xref: /spdk/lib/nvmf/tcp.c (revision 8130039ee5287100d9eb93eb886967645da3d545)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2018 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2022, 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/accel.h"
8 #include "spdk/stdinc.h"
9 #include "spdk/crc32.h"
10 #include "spdk/endian.h"
11 #include "spdk/assert.h"
12 #include "spdk/thread.h"
13 #include "spdk/nvmf_transport.h"
14 #include "spdk/string.h"
15 #include "spdk/trace.h"
16 #include "spdk/util.h"
17 #include "spdk/log.h"
18 
19 #include "spdk_internal/assert.h"
20 #include "spdk_internal/nvme_tcp.h"
21 #include "spdk_internal/sock.h"
22 
23 #include "nvmf_internal.h"
24 
25 #include "spdk_internal/trace_defs.h"
26 
27 #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
28 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
29 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
30 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
31 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
32 
33 #define SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH 2
34 #define SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH 65535
35 #define SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH 2
36 #define SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH 4096
37 
38 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH 128
39 #define SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH 128
40 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
41 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
42 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
43 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
44 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
45 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX
46 #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
47 #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
48 
49 #define TCP_PSK_INVALID_PERMISSIONS 0177
50 
51 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
52 static bool g_tls_log = false;
53 
54 /* spdk nvmf related structure */
55 enum spdk_nvmf_tcp_req_state {
56 
57 	/* The request is not currently in use */
58 	TCP_REQUEST_STATE_FREE = 0,
59 
60 	/* Initial state when request first received */
61 	TCP_REQUEST_STATE_NEW = 1,
62 
63 	/* The request is queued until a data buffer is available. */
64 	TCP_REQUEST_STATE_NEED_BUFFER = 2,
65 
66 	/* The request is waiting for zcopy_start to finish */
67 	TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 3,
68 
69 	/* The request has received a zero-copy buffer */
70 	TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 4,
71 
72 	/* The request is currently transferring data from the host to the controller. */
73 	TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 5,
74 
75 	/* The request is waiting for the R2T send acknowledgement. */
76 	TCP_REQUEST_STATE_AWAITING_R2T_ACK = 6,
77 
78 	/* The request is ready to execute at the block device */
79 	TCP_REQUEST_STATE_READY_TO_EXECUTE = 7,
80 
81 	/* The request is currently executing at the block device */
82 	TCP_REQUEST_STATE_EXECUTING = 8,
83 
84 	/* The request is waiting for zcopy buffers to be committed */
85 	TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 9,
86 
87 	/* The request finished executing at the block device */
88 	TCP_REQUEST_STATE_EXECUTED = 10,
89 
90 	/* The request is ready to send a completion */
91 	TCP_REQUEST_STATE_READY_TO_COMPLETE = 11,
92 
93 	/* The request is currently transferring final pdus from the controller to the host. */
94 	TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 12,
95 
96 	/* The request is waiting for zcopy buffers to be released (without committing) */
97 	TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 13,
98 
99 	/* The request completed and can be marked free. */
100 	TCP_REQUEST_STATE_COMPLETED = 14,
101 
102 	/* Terminator */
103 	TCP_REQUEST_NUM_STATES,
104 };
105 
106 static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
107 	"Invalid PDU Header Field",
108 	"PDU Sequence Error",
109 	"Header Digiest Error",
110 	"Data Transfer Out of Range",
111 	"R2T Limit Exceeded",
112 	"Unsupported parameter",
113 };
114 
115 SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
116 {
117 	spdk_trace_register_owner(OWNER_NVMF_TCP, 't');
118 	spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
119 	spdk_trace_register_description("TCP_REQ_NEW",
120 					TRACE_TCP_REQUEST_STATE_NEW,
121 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1,
122 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
123 	spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
124 					TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
125 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
126 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
127 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START",
128 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START,
129 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
130 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
131 	spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL",
132 					TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED,
133 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
134 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
135 	spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
136 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
137 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
138 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
139 	spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
140 					TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
141 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
142 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
143 	spdk_trace_register_description("TCP_REQ_EXECUTING",
144 					TRACE_TCP_REQUEST_STATE_EXECUTING,
145 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
146 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
147 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT",
148 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT,
149 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
150 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
151 	spdk_trace_register_description("TCP_REQ_EXECUTED",
152 					TRACE_TCP_REQUEST_STATE_EXECUTED,
153 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
154 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
155 	spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
156 					TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
157 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
158 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
159 	spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
160 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
161 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
162 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
163 	spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS",
164 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE,
165 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
166 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
167 	spdk_trace_register_description("TCP_REQ_COMPLETED",
168 					TRACE_TCP_REQUEST_STATE_COMPLETED,
169 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
170 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
171 	spdk_trace_register_description("TCP_WRITE_START",
172 					TRACE_TCP_FLUSH_WRITEBUF_START,
173 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
174 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
175 	spdk_trace_register_description("TCP_WRITE_DONE",
176 					TRACE_TCP_FLUSH_WRITEBUF_DONE,
177 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
178 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
179 	spdk_trace_register_description("TCP_READ_DONE",
180 					TRACE_TCP_READ_FROM_SOCKET_DONE,
181 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
182 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
183 	spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
184 					TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
185 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
186 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
187 
188 	spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE,
189 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
190 					SPDK_TRACE_ARG_TYPE_INT, "");
191 	spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT,
192 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
193 					SPDK_TRACE_ARG_TYPE_INT, "");
194 	spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE,
195 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
196 					SPDK_TRACE_ARG_TYPE_INT, "state");
197 	spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT,
198 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
199 					SPDK_TRACE_ARG_TYPE_INT, "");
200 	spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY,
201 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
202 					SPDK_TRACE_ARG_TYPE_INT, "");
203 	spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ,
204 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
205 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
206 	spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE,
207 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
208 					SPDK_TRACE_ARG_TYPE_INT, "state");
209 
210 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1);
211 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0);
212 }
213 
214 struct spdk_nvmf_tcp_req  {
215 	struct spdk_nvmf_request		req;
216 	struct spdk_nvme_cpl			rsp;
217 	struct spdk_nvme_cmd			cmd;
218 
219 	/* A PDU that can be used for sending responses. This is
220 	 * not the incoming PDU! */
221 	struct nvme_tcp_pdu			*pdu;
222 
223 	/* In-capsule data buffer */
224 	uint8_t					*buf;
225 
226 	struct spdk_nvmf_tcp_req		*fused_pair;
227 
228 	/*
229 	 * The PDU for a request may be used multiple times in serial over
230 	 * the request's lifetime. For example, first to send an R2T, then
231 	 * to send a completion. To catch mistakes where the PDU is used
232 	 * twice at the same time, add a debug flag here for init/fini.
233 	 */
234 	bool					pdu_in_use;
235 	bool					has_in_capsule_data;
236 	bool					fused_failed;
237 
238 	/* transfer_tag */
239 	uint16_t				ttag;
240 
241 	enum spdk_nvmf_tcp_req_state		state;
242 
243 	/*
244 	 * h2c_offset is used when we receive the h2c_data PDU.
245 	 */
246 	uint32_t				h2c_offset;
247 
248 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		link;
249 	TAILQ_ENTRY(spdk_nvmf_tcp_req)		state_link;
250 };
251 
252 struct spdk_nvmf_tcp_qpair {
253 	struct spdk_nvmf_qpair			qpair;
254 	struct spdk_nvmf_tcp_poll_group		*group;
255 	struct spdk_sock			*sock;
256 
257 	enum nvme_tcp_pdu_recv_state		recv_state;
258 	enum nvme_tcp_qpair_state		state;
259 
260 	/* PDU being actively received */
261 	struct nvme_tcp_pdu			*pdu_in_progress;
262 
263 	struct spdk_nvmf_tcp_req		*fused_first;
264 
265 	/* Queues to track the requests in all states */
266 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_working_queue;
267 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_free_queue;
268 	SLIST_HEAD(, nvme_tcp_pdu)		tcp_pdu_free_queue;
269 	/* Number of working pdus */
270 	uint32_t				tcp_pdu_working_count;
271 
272 	/* Number of requests in each state */
273 	uint32_t				state_cntr[TCP_REQUEST_NUM_STATES];
274 
275 	uint8_t					cpda;
276 
277 	bool					host_hdgst_enable;
278 	bool					host_ddgst_enable;
279 
280 	/* This is a spare PDU used for sending special management
281 	 * operations. Primarily, this is used for the initial
282 	 * connection response and c2h termination request. */
283 	struct nvme_tcp_pdu			*mgmt_pdu;
284 
285 	/* Arrays of in-capsule buffers, requests, and pdus.
286 	 * Each array is 'resource_count' number of elements */
287 	void					*bufs;
288 	struct spdk_nvmf_tcp_req		*reqs;
289 	struct nvme_tcp_pdu			*pdus;
290 	uint32_t				resource_count;
291 	uint32_t				recv_buf_size;
292 
293 	struct spdk_nvmf_tcp_port		*port;
294 
295 	/* IP address */
296 	char					initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
297 	char					target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
298 
299 	/* IP port */
300 	uint16_t				initiator_port;
301 	uint16_t				target_port;
302 
303 	/* Wait until the host terminates the connection (e.g. after sending C2HTermReq) */
304 	bool					wait_terminate;
305 
306 	/* Timer used to destroy qpair after detecting transport error issue if initiator does
307 	 *  not close the connection.
308 	 */
309 	struct spdk_poller			*timeout_poller;
310 
311 	spdk_nvmf_transport_qpair_fini_cb	fini_cb_fn;
312 	void					*fini_cb_arg;
313 
314 	TAILQ_ENTRY(spdk_nvmf_tcp_qpair)	link;
315 };
316 
317 struct spdk_nvmf_tcp_control_msg {
318 	STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
319 };
320 
321 struct spdk_nvmf_tcp_control_msg_list {
322 	void *msg_buf;
323 	STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
324 };
325 
326 struct spdk_nvmf_tcp_poll_group {
327 	struct spdk_nvmf_transport_poll_group	group;
328 	struct spdk_sock_group			*sock_group;
329 
330 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	qpairs;
331 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	await_req;
332 
333 	struct spdk_io_channel			*accel_channel;
334 	struct spdk_nvmf_tcp_control_msg_list	*control_msg_list;
335 
336 	TAILQ_ENTRY(spdk_nvmf_tcp_poll_group)	link;
337 };
338 
339 struct spdk_nvmf_tcp_port {
340 	const struct spdk_nvme_transport_id	*trid;
341 	struct spdk_sock			*listen_sock;
342 	TAILQ_ENTRY(spdk_nvmf_tcp_port)		link;
343 };
344 
345 struct tcp_transport_opts {
346 	bool		c2h_success;
347 	uint16_t	control_msg_num;
348 	uint32_t	sock_priority;
349 };
350 
351 struct tcp_psk_entry {
352 	char				hostnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
353 	char				subnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
354 	char				pskid[NVMF_PSK_IDENTITY_LEN];
355 	uint8_t				psk[SPDK_TLS_PSK_MAX_LEN];
356 
357 	/* Original path saved to emit SPDK configuration via "save_config". */
358 	char				psk_path[PATH_MAX];
359 	uint32_t			psk_size;
360 	enum nvme_tcp_cipher_suite	tls_cipher_suite;
361 	TAILQ_ENTRY(tcp_psk_entry)	link;
362 };
363 
364 struct spdk_nvmf_tcp_transport {
365 	struct spdk_nvmf_transport		transport;
366 	struct tcp_transport_opts               tcp_opts;
367 
368 	struct spdk_nvmf_tcp_poll_group		*next_pg;
369 
370 	struct spdk_poller			*accept_poller;
371 
372 	TAILQ_HEAD(, spdk_nvmf_tcp_port)	ports;
373 	TAILQ_HEAD(, spdk_nvmf_tcp_poll_group)	poll_groups;
374 
375 	TAILQ_HEAD(, tcp_psk_entry)		psks;
376 };
377 
378 static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
379 	{
380 		"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
381 		spdk_json_decode_bool, true
382 	},
383 	{
384 		"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
385 		spdk_json_decode_uint16, true
386 	},
387 	{
388 		"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
389 		spdk_json_decode_uint32, true
390 	},
391 };
392 
393 static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
394 				 struct spdk_nvmf_tcp_req *tcp_req);
395 static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
396 
397 static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
398 				    struct spdk_nvmf_tcp_req *tcp_req);
399 
400 static inline void
401 nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
402 		       enum spdk_nvmf_tcp_req_state state)
403 {
404 	struct spdk_nvmf_qpair *qpair;
405 	struct spdk_nvmf_tcp_qpair *tqpair;
406 
407 	qpair = tcp_req->req.qpair;
408 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
409 
410 	assert(tqpair->state_cntr[tcp_req->state] > 0);
411 	tqpair->state_cntr[tcp_req->state]--;
412 	tqpair->state_cntr[state]++;
413 
414 	tcp_req->state = state;
415 }
416 
417 static inline struct nvme_tcp_pdu *
418 nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
419 {
420 	assert(tcp_req->pdu_in_use == false);
421 
422 	memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
423 	tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
424 
425 	return tcp_req->pdu;
426 }
427 
428 static struct spdk_nvmf_tcp_req *
429 nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
430 {
431 	struct spdk_nvmf_tcp_req *tcp_req;
432 
433 	tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
434 	if (spdk_unlikely(!tcp_req)) {
435 		return NULL;
436 	}
437 
438 	memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
439 	tcp_req->h2c_offset = 0;
440 	tcp_req->has_in_capsule_data = false;
441 	tcp_req->req.dif_enabled = false;
442 	tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE;
443 
444 	TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
445 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
446 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
447 	return tcp_req;
448 }
449 
450 static inline void
451 nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
452 {
453 	assert(!tcp_req->pdu_in_use);
454 
455 	TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
456 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
457 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
458 }
459 
460 static void
461 nvmf_tcp_request_free(void *cb_arg)
462 {
463 	struct spdk_nvmf_tcp_transport *ttransport;
464 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
465 
466 	assert(tcp_req != NULL);
467 
468 	SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
469 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
470 				      struct spdk_nvmf_tcp_transport, transport);
471 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
472 	nvmf_tcp_req_process(ttransport, tcp_req);
473 }
474 
475 static int
476 nvmf_tcp_req_free(struct spdk_nvmf_request *req)
477 {
478 	struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
479 
480 	nvmf_tcp_request_free(tcp_req);
481 
482 	return 0;
483 }
484 
485 static void
486 nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
487 			   enum spdk_nvmf_tcp_req_state state)
488 {
489 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
490 
491 	assert(state != TCP_REQUEST_STATE_FREE);
492 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
493 		if (state == tcp_req->state) {
494 			nvmf_tcp_request_free(tcp_req);
495 		}
496 	}
497 }
498 
499 static void
500 nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
501 {
502 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
503 
504 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
505 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
506 
507 	/* Wipe the requests waiting for buffer from the global list */
508 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
509 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
510 			STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue, &tcp_req->req,
511 				      spdk_nvmf_request, buf_link);
512 		}
513 	}
514 
515 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
516 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
517 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
518 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
519 }
520 
521 static void
522 nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
523 {
524 	int i;
525 	struct spdk_nvmf_tcp_req *tcp_req;
526 
527 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
528 	for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
529 		SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
530 		TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
531 			if ((int)tcp_req->state == i) {
532 				SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
533 				SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
534 			}
535 		}
536 	}
537 }
538 
539 static void
540 _nvmf_tcp_qpair_destroy(void *_tqpair)
541 {
542 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
543 	spdk_nvmf_transport_qpair_fini_cb cb_fn = tqpair->fini_cb_fn;
544 	void *cb_arg = tqpair->fini_cb_arg;
545 	int err = 0;
546 
547 	spdk_trace_record(TRACE_TCP_QP_DESTROY, 0, 0, (uintptr_t)tqpair);
548 
549 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
550 
551 	err = spdk_sock_close(&tqpair->sock);
552 	assert(err == 0);
553 	nvmf_tcp_cleanup_all_states(tqpair);
554 
555 	if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
556 		SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
557 			    tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
558 			    tqpair->resource_count);
559 		err++;
560 	}
561 
562 	if (err > 0) {
563 		nvmf_tcp_dump_qpair_req_contents(tqpair);
564 	}
565 
566 	/* The timeout poller might still be registered here if we close the qpair before host
567 	 * terminates the connection.
