xref: /spdk/lib/nvmf/tcp.c (revision 838e61c3772fdefb17e1a0b8f9880e2bcb9c4c0d)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2018 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/accel.h"
8 #include "spdk/stdinc.h"
9 #include "spdk/crc32.h"
10 #include "spdk/endian.h"
11 #include "spdk/assert.h"
12 #include "spdk/thread.h"
13 #include "spdk/nvmf_transport.h"
14 #include "spdk/string.h"
15 #include "spdk/trace.h"
16 #include "spdk/util.h"
17 #include "spdk/log.h"
18 
19 #include "spdk_internal/assert.h"
20 #include "spdk_internal/nvme_tcp.h"
21 #include "spdk_internal/sock.h"
22 
23 #include "nvmf_internal.h"
24 
25 #include "spdk_internal/trace_defs.h"
26 
27 #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
28 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
29 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
30 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
31 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
32 
33 #define SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH 2
34 #define SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH 65535
35 #define SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH 2
36 #define SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH 4096
37 
38 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH 128
39 #define SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH 128
40 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
41 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
42 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
43 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
44 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
45 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX
46 #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
47 #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
48 
49 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
50 
51 /* spdk nvmf related structure */
52 enum spdk_nvmf_tcp_req_state {
53 
54 	/* The request is not currently in use */
55 	TCP_REQUEST_STATE_FREE = 0,
56 
57 	/* Initial state when request first received */
58 	TCP_REQUEST_STATE_NEW = 1,
59 
60 	/* The request is queued until a data buffer is available. */
61 	TCP_REQUEST_STATE_NEED_BUFFER = 2,
62 
63 	/* The request is waiting for zcopy_start to finish */
64 	TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 3,
65 
66 	/* The request has received a zero-copy buffer */
67 	TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 4,
68 
69 	/* The request is currently transferring data from the host to the controller. */
70 	TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 5,
71 
72 	/* The request is waiting for the R2T send acknowledgement. */
73 	TCP_REQUEST_STATE_AWAITING_R2T_ACK = 6,
74 
75 	/* The request is ready to execute at the block device */
76 	TCP_REQUEST_STATE_READY_TO_EXECUTE = 7,
77 
78 	/* The request is currently executing at the block device */
79 	TCP_REQUEST_STATE_EXECUTING = 8,
80 
81 	/* The request is waiting for zcopy buffers to be committed */
82 	TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 9,
83 
84 	/* The request finished executing at the block device */
85 	TCP_REQUEST_STATE_EXECUTED = 10,
86 
87 	/* The request is ready to send a completion */
88 	TCP_REQUEST_STATE_READY_TO_COMPLETE = 11,
89 
90 	/* The request is currently transferring final pdus from the controller to the host. */
91 	TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 12,
92 
93 	/* The request is waiting for zcopy buffers to be released (without committing) */
94 	TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 13,
95 
96 	/* The request completed and can be marked free. */
97 	TCP_REQUEST_STATE_COMPLETED = 14,
98 
99 	/* Terminator */
100 	TCP_REQUEST_NUM_STATES,
101 };
102 
103 static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
104 	"Invalid PDU Header Field",
105 	"PDU Sequence Error",
106 	"Header Digiest Error",
107 	"Data Transfer Out of Range",
108 	"R2T Limit Exceeded",
109 	"Unsupported parameter",
110 };
111 
112 SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
113 {
114 	spdk_trace_register_owner(OWNER_NVMF_TCP, 't');
115 	spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
116 	spdk_trace_register_description("TCP_REQ_NEW",
117 					TRACE_TCP_REQUEST_STATE_NEW,
118 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1,
119 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
120 	spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
121 					TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
122 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
123 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
124 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START",
125 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START,
126 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
127 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
128 	spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL",
129 					TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED,
130 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
131 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
132 	spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
133 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
134 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
135 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
136 	spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
137 					TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
138 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
139 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
140 	spdk_trace_register_description("TCP_REQ_EXECUTING",
141 					TRACE_TCP_REQUEST_STATE_EXECUTING,
142 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
143 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
144 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT",
145 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT,
146 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
147 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
148 	spdk_trace_register_description("TCP_REQ_EXECUTED",
149 					TRACE_TCP_REQUEST_STATE_EXECUTED,
150 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
151 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
152 	spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
153 					TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
154 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
155 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
156 	spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
157 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
158 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
159 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
160 	spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS",
161 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE,
162 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
163 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
164 	spdk_trace_register_description("TCP_REQ_COMPLETED",
165 					TRACE_TCP_REQUEST_STATE_COMPLETED,
166 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
167 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
168 	spdk_trace_register_description("TCP_WRITE_START",
169 					TRACE_TCP_FLUSH_WRITEBUF_START,
170 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
171 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
172 	spdk_trace_register_description("TCP_WRITE_DONE",
173 					TRACE_TCP_FLUSH_WRITEBUF_DONE,
174 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
175 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
176 	spdk_trace_register_description("TCP_READ_DONE",
177 					TRACE_TCP_READ_FROM_SOCKET_DONE,
178 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
179 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
180 	spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
181 					TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
182 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
183 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
184 
185 	spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE,
186 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
187 					SPDK_TRACE_ARG_TYPE_INT, "");
188 	spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT,
189 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
190 					SPDK_TRACE_ARG_TYPE_INT, "");
191 	spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE,
192 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
193 					SPDK_TRACE_ARG_TYPE_INT, "state");
194 	spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT,
195 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
196 					SPDK_TRACE_ARG_TYPE_INT, "");
197 	spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY,
198 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
199 					SPDK_TRACE_ARG_TYPE_INT, "");
200 	spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ,
201 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
202 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
203 	spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE,
204 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
205 					SPDK_TRACE_ARG_TYPE_INT, "state");
206 
207 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1);
208 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0);
209 }
210 
211 struct spdk_nvmf_tcp_req  {
212 	struct spdk_nvmf_request		req;
213 	struct spdk_nvme_cpl			rsp;
214 	struct spdk_nvme_cmd			cmd;
215 
216 	/* A PDU that can be used for sending responses. This is
217 	 * not the incoming PDU! */
218 	struct nvme_tcp_pdu			*pdu;
219 
220 	/* In-capsule data buffer */
221 	uint8_t					*buf;
222 
223 	struct spdk_nvmf_tcp_req		*fused_pair;
224 
225 	/*
226 	 * The PDU for a request may be used multiple times in serial over
227 	 * the request's lifetime. For example, first to send an R2T, then
228 	 * to send a completion. To catch mistakes where the PDU is used
229 	 * twice at the same time, add a debug flag here for init/fini.
230 	 */
231 	bool					pdu_in_use;
232 	bool					has_in_capsule_data;
233 	bool					fused_failed;
234 
235 	/* transfer_tag */
236 	uint16_t				ttag;
237 
238 	enum spdk_nvmf_tcp_req_state		state;
239 
240 	/*
241 	 * h2c_offset is used when we receive the h2c_data PDU.
242 	 */
243 	uint32_t				h2c_offset;
244 
245 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		link;
246 	TAILQ_ENTRY(spdk_nvmf_tcp_req)		state_link;
247 };
248 
249 struct spdk_nvmf_tcp_qpair {
250 	struct spdk_nvmf_qpair			qpair;
251 	struct spdk_nvmf_tcp_poll_group		*group;
252 	struct spdk_sock			*sock;
253 
254 	enum nvme_tcp_pdu_recv_state		recv_state;
255 	enum nvme_tcp_qpair_state		state;
256 
257 	/* PDU being actively received */
258 	struct nvme_tcp_pdu			*pdu_in_progress;
259 
260 	struct spdk_nvmf_tcp_req		*fused_first;
261 
262 	/* Queues to track the requests in all states */
263 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_working_queue;
264 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_free_queue;
265 	SLIST_HEAD(, nvme_tcp_pdu)		tcp_pdu_free_queue;
266 	/* Number of working pdus */
267 	uint32_t				tcp_pdu_working_count;
268 
269 	/* Number of requests in each state */
270 	uint32_t				state_cntr[TCP_REQUEST_NUM_STATES];
271 
272 	uint8_t					cpda;
273 
274 	bool					host_hdgst_enable;
275 	bool					host_ddgst_enable;
276 
277 	/* This is a spare PDU used for sending special management
278 	 * operations. Primarily, this is used for the initial
279 	 * connection response and c2h termination request. */
280 	struct nvme_tcp_pdu			*mgmt_pdu;
281 
282 	/* Arrays of in-capsule buffers, requests, and pdus.
283 	 * Each array is 'resource_count' number of elements */
284 	void					*bufs;
285 	struct spdk_nvmf_tcp_req		*reqs;
286 	struct nvme_tcp_pdu			*pdus;
287 	uint32_t				resource_count;
288 	uint32_t				recv_buf_size;
289 
290 	struct spdk_nvmf_tcp_port		*port;
291 
292 	/* IP address */
293 	char					initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
294 	char					target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
295 
296 	/* IP port */
297 	uint16_t				initiator_port;
298 	uint16_t				target_port;
299 
300 	/* Timer used to destroy qpair after detecting transport error issue if initiator does
301 	 *  not close the connection.
302 	 */
303 	struct spdk_poller			*timeout_poller;
304 
305 	spdk_nvmf_transport_qpair_fini_cb	fini_cb_fn;
306 	void					*fini_cb_arg;
307 
308 	TAILQ_ENTRY(spdk_nvmf_tcp_qpair)	link;
309 };
310 
311 struct spdk_nvmf_tcp_control_msg {
312 	STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
313 };
314 
315 struct spdk_nvmf_tcp_control_msg_list {
316 	void *msg_buf;
317 	STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
318 };
319 
320 struct spdk_nvmf_tcp_poll_group {
321 	struct spdk_nvmf_transport_poll_group	group;
322 	struct spdk_sock_group			*sock_group;
323 
324 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	qpairs;
325 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	await_req;
326 
327 	struct spdk_io_channel			*accel_channel;
328 	struct spdk_nvmf_tcp_control_msg_list	*control_msg_list;
329 
330 	TAILQ_ENTRY(spdk_nvmf_tcp_poll_group)	link;
331 };
332 
333 struct spdk_nvmf_tcp_port {
334 	const struct spdk_nvme_transport_id	*trid;
335 	struct spdk_sock			*listen_sock;
336 	TAILQ_ENTRY(spdk_nvmf_tcp_port)		link;
337 };
338 
339 struct tcp_transport_opts {
340 	bool		c2h_success;
341 	uint16_t	control_msg_num;
342 	uint32_t	sock_priority;
343 };
344 
345 struct spdk_nvmf_tcp_transport {
346 	struct spdk_nvmf_transport		transport;
347 	struct tcp_transport_opts               tcp_opts;
348 
349 	struct spdk_nvmf_tcp_poll_group		*next_pg;
350 
351 	struct spdk_poller			*accept_poller;
352 
353 	TAILQ_HEAD(, spdk_nvmf_tcp_port)	ports;
354 	TAILQ_HEAD(, spdk_nvmf_tcp_poll_group)	poll_groups;
355 };
356 
357 static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
358 	{
359 		"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
360 		spdk_json_decode_bool, true
361 	},
362 	{
363 		"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
364 		spdk_json_decode_uint16, true
365 	},
366 	{
367 		"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
368 		spdk_json_decode_uint32, true
369 	},
370 };
371 
372 static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
373 				 struct spdk_nvmf_tcp_req *tcp_req);
374 static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
375 
376 static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
377 				    struct spdk_nvmf_tcp_req *tcp_req);
378 
379 static inline void
380 nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
381 		       enum spdk_nvmf_tcp_req_state state)
382 {
383 	struct spdk_nvmf_qpair *qpair;
384 	struct spdk_nvmf_tcp_qpair *tqpair;
385 
386 	qpair = tcp_req->req.qpair;
387 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
388 
389 	assert(tqpair->state_cntr[tcp_req->state] > 0);
390 	tqpair->state_cntr[tcp_req->state]--;
391 	tqpair->state_cntr[state]++;
392 
393 	tcp_req->state = state;
394 }
395 
396 static inline struct nvme_tcp_pdu *
397 nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
398 {
399 	assert(tcp_req->pdu_in_use == false);
400 
401 	memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
402 	tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
403 
404 	return tcp_req->pdu;
405 }
406 
407 static struct spdk_nvmf_tcp_req *
408 nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
409 {
410 	struct spdk_nvmf_tcp_req *tcp_req;
411 
412 	tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
413 	if (spdk_unlikely(!tcp_req)) {
414 		return NULL;
415 	}
416 
417 	memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
418 	tcp_req->h2c_offset = 0;
419 	tcp_req->has_in_capsule_data = false;
420 	tcp_req->req.dif_enabled = false;
421 	tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE;
422 
423 	TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
424 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
425 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
426 	return tcp_req;
427 }
428 
429 static inline void
430 nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
431 {
432 	assert(!tcp_req->pdu_in_use);
433 
434 	TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
435 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
436 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
437 }
438 
439 static void
440 nvmf_tcp_request_free(void *cb_arg)
441 {
442 	struct spdk_nvmf_tcp_transport *ttransport;
443 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
444 
445 	assert(tcp_req != NULL);
446 
447 	SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
448 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
449 				      struct spdk_nvmf_tcp_transport, transport);
450 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
451 	nvmf_tcp_req_process(ttransport, tcp_req);
452 }
453 
454 static int
455 nvmf_tcp_req_free(struct spdk_nvmf_request *req)
456 {
457 	struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
458 
459 	nvmf_tcp_request_free(tcp_req);
460 
461 	return 0;
462 }
463 
464 static void
465 nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
466 			   enum spdk_nvmf_tcp_req_state state)
467 {
468 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
469 
470 	assert(state != TCP_REQUEST_STATE_FREE);
471 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
472 		if (state == tcp_req->state) {
473 			nvmf_tcp_request_free(tcp_req);
474 		}
475 	}
476 }
477 
478 static void
479 nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
480 {
481 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
482 
483 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
484 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
485 
486 	/* Wipe the requests waiting for buffer from the global list */
487 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
488 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
489 			STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue, &tcp_req->req,
490 				      spdk_nvmf_request, buf_link);
491 		}
492 	}
493 
494 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
495 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
496 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
497 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
498 }
499 
500 static void
501 nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
502 {
503 	int i;
504 	struct spdk_nvmf_tcp_req *tcp_req;
505 
506 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
507 	for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
508 		SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
509 		TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
510 			if ((int)tcp_req->state == i) {
511 				SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
512 				SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
513 			}
514 		}
515 	}
516 }
517 
518 static void
519 _nvmf_tcp_qpair_destroy(void *_tqpair)
520 {
521 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
522 	spdk_nvmf_transport_qpair_fini_cb cb_fn = tqpair->fini_cb_fn;
523 	void *cb_arg = tqpair->fini_cb_arg;
524 	int err = 0;
525 
526 	spdk_trace_record(TRACE_TCP_QP_DESTROY, 0, 0, (uintptr_t)tqpair);
527 
528 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
529 
530 	err = spdk_sock_close(&tqpair->sock);
531 	assert(err == 0);
532 	nvmf_tcp_cleanup_all_states(tqpair);
533 
534 	if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
535 		SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
536 			    tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
537 			    tqpair->resource_count);
538 		err++;
539 	}
540 
541 	if (err > 0) {
542 		nvmf_tcp_dump_qpair_req_contents(tqpair);
543 	}
544 
545 	/* The timeout poller might still be registered here if we close the qpair before host
546 	 * terminates the connection.
