xref: /spdk/lib/nvmf/tcp.c (revision 8a01b4d6366393ba157b7c42f076389b9cebaafa)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2018 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/accel.h"
8 #include "spdk/stdinc.h"
9 #include "spdk/crc32.h"
10 #include "spdk/endian.h"
11 #include "spdk/assert.h"
12 #include "spdk/thread.h"
13 #include "spdk/nvmf_transport.h"
14 #include "spdk/string.h"
15 #include "spdk/trace.h"
16 #include "spdk/util.h"
17 #include "spdk/log.h"
18 #include "spdk/keyring.h"
19 
20 #include "spdk_internal/assert.h"
21 #include "spdk_internal/nvme_tcp.h"
22 #include "spdk_internal/sock.h"
23 
24 #include "nvmf_internal.h"
25 
26 #include "spdk_internal/trace_defs.h"
27 
28 #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
29 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
30 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
31 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
32 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
33 
34 #define SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH 2
35 #define SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH 65535
36 #define SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH 2
37 #define SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH 4096
38 
39 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH 128
40 #define SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH 128
41 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
42 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
43 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
44 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
45 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
46 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX
47 #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
48 #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
49 
50 #define TCP_PSK_INVALID_PERMISSIONS 0177
51 
52 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
53 static bool g_tls_log = false;
54 
55 /* spdk nvmf related structure */
56 enum spdk_nvmf_tcp_req_state {
57 
58 	/* The request is not currently in use */
59 	TCP_REQUEST_STATE_FREE = 0,
60 
61 	/* Initial state when request first received */
62 	TCP_REQUEST_STATE_NEW = 1,
63 
64 	/* The request is queued until a data buffer is available. */
65 	TCP_REQUEST_STATE_NEED_BUFFER = 2,
66 
67 	/* The request is waiting for zcopy_start to finish */
68 	TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 3,
69 
70 	/* The request has received a zero-copy buffer */
71 	TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 4,
72 
73 	/* The request is currently transferring data from the host to the controller. */
74 	TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 5,
75 
76 	/* The request is waiting for the R2T send acknowledgement. */
77 	TCP_REQUEST_STATE_AWAITING_R2T_ACK = 6,
78 
79 	/* The request is ready to execute at the block device */
80 	TCP_REQUEST_STATE_READY_TO_EXECUTE = 7,
81 
82 	/* The request is currently executing at the block device */
83 	TCP_REQUEST_STATE_EXECUTING = 8,
84 
85 	/* The request is waiting for zcopy buffers to be committed */
86 	TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 9,
87 
88 	/* The request finished executing at the block device */
89 	TCP_REQUEST_STATE_EXECUTED = 10,
90 
91 	/* The request is ready to send a completion */
92 	TCP_REQUEST_STATE_READY_TO_COMPLETE = 11,
93 
94 	/* The request is currently transferring final pdus from the controller to the host. */
95 	TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 12,
96 
97 	/* The request is waiting for zcopy buffers to be released (without committing) */
98 	TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 13,
99 
100 	/* The request completed and can be marked free. */
101 	TCP_REQUEST_STATE_COMPLETED = 14,
102 
103 	/* Terminator */
104 	TCP_REQUEST_NUM_STATES,
105 };
106 
107 static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
108 	"Invalid PDU Header Field",
109 	"PDU Sequence Error",
110 	"Header Digiest Error",
111 	"Data Transfer Out of Range",
112 	"R2T Limit Exceeded",
113 	"Unsupported parameter",
114 };
115 
116 SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
117 {
118 	spdk_trace_register_owner_type(OWNER_TYPE_NVMF_TCP, 't');
119 	spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
120 	spdk_trace_register_description("TCP_REQ_NEW",
121 					TRACE_TCP_REQUEST_STATE_NEW,
122 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1,
123 					SPDK_TRACE_ARG_TYPE_INT, "qd");
124 	spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
125 					TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
126 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
127 					SPDK_TRACE_ARG_TYPE_INT, "");
128 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START",
129 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START,
130 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
131 					SPDK_TRACE_ARG_TYPE_INT, "");
132 	spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL",
133 					TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED,
134 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
135 					SPDK_TRACE_ARG_TYPE_INT, "");
136 	spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
137 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
138 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
139 					SPDK_TRACE_ARG_TYPE_INT, "");
140 	spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
141 					TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
142 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
143 					SPDK_TRACE_ARG_TYPE_INT, "");
144 	spdk_trace_register_description("TCP_REQ_EXECUTING",
145 					TRACE_TCP_REQUEST_STATE_EXECUTING,
146 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
147 					SPDK_TRACE_ARG_TYPE_INT, "");
148 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT",
149 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT,
150 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
151 					SPDK_TRACE_ARG_TYPE_INT, "");
152 	spdk_trace_register_description("TCP_REQ_EXECUTED",
153 					TRACE_TCP_REQUEST_STATE_EXECUTED,
154 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
155 					SPDK_TRACE_ARG_TYPE_INT, "");
156 	spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
157 					TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
158 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
159 					SPDK_TRACE_ARG_TYPE_INT, "");
160 	spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
161 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
162 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
163 					SPDK_TRACE_ARG_TYPE_INT, "");
164 	spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS",
165 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE,
166 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
167 					SPDK_TRACE_ARG_TYPE_INT, "");
168 	spdk_trace_register_description("TCP_REQ_COMPLETED",
169 					TRACE_TCP_REQUEST_STATE_COMPLETED,
170 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
171 					SPDK_TRACE_ARG_TYPE_INT, "qd");
172 	spdk_trace_register_description("TCP_READ_DONE",
173 					TRACE_TCP_READ_FROM_SOCKET_DONE,
174 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
175 					SPDK_TRACE_ARG_TYPE_INT, "");
176 	spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
177 					TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
178 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
179 					SPDK_TRACE_ARG_TYPE_INT, "");
180 
181 	spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE,
182 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
183 					SPDK_TRACE_ARG_TYPE_INT, "");
184 	spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT,
185 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
186 					SPDK_TRACE_ARG_TYPE_INT, "");
187 	spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE,
188 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
189 					SPDK_TRACE_ARG_TYPE_INT, "state");
190 	spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT,
191 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
192 					SPDK_TRACE_ARG_TYPE_INT, "");
193 	spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY,
194 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
195 					SPDK_TRACE_ARG_TYPE_INT, "");
196 	spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ,
197 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
198 					SPDK_TRACE_ARG_TYPE_INT, "");
199 	spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE,
200 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
201 					SPDK_TRACE_ARG_TYPE_INT, "state");
202 
203 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1);
204 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0);
205 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_QUEUE, OBJECT_NVMF_TCP_IO, 0);
206 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_PEND, OBJECT_NVMF_TCP_IO, 0);
207 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_COMPLETE, OBJECT_NVMF_TCP_IO, 0);
208 }
209 
210 struct spdk_nvmf_tcp_req  {
211 	struct spdk_nvmf_request		req;
212 	struct spdk_nvme_cpl			rsp;
213 	struct spdk_nvme_cmd			cmd;
214 
215 	/* A PDU that can be used for sending responses. This is
216 	 * not the incoming PDU! */
217 	struct nvme_tcp_pdu			*pdu;
218 
219 	/* In-capsule data buffer */
220 	uint8_t					*buf;
221 
222 	struct spdk_nvmf_tcp_req		*fused_pair;
223 
224 	/*
225 	 * The PDU for a request may be used multiple times in serial over
226 	 * the request's lifetime. For example, first to send an R2T, then
227 	 * to send a completion. To catch mistakes where the PDU is used
228 	 * twice at the same time, add a debug flag here for init/fini.
229 	 */
230 	bool					pdu_in_use;
231 	bool					has_in_capsule_data;
232 	bool					fused_failed;
233 
234 	/* transfer_tag */
235 	uint16_t				ttag;
236 
237 	enum spdk_nvmf_tcp_req_state		state;
238 
239 	/*
240 	 * h2c_offset is used when we receive the h2c_data PDU.
241 	 */
242 	uint32_t				h2c_offset;
243 
244 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		link;
245 	TAILQ_ENTRY(spdk_nvmf_tcp_req)		state_link;
246 };
247 
248 struct spdk_nvmf_tcp_qpair {
249 	struct spdk_nvmf_qpair			qpair;
250 	struct spdk_nvmf_tcp_poll_group		*group;
251 	struct spdk_sock			*sock;
252 
253 	enum nvme_tcp_pdu_recv_state		recv_state;
254 	enum nvme_tcp_qpair_state		state;
255 
256 	/* PDU being actively received */
257 	struct nvme_tcp_pdu			*pdu_in_progress;
258 
259 	struct spdk_nvmf_tcp_req		*fused_first;
260 
261 	/* Queues to track the requests in all states */
262 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_working_queue;
263 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_free_queue;
264 	SLIST_HEAD(, nvme_tcp_pdu)		tcp_pdu_free_queue;
265 	/* Number of working pdus */
266 	uint32_t				tcp_pdu_working_count;
267 
268 	/* Number of requests in each state */
269 	uint32_t				state_cntr[TCP_REQUEST_NUM_STATES];
270 
271 	uint8_t					cpda;
272 
273 	bool					host_hdgst_enable;
274 	bool					host_ddgst_enable;
275 
276 	/* This is a spare PDU used for sending special management
277 	 * operations. Primarily, this is used for the initial
278 	 * connection response and c2h termination request. */
279 	struct nvme_tcp_pdu			*mgmt_pdu;
280 
281 	/* Arrays of in-capsule buffers, requests, and pdus.
282 	 * Each array is 'resource_count' number of elements */
283 	void					*bufs;
284 	struct spdk_nvmf_tcp_req		*reqs;
285 	struct nvme_tcp_pdu			*pdus;
286 	uint32_t				resource_count;
287 	uint32_t				recv_buf_size;
288 
289 	struct spdk_nvmf_tcp_port		*port;
290 
291 	/* IP address */
292 	char					initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
293 	char					target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
294 
295 	/* IP port */
296 	uint16_t				initiator_port;
297 	uint16_t				target_port;
298 
299 	/* Wait until the host terminates the connection (e.g. after sending C2HTermReq) */
300 	bool					wait_terminate;
301 
302 	/* Timer used to destroy qpair after detecting transport error issue if initiator does
303 	 *  not close the connection.
304 	 */
305 	struct spdk_poller			*timeout_poller;
306 
307 	spdk_nvmf_transport_qpair_fini_cb	fini_cb_fn;
308 	void					*fini_cb_arg;
309 
310 	TAILQ_ENTRY(spdk_nvmf_tcp_qpair)	link;
311 };
312 
313 struct spdk_nvmf_tcp_control_msg {
314 	STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
315 };
316 
317 struct spdk_nvmf_tcp_control_msg_list {
318 	void *msg_buf;
319 	STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
320 };
321 
322 struct spdk_nvmf_tcp_poll_group {
323 	struct spdk_nvmf_transport_poll_group	group;
324 	struct spdk_sock_group			*sock_group;
325 
326 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	qpairs;
327 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	await_req;
328 
329 	struct spdk_io_channel			*accel_channel;
330 	struct spdk_nvmf_tcp_control_msg_list	*control_msg_list;
331 
332 	TAILQ_ENTRY(spdk_nvmf_tcp_poll_group)	link;
333 };
334 
335 struct spdk_nvmf_tcp_port {
336 	const struct spdk_nvme_transport_id	*trid;
337 	struct spdk_sock			*listen_sock;
338 	TAILQ_ENTRY(spdk_nvmf_tcp_port)		link;
339 };
340 
341 struct tcp_transport_opts {
342 	bool		c2h_success;
343 	uint16_t	control_msg_num;
344 	uint32_t	sock_priority;
345 };
346 
347 struct tcp_psk_entry {
348 	char				hostnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
349 	char				subnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
350 	char				pskid[NVMF_PSK_IDENTITY_LEN];
351 	uint8_t				psk[SPDK_TLS_PSK_MAX_LEN];
352 	struct spdk_key			*key;
353 
354 	/* Original path saved to emit SPDK configuration via "save_config". */
355 	char				psk_path[PATH_MAX];
356 	uint32_t			psk_size;
357 	enum nvme_tcp_cipher_suite	tls_cipher_suite;
358 	TAILQ_ENTRY(tcp_psk_entry)	link;
359 };
360 
361 struct spdk_nvmf_tcp_transport {
362 	struct spdk_nvmf_transport		transport;
363 	struct tcp_transport_opts               tcp_opts;
364 	uint32_t				ack_timeout;
365 
366 	struct spdk_nvmf_tcp_poll_group		*next_pg;
367 
368 	struct spdk_poller			*accept_poller;
369 
370 	TAILQ_HEAD(, spdk_nvmf_tcp_port)	ports;
371 	TAILQ_HEAD(, spdk_nvmf_tcp_poll_group)	poll_groups;
372 
373 	TAILQ_HEAD(, tcp_psk_entry)		psks;
374 };
375 
376 static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
377 	{
378 		"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
379 		spdk_json_decode_bool, true
380 	},
381 	{
382 		"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
383 		spdk_json_decode_uint16, true
384 	},
385 	{
386 		"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
387 		spdk_json_decode_uint32, true
388 	},
389 };
390 
391 static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
392 				 struct spdk_nvmf_tcp_req *tcp_req);
393 static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
394 
395 static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
396 				    struct spdk_nvmf_tcp_req *tcp_req);
397 
398 static inline void
399 nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
400 		       enum spdk_nvmf_tcp_req_state state)
401 {
402 	struct spdk_nvmf_qpair *qpair;
403 	struct spdk_nvmf_tcp_qpair *tqpair;
404 
405 	qpair = tcp_req->req.qpair;
406 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
407 
408 	assert(tqpair->state_cntr[tcp_req->state] > 0);
409 	tqpair->state_cntr[tcp_req->state]--;
410 	tqpair->state_cntr[state]++;
411 
412 	tcp_req->state = state;
413 }
414 
415 static inline struct nvme_tcp_pdu *
416 nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
417 {
418 	assert(tcp_req->pdu_in_use == false);
419 
420 	memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
421 	tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
422 
423 	return tcp_req->pdu;
424 }
425 
426 static struct spdk_nvmf_tcp_req *
427 nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
428 {
429 	struct spdk_nvmf_tcp_req *tcp_req;
430 
431 	tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
432 	if (spdk_unlikely(!tcp_req)) {
433 		return NULL;
434 	}
435 
436 	memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
437 	tcp_req->h2c_offset = 0;
438 	tcp_req->has_in_capsule_data = false;
439 	tcp_req->req.dif_enabled = false;
440 	tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE;
441 
442 	TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
443 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
444 	tqpair->qpair.queue_depth++;
445 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
446 	return tcp_req;
447 }
448 
449 static inline void
450 nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
451 {
452 	assert(!tcp_req->pdu_in_use);
453 
454 	TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
455 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
456 	tqpair->qpair.queue_depth--;
457 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
458 }
459 
460 static void
461 nvmf_tcp_request_free(void *cb_arg)
462 {
463 	struct spdk_nvmf_tcp_transport *ttransport;
464 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
465 
466 	assert(tcp_req != NULL);
467 
468 	SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
469 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
470 				      struct spdk_nvmf_tcp_transport, transport);
471 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
472 	nvmf_tcp_req_process(ttransport, tcp_req);
473 }
474 
475 static int
476 nvmf_tcp_req_free(struct spdk_nvmf_request *req)
477 {
478 	struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
479 
480 	nvmf_tcp_request_free(tcp_req);
481 
482 	return 0;
483 }
484 
485 static void
486 nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
487 			   enum spdk_nvmf_tcp_req_state state)
488 {
489 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
490 
491 	assert(state != TCP_REQUEST_STATE_FREE);
492 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
493 		if (state == tcp_req->state) {
494 			nvmf_tcp_request_free(tcp_req);
495 		}
496 	}
497 }
498 
499 static void
500 nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
501 {
502 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
503 
504 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
505 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
506 
507 	/* Wipe the requests waiting for buffer from the global list */
508 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
509 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
510 			STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue, &tcp_req->req,
511 				      spdk_nvmf_request, buf_link);
512 		}
513 	}
514 
515 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
516 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
517 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
518 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
519 }
520 
521 static void
522 nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
523 {
524 	int i;
525 	struct spdk_nvmf_tcp_req *tcp_req;
526 
527 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
528 	for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
529 		SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
530 		TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
531 			if ((int)tcp_req->state == i) {
532 				SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
533 				SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
534 			}
535 		}
536 	}
537 }
538 
539 static void
540 _nvmf_tcp_qpair_destroy(void *_tqpair)
541 {
542 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
543 	spdk_nvmf_transport_qpair_fini_cb cb_fn = tqpair->fini_cb_fn;
544 	void *cb_arg = tqpair->fini_cb_arg;
545 	int err = 0;
546 
547 	spdk_trace_record(TRACE_TCP_QP_DESTROY, tqpair->qpair.trace_id, 0, 0);
548 
549 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
550 
551 	err = spdk_sock_close(&tqpair->sock);
552 	assert(err == 0);
553 	nvmf_tcp_cleanup_all_states(tqpair);
554 
555 	if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
556 		SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
557 			    tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
558 			    tqpair->resource_count);
559 		err++;
560 	}
561 
562 	if (err > 0) {
563 		nvmf_tcp_dump_qpair_req_contents(tqpair);
564 	}
565 
566 	/* The timeout poller might still be registered here if we close the qpair before host
567 	 * terminates the connection.
