391 
1392 		/* Initialize request state to FREE */
1393 		tcp_req->state = TCP_REQUEST_STATE_FREE;
1394 		TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
1395 		tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
1396 	}
1397 
1398 	for (; i < 2 * tqpair->resource_count; i++) {
1399 		struct nvme_tcp_pdu *pdu = &tqpair->pdus[i];
1400 
1401 		pdu->qpair = tqpair;
1402 		SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1403 	}
1404 
1405 	tqpair->mgmt_pdu = &tqpair->pdus[i];
1406 	tqpair->mgmt_pdu->qpair = tqpair;
1407 	tqpair->pdu_in_progress = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
1408 	SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
1409 	tqpair->tcp_pdu_working_count = 1;
1410 
1411 	tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
1412 				 SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1413 
1414 	return 0;
1415 }
1416 
1417 static int
1418 nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
1419 {
1420 	struct spdk_nvmf_tcp_qpair *tqpair;
1421 
1422 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1423 
1424 	SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
1425 
1426 	spdk_trace_record(TRACE_TCP_QP_CREATE, tqpair->qpair.trace_id, 0, 0);
1427 
1428 	/* Initialise request state queues of the qpair */
1429 	TAILQ_INIT(&tqpair->tcp_req_free_queue);
1430 	TAILQ_INIT(&tqpair->tcp_req_working_queue);
1431 	SLIST_INIT(&tqpair->tcp_pdu_free_queue);
1432 	tqpair->qpair.queue_depth = 0;
1433 
1434 	tqpair->host_hdgst_enable = true;
1435 	tqpair->host_ddgst_enable = true;
1436 
1437 	return 0;
1438 }
1439 
1440 static int
1441 nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
1442 {
1443 	char saddr[32], caddr[32];
1444 	uint16_t sport, cport;
1445 	char owner[256];
1446 	int rc;
1447 
1448 	rc = spdk_sock_getaddr(tqpair->sock, saddr, sizeof(saddr), &sport,
1449 			       caddr, sizeof(caddr), &cport);
1450 	if (rc != 0) {
1451 		SPDK_ERRLOG("spdk_sock_getaddr() failed\n");
1452 		return rc;
1453 	}
1454 	snprintf(owner, sizeof(owner), "%s:%d", caddr, cport);
1455 	tqpair->qpair.trace_id = spdk_trace_register_owner(OWNER_TYPE_NVMF_TCP, owner);
1456 	spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, tqpair->qpair.trace_id, 0, 0);
1457 
1458 	/* set low water mark */
1459 	rc = spdk_sock_set_recvlowat(tqpair->sock, 1);
1460 	if (rc != 0) {
1461 		SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
1462 		return rc;
1463 	}
1464 
1465 	return 0;
1466 }
1467 
1468 static void
1469 nvmf_tcp_handle_connect(struct spdk_nvmf_tcp_port *port, struct spdk_sock *sock)
1470 {
1471 	struct spdk_nvmf_tcp_qpair *tqpair;
1472 	int rc;
1473 
1474 	SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
1475 		      port->trid->traddr, port->trid->trsvcid);
1476 
1477 	tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
1478 	if (tqpair == NULL) {
1479 		SPDK_ERRLOG("Could not allocate new connection.\n");
1480 		spdk_sock_close(&sock);
1481 		return;
1482 	}
1483 
1484 	tqpair->sock = sock;
1485 	tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
1486 	tqpair->port = port;
1487 	tqpair->qpair.transport = port->transport;
1488 	tqpair->qpair.numa.id_valid = 1;
1489 	tqpair->qpair.numa.id = spdk_sock_get_numa_id(sock);
1490 
1491 	rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
1492 			       sizeof(tqpair->target_addr), &tqpair->target_port,
1493 			       tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
1494 			       &tqpair->initiator_port);
1495 	if (rc < 0) {
1496 		SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
1497 		nvmf_tcp_qpair_destroy(tqpair);
1498 		return;
1499 	}
1500 
1501 	spdk_nvmf_tgt_new_qpair(port->transport->tgt, &tqpair->qpair);
1502 }
1503 
1504 static uint32_t
1505 nvmf_tcp_port_accept(struct spdk_nvmf_tcp_port *port)
1506 {
1507 	struct spdk_sock *sock;
1508 	uint32_t count = 0;
1509 	int i;
1510 
1511 	for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
1512 		sock = spdk_sock_accept(port->listen_sock);
1513 		if (sock == NULL) {
1514 			break;
1515 		}
1516 		count++;
1517 		nvmf_tcp_handle_connect(port, sock);
1518 	}
1519 
1520 	return count;
1521 }
1522 
1523 static int
1524 nvmf_tcp_accept(void *ctx)
1525 {
1526 	struct spdk_nvmf_transport *transport = ctx;
1527 	struct spdk_nvmf_tcp_transport *ttransport;
1528 	int count;
1529 
1530 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1531 
1532 	count = spdk_sock_group_poll(ttransport->listen_sock_group);
1533 	if (count < 0) {
1534 		SPDK_ERRLOG("Fail in TCP listen socket group poll\n");
1535 	}
1536 
1537 	return count != 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1538 }
1539 
1540 static void
1541 nvmf_tcp_accept_cb(void *ctx, struct spdk_sock_group *group, struct spdk_sock *sock)
1542 {
1543 	struct spdk_nvmf_tcp_port *port = ctx;
1544 
1545 	nvmf_tcp_port_accept(port);
1546 }
1547 
1548 static void
1549 nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
1550 		  struct spdk_nvme_transport_id *trid,
1551 		  struct spdk_nvmf_discovery_log_page_entry *entry)
1552 {
1553 	struct spdk_nvmf_tcp_port *port;
1554 	struct spdk_nvmf_tcp_transport *ttransport;
1555 
1556 	entry->trtype = SPDK_NVMF_TRTYPE_TCP;
1557 	entry->adrfam = trid->adrfam;
1558 
1559 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
1560 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
1561 
1562 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1563 	port = nvmf_tcp_find_port(ttransport, trid);
1564 
1565 	assert(port != NULL);
1566 
1567 	if (strcmp(spdk_sock_get_impl_name(port->listen_sock), "ssl") == 0) {
1568 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_REQUIRED;
1569 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_TLS_1_3;
1570 	} else {
1571 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
1572 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
1573 	}
1574 }
1575 
1576 static struct spdk_nvmf_tcp_control_msg_list *
1577 nvmf_tcp_control_msg_list_create(uint16_t num_messages)
1578 {
1579 	struct spdk_nvmf_tcp_control_msg_list *list;
1580 	struct spdk_nvmf_tcp_control_msg *msg;
1581 	uint16_t i;
1582 
1583 	list = calloc(1, sizeof(*list));
1584 	if (!list) {
1585 		SPDK_ERRLOG("Failed to allocate memory for list structure\n");
1586 		return NULL;
1587 	}
1588 
1589 	list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
1590 				     NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
1591 	if (!list->msg_buf) {
1592 		SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
1593 		free(list);
1594 		return NULL;
1595 	}
1596 
1597 	STAILQ_INIT(&list->free_msgs);
1598 	STAILQ_INIT(&list->waiting_for_msg_reqs);
1599 
1600 	for (i = 0; i < num_messages; i++) {
1601 		msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
1602 				SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1603 		STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
1604 	}
1605 
1606 	return list;
1607 }
1608 
1609 static void
1610 nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
1611 {
1612 	if (!list) {
1613 		return;
1614 	}
1615 
1616 	spdk_free(list->msg_buf);
1617 	free(list);
1618 }
1619 
1620 static int nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group);
1621 
1622 static int
1623 nvmf_tcp_poll_group_intr(void *ctx)
1624 {
1625 	struct spdk_nvmf_transport_poll_group *group = ctx;
1626 	int ret = 0;
1627 
1628 	ret = nvmf_tcp_poll_group_poll(group);
1629 
1630 	return ret != 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1631 }
1632 
1633 static struct spdk_nvmf_transport_poll_group *
1634 nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport,
1635 			   struct spdk_nvmf_poll_group *group)
1636 {
1637 	struct spdk_nvmf_tcp_transport	*ttransport;
1638 	struct spdk_nvmf_tcp_poll_group *tgroup;
1639 	int rc;
1640 
1641 	tgroup = calloc(1, sizeof(*tgroup));
1642 	if (!tgroup) {
1643 		return NULL;
1644 	}
1645 
1646 	tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
1647 	if (!tgroup->sock_group) {
1648 		goto cleanup;
1649 	}
1650 
1651 	TAILQ_INIT(&tgroup->qpairs);
1652 	TAILQ_INIT(&tgroup->await_req);
1653 
1654 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1655 
1656 	if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
1657 		SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
1658 			      "Creating control messages list\n", transport->opts.in_capsule_data_size,
1659 			      SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1660 		tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
1661 		if (!tgroup->control_msg_list) {
1662 			goto cleanup;
1663 		}
1664 	}
1665 
1666 	tgroup->accel_channel = spdk_accel_get_io_channel();
1667 	if (spdk_unlikely(!tgroup->accel_channel)) {
1668 		SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
1669 		goto cleanup;
1670 	}
1671 
1672 	TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link);
1673 	if (ttransport->next_pg == NULL) {
1674 		ttransport->next_pg = tgroup;
1675 	}
1676 
1677 	if (spdk_interrupt_mode_is_enabled()) {
1678 		rc = SPDK_SOCK_GROUP_REGISTER_INTERRUPT(tgroup->sock_group,
1679 							SPDK_INTERRUPT_EVENT_IN | SPDK_INTERRUPT_EVENT_OUT, nvmf_tcp_poll_group_intr, &tgroup->group);
1680 		if (rc != 0) {
1681 			SPDK_ERRLOG("Failed to register interrupt for sock group\n");
1682 			goto cleanup;
1683 		}
1684 	}
1685 
1686 	return &tgroup->group;
1687 
1688 cleanup:
1689 	nvmf_tcp_poll_group_destroy(&tgroup->group);
1690 	return NULL;
1691 }
1692 
1693 static struct spdk_nvmf_transport_poll_group *
1694 nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
1695 {
1696 	struct spdk_nvmf_tcp_transport *ttransport;
1697 	struct spdk_nvmf_tcp_poll_group **pg;
1698 	struct spdk_nvmf_tcp_qpair *tqpair;
1699 	struct spdk_sock_group *group = NULL, *hint = NULL;
1700 	int rc;
1701 
1702 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
1703 
1704 	if (TAILQ_EMPTY(&ttransport->poll_groups)) {
1705 		return NULL;
1706 	}
1707 
1708 	pg = &ttransport->next_pg;
1709 	assert(*pg != NULL);
1710 	hint = (*pg)->sock_group;
1711 
1712 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1713 	rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint);
1714 	if (rc != 0) {
1715 		return NULL;
1716 	} else if (group != NULL) {
1717 		/* Optimal poll group was found */
1718 		return spdk_sock_group_get_ctx(group);
1719 	}
1720 
1721 	/* The hint was used for optimal poll group, advance next_pg. */
1722 	*pg = TAILQ_NEXT(*pg, link);
1723 	if (*pg == NULL) {
1724 		*pg = TAILQ_FIRST(&ttransport->poll_groups);
1725 	}
1726 
1727 	return spdk_sock_group_get_ctx(hint);
1728 }
1729 
1730 static void
1731 nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
1732 {
1733 	struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup;
1734 	struct spdk_nvmf_tcp_transport *ttransport;
1735 
1736 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
1737 	spdk_sock_group_unregister_interrupt(tgroup->sock_group);
1738 	spdk_sock_group_close(&tgroup->sock_group);
1739 	if (tgroup->control_msg_list) {
1740 		nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
1741 	}
1742 
1743 	if (tgroup->accel_channel) {
1744 		spdk_put_io_channel(tgroup->accel_channel);
1745 	}
1746 
1747 	if (tgroup->group.transport == NULL) {
1748 		/* Transport can be NULL when nvmf_tcp_poll_group_create()
1749 		 * calls this function directly in a failure path. */
1750 		free(tgroup);
1751 		return;
1752 	}
1753 
1754 	ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport);
1755 
1756 	next_tgroup = TAILQ_NEXT(tgroup, link);
1757 	TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link);
1758 	if (next_tgroup == NULL) {
1759 		next_tgroup = TAILQ_FIRST(&ttransport->poll_groups);
1760 	}
1761 	if (ttransport->next_pg == tgroup) {
1762 		ttransport->next_pg = next_tgroup;
1763 	}
1764 
1765 	free(tgroup);
1766 }
1767 
1768 static void
1769 nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1770 			      enum nvme_tcp_pdu_recv_state state)
1771 {
1772 	if (tqpair->recv_state == state) {
1773 		SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
1774 			    tqpair, state);
1775 		return;
1776 	}
1777 
1778 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_QUIESCING)) {
1779 		if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH && tqpair->pdu_in_progress) {
1780 			SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, tqpair->pdu_in_progress, slist);
1781 			tqpair->tcp_pdu_working_count--;
1782 		}
1783 	}
1784 
1785 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_ERROR)) {
1786 		assert(tqpair->tcp_pdu_working_count == 0);
1787 	}
1788 