547 	 */
548 	spdk_poller_unregister(&tqpair->timeout_poller);
549 	spdk_dma_free(tqpair->pdus);
550 	free(tqpair->reqs);
551 	spdk_free(tqpair->bufs);
552 	free(tqpair);
553 
554 	if (cb_fn != NULL) {
555 		cb_fn(cb_arg);
556 	}
557 
558 	SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
559 }
560 
561 static void
562 nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
563 {
564 	/* Delay the destruction to make sure it isn't performed from the context of a sock
565 	 * callback.  Otherwise, spdk_sock_close() might not abort pending requests, causing their
566 	 * completions to be executed after the qpair is freed.  (Note: this fixed issue #2471.)
567 	 */
568 	spdk_thread_send_msg(spdk_get_thread(), _nvmf_tcp_qpair_destroy, tqpair);
569 }
570 
571 static void
572 nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
573 {
574 	struct spdk_nvmf_tcp_transport	*ttransport;
575 	assert(w != NULL);
576 
577 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
578 	spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
579 	spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
580 }
581 
582 static int
583 nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
584 		 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
585 {
586 	struct spdk_nvmf_tcp_transport	*ttransport;
587 
588 	assert(transport != NULL);
589 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
590 
591 	spdk_poller_unregister(&ttransport->accept_poller);
592 	free(ttransport);
593 
594 	if (cb_fn) {
595 		cb_fn(cb_arg);
596 	}
597 	return 0;
598 }
599 
600 static int nvmf_tcp_accept(void *ctx);
601 
602 static struct spdk_nvmf_transport *
603 nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
604 {
605 	struct spdk_nvmf_tcp_transport *ttransport;
606 	uint32_t sge_count;
607 	uint32_t min_shared_buffers;
608 
609 	ttransport = calloc(1, sizeof(*ttransport));
610 	if (!ttransport) {
611 		return NULL;
612 	}
613 
614 	TAILQ_INIT(&ttransport->ports);
615 	TAILQ_INIT(&ttransport->poll_groups);
616 
617 	ttransport->transport.ops = &spdk_nvmf_transport_tcp;
618 
619 	ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
620 	ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
621 	ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
622 	if (opts->transport_specific != NULL &&
623 	    spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
624 					    SPDK_COUNTOF(tcp_transport_opts_decoder),
625 					    &ttransport->tcp_opts)) {
626 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
627 		free(ttransport);
628 		return NULL;
629 	}
630 
631 	SPDK_NOTICELOG("*** TCP Transport Init ***\n");
632 
633 	SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
634 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
635 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
636 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
637 		     "  num_shared_buffers=%d, c2h_success=%d,\n"
638 		     "  dif_insert_or_strip=%d, sock_priority=%d\n"
639 		     "  abort_timeout_sec=%d, control_msg_num=%hu\n",
640 		     opts->max_queue_depth,
641 		     opts->max_io_size,
642 		     opts->max_qpairs_per_ctrlr - 1,
643 		     opts->io_unit_size,
644 		     opts->in_capsule_data_size,
645 		     opts->max_aq_depth,
646 		     opts->num_shared_buffers,
647 		     ttransport->tcp_opts.c2h_success,
648 		     opts->dif_insert_or_strip,
649 		     ttransport->tcp_opts.sock_priority,
650 		     opts->abort_timeout_sec,
651 		     ttransport->tcp_opts.control_msg_num);
652 
653 	if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
654 		SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
655 			    "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
656 			    ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
657 		free(ttransport);
658 		return NULL;
659 	}
660 
661 	if (ttransport->tcp_opts.control_msg_num == 0 &&
662 	    opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
663 		SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
664 			     SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
665 		ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
666 	}
667 
668 	/* I/O unit size cannot be larger than max I/O size */
669 	if (opts->io_unit_size > opts->max_io_size) {
670 		SPDK_WARNLOG("TCP param io_unit_size %u can't be larger than max_io_size %u. Using max_io_size as io_unit_size\n",
671 			     opts->io_unit_size, opts->max_io_size);
672 		opts->io_unit_size = opts->max_io_size;
673 	}
674 
675 	/* In capsule data size cannot be larger than max I/O size */
676 	if (opts->in_capsule_data_size > opts->max_io_size) {
677 		SPDK_WARNLOG("TCP param ICD size %u can't be larger than max_io_size %u. Using max_io_size as ICD size\n",
678 			     opts->io_unit_size, opts->max_io_size);
679 		opts->in_capsule_data_size = opts->max_io_size;
680 	}
681 
682 	/* max IO queue depth cannot be smaller than 2 or larger than 65535.
683 	 * We will not check SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, because max_queue_depth is 16bits and always not larger than 64k. */
684 	if (opts->max_queue_depth < SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH) {
685 		SPDK_WARNLOG("TCP param max_queue_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
686 			     opts->max_queue_depth, SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH,
687 			     SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH);
688 		opts->max_queue_depth = SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
689 	}
690 
691 	/* max admin queue depth cannot be smaller than 2 or larger than 4096 */
692 	if (opts->max_aq_depth < SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH ||
693 	    opts->max_aq_depth > SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH) {
694 		SPDK_WARNLOG("TCP param max_aq_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
695 			     opts->max_aq_depth, SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH,
696 			     SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH);
697 		opts->max_aq_depth = SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
698 	}
699 
700 	sge_count = opts->max_io_size / opts->io_unit_size;
701 	if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
702 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
703 		free(ttransport);
704 		return NULL;
705 	}
706 
707 	/* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */
708 	if (opts->buf_cache_size < UINT32_MAX) {
709 		min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
710 		if (min_shared_buffers > opts->num_shared_buffers) {
711 			SPDK_ERRLOG("There are not enough buffers to satisfy "
712 				    "per-poll group caches for each thread. (%" PRIu32 ") "
713 				    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
714 			SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
715 			free(ttransport);
716 			return NULL;
717 		}
718 	}
719 
720 	ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport,
721 				    opts->acceptor_poll_rate);
722 	if (!ttransport->accept_poller) {
723 		free(ttransport);
724 		return NULL;
725 	}
726 
727 	return &ttransport->transport;
728 }
729 
730 static int
731 nvmf_tcp_trsvcid_to_int(const char *trsvcid)
732 {
733 	unsigned long long ull;
734 	char *end = NULL;
735 
736 	ull = strtoull(trsvcid, &end, 10);
737 	if (end == NULL || end == trsvcid || *end != '\0') {
738 		return -1;
739 	}
740 
741 	/* Valid TCP/IP port numbers are in [0, 65535] */
742 	if (ull > 65535) {
743 		return -1;
744 	}
745 
746 	return (int)ull;
747 }
748 
749 /**
750  * Canonicalize a listen address trid.
751  */
752 static int
753 nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
754 			   const struct spdk_nvme_transport_id *trid)
755 {
756 	int trsvcid_int;
757 
758 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
759 	if (trsvcid_int < 0) {
760 		return -EINVAL;
761 	}
762 
763 	memset(canon_trid, 0, sizeof(*canon_trid));
764 	spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
765 	canon_trid->adrfam = trid->adrfam;
766 	snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
767 	snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
768 
769 	return 0;
770 }
771 
772 /**
773  * Find an existing listening port.
774  */
775 static struct spdk_nvmf_tcp_port *
776 nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
777 		   const struct spdk_nvme_transport_id *trid)
778 {
779 	struct spdk_nvme_transport_id canon_trid;
780 	struct spdk_nvmf_tcp_port *port;
781 
782 	if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
783 		return NULL;
784 	}
785 
786 	TAILQ_FOREACH(port, &ttransport->ports, link) {
787 		if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
788 			return port;
789 		}
790 	}
791 
792 	return NULL;
793 }
794 
795 static int
796 nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
797 		struct spdk_nvmf_listen_opts *listen_opts)
798 {
799 	struct spdk_nvmf_tcp_transport *ttransport;
800 	struct spdk_nvmf_tcp_port *port;
801 	int trsvcid_int;
802 	uint8_t adrfam;
803 	struct spdk_sock_opts opts;
804 
805 	if (!strlen(trid->trsvcid)) {
806 		SPDK_ERRLOG("Service id is required\n");
807 		return -EINVAL;
808 	}
809 
810 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
811 
812 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
813 	if (trsvcid_int < 0) {
814 		SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
815 		return -EINVAL;
816 	}
817 
818 	port = calloc(1, sizeof(*port));
819 	if (!port) {
820 		SPDK_ERRLOG("Port allocation failed\n");
821 		return -ENOMEM;
822 	}
823 
824 	port->trid = trid;
825 	opts.opts_size = sizeof(opts);
826 	spdk_sock_get_default_opts(&opts);
827 	opts.priority = ttransport->tcp_opts.sock_priority;
828 	/* TODO: also add impl_opts like on the initiator side */
829 	port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
830 			    NULL, &opts);
831 	if (port->listen_sock == NULL) {
832 		SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
833 			    trid->traddr, trsvcid_int,
834 			    spdk_strerror(errno), errno);
835 		free(port);
836 		return -errno;
837 	}
838 
839 	if (spdk_sock_is_ipv4(port->listen_sock)) {
840 		adrfam = SPDK_NVMF_ADRFAM_IPV4;
841 	} else if (spdk_sock_is_ipv6(port->listen_sock)) {
842 		adrfam = SPDK_NVMF_ADRFAM_IPV6;
843 	} else {
844 		SPDK_ERRLOG("Unhandled socket type\n");
845 		adrfam = 0;
846 	}
847 
848 	if (adrfam != trid->adrfam) {
849 		SPDK_ERRLOG("Socket address family mismatch\n");
850 		spdk_sock_close(&port->listen_sock);
851 		free(port);
852 		return -EINVAL;
853 	}
854 
855 	SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
856 		       trid->traddr, trid->trsvcid);
857 
858 	TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
859 	return 0;
860 }
861 
862 static void
863 nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
864 		     const struct spdk_nvme_transport_id *trid)
865 {
866 	struct spdk_nvmf_tcp_transport *ttransport;
867 	struct spdk_nvmf_tcp_port *port;
868 
869 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
870 
871 	SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
872 		      trid->traddr, trid->trsvcid);
873 
874 	port = nvmf_tcp_find_port(ttransport, trid);
875 	if (port) {
876 		TAILQ_REMOVE(&ttransport->ports, port, link);
877 		spdk_sock_close(&port->listen_sock);
878 		free(port);
879 	}
880 }
881 
882 static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
883 		enum nvme_tcp_pdu_recv_state state);
884 
885 static void
886 nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvme_tcp_qpair_state state)
887 {
888 	tqpair->state = state;
889 	spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
890 			  tqpair->state);
891 }
892 
893 static void
894 nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
895 {
896 	SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
897 
898 	spdk_trace_record(TRACE_TCP_QP_DISCONNECT, 0, 0, (uintptr_t)tqpair);
899 
900 	if (tqpair->state <= NVME_TCP_QPAIR_STATE_RUNNING) {
901 		nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITING);
902 		assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
903 		spdk_poller_unregister(&tqpair->timeout_poller);
904 
905 		/* This will end up calling nvmf_tcp_close_qpair */
906 		spdk_nvmf_qpair_disconnect(&tqpair->qpair, NULL, NULL);
907 	}
908 }
909 
910 static void
911 _mgmt_pdu_write_done(void *_tqpair, int err)
912 {
913 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
914 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
915 
916 	if (spdk_unlikely(err != 0)) {
917 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
918 		return;
919 	}
920 
921 	assert(pdu->cb_fn != NULL);
922 	pdu->cb_fn(pdu->cb_arg);
923 }
924 
925 static void
926 _req_pdu_write_done(void *req, int err)
927 {
928 	struct spdk_nvmf_tcp_req *tcp_req = req;
929 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
930 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
931 
932 	assert(tcp_req->pdu_in_use);
933 	tcp_req->pdu_in_use = false;
934 
935 	/* If the request is in a completed state, we're waiting for write completion to free it */
936 	if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) {
937 		nvmf_tcp_request_free(tcp_req);
938 		return;
939 	}
940 
941 	if (spdk_unlikely(err != 0)) {
942 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
943 		return;
944 	}
945 
946 	assert(pdu->cb_fn != NULL);
947 	pdu->cb_fn(pdu->cb_arg);
948 }
949 
950 static void
951 _pdu_write_done(struct nvme_tcp_pdu *pdu, int err)
952 {
953 	pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err);
954 }
955 
956 static void
957 _tcp_write_pdu(struct nvme_tcp_pdu *pdu)
958 {
959 	int rc;
960 	uint32_t mapped_length;
961 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
962 
963 	pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
964 			       tqpair->host_hdgst_enable, tqpair->host_ddgst_enable, &mapped_length);
965 	spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
966 
967 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
968 	    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
969 		/* Try to force the send immediately. */
970 		rc = spdk_sock_flush(tqpair->sock);
971 		if (rc > 0 && (uint32_t)rc == mapped_length) {
972 			_pdu_write_done(pdu, 0);
973 		} else {
974 			SPDK_ERRLOG("Could not write %s to socket: rc=%d, errno=%d\n",
975 				    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ?