568 	 */
569 	spdk_poller_unregister(&tqpair->timeout_poller);
570 	spdk_dma_free(tqpair->pdus);
571 	free(tqpair->reqs);
572 	spdk_free(tqpair->bufs);
573 	spdk_trace_unregister_owner(tqpair->qpair.trace_id);
574 	free(tqpair);
575 
576 	if (cb_fn != NULL) {
577 		cb_fn(cb_arg);
578 	}
579 
580 	SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
581 }
582 
583 static void
584 nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
585 {
586 	/* Delay the destruction to make sure it isn't performed from the context of a sock
587 	 * callback.  Otherwise, spdk_sock_close() might not abort pending requests, causing their
588 	 * completions to be executed after the qpair is freed.  (Note: this fixed issue #2471.)
589 	 */
590 	spdk_thread_send_msg(spdk_get_thread(), _nvmf_tcp_qpair_destroy, tqpair);
591 }
592 
593 static void
594 nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
595 {
596 	struct spdk_nvmf_tcp_transport	*ttransport;
597 	assert(w != NULL);
598 
599 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
600 	spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
601 	spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
602 }
603 
604 static void
605 nvmf_tcp_free_psk_entry(struct tcp_psk_entry *entry)
606 {
607 	if (entry == NULL) {
608 		return;
609 	}
610 
611 	spdk_memset_s(entry->psk, sizeof(entry->psk), 0, sizeof(entry->psk));
612 	spdk_keyring_put_key(entry->key);
613 	free(entry);
614 }
615 
616 static int
617 nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
618 		 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
619 {
620 	struct spdk_nvmf_tcp_transport	*ttransport;
621 	struct tcp_psk_entry *entry, *tmp;
622 
623 	assert(transport != NULL);
624 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
625 
626 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
627 		TAILQ_REMOVE(&ttransport->psks, entry, link);
628 		nvmf_tcp_free_psk_entry(entry);
629 	}
630 
631 	spdk_poller_unregister(&ttransport->accept_poller);
632 	free(ttransport);
633 
634 	if (cb_fn) {
635 		cb_fn(cb_arg);
636 	}
637 	return 0;
638 }
639 
640 static int nvmf_tcp_accept(void *ctx);
641 
642 static struct spdk_nvmf_transport *
643 nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
644 {
645 	struct spdk_nvmf_tcp_transport *ttransport;
646 	uint32_t sge_count;
647 	uint32_t min_shared_buffers;
648 
649 	ttransport = calloc(1, sizeof(*ttransport));
650 	if (!ttransport) {
651 		return NULL;
652 	}
653 
654 	TAILQ_INIT(&ttransport->ports);
655 	TAILQ_INIT(&ttransport->poll_groups);
656 	TAILQ_INIT(&ttransport->psks);
657 
658 	ttransport->transport.ops = &spdk_nvmf_transport_tcp;
659 
660 	ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
661 	ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
662 	ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
663 	if (opts->transport_specific != NULL &&
664 	    spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
665 					    SPDK_COUNTOF(tcp_transport_opts_decoder),
666 					    &ttransport->tcp_opts)) {
667 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
668 		free(ttransport);
669 		return NULL;
670 	}
671 
672 	SPDK_NOTICELOG("*** TCP Transport Init ***\n");
673 
674 	SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
675 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
676 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
677 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
678 		     "  num_shared_buffers=%d, c2h_success=%d,\n"
679 		     "  dif_insert_or_strip=%d, sock_priority=%d\n"
680 		     "  abort_timeout_sec=%d, control_msg_num=%hu\n"
681 		     "  ack_timeout=%d\n",
682 		     opts->max_queue_depth,
683 		     opts->max_io_size,
684 		     opts->max_qpairs_per_ctrlr - 1,
685 		     opts->io_unit_size,
686 		     opts->in_capsule_data_size,
687 		     opts->max_aq_depth,
688 		     opts->num_shared_buffers,
689 		     ttransport->tcp_opts.c2h_success,
690 		     opts->dif_insert_or_strip,
691 		     ttransport->tcp_opts.sock_priority,
692 		     opts->abort_timeout_sec,
693 		     ttransport->tcp_opts.control_msg_num,
694 		     opts->ack_timeout);
695 
696 	if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
697 		SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
698 			    "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
699 			    ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
700 		free(ttransport);
701 		return NULL;
702 	}
703 
704 	if (ttransport->tcp_opts.control_msg_num == 0 &&
705 	    opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
706 		SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
707 			     SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
708 		ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
709 	}
710 
711 	/* I/O unit size cannot be larger than max I/O size */
712 	if (opts->io_unit_size > opts->max_io_size) {
713 		SPDK_WARNLOG("TCP param io_unit_size %u can't be larger than max_io_size %u. Using max_io_size as io_unit_size\n",
714 			     opts->io_unit_size, opts->max_io_size);
715 		opts->io_unit_size = opts->max_io_size;
716 	}
717 
718 	/* In capsule data size cannot be larger than max I/O size */
719 	if (opts->in_capsule_data_size > opts->max_io_size) {
720 		SPDK_WARNLOG("TCP param ICD size %u can't be larger than max_io_size %u. Using max_io_size as ICD size\n",
721 			     opts->io_unit_size, opts->max_io_size);
722 		opts->in_capsule_data_size = opts->max_io_size;
723 	}
724 
725 	/* max IO queue depth cannot be smaller than 2 or larger than 65535.
726 	 * We will not check SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, because max_queue_depth is 16bits and always not larger than 64k. */
727 	if (opts->max_queue_depth < SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH) {
728 		SPDK_WARNLOG("TCP param max_queue_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
729 			     opts->max_queue_depth, SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH,
730 			     SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH);
731 		opts->max_queue_depth = SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
732 	}
733 
734 	/* max admin queue depth cannot be smaller than 2 or larger than 4096 */
735 	if (opts->max_aq_depth < SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH ||
736 	    opts->max_aq_depth > SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH) {
737 		SPDK_WARNLOG("TCP param max_aq_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
738 			     opts->max_aq_depth, SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH,
739 			     SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH);
740 		opts->max_aq_depth = SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
741 	}
742 
743 	sge_count = opts->max_io_size / opts->io_unit_size;
744 	if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
745 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
746 		free(ttransport);
747 		return NULL;
748 	}
749 
750 	/* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */
751 	if (opts->buf_cache_size < UINT32_MAX) {
752 		min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
753 		if (min_shared_buffers > opts->num_shared_buffers) {
754 			SPDK_ERRLOG("There are not enough buffers to satisfy "
755 				    "per-poll group caches for each thread. (%" PRIu32 ") "
756 				    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
757 			SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
758 			free(ttransport);
759 			return NULL;
760 		}
761 	}
762 
763 	ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport,
764 				    opts->acceptor_poll_rate);
765 	if (!ttransport->accept_poller) {
766 		free(ttransport);
767 		return NULL;
768 	}
769 
770 	return &ttransport->transport;
771 }
772 
773 static int
774 nvmf_tcp_trsvcid_to_int(const char *trsvcid)
775 {
776 	unsigned long long ull;
777 	char *end = NULL;
778 
779 	ull = strtoull(trsvcid, &end, 10);
780 	if (end == NULL || end == trsvcid || *end != '\0') {
781 		return -1;
782 	}
783 
784 	/* Valid TCP/IP port numbers are in [1, 65535] */
785 	if (ull == 0 || ull > 65535) {
786 		return -1;
787 	}
788 
789 	return (int)ull;
790 }
791 
792 /**
793  * Canonicalize a listen address trid.
794  */
795 static int
796 nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
797 			   const struct spdk_nvme_transport_id *trid)
798 {
799 	int trsvcid_int;
800 
801 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
802 	if (trsvcid_int < 0) {
803 		return -EINVAL;
804 	}
805 
806 	memset(canon_trid, 0, sizeof(*canon_trid));
807 	spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
808 	canon_trid->adrfam = trid->adrfam;
809 	snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
810 	snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
811 
812 	return 0;
813 }
814 
815 /**
816  * Find an existing listening port.
817  */
818 static struct spdk_nvmf_tcp_port *
819 nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
820 		   const struct spdk_nvme_transport_id *trid)
821 {
822 	struct spdk_nvme_transport_id canon_trid;
823 	struct spdk_nvmf_tcp_port *port;
824 
825 	if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
826 		return NULL;
827 	}
828 
829 	TAILQ_FOREACH(port, &ttransport->ports, link) {
830 		if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
831 			return port;
832 		}
833 	}
834 
835 	return NULL;
836 }
837 
838 static int
839 tcp_sock_get_key(uint8_t *out, int out_len, const char **cipher, const char *pskid,
840 		 void *get_key_ctx)
841 {
842 	struct tcp_psk_entry *entry;
843 	struct spdk_nvmf_tcp_transport *ttransport = get_key_ctx;
844 	size_t psk_len;
845 	int rc;
846 
847 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
848 		if (strcmp(pskid, entry->pskid) != 0) {
849 			continue;
850 		}
851 
852 		psk_len = entry->psk_size;
853 		if ((size_t)out_len < psk_len) {
854 			SPDK_ERRLOG("Out buffer of size: %" PRIu32 " cannot fit PSK of len: %lu\n",
855 				    out_len, psk_len);
856 			return -ENOBUFS;
857 		}
858 
859 		/* Convert PSK to the TLS PSK format. */
860 		rc = nvme_tcp_derive_tls_psk(entry->psk, psk_len, pskid, out, out_len,
861 					     entry->tls_cipher_suite);
862 		if (rc < 0) {
863 			SPDK_ERRLOG("Could not generate TLS PSK\n");
864 		}
865 
866 		switch (entry->tls_cipher_suite) {
867 		case NVME_TCP_CIPHER_AES_128_GCM_SHA256:
868 			*cipher = "TLS_AES_128_GCM_SHA256";
869 			break;
870 		case NVME_TCP_CIPHER_AES_256_GCM_SHA384:
871 			*cipher = "TLS_AES_256_GCM_SHA384";
872 			break;
873 		default:
874 			*cipher = NULL;
875 			return -ENOTSUP;
876 		}
877 
878 		return rc;
879 	}
880 
881 	SPDK_ERRLOG("Could not find PSK for identity: %s\n", pskid);
882 
883 	return -EINVAL;
884 }
885 
886 static int
887 nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
888 		struct spdk_nvmf_listen_opts *listen_opts)
889 {
890 	struct spdk_nvmf_tcp_transport *ttransport;
891 	struct spdk_nvmf_tcp_port *port;
892 	int trsvcid_int;
893 	uint8_t adrfam;
894 	const char *sock_impl_name;
895 	struct spdk_sock_impl_opts impl_opts;
896 	size_t impl_opts_size = sizeof(impl_opts);
897 	struct spdk_sock_opts opts;
898 
899 	if (!strlen(trid->trsvcid)) {
900 		SPDK_ERRLOG("Service id is required\n");
901 		return -EINVAL;
902 	}
903 
904 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
905 
906 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
907 	if (trsvcid_int < 0) {
908 		SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
909 		return -EINVAL;
910 	}
911 
912 	port = calloc(1, sizeof(*port));
913 	if (!port) {
914 		SPDK_ERRLOG("Port allocation failed\n");
915 		return -ENOMEM;
916 	}
917 
918 	port->trid = trid;
919 
920 	sock_impl_name = NULL;
921 
922 	opts.opts_size = sizeof(opts);
923 	spdk_sock_get_default_opts(&opts);
924 	opts.priority = ttransport->tcp_opts.sock_priority;
925 	opts.ack_timeout = transport->opts.ack_timeout;
926 	if (listen_opts->secure_channel) {
927 		if (!g_tls_log) {
928 			SPDK_NOTICELOG("TLS support is considered experimental\n");
929 			g_tls_log = true;
930 		}
931 		sock_impl_name = "ssl";
932 		spdk_sock_impl_get_opts(sock_impl_name, &impl_opts, &impl_opts_size);
933 		impl_opts.tls_version = SPDK_TLS_VERSION_1_3;
934 		impl_opts.get_key = tcp_sock_get_key;
935 		impl_opts.get_key_ctx = ttransport;
936 		impl_opts.tls_cipher_suites = "TLS_AES_256_GCM_SHA384:TLS_AES_128_GCM_SHA256";
937 		opts.impl_opts = &impl_opts;
938 		opts.impl_opts_size = sizeof(impl_opts);
939 	}
940 
941 	port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
942 			    sock_impl_name, &opts);
943 	if (port->listen_sock == NULL) {
944 		SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
945 			    trid->traddr, trsvcid_int,
946 			    spdk_strerror(errno), errno);
947 		free(port);
948 		return -errno;
949 	}
950 
951 	if (spdk_sock_is_ipv4(port->listen_sock)) {
952 		adrfam = SPDK_NVMF_ADRFAM_IPV4;
953 	} else if (spdk_sock_is_ipv6(port->listen_sock)) {
954 		adrfam = SPDK_NVMF_ADRFAM_IPV6;
955 	} else {
956 		SPDK_ERRLOG("Unhandled socket type\n");
957 		adrfam = 0;
958 	}
959 
960 	if (adrfam != trid->adrfam) {
961 		SPDK_ERRLOG("Socket address family mismatch\n");
962 		spdk_sock_close(&port->listen_sock);
963 		free(port);
964 		return -EINVAL;
965 	}
966 
967 	SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
968 		       trid->traddr, trid->trsvcid);
969 
970 	TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
971 	return 0;
972 }
973 
974 static void
975 nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
976 		     const struct spdk_nvme_transport_id *trid)
977 {
978 	struct spdk_nvmf_tcp_transport *ttransport;
979 	struct spdk_nvmf_tcp_port *port;
980 
981 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
982 
983 	SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
984 		      trid->traddr, trid->trsvcid);
985 
986 	port = nvmf_tcp_find_port(ttransport, trid);
987 	if (port) {
988 		TAILQ_REMOVE(&ttransport->ports, port, link);
989 		spdk_sock_close(&port->listen_sock);
990 		free(port);
991 	}
992 }
993 
994 static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
995 		enum nvme_tcp_pdu_recv_state state);
996 
997 static void
998 nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvme_tcp_qpair_state state)
999 {
1000 	tqpair->state = state;
1001 	spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0,
1002 			  (uint64_t)tqpair->state);
1003 }
1004 
1005 static void
1006 nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
1007 {
1008 	SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
1009 
1010 	spdk_trace_record(TRACE_TCP_QP_DISCONNECT, tqpair->qpair.trace_id, 0, 0);
1011 
1012 	if (tqpair->state <= NVME_TCP_QPAIR_STATE_RUNNING) {
1013 		nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITING);
1014 		assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1015 		spdk_poller_unregister(&tqpair->timeout_poller);
1016 
1017 		/* This will end up calling nvmf_tcp_close_qpair */
1018 		spdk_nvmf_qpair_disconnect(&tqpair->qpair);
1019 	}
1020 }
1021 
1022 static void
1023 _mgmt_pdu_write_done(void *_tqpair, int err)
1024 {
1025 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
1026 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1027 
1028 	if (spdk_unlikely(err != 0)) {
1029 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1030 		return;
1031 	}
1032 
1033 	assert(pdu->cb_fn != NULL);
1034 	pdu->cb_fn(pdu->cb_arg);
1035 }
1036 
1037 static void
1038 _req_pdu_write_done(void *req, int err)
1039 {
1040 	struct spdk_nvmf_tcp_req *tcp_req = req;
1041 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1042 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1043 
1044 	assert(tcp_req->pdu_in_use);
1045 	tcp_req->pdu_in_use = false;
1046 
1047 	/* If the request is in a completed state, we're waiting for write completion to free it */
1048 	if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) {
1049 		nvmf_tcp_request_free(tcp_req);
1050 		return;
1051 	}
1052 
1053 	if (spdk_unlikely(err != 0)) {
1054 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1055 		return;
1056 	}
1057 
1058 	assert(pdu->cb_fn != NULL);
1059 	pdu->cb_fn(pdu->cb_arg);
1060 }
1061 
1062 static void
1063 _pdu_write_done(struct nvme_tcp_pdu *pdu, int err)
1064 {
1065 	pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err);
1066 }
1067 
1068 static void
1069 _tcp_write_pdu(struct nvme_tcp_pdu *pdu)
1070 {
1071 	int rc;
1072 	uint32_t mapped_length;
1073 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1074 
1075 	pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
1076 			       tqpair->host_hdgst_enable, tqpair->host_ddgst_enable, &mapped_length);
1077 	spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
1078 
1079 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
1080 	    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
1081 		/* Try to force the send immediately. */
1082 		rc = spdk_sock_flush(tqpair->sock);
1083 		if (rc > 0 && (uint32_t)rc == mapped_length) {
1084 			_pdu_write_done(pdu, 0);
1085 		} else {
1086 			SPDK_ERRLOG("Could not write %s to socket: rc=%d, errno=%d\n",
1087 				    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ?