568 	 */
569 	spdk_poller_unregister(&tqpair->timeout_poller);
570 	spdk_dma_free(tqpair->pdus);
571 	free(tqpair->reqs);
572 	spdk_free(tqpair->bufs);
573 	free(tqpair);
574 
575 	if (cb_fn != NULL) {
576 		cb_fn(cb_arg);
577 	}
578 
579 	SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
580 }
581 
582 static void
583 nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
584 {
585 	/* Delay the destruction to make sure it isn't performed from the context of a sock
586 	 * callback.  Otherwise, spdk_sock_close() might not abort pending requests, causing their
587 	 * completions to be executed after the qpair is freed.  (Note: this fixed issue #2471.)
588 	 */
589 	spdk_thread_send_msg(spdk_get_thread(), _nvmf_tcp_qpair_destroy, tqpair);
590 }
591 
592 static void
593 nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
594 {
595 	struct spdk_nvmf_tcp_transport	*ttransport;
596 	assert(w != NULL);
597 
598 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
599 	spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
600 	spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
601 }
602 
603 static void
604 nvmf_tcp_free_psk_entry(struct tcp_psk_entry *entry)
605 {
606 	if (entry == NULL) {
607 		return;
608 	}
609 
610 	spdk_memset_s(entry->psk, sizeof(entry->psk), 0, sizeof(entry->psk));
611 	free(entry);
612 }
613 
614 static int
615 nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
616 		 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
617 {
618 	struct spdk_nvmf_tcp_transport	*ttransport;
619 	struct tcp_psk_entry *entry, *tmp;
620 
621 	assert(transport != NULL);
622 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
623 
624 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
625 		TAILQ_REMOVE(&ttransport->psks, entry, link);
626 		nvmf_tcp_free_psk_entry(entry);
627 	}
628 
629 	spdk_poller_unregister(&ttransport->accept_poller);
630 	free(ttransport);
631 
632 	if (cb_fn) {
633 		cb_fn(cb_arg);
634 	}
635 	return 0;
636 }
637 
638 static int nvmf_tcp_accept(void *ctx);
639 
640 static struct spdk_nvmf_transport *
641 nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
642 {
643 	struct spdk_nvmf_tcp_transport *ttransport;
644 	uint32_t sge_count;
645 	uint32_t min_shared_buffers;
646 
647 	ttransport = calloc(1, sizeof(*ttransport));
648 	if (!ttransport) {
649 		return NULL;
650 	}
651 
652 	TAILQ_INIT(&ttransport->ports);
653 	TAILQ_INIT(&ttransport->poll_groups);
654 	TAILQ_INIT(&ttransport->psks);
655 
656 	ttransport->transport.ops = &spdk_nvmf_transport_tcp;
657 
658 	ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
659 	ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
660 	ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
661 	if (opts->transport_specific != NULL &&
662 	    spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
663 					    SPDK_COUNTOF(tcp_transport_opts_decoder),
664 					    &ttransport->tcp_opts)) {
665 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
666 		free(ttransport);
667 		return NULL;
668 	}
669 
670 	SPDK_NOTICELOG("*** TCP Transport Init ***\n");
671 
672 	SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
673 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
674 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
675 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
676 		     "  num_shared_buffers=%d, c2h_success=%d,\n"
677 		     "  dif_insert_or_strip=%d, sock_priority=%d\n"
678 		     "  abort_timeout_sec=%d, control_msg_num=%hu\n",
679 		     opts->max_queue_depth,
680 		     opts->max_io_size,
681 		     opts->max_qpairs_per_ctrlr - 1,
682 		     opts->io_unit_size,
683 		     opts->in_capsule_data_size,
684 		     opts->max_aq_depth,
685 		     opts->num_shared_buffers,
686 		     ttransport->tcp_opts.c2h_success,
687 		     opts->dif_insert_or_strip,
688 		     ttransport->tcp_opts.sock_priority,
689 		     opts->abort_timeout_sec,
690 		     ttransport->tcp_opts.control_msg_num);
691 
692 	if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
693 		SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
694 			    "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
695 			    ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
696 		free(ttransport);
697 		return NULL;
698 	}
699 
700 	if (ttransport->tcp_opts.control_msg_num == 0 &&
701 	    opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
702 		SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
703 			     SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
704 		ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
705 	}
706 
707 	/* I/O unit size cannot be larger than max I/O size */
708 	if (opts->io_unit_size > opts->max_io_size) {
709 		SPDK_WARNLOG("TCP param io_unit_size %u can't be larger than max_io_size %u. Using max_io_size as io_unit_size\n",
710 			     opts->io_unit_size, opts->max_io_size);
711 		opts->io_unit_size = opts->max_io_size;
712 	}
713 
714 	/* In capsule data size cannot be larger than max I/O size */
715 	if (opts->in_capsule_data_size > opts->max_io_size) {
716 		SPDK_WARNLOG("TCP param ICD size %u can't be larger than max_io_size %u. Using max_io_size as ICD size\n",
717 			     opts->io_unit_size, opts->max_io_size);
718 		opts->in_capsule_data_size = opts->max_io_size;
719 	}
720 
721 	/* max IO queue depth cannot be smaller than 2 or larger than 65535.
722 	 * We will not check SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, because max_queue_depth is 16bits and always not larger than 64k. */
723 	if (opts->max_queue_depth < SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH) {
724 		SPDK_WARNLOG("TCP param max_queue_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
725 			     opts->max_queue_depth, SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH,
726 			     SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH);
727 		opts->max_queue_depth = SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
728 	}
729 
730 	/* max admin queue depth cannot be smaller than 2 or larger than 4096 */
731 	if (opts->max_aq_depth < SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH ||
732 	    opts->max_aq_depth > SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH) {
733 		SPDK_WARNLOG("TCP param max_aq_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
734 			     opts->max_aq_depth, SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH,
735 			     SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH);
736 		opts->max_aq_depth = SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
737 	}
738 
739 	sge_count = opts->max_io_size / opts->io_unit_size;
740 	if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
741 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
742 		free(ttransport);
743 		return NULL;
744 	}
745 
746 	/* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */
747 	if (opts->buf_cache_size < UINT32_MAX) {
748 		min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
749 		if (min_shared_buffers > opts->num_shared_buffers) {
750 			SPDK_ERRLOG("There are not enough buffers to satisfy "
751 				    "per-poll group caches for each thread. (%" PRIu32 ") "
752 				    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
753 			SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
754 			free(ttransport);
755 			return NULL;
756 		}
757 	}
758 
759 	ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport,
760 				    opts->acceptor_poll_rate);
761 	if (!ttransport->accept_poller) {
762 		free(ttransport);
763 		return NULL;
764 	}
765 
766 	return &ttransport->transport;
767 }
768 
769 static int
770 nvmf_tcp_trsvcid_to_int(const char *trsvcid)
771 {
772 	unsigned long long ull;
773 	char *end = NULL;
774 
775 	ull = strtoull(trsvcid, &end, 10);
776 	if (end == NULL || end == trsvcid || *end != '\0') {
777 		return -1;
778 	}
779 
780 	/* Valid TCP/IP port numbers are in [1, 65535] */
781 	if (ull == 0 || ull > 65535) {
782 		return -1;
783 	}
784 
785 	return (int)ull;
786 }
787 
788 /**
789  * Canonicalize a listen address trid.
790  */
791 static int
792 nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
793 			   const struct spdk_nvme_transport_id *trid)
794 {
795 	int trsvcid_int;
796 
797 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
798 	if (trsvcid_int < 0) {
799 		return -EINVAL;
800 	}
801 
802 	memset(canon_trid, 0, sizeof(*canon_trid));
803 	spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
804 	canon_trid->adrfam = trid->adrfam;
805 	snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
806 	snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
807 
808 	return 0;
809 }
810 
811 /**
812  * Find an existing listening port.
813  */
814 static struct spdk_nvmf_tcp_port *
815 nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
816 		   const struct spdk_nvme_transport_id *trid)
817 {
818 	struct spdk_nvme_transport_id canon_trid;
819 	struct spdk_nvmf_tcp_port *port;
820 
821 	if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
822 		return NULL;
823 	}
824 
825 	TAILQ_FOREACH(port, &ttransport->ports, link) {
826 		if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
827 			return port;
828 		}
829 	}
830 
831 	return NULL;
832 }
833 
834 static int
835 tcp_sock_get_key(uint8_t *out, int out_len, const char **cipher, const char *pskid,
836 		 void *get_key_ctx)
837 {
838 	struct tcp_psk_entry *entry;
839 	struct spdk_nvmf_tcp_transport *ttransport = get_key_ctx;
840 	size_t psk_len;
841 	int rc;
842 
843 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
844 		if (strcmp(pskid, entry->pskid) != 0) {
845 			continue;
846 		}
847 
848 		psk_len = entry->psk_size;
849 		if ((size_t)out_len < psk_len) {
850 			SPDK_ERRLOG("Out buffer of size: %" PRIu32 " cannot fit PSK of len: %lu\n",
851 				    out_len, psk_len);
852 			return -ENOBUFS;
853 		}
854 
855 		/* Convert PSK to the TLS PSK format. */
856 		rc = nvme_tcp_derive_tls_psk(entry->psk, psk_len, pskid, out, out_len,
857 					     entry->tls_cipher_suite);
858 		if (rc < 0) {
859 			SPDK_ERRLOG("Could not generate TLS PSK\n");
860 		}
861 
862 		switch (entry->tls_cipher_suite) {
863 		case NVME_TCP_CIPHER_AES_128_GCM_SHA256:
864 			*cipher = "TLS_AES_128_GCM_SHA256";
865 			break;
866 		case NVME_TCP_CIPHER_AES_256_GCM_SHA384:
867 			*cipher = "TLS_AES_256_GCM_SHA384";
868 			break;
869 		default:
870 			*cipher = NULL;
871 			return -ENOTSUP;
872 		}
873 
874 		return rc;
875 	}
876 
877 	SPDK_ERRLOG("Could not find PSK for identity: %s\n", pskid);
878 
879 	return -EINVAL;
880 }
881 
882 static int
883 nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
884 		struct spdk_nvmf_listen_opts *listen_opts)
885 {
886 	struct spdk_nvmf_tcp_transport *ttransport;
887 	struct spdk_nvmf_tcp_port *port;
888 	int trsvcid_int;
889 	uint8_t adrfam;
890 	const char *sock_impl_name;
891 	struct spdk_sock_impl_opts impl_opts;
892 	size_t impl_opts_size = sizeof(impl_opts);
893 	struct spdk_sock_opts opts;
894 
895 	if (!strlen(trid->trsvcid)) {
896 		SPDK_ERRLOG("Service id is required\n");
897 		return -EINVAL;
898 	}
899 
900 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
901 
902 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
903 	if (trsvcid_int < 0) {
904 		SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
905 		return -EINVAL;
906 	}
907 
908 	port = calloc(1, sizeof(*port));
909 	if (!port) {
910 		SPDK_ERRLOG("Port allocation failed\n");
911 		return -ENOMEM;
912 	}
913 
914 	port->trid = trid;
915 
916 	sock_impl_name = NULL;
917 
918 	opts.opts_size = sizeof(opts);
919 	spdk_sock_get_default_opts(&opts);
920 	opts.priority = ttransport->tcp_opts.sock_priority;
921 	if (listen_opts->secure_channel) {
922 		if (!g_tls_log) {
923 			SPDK_NOTICELOG("TLS support is considered experimental\n");
924 			g_tls_log = true;
925 		}
926 		sock_impl_name = "ssl";
927 		spdk_sock_impl_get_opts(sock_impl_name, &impl_opts, &impl_opts_size);
928 		impl_opts.tls_version = SPDK_TLS_VERSION_1_3;
929 		impl_opts.get_key = tcp_sock_get_key;
930 		impl_opts.get_key_ctx = ttransport;
931 		impl_opts.tls_cipher_suites = "TLS_AES_256_GCM_SHA384:TLS_AES_128_GCM_SHA256";
932 		opts.impl_opts = &impl_opts;
933 		opts.impl_opts_size = sizeof(impl_opts);
934 	}
935 
936 	port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
937 			    sock_impl_name, &opts);
938 	if (port->listen_sock == NULL) {
939 		SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
940 			    trid->traddr, trsvcid_int,
941 			    spdk_strerror(errno), errno);
942 		free(port);
943 		return -errno;
944 	}
945 
946 	if (spdk_sock_is_ipv4(port->listen_sock)) {
947 		adrfam = SPDK_NVMF_ADRFAM_IPV4;
948 	} else if (spdk_sock_is_ipv6(port->listen_sock)) {
949 		adrfam = SPDK_NVMF_ADRFAM_IPV6;
950 	} else {
951 		SPDK_ERRLOG("Unhandled socket type\n");
952 		adrfam = 0;
953 	}
954 
955 	if (adrfam != trid->adrfam) {
956 		SPDK_ERRLOG("Socket address family mismatch\n");
957 		spdk_sock_close(&port->listen_sock);
958 		free(port);
959 		return -EINVAL;
960 	}
961 
962 	SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
963 		       trid->traddr, trid->trsvcid);
964 
965 	TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
966 	return 0;
967 }
968 
969 static void
970 nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
971 		     const struct spdk_nvme_transport_id *trid)
972 {
973 	struct spdk_nvmf_tcp_transport *ttransport;
974 	struct spdk_nvmf_tcp_port *port;
975 
976 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
977 
978 	SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
979 		      trid->traddr, trid->trsvcid);
980 
981 	port = nvmf_tcp_find_port(ttransport, trid);
982 	if (port) {
983 		TAILQ_REMOVE(&ttransport->ports, port, link);
984 		spdk_sock_close(&port->listen_sock);
985 		free(port);
986 	}
987 }
988 
989 static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
990 		enum nvme_tcp_pdu_recv_state state);
991 
992 static void
993 nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvme_tcp_qpair_state state)
994 {
995 	tqpair->state = state;
996 	spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
997 			  tqpair->state);
998 }
999 
1000 static void
1001 nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
1002 {
1003 	SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
1004 
1005 	spdk_trace_record(TRACE_TCP_QP_DISCONNECT, 0, 0, (uintptr_t)tqpair);
1006 
1007 	if (tqpair->state <= NVME_TCP_QPAIR_STATE_RUNNING) {
1008 		nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITING);
1009 		assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1010 		spdk_poller_unregister(&tqpair->timeout_poller);
1011 
1012 		/* This will end up calling nvmf_tcp_close_qpair */
1013 		spdk_nvmf_qpair_disconnect(&tqpair->qpair, NULL, NULL);
1014 	}
1015 }
1016 
1017 static void
1018 _mgmt_pdu_write_done(void *_tqpair, int err)
1019 {
1020 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
1021 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1022 
1023 	if (spdk_unlikely(err != 0)) {
1024 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1025 		return;
1026 	}
1027 
1028 	assert(pdu->cb_fn != NULL);
1029 	pdu->cb_fn(pdu->cb_arg);
1030 }
1031 
1032 static void
1033 _req_pdu_write_done(void *req, int err)
1034 {
1035 	struct spdk_nvmf_tcp_req *tcp_req = req;
1036 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1037 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1038 
1039 	assert(tcp_req->pdu_in_use);
1040 	tcp_req->pdu_in_use = false;
1041 
1042 	/* If the request is in a completed state, we're waiting for write completion to free it */
1043 	if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) {
1044 		nvmf_tcp_request_free(tcp_req);
1045 		return;
1046 	}
1047 
1048 	if (spdk_unlikely(err != 0)) {
1049 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1050 		return;
1051 	}
1052 
1053 	assert(pdu->cb_fn != NULL);
1054 	pdu->cb_fn(pdu->cb_arg);
1055 }
1056 
1057 static void
1058 _pdu_write_done(struct nvme_tcp_pdu *pdu, int err)
1059 {
1060 	pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err);
1061 }
1062 
1063 static void
1064 _tcp_write_pdu(struct nvme_tcp_pdu *pdu)
1065 {
1066 	int rc;
1067 	uint32_t mapped_length;
1068 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1069 
1070 	pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
1071 			       tqpair->host_hdgst_enable, tqpair->host_ddgst_enable, &mapped_length);
1072 	spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
1073 
1074 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
1075 	    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
1076 		/* Try to force the send immediately. */
1077 		rc = spdk_sock_flush(tqpair->sock);
1078 		if (rc > 0 && (uint32_t)rc == mapped_length) {
1079 			_pdu_write_done(pdu, 0);
1080 		} else {
1081 			SPDK_ERRLOG("Could not write %s to socket: rc=%d, errno=%d\n",
1082 				    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ?