976 				    "IC_RESP" : "TERM_REQ", rc, errno);
977 			_pdu_write_done(pdu, rc >= 0 ? -EAGAIN : -errno);
978 		}
979 	}
980 }
981 
982 static void
983 data_crc32_accel_done(void *cb_arg, int status)
984 {
985 	struct nvme_tcp_pdu *pdu = cb_arg;
986 
987 	if (spdk_unlikely(status)) {
988 		SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
989 		_pdu_write_done(pdu, status);
990 		return;
991 	}
992 
993 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
994 	MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
995 
996 	_tcp_write_pdu(pdu);
997 }
998 
999 static void
1000 pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
1001 {
1002 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1003 	int rc = 0;
1004 
1005 	/* Data Digest */
1006 	if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
1007 		/* Only support this limitated case for the first step */
1008 		if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
1009 				&& tqpair->group)) {
1010 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
1011 						       pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
1012 			if (spdk_likely(rc == 0)) {
1013 				return;
1014 			}
1015 		} else {
1016 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1017 		}
1018 		data_crc32_accel_done(pdu, rc);
1019 	} else {
1020 		_tcp_write_pdu(pdu);
1021 	}
1022 }
1023 
1024 static void
1025 nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1026 			 struct nvme_tcp_pdu *pdu,
1027 			 nvme_tcp_qpair_xfer_complete_cb cb_fn,
1028 			 void *cb_arg)
1029 {
1030 	int hlen;
1031 	uint32_t crc32c;
1032 
1033 	assert(tqpair->pdu_in_progress != pdu);
1034 
1035 	hlen = pdu->hdr.common.hlen;
1036 	pdu->cb_fn = cb_fn;
1037 	pdu->cb_arg = cb_arg;
1038 
1039 	pdu->iov[0].iov_base = &pdu->hdr.raw;
1040 	pdu->iov[0].iov_len = hlen;
1041 
1042 	/* Header Digest */
1043 	if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) {
1044 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1045 		MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
1046 	}
1047 
1048 	/* Data Digest */
1049 	pdu_data_crc32_compute(pdu);
1050 }
1051 
1052 static void
1053 nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1054 			      nvme_tcp_qpair_xfer_complete_cb cb_fn,
1055 			      void *cb_arg)
1056 {
1057 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1058 
1059 	pdu->sock_req.cb_fn = _mgmt_pdu_write_done;
1060 	pdu->sock_req.cb_arg = tqpair;
1061 
1062 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1063 }
1064 
1065 static void
1066 nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1067 			     struct spdk_nvmf_tcp_req *tcp_req,
1068 			     nvme_tcp_qpair_xfer_complete_cb cb_fn,
1069 			     void *cb_arg)
1070 {
1071 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1072 
1073 	pdu->sock_req.cb_fn = _req_pdu_write_done;
1074 	pdu->sock_req.cb_arg = tcp_req;
1075 
1076 	assert(!tcp_req->pdu_in_use);
1077 	tcp_req->pdu_in_use = true;
1078 
1079 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1080 }
1081 
1082 static int
1083 nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
1084 {
1085 	uint32_t i;
1086 	struct spdk_nvmf_transport_opts *opts;
1087 	uint32_t in_capsule_data_size;
1088 
1089 	opts = &tqpair->qpair.transport->opts;
1090 
1091 	in_capsule_data_size = opts->in_capsule_data_size;
1092 	if (opts->dif_insert_or_strip) {
1093 		in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
1094 	}
1095 
1096 	tqpair->resource_count = opts->max_queue_depth;
1097 
1098 	tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
1099 	if (!tqpair->reqs) {
1100 		SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
1101 		return -1;
1102 	}
1103 
1104 	if (in_capsule_data_size) {
1105 		tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
1106 					    NULL, SPDK_ENV_LCORE_ID_ANY,
1107 					    SPDK_MALLOC_DMA);
1108 		if (!tqpair->bufs) {
1109 			SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
1110 			return -1;
1111 		}
1112 	}
1113 	/* prepare memory space for receiving pdus and tcp_req */
1114 	/* Add additional 1 member, which will be used for mgmt_pdu owned by the tqpair */
1115 	tqpair->pdus = spdk_dma_zmalloc((2 * tqpair->resource_count + 1) * sizeof(*tqpair->pdus), 0x1000,
1116 					NULL);
1117 	if (!tqpair->pdus) {
1118 		SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
1119 		return -1;
1120 	}
1121 
1122 	for (i = 0; i < tqpair->resource_count; i++) {
1123 		struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
1124 
1125 		tcp_req->ttag = i + 1;
1126 		tcp_req->req.qpair = &tqpair->qpair;
1127 
1128 		tcp_req->pdu = &tqpair->pdus[i];
1129 		tcp_req->pdu->qpair = tqpair;
1130 
1131 		/* Set up memory to receive commands */
1132 		if (tqpair->bufs) {
1133 			tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
1134 		}
1135 
1136 		/* Set the cmdn and rsp */
1137 		tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
1138 		tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
1139 
1140 		tcp_req->req.stripped_data = NULL;
1141 
1142 		/* Initialize request state to FREE */
1143 		tcp_req->state = TCP_REQUEST_STATE_FREE;
1144 		TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
1145 		tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
1146 	}
1147 
1148 	for (; i < 2 * tqpair->resource_count; i++) {
1149 		struct nvme_tcp_pdu *pdu = &tqpair->pdus[i];
1150 
1151 		pdu->qpair = tqpair;
1152 		SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1153 	}
1154 
1155 	tqpair->mgmt_pdu = &tqpair->pdus[i];
1156 	tqpair->mgmt_pdu->qpair = tqpair;
1157 	tqpair->pdu_in_progress = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
1158 	SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
1159 	tqpair->tcp_pdu_working_count = 1;
1160 
1161 	tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
1162 				 SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1163 
1164 	return 0;
1165 }
1166 
1167 static int
1168 nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
1169 {
1170 	struct spdk_nvmf_tcp_qpair *tqpair;
1171 
1172 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1173 
1174 	SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
1175 
1176 	spdk_trace_record(TRACE_TCP_QP_CREATE, 0, 0, (uintptr_t)tqpair);
1177 
1178 	/* Initialise request state queues of the qpair */
1179 	TAILQ_INIT(&tqpair->tcp_req_free_queue);
1180 	TAILQ_INIT(&tqpair->tcp_req_working_queue);
1181 	SLIST_INIT(&tqpair->tcp_pdu_free_queue);
1182 
1183 	tqpair->host_hdgst_enable = true;
1184 	tqpair->host_ddgst_enable = true;
1185 
1186 	return 0;
1187 }
1188 
1189 static int
1190 nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
1191 {
1192 	int rc;
1193 
1194 	spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, 0, 0, (uintptr_t)tqpair);
1195 
1196 	/* set low water mark */
1197 	rc = spdk_sock_set_recvlowat(tqpair->sock, 1);
1198 	if (rc != 0) {
1199 		SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
1200 		return rc;
1201 	}
1202 
1203 	return 0;
1204 }
1205 
1206 static void
1207 nvmf_tcp_handle_connect(struct spdk_nvmf_transport *transport,
1208 			struct spdk_nvmf_tcp_port *port,
1209 			struct spdk_sock *sock)
1210 {
1211 	struct spdk_nvmf_tcp_qpair *tqpair;
1212 	int rc;
1213 
1214 	SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
1215 		      port->trid->traddr, port->trid->trsvcid);
1216 
1217 	tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
1218 	if (tqpair == NULL) {
1219 		SPDK_ERRLOG("Could not allocate new connection.\n");
1220 		spdk_sock_close(&sock);
1221 		return;
1222 	}
1223 
1224 	tqpair->sock = sock;
1225 	tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
1226 	tqpair->port = port;
1227 	tqpair->qpair.transport = transport;
1228 
1229 	rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
1230 			       sizeof(tqpair->target_addr), &tqpair->target_port,
1231 			       tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
1232 			       &tqpair->initiator_port);
1233 	if (rc < 0) {
1234 		SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
1235 		nvmf_tcp_qpair_destroy(tqpair);
1236 		return;
1237 	}
1238 
1239 	spdk_nvmf_tgt_new_qpair(transport->tgt, &tqpair->qpair);
1240 }
1241 
1242 static uint32_t
1243 nvmf_tcp_port_accept(struct spdk_nvmf_transport *transport, struct spdk_nvmf_tcp_port *port)
1244 {
1245 	struct spdk_sock *sock;
1246 	uint32_t count = 0;
1247 	int i;
1248 
1249 	for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
1250 		sock = spdk_sock_accept(port->listen_sock);
1251 		if (sock == NULL) {
1252 			break;
1253 		}
1254 		count++;
1255 		nvmf_tcp_handle_connect(transport, port, sock);
1256 	}
1257 
1258 	return count;
1259 }
1260 
1261 static int
1262 nvmf_tcp_accept(void *ctx)
1263 {
1264 	struct spdk_nvmf_transport *transport = ctx;
1265 	struct spdk_nvmf_tcp_transport *ttransport;
1266 	struct spdk_nvmf_tcp_port *port;
1267 	uint32_t count = 0;
1268 
1269 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1270 
1271 	TAILQ_FOREACH(port, &ttransport->ports, link) {
1272 		count += nvmf_tcp_port_accept(transport, port);
1273 	}
1274 
1275 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1276 }
1277 
1278 static void
1279 nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
1280 		  struct spdk_nvme_transport_id *trid,
1281 		  struct spdk_nvmf_discovery_log_page_entry *entry)
1282 {
1283 	entry->trtype = SPDK_NVMF_TRTYPE_TCP;
1284 	entry->adrfam = trid->adrfam;
1285 	entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
1286 
1287 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
1288 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
1289 
1290 	entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
1291 }
1292 
1293 static struct spdk_nvmf_tcp_control_msg_list *
1294 nvmf_tcp_control_msg_list_create(uint16_t num_messages)
1295 {
1296 	struct spdk_nvmf_tcp_control_msg_list *list;
1297 	struct spdk_nvmf_tcp_control_msg *msg;
1298 	uint16_t i;
1299 
1300 	list = calloc(1, sizeof(*list));
1301 	if (!list) {
1302 		SPDK_ERRLOG("Failed to allocate memory for list structure\n");
1303 		return NULL;
1304 	}
1305 
1306 	list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
1307 				     NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
1308 	if (!list->msg_buf) {
1309 		SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
1310 		free(list);
1311 		return NULL;
1312 	}
1313 
1314 	STAILQ_INIT(&list->free_msgs);
1315 
1316 	for (i = 0; i < num_messages; i++) {
1317 		msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
1318 				SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1319 		STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
1320 	}
1321 
1322 	return list;
1323 }
1324 
1325 static void
1326 nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
1327 {
1328 	if (!list) {
1329 		return;
1330 	}
1331 
1332 	spdk_free(list->msg_buf);
1333 	free(list);
1334 }
1335 
1336 static struct spdk_nvmf_transport_poll_group *
1337 nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport,
1338 			   struct spdk_nvmf_poll_group *group)
1339 {
1340 	struct spdk_nvmf_tcp_transport	*ttransport;
1341 	struct spdk_nvmf_tcp_poll_group *tgroup;
1342 
1343 	tgroup = calloc(1, sizeof(*tgroup));
1344 	if (!tgroup) {
1345 		return NULL;
1346 	}
1347 
1348 	tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
1349 	if (!tgroup->sock_group) {
1350 		goto cleanup;
1351 	}
1352 
1353 	TAILQ_INIT(&tgroup->qpairs);
1354 	TAILQ_INIT(&tgroup->await_req);
1355 
1356 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1357 
1358 	if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
1359 		SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
1360 			      "Creating control messages list\n", transport->opts.in_capsule_data_size,
1361 			      SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1362 		tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
1363 		if (!tgroup->control_msg_list) {
1364 			goto cleanup;
1365 		}
1366 	}
1367 
1368 	tgroup->accel_channel = spdk_accel_get_io_channel();
1369 	if (spdk_unlikely(!tgroup->accel_channel)) {
1370 		SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
1371 		goto cleanup;
1372 	}
1373 
1374 	TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link);
1375 	if (ttransport->next_pg == NULL) {
1376 		ttransport->next_pg = tgroup;
1377 	}
1378 
1379 	return &tgroup->group;
1380 
1381 cleanup:
1382 	nvmf_tcp_poll_group_destroy(&tgroup->group);
1383 	return NULL;
1384 }
1385 
1386 static struct spdk_nvmf_transport_poll_group *
1387 nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
1388 {
1389 	struct spdk_nvmf_tcp_transport *ttransport;
1390 	struct spdk_nvmf_tcp_poll_group **pg;
1391 	struct spdk_nvmf_tcp_qpair *tqpair;
1392 	struct spdk_sock_group *group = NULL, *hint = NULL;
1393 	int rc;
1394 
1395 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
1396 
1397 	if (TAILQ_EMPTY(&ttransport->poll_groups)) {
1398 		return NULL;
1399 	}
1400 
1401 	pg = &ttransport->next_pg;
1402 	assert(*pg != NULL);
1403 	hint = (*pg)->sock_group;
1404 
1405 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1406 	rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint);
1407 	if (rc != 0) {
1408 		return NULL;
1409 	} else if (group != NULL) {
1410 		/* Optimal poll group was found */
1411 		return spdk_sock_group_get_ctx(group);
1412 	}
1413 
1414 	/* The hint was used for optimal poll group, advance next_pg. */
1415 	*pg = TAILQ_NEXT(*pg, link);
1416 	if (*pg == NULL) {
1417 		*pg = TAILQ_FIRST(&ttransport->poll_groups);
1418 	}
1419 
1420 	return spdk_sock_group_get_ctx(hint);
1421 }
1422 
1423 static void
1424 nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
1425 {
1426 	struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup;
1427 	struct spdk_nvmf_tcp_transport *ttransport;
1428 
1429 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
1430 	spdk_sock_group_close(&tgroup->sock_group);
1431 	if (tgroup->control_msg_list) {