1088 				    "IC_RESP" : "TERM_REQ", rc, errno);
1089 			_pdu_write_done(pdu, rc >= 0 ? -EAGAIN : -errno);
1090 		}
1091 	}
1092 }
1093 
1094 static void
1095 data_crc32_accel_done(void *cb_arg, int status)
1096 {
1097 	struct nvme_tcp_pdu *pdu = cb_arg;
1098 
1099 	if (spdk_unlikely(status)) {
1100 		SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
1101 		_pdu_write_done(pdu, status);
1102 		return;
1103 	}
1104 
1105 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
1106 	MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
1107 
1108 	_tcp_write_pdu(pdu);
1109 }
1110 
1111 static void
1112 pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
1113 {
1114 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1115 	int rc = 0;
1116 
1117 	/* Data Digest */
1118 	if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
1119 		/* Only support this limitated case for the first step */
1120 		if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
1121 				&& tqpair->group)) {
1122 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
1123 						       pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
1124 			if (spdk_likely(rc == 0)) {
1125 				return;
1126 			}
1127 		} else {
1128 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1129 		}
1130 		data_crc32_accel_done(pdu, rc);
1131 	} else {
1132 		_tcp_write_pdu(pdu);
1133 	}
1134 }
1135 
1136 static void
1137 nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1138 			 struct nvme_tcp_pdu *pdu,
1139 			 nvme_tcp_qpair_xfer_complete_cb cb_fn,
1140 			 void *cb_arg)
1141 {
1142 	int hlen;
1143 	uint32_t crc32c;
1144 
1145 	assert(tqpair->pdu_in_progress != pdu);
1146 
1147 	hlen = pdu->hdr.common.hlen;
1148 	pdu->cb_fn = cb_fn;
1149 	pdu->cb_arg = cb_arg;
1150 
1151 	pdu->iov[0].iov_base = &pdu->hdr.raw;
1152 	pdu->iov[0].iov_len = hlen;
1153 
1154 	/* Header Digest */
1155 	if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) {
1156 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1157 		MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
1158 	}
1159 
1160 	/* Data Digest */
1161 	pdu_data_crc32_compute(pdu);
1162 }
1163 
1164 static void
1165 nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1166 			      nvme_tcp_qpair_xfer_complete_cb cb_fn,
1167 			      void *cb_arg)
1168 {
1169 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1170 
1171 	pdu->sock_req.cb_fn = _mgmt_pdu_write_done;
1172 	pdu->sock_req.cb_arg = tqpair;
1173 
1174 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1175 }
1176 
1177 static void
1178 nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1179 			     struct spdk_nvmf_tcp_req *tcp_req,
1180 			     nvme_tcp_qpair_xfer_complete_cb cb_fn,
1181 			     void *cb_arg)
1182 {
1183 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1184 
1185 	pdu->sock_req.cb_fn = _req_pdu_write_done;
1186 	pdu->sock_req.cb_arg = tcp_req;
1187 
1188 	assert(!tcp_req->pdu_in_use);
1189 	tcp_req->pdu_in_use = true;
1190 
1191 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1192 }
1193 
1194 static int
1195 nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
1196 {
1197 	uint32_t i;
1198 	struct spdk_nvmf_transport_opts *opts;
1199 	uint32_t in_capsule_data_size;
1200 
1201 	opts = &tqpair->qpair.transport->opts;
1202 
1203 	in_capsule_data_size = opts->in_capsule_data_size;
1204 	if (opts->dif_insert_or_strip) {
1205 		in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
1206 	}
1207 
1208 	tqpair->resource_count = opts->max_queue_depth;
1209 
1210 	tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
1211 	if (!tqpair->reqs) {
1212 		SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
1213 		return -1;
1214 	}
1215 
1216 	if (in_capsule_data_size) {
1217 		tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
1218 					    NULL, SPDK_ENV_LCORE_ID_ANY,
1219 					    SPDK_MALLOC_DMA);
1220 		if (!tqpair->bufs) {
1221 			SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
1222 			return -1;
1223 		}
1224 	}
1225 	/* prepare memory space for receiving pdus and tcp_req */
1226 	/* Add additional 1 member, which will be used for mgmt_pdu owned by the tqpair */
1227 	tqpair->pdus = spdk_dma_zmalloc((2 * tqpair->resource_count + 1) * sizeof(*tqpair->pdus), 0x1000,
1228 					NULL);
1229 	if (!tqpair->pdus) {
1230 		SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
1231 		return -1;
1232 	}
1233 
1234 	for (i = 0; i < tqpair->resource_count; i++) {
1235 		struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
1236 
1237 		tcp_req->ttag = i + 1;
1238 		tcp_req->req.qpair = &tqpair->qpair;
1239 
1240 		tcp_req->pdu = &tqpair->pdus[i];
1241 		tcp_req->pdu->qpair = tqpair;
1242 
1243 		/* Set up memory to receive commands */
1244 		if (tqpair->bufs) {
1245 			tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
1246 		}
1247 
1248 		/* Set the cmdn and rsp */
1249 		tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
1250 		tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
1251 
1252 		tcp_req->req.stripped_data = NULL;
1253 
1254 		/* Initialize request state to FREE */
1255 		tcp_req->state = TCP_REQUEST_STATE_FREE;
1256 		TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
1257 		tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
1258 	}
1259 
1260 	for (; i < 2 * tqpair->resource_count; i++) {
1261 		struct nvme_tcp_pdu *pdu = &tqpair->pdus[i];
1262 
1263 		pdu->qpair = tqpair;
1264 		SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1265 	}
1266 
1267 	tqpair->mgmt_pdu = &tqpair->pdus[i];
1268 	tqpair->mgmt_pdu->qpair = tqpair;
1269 	tqpair->pdu_in_progress = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
1270 	SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
1271 	tqpair->tcp_pdu_working_count = 1;
1272 
1273 	tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
1274 				 SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1275 
1276 	return 0;
1277 }
1278 
1279 static int
1280 nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
1281 {
1282 	struct spdk_nvmf_tcp_qpair *tqpair;
1283 
1284 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1285 
1286 	SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
1287 
1288 	spdk_trace_record(TRACE_TCP_QP_CREATE, tqpair->qpair.trace_id, 0, 0);
1289 
1290 	/* Initialise request state queues of the qpair */
1291 	TAILQ_INIT(&tqpair->tcp_req_free_queue);
1292 	TAILQ_INIT(&tqpair->tcp_req_working_queue);
1293 	SLIST_INIT(&tqpair->tcp_pdu_free_queue);
1294 	tqpair->qpair.queue_depth = 0;
1295 
1296 	tqpair->host_hdgst_enable = true;
1297 	tqpair->host_ddgst_enable = true;
1298 
1299 	return 0;
1300 }
1301 
1302 static int
1303 nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
1304 {
1305 	char saddr[32], caddr[32];
1306 	uint16_t sport, cport;
1307 	char owner[256];
1308 	int rc;
1309 
1310 	rc = spdk_sock_getaddr(tqpair->sock, saddr, sizeof(saddr), &sport,
1311 			       caddr, sizeof(caddr), &cport);
1312 	if (rc != 0) {
1313 		SPDK_ERRLOG("spdk_sock_getaddr() failed\n");
1314 		return rc;
1315 	}
1316 	snprintf(owner, sizeof(owner), "%s:%d", caddr, cport);
1317 	tqpair->qpair.trace_id = spdk_trace_register_owner(OWNER_TYPE_NVMF_TCP, owner);
1318 	spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, tqpair->qpair.trace_id, 0, 0);
1319 
1320 	/* set low water mark */
1321 	rc = spdk_sock_set_recvlowat(tqpair->sock, 1);
1322 	if (rc != 0) {
1323 		SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
1324 		return rc;
1325 	}
1326 
1327 	return 0;
1328 }
1329 
1330 static void
1331 nvmf_tcp_handle_connect(struct spdk_nvmf_transport *transport,
1332 			struct spdk_nvmf_tcp_port *port,
1333 			struct spdk_sock *sock)
1334 {
1335 	struct spdk_nvmf_tcp_qpair *tqpair;
1336 	int rc;
1337 
1338 	SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
1339 		      port->trid->traddr, port->trid->trsvcid);
1340 
1341 	tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
1342 	if (tqpair == NULL) {
1343 		SPDK_ERRLOG("Could not allocate new connection.\n");
1344 		spdk_sock_close(&sock);
1345 		return;
1346 	}
1347 
1348 	tqpair->sock = sock;
1349 	tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
1350 	tqpair->port = port;
1351 	tqpair->qpair.transport = transport;
1352 
1353 	rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
1354 			       sizeof(tqpair->target_addr), &tqpair->target_port,
1355 			       tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
1356 			       &tqpair->initiator_port);
1357 	if (rc < 0) {
1358 		SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
1359 		nvmf_tcp_qpair_destroy(tqpair);
1360 		return;
1361 	}
1362 
1363 	spdk_nvmf_tgt_new_qpair(transport->tgt, &tqpair->qpair);
1364 }
1365 
1366 static uint32_t
1367 nvmf_tcp_port_accept(struct spdk_nvmf_transport *transport, struct spdk_nvmf_tcp_port *port)
1368 {
1369 	struct spdk_sock *sock;
1370 	uint32_t count = 0;
1371 	int i;
1372 
1373 	for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
1374 		sock = spdk_sock_accept(port->listen_sock);
1375 		if (sock == NULL) {
1376 			break;
1377 		}
1378 		count++;
1379 		nvmf_tcp_handle_connect(transport, port, sock);
1380 	}
1381 
1382 	return count;
1383 }
1384 
1385 static int
1386 nvmf_tcp_accept(void *ctx)
1387 {
1388 	struct spdk_nvmf_transport *transport = ctx;
1389 	struct spdk_nvmf_tcp_transport *ttransport;
1390 	struct spdk_nvmf_tcp_port *port;
1391 	uint32_t count = 0;
1392 
1393 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1394 
1395 	TAILQ_FOREACH(port, &ttransport->ports, link) {
1396 		count += nvmf_tcp_port_accept(transport, port);
1397 	}
1398 
1399 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1400 }
1401 
1402 static void
1403 nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
1404 		  struct spdk_nvme_transport_id *trid,
1405 		  struct spdk_nvmf_discovery_log_page_entry *entry)
1406 {
1407 	struct spdk_nvmf_tcp_port *port;
1408 	struct spdk_nvmf_tcp_transport *ttransport;
1409 
1410 	entry->trtype = SPDK_NVMF_TRTYPE_TCP;
1411 	entry->adrfam = trid->adrfam;
1412 
1413 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
1414 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
1415 
1416 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1417 	port = nvmf_tcp_find_port(ttransport, trid);
1418 
1419 	assert(port != NULL);
1420 
1421 	if (strcmp(spdk_sock_get_impl_name(port->listen_sock), "ssl") == 0) {
1422 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_REQUIRED;
1423 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_TLS_1_3;
1424 	} else {
1425 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
1426 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
1427 	}
1428 }
1429 
1430 static struct spdk_nvmf_tcp_control_msg_list *
1431 nvmf_tcp_control_msg_list_create(uint16_t num_messages)
1432 {
1433 	struct spdk_nvmf_tcp_control_msg_list *list;
1434 	struct spdk_nvmf_tcp_control_msg *msg;
1435 	uint16_t i;
1436 
1437 	list = calloc(1, sizeof(*list));
1438 	if (!list) {
1439 		SPDK_ERRLOG("Failed to allocate memory for list structure\n");
1440 		return NULL;
1441 	}
1442 
1443 	list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
1444 				     NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
1445 	if (!list->msg_buf) {
1446 		SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
1447 		free(list);
1448 		return NULL;
1449 	}
1450 
1451 	STAILQ_INIT(&list->free_msgs);
1452 
1453 	for (i = 0; i < num_messages; i++) {
1454 		msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
1455 				SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1456 		STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
1457 	}
1458 
1459 	return list;
1460 }
1461 
1462 static void
1463 nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
1464 {
1465 	if (!list) {
1466 		return;
1467 	}
1468 
1469 	spdk_free(list->msg_buf);
1470 	free(list);
1471 }
1472 
1473 static struct spdk_nvmf_transport_poll_group *
1474 nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport,
1475 			   struct spdk_nvmf_poll_group *group)
1476 {
1477 	struct spdk_nvmf_tcp_transport	*ttransport;
1478 	struct spdk_nvmf_tcp_poll_group *tgroup;
1479 
1480 	tgroup = calloc(1, sizeof(*tgroup));
1481 	if (!tgroup) {
1482 		return NULL;
1483 	}
1484 
1485 	tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
1486 	if (!tgroup->sock_group) {
1487 		goto cleanup;
1488 	}
1489 
1490 	TAILQ_INIT(&tgroup->qpairs);
1491 	TAILQ_INIT(&tgroup->await_req);
1492 
1493 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1494 
1495 	if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
1496 		SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
1497 			      "Creating control messages list\n", transport->opts.in_capsule_data_size,
1498 			      SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1499 		tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
1500 		if (!tgroup->control_msg_list) {
1501 			goto cleanup;
1502 		}
1503 	}
1504 
1505 	tgroup->accel_channel = spdk_accel_get_io_channel();
1506 	if (spdk_unlikely(!tgroup->accel_channel)) {
1507 		SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
1508 		goto cleanup;
1509 	}
1510 
1511 	TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link);
1512 	if (ttransport->next_pg == NULL) {
1513 		ttransport->next_pg = tgroup;
1514 	}
1515 
1516 	return &tgroup->group;
1517 
1518 cleanup:
1519 	nvmf_tcp_poll_group_destroy(&tgroup->group);
1520 	return NULL;
1521 }
1522 
1523 static struct spdk_nvmf_transport_poll_group *
1524 nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
1525 {
1526 	struct spdk_nvmf_tcp_transport *ttransport;
1527 	struct spdk_nvmf_tcp_poll_group **pg;
1528 	struct spdk_nvmf_tcp_qpair *tqpair;
1529 	struct spdk_sock_group *group = NULL, *hint = NULL;
1530 	int rc;
1531 
1532 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
1533 
1534 	if (TAILQ_EMPTY(&ttransport->poll_groups)) {
1535 		return NULL;
1536 	}
1537 
1538 	pg = &ttransport->next_pg;
1539 	assert(*pg != NULL);
1540 	hint = (*pg)->sock_group;
1541 
1542 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1543 	rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint);
1544 	if (rc != 0) {
1545 		return NULL;
1546 	} else if (group != NULL) {
1547 		/* Optimal poll group was found */
1548 		return spdk_sock_group_get_ctx(group);
1549 	}
1550 
1551 	/* The hint was used for optimal poll group, advance next_pg. */
1552 	*pg = TAILQ_NEXT(*pg, link);
1553 	if (*pg == NULL) {
1554 		*pg = TAILQ_FIRST(&ttransport->poll_groups);
1555 	}
1556 
1557 	return spdk_sock_group_get_ctx(hint);
1558 }
1559 
1560 static void
1561 nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
1562 {
1563 	struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup;
1564 	struct spdk_nvmf_tcp_transport *ttransport;
1565 
1566 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
1567 	spdk_sock_group_close(&tgroup->sock_group);
1568 	if (tgroup->control_msg_list) {
1569 		nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
1570 	}
1571 
1572 	if (tgroup->accel_channel) {
1573 		spdk_put_io_channel(tgroup->accel_channel);
1574 	}
1575 
1576 	if (tgroup->group.transport == NULL) {
1577 		/* Transport can be NULL when nvmf_tcp_poll_group_create()
1578 		 * calls this function directly in a failure path. */
1579 		free(tgroup);
1580 		return;
1581 	}
1582 
1583 	ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport);
1584 
1585 	next_tgroup = TAILQ_NEXT(tgroup, link);
1586 	TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link);
1587 	if (next_tgroup == NULL) {
1588 		next_tgroup = TAILQ_FIRST(&ttransport->poll_groups);
1589 	}
1590 	if (ttransport->next_pg == tgroup) {
1591 		ttransport->next_pg = next_tgroup;
1592 	}
1593 
1594 	free(tgroup);
1595 }
1596 
1597 static void
1598 nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1599 			      enum nvme_tcp_pdu_recv_state state)
1600 {
1601 	if (tqpair->recv_state == state) {
1602 		SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
1603 			    tqpair, state);
1604 		return;
1605 	}
1606 
1607 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_QUIESCING)) {
1608 		if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH && tqpair->pdu_in_progress) {
1609 			SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, tqpair->pdu_in_progress, slist);
1610 			tqpair->tcp_pdu_working_count--;
1611 		}
1612 	}
1613 
1614 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_ERROR)) {
1615 		assert(tqpair->tcp_pdu_working_count == 0);
1616 	}
1617 
1618 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1619 		/* When leaving the await req state, move the qpair to the main list */
1620 		TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link);
1621 		TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link);
1622 	} else if (state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1623 		TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link);
1624 		TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link);
1625 	}
1626 
1627 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
1628 	tqpair->recv_state = state;
1629 
1630 	spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0,
1631 			  (uint64_t)tqpair->recv_state);
1632 }
1633 
1634 static int
1635 nvmf_tcp_qpair_handle_timeout(void *ctx)
1636 {
1637 	struct spdk_nvmf_tcp_qpair *tqpair = ctx;
1638 
1639 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1640 
1641 	SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
1642 		    SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
1643 
1644 	nvmf_tcp_qpair_disconnect(tqpair);
1645 	return SPDK_POLLER_BUSY;
1646 }
1647 
1648 static void
1649 nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
1650 {
1651 	struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