1083 				    "IC_RESP" : "TERM_REQ", rc, errno);
1084 			_pdu_write_done(pdu, rc >= 0 ? -EAGAIN : -errno);
1085 		}
1086 	}
1087 }
1088 
1089 static void
1090 data_crc32_accel_done(void *cb_arg, int status)
1091 {
1092 	struct nvme_tcp_pdu *pdu = cb_arg;
1093 
1094 	if (spdk_unlikely(status)) {
1095 		SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
1096 		_pdu_write_done(pdu, status);
1097 		return;
1098 	}
1099 
1100 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
1101 	MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
1102 
1103 	_tcp_write_pdu(pdu);
1104 }
1105 
1106 static void
1107 pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
1108 {
1109 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1110 	int rc = 0;
1111 
1112 	/* Data Digest */
1113 	if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
1114 		/* Only support this limitated case for the first step */
1115 		if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
1116 				&& tqpair->group)) {
1117 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
1118 						       pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
1119 			if (spdk_likely(rc == 0)) {
1120 				return;
1121 			}
1122 		} else {
1123 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1124 		}
1125 		data_crc32_accel_done(pdu, rc);
1126 	} else {
1127 		_tcp_write_pdu(pdu);
1128 	}
1129 }
1130 
1131 static void
1132 nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1133 			 struct nvme_tcp_pdu *pdu,
1134 			 nvme_tcp_qpair_xfer_complete_cb cb_fn,
1135 			 void *cb_arg)
1136 {
1137 	int hlen;
1138 	uint32_t crc32c;
1139 
1140 	assert(tqpair->pdu_in_progress != pdu);
1141 
1142 	hlen = pdu->hdr.common.hlen;
1143 	pdu->cb_fn = cb_fn;
1144 	pdu->cb_arg = cb_arg;
1145 
1146 	pdu->iov[0].iov_base = &pdu->hdr.raw;
1147 	pdu->iov[0].iov_len = hlen;
1148 
1149 	/* Header Digest */
1150 	if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) {
1151 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1152 		MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
1153 	}
1154 
1155 	/* Data Digest */
1156 	pdu_data_crc32_compute(pdu);
1157 }
1158 
1159 static void
1160 nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1161 			      nvme_tcp_qpair_xfer_complete_cb cb_fn,
1162 			      void *cb_arg)
1163 {
1164 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1165 
1166 	pdu->sock_req.cb_fn = _mgmt_pdu_write_done;
1167 	pdu->sock_req.cb_arg = tqpair;
1168 
1169 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1170 }
1171 
1172 static void
1173 nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1174 			     struct spdk_nvmf_tcp_req *tcp_req,
1175 			     nvme_tcp_qpair_xfer_complete_cb cb_fn,
1176 			     void *cb_arg)
1177 {
1178 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1179 
1180 	pdu->sock_req.cb_fn = _req_pdu_write_done;
1181 	pdu->sock_req.cb_arg = tcp_req;
1182 
1183 	assert(!tcp_req->pdu_in_use);
1184 	tcp_req->pdu_in_use = true;
1185 
1186 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1187 }
1188 
1189 static int
1190 nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
1191 {
1192 	uint32_t i;
1193 	struct spdk_nvmf_transport_opts *opts;
1194 	uint32_t in_capsule_data_size;
1195 
1196 	opts = &tqpair->qpair.transport->opts;
1197 
1198 	in_capsule_data_size = opts->in_capsule_data_size;
1199 	if (opts->dif_insert_or_strip) {
1200 		in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
1201 	}
1202 
1203 	tqpair->resource_count = opts->max_queue_depth;
1204 
1205 	tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
1206 	if (!tqpair->reqs) {
1207 		SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
1208 		return -1;
1209 	}
1210 
1211 	if (in_capsule_data_size) {
1212 		tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
1213 					    NULL, SPDK_ENV_LCORE_ID_ANY,
1214 					    SPDK_MALLOC_DMA);
1215 		if (!tqpair->bufs) {
1216 			SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
1217 			return -1;
1218 		}
1219 	}
1220 	/* prepare memory space for receiving pdus and tcp_req */
1221 	/* Add additional 1 member, which will be used for mgmt_pdu owned by the tqpair */
1222 	tqpair->pdus = spdk_dma_zmalloc((2 * tqpair->resource_count + 1) * sizeof(*tqpair->pdus), 0x1000,
1223 					NULL);
1224 	if (!tqpair->pdus) {
1225 		SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
1226 		return -1;
1227 	}
1228 
1229 	for (i = 0; i < tqpair->resource_count; i++) {
1230 		struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
1231 
1232 		tcp_req->ttag = i + 1;
1233 		tcp_req->req.qpair = &tqpair->qpair;
1234 
1235 		tcp_req->pdu = &tqpair->pdus[i];
1236 		tcp_req->pdu->qpair = tqpair;
1237 
1238 		/* Set up memory to receive commands */
1239 		if (tqpair->bufs) {
1240 			tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
1241 		}
1242 
1243 		/* Set the cmdn and rsp */
1244 		tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
1245 		tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
1246 
1247 		tcp_req->req.stripped_data = NULL;
1248 
1249 		/* Initialize request state to FREE */
1250 		tcp_req->state = TCP_REQUEST_STATE_FREE;
1251 		TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
1252 		tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
1253 	}
1254 
1255 	for (; i < 2 * tqpair->resource_count; i++) {
1256 		struct nvme_tcp_pdu *pdu = &tqpair->pdus[i];
1257 
1258 		pdu->qpair = tqpair;
1259 		SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1260 	}
1261 
1262 	tqpair->mgmt_pdu = &tqpair->pdus[i];
1263 	tqpair->mgmt_pdu->qpair = tqpair;
1264 	tqpair->pdu_in_progress = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
1265 	SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
1266 	tqpair->tcp_pdu_working_count = 1;
1267 
1268 	tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
1269 				 SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1270 
1271 	return 0;
1272 }
1273 
1274 static int
1275 nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
1276 {
1277 	struct spdk_nvmf_tcp_qpair *tqpair;
1278 
1279 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1280 
1281 	SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
1282 
1283 	spdk_trace_record(TRACE_TCP_QP_CREATE, 0, 0, (uintptr_t)tqpair);
1284 
1285 	/* Initialise request state queues of the qpair */
1286 	TAILQ_INIT(&tqpair->tcp_req_free_queue);
1287 	TAILQ_INIT(&tqpair->tcp_req_working_queue);
1288 	SLIST_INIT(&tqpair->tcp_pdu_free_queue);
1289 
1290 	tqpair->host_hdgst_enable = true;
1291 	tqpair->host_ddgst_enable = true;
1292 
1293 	return 0;
1294 }
1295 
1296 static int
1297 nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
1298 {
1299 	int rc;
1300 
1301 	spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, 0, 0, (uintptr_t)tqpair);
1302 
1303 	/* set low water mark */
1304 	rc = spdk_sock_set_recvlowat(tqpair->sock, 1);
1305 	if (rc != 0) {
1306 		SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
1307 		return rc;
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 static void
1314 nvmf_tcp_handle_connect(struct spdk_nvmf_transport *transport,
1315 			struct spdk_nvmf_tcp_port *port,
1316 			struct spdk_sock *sock)
1317 {
1318 	struct spdk_nvmf_tcp_qpair *tqpair;
1319 	int rc;
1320 
1321 	SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
1322 		      port->trid->traddr, port->trid->trsvcid);
1323 
1324 	tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
1325 	if (tqpair == NULL) {
1326 		SPDK_ERRLOG("Could not allocate new connection.\n");
1327 		spdk_sock_close(&sock);
1328 		return;
1329 	}
1330 
1331 	tqpair->sock = sock;
1332 	tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
1333 	tqpair->port = port;
1334 	tqpair->qpair.transport = transport;
1335 
1336 	rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
1337 			       sizeof(tqpair->target_addr), &tqpair->target_port,
1338 			       tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
1339 			       &tqpair->initiator_port);
1340 	if (rc < 0) {
1341 		SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
1342 		nvmf_tcp_qpair_destroy(tqpair);
1343 		return;
1344 	}
1345 
1346 	spdk_nvmf_tgt_new_qpair(transport->tgt, &tqpair->qpair);
1347 }
1348 
1349 static uint32_t
1350 nvmf_tcp_port_accept(struct spdk_nvmf_transport *transport, struct spdk_nvmf_tcp_port *port)
1351 {
1352 	struct spdk_sock *sock;
1353 	uint32_t count = 0;
1354 	int i;
1355 
1356 	for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
1357 		sock = spdk_sock_accept(port->listen_sock);
1358 		if (sock == NULL) {
1359 			break;
1360 		}
1361 		count++;
1362 		nvmf_tcp_handle_connect(transport, port, sock);
1363 	}
1364 
1365 	return count;
1366 }
1367 
1368 static int
1369 nvmf_tcp_accept(void *ctx)
1370 {
1371 	struct spdk_nvmf_transport *transport = ctx;
1372 	struct spdk_nvmf_tcp_transport *ttransport;
1373 	struct spdk_nvmf_tcp_port *port;
1374 	uint32_t count = 0;
1375 
1376 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1377 
1378 	TAILQ_FOREACH(port, &ttransport->ports, link) {
1379 		count += nvmf_tcp_port_accept(transport, port);
1380 	}
1381 
1382 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1383 }
1384 
1385 static void
1386 nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
1387 		  struct spdk_nvme_transport_id *trid,
1388 		  struct spdk_nvmf_discovery_log_page_entry *entry)
1389 {
1390 	struct spdk_nvmf_tcp_port *port;
1391 	struct spdk_nvmf_tcp_transport *ttransport;
1392 
1393 	entry->trtype = SPDK_NVMF_TRTYPE_TCP;
1394 	entry->adrfam = trid->adrfam;
1395 
1396 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
1397 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
1398 
1399 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1400 	port = nvmf_tcp_find_port(ttransport, trid);
1401 
1402 	assert(port != NULL);
1403 
1404 	if (strcmp(spdk_sock_get_impl_name(port->listen_sock), "ssl") == 0) {
1405 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_REQUIRED;
1406 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_TLS_1_3;
1407 	} else {
1408 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
1409 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
1410 	}
1411 }
1412 
1413 static struct spdk_nvmf_tcp_control_msg_list *
1414 nvmf_tcp_control_msg_list_create(uint16_t num_messages)
1415 {
1416 	struct spdk_nvmf_tcp_control_msg_list *list;
1417 	struct spdk_nvmf_tcp_control_msg *msg;
1418 	uint16_t i;
1419 
1420 	list = calloc(1, sizeof(*list));
1421 	if (!list) {
1422 		SPDK_ERRLOG("Failed to allocate memory for list structure\n");
1423 		return NULL;
1424 	}
1425 
1426 	list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
1427 				     NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
1428 	if (!list->msg_buf) {
1429 		SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
1430 		free(list);
1431 		return NULL;
1432 	}
1433 
1434 	STAILQ_INIT(&list->free_msgs);
1435 
1436 	for (i = 0; i < num_messages; i++) {
1437 		msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
1438 				SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1439 		STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
1440 	}
1441 
1442 	return list;
1443 }
1444 
1445 static void
1446 nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
1447 {
1448 	if (!list) {
1449 		return;
1450 	}
1451 
1452 	spdk_free(list->msg_buf);
1453 	free(list);
1454 }
1455 
1456 static struct spdk_nvmf_transport_poll_group *
1457 nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport,
1458 			   struct spdk_nvmf_poll_group *group)
1459 {
1460 	struct spdk_nvmf_tcp_transport	*ttransport;
1461 	struct spdk_nvmf_tcp_poll_group *tgroup;
1462 
1463 	tgroup = calloc(1, sizeof(*tgroup));
1464 	if (!tgroup) {
1465 		return NULL;
1466 	}
1467 
1468 	tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
1469 	if (!tgroup->sock_group) {
1470 		goto cleanup;
1471 	}
1472 
1473 	TAILQ_INIT(&tgroup->qpairs);
1474 	TAILQ_INIT(&tgroup->await_req);
1475 
1476 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1477 
1478 	if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
1479 		SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
1480 			      "Creating control messages list\n", transport->opts.in_capsule_data_size,
1481 			      SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1482 		tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
1483 		if (!tgroup->control_msg_list) {
1484 			goto cleanup;
1485 		}
1486 	}
1487 
1488 	tgroup->accel_channel = spdk_accel_get_io_channel();
1489 	if (spdk_unlikely(!tgroup->accel_channel)) {
1490 		SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
1491 		goto cleanup;
1492 	}
1493 
1494 	TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link);
1495 	if (ttransport->next_pg == NULL) {
1496 		ttransport->next_pg = tgroup;
1497 	}
1498 
1499 	return &tgroup->group;
1500 
1501 cleanup:
1502 	nvmf_tcp_poll_group_destroy(&tgroup->group);
1503 	return NULL;
1504 }
1505 
1506 static struct spdk_nvmf_transport_poll_group *
1507 nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
1508 {
1509 	struct spdk_nvmf_tcp_transport *ttransport;
1510 	struct spdk_nvmf_tcp_poll_group **pg;
1511 	struct spdk_nvmf_tcp_qpair *tqpair;
1512 	struct spdk_sock_group *group = NULL, *hint = NULL;
1513 	int rc;
1514 
1515 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
1516 
1517 	if (TAILQ_EMPTY(&ttransport->poll_groups)) {
1518 		return NULL;
1519 	}
1520 
1521 	pg = &ttransport->next_pg;
1522 	assert(*pg != NULL);
1523 	hint = (*pg)->sock_group;
1524 
1525 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1526 	rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint);
1527 	if (rc != 0) {
1528 		return NULL;
1529 	} else if (group != NULL) {
1530 		/* Optimal poll group was found */
1531 		return spdk_sock_group_get_ctx(group);
1532 	}
1533 
1534 	/* The hint was used for optimal poll group, advance next_pg. */
1535 	*pg = TAILQ_NEXT(*pg, link);
1536 	if (*pg == NULL) {
1537 		*pg = TAILQ_FIRST(&ttransport->poll_groups);
1538 	}
1539 
1540 	return spdk_sock_group_get_ctx(hint);
1541 }
1542 
1543 static void
1544 nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
1545 {
1546 	struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup;
1547 	struct spdk_nvmf_tcp_transport *ttransport;
1548 
1549 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
1550 	spdk_sock_group_close(&tgroup->sock_group);
1551 	if (tgroup->control_msg_list) {
1552 		nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
1553 	}
1554 
1555 	if (tgroup->accel_channel) {
1556 		spdk_put_io_channel(tgroup->accel_channel);
1557 	}
1558 
1559 	if (tgroup->group.transport == NULL) {
1560 		/* Transport can be NULL when nvmf_tcp_poll_group_create()
1561 		 * calls this function directly in a failure path. */
1562 		free(tgroup);
1563 		return;
1564 	}
1565 
1566 	ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport);
1567 
1568 	next_tgroup = TAILQ_NEXT(tgroup, link);
1569 	TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link);
1570 	if (next_tgroup == NULL) {
1571 		next_tgroup = TAILQ_FIRST(&ttransport->poll_groups);
1572 	}
1573 	if (ttransport->next_pg == tgroup) {
1574 		ttransport->next_pg = next_tgroup;
1575 	}
1576 
1577 	free(tgroup);
1578 }
1579 
1580 static void
1581 nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1582 			      enum nvme_tcp_pdu_recv_state state)
1583 {
1584 	if (tqpair->recv_state == state) {
1585 		SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
1586 			    tqpair, state);
1587 		return;
1588 	}
1589 
1590 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_QUIESCING)) {
1591 		if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH && tqpair->pdu_in_progress) {
1592 			SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, tqpair->pdu_in_progress, slist);
1593 			tqpair->tcp_pdu_working_count--;
1594 		}
1595 	}
1596 
1597 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_ERROR)) {
1598 		assert(tqpair->tcp_pdu_working_count == 0);
1599 	}
1600 
1601 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1602 		/* When leaving the await req state, move the qpair to the main list */
1603 		TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link);
1604 		TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link);
1605 	} else if (state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1606 		TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link);
1607 		TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link);
1608 	}
1609 
1610 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
1611 	tqpair->recv_state = state;
1612 
1613 	spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
1614 			  tqpair->recv_state);
1615 }
1616 
1617 static int
1618 nvmf_tcp_qpair_handle_timeout(void *ctx)
1619 {
1620 	struct spdk_nvmf_tcp_qpair *tqpair = ctx;
1621 
1622 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1623 
1624 	SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
1625 		    SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
1626 
1627 	nvmf_tcp_qpair_disconnect(tqpair);
1628 	return SPDK_POLLER_BUSY;
1629 }
1630 
1631 static void
1632 nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
1633 {
1634 	struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
1635 
1636 	if (!tqpair->timeout_poller) {
1637 		tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
1638 					 SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
1639 	}
1640 }
1641 
1642 static void
1643 nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
1644 			   enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