1432 		nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
1433 	}
1434 
1435 	if (tgroup->accel_channel) {
1436 		spdk_put_io_channel(tgroup->accel_channel);
1437 	}
1438 
1439 	ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport);
1440 
1441 	next_tgroup = TAILQ_NEXT(tgroup, link);
1442 	TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link);
1443 	if (next_tgroup == NULL) {
1444 		next_tgroup = TAILQ_FIRST(&ttransport->poll_groups);
1445 	}
1446 	if (ttransport->next_pg == tgroup) {
1447 		ttransport->next_pg = next_tgroup;
1448 	}
1449 
1450 	free(tgroup);
1451 }
1452 
1453 static void
1454 nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1455 			      enum nvme_tcp_pdu_recv_state state)
1456 {
1457 	if (tqpair->recv_state == state) {
1458 		SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
1459 			    tqpair, state);
1460 		return;
1461 	}
1462 
1463 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_QUIESCING)) {
1464 		if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH && tqpair->pdu_in_progress) {
1465 			SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, tqpair->pdu_in_progress, slist);
1466 			tqpair->tcp_pdu_working_count--;
1467 		}
1468 	}
1469 
1470 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_ERROR)) {
1471 		assert(tqpair->tcp_pdu_working_count == 0);
1472 	}
1473 
1474 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1475 		/* When leaving the await req state, move the qpair to the main list */
1476 		TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link);
1477 		TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link);
1478 	} else if (state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1479 		TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link);
1480 		TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link);
1481 	}
1482 
1483 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
1484 	tqpair->recv_state = state;
1485 
1486 	spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
1487 			  tqpair->recv_state);
1488 }
1489 
1490 static int
1491 nvmf_tcp_qpair_handle_timeout(void *ctx)
1492 {
1493 	struct spdk_nvmf_tcp_qpair *tqpair = ctx;
1494 
1495 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1496 
1497 	SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
1498 		    SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
1499 
1500 	nvmf_tcp_qpair_disconnect(tqpair);
1501 	return SPDK_POLLER_BUSY;
1502 }
1503 
1504 static void
1505 nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
1506 {
1507 	struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
1508 
1509 	if (!tqpair->timeout_poller) {
1510 		tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
1511 					 SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
1512 	}
1513 }
1514 
1515 static void
1516 nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
1517 			   enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
1518 {
1519 	struct nvme_tcp_pdu *rsp_pdu;
1520 	struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
1521 	uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
1522 	uint32_t copy_len;
1523 
1524 	rsp_pdu = tqpair->mgmt_pdu;
1525 
1526 	c2h_term_req = &rsp_pdu->hdr.term_req;
1527 	c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
1528 	c2h_term_req->common.hlen = c2h_term_req_hdr_len;
1529 	c2h_term_req->fes = fes;
1530 
1531 	if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1532 	    (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1533 		DSET32(&c2h_term_req->fei, error_offset);
1534 	}
1535 
1536 	copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
1537 
1538 	/* Copy the error info into the buffer */
1539 	memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
1540 	nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
1541 
1542 	/* Contain the header of the wrong received pdu */
1543 	c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
1544 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1545 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair);
1546 }
1547 
1548 static void
1549 nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1550 				struct spdk_nvmf_tcp_qpair *tqpair,
1551 				struct nvme_tcp_pdu *pdu)
1552 {
1553 	struct spdk_nvmf_tcp_req *tcp_req;
1554 
1555 	assert(pdu->psh_valid_bytes == pdu->psh_len);
1556 	assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
1557 
1558 	tcp_req = nvmf_tcp_req_get(tqpair);
1559 	if (!tcp_req) {
1560 		/* Directly return and make the allocation retry again.  This can happen if we're
1561 		 * using asynchronous writes to send the response to the host or when releasing
1562 		 * zero-copy buffers after a response has been sent.  In both cases, the host might
1563 		 * receive the response before we've finished processing the request and is free to
1564 		 * send another one.
1565 		 */
1566 		if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 ||
1567 		    tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) {
1568 			return;
1569 		}
1570 
1571 		/* The host sent more commands than the maximum queue depth. */
1572 		SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
1573 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1574 		return;
1575 	}
1576 
1577 	pdu->req = tcp_req;
1578 	assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
1579 	nvmf_tcp_req_process(ttransport, tcp_req);
1580 }
1581 
1582 static void
1583 nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1584 				    struct spdk_nvmf_tcp_qpair *tqpair,
1585 				    struct nvme_tcp_pdu *pdu)
1586 {
1587 	struct spdk_nvmf_tcp_req *tcp_req;
1588 	struct spdk_nvme_tcp_cmd *capsule_cmd;
1589 	uint32_t error_offset = 0;
1590 	enum spdk_nvme_tcp_term_req_fes fes;
1591 	struct spdk_nvme_cpl *rsp;
1592 
1593 	capsule_cmd = &pdu->hdr.capsule_cmd;
1594 	tcp_req = pdu->req;
1595 	assert(tcp_req != NULL);
1596 
1597 	/* Zero-copy requests don't support ICD */
1598 	assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req));
1599 
1600 	if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
1601 		SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
1602 			    SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
1603 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1604 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
1605 		goto err;
1606 	}
1607 
1608 	rsp = &tcp_req->req.rsp->nvme_cpl;
1609 	if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1610 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1611 	} else {
1612 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1613 	}
1614 
1615 	nvmf_tcp_req_process(ttransport, tcp_req);
1616 
1617 	return;
1618 err:
1619 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1620 }
1621 
1622 static void
1623 nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1624 			     struct spdk_nvmf_tcp_qpair *tqpair,
1625 			     struct nvme_tcp_pdu *pdu)
1626 {
1627 	struct spdk_nvmf_tcp_req *tcp_req;
1628 	uint32_t error_offset = 0;
1629 	enum spdk_nvme_tcp_term_req_fes fes = 0;
1630 	struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
1631 
1632 	h2c_data = &pdu->hdr.h2c_data;
1633 
1634 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
1635 		      tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
1636 
1637 	if (h2c_data->ttag > tqpair->resource_count) {
1638 		SPDK_DEBUGLOG(nvmf_tcp, "ttag %u is larger than allowed %u.\n", h2c_data->ttag,
1639 			      tqpair->resource_count);
1640 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1641 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1642 		goto err;
1643 	}
1644 
1645 	tcp_req = &tqpair->reqs[h2c_data->ttag - 1];
1646 
1647 	if (spdk_unlikely(tcp_req->state != TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER &&
1648 			  tcp_req->state != TCP_REQUEST_STATE_AWAITING_R2T_ACK)) {
1649 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, has error state in %d\n", tcp_req, tqpair,
1650 			      tcp_req->state);
1651 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1652 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1653 		goto err;
1654 	}
1655 
1656 	if (spdk_unlikely(tcp_req->req.cmd->nvme_cmd.cid != h2c_data->cccid)) {
1657 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, expected %u but %u for cccid.\n", tcp_req, tqpair,
1658 			      tcp_req->req.cmd->nvme_cmd.cid, h2c_data->cccid);
1659 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1660 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
1661 		goto err;
1662 	}
1663 
1664 	if (tcp_req->h2c_offset != h2c_data->datao) {
1665 		SPDK_DEBUGLOG(nvmf_tcp,
1666 			      "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
1667 			      tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
1668 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1669 		goto err;
1670 	}
1671 
1672 	if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
1673 		SPDK_DEBUGLOG(nvmf_tcp,
1674 			      "tcp_req(%p), tqpair=%p,  (datao=%u + datal=%u) exceeds requested length=%u\n",
1675 			      tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
1676 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1677 		goto err;
1678 	}
1679 
1680 	pdu->req = tcp_req;
1681 
1682 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
1683 		pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
1684 	}
1685 
1686 	nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
1687 				  h2c_data->datao, h2c_data->datal);
1688 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1689 	return;
1690 
1691 err:
1692 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1693 }
1694 
1695 static void
1696 nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
1697 			       struct spdk_nvmf_tcp_qpair *tqpair)
1698 {
1699 	struct nvme_tcp_pdu *rsp_pdu;
1700 	struct spdk_nvme_tcp_rsp *capsule_resp;
1701 
1702 	SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
1703 
1704 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1705 	assert(rsp_pdu != NULL);
1706 
1707 	capsule_resp = &rsp_pdu->hdr.capsule_resp;
1708 	capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
1709 	capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
1710 	capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
1711 	if (tqpair->host_hdgst_enable) {
1712 		capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1713 		capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1714 	}
1715 
1716 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req);
1717 }
1718 
1719 static void
1720 nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
1721 {
1722 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1723 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
1724 					     struct spdk_nvmf_tcp_qpair, qpair);
1725 
1726 	assert(tqpair != NULL);
1727 
1728 	if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
1729 		SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
1730 			      tcp_req->req.length);
1731 		_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
1732 		return;
1733 	}
1734 
1735 	if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
1736 		nvmf_tcp_request_free(tcp_req);
1737 	} else {
1738 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
1739 	}
1740 }
1741 
1742 static void
1743 nvmf_tcp_r2t_complete(void *cb_arg)
1744 {
1745 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1746 	struct spdk_nvmf_tcp_transport *ttransport;
1747 
1748 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
1749 				      struct spdk_nvmf_tcp_transport, transport);
1750 
1751 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
1752 
1753 	if (tcp_req->h2c_offset == tcp_req->req.length) {
1754 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1755 		nvmf_tcp_req_process(ttransport, tcp_req);
1756 	}
1757 }
1758 
1759 static void
1760 nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1761 		      struct spdk_nvmf_tcp_req *tcp_req)
1762 {
1763 	struct nvme_tcp_pdu *rsp_pdu;
1764 	struct spdk_nvme_tcp_r2t_hdr *r2t;
1765 
1766 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1767 	assert(rsp_pdu != NULL);
1768 
1769 	r2t = &rsp_pdu->hdr.r2t;
1770 	r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
1771 	r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
1772 
1773 	if (tqpair->host_hdgst_enable) {
1774 		r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1775 		r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1776 	}
1777 
1778 	r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
1779 	r2t->ttag = tcp_req->ttag;
1780 	r2t->r2to = tcp_req->h2c_offset;
1781 	r2t->r2tl = tcp_req->req.length;
1782 
1783 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
1784 
1785 	SPDK_DEBUGLOG(nvmf_tcp,
1786 		      "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
1787 		      tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
1788 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req);
1789 }
1790 
1791 static void
1792 nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1793 				 struct spdk_nvmf_tcp_qpair *tqpair,
1794 				 struct nvme_tcp_pdu *pdu)
1795 {
1796 	struct spdk_nvmf_tcp_req *tcp_req;
1797 	struct spdk_nvme_cpl *rsp;
1798 
1799 	tcp_req = pdu->req;
1800 	assert(tcp_req != NULL);
1801 
1802 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1803 
1804 	tcp_req->h2c_offset += pdu->data_len;
1805 
1806 	/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
1807 	 * acknowledged before moving on. */
1808 	if (tcp_req->h2c_offset == tcp_req->req.length &&
1809 	    tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
1810 		/* After receiving all the h2c data, we need to check whether there is
1811 		 * transient transport error */
1812 		rsp = &tcp_req->req.rsp->nvme_cpl;
1813 		if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1814 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1815 		} else {
1816 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1817 		}
1818 		nvmf_tcp_req_process(ttransport, tcp_req);