1652 
1653 	if (!tqpair->timeout_poller) {
1654 		tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
1655 					 SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
1656 	}
1657 }
1658 
1659 static void
1660 nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
1661 			   enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
1662 {
1663 	struct nvme_tcp_pdu *rsp_pdu;
1664 	struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
1665 	uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
1666 	uint32_t copy_len;
1667 
1668 	rsp_pdu = tqpair->mgmt_pdu;
1669 
1670 	c2h_term_req = &rsp_pdu->hdr.term_req;
1671 	c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
1672 	c2h_term_req->common.hlen = c2h_term_req_hdr_len;
1673 	c2h_term_req->fes = fes;
1674 
1675 	if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1676 	    (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1677 		DSET32(&c2h_term_req->fei, error_offset);
1678 	}
1679 
1680 	copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
1681 
1682 	/* Copy the error info into the buffer */
1683 	memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
1684 	nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
1685 
1686 	/* Contain the header of the wrong received pdu */
1687 	c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
1688 	tqpair->wait_terminate = true;
1689 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1690 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair);
1691 }
1692 
1693 static void
1694 nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1695 				struct spdk_nvmf_tcp_qpair *tqpair,
1696 				struct nvme_tcp_pdu *pdu)
1697 {
1698 	struct spdk_nvmf_tcp_req *tcp_req;
1699 
1700 	assert(pdu->psh_valid_bytes == pdu->psh_len);
1701 	assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
1702 
1703 	tcp_req = nvmf_tcp_req_get(tqpair);
1704 	if (!tcp_req) {
1705 		/* Directly return and make the allocation retry again.  This can happen if we're
1706 		 * using asynchronous writes to send the response to the host or when releasing
1707 		 * zero-copy buffers after a response has been sent.  In both cases, the host might
1708 		 * receive the response before we've finished processing the request and is free to
1709 		 * send another one.
1710 		 */
1711 		if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 ||
1712 		    tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) {
1713 			return;
1714 		}
1715 
1716 		/* The host sent more commands than the maximum queue depth. */
1717 		SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
1718 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1719 		return;
1720 	}
1721 
1722 	pdu->req = tcp_req;
1723 	assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
1724 	nvmf_tcp_req_process(ttransport, tcp_req);
1725 }
1726 
1727 static void
1728 nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1729 				    struct spdk_nvmf_tcp_qpair *tqpair,
1730 				    struct nvme_tcp_pdu *pdu)
1731 {
1732 	struct spdk_nvmf_tcp_req *tcp_req;
1733 	struct spdk_nvme_tcp_cmd *capsule_cmd;
1734 	uint32_t error_offset = 0;
1735 	enum spdk_nvme_tcp_term_req_fes fes;
1736 	struct spdk_nvme_cpl *rsp;
1737 
1738 	capsule_cmd = &pdu->hdr.capsule_cmd;
1739 	tcp_req = pdu->req;
1740 	assert(tcp_req != NULL);
1741 
1742 	/* Zero-copy requests don't support ICD */
1743 	assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req));
1744 
1745 	if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
1746 		SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
1747 			    SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
1748 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1749 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
1750 		goto err;
1751 	}
1752 
1753 	rsp = &tcp_req->req.rsp->nvme_cpl;
1754 	if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1755 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1756 	} else {
1757 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1758 	}
1759 
1760 	nvmf_tcp_req_process(ttransport, tcp_req);
1761 
1762 	return;
1763 err:
1764 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1765 }
1766 
1767 static void
1768 nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1769 			     struct spdk_nvmf_tcp_qpair *tqpair,
1770 			     struct nvme_tcp_pdu *pdu)
1771 {
1772 	struct spdk_nvmf_tcp_req *tcp_req;
1773 	uint32_t error_offset = 0;
1774 	enum spdk_nvme_tcp_term_req_fes fes = 0;
1775 	struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
1776 
1777 	h2c_data = &pdu->hdr.h2c_data;
1778 
1779 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
1780 		      tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
1781 
1782 	if (h2c_data->ttag > tqpair->resource_count) {
1783 		SPDK_DEBUGLOG(nvmf_tcp, "ttag %u is larger than allowed %u.\n", h2c_data->ttag,
1784 			      tqpair->resource_count);
1785 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1786 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1787 		goto err;
1788 	}
1789 
1790 	tcp_req = &tqpair->reqs[h2c_data->ttag - 1];
1791 
1792 	if (spdk_unlikely(tcp_req->state != TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER &&
1793 			  tcp_req->state != TCP_REQUEST_STATE_AWAITING_R2T_ACK)) {
1794 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, has error state in %d\n", tcp_req, tqpair,
1795 			      tcp_req->state);
1796 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1797 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1798 		goto err;
1799 	}
1800 
1801 	if (spdk_unlikely(tcp_req->req.cmd->nvme_cmd.cid != h2c_data->cccid)) {
1802 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, expected %u but %u for cccid.\n", tcp_req, tqpair,
1803 			      tcp_req->req.cmd->nvme_cmd.cid, h2c_data->cccid);
1804 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1805 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
1806 		goto err;
1807 	}
1808 
1809 	if (tcp_req->h2c_offset != h2c_data->datao) {
1810 		SPDK_DEBUGLOG(nvmf_tcp,
1811 			      "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
1812 			      tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
1813 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1814 		goto err;
1815 	}
1816 
1817 	if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
1818 		SPDK_DEBUGLOG(nvmf_tcp,
1819 			      "tcp_req(%p), tqpair=%p,  (datao=%u + datal=%u) exceeds requested length=%u\n",
1820 			      tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
1821 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1822 		goto err;
1823 	}
1824 
1825 	pdu->req = tcp_req;
1826 
1827 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
1828 		pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
1829 	}
1830 
1831 	nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
1832 				  h2c_data->datao, h2c_data->datal);
1833 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1834 	return;
1835 
1836 err:
1837 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1838 }
1839 
1840 static void
1841 nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
1842 			       struct spdk_nvmf_tcp_qpair *tqpair)
1843 {
1844 	struct nvme_tcp_pdu *rsp_pdu;
1845 	struct spdk_nvme_tcp_rsp *capsule_resp;
1846 
1847 	SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
1848 
1849 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1850 	assert(rsp_pdu != NULL);
1851 
1852 	capsule_resp = &rsp_pdu->hdr.capsule_resp;
1853 	capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
1854 	capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
1855 	capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
1856 	if (tqpair->host_hdgst_enable) {
1857 		capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1858 		capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1859 	}
1860 
1861 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req);
1862 }
1863 
1864 static void
1865 nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
1866 {
1867 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1868 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
1869 					     struct spdk_nvmf_tcp_qpair, qpair);
1870 
1871 	assert(tqpair != NULL);
1872 
1873 	if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
1874 		SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
1875 			      tcp_req->req.length);
1876 		_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
1877 		return;
1878 	}
1879 
1880 	if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
1881 		nvmf_tcp_request_free(tcp_req);
1882 	} else {
1883 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
1884 	}
1885 }
1886 
1887 static void
1888 nvmf_tcp_r2t_complete(void *cb_arg)
1889 {
1890 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1891 	struct spdk_nvmf_tcp_transport *ttransport;
1892 
1893 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
1894 				      struct spdk_nvmf_tcp_transport, transport);
1895 
1896 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
1897 
1898 	if (tcp_req->h2c_offset == tcp_req->req.length) {
1899 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1900 		nvmf_tcp_req_process(ttransport, tcp_req);
1901 	}
1902 }
1903 
1904 static void
1905 nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1906 		      struct spdk_nvmf_tcp_req *tcp_req)
1907 {
1908 	struct nvme_tcp_pdu *rsp_pdu;
1909 	struct spdk_nvme_tcp_r2t_hdr *r2t;
1910 
1911 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1912 	assert(rsp_pdu != NULL);
1913 
1914 	r2t = &rsp_pdu->hdr.r2t;
1915 	r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
1916 	r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
1917 
1918 	if (tqpair->host_hdgst_enable) {
1919 		r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1920 		r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1921 	}
1922 
1923 	r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
1924 	r2t->ttag = tcp_req->ttag;
1925 	r2t->r2to = tcp_req->h2c_offset;
1926 	r2t->r2tl = tcp_req->req.length;
1927 
1928 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
1929 
1930 	SPDK_DEBUGLOG(nvmf_tcp,
1931 		      "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
1932 		      tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
1933 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req);
1934 }
1935 
1936 static void
1937 nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1938 				 struct spdk_nvmf_tcp_qpair *tqpair,
1939 				 struct nvme_tcp_pdu *pdu)
1940 {
1941 	struct spdk_nvmf_tcp_req *tcp_req;
1942 	struct spdk_nvme_cpl *rsp;
1943 
1944 	tcp_req = pdu->req;
1945 	assert(tcp_req != NULL);
1946 
1947 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1948 
1949 	tcp_req->h2c_offset += pdu->data_len;
1950 
1951 	/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
1952 	 * acknowledged before moving on. */
1953 	if (tcp_req->h2c_offset == tcp_req->req.length &&
1954 	    tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
1955 		/* After receiving all the h2c data, we need to check whether there is
1956 		 * transient transport error */
1957 		rsp = &tcp_req->req.rsp->nvme_cpl;
1958 		if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1959 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1960 		} else {
1961 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1962 		}
1963 		nvmf_tcp_req_process(ttransport, tcp_req);
1964 	}
1965 }
1966 
1967 static void
1968 nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
1969 {
1970 	SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
1971 		    spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
1972 	if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1973 	    (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1974 		SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
1975 			      DGET32(h2c_term_req->fei));
1976 	}
1977 }
1978 
1979 static void
1980 nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1981 				 struct nvme_tcp_pdu *pdu)
1982 {
1983 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1984 	uint32_t error_offset = 0;
1985 	enum spdk_nvme_tcp_term_req_fes fes;
1986 
1987 	if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
1988 		SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
1989 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1990 		error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
1991 		goto end;
1992 	}
1993 
1994 	/* set the data buffer */
1995 	nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
1996 			      h2c_term_req->common.plen - h2c_term_req->common.hlen);
1997 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1998 	return;
1999 end:
2000 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2001 }
2002 
2003 static void
2004 nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2005 				     struct nvme_tcp_pdu *pdu)
2006 {
2007 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
2008 
2009 	nvmf_tcp_h2c_term_req_dump(h2c_term_req);
2010 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2011 }
2012 
2013 static void
2014 _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2015 {
2016 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2017 			struct spdk_nvmf_tcp_transport, transport);
2018 
2019 	switch (pdu->hdr.common.pdu_type) {
2020 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2021 		nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
2022 		break;
2023 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2024 		nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
2025 		break;
2026 
2027 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2028 		nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
2029 		break;
2030 
2031 	default:
2032 		/* The code should not go to here */
2033 		SPDK_ERRLOG("ERROR pdu type %d\n", pdu->hdr.common.pdu_type);
2034 		break;
2035 	}
2036 	SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
2037 	tqpair->tcp_pdu_working_count--;
2038 }
2039 
2040 static inline void
2041 nvmf_tcp_req_set_cpl(struct spdk_nvmf_tcp_req *treq, int sct, int sc)
2042 {
2043 	treq->req.rsp->nvme_cpl.status.sct = sct;
2044 	treq->req.rsp->nvme_cpl.status.sc = sc;
2045 	treq->req.rsp->nvme_cpl.cid = treq->req.cmd->nvme_cmd.cid;
2046 }
2047 
2048 static void
2049 data_crc32_calc_done(void *cb_arg, int status)
2050 {
2051 	struct nvme_tcp_pdu *pdu = cb_arg;
2052 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
2053 
2054 	/* async crc32 calculation is failed and use direct calculation to check */
2055 	if (spdk_unlikely(status)) {
2056 		SPDK_ERRLOG("Data digest on tqpair=(%p) with pdu=%p failed to be calculated asynchronously\n",
2057 			    tqpair, pdu);
2058 		pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2059 	}
2060 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
2061 	if (!MATCH_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32)) {
2062 		SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2063 		assert(pdu->req != NULL);
2064 		nvmf_tcp_req_set_cpl(pdu->req, SPDK_NVME_SCT_GENERIC,
2065 				     SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR);
2066 	}
2067 	_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2068 }
2069 
2070 static void
2071 nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2072 {
2073 	int rc = 0;
2074 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2075 	tqpair->pdu_in_progress = NULL;
2076 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2077 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2078 	/* check data digest if need */
2079 	if (pdu->ddgst_enable) {
2080 		if (tqpair->qpair.qid != 0 && !pdu->dif_ctx && tqpair->group &&
2081 		    (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)) {
2082 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
2083 						       pdu->data_iovcnt, 0, data_crc32_calc_done, pdu);
2084 			if (spdk_likely(rc == 0)) {
2085 				return;
2086 			}
2087 		} else {
2088 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2089 		}
2090 		data_crc32_calc_done(pdu, rc);
2091 	} else {
2092 		_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2093 	}
2094 }
2095 
2096 static void
2097 nvmf_tcp_send_icresp_complete(void *cb_arg)
2098 {
2099 	struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
2100 
2101 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_RUNNING);
2102 }
2103 
2104 static void
2105 nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
2106 		      struct spdk_nvmf_tcp_qpair *tqpair,
2107 		      struct nvme_tcp_pdu *pdu)
2108 {
2109 	struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
2110 	struct nvme_tcp_pdu *rsp_pdu;
2111 	struct spdk_nvme_tcp_ic_resp *ic_resp;
2112 	uint32_t error_offset = 0;
2113 	enum spdk_nvme_tcp_term_req_fes fes;
2114 
2115 	/* Only PFV 0 is defined currently */
2116 	if (ic_req->pfv != 0) {
2117 		SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
2118 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2119 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
2120 		goto end;
2121 	}
2122 
2123 	/* This value is 0’s based value in units of dwords should not be larger than SPDK_NVME_TCP_HPDA_MAX */
2124 	if (ic_req->hpda > SPDK_NVME_TCP_HPDA_MAX) {
2125 		SPDK_ERRLOG("ICReq HPDA out of range 0 to 31, got %u\n", ic_req->hpda);
2126 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2127 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, hpda);
2128 		goto end;
2129 	}
2130 
2131 	/* MAXR2T is 0's based */
2132 	SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
2133 
2134 	tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
2135 	if (!tqpair->host_hdgst_enable) {
2136 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2137 	}
2138 
2139 	tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