1645 {
1646 	struct nvme_tcp_pdu *rsp_pdu;
1647 	struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
1648 	uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
1649 	uint32_t copy_len;
1650 
1651 	rsp_pdu = tqpair->mgmt_pdu;
1652 
1653 	c2h_term_req = &rsp_pdu->hdr.term_req;
1654 	c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
1655 	c2h_term_req->common.hlen = c2h_term_req_hdr_len;
1656 	c2h_term_req->fes = fes;
1657 
1658 	if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1659 	    (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1660 		DSET32(&c2h_term_req->fei, error_offset);
1661 	}
1662 
1663 	copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
1664 
1665 	/* Copy the error info into the buffer */
1666 	memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
1667 	nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
1668 
1669 	/* Contain the header of the wrong received pdu */
1670 	c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
1671 	tqpair->wait_terminate = true;
1672 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1673 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair);
1674 }
1675 
1676 static void
1677 nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1678 				struct spdk_nvmf_tcp_qpair *tqpair,
1679 				struct nvme_tcp_pdu *pdu)
1680 {
1681 	struct spdk_nvmf_tcp_req *tcp_req;
1682 
1683 	assert(pdu->psh_valid_bytes == pdu->psh_len);
1684 	assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
1685 
1686 	tcp_req = nvmf_tcp_req_get(tqpair);
1687 	if (!tcp_req) {
1688 		/* Directly return and make the allocation retry again.  This can happen if we're
1689 		 * using asynchronous writes to send the response to the host or when releasing
1690 		 * zero-copy buffers after a response has been sent.  In both cases, the host might
1691 		 * receive the response before we've finished processing the request and is free to
1692 		 * send another one.
1693 		 */
1694 		if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 ||
1695 		    tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) {
1696 			return;
1697 		}
1698 
1699 		/* The host sent more commands than the maximum queue depth. */
1700 		SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
1701 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1702 		return;
1703 	}
1704 
1705 	pdu->req = tcp_req;
1706 	assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
1707 	nvmf_tcp_req_process(ttransport, tcp_req);
1708 }
1709 
1710 static void
1711 nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1712 				    struct spdk_nvmf_tcp_qpair *tqpair,
1713 				    struct nvme_tcp_pdu *pdu)
1714 {
1715 	struct spdk_nvmf_tcp_req *tcp_req;
1716 	struct spdk_nvme_tcp_cmd *capsule_cmd;
1717 	uint32_t error_offset = 0;
1718 	enum spdk_nvme_tcp_term_req_fes fes;
1719 	struct spdk_nvme_cpl *rsp;
1720 
1721 	capsule_cmd = &pdu->hdr.capsule_cmd;
1722 	tcp_req = pdu->req;
1723 	assert(tcp_req != NULL);
1724 
1725 	/* Zero-copy requests don't support ICD */
1726 	assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req));
1727 
1728 	if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
1729 		SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
1730 			    SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
1731 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1732 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
1733 		goto err;
1734 	}
1735 
1736 	rsp = &tcp_req->req.rsp->nvme_cpl;
1737 	if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1738 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1739 	} else {
1740 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1741 	}
1742 
1743 	nvmf_tcp_req_process(ttransport, tcp_req);
1744 
1745 	return;
1746 err:
1747 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1748 }
1749 
1750 static void
1751 nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1752 			     struct spdk_nvmf_tcp_qpair *tqpair,
1753 			     struct nvme_tcp_pdu *pdu)
1754 {
1755 	struct spdk_nvmf_tcp_req *tcp_req;
1756 	uint32_t error_offset = 0;
1757 	enum spdk_nvme_tcp_term_req_fes fes = 0;
1758 	struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
1759 
1760 	h2c_data = &pdu->hdr.h2c_data;
1761 
1762 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
1763 		      tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
1764 
1765 	if (h2c_data->ttag > tqpair->resource_count) {
1766 		SPDK_DEBUGLOG(nvmf_tcp, "ttag %u is larger than allowed %u.\n", h2c_data->ttag,
1767 			      tqpair->resource_count);
1768 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1769 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1770 		goto err;
1771 	}
1772 
1773 	tcp_req = &tqpair->reqs[h2c_data->ttag - 1];
1774 
1775 	if (spdk_unlikely(tcp_req->state != TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER &&
1776 			  tcp_req->state != TCP_REQUEST_STATE_AWAITING_R2T_ACK)) {
1777 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, has error state in %d\n", tcp_req, tqpair,
1778 			      tcp_req->state);
1779 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1780 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1781 		goto err;
1782 	}
1783 
1784 	if (spdk_unlikely(tcp_req->req.cmd->nvme_cmd.cid != h2c_data->cccid)) {
1785 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, expected %u but %u for cccid.\n", tcp_req, tqpair,
1786 			      tcp_req->req.cmd->nvme_cmd.cid, h2c_data->cccid);
1787 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1788 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
1789 		goto err;
1790 	}
1791 
1792 	if (tcp_req->h2c_offset != h2c_data->datao) {
1793 		SPDK_DEBUGLOG(nvmf_tcp,
1794 			      "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
1795 			      tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
1796 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1797 		goto err;
1798 	}
1799 
1800 	if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
1801 		SPDK_DEBUGLOG(nvmf_tcp,
1802 			      "tcp_req(%p), tqpair=%p,  (datao=%u + datal=%u) exceeds requested length=%u\n",
1803 			      tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
1804 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1805 		goto err;
1806 	}
1807 
1808 	pdu->req = tcp_req;
1809 
1810 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
1811 		pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
1812 	}
1813 
1814 	nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
1815 				  h2c_data->datao, h2c_data->datal);
1816 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1817 	return;
1818 
1819 err:
1820 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1821 }
1822 
1823 static void
1824 nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
1825 			       struct spdk_nvmf_tcp_qpair *tqpair)
1826 {
1827 	struct nvme_tcp_pdu *rsp_pdu;
1828 	struct spdk_nvme_tcp_rsp *capsule_resp;
1829 
1830 	SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
1831 
1832 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1833 	assert(rsp_pdu != NULL);
1834 
1835 	capsule_resp = &rsp_pdu->hdr.capsule_resp;
1836 	capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
1837 	capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
1838 	capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
1839 	if (tqpair->host_hdgst_enable) {
1840 		capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1841 		capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1842 	}
1843 
1844 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req);
1845 }
1846 
1847 static void
1848 nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
1849 {
1850 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1851 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
1852 					     struct spdk_nvmf_tcp_qpair, qpair);
1853 
1854 	assert(tqpair != NULL);
1855 
1856 	if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
1857 		SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
1858 			      tcp_req->req.length);
1859 		_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
1860 		return;
1861 	}
1862 
1863 	if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
1864 		nvmf_tcp_request_free(tcp_req);
1865 	} else {
1866 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
1867 	}
1868 }
1869 
1870 static void
1871 nvmf_tcp_r2t_complete(void *cb_arg)
1872 {
1873 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1874 	struct spdk_nvmf_tcp_transport *ttransport;
1875 
1876 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
1877 				      struct spdk_nvmf_tcp_transport, transport);
1878 
1879 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
1880 
1881 	if (tcp_req->h2c_offset == tcp_req->req.length) {
1882 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1883 		nvmf_tcp_req_process(ttransport, tcp_req);
1884 	}
1885 }
1886 
1887 static void
1888 nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1889 		      struct spdk_nvmf_tcp_req *tcp_req)
1890 {
1891 	struct nvme_tcp_pdu *rsp_pdu;
1892 	struct spdk_nvme_tcp_r2t_hdr *r2t;
1893 
1894 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1895 	assert(rsp_pdu != NULL);
1896 
1897 	r2t = &rsp_pdu->hdr.r2t;
1898 	r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
1899 	r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
1900 
1901 	if (tqpair->host_hdgst_enable) {
1902 		r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1903 		r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1904 	}
1905 
1906 	r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
1907 	r2t->ttag = tcp_req->ttag;
1908 	r2t->r2to = tcp_req->h2c_offset;
1909 	r2t->r2tl = tcp_req->req.length;
1910 
1911 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
1912 
1913 	SPDK_DEBUGLOG(nvmf_tcp,
1914 		      "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
1915 		      tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
1916 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req);
1917 }
1918 
1919 static void
1920 nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1921 				 struct spdk_nvmf_tcp_qpair *tqpair,
1922 				 struct nvme_tcp_pdu *pdu)
1923 {
1924 	struct spdk_nvmf_tcp_req *tcp_req;
1925 	struct spdk_nvme_cpl *rsp;
1926 
1927 	tcp_req = pdu->req;
1928 	assert(tcp_req != NULL);
1929 
1930 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1931 
1932 	tcp_req->h2c_offset += pdu->data_len;
1933 
1934 	/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
1935 	 * acknowledged before moving on. */
1936 	if (tcp_req->h2c_offset == tcp_req->req.length &&
1937 	    tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
1938 		/* After receiving all the h2c data, we need to check whether there is
1939 		 * transient transport error */
1940 		rsp = &tcp_req->req.rsp->nvme_cpl;
1941 		if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1942 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1943 		} else {
1944 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1945 		}
1946 		nvmf_tcp_req_process(ttransport, tcp_req);
1947 	}
1948 }
1949 
1950 static void
1951 nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
1952 {
1953 	SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
1954 		    spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
1955 	if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1956 	    (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1957 		SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
1958 			      DGET32(h2c_term_req->fei));
1959 	}
1960 }
1961 
1962 static void
1963 nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1964 				 struct nvme_tcp_pdu *pdu)
1965 {
1966 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1967 	uint32_t error_offset = 0;
1968 	enum spdk_nvme_tcp_term_req_fes fes;
1969 
1970 	if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
1971 		SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
1972 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1973 		error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
1974 		goto end;
1975 	}
1976 
1977 	/* set the data buffer */
1978 	nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
1979 			      h2c_term_req->common.plen - h2c_term_req->common.hlen);
1980 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1981 	return;
1982 end:
1983 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1984 }
1985 
1986 static void
1987 nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1988 				     struct nvme_tcp_pdu *pdu)
1989 {
1990 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1991 
1992 	nvmf_tcp_h2c_term_req_dump(h2c_term_req);
1993 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1994 }
1995 
1996 static void
1997 _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
1998 {
1999 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2000 			struct spdk_nvmf_tcp_transport, transport);
2001 
2002 	switch (pdu->hdr.common.pdu_type) {
2003 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2004 		nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
2005 		break;
2006 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2007 		nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
2008 		break;
2009 
2010 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2011 		nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
2012 		break;
2013 
2014 	default:
2015 		/* The code should not go to here */
2016 		SPDK_ERRLOG("ERROR pdu type %d\n", pdu->hdr.common.pdu_type);
2017 		break;
2018 	}
2019 	SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
2020 	tqpair->tcp_pdu_working_count--;
2021 }
2022 
2023 static inline void
2024 nvmf_tcp_req_set_cpl(struct spdk_nvmf_tcp_req *treq, int sct, int sc)
2025 {
2026 	treq->req.rsp->nvme_cpl.status.sct = sct;
2027 	treq->req.rsp->nvme_cpl.status.sc = sc;
2028 	treq->req.rsp->nvme_cpl.cid = treq->req.cmd->nvme_cmd.cid;
2029 }
2030 
2031 static void
2032 data_crc32_calc_done(void *cb_arg, int status)
2033 {
2034 	struct nvme_tcp_pdu *pdu = cb_arg;
2035 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
2036 
2037 	/* async crc32 calculation is failed and use direct calculation to check */
2038 	if (spdk_unlikely(status)) {
2039 		SPDK_ERRLOG("Data digest on tqpair=(%p) with pdu=%p failed to be calculated asynchronously\n",
2040 			    tqpair, pdu);
2041 		pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2042 	}
2043 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
2044 	if (!MATCH_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32)) {
2045 		SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2046 		assert(pdu->req != NULL);
2047 		nvmf_tcp_req_set_cpl(pdu->req, SPDK_NVME_SCT_GENERIC,
2048 				     SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR);
2049 	}
2050 	_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2051 }
2052 
2053 static void
2054 nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2055 {
2056 	int rc = 0;
2057 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2058 	tqpair->pdu_in_progress = NULL;
2059 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2060 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2061 	/* check data digest if need */
2062 	if (pdu->ddgst_enable) {
2063 		if (tqpair->qpair.qid != 0 && !pdu->dif_ctx && tqpair->group &&
2064 		    (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)) {
2065 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
2066 						       pdu->data_iovcnt, 0, data_crc32_calc_done, pdu);
2067 			if (spdk_likely(rc == 0)) {
2068 				return;
2069 			}
2070 		} else {
2071 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2072 		}
2073 		data_crc32_calc_done(pdu, rc);
2074 	} else {
2075 		_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2076 	}
2077 }
2078 
2079 static void
2080 nvmf_tcp_send_icresp_complete(void *cb_arg)
2081 {
2082 	struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
2083 
2084 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_RUNNING);
2085 }
2086 
2087 static void
2088 nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
2089 		      struct spdk_nvmf_tcp_qpair *tqpair,
2090 		      struct nvme_tcp_pdu *pdu)
2091 {
2092 	struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
2093 	struct nvme_tcp_pdu *rsp_pdu;
2094 	struct spdk_nvme_tcp_ic_resp *ic_resp;
2095 	uint32_t error_offset = 0;
2096 	enum spdk_nvme_tcp_term_req_fes fes;
2097 
2098 	/* Only PFV 0 is defined currently */
2099 	if (ic_req->pfv != 0) {
2100 		SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
2101 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2102 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
2103 		goto end;
2104 	}
2105 
2106 	/* This value is 0’s based value in units of dwords should not be larger than SPDK_NVME_TCP_HPDA_MAX */
2107 	if (ic_req->hpda > SPDK_NVME_TCP_HPDA_MAX) {
2108 		SPDK_ERRLOG("ICReq HPDA out of range 0 to 31, got %u\n", ic_req->hpda);
2109 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2110 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, hpda);
2111 		goto end;
2112 	}
2113 
2114 	/* MAXR2T is 0's based */
2115 	SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
2116 
2117 	tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
2118 	if (!tqpair->host_hdgst_enable) {
2119 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2120 	}
2121 
2122 	tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
2123 	if (!tqpair->host_ddgst_enable) {
2124 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2125 	}
2126 
2127 	tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