1819 	}
1820 }
1821 
1822 static void
1823 nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
1824 {
1825 	SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
1826 		    spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
1827 	if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1828 	    (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1829 		SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
1830 			      DGET32(h2c_term_req->fei));
1831 	}
1832 }
1833 
1834 static void
1835 nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1836 				 struct nvme_tcp_pdu *pdu)
1837 {
1838 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1839 	uint32_t error_offset = 0;
1840 	enum spdk_nvme_tcp_term_req_fes fes;
1841 
1842 	if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
1843 		SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
1844 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1845 		error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
1846 		goto end;
1847 	}
1848 
1849 	/* set the data buffer */
1850 	nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
1851 			      h2c_term_req->common.plen - h2c_term_req->common.hlen);
1852 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1853 	return;
1854 end:
1855 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1856 }
1857 
1858 static void
1859 nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1860 				     struct nvme_tcp_pdu *pdu)
1861 {
1862 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1863 
1864 	nvmf_tcp_h2c_term_req_dump(h2c_term_req);
1865 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1866 }
1867 
1868 static void
1869 _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
1870 {
1871 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
1872 			struct spdk_nvmf_tcp_transport, transport);
1873 
1874 	switch (pdu->hdr.common.pdu_type) {
1875 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
1876 		nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
1877 		break;
1878 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
1879 		nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
1880 		break;
1881 
1882 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
1883 		nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
1884 		break;
1885 
1886 	default:
1887 		/* The code should not go to here */
1888 		SPDK_ERRLOG("ERROR pdu type %d\n", pdu->hdr.common.pdu_type);
1889 		break;
1890 	}
1891 	SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1892 	tqpair->tcp_pdu_working_count--;
1893 }
1894 
1895 static void
1896 data_crc32_calc_done(void *cb_arg, int status)
1897 {
1898 	struct nvme_tcp_pdu *pdu = cb_arg;
1899 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1900 	struct spdk_nvmf_tcp_req *tcp_req;
1901 	struct spdk_nvme_cpl *rsp;
1902 
1903 	/* async crc32 calculation is failed and use direct calculation to check */
1904 	if (spdk_unlikely(status)) {
1905 		SPDK_ERRLOG("Data digest on tqpair=(%p) with pdu=%p failed to be calculated asynchronously\n",
1906 			    tqpair, pdu);
1907 		pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1908 	}
1909 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
1910 	if (!MATCH_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32)) {
1911 		SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
1912 		tcp_req = pdu->req;
1913 		assert(tcp_req != NULL);
1914 		rsp = &tcp_req->req.rsp->nvme_cpl;
1915 		rsp->status.sc = SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR;
1916 	}
1917 	_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
1918 }
1919 
1920 static void
1921 nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
1922 {
1923 	int rc = 0;
1924 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1925 	tqpair->pdu_in_progress = NULL;
1926 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
1927 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1928 	/* check data digest if need */
1929 	if (pdu->ddgst_enable) {
1930 		if (tqpair->qpair.qid != 0 && !pdu->dif_ctx && tqpair->group &&
1931 		    (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)) {
1932 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
1933 						       pdu->data_iovcnt, 0, data_crc32_calc_done, pdu);
1934 			if (spdk_likely(rc == 0)) {
1935 				return;
1936 			}
1937 		} else {
1938 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1939 		}
1940 		data_crc32_calc_done(pdu, rc);
1941 	} else {
1942 		_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
1943 	}
1944 }
1945 
1946 static void
1947 nvmf_tcp_send_icresp_complete(void *cb_arg)
1948 {
1949 	struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
1950 
1951 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_RUNNING);
1952 }
1953 
1954 static void
1955 nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
1956 		      struct spdk_nvmf_tcp_qpair *tqpair,
1957 		      struct nvme_tcp_pdu *pdu)
1958 {
1959 	struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
1960 	struct nvme_tcp_pdu *rsp_pdu;
1961 	struct spdk_nvme_tcp_ic_resp *ic_resp;
1962 	uint32_t error_offset = 0;
1963 	enum spdk_nvme_tcp_term_req_fes fes;
1964 
1965 	/* Only PFV 0 is defined currently */
1966 	if (ic_req->pfv != 0) {
1967 		SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
1968 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1969 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
1970 		goto end;
1971 	}
1972 
1973 	/* This value is 0’s based value in units of dwords should not be larger than SPDK_NVME_TCP_HPDA_MAX */
1974 	if (ic_req->hpda > SPDK_NVME_TCP_HPDA_MAX) {
1975 		SPDK_ERRLOG("ICReq HPDA out of range 0 to 31, got %u\n", ic_req->hpda);
1976 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1977 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, hpda);
1978 		goto end;
1979 	}
1980 
1981 	/* MAXR2T is 0's based */
1982 	SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
1983 
1984 	tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
1985 	if (!tqpair->host_hdgst_enable) {
1986 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1987 	}
1988 
1989 	tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
1990 	if (!tqpair->host_ddgst_enable) {
1991 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1992 	}
1993 
1994 	tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
1995 	/* Now that we know whether digests are enabled, properly size the receive buffer */
1996 	if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
1997 		SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
1998 			     tqpair,
1999 			     tqpair->recv_buf_size);
2000 		/* Not fatal. */
2001 	}
2002 
2003 	tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
2004 	SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
2005 
2006 	rsp_pdu = tqpair->mgmt_pdu;
2007 
2008 	ic_resp = &rsp_pdu->hdr.ic_resp;
2009 	ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
2010 	ic_resp->common.hlen = ic_resp->common.plen =  sizeof(*ic_resp);
2011 	ic_resp->pfv = 0;
2012 	ic_resp->cpda = tqpair->cpda;
2013 	ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
2014 	ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
2015 	ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
2016 
2017 	SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
2018 	SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
2019 
2020 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INITIALIZING);
2021 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair);
2022 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2023 	return;
2024 end:
2025 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2026 }
2027 
2028 static void
2029 nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2030 			struct spdk_nvmf_tcp_transport *ttransport)
2031 {
2032 	struct nvme_tcp_pdu *pdu;
2033 	int rc;
2034 	uint32_t crc32c, error_offset = 0;
2035 	enum spdk_nvme_tcp_term_req_fes fes;
2036 
2037 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2038 	pdu = tqpair->pdu_in_progress;
2039 
2040 	SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
2041 		      pdu->hdr.common.pdu_type);
2042 	/* check header digest if needed */
2043 	if (pdu->has_hdgst) {
2044 		SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
2045 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
2046 		rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
2047 		if (rc == 0) {
2048 			SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2049 			fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
2050 			nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2051 			return;
2052 
2053 		}
2054 	}
2055 
2056 	switch (pdu->hdr.common.pdu_type) {
2057 	case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
2058 		nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
2059 		break;
2060 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2061 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
2062 		break;
2063 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2064 		nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
2065 		break;
2066 
2067 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2068 		nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
2069 		break;
2070 
2071 	default:
2072 		SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
2073 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2074 		error_offset = 1;
2075 		nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2076 		break;
2077 	}
2078 }
2079 
2080 static void
2081 nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
2082 {
2083 	struct nvme_tcp_pdu *pdu;
2084 	uint32_t error_offset = 0;
2085 	enum spdk_nvme_tcp_term_req_fes fes;
2086 	uint8_t expected_hlen, pdo;
2087 	bool plen_error = false, pdo_error = false;
2088 
2089 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2090 	pdu = tqpair->pdu_in_progress;
2091 	assert(pdu);
2092 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
2093 		if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) {
2094 			SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
2095 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2096 			goto err;
2097 		}
2098 		expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
2099 		if (pdu->hdr.common.plen != expected_hlen) {
2100 			plen_error = true;
2101 		}
2102 	} else {
2103 		if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) {
2104 			SPDK_ERRLOG("The TCP/IP connection is not negotiated\n");
2105 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2106 			goto err;
2107 		}
2108 
2109 		switch (pdu->hdr.common.pdu_type) {
2110 		case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2111 			expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
2112 			pdo = pdu->hdr.common.pdo;
2113 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2114 				pdo_error = true;
2115 				break;
2116 			}
2117 
2118 			if (pdu->hdr.common.plen < expected_hlen) {
2119 				plen_error = true;
2120 			}
2121 			break;
2122 		case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2123 			expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
2124 			pdo = pdu->hdr.common.pdo;
2125 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2126 				pdo_error = true;
2127 				break;
2128 			}
2129 			if (pdu->hdr.common.plen < expected_hlen) {
2130 				plen_error = true;
2131 			}
2132 			break;
2133 
2134 		case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2135 			expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
2136 			if ((pdu->hdr.common.plen <= expected_hlen) ||
2137 			    (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
2138 				plen_error = true;
2139 			}
2140 			break;
2141 
2142 		default:
2143 			SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
2144 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2145 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
2146 			goto err;
2147 		}
2148 	}
2149 
2150 	if (pdu->hdr.common.hlen != expected_hlen) {
2151 		SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
2152 			    pdu->hdr.common.pdu_type,
2153 			    expected_hlen, pdu->hdr.common.hlen, tqpair);
2154 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2155 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
2156 		goto err;
2157 	} else if (pdo_error) {
2158 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2159 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
2160 	} else if (plen_error) {
2161 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2162 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2163 		goto err;
2164 	} else {
2165 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2166 		nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
2167 		return;
2168 	}
2169 err:
2170 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2171 }
2172 
2173 static int
2174 nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
2175 {
2176 	int rc = 0;
2177 	struct nvme_tcp_pdu *pdu;
2178 	enum nvme_tcp_pdu_recv_state prev_state;
2179 	uint32_t data_len;
2180 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2181 			struct spdk_nvmf_tcp_transport, transport);
2182 
2183 	/* The loop here is to allow for several back-to-back state changes. */
2184 	do {
2185 		prev_state = tqpair->recv_state;
2186 		SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
2187 
2188 		pdu = tqpair->pdu_in_progress;
2189 		assert(pdu || tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2190 		switch (tqpair->recv_state) {
2191 		/* Wait for the common header  */
2192 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
2193 			if (!pdu) {
2194 				pdu = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
2195 				if (spdk_unlikely(!pdu)) {
2196 					return NVME_TCP_PDU_IN_PROGRESS;
2197 				}
2198 				SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
2199 				tqpair->pdu_in_progress = pdu;
2200 				tqpair->tcp_pdu_working_count++;
2201 			}
2202 			memset(pdu, 0, offsetof(struct nvme_tcp_pdu, qpair));