2140 	if (!tqpair->host_ddgst_enable) {
2141 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2142 	}
2143 
2144 	tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
2145 	/* Now that we know whether digests are enabled, properly size the receive buffer */
2146 	if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
2147 		SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
2148 			     tqpair,
2149 			     tqpair->recv_buf_size);
2150 		/* Not fatal. */
2151 	}
2152 
2153 	tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
2154 	SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
2155 
2156 	rsp_pdu = tqpair->mgmt_pdu;
2157 
2158 	ic_resp = &rsp_pdu->hdr.ic_resp;
2159 	ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
2160 	ic_resp->common.hlen = ic_resp->common.plen =  sizeof(*ic_resp);
2161 	ic_resp->pfv = 0;
2162 	ic_resp->cpda = tqpair->cpda;
2163 	ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
2164 	ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
2165 	ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
2166 
2167 	SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
2168 	SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
2169 
2170 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INITIALIZING);
2171 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair);
2172 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2173 	return;
2174 end:
2175 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2176 }
2177 
2178 static void
2179 nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2180 			struct spdk_nvmf_tcp_transport *ttransport)
2181 {
2182 	struct nvme_tcp_pdu *pdu;
2183 	int rc;
2184 	uint32_t crc32c, error_offset = 0;
2185 	enum spdk_nvme_tcp_term_req_fes fes;
2186 
2187 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2188 	pdu = tqpair->pdu_in_progress;
2189 
2190 	SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
2191 		      pdu->hdr.common.pdu_type);
2192 	/* check header digest if needed */
2193 	if (pdu->has_hdgst) {
2194 		SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
2195 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
2196 		rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
2197 		if (rc == 0) {
2198 			SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2199 			fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
2200 			nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2201 			return;
2202 
2203 		}
2204 	}
2205 
2206 	switch (pdu->hdr.common.pdu_type) {
2207 	case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
2208 		nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
2209 		break;
2210 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2211 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
2212 		break;
2213 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2214 		nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
2215 		break;
2216 
2217 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2218 		nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
2219 		break;
2220 
2221 	default:
2222 		SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
2223 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2224 		error_offset = 1;
2225 		nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2226 		break;
2227 	}
2228 }
2229 
2230 static void
2231 nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
2232 {
2233 	struct nvme_tcp_pdu *pdu;
2234 	uint32_t error_offset = 0;
2235 	enum spdk_nvme_tcp_term_req_fes fes;
2236 	uint8_t expected_hlen, pdo;
2237 	bool plen_error = false, pdo_error = false;
2238 
2239 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2240 	pdu = tqpair->pdu_in_progress;
2241 	assert(pdu);
2242 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
2243 		if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) {
2244 			SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
2245 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2246 			goto err;
2247 		}
2248 		expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
2249 		if (pdu->hdr.common.plen != expected_hlen) {
2250 			plen_error = true;
2251 		}
2252 	} else {
2253 		if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) {
2254 			SPDK_ERRLOG("The TCP/IP connection is not negotiated\n");
2255 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2256 			goto err;
2257 		}
2258 
2259 		switch (pdu->hdr.common.pdu_type) {
2260 		case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2261 			expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
2262 			pdo = pdu->hdr.common.pdo;
2263 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2264 				pdo_error = true;
2265 				break;
2266 			}
2267 
2268 			if (pdu->hdr.common.plen < expected_hlen) {
2269 				plen_error = true;
2270 			}
2271 			break;
2272 		case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2273 			expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
2274 			pdo = pdu->hdr.common.pdo;
2275 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2276 				pdo_error = true;
2277 				break;
2278 			}
2279 			if (pdu->hdr.common.plen < expected_hlen) {
2280 				plen_error = true;
2281 			}
2282 			break;
2283 
2284 		case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2285 			expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
2286 			if ((pdu->hdr.common.plen <= expected_hlen) ||
2287 			    (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
2288 				plen_error = true;
2289 			}
2290 			break;
2291 
2292 		default:
2293 			SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
2294 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2295 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
2296 			goto err;
2297 		}
2298 	}
2299 
2300 	if (pdu->hdr.common.hlen != expected_hlen) {
2301 		SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
2302 			    pdu->hdr.common.pdu_type,
2303 			    expected_hlen, pdu->hdr.common.hlen, tqpair);
2304 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2305 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
2306 		goto err;
2307 	} else if (pdo_error) {
2308 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2309 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
2310 	} else if (plen_error) {
2311 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2312 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2313 		goto err;
2314 	} else {
2315 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2316 		nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
2317 		return;
2318 	}
2319 err:
2320 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2321 }
2322 
2323 static int
2324 nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
2325 {
2326 	int rc = 0;
2327 	struct nvme_tcp_pdu *pdu;
2328 	enum nvme_tcp_pdu_recv_state prev_state;
2329 	uint32_t data_len;
2330 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2331 			struct spdk_nvmf_tcp_transport, transport);
2332 
2333 	/* The loop here is to allow for several back-to-back state changes. */
2334 	do {
2335 		prev_state = tqpair->recv_state;
2336 		SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
2337 
2338 		pdu = tqpair->pdu_in_progress;
2339 		assert(pdu != NULL ||
2340 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY ||
2341 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_QUIESCING ||
2342 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
2343 
2344 		switch (tqpair->recv_state) {
2345 		/* Wait for the common header  */
2346 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
2347 			if (!pdu) {
2348 				pdu = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
2349 				if (spdk_unlikely(!pdu)) {
2350 					return NVME_TCP_PDU_IN_PROGRESS;
2351 				}
2352 				SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
2353 				tqpair->pdu_in_progress = pdu;
2354 				tqpair->tcp_pdu_working_count++;
2355 			}
2356 			memset(pdu, 0, offsetof(struct nvme_tcp_pdu, qpair));
2357 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2358 		/* FALLTHROUGH */
2359 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
2360 			if (spdk_unlikely(tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING)) {
2361 				return rc;
2362 			}
2363 
2364 			rc = nvme_tcp_read_data(tqpair->sock,
2365 						sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
2366 						(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
2367 			if (rc < 0) {
2368 				SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
2369 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2370 				break;
2371 			} else if (rc > 0) {
2372 				pdu->ch_valid_bytes += rc;
2373 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0);
2374 			}
2375 
2376 			if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
2377 				return NVME_TCP_PDU_IN_PROGRESS;
2378 			}
2379 
2380 			/* The command header of this PDU has now been read from the socket. */
2381 			nvmf_tcp_pdu_ch_handle(tqpair);
2382 			break;
2383 		/* Wait for the pdu specific header  */
2384 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
2385 			rc = nvme_tcp_read_data(tqpair->sock,
2386 						pdu->psh_len - pdu->psh_valid_bytes,
2387 						(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
2388 			if (rc < 0) {
2389 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2390 				break;
2391 			} else if (rc > 0) {
2392 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0);
2393 				pdu->psh_valid_bytes += rc;
2394 			}
2395 
2396 			if (pdu->psh_valid_bytes < pdu->psh_len) {
2397 				return NVME_TCP_PDU_IN_PROGRESS;
2398 			}
2399 
2400 			/* All header(ch, psh, head digist) of this PDU has now been read from the socket. */
2401 			nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
2402 			break;
2403 		/* Wait for the req slot */
2404 		case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
2405 			nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
2406 			break;
2407 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
2408 			/* check whether the data is valid, if not we just return */
2409 			if (!pdu->data_len) {
2410 				return NVME_TCP_PDU_IN_PROGRESS;
2411 			}
2412 
2413 			data_len = pdu->data_len;
2414 			/* data digest */
2415 			if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
2416 					  tqpair->host_ddgst_enable)) {
2417 				data_len += SPDK_NVME_TCP_DIGEST_LEN;
2418 				pdu->ddgst_enable = true;
2419 			}
2420 
2421 			rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
2422 			if (rc < 0) {
2423 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2424 				break;
2425 			}
2426 			pdu->rw_offset += rc;
2427 
2428 			if (pdu->rw_offset < data_len) {
2429 				return NVME_TCP_PDU_IN_PROGRESS;
2430 			}
2431 
2432 			/* Generate and insert DIF to whole data block received if DIF is enabled */
2433 			if (spdk_unlikely(pdu->dif_ctx != NULL) &&
2434 			    spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt, 0, data_len,
2435 						     pdu->dif_ctx) != 0) {
2436 				SPDK_ERRLOG("DIF generate failed\n");
2437 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2438 				break;
2439 			}
2440 
2441 			/* All of this PDU has now been read from the socket. */
2442 			nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2443 			break;
2444 		case NVME_TCP_PDU_RECV_STATE_QUIESCING:
2445 			if (tqpair->tcp_pdu_working_count != 0) {
2446 				return NVME_TCP_PDU_IN_PROGRESS;
2447 			}
2448 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
2449 			break;
2450 		case NVME_TCP_PDU_RECV_STATE_ERROR:
2451 			if (spdk_sock_is_connected(tqpair->sock) && tqpair->wait_terminate) {
2452 				return NVME_TCP_PDU_IN_PROGRESS;
2453 			}
2454 			return NVME_TCP_PDU_FATAL;
2455 		default:
2456 			SPDK_ERRLOG("The state(%d) is invalid\n", tqpair->recv_state);
2457 			abort();
2458 			break;
2459 		}
2460 	} while (tqpair->recv_state != prev_state);
2461 
2462 	return rc;
2463 }
2464 
2465 static inline void *
2466 nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list)
2467 {
2468 	struct spdk_nvmf_tcp_control_msg *msg;
2469 
2470 	assert(list);
2471 
2472 	msg = STAILQ_FIRST(&list->free_msgs);
2473 	if (!msg) {
2474 		SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
2475 		return NULL;
2476 	}
2477 	STAILQ_REMOVE_HEAD(&list->free_msgs, link);
2478 	return msg;
2479 }
2480 
2481 static inline void
2482 nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
2483 {
2484 	struct spdk_nvmf_tcp_control_msg *msg = _msg;
2485 
2486 	assert(list);
2487 	STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
2488 }
2489 
2490 static int
2491 nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
2492 		       struct spdk_nvmf_transport *transport,
2493 		       struct spdk_nvmf_transport_poll_group *group)
2494 {
2495 	struct spdk_nvmf_request		*req = &tcp_req->req;
2496 	struct spdk_nvme_cmd			*cmd;
2497 	struct spdk_nvme_sgl_descriptor		*sgl;
2498 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2499 	enum spdk_nvme_tcp_term_req_fes		fes;
2500 	struct nvme_tcp_pdu			*pdu;
2501 	struct spdk_nvmf_tcp_qpair		*tqpair;
2502 	uint32_t				length, error_offset = 0;
2503 
2504 	cmd = &req->cmd->nvme_cmd;
2505 	sgl = &cmd->dptr.sgl1;
2506 
2507 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
2508 	    sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
2509 		/* get request length from sgl */
2510 		length = sgl->unkeyed.length;
2511 		if (spdk_unlikely(length > transport->opts.max_io_size)) {
2512 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
2513 				    length, transport->opts.max_io_size);
2514 			fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2515 			goto fatal_err;
2516 		}
2517 
2518 		/* fill request length and populate iovs */
2519 		req->length = length;
2520 
2521 		SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
2522 
2523 		if (spdk_unlikely(req->dif_enabled)) {
2524 			req->dif.orig_length = length;
2525 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2526 			req->dif.elba_length = length;
2527 		}
2528 
2529 		if (nvmf_ctrlr_use_zcopy(req)) {
2530 			SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req);
2531 			req->data_from_pool = false;
2532 			return 0;
2533 		}
2534 
2535 		if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
2536 			/* No available buffers. Queue this request up. */
2537 			SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
2538 				      tcp_req);
2539 			return 0;
2540 		}
2541 
2542 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
2543 			      tcp_req, req->iovcnt, req->iov[0].iov_base);
2544 
2545 		return 0;
2546 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
2547 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
2548 		uint64_t offset = sgl->address;
2549 		uint32_t max_len = transport->opts.in_capsule_data_size;
2550 
2551 		assert(tcp_req->has_in_capsule_data);
2552 		/* Capsule Cmd with In-capsule Data should get data length from pdu header */
2553 		tqpair = tcp_req->pdu->qpair;
2554 		/* receiving pdu is not same with the pdu in tcp_req */
2555 		pdu = tqpair->pdu_in_progress;
2556 		length = pdu->hdr.common.plen - pdu->psh_len - sizeof(struct spdk_nvme_tcp_common_pdu_hdr);
2557 		if (tqpair->host_ddgst_enable) {
2558 			length -= SPDK_NVME_TCP_DIGEST_LEN;
2559 		}
2560 		/* This error is not defined in NVMe/TCP spec, take this error as fatal error */
2561 		if (spdk_unlikely(length != sgl->unkeyed.length)) {
2562 			SPDK_ERRLOG("In-Capsule Data length 0x%x is not equal to SGL data length 0x%x\n",
2563 				    length, sgl->unkeyed.length);
2564 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2565 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2566 			goto fatal_err;
2567 		}
2568 
2569 		SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
2570 			      offset, length);
2571 
2572 		/* The NVMe/TCP transport does not use ICDOFF to control the in-capsule data offset. ICDOFF should be '0' */
2573 		if (spdk_unlikely(offset != 0)) {
2574 			/* Not defined fatal error in NVMe/TCP spec, handle this error as a fatal error */
2575 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " should be ZERO in NVMe/TCP\n", offset);
2576 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2577 			error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.address);
2578 			goto fatal_err;
2579 		}
2580 
2581 		if (spdk_unlikely(length > max_len)) {
2582 			/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
2583 			if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
2584 			    (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
2585 
2586 				/* Get a buffer from dedicated list */
2587 				SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
2588 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2589 				assert(tgroup->control_msg_list);
2590 				req->iov[0].iov_base = nvmf_tcp_control_msg_get(tgroup->control_msg_list);
2591 				if (!req->iov[0].iov_base) {
2592 					/* No available buffers. Queue this request up. */
2593 					SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
2594 					return 0;
2595 				}
2596 			} else {
2597 				SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
2598 					    length, max_len);
2599 				fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2600 				goto fatal_err;
2601 			}
2602 		} else {
2603 			req->iov[0].iov_base = tcp_req->buf;
2604 		}
2605 
2606 		req->length = length;
2607 		req->data_from_pool = false;
2608 
2609 		if (spdk_unlikely(req->dif_enabled)) {
2610 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2611 			req->dif.elba_length = length;
2612 		}
2613 
2614 		req->iov[0].iov_len = length;
2615 		req->iovcnt = 1;
2616 
2617 		return 0;
2618 	}
2619 	/* If we want to handle the problem here, then we can't skip the following data segment.