2128 	/* Now that we know whether digests are enabled, properly size the receive buffer */
2129 	if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
2130 		SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
2131 			     tqpair,
2132 			     tqpair->recv_buf_size);
2133 		/* Not fatal. */
2134 	}
2135 
2136 	tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
2137 	SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
2138 
2139 	rsp_pdu = tqpair->mgmt_pdu;
2140 
2141 	ic_resp = &rsp_pdu->hdr.ic_resp;
2142 	ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
2143 	ic_resp->common.hlen = ic_resp->common.plen =  sizeof(*ic_resp);
2144 	ic_resp->pfv = 0;
2145 	ic_resp->cpda = tqpair->cpda;
2146 	ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
2147 	ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
2148 	ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
2149 
2150 	SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
2151 	SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
2152 
2153 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INITIALIZING);
2154 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair);
2155 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2156 	return;
2157 end:
2158 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2159 }
2160 
2161 static void
2162 nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2163 			struct spdk_nvmf_tcp_transport *ttransport)
2164 {
2165 	struct nvme_tcp_pdu *pdu;
2166 	int rc;
2167 	uint32_t crc32c, error_offset = 0;
2168 	enum spdk_nvme_tcp_term_req_fes fes;
2169 
2170 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2171 	pdu = tqpair->pdu_in_progress;
2172 
2173 	SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
2174 		      pdu->hdr.common.pdu_type);
2175 	/* check header digest if needed */
2176 	if (pdu->has_hdgst) {
2177 		SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
2178 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
2179 		rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
2180 		if (rc == 0) {
2181 			SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2182 			fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
2183 			nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2184 			return;
2185 
2186 		}
2187 	}
2188 
2189 	switch (pdu->hdr.common.pdu_type) {
2190 	case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
2191 		nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
2192 		break;
2193 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2194 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
2195 		break;
2196 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2197 		nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
2198 		break;
2199 
2200 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2201 		nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
2202 		break;
2203 
2204 	default:
2205 		SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
2206 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2207 		error_offset = 1;
2208 		nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2209 		break;
2210 	}
2211 }
2212 
2213 static void
2214 nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
2215 {
2216 	struct nvme_tcp_pdu *pdu;
2217 	uint32_t error_offset = 0;
2218 	enum spdk_nvme_tcp_term_req_fes fes;
2219 	uint8_t expected_hlen, pdo;
2220 	bool plen_error = false, pdo_error = false;
2221 
2222 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2223 	pdu = tqpair->pdu_in_progress;
2224 	assert(pdu);
2225 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
2226 		if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) {
2227 			SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
2228 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2229 			goto err;
2230 		}
2231 		expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
2232 		if (pdu->hdr.common.plen != expected_hlen) {
2233 			plen_error = true;
2234 		}
2235 	} else {
2236 		if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) {
2237 			SPDK_ERRLOG("The TCP/IP connection is not negotiated\n");
2238 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2239 			goto err;
2240 		}
2241 
2242 		switch (pdu->hdr.common.pdu_type) {
2243 		case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2244 			expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
2245 			pdo = pdu->hdr.common.pdo;
2246 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2247 				pdo_error = true;
2248 				break;
2249 			}
2250 
2251 			if (pdu->hdr.common.plen < expected_hlen) {
2252 				plen_error = true;
2253 			}
2254 			break;
2255 		case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2256 			expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
2257 			pdo = pdu->hdr.common.pdo;
2258 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2259 				pdo_error = true;
2260 				break;
2261 			}
2262 			if (pdu->hdr.common.plen < expected_hlen) {
2263 				plen_error = true;
2264 			}
2265 			break;
2266 
2267 		case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2268 			expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
2269 			if ((pdu->hdr.common.plen <= expected_hlen) ||
2270 			    (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
2271 				plen_error = true;
2272 			}
2273 			break;
2274 
2275 		default:
2276 			SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
2277 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2278 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
2279 			goto err;
2280 		}
2281 	}
2282 
2283 	if (pdu->hdr.common.hlen != expected_hlen) {
2284 		SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
2285 			    pdu->hdr.common.pdu_type,
2286 			    expected_hlen, pdu->hdr.common.hlen, tqpair);
2287 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2288 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
2289 		goto err;
2290 	} else if (pdo_error) {
2291 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2292 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
2293 	} else if (plen_error) {
2294 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2295 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2296 		goto err;
2297 	} else {
2298 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2299 		nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
2300 		return;
2301 	}
2302 err:
2303 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2304 }
2305 
2306 static int
2307 nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
2308 {
2309 	int rc = 0;
2310 	struct nvme_tcp_pdu *pdu;
2311 	enum nvme_tcp_pdu_recv_state prev_state;
2312 	uint32_t data_len;
2313 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2314 			struct spdk_nvmf_tcp_transport, transport);
2315 
2316 	/* The loop here is to allow for several back-to-back state changes. */
2317 	do {
2318 		prev_state = tqpair->recv_state;
2319 		SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
2320 
2321 		pdu = tqpair->pdu_in_progress;
2322 		assert(pdu != NULL ||
2323 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY ||
2324 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_QUIESCING ||
2325 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
2326 
2327 		switch (tqpair->recv_state) {
2328 		/* Wait for the common header  */
2329 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
2330 			if (!pdu) {
2331 				pdu = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
2332 				if (spdk_unlikely(!pdu)) {
2333 					return NVME_TCP_PDU_IN_PROGRESS;
2334 				}
2335 				SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
2336 				tqpair->pdu_in_progress = pdu;
2337 				tqpair->tcp_pdu_working_count++;
2338 			}
2339 			memset(pdu, 0, offsetof(struct nvme_tcp_pdu, qpair));
2340 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2341 		/* FALLTHROUGH */
2342 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
2343 			if (spdk_unlikely(tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING)) {
2344 				return rc;
2345 			}
2346 
2347 			rc = nvme_tcp_read_data(tqpair->sock,
2348 						sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
2349 						(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
2350 			if (rc < 0) {
2351 				SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
2352 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2353 				break;
2354 			} else if (rc > 0) {
2355 				pdu->ch_valid_bytes += rc;
2356 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2357 			}
2358 
2359 			if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
2360 				return NVME_TCP_PDU_IN_PROGRESS;
2361 			}
2362 
2363 			/* The command header of this PDU has now been read from the socket. */
2364 			nvmf_tcp_pdu_ch_handle(tqpair);
2365 			break;
2366 		/* Wait for the pdu specific header  */
2367 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
2368 			rc = nvme_tcp_read_data(tqpair->sock,
2369 						pdu->psh_len - pdu->psh_valid_bytes,
2370 						(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
2371 			if (rc < 0) {
2372 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2373 				break;
2374 			} else if (rc > 0) {
2375 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2376 				pdu->psh_valid_bytes += rc;
2377 			}
2378 
2379 			if (pdu->psh_valid_bytes < pdu->psh_len) {
2380 				return NVME_TCP_PDU_IN_PROGRESS;
2381 			}
2382 
2383 			/* All header(ch, psh, head digist) of this PDU has now been read from the socket. */
2384 			nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
2385 			break;
2386 		/* Wait for the req slot */
2387 		case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
2388 			nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
2389 			break;
2390 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
2391 			/* check whether the data is valid, if not we just return */
2392 			if (!pdu->data_len) {
2393 				return NVME_TCP_PDU_IN_PROGRESS;
2394 			}
2395 
2396 			data_len = pdu->data_len;
2397 			/* data digest */
2398 			if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
2399 					  tqpair->host_ddgst_enable)) {
2400 				data_len += SPDK_NVME_TCP_DIGEST_LEN;
2401 				pdu->ddgst_enable = true;
2402 			}
2403 
2404 			rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
2405 			if (rc < 0) {
2406 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2407 				break;
2408 			}
2409 			pdu->rw_offset += rc;
2410 
2411 			if (pdu->rw_offset < data_len) {
2412 				return NVME_TCP_PDU_IN_PROGRESS;
2413 			}
2414 
2415 			/* Generate and insert DIF to whole data block received if DIF is enabled */
2416 			if (spdk_unlikely(pdu->dif_ctx != NULL) &&
2417 			    spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt, 0, data_len,
2418 						     pdu->dif_ctx) != 0) {
2419 				SPDK_ERRLOG("DIF generate failed\n");
2420 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2421 				break;
2422 			}
2423 
2424 			/* All of this PDU has now been read from the socket. */
2425 			nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2426 			break;
2427 		case NVME_TCP_PDU_RECV_STATE_QUIESCING:
2428 			if (tqpair->tcp_pdu_working_count != 0) {
2429 				return NVME_TCP_PDU_IN_PROGRESS;
2430 			}
2431 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
2432 			break;
2433 		case NVME_TCP_PDU_RECV_STATE_ERROR:
2434 			if (spdk_sock_is_connected(tqpair->sock) && tqpair->wait_terminate) {
2435 				return NVME_TCP_PDU_IN_PROGRESS;
2436 			}
2437 			return NVME_TCP_PDU_FATAL;
2438 		default:
2439 			SPDK_ERRLOG("The state(%d) is invalid\n", tqpair->recv_state);
2440 			abort();
2441 			break;
2442 		}
2443 	} while (tqpair->recv_state != prev_state);
2444 
2445 	return rc;
2446 }
2447 
2448 static inline void *
2449 nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list)
2450 {
2451 	struct spdk_nvmf_tcp_control_msg *msg;
2452 
2453 	assert(list);
2454 
2455 	msg = STAILQ_FIRST(&list->free_msgs);
2456 	if (!msg) {
2457 		SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
2458 		return NULL;
2459 	}
2460 	STAILQ_REMOVE_HEAD(&list->free_msgs, link);
2461 	return msg;
2462 }
2463 
2464 static inline void
2465 nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
2466 {
2467 	struct spdk_nvmf_tcp_control_msg *msg = _msg;
2468 
2469 	assert(list);
2470 	STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
2471 }
2472 
2473 static int
2474 nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
2475 		       struct spdk_nvmf_transport *transport,
2476 		       struct spdk_nvmf_transport_poll_group *group)
2477 {
2478 	struct spdk_nvmf_request		*req = &tcp_req->req;
2479 	struct spdk_nvme_cmd			*cmd;
2480 	struct spdk_nvme_sgl_descriptor		*sgl;
2481 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2482 	enum spdk_nvme_tcp_term_req_fes		fes;
2483 	struct nvme_tcp_pdu			*pdu;
2484 	struct spdk_nvmf_tcp_qpair		*tqpair;
2485 	uint32_t				length, error_offset = 0;
2486 
2487 	cmd = &req->cmd->nvme_cmd;
2488 	sgl = &cmd->dptr.sgl1;
2489 
2490 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
2491 	    sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
2492 		/* get request length from sgl */
2493 		length = sgl->unkeyed.length;
2494 		if (spdk_unlikely(length > transport->opts.max_io_size)) {
2495 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
2496 				    length, transport->opts.max_io_size);
2497 			fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2498 			goto fatal_err;
2499 		}
2500 
2501 		/* fill request length and populate iovs */
2502 		req->length = length;
2503 
2504 		SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
2505 
2506 		if (spdk_unlikely(req->dif_enabled)) {
2507 			req->dif.orig_length = length;
2508 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2509 			req->dif.elba_length = length;
2510 		}
2511 
2512 		if (nvmf_ctrlr_use_zcopy(req)) {
2513 			SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req);
2514 			req->data_from_pool = false;
2515 			return 0;
2516 		}
2517 
2518 		if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
2519 			/* No available buffers. Queue this request up. */
2520 			SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
2521 				      tcp_req);
2522 			return 0;
2523 		}
2524 
2525 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
2526 			      tcp_req, req->iovcnt, req->iov[0].iov_base);
2527 
2528 		return 0;
2529 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
2530 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
2531 		uint64_t offset = sgl->address;
2532 		uint32_t max_len = transport->opts.in_capsule_data_size;
2533 
2534 		assert(tcp_req->has_in_capsule_data);
2535 		/* Capsule Cmd with In-capsule Data should get data length from pdu header */
2536 		tqpair = tcp_req->pdu->qpair;
2537 		/* receiving pdu is not same with the pdu in tcp_req */
2538 		pdu = tqpair->pdu_in_progress;
2539 		length = pdu->hdr.common.plen - pdu->psh_len - sizeof(struct spdk_nvme_tcp_common_pdu_hdr);
2540 		if (tqpair->host_ddgst_enable) {
2541 			length -= SPDK_NVME_TCP_DIGEST_LEN;
2542 		}
2543 		/* This error is not defined in NVMe/TCP spec, take this error as fatal error */
2544 		if (spdk_unlikely(length != sgl->unkeyed.length)) {
2545 			SPDK_ERRLOG("In-Capsule Data length 0x%x is not equal to SGL data length 0x%x\n",
2546 				    length, sgl->unkeyed.length);
2547 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2548 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2549 			goto fatal_err;
2550 		}
2551 
2552 		SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
2553 			      offset, length);
2554 
2555 		/* The NVMe/TCP transport does not use ICDOFF to control the in-capsule data offset. ICDOFF should be '0' */
2556 		if (spdk_unlikely(offset != 0)) {
2557 			/* Not defined fatal error in NVMe/TCP spec, handle this error as a fatal error */
2558 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " should be ZERO in NVMe/TCP\n", offset);
2559 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2560 			error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.address);
2561 			goto fatal_err;
2562 		}
2563 
2564 		if (spdk_unlikely(length > max_len)) {
2565 			/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
2566 			if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
2567 			    (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
2568 
2569 				/* Get a buffer from dedicated list */
2570 				SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
2571 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2572 				assert(tgroup->control_msg_list);
2573 				req->iov[0].iov_base = nvmf_tcp_control_msg_get(tgroup->control_msg_list);
2574 				if (!req->iov[0].iov_base) {
2575 					/* No available buffers. Queue this request up. */
2576 					SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
2577 					return 0;
2578 				}
2579 			} else {
2580 				SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
2581 					    length, max_len);
2582 				fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2583 				goto fatal_err;
2584 			}
2585 		} else {
2586 			req->iov[0].iov_base = tcp_req->buf;
2587 		}
2588 
2589 		req->length = length;
2590 		req->data_from_pool = false;
2591 
2592 		if (spdk_unlikely(req->dif_enabled)) {
2593 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2594 			req->dif.elba_length = length;
2595 		}
2596 
2597 		req->iov[0].iov_len = length;
2598 		req->iovcnt = 1;
2599 
2600 		return 0;
2601 	}
2602 	/* If we want to handle the problem here, then we can't skip the following data segment.