2203 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2204 		/* FALLTHROUGH */
2205 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
2206 			if (spdk_unlikely(tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING)) {
2207 				return rc;
2208 			}
2209 
2210 			rc = nvme_tcp_read_data(tqpair->sock,
2211 						sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
2212 						(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
2213 			if (rc < 0) {
2214 				SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
2215 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2216 				break;
2217 			} else if (rc > 0) {
2218 				pdu->ch_valid_bytes += rc;
2219 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2220 			}
2221 
2222 			if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
2223 				return NVME_TCP_PDU_IN_PROGRESS;
2224 			}
2225 
2226 			/* The command header of this PDU has now been read from the socket. */
2227 			nvmf_tcp_pdu_ch_handle(tqpair);
2228 			break;
2229 		/* Wait for the pdu specific header  */
2230 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
2231 			rc = nvme_tcp_read_data(tqpair->sock,
2232 						pdu->psh_len - pdu->psh_valid_bytes,
2233 						(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
2234 			if (rc < 0) {
2235 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2236 				break;
2237 			} else if (rc > 0) {
2238 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2239 				pdu->psh_valid_bytes += rc;
2240 			}
2241 
2242 			if (pdu->psh_valid_bytes < pdu->psh_len) {
2243 				return NVME_TCP_PDU_IN_PROGRESS;
2244 			}
2245 
2246 			/* All header(ch, psh, head digist) of this PDU has now been read from the socket. */
2247 			nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
2248 			break;
2249 		/* Wait for the req slot */
2250 		case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
2251 			nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
2252 			break;
2253 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
2254 			/* check whether the data is valid, if not we just return */
2255 			if (!pdu->data_len) {
2256 				return NVME_TCP_PDU_IN_PROGRESS;
2257 			}
2258 
2259 			data_len = pdu->data_len;
2260 			/* data digest */
2261 			if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
2262 					  tqpair->host_ddgst_enable)) {
2263 				data_len += SPDK_NVME_TCP_DIGEST_LEN;
2264 				pdu->ddgst_enable = true;
2265 			}
2266 
2267 			rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
2268 			if (rc < 0) {
2269 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2270 				break;
2271 			}
2272 			pdu->rw_offset += rc;
2273 
2274 			if (pdu->rw_offset < data_len) {
2275 				return NVME_TCP_PDU_IN_PROGRESS;
2276 			}
2277 
2278 			/* Generate and insert DIF to whole data block received if DIF is enabled */
2279 			if (spdk_unlikely(pdu->dif_ctx != NULL) &&
2280 			    spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt, 0, data_len,
2281 						     pdu->dif_ctx) != 0) {
2282 				SPDK_ERRLOG("DIF generate failed\n");
2283 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2284 				break;
2285 			}
2286 
2287 			/* All of this PDU has now been read from the socket. */
2288 			nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2289 			break;
2290 		case NVME_TCP_PDU_RECV_STATE_QUIESCING:
2291 			if (tqpair->tcp_pdu_working_count != 0) {
2292 				return NVME_TCP_PDU_IN_PROGRESS;
2293 			}
2294 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
2295 			break;
2296 		case NVME_TCP_PDU_RECV_STATE_ERROR:
2297 			if (!spdk_sock_is_connected(tqpair->sock)) {
2298 				return NVME_TCP_PDU_FATAL;
2299 			}
2300 			return NVME_TCP_PDU_IN_PROGRESS;
2301 		default:
2302 			SPDK_ERRLOG("The state(%d) is invalid\n", tqpair->recv_state);
2303 			abort();
2304 			break;
2305 		}
2306 	} while (tqpair->recv_state != prev_state);
2307 
2308 	return rc;
2309 }
2310 
2311 static inline void *
2312 nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list)
2313 {
2314 	struct spdk_nvmf_tcp_control_msg *msg;
2315 
2316 	assert(list);
2317 
2318 	msg = STAILQ_FIRST(&list->free_msgs);
2319 	if (!msg) {
2320 		SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
2321 		return NULL;
2322 	}
2323 	STAILQ_REMOVE_HEAD(&list->free_msgs, link);
2324 	return msg;
2325 }
2326 
2327 static inline void
2328 nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
2329 {
2330 	struct spdk_nvmf_tcp_control_msg *msg = _msg;
2331 
2332 	assert(list);
2333 	STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
2334 }
2335 
2336 static int
2337 nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
2338 		       struct spdk_nvmf_transport *transport,
2339 		       struct spdk_nvmf_transport_poll_group *group)
2340 {
2341 	struct spdk_nvmf_request		*req = &tcp_req->req;
2342 	struct spdk_nvme_cmd			*cmd;
2343 	struct spdk_nvme_sgl_descriptor		*sgl;
2344 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2345 	enum spdk_nvme_tcp_term_req_fes		fes;
2346 	struct nvme_tcp_pdu			*pdu;
2347 	struct spdk_nvmf_tcp_qpair		*tqpair;
2348 	uint32_t				length, error_offset = 0;
2349 
2350 	cmd = &req->cmd->nvme_cmd;
2351 	sgl = &cmd->dptr.sgl1;
2352 
2353 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
2354 	    sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
2355 		/* get request length from sgl */
2356 		length = sgl->unkeyed.length;
2357 		if (spdk_unlikely(length > transport->opts.max_io_size)) {
2358 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
2359 				    length, transport->opts.max_io_size);
2360 			fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2361 			goto fatal_err;
2362 		}
2363 
2364 		/* fill request length and populate iovs */
2365 		req->length = length;
2366 
2367 		SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
2368 
2369 		if (spdk_unlikely(req->dif_enabled)) {
2370 			req->dif.orig_length = length;
2371 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2372 			req->dif.elba_length = length;
2373 		}
2374 
2375 		if (nvmf_ctrlr_use_zcopy(req)) {
2376 			SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req);
2377 			req->data_from_pool = false;
2378 			return 0;
2379 		}
2380 
2381 		if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
2382 			/* No available buffers. Queue this request up. */
2383 			SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
2384 				      tcp_req);
2385 			return 0;
2386 		}
2387 
2388 		/* backward compatible */
2389 		req->data = req->iov[0].iov_base;
2390 
2391 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
2392 			      tcp_req, req->iovcnt, req->iov[0].iov_base);
2393 
2394 		return 0;
2395 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
2396 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
2397 		uint64_t offset = sgl->address;
2398 		uint32_t max_len = transport->opts.in_capsule_data_size;
2399 
2400 		assert(tcp_req->has_in_capsule_data);
2401 		/* Capsule Cmd with In-capsule Data should get data length from pdu header */
2402 		tqpair = tcp_req->pdu->qpair;
2403 		/* receiving pdu is not same with the pdu in tcp_req */
2404 		pdu = tqpair->pdu_in_progress;
2405 		length = pdu->hdr.common.plen - pdu->psh_len - sizeof(struct spdk_nvme_tcp_common_pdu_hdr);
2406 		if (tqpair->host_ddgst_enable) {
2407 			length -= SPDK_NVME_TCP_DIGEST_LEN;
2408 		}
2409 		/* This error is not defined in NVMe/TCP spec, take this error as fatal error */
2410 		if (spdk_unlikely(length != sgl->unkeyed.length)) {
2411 			SPDK_ERRLOG("In-Capsule Data length 0x%x is not equal to SGL data length 0x%x\n",
2412 				    length, sgl->unkeyed.length);
2413 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2414 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2415 			goto fatal_err;
2416 		}
2417 
2418 		SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
2419 			      offset, length);
2420 
2421 		/* The NVMe/TCP transport does not use ICDOFF to control the in-capsule data offset. ICDOFF should be '0' */
2422 		if (spdk_unlikely(offset != 0)) {
2423 			/* Not defined fatal error in NVMe/TCP spec, handle this error as a fatal error */
2424 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " should be ZERO in NVMe/TCP\n", offset);
2425 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2426 			error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.address);
2427 			goto fatal_err;
2428 		}
2429 
2430 		if (spdk_unlikely(length > max_len)) {
2431 			/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
2432 			if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
2433 			    (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
2434 
2435 				/* Get a buffer from dedicated list */
2436 				SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
2437 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2438 				assert(tgroup->control_msg_list);
2439 				req->iov[0].iov_base = nvmf_tcp_control_msg_get(tgroup->control_msg_list);
2440 				if (!req->iov[0].iov_base) {
2441 					/* No available buffers. Queue this request up. */
2442 					SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
2443 					return 0;
2444 				}
2445 			} else {
2446 				SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
2447 					    length, max_len);
2448 				fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2449 				goto fatal_err;
2450 			}
2451 		} else {
2452 			req->iov[0].iov_base = tcp_req->buf;
2453 		}
2454 
2455 		req->length = length;
2456 		req->data_from_pool = false;
2457 		req->data = req->iov[0].iov_base;
2458 
2459 		if (spdk_unlikely(req->dif_enabled)) {
2460 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2461 			req->dif.elba_length = length;
2462 		}
2463 
2464 		req->iov[0].iov_len = length;
2465 		req->iovcnt = 1;
2466 
2467 		return 0;
2468 	}
2469 	/* If we want to handle the problem here, then we can't skip the following data segment.
2470 	 * Because this function runs before reading data part, now handle all errors as fatal errors. */
2471 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2472 		    sgl->generic.type, sgl->generic.subtype);
2473 	fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2474 	error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.generic);
2475 fatal_err:
2476 	nvmf_tcp_send_c2h_term_req(tcp_req->pdu->qpair, tcp_req->pdu, fes, error_offset);
2477 	return -1;
2478 }
2479 
2480 static inline enum spdk_nvme_media_error_status_code
2481 nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
2482 	enum spdk_nvme_media_error_status_code result;
2483 
2484 	switch (err_type)
2485 	{
2486 	case SPDK_DIF_REFTAG_ERROR:
2487 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
2488 		break;
2489 	case SPDK_DIF_APPTAG_ERROR:
2490 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
2491 		break;
2492 	case SPDK_DIF_GUARD_ERROR:
2493 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
2494 		break;
2495 	default:
2496 		SPDK_UNREACHABLE();
2497 		break;
2498 	}
2499 
2500 	return result;
2501 }
2502 
2503 static void
2504 _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2505 			struct spdk_nvmf_tcp_req *tcp_req)
2506 {
2507 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
2508 				tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
2509 	struct nvme_tcp_pdu *rsp_pdu;
2510 	struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
2511 	uint32_t plen, pdo, alignment;
2512 	int rc;
2513 
2514 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2515 
2516 	rsp_pdu = tcp_req->pdu;
2517 	assert(rsp_pdu != NULL);
2518 
2519 	c2h_data = &rsp_pdu->hdr.c2h_data;
2520 	c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
2521 	plen = c2h_data->common.hlen = sizeof(*c2h_data);
2522 
2523 	if (tqpair->host_hdgst_enable) {
2524 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2525 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2526 	}
2527 
2528 	/* set the psh */
2529 	c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2530 	c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
2531 	c2h_data->datao = tcp_req->pdu->rw_offset;
2532 
2533 	/* set the padding */
2534 	rsp_pdu->padding_len = 0;
2535 	pdo = plen;
2536 	if (tqpair->cpda) {
2537 		alignment = (tqpair->cpda + 1) << 2;
2538 		if (plen % alignment != 0) {
2539 			pdo = (plen + alignment) / alignment * alignment;
2540 			rsp_pdu->padding_len = pdo - plen;
2541 			plen = pdo;
2542 		}
2543 	}
2544 
2545 	c2h_data->common.pdo = pdo;
2546 	plen += c2h_data->datal;
2547 	if (tqpair->host_ddgst_enable) {
2548 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
2549 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2550 	}
2551 
2552 	c2h_data->common.plen = plen;
2553 
2554 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2555 		rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2556 	}
2557 
2558 	nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2559 				  c2h_data->datao, c2h_data->datal);
2560 
2561 
2562 	c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
2563 	/* Need to send the capsule response if response is not all 0 */
2564 	if (ttransport->tcp_opts.c2h_success &&
2565 	    tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
2566 		c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
2567 	}
2568 
2569 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2570 		struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
2571 		struct spdk_dif_error err_blk = {};
2572 		uint32_t mapped_length = 0;
2573 		uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
2574 		uint32_t ddgst_len = 0;
2575 
2576 		if (tqpair->host_ddgst_enable) {
2577 			/* Data digest consumes additional iov entry */
2578 			available_iovs--;
2579 			/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
2580 			ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
2581 			c2h_data->common.plen -= ddgst_len;
2582 		}
2583 		/* Temp call to estimate if data can be described by limited number of iovs.