1789 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1790 		/* When leaving the await req state, move the qpair to the main list */
1791 		TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link);
1792 		TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link);
1793 	} else if (state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1794 		TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link);
1795 		TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link);
1796 	}
1797 
1798 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
1799 	tqpair->recv_state = state;
1800 
1801 	spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0,
1802 			  (uint64_t)tqpair->recv_state);
1803 }
1804 
1805 static int
1806 nvmf_tcp_qpair_handle_timeout(void *ctx)
1807 {
1808 	struct spdk_nvmf_tcp_qpair *tqpair = ctx;
1809 
1810 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1811 
1812 	SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
1813 		    SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
1814 
1815 	nvmf_tcp_qpair_disconnect(tqpair);
1816 	return SPDK_POLLER_BUSY;
1817 }
1818 
1819 static void
1820 nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
1821 {
1822 	struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
1823 
1824 	if (!tqpair->timeout_poller) {
1825 		tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
1826 					 SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
1827 	}
1828 }
1829 
1830 static void
1831 nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
1832 			   enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
1833 {
1834 	struct nvme_tcp_pdu *rsp_pdu;
1835 	struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
1836 	uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
1837 	uint32_t copy_len;
1838 
1839 	rsp_pdu = tqpair->mgmt_pdu;
1840 
1841 	c2h_term_req = &rsp_pdu->hdr.term_req;
1842 	c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
1843 	c2h_term_req->common.hlen = c2h_term_req_hdr_len;
1844 	c2h_term_req->fes = fes;
1845 
1846 	if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1847 	    (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1848 		DSET32(&c2h_term_req->fei, error_offset);
1849 	}
1850 
1851 	copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
1852 
1853 	/* Copy the error info into the buffer */
1854 	memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
1855 	nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
1856 
1857 	/* Contain the header of the wrong received pdu */
1858 	c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
1859 	tqpair->wait_terminate = true;
1860 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1861 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair);
1862 }
1863 
1864 static void
1865 nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1866 				struct spdk_nvmf_tcp_qpair *tqpair,
1867 				struct nvme_tcp_pdu *pdu)
1868 {
1869 	struct spdk_nvmf_tcp_req *tcp_req;
1870 
1871 	assert(pdu->psh_valid_bytes == pdu->psh_len);
1872 	assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
1873 
1874 	tcp_req = nvmf_tcp_req_get(tqpair);
1875 	if (!tcp_req) {
1876 		/* Directly return and make the allocation retry again.  This can happen if we're
1877 		 * using asynchronous writes to send the response to the host or when releasing
1878 		 * zero-copy buffers after a response has been sent.  In both cases, the host might
1879 		 * receive the response before we've finished processing the request and is free to
1880 		 * send another one.
1881 		 */
1882 		if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 ||
1883 		    tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) {
1884 			return;
1885 		}
1886 
1887 		/* The host sent more commands than the maximum queue depth. */
1888 		SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
1889 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1890 		return;
1891 	}
1892 
1893 	pdu->req = tcp_req;
1894 	assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
1895 	nvmf_tcp_req_process(ttransport, tcp_req);
1896 }
1897 
1898 static void
1899 nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1900 				    struct spdk_nvmf_tcp_qpair *tqpair,
1901 				    struct nvme_tcp_pdu *pdu)
1902 {
1903 	struct spdk_nvmf_tcp_req *tcp_req;
1904 	struct spdk_nvme_tcp_cmd *capsule_cmd;
1905 	uint32_t error_offset = 0;
1906 	enum spdk_nvme_tcp_term_req_fes fes;
1907 	struct spdk_nvme_cpl *rsp;
1908 
1909 	capsule_cmd = &pdu->hdr.capsule_cmd;
1910 	tcp_req = pdu->req;
1911 	assert(tcp_req != NULL);
1912 
1913 	/* Zero-copy requests don't support ICD */
1914 	assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req));
1915 
1916 	if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
1917 		SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
1918 			    SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
1919 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1920 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
1921 		goto err;
1922 	}
1923 
1924 	rsp = &tcp_req->req.rsp->nvme_cpl;
1925 	if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1926 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1927 	} else {
1928 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1929 	}
1930 
1931 	nvmf_tcp_req_process(ttransport, tcp_req);
1932 
1933 	return;
1934 err:
1935 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1936 }
1937 
1938 static void
1939 nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1940 			     struct spdk_nvmf_tcp_qpair *tqpair,
1941 			     struct nvme_tcp_pdu *pdu)
1942 {
1943 	struct spdk_nvmf_tcp_req *tcp_req;
1944 	uint32_t error_offset = 0;
1945 	enum spdk_nvme_tcp_term_req_fes fes = 0;
1946 	struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
1947 
1948 	h2c_data = &pdu->hdr.h2c_data;
1949 
1950 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
1951 		      tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
1952 
1953 	if (h2c_data->ttag > tqpair->resource_count) {
1954 		SPDK_DEBUGLOG(nvmf_tcp, "ttag %u is larger than allowed %u.\n", h2c_data->ttag,
1955 			      tqpair->resource_count);
1956 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1957 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1958 		goto err;
1959 	}
1960 
1961 	tcp_req = &tqpair->reqs[h2c_data->ttag - 1];
1962 
1963 	if (spdk_unlikely(tcp_req->state != TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER &&
1964 			  tcp_req->state != TCP_REQUEST_STATE_AWAITING_R2T_ACK)) {
1965 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, has error state in %d\n", tcp_req, tqpair,
1966 			      tcp_req->state);
1967 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1968 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1969 		goto err;
1970 	}
1971 
1972 	if (spdk_unlikely(tcp_req->req.cmd->nvme_cmd.cid != h2c_data->cccid)) {
1973 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, expected %u but %u for cccid.\n", tcp_req, tqpair,
1974 			      tcp_req->req.cmd->nvme_cmd.cid, h2c_data->cccid);
1975 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1976 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
1977 		goto err;
1978 	}
1979 
1980 	if (tcp_req->h2c_offset != h2c_data->datao) {
1981 		SPDK_DEBUGLOG(nvmf_tcp,
1982 			      "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
1983 			      tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
1984 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1985 		goto err;
1986 	}
1987 
1988 	if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
1989 		SPDK_DEBUGLOG(nvmf_tcp,
1990 			      "tcp_req(%p), tqpair=%p,  (datao=%u + datal=%u) exceeds requested length=%u\n",
1991 			      tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
1992 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1993 		goto err;
1994 	}
1995 
1996 	pdu->req = tcp_req;
1997 
1998 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
1999 		pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2000 	}
2001 
2002 	nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2003 				  h2c_data->datao, h2c_data->datal);
2004 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2005 	return;
2006 
2007 err:
2008 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2009 }
2010 
2011 static void
2012 nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
2013 			       struct spdk_nvmf_tcp_qpair *tqpair)
2014 {
2015 	struct nvme_tcp_pdu *rsp_pdu;
2016 	struct spdk_nvme_tcp_rsp *capsule_resp;
2017 
2018 	SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
2019 
2020 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
2021 	assert(rsp_pdu != NULL);
2022 
2023 	capsule_resp = &rsp_pdu->hdr.capsule_resp;
2024 	capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
2025 	capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
2026 	capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
2027 	if (tqpair->host_hdgst_enable) {
2028 		capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2029 		capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
2030 	}
2031 
2032 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req);
2033 }
2034 
2035 static void
2036 nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
2037 {
2038 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
2039 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
2040 					     struct spdk_nvmf_tcp_qpair, qpair);
2041 
2042 	assert(tqpair != NULL);
2043 
2044 	if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
2045 		SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
2046 			      tcp_req->req.length);
2047 		_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2048 		return;
2049 	}
2050 
2051 	if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
2052 		nvmf_tcp_request_free(tcp_req);
2053 	} else {
2054 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2055 	}
2056 }
2057 
2058 static void
2059 nvmf_tcp_r2t_complete(void *cb_arg)
2060 {
2061 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
2062 	struct spdk_nvmf_tcp_transport *ttransport;
2063 
2064 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
2065 				      struct spdk_nvmf_tcp_transport, transport);
2066 
2067 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
2068 
2069 	if (tcp_req->h2c_offset == tcp_req->req.length) {
2070 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2071 		nvmf_tcp_req_process(ttransport, tcp_req);
2072 	}
2073 }
2074 
2075 static void
2076 nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
2077 		      struct spdk_nvmf_tcp_req *tcp_req)
2078 {
2079 	struct nvme_tcp_pdu *rsp_pdu;
2080 	struct spdk_nvme_tcp_r2t_hdr *r2t;
2081 
2082 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
2083 	assert(rsp_pdu != NULL);
2084 
2085 	r2t = &rsp_pdu->hdr.r2t;
2086 	r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
2087 	r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
2088 
2089 	if (tqpair->host_hdgst_enable) {
2090 		r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2091 		r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
2092 	}
2093 
2094 	r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2095 	r2t->ttag = tcp_req->ttag;
2096 	r2t->r2to = tcp_req->h2c_offset;
2097 	r2t->r2tl = tcp_req->req.length;
2098 
2099 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
2100 
2101 	SPDK_DEBUGLOG(nvmf_tcp,
2102 		      "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
2103 		      tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
2104 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req);
2105 }
2106 
2107 static void
2108 nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
2109 				 struct spdk_nvmf_tcp_qpair *tqpair,
2110 				 struct nvme_tcp_pdu *pdu)
2111 {
2112 	struct spdk_nvmf_tcp_req *tcp_req;
2113 	struct spdk_nvme_cpl *rsp;
2114 
2115 	tcp_req = pdu->req;
2116 	assert(tcp_req != NULL);
2117 
2118 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2119 
2120 	tcp_req->h2c_offset += pdu->data_len;
2121 
2122 	/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
2123 	 * acknowledged before moving on. */
2124 	if (tcp_req->h2c_offset == tcp_req->req.length &&
2125 	    tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
2126 		/* After receiving all the h2c data, we need to check whether there is
2127 		 * transient transport error */
2128 		rsp = &tcp_req->req.rsp->nvme_cpl;
2129 		if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
2130 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2131 		} else {
2132 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2133 		}