2620 	 * Because this function runs before reading data part, now handle all errors as fatal errors. */
2621 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2622 		    sgl->generic.type, sgl->generic.subtype);
2623 	fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2624 	error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.generic);
2625 fatal_err:
2626 	nvmf_tcp_send_c2h_term_req(tcp_req->pdu->qpair, tcp_req->pdu, fes, error_offset);
2627 	return -1;
2628 }
2629 
2630 static inline enum spdk_nvme_media_error_status_code
2631 nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
2632 	enum spdk_nvme_media_error_status_code result;
2633 
2634 	switch (err_type)
2635 	{
2636 	case SPDK_DIF_REFTAG_ERROR:
2637 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
2638 		break;
2639 	case SPDK_DIF_APPTAG_ERROR:
2640 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
2641 		break;
2642 	case SPDK_DIF_GUARD_ERROR:
2643 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
2644 		break;
2645 	default:
2646 		SPDK_UNREACHABLE();
2647 		break;
2648 	}
2649 
2650 	return result;
2651 }
2652 
2653 static void
2654 _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2655 			struct spdk_nvmf_tcp_req *tcp_req)
2656 {
2657 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
2658 				tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
2659 	struct nvme_tcp_pdu *rsp_pdu;
2660 	struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
2661 	uint32_t plen, pdo, alignment;
2662 	int rc;
2663 
2664 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2665 
2666 	rsp_pdu = tcp_req->pdu;
2667 	assert(rsp_pdu != NULL);
2668 
2669 	c2h_data = &rsp_pdu->hdr.c2h_data;
2670 	c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
2671 	plen = c2h_data->common.hlen = sizeof(*c2h_data);
2672 
2673 	if (tqpair->host_hdgst_enable) {
2674 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2675 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2676 	}
2677 
2678 	/* set the psh */
2679 	c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2680 	c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
2681 	c2h_data->datao = tcp_req->pdu->rw_offset;
2682 
2683 	/* set the padding */
2684 	rsp_pdu->padding_len = 0;
2685 	pdo = plen;
2686 	if (tqpair->cpda) {
2687 		alignment = (tqpair->cpda + 1) << 2;
2688 		if (plen % alignment != 0) {
2689 			pdo = (plen + alignment) / alignment * alignment;
2690 			rsp_pdu->padding_len = pdo - plen;
2691 			plen = pdo;
2692 		}
2693 	}
2694 
2695 	c2h_data->common.pdo = pdo;
2696 	plen += c2h_data->datal;
2697 	if (tqpair->host_ddgst_enable) {
2698 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
2699 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2700 	}
2701 
2702 	c2h_data->common.plen = plen;
2703 
2704 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2705 		rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2706 	}
2707 
2708 	nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2709 				  c2h_data->datao, c2h_data->datal);
2710 
2711 
2712 	c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
2713 	/* Need to send the capsule response if response is not all 0 */
2714 	if (ttransport->tcp_opts.c2h_success &&
2715 	    tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
2716 		c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
2717 	}
2718 
2719 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2720 		struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
2721 		struct spdk_dif_error err_blk = {};
2722 		uint32_t mapped_length = 0;
2723 		uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
2724 		uint32_t ddgst_len = 0;
2725 
2726 		if (tqpair->host_ddgst_enable) {
2727 			/* Data digest consumes additional iov entry */
2728 			available_iovs--;
2729 			/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
2730 			ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
2731 			c2h_data->common.plen -= ddgst_len;
2732 		}
2733 		/* Temp call to estimate if data can be described by limited number of iovs.
2734 		 * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
2735 		nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
2736 				    false, &mapped_length);
2737 
2738 		if (mapped_length != c2h_data->common.plen) {
2739 			c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
2740 			SPDK_DEBUGLOG(nvmf_tcp,
2741 				      "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
2742 				      c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
2743 			c2h_data->common.plen = mapped_length;
2744 
2745 			/* Rebuild pdu->data_iov since data length is changed */
2746 			nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
2747 						  c2h_data->datal);
2748 
2749 			c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
2750 						    SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
2751 		}
2752 
2753 		c2h_data->common.plen += ddgst_len;
2754 
2755 		assert(rsp_pdu->rw_offset <= tcp_req->req.length);
2756 
2757 		rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
2758 					    0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
2759 		if (rc != 0) {
2760 			SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
2761 				    err_blk.err_type, err_blk.err_offset);
2762 			rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2763 			rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
2764 			nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2765 			return;
2766 		}
2767 	}
2768 
2769 	rsp_pdu->rw_offset += c2h_data->datal;
2770 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
2771 }
2772 
2773 static void
2774 nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2775 		       struct spdk_nvmf_tcp_req *tcp_req)
2776 {
2777 	nvmf_tcp_req_pdu_init(tcp_req);
2778 	_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2779 }
2780 
2781 static int
2782 request_transfer_out(struct spdk_nvmf_request *req)
2783 {
2784 	struct spdk_nvmf_tcp_req	*tcp_req;
2785 	struct spdk_nvmf_qpair		*qpair;
2786 	struct spdk_nvmf_tcp_qpair	*tqpair;
2787 	struct spdk_nvme_cpl		*rsp;
2788 
2789 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2790 
2791 	qpair = req->qpair;
2792 	rsp = &req->rsp->nvme_cpl;
2793 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
2794 
2795 	/* Advance our sq_head pointer */
2796 	if (qpair->sq_head == qpair->sq_head_max) {
2797 		qpair->sq_head = 0;
2798 	} else {
2799 		qpair->sq_head++;
2800 	}
2801 	rsp->sqhd = qpair->sq_head;
2802 
2803 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2804 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
2805 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2806 		nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2807 	} else {
2808 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2809 	}
2810 
2811 	return 0;
2812 }
2813 
2814 static void
2815 nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport,
2816 			      struct spdk_nvmf_tcp_qpair *tqpair,
2817 			      struct spdk_nvmf_tcp_req *tcp_req)
2818 {
2819 	enum spdk_nvme_cmd_fuse last, next;
2820 
2821 	last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2822 	next = tcp_req->cmd.fuse;
2823 
2824 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2825 
2826 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2827 		return;
2828 	}
2829 
2830 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2831 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2832 			/* This is a valid pair of fused commands.  Point them at each other
2833 			 * so they can be submitted consecutively once ready to be executed.
2834 			 */
2835 			tqpair->fused_first->fused_pair = tcp_req;
2836 			tcp_req->fused_pair = tqpair->fused_first;
2837 			tqpair->fused_first = NULL;
2838 			return;
2839 		} else {
2840 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2841 			tqpair->fused_first->fused_failed = true;
2842 
2843 			/*
2844 			 * If the last req is in READY_TO_EXECUTE state, then call
2845 			 * nvmf_tcp_req_process(), otherwise nothing else will kick it.
2846 			 */
2847 			if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2848 				nvmf_tcp_req_process(ttransport, tqpair->fused_first);
2849 			}
2850 
2851 			tqpair->fused_first = NULL;
2852 		}
2853 	}
2854 
2855 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2856 		/* Set tqpair->fused_first here so that we know to check that the next request
2857 		 * is a SECOND (and to fail this one if it isn't).
2858 		 */
2859 		tqpair->fused_first = tcp_req;
2860 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2861 		/* Mark this req failed since it is a SECOND and the last one was not a FIRST. */
2862 		tcp_req->fused_failed = true;
2863 	}
2864 }
2865 
2866 static bool
2867 nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
2868 		     struct spdk_nvmf_tcp_req *tcp_req)
2869 {
2870 	struct spdk_nvmf_tcp_qpair		*tqpair;
2871 	uint32_t				plen;
2872 	struct nvme_tcp_pdu			*pdu;
2873 	enum spdk_nvmf_tcp_req_state		prev_state;
2874 	bool					progress = false;
2875 	struct spdk_nvmf_transport		*transport = &ttransport->transport;
2876 	struct spdk_nvmf_transport_poll_group	*group;
2877 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2878 
2879 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2880 	group = &tqpair->group->group;
2881 	assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
2882 
2883 	/* If the qpair is not active, we need to abort the outstanding requests. */
2884 	if (!spdk_nvmf_qpair_is_active(&tqpair->qpair)) {
2885 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
2886 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2887 		}
2888 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
2889 	}
2890 
2891 	/* The loop here is to allow for several back-to-back state changes. */
2892 	do {
2893 		prev_state = tcp_req->state;
2894 
2895 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
2896 			      tqpair);
2897 
2898 		switch (tcp_req->state) {
2899 		case TCP_REQUEST_STATE_FREE:
2900 			/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
2901 			 * to escape this state. */
2902 			break;
2903 		case TCP_REQUEST_STATE_NEW:
2904 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req,
2905 					  tqpair->qpair.queue_depth);
2906 
2907 			/* copy the cmd from the receive pdu */
2908 			tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
2909 
2910 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
2911 				tcp_req->req.dif_enabled = true;
2912 				tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
2913 			}
2914 
2915 			nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req);
2916 
2917 			/* The next state transition depends on the data transfer needs of this request. */
2918 			tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
2919 
2920 			if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2921 				nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_INVALID_OPCODE);
2922 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2923 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2924 				SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
2925 				break;
2926 			}
2927 
2928 			/* If no data to transfer, ready to execute. */
2929 			if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
2930 				/* Reset the tqpair receiving pdu state */
2931 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2932 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2933 				break;
2934 			}
2935 
2936 			pdu = tqpair->pdu_in_progress;
2937 			plen = pdu->hdr.common.hlen;
2938 			if (tqpair->host_hdgst_enable) {
2939 				plen += SPDK_NVME_TCP_DIGEST_LEN;
2940 			}
2941 			if (pdu->hdr.common.plen != plen) {
2942 				tcp_req->has_in_capsule_data = true;
2943 			} else {
2944 				/* Data is transmitted by C2H PDUs */
2945 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2946 			}
2947 
2948 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
2949 			STAILQ_INSERT_TAIL(&group->pending_buf_queue, &tcp_req->req, buf_link);
2950 			break;
2951 		case TCP_REQUEST_STATE_NEED_BUFFER:
2952 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.trace_id, 0,
2953 					  (uintptr_t)tcp_req);
2954 
2955 			assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
2956 
2957 			if (!tcp_req->has_in_capsule_data && (&tcp_req->req != STAILQ_FIRST(&group->pending_buf_queue))) {
2958 				SPDK_DEBUGLOG(nvmf_tcp,
2959 					      "Not the first element to wait for the buf for tcp_req(%p) on tqpair=%p\n",
2960 					      tcp_req, tqpair);
2961 				/* This request needs to wait in line to obtain a buffer */
2962 				break;
2963 			}
2964 
2965 			/* Try to get a data buffer */
2966 			if (nvmf_tcp_req_parse_sgl(tcp_req, transport, group) < 0) {
2967 				break;
2968 			}
2969 
2970 			/* Get a zcopy buffer if the request can be serviced through zcopy */
2971 			if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2972 				if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2973 					assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2974 					tcp_req->req.length = tcp_req->req.dif.elba_length;
2975 				}
2976 
2977 				STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2978 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START);
2979 				spdk_nvmf_request_zcopy_start(&tcp_req->req);
2980 				break;
2981 			}
2982 
2983 			if (tcp_req->req.iovcnt < 1) {
2984 				SPDK_DEBUGLOG(nvmf_tcp, "No buffer allocated for tcp_req(%p) on tqpair(%p\n)",
2985 					      tcp_req, tqpair);
2986 				/* No buffers available. */
2987 				break;
2988 			}
2989 
2990 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2991 
2992 			/* If data is transferring from host to controller, we need to do a transfer from the host. */
2993 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2994 				if (tcp_req->req.data_from_pool) {
2995 					SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2996 					nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2997 				} else {
2998 					struct nvme_tcp_pdu *pdu;
2999 
3000 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
3001 
3002 					pdu = tqpair->pdu_in_progress;
3003 					SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
3004 						      tqpair);
3005 					/* No need to send r2t, contained in the capsuled data */
3006 					nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
3007 								  0, tcp_req->req.length);
3008 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
3009 				}
3010 				break;
3011 			}
3012 
3013 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
3014 			break;
3015 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3016 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.trace_id, 0,
3017 					  (uintptr_t)tcp_req);
3018 			/* Some external code must kick a request into  TCP_REQUEST_STATE_ZCOPY_START_COMPLETED
3019 			 * to escape this state. */
3020 			break;
3021 		case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
3022 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.trace_id, 0,
3023 					  (uintptr_t)tcp_req);
3024 			if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) {
3025 				SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n",
3026 					      tcp_req, tqpair);
3027 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3028 				break;
3029 			}
3030 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
3031 				SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
3032 				nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
3033 			} else {
3034 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3035 			}
3036 			break;
3037 		case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3038 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.trace_id, 0,
3039 					  (uintptr_t)tcp_req);
3040 			/* The R2T completion or the h2c data incoming will kick it out of this state. */
3041 			break;
3042 		case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3043 
3044 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.trace_id,
3045 					  0, (uintptr_t)tcp_req);
3046 			/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
3047 			 * to escape this state. */
3048 			break;
3049 		case TCP_REQUEST_STATE_READY_TO_EXECUTE:
3050 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.trace_id, 0,
3051 					  (uintptr_t)tcp_req);
3052 
3053 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3054 				assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
3055 				tcp_req->req.length = tcp_req->req.dif.elba_length;
3056 			}
3057 
3058 			if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
3059 				if (tcp_req->fused_failed) {
3060 					/* This request failed FUSED semantics.  Fail it immediately, without
3061 					 * even sending it to the target layer.