2584 		 * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
2585 		nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
2586 				    false, &mapped_length);
2587 
2588 		if (mapped_length != c2h_data->common.plen) {
2589 			c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
2590 			SPDK_DEBUGLOG(nvmf_tcp,
2591 				      "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
2592 				      c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
2593 			c2h_data->common.plen = mapped_length;
2594 
2595 			/* Rebuild pdu->data_iov since data length is changed */
2596 			nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
2597 						  c2h_data->datal);
2598 
2599 			c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
2600 						    SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
2601 		}
2602 
2603 		c2h_data->common.plen += ddgst_len;
2604 
2605 		assert(rsp_pdu->rw_offset <= tcp_req->req.length);
2606 
2607 		rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
2608 					    0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
2609 		if (rc != 0) {
2610 			SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
2611 				    err_blk.err_type, err_blk.err_offset);
2612 			rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2613 			rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
2614 			nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2615 			return;
2616 		}
2617 	}
2618 
2619 	rsp_pdu->rw_offset += c2h_data->datal;
2620 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
2621 }
2622 
2623 static void
2624 nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2625 		       struct spdk_nvmf_tcp_req *tcp_req)
2626 {
2627 	nvmf_tcp_req_pdu_init(tcp_req);
2628 	_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2629 }
2630 
2631 static int
2632 request_transfer_out(struct spdk_nvmf_request *req)
2633 {
2634 	struct spdk_nvmf_tcp_req	*tcp_req;
2635 	struct spdk_nvmf_qpair		*qpair;
2636 	struct spdk_nvmf_tcp_qpair	*tqpair;
2637 	struct spdk_nvme_cpl		*rsp;
2638 
2639 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2640 
2641 	qpair = req->qpair;
2642 	rsp = &req->rsp->nvme_cpl;
2643 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
2644 
2645 	/* Advance our sq_head pointer */
2646 	if (qpair->sq_head == qpair->sq_head_max) {
2647 		qpair->sq_head = 0;
2648 	} else {
2649 		qpair->sq_head++;
2650 	}
2651 	rsp->sqhd = qpair->sq_head;
2652 
2653 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2654 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
2655 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2656 		nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2657 	} else {
2658 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2659 	}
2660 
2661 	return 0;
2662 }
2663 
2664 static void
2665 nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport,
2666 			      struct spdk_nvmf_tcp_qpair *tqpair,
2667 			      struct spdk_nvmf_tcp_req *tcp_req)
2668 {
2669 	enum spdk_nvme_cmd_fuse last, next;
2670 
2671 	last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2672 	next = tcp_req->cmd.fuse;
2673 
2674 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2675 
2676 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2677 		return;
2678 	}
2679 
2680 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2681 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2682 			/* This is a valid pair of fused commands.  Point them at each other
2683 			 * so they can be submitted consecutively once ready to be executed.
2684 			 */
2685 			tqpair->fused_first->fused_pair = tcp_req;
2686 			tcp_req->fused_pair = tqpair->fused_first;
2687 			tqpair->fused_first = NULL;
2688 			return;
2689 		} else {
2690 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2691 			tqpair->fused_first->fused_failed = true;
2692 
2693 			/*
2694 			 * If the last req is in READY_TO_EXECUTE state, then call
2695 			 * nvmf_tcp_req_process(), otherwise nothing else will kick it.
2696 			 */
2697 			if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2698 				nvmf_tcp_req_process(ttransport, tqpair->fused_first);
2699 			}
2700 
2701 			tqpair->fused_first = NULL;
2702 		}
2703 	}
2704 
2705 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2706 		/* Set tqpair->fused_first here so that we know to check that the next request
2707 		 * is a SECOND (and to fail this one if it isn't).
2708 		 */
2709 		tqpair->fused_first = tcp_req;
2710 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2711 		/* Mark this req failed since it is a SECOND and the last one was not a FIRST. */
2712 		tcp_req->fused_failed = true;
2713 	}
2714 }
2715 
2716 static bool
2717 nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
2718 		     struct spdk_nvmf_tcp_req *tcp_req)
2719 {
2720 	struct spdk_nvmf_tcp_qpair		*tqpair;
2721 	uint32_t				plen;
2722 	struct nvme_tcp_pdu			*pdu;
2723 	enum spdk_nvmf_tcp_req_state		prev_state;
2724 	bool					progress = false;
2725 	struct spdk_nvmf_transport		*transport = &ttransport->transport;
2726 	struct spdk_nvmf_transport_poll_group	*group;
2727 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2728 
2729 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2730 	group = &tqpair->group->group;
2731 	assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
2732 
2733 	/* If the qpair is not active, we need to abort the outstanding requests. */
2734 	if (tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2735 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
2736 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2737 		}
2738 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
2739 	}
2740 
2741 	/* The loop here is to allow for several back-to-back state changes. */
2742 	do {
2743 		prev_state = tcp_req->state;
2744 
2745 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
2746 			      tqpair);
2747 
2748 		switch (tcp_req->state) {
2749 		case TCP_REQUEST_STATE_FREE:
2750 			/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
2751 			 * to escape this state. */
2752 			break;
2753 		case TCP_REQUEST_STATE_NEW:
2754 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.qid, 0, (uintptr_t)tcp_req, tqpair);
2755 
2756 			/* copy the cmd from the receive pdu */
2757 			tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
2758 
2759 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
2760 				tcp_req->req.dif_enabled = true;
2761 				tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
2762 			}
2763 
2764 			nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req);
2765 
2766 			/* The next state transition depends on the data transfer needs of this request. */
2767 			tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
2768 
2769 			if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2770 				tcp_req->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2771 				tcp_req->req.rsp->nvme_cpl.status.sc  = SPDK_NVME_SC_INVALID_OPCODE;
2772 				tcp_req->req.rsp->nvme_cpl.cid = tcp_req->req.cmd->nvme_cmd.cid;
2773 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2774 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2775 				SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
2776 				break;
2777 			}
2778 
2779 			/* If no data to transfer, ready to execute. */
2780 			if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
2781 				/* Reset the tqpair receiving pdu state */
2782 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2783 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2784 				break;
2785 			}
2786 
2787 			pdu = tqpair->pdu_in_progress;
2788 			plen = pdu->hdr.common.hlen;
2789 			if (tqpair->host_hdgst_enable) {
2790 				plen += SPDK_NVME_TCP_DIGEST_LEN;
2791 			}
2792 			if (pdu->hdr.common.plen != plen) {
2793 				tcp_req->has_in_capsule_data = true;
2794 			} else {
2795 				/* Data is transmitted by C2H PDUs */
2796 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2797 			}
2798 
2799 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
2800 			STAILQ_INSERT_TAIL(&group->pending_buf_queue, &tcp_req->req, buf_link);
2801 			break;
2802 		case TCP_REQUEST_STATE_NEED_BUFFER:
2803 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2804 					  tqpair);
2805 
2806 			assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
2807 
2808 			if (!tcp_req->has_in_capsule_data && (&tcp_req->req != STAILQ_FIRST(&group->pending_buf_queue))) {
2809 				SPDK_DEBUGLOG(nvmf_tcp,
2810 					      "Not the first element to wait for the buf for tcp_req(%p) on tqpair=%p\n",
2811 					      tcp_req, tqpair);
2812 				/* This request needs to wait in line to obtain a buffer */
2813 				break;
2814 			}
2815 
2816 			/* Try to get a data buffer */
2817 			if (nvmf_tcp_req_parse_sgl(tcp_req, transport, group) < 0) {
2818 				break;
2819 			}
2820 
2821 			/* Get a zcopy buffer if the request can be serviced through zcopy */
2822 			if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2823 				if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2824 					assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2825 					tcp_req->req.length = tcp_req->req.dif.elba_length;
2826 				}
2827 
2828 				STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2829 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START);
2830 				spdk_nvmf_request_zcopy_start(&tcp_req->req);
2831 				break;
2832 			}
2833 
2834 			if (tcp_req->req.iovcnt < 1) {
2835 				SPDK_DEBUGLOG(nvmf_tcp, "No buffer allocated for tcp_req(%p) on tqpair(%p\n)",
2836 					      tcp_req, tqpair);
2837 				/* No buffers available. */
2838 				break;
2839 			}
2840 
2841 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2842 
2843 			/* If data is transferring from host to controller, we need to do a transfer from the host. */
2844 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2845 				if (tcp_req->req.data_from_pool) {
2846 					SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2847 					nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2848 				} else {
2849 					struct nvme_tcp_pdu *pdu;
2850 
2851 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
2852 
2853 					pdu = tqpair->pdu_in_progress;
2854 					SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
2855 						      tqpair);
2856 					/* No need to send r2t, contained in the capsuled data */
2857 					nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2858 								  0, tcp_req->req.length);
2859 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2860 				}
2861 				break;
2862 			}
2863 
2864 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2865 			break;
2866 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
2867 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.qid, 0,
2868 					  (uintptr_t)tcp_req, tqpair);
2869 			/* Some external code must kick a request into  TCP_REQUEST_STATE_ZCOPY_START_COMPLETED
2870 			 * to escape this state. */
2871 			break;
2872 		case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
2873 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.qid, 0,
2874 					  (uintptr_t)tcp_req, tqpair);
2875 			if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) {
2876 				SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n",
2877 					      tcp_req, tqpair);
2878 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2879 				break;
2880 			}
2881 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2882 				SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2883 				nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2884 			} else {
2885 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
2886 			}
2887 			break;
2888 		case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
2889 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2890 					  tqpair);
2891 			/* The R2T completion or the h2c data incoming will kick it out of this state. */
2892 			break;
2893 		case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
2894 
2895 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.qid, 0,
2896 					  (uintptr_t)tcp_req, tqpair);
2897 			/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
2898 			 * to escape this state. */
2899 			break;
2900 		case TCP_REQUEST_STATE_READY_TO_EXECUTE:
2901 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.qid, 0,
2902 					  (uintptr_t)tcp_req, tqpair);
2903 
2904 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2905 				assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2906 				tcp_req->req.length = tcp_req->req.dif.elba_length;
2907 			}
2908 
2909 			if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
2910 				if (tcp_req->fused_failed) {
2911 					/* This request failed FUSED semantics.  Fail it immediately, without
2912 					 * even sending it to the target layer.
2913 					 */
2914 					tcp_req->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2915 					tcp_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED;
2916 					tcp_req->req.rsp->nvme_cpl.cid = tcp_req->req.cmd->nvme_cmd.cid;
2917 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2918 					break;
2919 				}
2920 
2921 				if (tcp_req->fused_pair == NULL ||
2922 				    tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2923 					/* This request is ready to execute, but either we don't know yet if it's
2924 					 * valid - i.e. this is a FIRST but we haven't received the next request yet),
2925 					 * or the other request of this fused pair isn't ready to execute. So
2926 					 * break here and this request will get processed later either when the
2927 					 * other request is ready or we find that this request isn't valid.
2928 					 */
2929 					break;
2930 				}
2931 			}
2932 
2933 			if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2934 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
2935 				/* If we get to this point, and this request is a fused command, we know that
2936 				 * it is part of a valid sequence (FIRST followed by a SECOND) and that both
2937 				 * requests are READY_TO_EXECUTE.  So call spdk_nvmf_request_exec() both on this
2938 				 * request, and the other request of the fused pair, in the correct order.
2939 				 * Also clear the ->fused_pair pointers on both requests, since after this point
2940 				 * we no longer need to maintain the relationship between these two requests.
2941 				 */
2942 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
2943 					assert(tcp_req->fused_pair != NULL);
2944 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
2945 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
2946 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
2947 					tcp_req->fused_pair->fused_pair = NULL;
2948 					tcp_req->fused_pair = NULL;
2949 				}
2950 				spdk_nvmf_request_exec(&tcp_req->req);
2951 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
2952 					assert(tcp_req->fused_pair != NULL);
2953 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
2954 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
2955 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
2956 					tcp_req->fused_pair->fused_pair = NULL;
2957 					tcp_req->fused_pair = NULL;
2958 				}
2959 			} else {
2960 				/* For zero-copy, only requests with data coming from host to the
2961 				 * controller can end up here. */
2962 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
2963 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT);
2964 				spdk_nvmf_request_zcopy_end(&tcp_req->req, true);
2965 			}
2966 
2967 			break;
2968 		case TCP_REQUEST_STATE_EXECUTING:
2969 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2970 					  tqpair);
2971 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
2972 			 * to escape this state. */
2973 			break;
2974 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
2975 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.qid, 0,
2976 					  (uintptr_t)tcp_req, tqpair);
2977 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
2978 			 * to escape this state. */
2979 			break;
2980 		case TCP_REQUEST_STATE_EXECUTED:
2981 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2982 					  tqpair);
2983 
2984 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2985 				tcp_req->req.length = tcp_req->req.dif.orig_length;
2986 			}
2987 
2988 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2989 			break;
2990 		case TCP_REQUEST_STATE_READY_TO_COMPLETE:
2991 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.qid, 0,
2992 					  (uintptr_t)tcp_req, tqpair);
2993 			if (request_transfer_out(&tcp_req->req) != 0) {
2994 				assert(0); /* No good way to handle this currently */
2995 			}
2996 			break;
2997 		case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
2998 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.qid, 0,
2999 					  (uintptr_t)tcp_req, tqpair);
3000 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3001 			 * to escape this state. */
3002 			break;
3003 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3004 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.qid, 0,
3005 					  (uintptr_t)tcp_req, tqpair);
3006 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3007 			 * to escape this state. */
3008 			break;
3009 		case TCP_REQUEST_STATE_COMPLETED:
3010 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
3011 					  tqpair);
3012 			/* If there's an outstanding PDU sent to the host, the request is completed
3013 			 * due to the qpair being disconnected.  We must delay the completion until
3014 			 * that write is done to avoid freeing the request twice. */
3015 			if (spdk_unlikely(tcp_req->pdu_in_use)) {
3016 				SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding "
3017 					      "write on req=%p\n", tcp_req);
3018 				/* This can only happen for zcopy requests */
3019 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3020 				assert(tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
3021 				break;
3022 			}
3023 
3024 			if (tcp_req->req.data_from_pool) {
3025 				spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
3026 			} else if (spdk_unlikely(tcp_req->has_in_capsule_data &&
3027 						 (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
3028 						  tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
3029 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3030 				assert(tgroup->control_msg_list);
3031 				SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
3032 				nvmf_tcp_control_msg_put(tgroup->control_msg_list,
3033 							 tcp_req->req.iov[0].iov_base);
3034 			} else if (tcp_req->req.zcopy_bdev_io != NULL) {
3035 				/* If the request has an unreleased zcopy bdev_io, it's either a
3036 				 * read, a failed write, or the qpair is being disconnected */
3037 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3038 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
3039 				       spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) ||
3040 				       tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
3041 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE);
3042 				spdk_nvmf_request_zcopy_end(&tcp_req->req, false);
3043 				break;
3044 			}
3045 			tcp_req->req.length = 0;
3046 			tcp_req->req.iovcnt = 0;
3047 			tcp_req->req.data = NULL;
3048 			tcp_req->fused_failed = false;
3049 			if (tcp_req->fused_pair) {
3050 				/* This req was part of a valid fused pair, but failed before it got to
3051 				 * READ_TO_EXECUTE state.  This means we need to fail the other request
3052 				 * in the pair, because it is no longer part of a valid pair.  If the pair
3053 				 * already reached READY_TO_EXECUTE state, we need to kick it.