2134 		nvmf_tcp_req_process(ttransport, tcp_req);
2135 	}
2136 }
2137 
2138 static void
2139 nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
2140 {
2141 	SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
2142 		    spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
2143 	if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
2144 	    (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
2145 		SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
2146 			      DGET32(h2c_term_req->fei));
2147 	}
2148 }
2149 
2150 static void
2151 nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2152 				 struct nvme_tcp_pdu *pdu)
2153 {
2154 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
2155 	uint32_t error_offset = 0;
2156 	enum spdk_nvme_tcp_term_req_fes fes;
2157 
2158 	if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
2159 		SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
2160 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2161 		error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
2162 		goto end;
2163 	}
2164 
2165 	/* set the data buffer */
2166 	nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
2167 			      h2c_term_req->common.plen - h2c_term_req->common.hlen);
2168 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2169 	return;
2170 end:
2171 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2172 }
2173 
2174 static void
2175 nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2176 				     struct nvme_tcp_pdu *pdu)
2177 {
2178 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
2179 
2180 	nvmf_tcp_h2c_term_req_dump(h2c_term_req);
2181 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2182 }
2183 
2184 static void
2185 _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2186 {
2187 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2188 			struct spdk_nvmf_tcp_transport, transport);
2189 
2190 	switch (pdu->hdr.common.pdu_type) {
2191 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2192 		nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
2193 		break;
2194 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2195 		nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
2196 		break;
2197 
2198 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2199 		nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
2200 		break;
2201 
2202 	default:
2203 		/* The code should not go to here */
2204 		SPDK_ERRLOG("ERROR pdu type %d\n", pdu->hdr.common.pdu_type);
2205 		break;
2206 	}
2207 	SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
2208 	tqpair->tcp_pdu_working_count--;
2209 }
2210 
2211 static inline void
2212 nvmf_tcp_req_set_cpl(struct spdk_nvmf_tcp_req *treq, int sct, int sc)
2213 {
2214 	treq->req.rsp->nvme_cpl.status.sct = sct;
2215 	treq->req.rsp->nvme_cpl.status.sc = sc;
2216 	treq->req.rsp->nvme_cpl.cid = treq->req.cmd->nvme_cmd.cid;
2217 }
2218 
2219 static void
2220 data_crc32_calc_done(void *cb_arg, int status)
2221 {
2222 	struct nvme_tcp_pdu *pdu = cb_arg;
2223 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
2224 
2225 	/* async crc32 calculation is failed and use direct calculation to check */
2226 	if (spdk_unlikely(status)) {
2227 		SPDK_ERRLOG("Data digest on tqpair=(%p) with pdu=%p failed to be calculated asynchronously\n",
2228 			    tqpair, pdu);
2229 		pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2230 	}
2231 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
2232 	if (!MATCH_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32)) {
2233 		SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2234 		assert(pdu->req != NULL);
2235 		nvmf_tcp_req_set_cpl(pdu->req, SPDK_NVME_SCT_GENERIC,
2236 				     SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR);
2237 	}
2238 	_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2239 }
2240 
2241 static void
2242 nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2243 {
2244 	int rc = 0;
2245 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2246 	tqpair->pdu_in_progress = NULL;
2247 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2248 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2249 	/* check data digest if need */
2250 	if (pdu->ddgst_enable) {
2251 		if (tqpair->qpair.qid != 0 && !pdu->dif_ctx && tqpair->group &&
2252 		    (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)) {
2253 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
2254 						       pdu->data_iovcnt, 0, data_crc32_calc_done, pdu);
2255 			if (spdk_likely(rc == 0)) {
2256 				return;
2257 			}
2258 		} else {
2259 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2260 		}
2261 		data_crc32_calc_done(pdu, rc);
2262 	} else {
2263 		_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2264 	}
2265 }
2266 
2267 static void
2268 nvmf_tcp_send_icresp_complete(void *cb_arg)
2269 {
2270 	struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
2271 
2272 	nvmf_tcp_qpair_set_state(tqpair, NVMF_TCP_QPAIR_STATE_RUNNING);
2273 }
2274 
2275 static void
2276 nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
2277 		      struct spdk_nvmf_tcp_qpair *tqpair,
2278 		      struct nvme_tcp_pdu *pdu)
2279 {
2280 	struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
2281 	struct nvme_tcp_pdu *rsp_pdu;
2282 	struct spdk_nvme_tcp_ic_resp *ic_resp;
2283 	uint32_t error_offset = 0;
2284 	enum spdk_nvme_tcp_term_req_fes fes;
2285 
2286 	/* Only PFV 0 is defined currently */
2287 	if (ic_req->pfv != 0) {
2288 		SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
2289 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2290 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
2291 		goto end;
2292 	}
2293 
2294 	/* This value is 0’s based value in units of dwords should not be larger than SPDK_NVME_TCP_HPDA_MAX */
2295 	if (ic_req->hpda > SPDK_NVME_TCP_HPDA_MAX) {
2296 		SPDK_ERRLOG("ICReq HPDA out of range 0 to 31, got %u\n", ic_req->hpda);
2297 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2298 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, hpda);
2299 		goto end;
2300 	}
2301 
2302 	/* MAXR2T is 0's based */
2303 	SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
2304 
2305 	tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
2306 	if (!tqpair->host_hdgst_enable) {
2307 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2308 	}
2309 
2310 	tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
2311 	if (!tqpair->host_ddgst_enable) {
2312 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2313 	}
2314 
2315 	tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
2316 	/* Now that we know whether digests are enabled, properly size the receive buffer */
2317 	if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
2318 		SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
2319 			     tqpair,
2320 			     tqpair->recv_buf_size);
2321 		/* Not fatal. */
2322 	}
2323 
2324 	tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
2325 	SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
2326 
2327 	rsp_pdu = tqpair->mgmt_pdu;
2328 
2329 	ic_resp = &rsp_pdu->hdr.ic_resp;
2330 	ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
2331 	ic_resp->common.hlen = ic_resp->common.plen =  sizeof(*ic_resp);
2332 	ic_resp->pfv = 0;
2333 	ic_resp->cpda = tqpair->cpda;
2334 	ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
2335 	ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
2336 	ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
2337 
2338 	SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
2339 	SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
2340 
2341 	nvmf_tcp_qpair_set_state(tqpair, NVMF_TCP_QPAIR_STATE_INITIALIZING);
2342 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair);
2343 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2344 	return;
2345 end:
2346 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2347 }
2348 
2349 static void
2350 nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2351 			struct spdk_nvmf_tcp_transport *ttransport)
2352 {
2353 	struct nvme_tcp_pdu *pdu;
2354 	int rc;
2355 	uint32_t crc32c, error_offset = 0;
2356 	enum spdk_nvme_tcp_term_req_fes fes;
2357 
2358 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2359 	pdu = tqpair->pdu_in_progress;
2360 
2361 	SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
2362 		      pdu->hdr.common.pdu_type);
2363 	/* check header digest if needed */
2364 	if (pdu->has_hdgst) {
2365 		SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
2366 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
2367 		rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
2368 		if (rc == 0) {
2369 			SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2370 			fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
2371 			nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2372 			return;
2373 
2374 		}
2375 	}
2376 
2377 	switch (pdu->hdr.common.pdu_type) {
2378 	case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
2379 		nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
2380 		break;
2381 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2382 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
2383 		break;
2384 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2385 		nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
2386 		break;
2387 
2388 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2389 		nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
2390 		break;
2391 
2392 	default:
2393 		SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
2394 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2395 		error_offset = 1;
2396 		nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2397 		break;
2398 	}
2399 }
2400 
2401 static void
2402 nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
2403 {
2404 	struct nvme_tcp_pdu *pdu;
2405 	uint32_t error_offset = 0;
2406 	enum spdk_nvme_tcp_term_req_fes fes;
2407 	uint8_t expected_hlen, pdo;
2408 	bool plen_error = false, pdo_error = false;
2409 
2410 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2411 	pdu = tqpair->pdu_in_progress;
2412 	assert(pdu);
2413 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
2414 		if (tqpair->state != NVMF_TCP_QPAIR_STATE_INVALID) {
2415 			SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
2416 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2417 			goto err;
2418 		}
2419 		expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
2420 		if (pdu->hdr.common.plen != expected_hlen) {
2421 			plen_error = true;
2422 		}
2423 	} else {
2424 		if (tqpair->state != NVMF_TCP_QPAIR_STATE_RUNNING) {
2425 			SPDK_ERRLOG("The TCP/IP connection is not negotiated\n");
2426 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2427 			goto err;
2428 		}
2429 
2430 		switch (pdu->hdr.common.pdu_type) {
2431 		case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2432 			expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
2433 			pdo = pdu->hdr.common.pdo;
2434 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2435 				pdo_error = true;
2436 				break;
2437 			}
2438 
2439 			if (pdu->hdr.common.plen < expected_hlen) {
2440 				plen_error = true;
2441 			}
2442 			break;
2443 		case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2444 			expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
2445 			pdo = pdu->hdr.common.pdo;
2446 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2447 				pdo_error = true;
2448 				break;
2449 			}
2450 			if (pdu->hdr.common.plen < expected_hlen) {
2451 				plen_error = true;
2452 			}
2453 			break;
2454 
2455 		case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2456 			expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
2457 			if ((pdu->hdr.common.plen <= expected_hlen) ||
2458 			    (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
2459 				plen_error = true;
2460 			}
2461 			break;
2462 
2463 		default:
2464 			SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
2465 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2466 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
2467 			goto err;
2468 		}
2469 	}
2470 
2471 	if (pdu->hdr.common.hlen != expected_hlen) {
2472 		SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
2473 			    pdu->hdr.common.pdu_type,
2474 			    expected_hlen, pdu->hdr.common.hlen, tqpair);
2475 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2476 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
2477 		goto err;
2478 	} else if (pdo_error) {