3062 					 */
3063 					nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_MISSING_FUSED);
3064 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3065 					break;
3066 				}
3067 
3068 				if (tcp_req->fused_pair == NULL ||
3069 				    tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3070 					/* This request is ready to execute, but either we don't know yet if it's
3071 					 * valid - i.e. this is a FIRST but we haven't received the next request yet),
3072 					 * or the other request of this fused pair isn't ready to execute. So
3073 					 * break here and this request will get processed later either when the
3074 					 * other request is ready or we find that this request isn't valid.
3075 					 */
3076 					break;
3077 				}
3078 			}
3079 
3080 			if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
3081 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
3082 				/* If we get to this point, and this request is a fused command, we know that
3083 				 * it is part of a valid sequence (FIRST followed by a SECOND) and that both
3084 				 * requests are READY_TO_EXECUTE.  So call spdk_nvmf_request_exec() both on this
3085 				 * request, and the other request of the fused pair, in the correct order.
3086 				 * Also clear the ->fused_pair pointers on both requests, since after this point
3087 				 * we no longer need to maintain the relationship between these two requests.
3088 				 */
3089 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
3090 					assert(tcp_req->fused_pair != NULL);
3091 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3092 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3093 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3094 					tcp_req->fused_pair->fused_pair = NULL;
3095 					tcp_req->fused_pair = NULL;
3096 				}
3097 				spdk_nvmf_request_exec(&tcp_req->req);
3098 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
3099 					assert(tcp_req->fused_pair != NULL);
3100 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3101 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3102 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3103 					tcp_req->fused_pair->fused_pair = NULL;
3104 					tcp_req->fused_pair = NULL;
3105 				}
3106 			} else {
3107 				/* For zero-copy, only requests with data coming from host to the
3108 				 * controller can end up here. */
3109 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
3110 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT);
3111 				spdk_nvmf_request_zcopy_end(&tcp_req->req, true);
3112 			}
3113 
3114 			break;
3115 		case TCP_REQUEST_STATE_EXECUTING:
3116 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
3117 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3118 			 * to escape this state. */
3119 			break;
3120 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3121 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.trace_id, 0,
3122 					  (uintptr_t)tcp_req);
3123 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3124 			 * to escape this state. */
3125 			break;
3126 		case TCP_REQUEST_STATE_EXECUTED:
3127 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
3128 
3129 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3130 				tcp_req->req.length = tcp_req->req.dif.orig_length;
3131 			}
3132 
3133 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3134 			break;
3135 		case TCP_REQUEST_STATE_READY_TO_COMPLETE:
3136 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.trace_id, 0,
3137 					  (uintptr_t)tcp_req);
3138 			if (request_transfer_out(&tcp_req->req) != 0) {
3139 				assert(0); /* No good way to handle this currently */
3140 			}
3141 			break;
3142 		case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
3143 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.trace_id,
3144 					  0, (uintptr_t)tcp_req);
3145 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3146 			 * to escape this state. */
3147 			break;
3148 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3149 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.trace_id, 0,
3150 					  (uintptr_t)tcp_req);
3151 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3152 			 * to escape this state. */
3153 			break;
3154 		case TCP_REQUEST_STATE_COMPLETED:
3155 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req,
3156 					  tqpair->qpair.queue_depth);
3157 			/* If there's an outstanding PDU sent to the host, the request is completed
3158 			 * due to the qpair being disconnected.  We must delay the completion until
3159 			 * that write is done to avoid freeing the request twice. */
3160 			if (spdk_unlikely(tcp_req->pdu_in_use)) {
3161 				SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding "
3162 					      "write on req=%p\n", tcp_req);
3163 				/* This can only happen for zcopy requests */
3164 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3165 				assert(!spdk_nvmf_qpair_is_active(&tqpair->qpair));
3166 				break;
3167 			}
3168 
3169 			if (tcp_req->req.data_from_pool) {
3170 				spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
3171 			} else if (spdk_unlikely(tcp_req->has_in_capsule_data &&
3172 						 (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
3173 						  tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
3174 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3175 				assert(tgroup->control_msg_list);
3176 				SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
3177 				nvmf_tcp_control_msg_put(tgroup->control_msg_list,
3178 							 tcp_req->req.iov[0].iov_base);
3179 			} else if (tcp_req->req.zcopy_bdev_io != NULL) {
3180 				/* If the request has an unreleased zcopy bdev_io, it's either a
3181 				 * read, a failed write, or the qpair is being disconnected */
3182 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3183 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
3184 				       spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) ||
3185 				       !spdk_nvmf_qpair_is_active(&tqpair->qpair));
3186 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE);
3187 				spdk_nvmf_request_zcopy_end(&tcp_req->req, false);
3188 				break;
3189 			}
3190 			tcp_req->req.length = 0;
3191 			tcp_req->req.iovcnt = 0;
3192 			tcp_req->fused_failed = false;
3193 			if (tcp_req->fused_pair) {
3194 				/* This req was part of a valid fused pair, but failed before it got to
3195 				 * READ_TO_EXECUTE state.  This means we need to fail the other request
3196 				 * in the pair, because it is no longer part of a valid pair.  If the pair
3197 				 * already reached READY_TO_EXECUTE state, we need to kick it.
3198 				 */
3199 				tcp_req->fused_pair->fused_failed = true;
3200 				if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3201 					nvmf_tcp_req_process(ttransport, tcp_req->fused_pair);
3202 				}
3203 				tcp_req->fused_pair = NULL;
3204 			}
3205 
3206 			nvmf_tcp_req_put(tqpair, tcp_req);
3207 			break;
3208 		case TCP_REQUEST_NUM_STATES:
3209 		default:
3210 			assert(0);
3211 			break;
3212 		}
3213 
3214 		if (tcp_req->state != prev_state) {
3215 			progress = true;
3216 		}
3217 	} while (tcp_req->state != prev_state);
3218 
3219 	return progress;
3220 }
3221 
3222 static void
3223 nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
3224 {
3225 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
3226 	int rc;
3227 
3228 	assert(tqpair != NULL);
3229 	rc = nvmf_tcp_sock_process(tqpair);
3230 
3231 	/* If there was a new socket error, disconnect */
3232 	if (rc < 0) {
3233 		nvmf_tcp_qpair_disconnect(tqpair);
3234 	}
3235 }
3236 
3237 static int
3238 nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3239 			struct spdk_nvmf_qpair *qpair)
3240 {
3241 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3242 	struct spdk_nvmf_tcp_qpair	*tqpair;
3243 	int				rc;
3244 
3245 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3246 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3247 
3248 	rc =  nvmf_tcp_qpair_sock_init(tqpair);
3249 	if (rc != 0) {
3250 		SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
3251 		return -1;
3252 	}
3253 
3254 	rc = nvmf_tcp_qpair_init(&tqpair->qpair);
3255 	if (rc < 0) {
3256 		SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
3257 		return -1;
3258 	}
3259 
3260 	rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
3261 	if (rc < 0) {
3262 		SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
3263 		return -1;
3264 	}
3265 
3266 	rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
3267 				      nvmf_tcp_sock_cb, tqpair);
3268 	if (rc != 0) {
3269 		SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
3270 			    spdk_strerror(errno), errno);
3271 		return -1;
3272 	}
3273 
3274 	tqpair->group = tgroup;
3275 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INVALID);
3276 	TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
3277 
3278 	return 0;
3279 }
3280 
3281 static int
3282 nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3283 			   struct spdk_nvmf_qpair *qpair)
3284 {
3285 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3286 	struct spdk_nvmf_tcp_qpair		*tqpair;
3287 	int				rc;
3288 
3289 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3290 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3291 
3292 	assert(tqpair->group == tgroup);
3293 
3294 	SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
3295 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
3296 		/* Change the state to move the qpair from the await_req list to the main list
3297 		 * and prevent adding it again later by nvmf_tcp_qpair_set_recv_state() */
3298 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
3299 	}
3300 	TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
3301 
3302 	/* Try to force out any pending writes */
3303 	spdk_sock_flush(tqpair->sock);
3304 
3305 	rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
3306 	if (rc != 0) {
3307 		SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
3308 			    spdk_strerror(errno), errno);
3309 	}
3310 
3311 	return rc;
3312 }
3313 
3314 static int
3315 nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
3316 {
3317 	struct spdk_nvmf_tcp_transport *ttransport;
3318 	struct spdk_nvmf_tcp_req *tcp_req;
3319 
3320 	ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3321 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3322 
3323 	switch (tcp_req->state) {
3324 	case TCP_REQUEST_STATE_EXECUTING:
3325 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3326 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3327 		break;
3328 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3329 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED);
3330 		break;
3331 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3332 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3333 		break;
3334 	default:
3335 		SPDK_ERRLOG("Unexpected request state %d (cntlid:%d, qid:%d)\n",
3336 			    tcp_req->state, req->qpair->ctrlr->cntlid, req->qpair->qid);
3337 		assert(0 && "Unexpected request state");
3338 		break;
3339 	}
3340 
3341 	nvmf_tcp_req_process(ttransport, tcp_req);
3342 
3343 	return 0;
3344 }
3345 
3346 static void
3347 nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
3348 		     spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3349 {
3350 	struct spdk_nvmf_tcp_qpair *tqpair;
3351 
3352 	SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
3353 
3354 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3355 
3356 	assert(tqpair->fini_cb_fn == NULL);
3357 	tqpair->fini_cb_fn = cb_fn;
3358 	tqpair->fini_cb_arg = cb_arg;
3359 
3360 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITED);
3361 	nvmf_tcp_qpair_destroy(tqpair);
3362 }
3363 
3364 static int
3365 nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3366 {
3367 	struct spdk_nvmf_tcp_poll_group *tgroup;
3368 	int num_events, rc = 0, rc2;
3369 	struct spdk_nvmf_request *req, *req_tmp;
3370 	struct spdk_nvmf_tcp_req *tcp_req;
3371 	struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp;
3372 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(group->transport,
3373 			struct spdk_nvmf_tcp_transport, transport);
3374 
3375 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3376 
3377 	if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) {
3378 		return 0;
3379 	}
3380 
3381 	STAILQ_FOREACH_SAFE(req, &group->pending_buf_queue, buf_link, req_tmp) {
3382 		tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3383 		if (nvmf_tcp_req_process(ttransport, tcp_req) == false) {
3384 			break;
3385 		}
3386 	}
3387 
3388 	num_events = spdk_sock_group_poll(tgroup->sock_group);
3389 	if (spdk_unlikely(num_events < 0)) {
3390 		SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
3391 	}
3392 
3393 	TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) {
3394 		rc2 = nvmf_tcp_sock_process(tqpair);
3395 
3396 		/* If there was a new socket error, disconnect */
3397 		if (spdk_unlikely(rc2 < 0)) {
3398 			nvmf_tcp_qpair_disconnect(tqpair);
3399 			if (rc == 0) {
3400 				rc = rc2;
3401 			}
3402 		}
3403 	}
3404 
3405 	return rc == 0 ? num_events : rc;
3406 }
3407 
3408 static int
3409 nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
3410 			struct spdk_nvme_transport_id *trid, bool peer)
3411 {
3412 	struct spdk_nvmf_tcp_qpair     *tqpair;
3413 	uint16_t			port;
3414 
3415 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3416 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
3417 
3418 	if (peer) {
3419 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
3420 		port = tqpair->initiator_port;
3421 	} else {
3422 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
3423 		port = tqpair->target_port;
3424 	}
3425 
3426 	if (spdk_sock_is_ipv4(tqpair->sock)) {
3427 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3428 	} else if (spdk_sock_is_ipv6(tqpair->sock)) {
3429 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3430 	} else {
3431 		return -1;
3432 	}
3433 
3434 	snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
3435 	return 0;
3436 }
3437 
3438 static int
3439 nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3440 			      struct spdk_nvme_transport_id *trid)
3441 {
3442 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3443 }
3444 
3445 static int
3446 nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3447 			     struct spdk_nvme_transport_id *trid)
3448 {
3449 	return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
3450 }
3451 
3452 static int
3453 nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3454 			       struct spdk_nvme_transport_id *trid)
3455 {
3456 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3457 }
3458 
3459 static void
3460 nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
3461 			      struct spdk_nvmf_tcp_req *tcp_req_to_abort)
3462 {
3463 	nvmf_tcp_req_set_cpl(tcp_req_to_abort, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_BY_REQUEST);
3464 	nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3465 
3466 	req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
3467 }
3468 
3469 static int
3470 _nvmf_tcp_qpair_abort_request(void *ctx)
3471 {
3472 	struct spdk_nvmf_request *req = ctx;
3473 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
3474 			struct spdk_nvmf_tcp_req, req);
3475 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
3476 					     struct spdk_nvmf_tcp_qpair, qpair);
3477 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
3478 			struct spdk_nvmf_tcp_transport, transport);
3479 	int rc;
3480 
3481 	spdk_poller_unregister(&req->poller);
3482 
3483 	switch (tcp_req_to_abort->state) {
3484 	case TCP_REQUEST_STATE_EXECUTING:
3485 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3486 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3487 		rc = nvmf_ctrlr_abort_request(req);
3488 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
3489 			return SPDK_POLLER_BUSY;
3490 		}
3491 		break;
3492 
3493 	case TCP_REQUEST_STATE_NEED_BUFFER:
3494 		STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue,
3495 			      &tcp_req_to_abort->req, spdk_nvmf_request, buf_link);
3496 
3497 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3498 		nvmf_tcp_req_process(ttransport, tcp_req_to_abort);
3499 		break;
3500 
3501 	case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3502 	case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3503 		if (spdk_get_ticks() < req->timeout_tsc) {
3504 			req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
3505 			return SPDK_POLLER_BUSY;
3506 		}
3507 		break;
3508 
3509 	default:
3510 		/* Requests in other states are either un-abortable (e.g.