2603 	 * Because this function runs before reading data part, now handle all errors as fatal errors. */
2604 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2605 		    sgl->generic.type, sgl->generic.subtype);
2606 	fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2607 	error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.generic);
2608 fatal_err:
2609 	nvmf_tcp_send_c2h_term_req(tcp_req->pdu->qpair, tcp_req->pdu, fes, error_offset);
2610 	return -1;
2611 }
2612 
2613 static inline enum spdk_nvme_media_error_status_code
2614 nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
2615 	enum spdk_nvme_media_error_status_code result;
2616 
2617 	switch (err_type)
2618 	{
2619 	case SPDK_DIF_REFTAG_ERROR:
2620 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
2621 		break;
2622 	case SPDK_DIF_APPTAG_ERROR:
2623 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
2624 		break;
2625 	case SPDK_DIF_GUARD_ERROR:
2626 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
2627 		break;
2628 	default:
2629 		SPDK_UNREACHABLE();
2630 		break;
2631 	}
2632 
2633 	return result;
2634 }
2635 
2636 static void
2637 _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2638 			struct spdk_nvmf_tcp_req *tcp_req)
2639 {
2640 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
2641 				tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
2642 	struct nvme_tcp_pdu *rsp_pdu;
2643 	struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
2644 	uint32_t plen, pdo, alignment;
2645 	int rc;
2646 
2647 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2648 
2649 	rsp_pdu = tcp_req->pdu;
2650 	assert(rsp_pdu != NULL);
2651 
2652 	c2h_data = &rsp_pdu->hdr.c2h_data;
2653 	c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
2654 	plen = c2h_data->common.hlen = sizeof(*c2h_data);
2655 
2656 	if (tqpair->host_hdgst_enable) {
2657 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2658 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2659 	}
2660 
2661 	/* set the psh */
2662 	c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2663 	c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
2664 	c2h_data->datao = tcp_req->pdu->rw_offset;
2665 
2666 	/* set the padding */
2667 	rsp_pdu->padding_len = 0;
2668 	pdo = plen;
2669 	if (tqpair->cpda) {
2670 		alignment = (tqpair->cpda + 1) << 2;
2671 		if (plen % alignment != 0) {
2672 			pdo = (plen + alignment) / alignment * alignment;
2673 			rsp_pdu->padding_len = pdo - plen;
2674 			plen = pdo;
2675 		}
2676 	}
2677 
2678 	c2h_data->common.pdo = pdo;
2679 	plen += c2h_data->datal;
2680 	if (tqpair->host_ddgst_enable) {
2681 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
2682 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2683 	}
2684 
2685 	c2h_data->common.plen = plen;
2686 
2687 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2688 		rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2689 	}
2690 
2691 	nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2692 				  c2h_data->datao, c2h_data->datal);
2693 
2694 
2695 	c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
2696 	/* Need to send the capsule response if response is not all 0 */
2697 	if (ttransport->tcp_opts.c2h_success &&
2698 	    tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
2699 		c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
2700 	}
2701 
2702 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2703 		struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
2704 		struct spdk_dif_error err_blk = {};
2705 		uint32_t mapped_length = 0;
2706 		uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
2707 		uint32_t ddgst_len = 0;
2708 
2709 		if (tqpair->host_ddgst_enable) {
2710 			/* Data digest consumes additional iov entry */
2711 			available_iovs--;
2712 			/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
2713 			ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
2714 			c2h_data->common.plen -= ddgst_len;
2715 		}
2716 		/* Temp call to estimate if data can be described by limited number of iovs.
2717 		 * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
2718 		nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
2719 				    false, &mapped_length);
2720 
2721 		if (mapped_length != c2h_data->common.plen) {
2722 			c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
2723 			SPDK_DEBUGLOG(nvmf_tcp,
2724 				      "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
2725 				      c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
2726 			c2h_data->common.plen = mapped_length;
2727 
2728 			/* Rebuild pdu->data_iov since data length is changed */
2729 			nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
2730 						  c2h_data->datal);
2731 
2732 			c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
2733 						    SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
2734 		}
2735 
2736 		c2h_data->common.plen += ddgst_len;
2737 
2738 		assert(rsp_pdu->rw_offset <= tcp_req->req.length);
2739 
2740 		rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
2741 					    0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
2742 		if (rc != 0) {
2743 			SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
2744 				    err_blk.err_type, err_blk.err_offset);
2745 			rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2746 			rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
2747 			nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2748 			return;
2749 		}
2750 	}
2751 
2752 	rsp_pdu->rw_offset += c2h_data->datal;
2753 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
2754 }
2755 
2756 static void
2757 nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2758 		       struct spdk_nvmf_tcp_req *tcp_req)
2759 {
2760 	nvmf_tcp_req_pdu_init(tcp_req);
2761 	_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2762 }
2763 
2764 static int
2765 request_transfer_out(struct spdk_nvmf_request *req)
2766 {
2767 	struct spdk_nvmf_tcp_req	*tcp_req;
2768 	struct spdk_nvmf_qpair		*qpair;
2769 	struct spdk_nvmf_tcp_qpair	*tqpair;
2770 	struct spdk_nvme_cpl		*rsp;
2771 
2772 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2773 
2774 	qpair = req->qpair;
2775 	rsp = &req->rsp->nvme_cpl;
2776 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
2777 
2778 	/* Advance our sq_head pointer */
2779 	if (qpair->sq_head == qpair->sq_head_max) {
2780 		qpair->sq_head = 0;
2781 	} else {
2782 		qpair->sq_head++;
2783 	}
2784 	rsp->sqhd = qpair->sq_head;
2785 
2786 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2787 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
2788 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2789 		nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2790 	} else {
2791 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2792 	}
2793 
2794 	return 0;
2795 }
2796 
2797 static void
2798 nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport,
2799 			      struct spdk_nvmf_tcp_qpair *tqpair,
2800 			      struct spdk_nvmf_tcp_req *tcp_req)
2801 {
2802 	enum spdk_nvme_cmd_fuse last, next;
2803 
2804 	last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2805 	next = tcp_req->cmd.fuse;
2806 
2807 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2808 
2809 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2810 		return;
2811 	}
2812 
2813 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2814 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2815 			/* This is a valid pair of fused commands.  Point them at each other
2816 			 * so they can be submitted consecutively once ready to be executed.
2817 			 */
2818 			tqpair->fused_first->fused_pair = tcp_req;
2819 			tcp_req->fused_pair = tqpair->fused_first;
2820 			tqpair->fused_first = NULL;
2821 			return;
2822 		} else {
2823 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2824 			tqpair->fused_first->fused_failed = true;
2825 
2826 			/*
2827 			 * If the last req is in READY_TO_EXECUTE state, then call
2828 			 * nvmf_tcp_req_process(), otherwise nothing else will kick it.
2829 			 */
2830 			if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2831 				nvmf_tcp_req_process(ttransport, tqpair->fused_first);
2832 			}
2833 
2834 			tqpair->fused_first = NULL;
2835 		}
2836 	}
2837 
2838 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2839 		/* Set tqpair->fused_first here so that we know to check that the next request
2840 		 * is a SECOND (and to fail this one if it isn't).
2841 		 */
2842 		tqpair->fused_first = tcp_req;
2843 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2844 		/* Mark this req failed since it is a SECOND and the last one was not a FIRST. */
2845 		tcp_req->fused_failed = true;
2846 	}
2847 }
2848 
2849 static bool
2850 nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
2851 		     struct spdk_nvmf_tcp_req *tcp_req)
2852 {
2853 	struct spdk_nvmf_tcp_qpair		*tqpair;
2854 	uint32_t				plen;
2855 	struct nvme_tcp_pdu			*pdu;
2856 	enum spdk_nvmf_tcp_req_state		prev_state;
2857 	bool					progress = false;
2858 	struct spdk_nvmf_transport		*transport = &ttransport->transport;
2859 	struct spdk_nvmf_transport_poll_group	*group;
2860 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2861 
2862 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2863 	group = &tqpair->group->group;
2864 	assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
2865 
2866 	/* If the qpair is not active, we need to abort the outstanding requests. */
2867 	if (tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2868 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
2869 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2870 		}
2871 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
2872 	}
2873 
2874 	/* The loop here is to allow for several back-to-back state changes. */
2875 	do {
2876 		prev_state = tcp_req->state;
2877 
2878 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
2879 			      tqpair);
2880 
2881 		switch (tcp_req->state) {
2882 		case TCP_REQUEST_STATE_FREE:
2883 			/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
2884 			 * to escape this state. */
2885 			break;
2886 		case TCP_REQUEST_STATE_NEW:
2887 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.qid, 0, (uintptr_t)tcp_req, tqpair);
2888 
2889 			/* copy the cmd from the receive pdu */
2890 			tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
2891 
2892 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
2893 				tcp_req->req.dif_enabled = true;
2894 				tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
2895 			}
2896 
2897 			nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req);
2898 
2899 			/* The next state transition depends on the data transfer needs of this request. */
2900 			tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
2901 
2902 			if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2903 				nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_INVALID_OPCODE);
2904 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2905 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2906 				SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
2907 				break;
2908 			}
2909 
2910 			/* If no data to transfer, ready to execute. */
2911 			if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
2912 				/* Reset the tqpair receiving pdu state */
2913 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2914 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2915 				break;
2916 			}
2917 
2918 			pdu = tqpair->pdu_in_progress;
2919 			plen = pdu->hdr.common.hlen;
2920 			if (tqpair->host_hdgst_enable) {
2921 				plen += SPDK_NVME_TCP_DIGEST_LEN;
2922 			}
2923 			if (pdu->hdr.common.plen != plen) {
2924 				tcp_req->has_in_capsule_data = true;
2925 			} else {
2926 				/* Data is transmitted by C2H PDUs */
2927 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2928 			}
2929 
2930 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
2931 			STAILQ_INSERT_TAIL(&group->pending_buf_queue, &tcp_req->req, buf_link);
2932 			break;
2933 		case TCP_REQUEST_STATE_NEED_BUFFER:
2934 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2935 					  tqpair);
2936 
2937 			assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
2938 
2939 			if (!tcp_req->has_in_capsule_data && (&tcp_req->req != STAILQ_FIRST(&group->pending_buf_queue))) {
2940 				SPDK_DEBUGLOG(nvmf_tcp,
2941 					      "Not the first element to wait for the buf for tcp_req(%p) on tqpair=%p\n",
2942 					      tcp_req, tqpair);
2943 				/* This request needs to wait in line to obtain a buffer */
2944 				break;
2945 			}
2946 
2947 			/* Try to get a data buffer */
2948 			if (nvmf_tcp_req_parse_sgl(tcp_req, transport, group) < 0) {
2949 				break;
2950 			}
2951 
2952 			/* Get a zcopy buffer if the request can be serviced through zcopy */
2953 			if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2954 				if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2955 					assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2956 					tcp_req->req.length = tcp_req->req.dif.elba_length;
2957 				}
2958 
2959 				STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2960 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START);
2961 				spdk_nvmf_request_zcopy_start(&tcp_req->req);
2962 				break;
2963 			}
2964 
2965 			if (tcp_req->req.iovcnt < 1) {
2966 				SPDK_DEBUGLOG(nvmf_tcp, "No buffer allocated for tcp_req(%p) on tqpair(%p\n)",
2967 					      tcp_req, tqpair);
2968 				/* No buffers available. */
2969 				break;
2970 			}
2971 
2972 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2973 
2974 			/* If data is transferring from host to controller, we need to do a transfer from the host. */
2975 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2976 				if (tcp_req->req.data_from_pool) {
2977 					SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2978 					nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2979 				} else {
2980 					struct nvme_tcp_pdu *pdu;
2981 
2982 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
2983 
2984 					pdu = tqpair->pdu_in_progress;
2985 					SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
2986 						      tqpair);
2987 					/* No need to send r2t, contained in the capsuled data */
2988 					nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2989 								  0, tcp_req->req.length);
2990 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2991 				}
2992 				break;
2993 			}
2994 
2995 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2996 			break;
2997 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
2998 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.qid, 0,
2999 					  (uintptr_t)tcp_req, tqpair);
3000 			/* Some external code must kick a request into  TCP_REQUEST_STATE_ZCOPY_START_COMPLETED
3001 			 * to escape this state. */
3002 			break;
3003 		case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
3004 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.qid, 0,
3005 					  (uintptr_t)tcp_req, tqpair);
3006 			if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) {
3007 				SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n",
3008 					      tcp_req, tqpair);
3009 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3010 				break;
3011 			}
3012 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
3013 				SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
3014 				nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
3015 			} else {
3016 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3017 			}
3018 			break;
3019 		case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3020 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
3021 					  tqpair);
3022 			/* The R2T completion or the h2c data incoming will kick it out of this state. */
3023 			break;
3024 		case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3025 
3026 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.qid, 0,
3027 					  (uintptr_t)tcp_req, tqpair);
3028 			/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
3029 			 * to escape this state. */
3030 			break;
3031 		case TCP_REQUEST_STATE_READY_TO_EXECUTE:
3032 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.qid, 0,
3033 					  (uintptr_t)tcp_req, tqpair);
3034 
3035 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3036 				assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
3037 				tcp_req->req.length = tcp_req->req.dif.elba_length;
3038 			}
3039 
3040 			if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
3041 				if (tcp_req->fused_failed) {
3042 					/* This request failed FUSED semantics.  Fail it immediately, without
3043 					 * even sending it to the target layer.