2479 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2480 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
2481 	} else if (plen_error) {
2482 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2483 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2484 		goto err;
2485 	} else {
2486 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2487 		nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
2488 		return;
2489 	}
2490 err:
2491 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2492 }
2493 
2494 static int
2495 nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
2496 {
2497 	int rc = 0;
2498 	struct nvme_tcp_pdu *pdu;
2499 	enum nvme_tcp_pdu_recv_state prev_state;
2500 	uint32_t data_len;
2501 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2502 			struct spdk_nvmf_tcp_transport, transport);
2503 
2504 	/* The loop here is to allow for several back-to-back state changes. */
2505 	do {
2506 		prev_state = tqpair->recv_state;
2507 		SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
2508 
2509 		pdu = tqpair->pdu_in_progress;
2510 		assert(pdu != NULL ||
2511 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY ||
2512 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_QUIESCING ||
2513 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
2514 
2515 		switch (tqpair->recv_state) {
2516 		/* Wait for the common header  */
2517 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
2518 			if (!pdu) {
2519 				pdu = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
2520 				if (spdk_unlikely(!pdu)) {
2521 					return NVME_TCP_PDU_IN_PROGRESS;
2522 				}
2523 				SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
2524 				tqpair->pdu_in_progress = pdu;
2525 				tqpair->tcp_pdu_working_count++;
2526 			}
2527 			memset(pdu, 0, offsetof(struct nvme_tcp_pdu, qpair));
2528 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2529 		/* FALLTHROUGH */
2530 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
2531 			if (spdk_unlikely(tqpair->state == NVMF_TCP_QPAIR_STATE_INITIALIZING)) {
2532 				return rc;
2533 			}
2534 
2535 			rc = nvme_tcp_read_data(tqpair->sock,
2536 						sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
2537 						(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
2538 			if (rc < 0) {
2539 				SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
2540 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2541 				break;
2542 			} else if (rc > 0) {
2543 				pdu->ch_valid_bytes += rc;
2544 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0);
2545 			}
2546 
2547 			if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
2548 				return NVME_TCP_PDU_IN_PROGRESS;
2549 			}
2550 
2551 			/* The command header of this PDU has now been read from the socket. */
2552 			nvmf_tcp_pdu_ch_handle(tqpair);
2553 			break;
2554 		/* Wait for the pdu specific header  */
2555 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
2556 			rc = nvme_tcp_read_data(tqpair->sock,
2557 						pdu->psh_len - pdu->psh_valid_bytes,
2558 						(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
2559 			if (rc < 0) {
2560 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2561 				break;
2562 			} else if (rc > 0) {
2563 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0);
2564 				pdu->psh_valid_bytes += rc;
2565 			}
2566 
2567 			if (pdu->psh_valid_bytes < pdu->psh_len) {
2568 				return NVME_TCP_PDU_IN_PROGRESS;
2569 			}
2570 
2571 			/* All header(ch, psh, head digits) of this PDU has now been read from the socket. */
2572 			nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
2573 			break;
2574 		/* Wait for the req slot */
2575 		case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
2576 			nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
2577 			break;
2578 		/* Wait for the request processing loop to acquire a buffer for the PDU */
2579 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_BUF:
2580 			break;
2581 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
2582 			/* check whether the data is valid, if not we just return */
2583 			if (!pdu->data_len) {
2584 				return NVME_TCP_PDU_IN_PROGRESS;
2585 			}
2586 
2587 			data_len = pdu->data_len;
2588 			/* data digest */
2589 			if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
2590 					  tqpair->host_ddgst_enable)) {
2591 				data_len += SPDK_NVME_TCP_DIGEST_LEN;
2592 				pdu->ddgst_enable = true;
2593 			}
2594 
2595 			rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
2596 			if (rc < 0) {
2597 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2598 				break;
2599 			}
2600 			pdu->rw_offset += rc;
2601 
2602 			if (pdu->rw_offset < data_len) {
2603 				return NVME_TCP_PDU_IN_PROGRESS;
2604 			}
2605 
2606 			/* Generate and insert DIF to whole data block received if DIF is enabled */
2607 			if (spdk_unlikely(pdu->dif_ctx != NULL) &&
2608 			    spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt, 0, data_len,
2609 						     pdu->dif_ctx) != 0) {
2610 				SPDK_ERRLOG("DIF generate failed\n");
2611 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2612 				break;
2613 			}
2614 
2615 			/* All of this PDU has now been read from the socket. */
2616 			nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2617 			break;
2618 		case NVME_TCP_PDU_RECV_STATE_QUIESCING:
2619 			if (tqpair->tcp_pdu_working_count != 0) {
2620 				return NVME_TCP_PDU_IN_PROGRESS;
2621 			}
2622 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
2623 			break;
2624 		case NVME_TCP_PDU_RECV_STATE_ERROR:
2625 			if (spdk_sock_is_connected(tqpair->sock) && tqpair->wait_terminate) {
2626 				return NVME_TCP_PDU_IN_PROGRESS;
2627 			}
2628 			return NVME_TCP_PDU_FATAL;
2629 		default:
2630 			SPDK_ERRLOG("The state(%d) is invalid\n", tqpair->recv_state);
2631 			abort();
2632 			break;
2633 		}
2634 	} while (tqpair->recv_state != prev_state);
2635 
2636 	return rc;
2637 }
2638 
2639 static inline void *
2640 nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list,
2641 			 struct spdk_nvmf_tcp_req *tcp_req)
2642 {
2643 	struct spdk_nvmf_tcp_control_msg *msg;
2644 
2645 	assert(list);
2646 
2647 	msg = STAILQ_FIRST(&list->free_msgs);
2648 	if (!msg) {
2649 		SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
2650 		STAILQ_INSERT_TAIL(&list->waiting_for_msg_reqs, tcp_req, control_msg_link);
2651 		return NULL;
2652 	}
2653 	STAILQ_REMOVE_HEAD(&list->free_msgs, link);
2654 	return msg;
2655 }
2656 
2657 static inline void
2658 nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
2659 {
2660 	struct spdk_nvmf_tcp_control_msg *msg = _msg;
2661 	struct spdk_nvmf_tcp_req *tcp_req;
2662 	struct spdk_nvmf_tcp_transport *ttransport;
2663 
2664 	assert(list);
2665 	STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
2666 	if (!STAILQ_EMPTY(&list->waiting_for_msg_reqs)) {
2667 		tcp_req = STAILQ_FIRST(&list->waiting_for_msg_reqs);
2668 		STAILQ_REMOVE_HEAD(&list->waiting_for_msg_reqs, control_msg_link);
2669 		ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
2670 					      struct spdk_nvmf_tcp_transport, transport);
2671 		nvmf_tcp_req_process(ttransport, tcp_req);
2672 	}
2673 }
2674 
2675 static void
2676 nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
2677 		       struct spdk_nvmf_transport *transport,
2678 		       struct spdk_nvmf_transport_poll_group *group)
2679 {
2680 	struct spdk_nvmf_request		*req = &tcp_req->req;
2681 	struct spdk_nvme_cmd			*cmd;
2682 	struct spdk_nvme_sgl_descriptor		*sgl;
2683 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2684 	enum spdk_nvme_tcp_term_req_fes		fes;
2685 	struct nvme_tcp_pdu			*pdu;
2686 	struct spdk_nvmf_tcp_qpair		*tqpair;
2687 	uint32_t				length, error_offset = 0;
2688 
2689 	cmd = &req->cmd->nvme_cmd;
2690 	sgl = &cmd->dptr.sgl1;
2691 
2692 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
2693 	    sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
2694 		/* get request length from sgl */
2695 		length = sgl->unkeyed.length;
2696 		if (spdk_unlikely(length > transport->opts.max_io_size)) {
2697 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
2698 				    length, transport->opts.max_io_size);
2699 			fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2700 			goto fatal_err;
2701 		}
2702 
2703 		/* fill request length and populate iovs */
2704 		req->length = length;
2705 
2706 		SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
2707 
2708 		if (spdk_unlikely(req->dif_enabled)) {
2709 			req->dif.orig_length = length;
2710 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2711 			req->dif.elba_length = length;
2712 		}
2713 
2714 		if (nvmf_ctrlr_use_zcopy(req)) {
2715 			SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req);
2716 			req->data_from_pool = false;
2717 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
2718 			return;
2719 		}
2720 
2721 		if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
2722 			/* No available buffers. Queue this request up. */
2723 			SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
2724 				      tcp_req);
2725 			return;
2726 		}
2727 
2728 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
2729 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
2730 			      tcp_req, req->iovcnt, req->iov[0].iov_base);
2731 
2732 		return;
2733 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
2734 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
2735 		uint64_t offset = sgl->address;
2736 		uint32_t max_len = transport->opts.in_capsule_data_size;
2737 
2738 		assert(tcp_req->has_in_capsule_data);
2739 		/* Capsule Cmd with In-capsule Data should get data length from pdu header */
2740 		tqpair = tcp_req->pdu->qpair;
2741 		/* receiving pdu is not same with the pdu in tcp_req */
2742 		pdu = tqpair->pdu_in_progress;
2743 		length = pdu->hdr.common.plen - pdu->psh_len - sizeof(struct spdk_nvme_tcp_common_pdu_hdr);
2744 		if (tqpair->host_ddgst_enable) {
2745 			length -= SPDK_NVME_TCP_DIGEST_LEN;
2746 		}
2747 		/* This error is not defined in NVMe/TCP spec, take this error as fatal error */
2748 		if (spdk_unlikely(length != sgl->unkeyed.length)) {
2749 			SPDK_ERRLOG("In-Capsule Data length 0x%x is not equal to SGL data length 0x%x\n",
2750 				    length, sgl->unkeyed.length);
2751 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2752 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2753 			goto fatal_err;
2754 		}
2755 
2756 		SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
2757 			      offset, length);
2758 
2759 		/* The NVMe/TCP transport does not use ICDOFF to control the in-capsule data offset. ICDOFF should be '0' */
2760 		if (spdk_unlikely(offset != 0)) {
2761 			/* Not defined fatal error in NVMe/TCP spec, handle this error as a fatal error */
2762 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " should be ZERO in NVMe/TCP\n", offset);
2763 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2764 			error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.address);
2765 			goto fatal_err;
2766 		}
2767 
2768 		if (spdk_unlikely(length > max_len)) {
2769 			/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
2770 			if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
2771 			    (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
2772 
2773 				/* Get a buffer from dedicated list */
2774 				SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
2775 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2776 				assert(tgroup->control_msg_list);
2777 				req->iov[0].iov_base = nvmf_tcp_control_msg_get(tgroup->control_msg_list, tcp_req);
2778 				if (!req->iov[0].iov_base) {
2779 					/* No available buffers. Queue this request up. */
2780 					SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
2781 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_BUF);
2782 					return;
2783 				}
2784 			} else {
2785 				SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
2786 					    length, max_len);
2787 				fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2788 				goto fatal_err;
2789 			}
2790 		} else {
2791 			req->iov[0].iov_base = tcp_req->buf;
2792 		}
2793 
2794 		req->length = length;
2795 		req->data_from_pool = false;
2796 
2797 		if (spdk_unlikely(req->dif_enabled)) {
2798 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2799 			req->dif.elba_length = length;
2800 		}
2801 
2802 		req->iov[0].iov_len = length;
2803 		req->iovcnt = 1;
2804 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
2805 
2806 		return;
2807 	}
2808 	/* If we want to handle the problem here, then we can't skip the following data segment.