3511 		 * TRANSFERRING_CONTROLLER_TO_HOST) or should never end up here, as they're
3512 		 * immediately transitioned to other states in nvmf_tcp_req_process() (e.g.
3513 		 * READY_TO_EXECUTE).  But it is fine to end up here, as we'll simply complete the
3514 		 * abort request with the bit0 of dword0 set (command not aborted).
3515 		 */
3516 		break;
3517 	}
3518 
3519 	spdk_nvmf_request_complete(req);
3520 	return SPDK_POLLER_BUSY;
3521 }
3522 
3523 static void
3524 nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
3525 			     struct spdk_nvmf_request *req)
3526 {
3527 	struct spdk_nvmf_tcp_qpair *tqpair;
3528 	struct spdk_nvmf_tcp_transport *ttransport;
3529 	struct spdk_nvmf_transport *transport;
3530 	uint16_t cid;
3531 	uint32_t i;
3532 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
3533 
3534 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3535 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3536 	transport = &ttransport->transport;
3537 
3538 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
3539 
3540 	for (i = 0; i < tqpair->resource_count; i++) {
3541 		if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
3542 		    tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
3543 			tcp_req_to_abort = &tqpair->reqs[i];
3544 			break;
3545 		}
3546 	}
3547 
3548 	spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, tqpair->qpair.trace_id, 0, (uintptr_t)req);
3549 
3550 	if (tcp_req_to_abort == NULL) {
3551 		spdk_nvmf_request_complete(req);
3552 		return;
3553 	}
3554 
3555 	req->req_to_abort = &tcp_req_to_abort->req;
3556 	req->timeout_tsc = spdk_get_ticks() +
3557 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
3558 	req->poller = NULL;
3559 
3560 	_nvmf_tcp_qpair_abort_request(req);
3561 }
3562 
3563 struct tcp_subsystem_add_host_opts {
3564 	char *psk;
3565 };
3566 
3567 static const struct spdk_json_object_decoder tcp_subsystem_add_host_opts_decoder[] = {
3568 	{"psk", offsetof(struct tcp_subsystem_add_host_opts, psk), spdk_json_decode_string, true},
3569 };
3570 
3571 static int
3572 tcp_load_psk(const char *fname, char *buf, size_t bufsz)
3573 {
3574 	FILE *psk_file;
3575 	struct stat statbuf;
3576 	int rc;
3577 
3578 	if (stat(fname, &statbuf) != 0) {
3579 		SPDK_ERRLOG("Could not read permissions for PSK file\n");
3580 		return -EACCES;
3581 	}
3582 
3583 	if ((statbuf.st_mode & TCP_PSK_INVALID_PERMISSIONS) != 0) {
3584 		SPDK_ERRLOG("Incorrect permissions for PSK file\n");
3585 		return -EPERM;
3586 	}
3587 	if ((size_t)statbuf.st_size > bufsz) {
3588 		SPDK_ERRLOG("Invalid PSK: too long\n");
3589 		return -EINVAL;
3590 	}
3591 	psk_file = fopen(fname, "r");
3592 	if (psk_file == NULL) {
3593 		SPDK_ERRLOG("Could not open PSK file\n");
3594 		return -EINVAL;
3595 	}
3596 
3597 	rc = fread(buf, 1, statbuf.st_size, psk_file);
3598 	if (rc != statbuf.st_size) {
3599 		SPDK_ERRLOG("Failed to read PSK\n");
3600 		fclose(psk_file);
3601 		return -EINVAL;
3602 	}
3603 
3604 	fclose(psk_file);
3605 	return 0;
3606 }
3607 
3608 SPDK_LOG_DEPRECATION_REGISTER(nvmf_tcp_psk_path, "PSK path", "v24.09", 0);
3609 
3610 static int
3611 nvmf_tcp_subsystem_add_host(struct spdk_nvmf_transport *transport,
3612 			    const struct spdk_nvmf_subsystem *subsystem,
3613 			    const char *hostnqn,
3614 			    const struct spdk_json_val *transport_specific)
3615 {
3616 	struct tcp_subsystem_add_host_opts opts;
3617 	struct spdk_nvmf_tcp_transport *ttransport;
3618 	struct tcp_psk_entry *tmp, *entry = NULL;
3619 	uint8_t psk_configured[SPDK_TLS_PSK_MAX_LEN] = {};
3620 	char psk_interchange[SPDK_TLS_PSK_MAX_LEN + 1] = {};
3621 	uint8_t tls_cipher_suite;
3622 	int rc = 0;
3623 	uint8_t psk_retained_hash;
3624 	uint64_t psk_configured_size;
3625 
3626 	if (transport_specific == NULL) {
3627 		return 0;
3628 	}
3629 
3630 	assert(transport != NULL);
3631 	assert(subsystem != NULL);
3632 
3633 	memset(&opts, 0, sizeof(opts));
3634 
3635 	/* Decode PSK (either name of a key or file path) */
3636 	if (spdk_json_decode_object_relaxed(transport_specific, tcp_subsystem_add_host_opts_decoder,
3637 					    SPDK_COUNTOF(tcp_subsystem_add_host_opts_decoder), &opts)) {
3638 		SPDK_ERRLOG("spdk_json_decode_object failed\n");
3639 		return -EINVAL;
3640 	}
3641 
3642 	if (opts.psk == NULL) {
3643 		return 0;
3644 	}
3645 
3646 	entry = calloc(1, sizeof(struct tcp_psk_entry));
3647 	if (entry == NULL) {
3648 		SPDK_ERRLOG("Unable to allocate memory for PSK entry!\n");
3649 		rc = -ENOMEM;
3650 		goto end;
3651 	}
3652 
3653 	entry->key = spdk_keyring_get_key(opts.psk);
3654 	if (entry->key != NULL) {
3655 		rc = spdk_key_get_key(entry->key, psk_interchange, SPDK_TLS_PSK_MAX_LEN);
3656 		if (rc < 0) {
3657 			SPDK_ERRLOG("Failed to retreive PSK '%s'\n", opts.psk);
3658 			rc = -EINVAL;
3659 			goto end;
3660 		}
3661 	} else {
3662 		if (strlen(opts.psk) >= sizeof(entry->psk)) {
3663 			SPDK_ERRLOG("PSK path too long\n");
3664 			rc = -EINVAL;
3665 			goto end;
3666 		}
3667 
3668 		rc = tcp_load_psk(opts.psk, psk_interchange, SPDK_TLS_PSK_MAX_LEN);
3669 		if (rc) {
3670 			SPDK_ERRLOG("Could not retrieve PSK from file\n");
3671 			goto end;
3672 		}
3673 
3674 		SPDK_LOG_DEPRECATED(nvmf_tcp_psk_path);
3675 	}
3676 
3677 	/* Parse PSK interchange to get length of base64 encoded data.
3678 	 * This is then used to decide which cipher suite should be used
3679 	 * to generate PSK identity and TLS PSK later on. */
3680 	rc = nvme_tcp_parse_interchange_psk(psk_interchange, psk_configured, sizeof(psk_configured),
3681 					    &psk_configured_size, &psk_retained_hash);
3682 	if (rc < 0) {
3683 		SPDK_ERRLOG("Failed to parse PSK interchange!\n");
3684 		goto end;
3685 	}
3686 
3687 	/* The Base64 string encodes the configured PSK (32 or 48 bytes binary).
3688 	 * This check also ensures that psk_configured_size is smaller than
3689 	 * psk_retained buffer size. */
3690 	if (psk_configured_size == SHA256_DIGEST_LENGTH) {
3691 		tls_cipher_suite = NVME_TCP_CIPHER_AES_128_GCM_SHA256;
3692 	} else if (psk_configured_size == SHA384_DIGEST_LENGTH) {
3693 		tls_cipher_suite = NVME_TCP_CIPHER_AES_256_GCM_SHA384;
3694 	} else {
3695 		SPDK_ERRLOG("Unrecognized cipher suite!\n");
3696 		rc = -EINVAL;
3697 		goto end;
3698 	}
3699 
3700 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3701 	/* Generate PSK identity. */
3702 	rc = nvme_tcp_generate_psk_identity(entry->pskid, sizeof(entry->pskid), hostnqn,
3703 					    subsystem->subnqn, tls_cipher_suite);
3704 	if (rc) {
3705 		rc = -EINVAL;
3706 		goto end;
3707 	}
3708 	/* Check if PSK identity entry already exists. */
3709 	TAILQ_FOREACH(tmp, &ttransport->psks, link) {
3710 		if (strncmp(tmp->pskid, entry->pskid, NVMF_PSK_IDENTITY_LEN) == 0) {
3711 			SPDK_ERRLOG("Given PSK identity: %s entry already exists!\n", entry->pskid);
3712 			rc = -EEXIST;
3713 			goto end;
3714 		}
3715 	}
3716 
3717 	if (snprintf(entry->hostnqn, sizeof(entry->hostnqn), "%s", hostnqn) < 0) {
3718 		SPDK_ERRLOG("Could not write hostnqn string!\n");
3719 		rc = -EINVAL;
3720 		goto end;
3721 	}
3722 	if (snprintf(entry->subnqn, sizeof(entry->subnqn), "%s", subsystem->subnqn) < 0) {
3723 		SPDK_ERRLOG("Could not write subnqn string!\n");
3724 		rc = -EINVAL;
3725 		goto end;
3726 	}
3727 
3728 	entry->tls_cipher_suite = tls_cipher_suite;
3729 
3730 	/* No hash indicates that Configured PSK must be used as Retained PSK. */
3731 	if (psk_retained_hash == NVME_TCP_HASH_ALGORITHM_NONE) {
3732 		/* Psk configured is either 32 or 48 bytes long. */
3733 		memcpy(entry->psk, psk_configured, psk_configured_size);
3734 		entry->psk_size = psk_configured_size;
3735 	} else {
3736 		/* Derive retained PSK. */
3737 		rc = nvme_tcp_derive_retained_psk(psk_configured, psk_configured_size, hostnqn, entry->psk,
3738 						  SPDK_TLS_PSK_MAX_LEN, psk_retained_hash);
3739 		if (rc < 0) {
3740 			SPDK_ERRLOG("Unable to derive retained PSK!\n");
3741 			goto end;
3742 		}
3743 		entry->psk_size = rc;
3744 	}
3745 
3746 	if (entry->key == NULL) {
3747 		rc = snprintf(entry->psk_path, sizeof(entry->psk_path), "%s", opts.psk);
3748 		if (rc < 0 || (size_t)rc >= sizeof(entry->psk_path)) {
3749 			SPDK_ERRLOG("Could not save PSK path!\n");
3750 			rc = -ENAMETOOLONG;
3751 			goto end;
3752 		}
3753 	}
3754 
3755 	TAILQ_INSERT_TAIL(&ttransport->psks, entry, link);
3756 	rc = 0;
3757 
3758 end:
3759 	spdk_memset_s(psk_configured, sizeof(psk_configured), 0, sizeof(psk_configured));
3760 	spdk_memset_s(psk_interchange, sizeof(psk_interchange), 0, sizeof(psk_interchange));
3761 
3762 	free(opts.psk);
3763 	if (rc != 0) {
3764 		nvmf_tcp_free_psk_entry(entry);
3765 	}
3766 
3767 	return rc;
3768 }
3769 
3770 static void
3771 nvmf_tcp_subsystem_remove_host(struct spdk_nvmf_transport *transport,
3772 			       const struct spdk_nvmf_subsystem *subsystem,
3773 			       const char *hostnqn)
3774 {
3775 	struct spdk_nvmf_tcp_transport *ttransport;
3776 	struct tcp_psk_entry *entry, *tmp;
3777 
3778 	assert(transport != NULL);
3779 	assert(subsystem != NULL);
3780 
3781 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3782 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
3783 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3784 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3785 			TAILQ_REMOVE(&ttransport->psks, entry, link);
3786 			nvmf_tcp_free_psk_entry(entry);
3787 			break;
3788 		}
3789 	}
3790 }
3791 
3792 static void
3793 nvmf_tcp_subsystem_dump_host(struct spdk_nvmf_transport *transport,
3794 			     const struct spdk_nvmf_subsystem *subsystem, const char *hostnqn,
3795 			     struct spdk_json_write_ctx *w)
3796 {
3797 	struct spdk_nvmf_tcp_transport *ttransport;
3798 	struct tcp_psk_entry *entry;
3799 
3800 	assert(transport != NULL);
3801 	assert(subsystem != NULL);
3802 
3803 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3804 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
3805 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3806 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3807 			spdk_json_write_named_string(w, "psk", entry->key ?
3808 						     spdk_key_get_name(entry->key) : entry->psk_path);
3809 			break;
3810 		}
3811 	}
3812 }
3813 
3814 static void
3815 nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
3816 {
3817 	opts->max_queue_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
3818 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
3819 	opts->in_capsule_data_size =	SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
3820 	opts->max_io_size =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
3821 	opts->io_unit_size =		SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
3822 	opts->max_aq_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
3823 	opts->num_shared_buffers =	SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
3824 	opts->buf_cache_size =		SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
3825 	opts->dif_insert_or_strip =	SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
3826 	opts->abort_timeout_sec =	SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
3827 	opts->transport_specific =      NULL;
3828 }
3829 
3830 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
3831 	.name = "TCP",
3832 	.type = SPDK_NVME_TRANSPORT_TCP,
3833 	.opts_init = nvmf_tcp_opts_init,
3834 	.create = nvmf_tcp_create,
3835 	.dump_opts = nvmf_tcp_dump_opts,
3836 	.destroy = nvmf_tcp_destroy,
3837 
3838 	.listen = nvmf_tcp_listen,
3839 	.stop_listen = nvmf_tcp_stop_listen,
3840 
3841 	.listener_discover = nvmf_tcp_discover,
3842 
3843 	.poll_group_create = nvmf_tcp_poll_group_create,
3844 	.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
3845 	.poll_group_destroy = nvmf_tcp_poll_group_destroy,
3846 	.poll_group_add = nvmf_tcp_poll_group_add,
3847 	.poll_group_remove = nvmf_tcp_poll_group_remove,
3848 	.poll_group_poll = nvmf_tcp_poll_group_poll,
3849 
3850 	.req_free = nvmf_tcp_req_free,
3851 	.req_complete = nvmf_tcp_req_complete,
3852 
3853 	.qpair_fini = nvmf_tcp_close_qpair,
3854 	.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
3855 	.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
3856 	.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
3857 	.qpair_abort_request = nvmf_tcp_qpair_abort_request,
3858 	.subsystem_add_host = nvmf_tcp_subsystem_add_host,
3859 	.subsystem_remove_host = nvmf_tcp_subsystem_remove_host,
3860 	.subsystem_dump_host = nvmf_tcp_subsystem_dump_host,
3861 };
3862 
3863 SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
3864 SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)
3865