3044 					 */
3045 					nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_MISSING_FUSED);
3046 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3047 					break;
3048 				}
3049 
3050 				if (tcp_req->fused_pair == NULL ||
3051 				    tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3052 					/* This request is ready to execute, but either we don't know yet if it's
3053 					 * valid - i.e. this is a FIRST but we haven't received the next request yet),
3054 					 * or the other request of this fused pair isn't ready to execute. So
3055 					 * break here and this request will get processed later either when the
3056 					 * other request is ready or we find that this request isn't valid.
3057 					 */
3058 					break;
3059 				}
3060 			}
3061 
3062 			if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
3063 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
3064 				/* If we get to this point, and this request is a fused command, we know that
3065 				 * it is part of a valid sequence (FIRST followed by a SECOND) and that both
3066 				 * requests are READY_TO_EXECUTE.  So call spdk_nvmf_request_exec() both on this
3067 				 * request, and the other request of the fused pair, in the correct order.
3068 				 * Also clear the ->fused_pair pointers on both requests, since after this point
3069 				 * we no longer need to maintain the relationship between these two requests.
3070 				 */
3071 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
3072 					assert(tcp_req->fused_pair != NULL);
3073 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3074 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3075 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3076 					tcp_req->fused_pair->fused_pair = NULL;
3077 					tcp_req->fused_pair = NULL;
3078 				}
3079 				spdk_nvmf_request_exec(&tcp_req->req);
3080 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
3081 					assert(tcp_req->fused_pair != NULL);
3082 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3083 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3084 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3085 					tcp_req->fused_pair->fused_pair = NULL;
3086 					tcp_req->fused_pair = NULL;
3087 				}
3088 			} else {
3089 				/* For zero-copy, only requests with data coming from host to the
3090 				 * controller can end up here. */
3091 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
3092 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT);
3093 				spdk_nvmf_request_zcopy_end(&tcp_req->req, true);
3094 			}
3095 
3096 			break;
3097 		case TCP_REQUEST_STATE_EXECUTING:
3098 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
3099 					  tqpair);
3100 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3101 			 * to escape this state. */
3102 			break;
3103 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3104 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.qid, 0,
3105 					  (uintptr_t)tcp_req, tqpair);
3106 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3107 			 * to escape this state. */
3108 			break;
3109 		case TCP_REQUEST_STATE_EXECUTED:
3110 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
3111 					  tqpair);
3112 
3113 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3114 				tcp_req->req.length = tcp_req->req.dif.orig_length;
3115 			}
3116 
3117 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3118 			break;
3119 		case TCP_REQUEST_STATE_READY_TO_COMPLETE:
3120 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.qid, 0,
3121 					  (uintptr_t)tcp_req, tqpair);
3122 			if (request_transfer_out(&tcp_req->req) != 0) {
3123 				assert(0); /* No good way to handle this currently */
3124 			}
3125 			break;
3126 		case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
3127 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.qid, 0,
3128 					  (uintptr_t)tcp_req, tqpair);
3129 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3130 			 * to escape this state. */
3131 			break;
3132 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3133 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.qid, 0,
3134 					  (uintptr_t)tcp_req, tqpair);
3135 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3136 			 * to escape this state. */
3137 			break;
3138 		case TCP_REQUEST_STATE_COMPLETED:
3139 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
3140 					  tqpair);
3141 			/* If there's an outstanding PDU sent to the host, the request is completed
3142 			 * due to the qpair being disconnected.  We must delay the completion until
3143 			 * that write is done to avoid freeing the request twice. */
3144 			if (spdk_unlikely(tcp_req->pdu_in_use)) {
3145 				SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding "
3146 					      "write on req=%p\n", tcp_req);
3147 				/* This can only happen for zcopy requests */
3148 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3149 				assert(tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
3150 				break;
3151 			}
3152 
3153 			if (tcp_req->req.data_from_pool) {
3154 				spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
3155 			} else if (spdk_unlikely(tcp_req->has_in_capsule_data &&
3156 						 (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
3157 						  tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
3158 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3159 				assert(tgroup->control_msg_list);
3160 				SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
3161 				nvmf_tcp_control_msg_put(tgroup->control_msg_list,
3162 							 tcp_req->req.iov[0].iov_base);
3163 			} else if (tcp_req->req.zcopy_bdev_io != NULL) {
3164 				/* If the request has an unreleased zcopy bdev_io, it's either a
3165 				 * read, a failed write, or the qpair is being disconnected */
3166 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3167 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
3168 				       spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) ||
3169 				       tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
3170 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE);
3171 				spdk_nvmf_request_zcopy_end(&tcp_req->req, false);
3172 				break;
3173 			}
3174 			tcp_req->req.length = 0;
3175 			tcp_req->req.iovcnt = 0;
3176 			tcp_req->fused_failed = false;
3177 			if (tcp_req->fused_pair) {
3178 				/* This req was part of a valid fused pair, but failed before it got to
3179 				 * READ_TO_EXECUTE state.  This means we need to fail the other request
3180 				 * in the pair, because it is no longer part of a valid pair.  If the pair
3181 				 * already reached READY_TO_EXECUTE state, we need to kick it.
3182 				 */
3183 				tcp_req->fused_pair->fused_failed = true;
3184 				if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3185 					nvmf_tcp_req_process(ttransport, tcp_req->fused_pair);
3186 				}
3187 				tcp_req->fused_pair = NULL;
3188 			}
3189 
3190 			nvmf_tcp_req_put(tqpair, tcp_req);
3191 			break;
3192 		case TCP_REQUEST_NUM_STATES:
3193 		default:
3194 			assert(0);
3195 			break;
3196 		}
3197 
3198 		if (tcp_req->state != prev_state) {
3199 			progress = true;
3200 		}
3201 	} while (tcp_req->state != prev_state);
3202 
3203 	return progress;
3204 }
3205 
3206 static void
3207 nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
3208 {
3209 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
3210 	int rc;
3211 
3212 	assert(tqpair != NULL);
3213 	rc = nvmf_tcp_sock_process(tqpair);
3214 
3215 	/* If there was a new socket error, disconnect */
3216 	if (rc < 0) {
3217 		nvmf_tcp_qpair_disconnect(tqpair);
3218 	}
3219 }
3220 
3221 static int
3222 nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3223 			struct spdk_nvmf_qpair *qpair)
3224 {
3225 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3226 	struct spdk_nvmf_tcp_qpair	*tqpair;
3227 	int				rc;
3228 
3229 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3230 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3231 
3232 	rc =  nvmf_tcp_qpair_sock_init(tqpair);
3233 	if (rc != 0) {
3234 		SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
3235 		return -1;
3236 	}
3237 
3238 	rc = nvmf_tcp_qpair_init(&tqpair->qpair);
3239 	if (rc < 0) {
3240 		SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
3241 		return -1;
3242 	}
3243 
3244 	rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
3245 	if (rc < 0) {
3246 		SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
3247 		return -1;
3248 	}
3249 
3250 	rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
3251 				      nvmf_tcp_sock_cb, tqpair);
3252 	if (rc != 0) {
3253 		SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
3254 			    spdk_strerror(errno), errno);
3255 		return -1;
3256 	}
3257 
3258 	tqpair->group = tgroup;
3259 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INVALID);
3260 	TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
3261 
3262 	return 0;
3263 }
3264 
3265 static int
3266 nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3267 			   struct spdk_nvmf_qpair *qpair)
3268 {
3269 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3270 	struct spdk_nvmf_tcp_qpair		*tqpair;
3271 	int				rc;
3272 
3273 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3274 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3275 
3276 	assert(tqpair->group == tgroup);
3277 
3278 	SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
3279 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
3280 		/* Change the state to move the qpair from the await_req list to the main list
3281 		 * and prevent adding it again later by nvmf_tcp_qpair_set_recv_state() */
3282 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
3283 	}
3284 	TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
3285 
3286 	rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
3287 	if (rc != 0) {
3288 		SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
3289 			    spdk_strerror(errno), errno);
3290 	}
3291 
3292 	return rc;
3293 }
3294 
3295 static int
3296 nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
3297 {
3298 	struct spdk_nvmf_tcp_transport *ttransport;
3299 	struct spdk_nvmf_tcp_req *tcp_req;
3300 
3301 	ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3302 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3303 
3304 	switch (tcp_req->state) {
3305 	case TCP_REQUEST_STATE_EXECUTING:
3306 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3307 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3308 		break;
3309 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3310 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED);
3311 		break;
3312 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3313 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3314 		break;
3315 	default:
3316 		assert(0 && "Unexpected request state");
3317 		break;
3318 	}
3319 
3320 	nvmf_tcp_req_process(ttransport, tcp_req);
3321 
3322 	return 0;
3323 }
3324 
3325 static void
3326 nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
3327 		     spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3328 {
3329 	struct spdk_nvmf_tcp_qpair *tqpair;
3330 
3331 	SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
3332 
3333 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3334 
3335 	assert(tqpair->fini_cb_fn == NULL);
3336 	tqpair->fini_cb_fn = cb_fn;
3337 	tqpair->fini_cb_arg = cb_arg;
3338 
3339 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITED);
3340 	nvmf_tcp_qpair_destroy(tqpair);
3341 }
3342 
3343 static int
3344 nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3345 {
3346 	struct spdk_nvmf_tcp_poll_group *tgroup;
3347 	int rc;
3348 	struct spdk_nvmf_request *req, *req_tmp;
3349 	struct spdk_nvmf_tcp_req *tcp_req;
3350 	struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp;
3351 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(group->transport,
3352 			struct spdk_nvmf_tcp_transport, transport);
3353 
3354 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3355 
3356 	if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) {
3357 		return 0;
3358 	}
3359 
3360 	STAILQ_FOREACH_SAFE(req, &group->pending_buf_queue, buf_link, req_tmp) {
3361 		tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3362 		if (nvmf_tcp_req_process(ttransport, tcp_req) == false) {
3363 			break;
3364 		}
3365 	}
3366 
3367 	rc = spdk_sock_group_poll(tgroup->sock_group);
3368 	if (rc < 0) {
3369 		SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
3370 	}
3371 
3372 	TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) {
3373 		rc = nvmf_tcp_sock_process(tqpair);
3374 
3375 		/* If there was a new socket error, disconnect */
3376 		if (rc < 0) {
3377 			nvmf_tcp_qpair_disconnect(tqpair);
3378 		}
3379 	}
3380 
3381 	return rc;
3382 }
3383 
3384 static int
3385 nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
3386 			struct spdk_nvme_transport_id *trid, bool peer)
3387 {
3388 	struct spdk_nvmf_tcp_qpair     *tqpair;
3389 	uint16_t			port;
3390 
3391 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3392 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
3393 
3394 	if (peer) {
3395 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
3396 		port = tqpair->initiator_port;
3397 	} else {
3398 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
3399 		port = tqpair->target_port;
3400 	}
3401 
3402 	if (spdk_sock_is_ipv4(tqpair->sock)) {
3403 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3404 	} else if (spdk_sock_is_ipv6(tqpair->sock)) {
3405 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3406 	} else {
3407 		return -1;
3408 	}
3409 
3410 	snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
3411 	return 0;
3412 }
3413 
3414 static int
3415 nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3416 			      struct spdk_nvme_transport_id *trid)
3417 {
3418 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3419 }
3420 
3421 static int
3422 nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3423 			     struct spdk_nvme_transport_id *trid)
3424 {
3425 	return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
3426 }
3427 
3428 static int
3429 nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3430 			       struct spdk_nvme_transport_id *trid)
3431 {
3432 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3433 }
3434 
3435 static void
3436 nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
3437 			      struct spdk_nvmf_tcp_req *tcp_req_to_abort)
3438 {
3439 	nvmf_tcp_req_set_cpl(tcp_req_to_abort, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_BY_REQUEST);
3440 	nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3441 
3442 	req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
3443 }
3444 
3445 static int
3446 _nvmf_tcp_qpair_abort_request(void *ctx)
3447 {
3448 	struct spdk_nvmf_request *req = ctx;
3449 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
3450 			struct spdk_nvmf_tcp_req, req);
3451 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
3452 					     struct spdk_nvmf_tcp_qpair, qpair);
3453 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
3454 			struct spdk_nvmf_tcp_transport, transport);
3455 	int rc;
3456 
3457 	spdk_poller_unregister(&req->poller);
3458 
3459 	switch (tcp_req_to_abort->state) {
3460 	case TCP_REQUEST_STATE_EXECUTING:
3461 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3462 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3463 		rc = nvmf_ctrlr_abort_request(req);
3464 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
3465 			return SPDK_POLLER_BUSY;
3466 		}
3467 		break;
3468 
3469 	case TCP_REQUEST_STATE_NEED_BUFFER:
3470 		STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue,
3471 			      &tcp_req_to_abort->req, spdk_nvmf_request, buf_link);
3472 
3473 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3474 		nvmf_tcp_req_process(ttransport, tcp_req_to_abort);
3475 		break;
3476 
3477 	case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3478 	case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3479 		if (spdk_get_ticks() < req->timeout_tsc) {
3480 			req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
3481 			return SPDK_POLLER_BUSY;
3482 		}
3483 		break;
3484 
3485 	default:
3486 		/* Requests in other states are either un-abortable (e.g.