2809 	 * Because this function runs before reading data part, now handle all errors as fatal errors. */
2810 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2811 		    sgl->generic.type, sgl->generic.subtype);
2812 	fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2813 	error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.generic);
2814 fatal_err:
2815 	nvmf_tcp_send_c2h_term_req(tcp_req->pdu->qpair, tcp_req->pdu, fes, error_offset);
2816 }
2817 
2818 static inline enum spdk_nvme_media_error_status_code
2819 nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
2820 	enum spdk_nvme_media_error_status_code result;
2821 
2822 	switch (err_type)
2823 	{
2824 	case SPDK_DIF_REFTAG_ERROR:
2825 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
2826 		break;
2827 	case SPDK_DIF_APPTAG_ERROR:
2828 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
2829 		break;
2830 	case SPDK_DIF_GUARD_ERROR:
2831 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
2832 		break;
2833 	default:
2834 		SPDK_UNREACHABLE();
2835 		break;
2836 	}
2837 
2838 	return result;
2839 }
2840 
2841 static void
2842 _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2843 			struct spdk_nvmf_tcp_req *tcp_req)
2844 {
2845 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
2846 				tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
2847 	struct nvme_tcp_pdu *rsp_pdu;
2848 	struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
2849 	uint32_t plen, pdo, alignment;
2850 	int rc;
2851 
2852 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2853 
2854 	rsp_pdu = tcp_req->pdu;
2855 	assert(rsp_pdu != NULL);
2856 
2857 	c2h_data = &rsp_pdu->hdr.c2h_data;
2858 	c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
2859 	plen = c2h_data->common.hlen = sizeof(*c2h_data);
2860 
2861 	if (tqpair->host_hdgst_enable) {
2862 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2863 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2864 	}
2865 
2866 	/* set the psh */
2867 	c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2868 	c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
2869 	c2h_data->datao = tcp_req->pdu->rw_offset;
2870 
2871 	/* set the padding */
2872 	rsp_pdu->padding_len = 0;
2873 	pdo = plen;
2874 	if (tqpair->cpda) {
2875 		alignment = (tqpair->cpda + 1) << 2;
2876 		if (plen % alignment != 0) {
2877 			pdo = (plen + alignment) / alignment * alignment;
2878 			rsp_pdu->padding_len = pdo - plen;
2879 			plen = pdo;
2880 		}
2881 	}
2882 
2883 	c2h_data->common.pdo = pdo;
2884 	plen += c2h_data->datal;
2885 	if (tqpair->host_ddgst_enable) {
2886 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
2887 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2888 	}
2889 
2890 	c2h_data->common.plen = plen;
2891 
2892 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2893 		rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2894 	}
2895 
2896 	nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2897 				  c2h_data->datao, c2h_data->datal);
2898 
2899 
2900 	c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
2901 	/* Need to send the capsule response if response is not all 0 */
2902 	if (ttransport->tcp_opts.c2h_success &&
2903 	    tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
2904 		c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
2905 	}
2906 
2907 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2908 		struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
2909 		struct spdk_dif_error err_blk = {};
2910 		uint32_t mapped_length = 0;
2911 		uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
2912 		uint32_t ddgst_len = 0;
2913 
2914 		if (tqpair->host_ddgst_enable) {
2915 			/* Data digest consumes additional iov entry */
2916 			available_iovs--;
2917 			/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
2918 			ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
2919 			c2h_data->common.plen -= ddgst_len;
2920 		}
2921 		/* Temp call to estimate if data can be described by limited number of iovs.
2922 		 * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
2923 		nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
2924 				    false, &mapped_length);
2925 
2926 		if (mapped_length != c2h_data->common.plen) {
2927 			c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
2928 			SPDK_DEBUGLOG(nvmf_tcp,
2929 				      "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
2930 				      c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
2931 			c2h_data->common.plen = mapped_length;
2932 
2933 			/* Rebuild pdu->data_iov since data length is changed */
2934 			nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
2935 						  c2h_data->datal);
2936 
2937 			c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
2938 						    SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
2939 		}
2940 
2941 		c2h_data->common.plen += ddgst_len;
2942 
2943 		assert(rsp_pdu->rw_offset <= tcp_req->req.length);
2944 
2945 		rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
2946 					    0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
2947 		if (rc != 0) {
2948 			SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
2949 				    err_blk.err_type, err_blk.err_offset);
2950 			rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2951 			rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
2952 			nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2953 			return;
2954 		}
2955 	}
2956 
2957 	rsp_pdu->rw_offset += c2h_data->datal;
2958 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
2959 }
2960 
2961 static void
2962 nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2963 		       struct spdk_nvmf_tcp_req *tcp_req)
2964 {
2965 	nvmf_tcp_req_pdu_init(tcp_req);
2966 	_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2967 }
2968 
2969 static int
2970 request_transfer_out(struct spdk_nvmf_request *req)
2971 {
2972 	struct spdk_nvmf_tcp_req	*tcp_req;
2973 	struct spdk_nvmf_qpair		*qpair;
2974 	struct spdk_nvmf_tcp_qpair	*tqpair;
2975 	struct spdk_nvme_cpl		*rsp;
2976 
2977 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2978 
2979 	qpair = req->qpair;
2980 	rsp = &req->rsp->nvme_cpl;
2981 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
2982 
2983 	/* Advance our sq_head pointer */
2984 	if (qpair->sq_head == qpair->sq_head_max) {
2985 		qpair->sq_head = 0;
2986 	} else {
2987 		qpair->sq_head++;
2988 	}
2989 	rsp->sqhd = qpair->sq_head;
2990 
2991 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2992 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
2993 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2994 		nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2995 	} else {
2996 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2997 	}
2998 
2999 	return 0;
3000 }
3001 
3002 static void
3003 nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport,
3004 			      struct spdk_nvmf_tcp_qpair *tqpair,
3005 			      struct spdk_nvmf_tcp_req *tcp_req)
3006 {
3007 	enum spdk_nvme_cmd_fuse last, next;
3008 
3009 	last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
3010 	next = tcp_req->cmd.fuse;
3011 
3012 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
3013 
3014 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
3015 		return;
3016 	}
3017 
3018 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
3019 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
3020 			/* This is a valid pair of fused commands.  Point them at each other
3021 			 * so they can be submitted consecutively once ready to be executed.
3022 			 */
3023 			tqpair->fused_first->fused_pair = tcp_req;
3024 			tcp_req->fused_pair = tqpair->fused_first;
3025 			tqpair->fused_first = NULL;
3026 			return;
3027 		} else {
3028 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
3029 			tqpair->fused_first->fused_failed = true;
3030 
3031 			/*
3032 			 * If the last req is in READY_TO_EXECUTE state, then call
3033 			 * nvmf_tcp_req_process(), otherwise nothing else will kick it.
3034 			 */
3035 			if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3036 				nvmf_tcp_req_process(ttransport, tqpair->fused_first);
3037 			}
3038 
3039 			tqpair->fused_first = NULL;
3040 		}
3041 	}
3042 
3043 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
3044 		/* Set tqpair->fused_first here so that we know to check that the next request
3045 		 * is a SECOND (and to fail this one if it isn't).