3054 				 */
3055 				tcp_req->fused_pair->fused_failed = true;
3056 				if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3057 					nvmf_tcp_req_process(ttransport, tcp_req->fused_pair);
3058 				}
3059 				tcp_req->fused_pair = NULL;
3060 			}
3061 
3062 			nvmf_tcp_req_put(tqpair, tcp_req);
3063 			break;
3064 		case TCP_REQUEST_NUM_STATES:
3065 		default:
3066 			assert(0);
3067 			break;
3068 		}
3069 
3070 		if (tcp_req->state != prev_state) {
3071 			progress = true;
3072 		}
3073 	} while (tcp_req->state != prev_state);
3074 
3075 	return progress;
3076 }
3077 
3078 static void
3079 nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
3080 {
3081 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
3082 	int rc;
3083 
3084 	assert(tqpair != NULL);
3085 	rc = nvmf_tcp_sock_process(tqpair);
3086 
3087 	/* If there was a new socket error, disconnect */
3088 	if (rc < 0) {
3089 		nvmf_tcp_qpair_disconnect(tqpair);
3090 	}
3091 }
3092 
3093 static int
3094 nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3095 			struct spdk_nvmf_qpair *qpair)
3096 {
3097 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3098 	struct spdk_nvmf_tcp_qpair	*tqpair;
3099 	int				rc;
3100 
3101 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3102 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3103 
3104 	rc =  nvmf_tcp_qpair_sock_init(tqpair);
3105 	if (rc != 0) {
3106 		SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
3107 		return -1;
3108 	}
3109 
3110 	rc = nvmf_tcp_qpair_init(&tqpair->qpair);
3111 	if (rc < 0) {
3112 		SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
3113 		return -1;
3114 	}
3115 
3116 	rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
3117 	if (rc < 0) {
3118 		SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
3119 		return -1;
3120 	}
3121 
3122 	rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
3123 				      nvmf_tcp_sock_cb, tqpair);
3124 	if (rc != 0) {
3125 		SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
3126 			    spdk_strerror(errno), errno);
3127 		return -1;
3128 	}
3129 
3130 	tqpair->group = tgroup;
3131 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INVALID);
3132 	TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
3133 
3134 	return 0;
3135 }
3136 
3137 static int
3138 nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3139 			   struct spdk_nvmf_qpair *qpair)
3140 {
3141 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3142 	struct spdk_nvmf_tcp_qpair		*tqpair;
3143 	int				rc;
3144 
3145 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3146 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3147 
3148 	assert(tqpair->group == tgroup);
3149 
3150 	SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
3151 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
3152 		TAILQ_REMOVE(&tgroup->await_req, tqpair, link);
3153 	} else {
3154 		TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
3155 	}
3156 
3157 	rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
3158 	if (rc != 0) {
3159 		SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
3160 			    spdk_strerror(errno), errno);
3161 	}
3162 
3163 	return rc;
3164 }
3165 
3166 static int
3167 nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
3168 {
3169 	struct spdk_nvmf_tcp_transport *ttransport;
3170 	struct spdk_nvmf_tcp_req *tcp_req;
3171 
3172 	ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3173 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3174 
3175 	switch (tcp_req->state) {
3176 	case TCP_REQUEST_STATE_EXECUTING:
3177 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3178 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3179 		break;
3180 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3181 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED);
3182 		break;
3183 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3184 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3185 		break;
3186 	default:
3187 		assert(0 && "Unexpected request state");
3188 		break;
3189 	}
3190 
3191 	nvmf_tcp_req_process(ttransport, tcp_req);
3192 
3193 	return 0;
3194 }
3195 
3196 static void
3197 nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
3198 		     spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3199 {
3200 	struct spdk_nvmf_tcp_qpair *tqpair;
3201 
3202 	SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
3203 
3204 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3205 
3206 	assert(tqpair->fini_cb_fn == NULL);
3207 	tqpair->fini_cb_fn = cb_fn;
3208 	tqpair->fini_cb_arg = cb_arg;
3209 
3210 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITED);
3211 	nvmf_tcp_qpair_destroy(tqpair);
3212 }
3213 
3214 static int
3215 nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3216 {
3217 	struct spdk_nvmf_tcp_poll_group *tgroup;
3218 	int rc;
3219 	struct spdk_nvmf_request *req, *req_tmp;
3220 	struct spdk_nvmf_tcp_req *tcp_req;
3221 	struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp;
3222 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(group->transport,
3223 			struct spdk_nvmf_tcp_transport, transport);
3224 
3225 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3226 
3227 	if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) {
3228 		return 0;
3229 	}
3230 
3231 	STAILQ_FOREACH_SAFE(req, &group->pending_buf_queue, buf_link, req_tmp) {
3232 		tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3233 		if (nvmf_tcp_req_process(ttransport, tcp_req) == false) {
3234 			break;
3235 		}
3236 	}
3237 
3238 	rc = spdk_sock_group_poll(tgroup->sock_group);
3239 	if (rc < 0) {
3240 		SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
3241 	}
3242 
3243 	TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) {
3244 		rc = nvmf_tcp_sock_process(tqpair);
3245 
3246 		/* If there was a new socket error, disconnect */
3247 		if (rc < 0) {
3248 			nvmf_tcp_qpair_disconnect(tqpair);
3249 		}
3250 	}
3251 
3252 	return rc;
3253 }
3254 
3255 static int
3256 nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
3257 			struct spdk_nvme_transport_id *trid, bool peer)
3258 {
3259 	struct spdk_nvmf_tcp_qpair     *tqpair;
3260 	uint16_t			port;
3261 
3262 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3263 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
3264 
3265 	if (peer) {
3266 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
3267 		port = tqpair->initiator_port;
3268 	} else {
3269 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
3270 		port = tqpair->target_port;
3271 	}
3272 
3273 	if (spdk_sock_is_ipv4(tqpair->sock)) {
3274 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3275 	} else if (spdk_sock_is_ipv6(tqpair->sock)) {
3276 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3277 	} else {
3278 		return -1;
3279 	}
3280 
3281 	snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
3282 	return 0;
3283 }
3284 
3285 static int
3286 nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3287 			      struct spdk_nvme_transport_id *trid)
3288 {
3289 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3290 }
3291 
3292 static int
3293 nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3294 			     struct spdk_nvme_transport_id *trid)
3295 {
3296 	return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
3297 }
3298 
3299 static int
3300 nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3301 			       struct spdk_nvme_transport_id *trid)
3302 {
3303 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3304 }
3305 
3306 static void
3307 nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
3308 			      struct spdk_nvmf_tcp_req *tcp_req_to_abort)
3309 {
3310 	tcp_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
3311 	tcp_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
3312 	tcp_req_to_abort->req.rsp->nvme_cpl.cid = tcp_req_to_abort->req.cmd->nvme_cmd.cid;
3313 
3314 	nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3315 
3316 	req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
3317 }
3318 
3319 static int
3320 _nvmf_tcp_qpair_abort_request(void *ctx)
3321 {
3322 	struct spdk_nvmf_request *req = ctx;
3323 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
3324 			struct spdk_nvmf_tcp_req, req);
3325 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
3326 					     struct spdk_nvmf_tcp_qpair, qpair);
3327 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
3328 			struct spdk_nvmf_tcp_transport, transport);
3329 	int rc;
3330 
3331 	spdk_poller_unregister(&req->poller);
3332 
3333 	switch (tcp_req_to_abort->state) {
3334 	case TCP_REQUEST_STATE_EXECUTING:
3335 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3336 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3337 		rc = nvmf_ctrlr_abort_request(req);
3338 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
3339 			return SPDK_POLLER_BUSY;
3340 		}
3341 		break;
3342 
3343 	case TCP_REQUEST_STATE_NEED_BUFFER:
3344 		STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue,
3345 			      &tcp_req_to_abort->req, spdk_nvmf_request, buf_link);
3346 
3347 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3348 		nvmf_tcp_req_process(ttransport, tcp_req_to_abort);
3349 		break;
3350 
3351 	case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3352 	case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3353 		if (spdk_get_ticks() < req->timeout_tsc) {
3354 			req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
3355 			return SPDK_POLLER_BUSY;
3356 		}
3357 		break;
3358 
3359 	default:
3360 		/* Requests in other states are either un-abortable (e.g.
3361 		 * TRANSFERRING_CONTROLLER_TO_HOST) or should never end up here, as they're
3362 		 * immediately transitioned to other states in nvmf_tcp_req_process() (e.g.
3363 		 * READY_TO_EXECUTE).  But it is fine to end up here, as we'll simply complete the
3364 		 * abort request with the bit0 of dword0 set (command not aborted).
3365 		 */
3366 		break;
3367 	}
3368 
3369 	spdk_nvmf_request_complete(req);
3370 	return SPDK_POLLER_BUSY;
3371 }
3372 
3373 static void
3374 nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
3375 			     struct spdk_nvmf_request *req)
3376 {
3377 	struct spdk_nvmf_tcp_qpair *tqpair;
3378 	struct spdk_nvmf_tcp_transport *ttransport;
3379 	struct spdk_nvmf_transport *transport;
3380 	uint16_t cid;
3381 	uint32_t i;
3382 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
3383 
3384 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3385 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3386 	transport = &ttransport->transport;
3387 
3388 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
3389 
3390 	for (i = 0; i < tqpair->resource_count; i++) {
3391 		if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
3392 		    tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
3393 			tcp_req_to_abort = &tqpair->reqs[i];
3394 			break;
3395 		}
3396 	}
3397 
3398 	spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, qpair->qid, 0, (uintptr_t)req, tqpair);
3399 
3400 	if (tcp_req_to_abort == NULL) {
3401 		spdk_nvmf_request_complete(req);
3402 		return;
3403 	}
3404 
3405 	req->req_to_abort = &tcp_req_to_abort->req;
3406 	req->timeout_tsc = spdk_get_ticks() +
3407 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
3408 	req->poller = NULL;
3409 
3410 	_nvmf_tcp_qpair_abort_request(req);
3411 }
3412 
3413 static void
3414 nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
3415 {
3416 	opts->max_queue_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
3417 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
3418 	opts->in_capsule_data_size =	SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
3419 	opts->max_io_size =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
3420 	opts->io_unit_size =		SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
3421 	opts->max_aq_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
3422 	opts->num_shared_buffers =	SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
3423 	opts->buf_cache_size =		SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
3424 	opts->dif_insert_or_strip =	SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
3425 	opts->abort_timeout_sec =	SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
3426 	opts->transport_specific =      NULL;
3427 }
3428 
3429 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
3430 	.name = "TCP",
3431 	.type = SPDK_NVME_TRANSPORT_TCP,
3432 	.opts_init = nvmf_tcp_opts_init,
3433 	.create = nvmf_tcp_create,
3434 	.dump_opts = nvmf_tcp_dump_opts,
3435 	.destroy = nvmf_tcp_destroy,
3436 
3437 	.listen = nvmf_tcp_listen,
3438 	.stop_listen = nvmf_tcp_stop_listen,
3439 
3440 	.listener_discover = nvmf_tcp_discover,
3441 
3442 	.poll_group_create = nvmf_tcp_poll_group_create,
3443 	.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
3444 	.poll_group_destroy = nvmf_tcp_poll_group_destroy,
3445 	.poll_group_add = nvmf_tcp_poll_group_add,
3446 	.poll_group_remove = nvmf_tcp_poll_group_remove,
3447 	.poll_group_poll = nvmf_tcp_poll_group_poll,
3448 
3449 	.req_free = nvmf_tcp_req_free,
3450 	.req_complete = nvmf_tcp_req_complete,
3451 
3452 	.qpair_fini = nvmf_tcp_close_qpair,
3453 	.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
3454 	.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
3455 	.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
3456 	.qpair_abort_request = nvmf_tcp_qpair_abort_request,
3457 };
3458 
3459 SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
3460 SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)
3461