3487 		 * TRANSFERRING_CONTROLLER_TO_HOST) or should never end up here, as they're
3488 		 * immediately transitioned to other states in nvmf_tcp_req_process() (e.g.
3489 		 * READY_TO_EXECUTE).  But it is fine to end up here, as we'll simply complete the
3490 		 * abort request with the bit0 of dword0 set (command not aborted).
3491 		 */
3492 		break;
3493 	}
3494 
3495 	spdk_nvmf_request_complete(req);
3496 	return SPDK_POLLER_BUSY;
3497 }
3498 
3499 static void
3500 nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
3501 			     struct spdk_nvmf_request *req)
3502 {
3503 	struct spdk_nvmf_tcp_qpair *tqpair;
3504 	struct spdk_nvmf_tcp_transport *ttransport;
3505 	struct spdk_nvmf_transport *transport;
3506 	uint16_t cid;
3507 	uint32_t i;
3508 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
3509 
3510 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3511 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3512 	transport = &ttransport->transport;
3513 
3514 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
3515 
3516 	for (i = 0; i < tqpair->resource_count; i++) {
3517 		if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
3518 		    tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
3519 			tcp_req_to_abort = &tqpair->reqs[i];
3520 			break;
3521 		}
3522 	}
3523 
3524 	spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, qpair->qid, 0, (uintptr_t)req, tqpair);
3525 
3526 	if (tcp_req_to_abort == NULL) {
3527 		spdk_nvmf_request_complete(req);
3528 		return;
3529 	}
3530 
3531 	req->req_to_abort = &tcp_req_to_abort->req;
3532 	req->timeout_tsc = spdk_get_ticks() +
3533 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
3534 	req->poller = NULL;
3535 
3536 	_nvmf_tcp_qpair_abort_request(req);
3537 }
3538 
3539 struct tcp_subsystem_add_host_opts {
3540 	char *psk;
3541 };
3542 
3543 static const struct spdk_json_object_decoder tcp_subsystem_add_host_opts_decoder[] = {
3544 	{"psk", offsetof(struct tcp_subsystem_add_host_opts, psk), spdk_json_decode_string, true},
3545 };
3546 
3547 static int
3548 tcp_load_psk(const char *fname, char *buf, size_t bufsz)
3549 {
3550 	FILE *psk_file;
3551 	struct stat statbuf;
3552 	int rc;
3553 
3554 	if (stat(fname, &statbuf) != 0) {
3555 		SPDK_ERRLOG("Could not read permissions for PSK file\n");
3556 		return -EACCES;
3557 	}
3558 
3559 	if ((statbuf.st_mode & TCP_PSK_INVALID_PERMISSIONS) != 0) {
3560 		SPDK_ERRLOG("Incorrect permissions for PSK file\n");
3561 		return -EPERM;
3562 	}
3563 	if ((size_t)statbuf.st_size > bufsz) {
3564 		SPDK_ERRLOG("Invalid PSK: too long\n");
3565 		return -EINVAL;
3566 	}
3567 	psk_file = fopen(fname, "r");
3568 	if (psk_file == NULL) {
3569 		SPDK_ERRLOG("Could not open PSK file\n");
3570 		return -EINVAL;
3571 	}
3572 
3573 	rc = fread(buf, 1, statbuf.st_size, psk_file);
3574 	if (rc != statbuf.st_size) {
3575 		SPDK_ERRLOG("Failed to read PSK\n");
3576 		fclose(psk_file);
3577 		return -EINVAL;
3578 	}
3579 
3580 	fclose(psk_file);
3581 	return 0;
3582 }
3583 
3584 static int
3585 nvmf_tcp_subsystem_add_host(struct spdk_nvmf_transport *transport,
3586 			    const struct spdk_nvmf_subsystem *subsystem,
3587 			    const char *hostnqn,
3588 			    const struct spdk_json_val *transport_specific)
3589 {
3590 	struct tcp_subsystem_add_host_opts opts;
3591 	struct spdk_nvmf_tcp_transport *ttransport;
3592 	struct tcp_psk_entry *tmp, *entry = NULL;
3593 	uint8_t psk_configured[SPDK_TLS_PSK_MAX_LEN] = {};
3594 	char psk_interchange[SPDK_TLS_PSK_MAX_LEN + 1] = {};
3595 	uint8_t tls_cipher_suite;
3596 	int rc = 0;
3597 	uint8_t psk_retained_hash;
3598 	uint64_t psk_configured_size;
3599 
3600 	if (transport_specific == NULL) {
3601 		return 0;
3602 	}
3603 
3604 	assert(transport != NULL);
3605 	assert(subsystem != NULL);
3606 
3607 	memset(&opts, 0, sizeof(opts));
3608 
3609 	/* Decode PSK file path */
3610 	if (spdk_json_decode_object_relaxed(transport_specific, tcp_subsystem_add_host_opts_decoder,
3611 					    SPDK_COUNTOF(tcp_subsystem_add_host_opts_decoder), &opts)) {
3612 		SPDK_ERRLOG("spdk_json_decode_object failed\n");
3613 		return -EINVAL;
3614 	}
3615 
3616 	if (opts.psk == NULL) {
3617 		return 0;
3618 	}
3619 
3620 	entry = calloc(1, sizeof(struct tcp_psk_entry));
3621 	if (entry == NULL) {
3622 		SPDK_ERRLOG("Unable to allocate memory for PSK entry!\n");
3623 		rc = -ENOMEM;
3624 		goto end;
3625 	}
3626 
3627 	if (strlen(opts.psk) >= sizeof(entry->psk)) {
3628 		SPDK_ERRLOG("PSK path too long\n");
3629 		rc = -EINVAL;
3630 		goto end;
3631 	}
3632 
3633 	rc = tcp_load_psk(opts.psk, psk_interchange, SPDK_TLS_PSK_MAX_LEN);
3634 	if (rc) {
3635 		SPDK_ERRLOG("Could not retrieve PSK from file\n");
3636 		goto end;
3637 	}
3638 
3639 	/* Parse PSK interchange to get length of base64 encoded data.
3640 	 * This is then used to decide which cipher suite should be used
3641 	 * to generate PSK identity and TLS PSK later on. */
3642 	rc = nvme_tcp_parse_interchange_psk(psk_interchange, psk_configured, sizeof(psk_configured),
3643 					    &psk_configured_size, &psk_retained_hash);
3644 	if (rc < 0) {
3645 		SPDK_ERRLOG("Failed to parse PSK interchange!\n");
3646 		goto end;
3647 	}
3648 
3649 	/* The Base64 string encodes the configured PSK (32 or 48 bytes binary).
3650 	 * This check also ensures that psk_configured_size is smaller than
3651 	 * psk_retained buffer size. */
3652 	if (psk_configured_size == SHA256_DIGEST_LENGTH) {
3653 		tls_cipher_suite = NVME_TCP_CIPHER_AES_128_GCM_SHA256;
3654 	} else if (psk_configured_size == SHA384_DIGEST_LENGTH) {
3655 		tls_cipher_suite = NVME_TCP_CIPHER_AES_256_GCM_SHA384;
3656 	} else {
3657 		SPDK_ERRLOG("Unrecognized cipher suite!\n");
3658 		rc = -EINVAL;
3659 		goto end;
3660 	}
3661 
3662 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3663 	/* Generate PSK identity. */
3664 	rc = nvme_tcp_generate_psk_identity(entry->pskid, sizeof(entry->pskid), hostnqn,
3665 					    subsystem->subnqn, tls_cipher_suite);
3666 	if (rc) {
3667 		rc = -EINVAL;
3668 		goto end;
3669 	}
3670 	/* Check if PSK identity entry already exists. */
3671 	TAILQ_FOREACH(tmp, &ttransport->psks, link) {
3672 		if (strncmp(tmp->pskid, entry->pskid, NVMF_PSK_IDENTITY_LEN) == 0) {
3673 			SPDK_ERRLOG("Given PSK identity: %s entry already exists!\n", entry->pskid);
3674 			rc = -EEXIST;
3675 			goto end;
3676 		}
3677 	}
3678 
3679 	if (snprintf(entry->hostnqn, sizeof(entry->hostnqn), "%s", hostnqn) < 0) {
3680 		SPDK_ERRLOG("Could not write hostnqn string!\n");
3681 		rc = -EINVAL;
3682 		goto end;
3683 	}
3684 	if (snprintf(entry->subnqn, sizeof(entry->subnqn), "%s", subsystem->subnqn) < 0) {
3685 		SPDK_ERRLOG("Could not write subnqn string!\n");
3686 		rc = -EINVAL;
3687 		goto end;
3688 	}
3689 
3690 	entry->tls_cipher_suite = tls_cipher_suite;
3691 
3692 	/* No hash indicates that Configured PSK must be used as Retained PSK. */
3693 	if (psk_retained_hash == NVME_TCP_HASH_ALGORITHM_NONE) {
3694 		/* Psk configured is either 32 or 48 bytes long. */
3695 		memcpy(entry->psk, psk_configured, psk_configured_size);
3696 		entry->psk_size = psk_configured_size;
3697 	} else {
3698 		/* Derive retained PSK. */
3699 		rc = nvme_tcp_derive_retained_psk(psk_configured, psk_configured_size, hostnqn, entry->psk,
3700 						  SPDK_TLS_PSK_MAX_LEN, psk_retained_hash);
3701 		if (rc < 0) {
3702 			SPDK_ERRLOG("Unable to derive retained PSK!\n");
3703 			goto end;
3704 		}
3705 		entry->psk_size = rc;
3706 	}
3707 
3708 	rc = snprintf(entry->psk_path, sizeof(entry->psk_path), "%s", opts.psk);
3709 	if (rc < 0 || (size_t)rc >= sizeof(entry->psk_path)) {
3710 		SPDK_ERRLOG("Could not save PSK path!\n");
3711 		rc = -ENAMETOOLONG;
3712 		goto end;
3713 	}
3714 
3715 	TAILQ_INSERT_TAIL(&ttransport->psks, entry, link);
3716 	rc = 0;
3717 
3718 end:
3719 	spdk_memset_s(psk_configured, sizeof(psk_configured), 0, sizeof(psk_configured));
3720 	spdk_memset_s(psk_interchange, sizeof(psk_interchange), 0, sizeof(psk_interchange));
3721 
3722 	free(opts.psk);
3723 	if (rc != 0) {
3724 		nvmf_tcp_free_psk_entry(entry);
3725 	}
3726 
3727 	return rc;
3728 }
3729 
3730 static void
3731 nvmf_tcp_subsystem_remove_host(struct spdk_nvmf_transport *transport,
3732 			       const struct spdk_nvmf_subsystem *subsystem,
3733 			       const char *hostnqn)
3734 {
3735 	struct spdk_nvmf_tcp_transport *ttransport;
3736 	struct tcp_psk_entry *entry, *tmp;
3737 
3738 	assert(transport != NULL);
3739 	assert(subsystem != NULL);
3740 
3741 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3742 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
3743 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3744 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3745 			TAILQ_REMOVE(&ttransport->psks, entry, link);
3746 			nvmf_tcp_free_psk_entry(entry);
3747 			break;
3748 		}
3749 	}
3750 }
3751 
3752 static void
3753 nvmf_tcp_subsystem_dump_host(struct spdk_nvmf_transport *transport,
3754 			     const struct spdk_nvmf_subsystem *subsystem, const char *hostnqn,
3755 			     struct spdk_json_write_ctx *w)
3756 {
3757 	struct spdk_nvmf_tcp_transport *ttransport;
3758 	struct tcp_psk_entry *entry;
3759 
3760 	assert(transport != NULL);
3761 	assert(subsystem != NULL);
3762 
3763 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3764 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
3765 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3766 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3767 			spdk_json_write_named_string(w, "psk", entry->psk_path);
3768 			break;
3769 		}
3770 	}
3771 }
3772 
3773 static void
3774 nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
3775 {
3776 	opts->max_queue_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
3777 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
3778 	opts->in_capsule_data_size =	SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
3779 	opts->max_io_size =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
3780 	opts->io_unit_size =		SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
3781 	opts->max_aq_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
3782 	opts->num_shared_buffers =	SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
3783 	opts->buf_cache_size =		SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
3784 	opts->dif_insert_or_strip =	SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
3785 	opts->abort_timeout_sec =	SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
3786 	opts->transport_specific =      NULL;
3787 }
3788 
3789 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
3790 	.name = "TCP",
3791 	.type = SPDK_NVME_TRANSPORT_TCP,
3792 	.opts_init = nvmf_tcp_opts_init,
3793 	.create = nvmf_tcp_create,
3794 	.dump_opts = nvmf_tcp_dump_opts,
3795 	.destroy = nvmf_tcp_destroy,
3796 
3797 	.listen = nvmf_tcp_listen,
3798 	.stop_listen = nvmf_tcp_stop_listen,
3799 
3800 	.listener_discover = nvmf_tcp_discover,
3801 
3802 	.poll_group_create = nvmf_tcp_poll_group_create,
3803 	.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
3804 	.poll_group_destroy = nvmf_tcp_poll_group_destroy,
3805 	.poll_group_add = nvmf_tcp_poll_group_add,
3806 	.poll_group_remove = nvmf_tcp_poll_group_remove,
3807 	.poll_group_poll = nvmf_tcp_poll_group_poll,
3808 
3809 	.req_free = nvmf_tcp_req_free,
3810 	.req_complete = nvmf_tcp_req_complete,
3811 
3812 	.qpair_fini = nvmf_tcp_close_qpair,
3813 	.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
3814 	.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
3815 	.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
3816 	.qpair_abort_request = nvmf_tcp_qpair_abort_request,
3817 	.subsystem_add_host = nvmf_tcp_subsystem_add_host,
3818 	.subsystem_remove_host = nvmf_tcp_subsystem_remove_host,
3819 	.subsystem_dump_host = nvmf_tcp_subsystem_dump_host,
3820 };
3821 
3822 SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
3823 SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)
3824