3046 		 */
3047 		tqpair->fused_first = tcp_req;
3048 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
3049 		/* Mark this req failed since it is a SECOND and the last one was not a FIRST. */
3050 		tcp_req->fused_failed = true;
3051 	}
3052 }
3053 
3054 static bool
3055 nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
3056 		     struct spdk_nvmf_tcp_req *tcp_req)
3057 {
3058 	struct spdk_nvmf_tcp_qpair		*tqpair;
3059 	uint32_t				plen;
3060 	struct nvme_tcp_pdu			*pdu;
3061 	enum spdk_nvmf_tcp_req_state		prev_state;
3062 	bool					progress = false;
3063 	struct spdk_nvmf_transport		*transport = &ttransport->transport;
3064 	struct spdk_nvmf_transport_poll_group	*group;
3065 	struct spdk_nvmf_tcp_poll_group		*tgroup;
3066 
3067 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
3068 	group = &tqpair->group->group;
3069 	assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
3070 
3071 	/* If the qpair is not active, we need to abort the outstanding requests. */
3072 	if (!spdk_nvmf_qpair_is_active(&tqpair->qpair)) {
3073 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
3074 			nvmf_tcp_request_get_buffers_abort(tcp_req);
3075 		}
3076 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3077 	}
3078 
3079 	/* The loop here is to allow for several back-to-back state changes. */
3080 	do {
3081 		prev_state = tcp_req->state;
3082 
3083 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
3084 			      tqpair);
3085 
3086 		switch (tcp_req->state) {
3087 		case TCP_REQUEST_STATE_FREE:
3088 			/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
3089 			 * to escape this state. */
3090 			break;
3091 		case TCP_REQUEST_STATE_NEW:
3092 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req,
3093 					  tqpair->qpair.queue_depth);
3094 
3095 			/* copy the cmd from the receive pdu */
3096 			tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
3097 
3098 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
3099 				tcp_req->req.dif_enabled = true;
3100 				tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
3101 			}
3102 
3103 			nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req);
3104 
3105 			/* The next state transition depends on the data transfer needs of this request. */
3106 			tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
3107 
3108 			if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
3109 				nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_INVALID_OPCODE);
3110 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
3111 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3112 				SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
3113 				break;
3114 			}
3115 
3116 			/* If no data to transfer, ready to execute. */
3117 			if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
3118 				/* Reset the tqpair receiving pdu state */
3119 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
3120 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
3121 				break;
3122 			}
3123 
3124 			pdu = tqpair->pdu_in_progress;
3125 			plen = pdu->hdr.common.hlen;
3126 			if (tqpair->host_hdgst_enable) {
3127 				plen += SPDK_NVME_TCP_DIGEST_LEN;
3128 			}
3129 			if (pdu->hdr.common.plen != plen) {
3130 				tcp_req->has_in_capsule_data = true;
3131 			} else {
3132 				/* Data is transmitted by C2H PDUs */
3133 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
3134 			}
3135 
3136 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
3137 			break;
3138 		case TCP_REQUEST_STATE_NEED_BUFFER:
3139 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.trace_id, 0,
3140 					  (uintptr_t)tcp_req);
3141 
3142 			assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
3143 
3144 			/* Try to get a data buffer */
3145 			nvmf_tcp_req_parse_sgl(tcp_req, transport, group);
3146 			break;
3147 		case TCP_REQUEST_STATE_HAVE_BUFFER:
3148 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_HAVE_BUFFER, tqpair->qpair.trace_id, 0,
3149 					  (uintptr_t)tcp_req);
3150 			/* Get a zcopy buffer if the request can be serviced through zcopy */
3151 			if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
3152 				if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3153 					assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
3154 					tcp_req->req.length = tcp_req->req.dif.elba_length;
3155 				}
3156 
3157 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START);
3158 				spdk_nvmf_request_zcopy_start(&tcp_req->req);
3159 				break;
3160 			}
3161 
3162 			assert(tcp_req->req.iovcnt > 0);
3163 
3164 			/* If data is transferring from host to controller, we need to do a transfer from the host. */
3165 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
3166 				if (tcp_req->req.data_from_pool) {
3167 					SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
3168 					nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
3169 				} else {
3170 					struct nvme_tcp_pdu *pdu;
3171 
3172 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
3173 
3174 					pdu = tqpair->pdu_in_progress;
3175 					SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
3176 						      tqpair);
3177 					/* No need to send r2t, contained in the capsuled data */
3178 					nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
3179 								  0, tcp_req->req.length);
3180 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
3181 				}
3182 				break;
3183 			}
3184 
3185 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
3186 			break;
3187 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3188 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.trace_id, 0,
3189 					  (uintptr_t)tcp_req);
3190 			/* Some external code must kick a request into  TCP_REQUEST_STATE_ZCOPY_START_COMPLETED
3191 			 * to escape this state. */
3192 			break;
3193 		case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
3194 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.trace_id, 0,
3195 					  (uintptr_t)tcp_req);
3196 			if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) {
3197 				SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n",
3198 					      tcp_req, tqpair);
3199 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3200 				break;
3201 			}
3202 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
3203 				SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
3204 				nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
3205 			} else {
3206 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3207 			}
3208 			break;
3209 		case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3210 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.trace_id, 0,
3211 					  (uintptr_t)tcp_req);
3212 			/* The R2T completion or the h2c data incoming will kick it out of this state. */
3213 			break;
3214 		case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3215 
3216 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.trace_id,
3217 					  0, (uintptr_t)tcp_req);
3218 			/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
3219 			 * to escape this state. */
3220 			break;
3221 		case TCP_REQUEST_STATE_READY_TO_EXECUTE:
3222 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.trace_id, 0,
3223 					  (uintptr_t)tcp_req);
3224 
3225 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3226 				assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
3227 				tcp_req->req.length = tcp_req->req.dif.elba_length;
3228 			}
3229 
3230 			if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
3231 				if (tcp_req->fused_failed) {
3232 					/* This request failed FUSED semantics.  Fail it immediately, without
3233 					 * even sending it to the target layer.
3234 					 */
3235 					nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_MISSING_FUSED);
3236 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3237 					break;
3238 				}
3239 
3240 				if (tcp_req->fused_pair == NULL ||
3241 				    tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3242 					/* This request is ready to execute, but either we don't know yet if it's
3243 					 * valid - i.e. this is a FIRST but we haven't received the next request yet),
3244 					 * or the other request of this fused pair isn't ready to execute. So
3245 					 * break here and this request will get processed later either when the
3246 					 * other request is ready or we find that this request isn't valid.
3247 					 */
3248 					break;
3249 				}
3250 			}
3251 
3252 			if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
3253 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
3254 				/* If we get to this point, and this request is a fused command, we know that
3255 				 * it is part of a valid sequence (FIRST followed by a SECOND) and that both
3256 				 * requests are READY_TO_EXECUTE.  So call spdk_nvmf_request_exec() both on this
3257 				 * request, and the other request of the fused pair, in the correct order.
3258 				 * Also clear the ->fused_pair pointers on both requests, since after this point
3259 				 * we no longer need to maintain the relationship between these two requests.
3260 				 */
3261 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
3262 					assert(tcp_req->fused_pair != NULL);
3263 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3264 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3265 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3266 					tcp_req->fused_pair->fused_pair = NULL;
3267 					tcp_req->fused_pair = NULL;
3268 				}
3269 				spdk_nvmf_request_exec(&tcp_req->req);
3270 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
3271 					assert(tcp_req->fused_pair != NULL);
3272 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3273 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3274 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3275 					tcp_req->fused_pair->fused_pair = NULL;
3276 					tcp_req->fused_pair = NULL;
3277 				}
3278 			} else {
3279 				/* For zero-copy, only requests with data coming from host to the
3280 				 * controller can end up here. */
3281 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
3282 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT);
3283 				spdk_nvmf_request_zcopy_end(&tcp_req->req, true);
3284 			}
3285 
3286 			break;
3287 		case TCP_REQUEST_STATE_EXECUTING:
3288 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
3289 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3290 			 * to escape this state. */
3291 			break;
3292 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3293 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.trace_id, 0,
3294 					  (uintptr_t)tcp_req);
3295 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3296 			 * to escape this state. */
3297 			break;
3298 		case TCP_REQUEST_STATE_EXECUTED:
3299 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
3300 
3301 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3302 				tcp_req->req.length = tcp_req->req.dif.orig_length;
3303 			}
3304 
3305 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3306 			break;
3307 		case TCP_REQUEST_STATE_READY_TO_COMPLETE:
3308 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.trace_id, 0,
3309 					  (uintptr_t)tcp_req);
3310 			if (request_transfer_out(&tcp_req->req) != 0) {
3311 				assert(0); /* No good way to handle this currently */
3312 			}
3313 			break;
3314 		case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
3315 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.trace_id,
3316 					  0, (uintptr_t)tcp_req);
3317 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3318 			 * to escape this state. */
3319 			break;
3320 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3321 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.trace_id, 0,
3322 					  (uintptr_t)tcp_req);
3323 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3324 			 * to escape this state. */
3325 			break;
3326 		case TCP_REQUEST_STATE_COMPLETED:
3327 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req,
3328 					  tqpair->qpair.queue_depth);
3329 			/* If there's an outstanding PDU sent to the host, the request is completed
3330 			 * due to the qpair being disconnected.  We must delay the completion until
3331 			 * that write is done to avoid freeing the request twice. */
3332 			if (spdk_unlikely(tcp_req->pdu_in_use)) {
3333 				SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding "
3334 					      "write on req=%p\n", tcp_req);
3335 				/* This can only happen for zcopy requests */
3336 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3337 				assert(!spdk_nvmf_qpair_is_active(&tqpair->qpair));
3338 				break;
3339 			}
3340 
3341 			if (tcp_req->req.data_from_pool) {
3342 				spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
3343 			} else if (spdk_unlikely(tcp_req->has_in_capsule_data &&
3344 						 (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
3345 						  tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
3346 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3347 				assert(tgroup->control_msg_list);
3348 				SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
3349 				nvmf_tcp_control_msg_put(tgroup->control_msg_list,
3350 							 tcp_req->req.iov[0].iov_base);
3351 			} else if (tcp_req->req.zcopy_bdev_io != NULL) {
3352 				/* If the request has an unreleased zcopy bdev_io, it's either a
3353 				 * read, a failed write, or the qpair is being disconnected */
3354 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3355 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
3356 				       spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) ||
3357 				       !spdk_nvmf_qpair_is_active(&tqpair->qpair));
3358 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE);
3359 				spdk_nvmf_request_zcopy_end(&tcp_req->req, false);
3360 				break;
3361 			}
3362 			tcp_req->req.length = 0;
3363 			tcp_req->req.iovcnt = 0;
3364 			tcp_req->fused_failed = false;
3365 			if (tcp_req->fused_pair) {
3366 				/* This req was part of a valid fused pair, but failed before it got to
3367 				 * READ_TO_EXECUTE state.  This means we need to fail the other request
3368 				 * in the pair, because it is no longer part of a valid pair.  If the pair
3369 				 * already reached READY_TO_EXECUTE state, we need to kick it.
3370 				 */
3371 				tcp_req->fused_pair->fused_failed = true;
3372 				if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3373 					nvmf_tcp_req_process(ttransport, tcp_req->fused_pair);
3374 				}
3375 				tcp_req->fused_pair = NULL;
3376 			}
3377 
3378 			nvmf_tcp_req_put(tqpair, tcp_req);
3379 			break;
3380 		case TCP_REQUEST_NUM_STATES:
3381 		default:
3382 			assert(0);
3383 			break;
3384 		}
3385 
3386 		if (tcp_req->state != prev_state) {
3387 			progress = true;
3388 		}
3389 	} while (tcp_req->state != prev_state);
3390 
3391 	return progress;
3392 }
3393 
3394 static void
3395 tcp_sock_cb(void *arg)
3396 {
3397 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
3398 	int rc;
3399 
3400 	assert(tqpair != NULL);
3401 	rc = nvmf_tcp_sock_process(tqpair);
3402 
3403 	/* If there was a new socket error, disconnect */
3404 	if (rc < 0) {
3405 		nvmf_tcp_qpair_disconnect(tqpair);
3406 	}
3407 }
3408 
3409 static void
3410 nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
3411 {
3412 	tcp_sock_cb(arg);
3413 }
3414 
3415 static int
3416 nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3417 			struct spdk_nvmf_qpair *qpair)
3418 {
3419 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3420 	struct spdk_nvmf_tcp_qpair	*tqpair;
3421 	int				rc;
3422 
3423 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3424 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3425 
3426 	rc =  nvmf_tcp_qpair_sock_init(tqpair);
3427 	if (rc != 0) {
3428 		SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
3429 		return -1;
3430 	}
3431 
3432 	rc = nvmf_tcp_qpair_init(&tqpair->qpair);
3433 	if (rc < 0) {
3434 		SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
3435 		return -1;
3436 	}
3437 
3438 	rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
3439 	if (rc < 0) {
3440 		SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
3441 		return -1;
3442 	}
3443 
3444 	rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
3445 				      nvmf_tcp_sock_cb, tqpair);
3446 	if (rc != 0) {
3447 		SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
3448 			    spdk_strerror(errno), errno);
3449 		return -1;
3450 	}
3451 
3452 	tqpair->group = tgroup;
3453 	nvmf_tcp_qpair_set_state(tqpair, NVMF_TCP_QPAIR_STATE_INVALID);
3454 	TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
3455 
3456 	return 0;
3457 }
3458 
3459 static int
3460 nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3461 			   struct spdk_nvmf_qpair *qpair)
3462 {
3463 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3464 	struct spdk_nvmf_tcp_qpair		*tqpair;
3465 	int				rc;
3466 
3467 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3468 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3469 
3470 	assert(tqpair->group == tgroup);
3471 
3472 	SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
3473 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
3474 		/* Change the state to move the qpair from the await_req list to the main list
3475 		 * and prevent adding it again later by nvmf_tcp_qpair_set_recv_state() */
3476 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
3477 	}
3478 	TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
3479 
3480 	/* Try to force out any pending writes */
3481 	spdk_sock_flush(tqpair->sock);
3482 
3483 	rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
3484 	if (rc != 0) {
3485 		SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
3486 			    spdk_strerror(errno), errno);
3487 	}
3488 
3489 	return rc;
3490 }
3491 
3492 static int
3493 nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
3494 {
3495 	struct spdk_nvmf_tcp_transport *ttransport;
3496 	struct spdk_nvmf_tcp_req *tcp_req;
3497 	struct spdk_nvmf_tcp_qpair *tqpair;
3498 
3499 	ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3500 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3501 	tqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_tcp_qpair, qpair);
3502 
3503 	switch (tcp_req->state) {
3504 	case TCP_REQUEST_STATE_EXECUTING:
3505 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3506 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3507 		break;
3508 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3509 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED);
3510 		break;
3511 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3512 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3513 		/* In the interrupt mode it's possible that all responses are already written out over
3514 		 * the socket but zero-copy buffers are still not released. In that case there won't be
3515 		 * any event to trigger further socket processing. Send msg to a thread to avoid deadlock.
3516 		 */
3517 		if (spdk_unlikely(spdk_interrupt_mode_is_enabled() &&
3518 				  tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ &&
3519 				  spdk_nvmf_qpair_is_active(&tqpair->qpair))) {
3520 			spdk_thread_send_msg(spdk_get_thread(), tcp_sock_cb, tqpair);
3521 		}
3522 		break;
3523 	default:
3524 		SPDK_ERRLOG("Unexpected request state %d (cntlid:%d, qid:%d)\n",
3525 			    tcp_req->state, req->qpair->ctrlr->cntlid, req->qpair->qid);
3526 		assert(0 && "Unexpected request state");
3527 		break;
3528 	}
3529 
3530 	nvmf_tcp_req_process(ttransport, tcp_req);
3531 
3532 	return 0;
3533 }
3534 
3535 static void
3536 nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
3537 		     spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3538 {
3539 	struct spdk_nvmf_tcp_qpair *tqpair;
3540 
3541 	SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
3542 
3543 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3544 
3545 	assert(tqpair->fini_cb_fn == NULL);
3546 	tqpair->fini_cb_fn = cb_fn;
3547 	tqpair->fini_cb_arg = cb_arg;
3548 
3549 	nvmf_tcp_qpair_set_state(tqpair, NVMF_TCP_QPAIR_STATE_EXITED);
3550 	nvmf_tcp_qpair_destroy(tqpair);
3551 }
3552 
3553 static int
3554 nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3555 {
3556 	struct spdk_nvmf_tcp_poll_group *tgroup;
3557 	int num_events, rc = 0, rc2;
3558 	struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp;
3559 
3560 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3561 
3562 	if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) {
3563 		return 0;
3564 	}
3565 
3566 	num_events = spdk_sock_group_poll(tgroup->sock_group);
3567 	if (spdk_unlikely(num_events < 0)) {
3568 		SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
3569 	}
3570 
3571 	TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) {
3572 		rc2 = nvmf_tcp_sock_process(tqpair);
3573 
3574 		/* If there was a new socket error, disconnect */
3575 		if (spdk_unlikely(rc2 < 0)) {
3576 			nvmf_tcp_qpair_disconnect(tqpair);
3577 			if (rc == 0) {
3578 				rc = rc2;
3579 			}
3580 		}
3581 	}
3582 
3583 	return rc == 0 ? num_events : rc;
3584 }
3585 
3586 static int
3587 nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
3588 			struct spdk_nvme_transport_id *trid, bool peer)
3589 {
3590 	struct spdk_nvmf_tcp_qpair     *tqpair;
3591 	uint16_t			port;
3592 
3593 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3594 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
3595 
3596 	if (peer) {
3597 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
3598 		port = tqpair->initiator_port;
3599 	} else {
3600 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
3601 		port = tqpair->target_port;
3602 	}
3603 
3604 	if (spdk_sock_is_ipv4(tqpair->sock)) {
3605 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3606 	} else if (spdk_sock_is_ipv6(tqpair->sock)) {
3607 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3608 	} else {
3609 		return -1;
3610 	}
3611 
3612 	snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
3613 	return 0;
3614 }
3615 
3616 static int
3617 nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3618 			      struct spdk_nvme_transport_id *trid)
3619 {
3620 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3621 }
3622 
3623 static int
3624 nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3625 			     struct spdk_nvme_transport_id *trid)
3626 {
3627 	return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
3628 }
3629 
3630 static int
3631 nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3632 			       struct spdk_nvme_transport_id *trid)
3633 {
3634 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3635 }
3636 
3637 static void
3638 nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
3639 			      struct spdk_nvmf_tcp_req *tcp_req_to_abort)
3640 {
3641 	nvmf_tcp_req_set_cpl(tcp_req_to_abort, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_BY_REQUEST);
3642 	nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3643 
3644 	req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
3645 }
3646 
3647 static int
3648 _nvmf_tcp_qpair_abort_request(void *ctx)
3649 {
3650 	struct spdk_nvmf_request *req = ctx;
3651 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
3652 			struct spdk_nvmf_tcp_req, req);
3653 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
3654 					     struct spdk_nvmf_tcp_qpair, qpair);
3655 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
3656 			struct spdk_nvmf_tcp_transport, transport);
3657 	int rc;
3658 
3659 	spdk_poller_unregister(&req->poller);
3660 
3661 	switch (tcp_req_to_abort->state) {
3662 	case TCP_REQUEST_STATE_EXECUTING:
3663 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3664 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3665 		rc = nvmf_ctrlr_abort_request(req);
3666 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
3667 			return SPDK_POLLER_BUSY;
3668 		}
3669 		break;
3670 
3671 	case TCP_REQUEST_STATE_NEED_BUFFER:
3672 		nvmf_tcp_request_get_buffers_abort(tcp_req_to_abort);
3673 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3674 		nvmf_tcp_req_process(ttransport, tcp_req_to_abort);
3675 		break;
3676 
3677 	case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3678 	case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3679 		if (spdk_get_ticks() < req->timeout_tsc) {
3680 			req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
3681 			return SPDK_POLLER_BUSY;
3682 		}
3683 		break;
3684 
3685 	default:
3686 		/* Requests in other states are either un-abortable (e.g.
3687 		 * TRANSFERRING_CONTROLLER_TO_HOST) or should never end up here, as they're
3688 		 * immediately transitioned to other states in nvmf_tcp_req_process() (e.g.
3689 		 * READY_TO_EXECUTE).  But it is fine to end up here, as we'll simply complete the
3690 		 * abort request with the bit0 of dword0 set (command not aborted).
3691 		 */
3692 		break;
3693 	}
3694 
3695 	spdk_nvmf_request_complete(req);
3696 	return SPDK_POLLER_BUSY;
3697 }
3698 
3699 static void
3700 nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
3701 			     struct spdk_nvmf_request *req)
3702 {
3703 	struct spdk_nvmf_tcp_qpair *tqpair;
3704 	struct spdk_nvmf_tcp_transport *ttransport;
3705 	struct spdk_nvmf_transport *transport;
3706 	uint16_t cid;
3707 	uint32_t i;
3708 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
3709 
3710 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3711 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3712 	transport = &ttransport->transport;
3713 
3714 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
3715 
3716 	for (i = 0; i < tqpair->resource_count; i++) {
3717 		if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
3718 		    tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
3719 			tcp_req_to_abort = &tqpair->reqs[i];
3720 			break;
3721 		}
3722 	}
3723 
3724 	spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, tqpair->qpair.trace_id, 0, (uintptr_t)req);
3725 
3726 	if (tcp_req_to_abort == NULL) {
3727 		spdk_nvmf_request_complete(req);
3728 		return;
3729 	}
3730 
3731 	req->req_to_abort = &tcp_req_to_abort->req;
3732 	req->timeout_tsc = spdk_get_ticks() +
3733 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
3734 	req->poller = NULL;
3735 
3736 	_nvmf_tcp_qpair_abort_request(req);
3737 }
3738 
3739 struct tcp_subsystem_add_host_opts {
3740 	char *psk;
3741 };
3742 
3743 static const struct spdk_json_object_decoder tcp_subsystem_add_host_opts_decoder[] = {
3744 	{"psk", offsetof(struct tcp_subsystem_add_host_opts, psk), spdk_json_decode_string, true},
3745 };
3746 
3747 static int
3748 nvmf_tcp_subsystem_add_host(struct spdk_nvmf_transport *transport,
3749 			    const struct spdk_nvmf_subsystem *subsystem,
3750 			    const char *hostnqn,
3751 			    const struct spdk_json_val *transport_specific)
3752 {
3753 	struct tcp_subsystem_add_host_opts opts;
3754 	struct spdk_nvmf_tcp_transport *ttransport;
3755 	struct tcp_psk_entry *tmp, *entry = NULL;
3756 	uint8_t psk_configured[SPDK_TLS_PSK_MAX_LEN] = {};
3757 	char psk_interchange[SPDK_TLS_PSK_MAX_LEN + 1] = {};
3758 	uint8_t tls_cipher_suite;
3759 	int rc = 0;
3760 	uint8_t psk_retained_hash;
3761 	uint64_t psk_configured_size;
3762 
3763 	if (transport_specific == NULL) {
3764 		return 0;
3765 	}
3766 
3767 	assert(transport != NULL);
3768 	assert(subsystem != NULL);
3769 
3770 	memset(&opts, 0, sizeof(opts));
3771 
3772 	/* Decode PSK (either name of a key or file path) */
3773 	if (spdk_json_decode_object_relaxed(transport_specific, tcp_subsystem_add_host_opts_decoder,
3774 					    SPDK_COUNTOF(tcp_subsystem_add_host_opts_decoder), &opts)) {
3775 		SPDK_ERRLOG("spdk_json_decode_object failed\n");
3776 		return -EINVAL;
3777 	}
3778 
3779 	if (opts.psk == NULL) {
3780 		return 0;
3781 	}
3782 
3783 	entry = calloc(1, sizeof(struct tcp_psk_entry));
3784 	if (entry == NULL) {
3785 		SPDK_ERRLOG("Unable to allocate memory for PSK entry!\n");
3786 		rc = -ENOMEM;
3787 		goto end;
3788 	}
3789 
3790 	entry->key = spdk_keyring_get_key(opts.psk);
3791 	if (entry->key == NULL) {
3792 		SPDK_ERRLOG("Key '%s' does not exist\n", opts.psk);
3793 		rc = -EINVAL;
3794 		goto end;
3795 	}
3796 
3797 	rc = spdk_key_get_key(entry->key, psk_interchange, SPDK_TLS_PSK_MAX_LEN);
3798 	if (rc < 0) {
3799 		SPDK_ERRLOG("Failed to retrieve PSK '%s'\n", opts.psk);
3800 		rc = -EINVAL;
3801 		goto end;
3802 	}
3803 
3804 	/* Parse PSK interchange to get length of base64 encoded data.
3805 	 * This is then used to decide which cipher suite should be used
3806 	 * to generate PSK identity and TLS PSK later on. */
3807 	rc = nvme_tcp_parse_interchange_psk(psk_interchange, psk_configured, sizeof(psk_configured),
3808 					    &psk_configured_size, &psk_retained_hash);
3809 	if (rc < 0) {
3810 		SPDK_ERRLOG("Failed to parse PSK interchange!\n");
3811 		goto end;
3812 	}
3813 
3814 	/* The Base64 string encodes the configured PSK (32 or 48 bytes binary).
3815 	 * This check also ensures that psk_configured_size is smaller than
3816 	 * psk_retained buffer size. */
3817 	if (psk_configured_size == SHA256_DIGEST_LENGTH) {
3818 		tls_cipher_suite = NVME_TCP_CIPHER_AES_128_GCM_SHA256;
3819 	} else if (psk_configured_size == SHA384_DIGEST_LENGTH) {
3820 		tls_cipher_suite = NVME_TCP_CIPHER_AES_256_GCM_SHA384;
3821 	} else {
3822 		SPDK_ERRLOG("Unrecognized cipher suite!\n");
3823 		rc = -EINVAL;
3824 		goto end;
3825 	}
3826 
3827 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3828 	/* Generate PSK identity. */
3829 	rc = nvme_tcp_generate_psk_identity(entry->pskid, sizeof(entry->pskid), hostnqn,
3830 					    subsystem->subnqn, tls_cipher_suite);
3831 	if (rc) {
3832 		rc = -EINVAL;
3833 		goto end;
3834 	}
3835 	/* Check if PSK identity entry already exists. */
3836 	TAILQ_FOREACH(tmp, &ttransport->psks, link) {
3837 		if (strncmp(tmp->pskid, entry->pskid, NVMF_PSK_IDENTITY_LEN) == 0) {
3838 			SPDK_ERRLOG("Given PSK identity: %s entry already exists!\n", entry->pskid);
3839 			rc = -EEXIST;
3840 			goto end;
3841 		}
3842 	}
3843 
3844 	if (snprintf(entry->hostnqn, sizeof(entry->hostnqn), "%s", hostnqn) < 0) {
3845 		SPDK_ERRLOG("Could not write hostnqn string!\n");
3846 		rc = -EINVAL;
3847 		goto end;
3848 	}
3849 	if (snprintf(entry->subnqn, sizeof(entry->subnqn), "%s", subsystem->subnqn) < 0) {
3850 		SPDK_ERRLOG("Could not write subnqn string!\n");
3851 		rc = -EINVAL;
3852 		goto end;
3853 	}
3854 
3855 	entry->tls_cipher_suite = tls_cipher_suite;
3856 
3857 	/* No hash indicates that Configured PSK must be used as Retained PSK. */
3858 	if (psk_retained_hash == NVME_TCP_HASH_ALGORITHM_NONE) {
3859 		/* Psk configured is either 32 or 48 bytes long. */
3860 		memcpy(entry->psk, psk_configured, psk_configured_size);
3861 		entry->psk_size = psk_configured_size;
3862 	} else {
3863 		/* Derive retained PSK. */
3864 		rc = nvme_tcp_derive_retained_psk(psk_configured, psk_configured_size, hostnqn, entry->psk,
3865 						  SPDK_TLS_PSK_MAX_LEN, psk_retained_hash);
3866 		if (rc < 0) {
3867 			SPDK_ERRLOG("Unable to derive retained PSK!\n");
3868 			goto end;
3869 		}
3870 		entry->psk_size = rc;
3871 	}
3872 
3873 	TAILQ_INSERT_TAIL(&ttransport->psks, entry, link);
3874 	rc = 0;
3875 
3876 end:
3877 	spdk_memset_s(psk_configured, sizeof(psk_configured), 0, sizeof(psk_configured));
3878 	spdk_memset_s(psk_interchange, sizeof(psk_interchange), 0, sizeof(psk_interchange));
3879 
3880 	free(opts.psk);
3881 	if (rc != 0) {
3882 		nvmf_tcp_free_psk_entry(entry);
3883 	}
3884 
3885 	return rc;
3886 }
3887 
3888 static void
3889 nvmf_tcp_subsystem_remove_host(struct spdk_nvmf_transport *transport,
3890 			       const struct spdk_nvmf_subsystem *subsystem,
3891 			       const char *hostnqn)
3892 {
3893 	struct spdk_nvmf_tcp_transport *ttransport;
3894 	struct tcp_psk_entry *entry, *tmp;
3895 
3896 	assert(transport != NULL);
3897 	assert(subsystem != NULL);
3898 
3899 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3900 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
3901 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3902 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3903 			TAILQ_REMOVE(&ttransport->psks, entry, link);
3904 			nvmf_tcp_free_psk_entry(entry);
3905 			break;
3906 		}
3907 	}
3908 }
3909 
3910 static void
3911 nvmf_tcp_subsystem_dump_host(struct spdk_nvmf_transport *transport,
3912 			     const struct spdk_nvmf_subsystem *subsystem, const char *hostnqn,
3913 			     struct spdk_json_write_ctx *w)
3914 {
3915 	struct spdk_nvmf_tcp_transport *ttransport;
3916 	struct tcp_psk_entry *entry;
3917 
3918 	assert(transport != NULL);
3919 	assert(subsystem != NULL);
3920 
3921 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3922 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
3923 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3924 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3925 			spdk_json_write_named_string(w, "psk",  spdk_key_get_name(entry->key));
3926 			break;
3927 		}
3928 	}
3929 }
3930 
3931 static void
3932 nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
3933 {
3934 	opts->max_queue_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
3935 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
3936 	opts->in_capsule_data_size =	SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
3937 	opts->max_io_size =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
3938 	opts->io_unit_size =		SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
3939 	opts->max_aq_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
3940 	opts->num_shared_buffers =	SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
3941 	opts->buf_cache_size =		SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
3942 	opts->dif_insert_or_strip =	SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
3943 	opts->abort_timeout_sec =	SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
3944 	opts->transport_specific =      NULL;
3945 }
3946 
3947 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
3948 	.name = "TCP",
3949 	.type = SPDK_NVME_TRANSPORT_TCP,
3950 	.opts_init = nvmf_tcp_opts_init,
3951 	.create = nvmf_tcp_create,
3952 	.dump_opts = nvmf_tcp_dump_opts,
3953 	.destroy = nvmf_tcp_destroy,
3954 
3955 	.listen = nvmf_tcp_listen,
3956 	.stop_listen = nvmf_tcp_stop_listen,
3957 
3958 	.listener_discover = nvmf_tcp_discover,
3959 
3960 	.poll_group_create = nvmf_tcp_poll_group_create,
3961 	.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
3962 	.poll_group_destroy = nvmf_tcp_poll_group_destroy,
3963 	.poll_group_add = nvmf_tcp_poll_group_add,
3964 	.poll_group_remove = nvmf_tcp_poll_group_remove,
3965 	.poll_group_poll = nvmf_tcp_poll_group_poll,
3966 
3967 	.req_free = nvmf_tcp_req_free,
3968 	.req_complete = nvmf_tcp_req_complete,
3969 	.req_get_buffers_done = nvmf_tcp_req_get_buffers_done,
3970 
3971 	.qpair_fini = nvmf_tcp_close_qpair,
3972 	.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
3973 	.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
3974 	.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
3975 	.qpair_abort_request = nvmf_tcp_qpair_abort_request,
3976 	.subsystem_add_host = nvmf_tcp_subsystem_add_host,
3977 	.subsystem_remove_host = nvmf_tcp_subsystem_remove_host,
3978 	.subsystem_dump_host = nvmf_tcp_subsystem_dump_host,
3979 };
3980 
3981 SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
3982 SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)
3983