xref: /spdk/lib/nvmf/tcp.c (revision 7ff7ec0ed88d5acad07010b6c577326debc22f7c)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2018 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/accel.h"
8 #include "spdk/stdinc.h"
9 #include "spdk/crc32.h"
10 #include "spdk/endian.h"
11 #include "spdk/assert.h"
12 #include "spdk/thread.h"
13 #include "spdk/nvmf_transport.h"
14 #include "spdk/string.h"
15 #include "spdk/trace.h"
16 #include "spdk/util.h"
17 #include "spdk/log.h"
18 #include "spdk/keyring.h"
19 
20 #include "spdk_internal/assert.h"
21 #include "spdk_internal/nvme_tcp.h"
22 #include "spdk_internal/sock.h"
23 
24 #include "nvmf_internal.h"
25 
26 #include "spdk_internal/trace_defs.h"
27 
28 #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
29 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
30 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
31 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
32 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
33 
34 #define SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH 2
35 #define SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH 65535
36 #define SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH 2
37 #define SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH 4096
38 
39 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH 128
40 #define SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH 128
41 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
42 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
43 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
44 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
45 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
46 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX
47 #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
48 #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
49 
50 #define TCP_PSK_INVALID_PERMISSIONS 0177
51 
52 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
53 static bool g_tls_log = false;
54 
55 /* spdk nvmf related structure */
56 enum spdk_nvmf_tcp_req_state {
57 
58 	/* The request is not currently in use */
59 	TCP_REQUEST_STATE_FREE = 0,
60 
61 	/* Initial state when request first received */
62 	TCP_REQUEST_STATE_NEW = 1,
63 
64 	/* The request is queued until a data buffer is available. */
65 	TCP_REQUEST_STATE_NEED_BUFFER = 2,
66 
67 	/* The request is waiting for zcopy_start to finish */
68 	TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 3,
69 
70 	/* The request has received a zero-copy buffer */
71 	TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 4,
72 
73 	/* The request is currently transferring data from the host to the controller. */
74 	TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 5,
75 
76 	/* The request is waiting for the R2T send acknowledgement. */
77 	TCP_REQUEST_STATE_AWAITING_R2T_ACK = 6,
78 
79 	/* The request is ready to execute at the block device */
80 	TCP_REQUEST_STATE_READY_TO_EXECUTE = 7,
81 
82 	/* The request is currently executing at the block device */
83 	TCP_REQUEST_STATE_EXECUTING = 8,
84 
85 	/* The request is waiting for zcopy buffers to be committed */
86 	TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 9,
87 
88 	/* The request finished executing at the block device */
89 	TCP_REQUEST_STATE_EXECUTED = 10,
90 
91 	/* The request is ready to send a completion */
92 	TCP_REQUEST_STATE_READY_TO_COMPLETE = 11,
93 
94 	/* The request is currently transferring final pdus from the controller to the host. */
95 	TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 12,
96 
97 	/* The request is waiting for zcopy buffers to be released (without committing) */
98 	TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 13,
99 
100 	/* The request completed and can be marked free. */
101 	TCP_REQUEST_STATE_COMPLETED = 14,
102 
103 	/* Terminator */
104 	TCP_REQUEST_NUM_STATES,
105 };
106 
107 static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
108 	"Invalid PDU Header Field",
109 	"PDU Sequence Error",
110 	"Header Digiest Error",
111 	"Data Transfer Out of Range",
112 	"R2T Limit Exceeded",
113 	"Unsupported parameter",
114 };
115 
116 SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
117 {
118 	spdk_trace_register_owner_type(OWNER_TYPE_NVMF_TCP, 't');
119 	spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
120 	spdk_trace_register_description("TCP_REQ_NEW",
121 					TRACE_TCP_REQUEST_STATE_NEW,
122 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1,
123 					SPDK_TRACE_ARG_TYPE_INT, "qd");
124 	spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
125 					TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
126 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
127 					SPDK_TRACE_ARG_TYPE_INT, "");
128 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START",
129 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START,
130 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
131 					SPDK_TRACE_ARG_TYPE_INT, "");
132 	spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL",
133 					TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED,
134 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
135 					SPDK_TRACE_ARG_TYPE_INT, "");
136 	spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
137 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
138 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
139 					SPDK_TRACE_ARG_TYPE_INT, "");
140 	spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
141 					TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
142 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
143 					SPDK_TRACE_ARG_TYPE_INT, "");
144 	spdk_trace_register_description("TCP_REQ_EXECUTING",
145 					TRACE_TCP_REQUEST_STATE_EXECUTING,
146 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
147 					SPDK_TRACE_ARG_TYPE_INT, "");
148 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT",
149 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT,
150 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
151 					SPDK_TRACE_ARG_TYPE_INT, "");
152 	spdk_trace_register_description("TCP_REQ_EXECUTED",
153 					TRACE_TCP_REQUEST_STATE_EXECUTED,
154 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
155 					SPDK_TRACE_ARG_TYPE_INT, "");
156 	spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
157 					TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
158 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
159 					SPDK_TRACE_ARG_TYPE_INT, "");
160 	spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
161 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
162 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
163 					SPDK_TRACE_ARG_TYPE_INT, "");
164 	spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS",
165 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE,
166 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
167 					SPDK_TRACE_ARG_TYPE_INT, "");
168 	spdk_trace_register_description("TCP_REQ_COMPLETED",
169 					TRACE_TCP_REQUEST_STATE_COMPLETED,
170 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
171 					SPDK_TRACE_ARG_TYPE_INT, "qd");
172 	spdk_trace_register_description("TCP_READ_DONE",
173 					TRACE_TCP_READ_FROM_SOCKET_DONE,
174 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
175 					SPDK_TRACE_ARG_TYPE_INT, "");
176 	spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
177 					TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
178 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
179 					SPDK_TRACE_ARG_TYPE_INT, "");
180 
181 	spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE,
182 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
183 					SPDK_TRACE_ARG_TYPE_INT, "");
184 	spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT,
185 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
186 					SPDK_TRACE_ARG_TYPE_INT, "");
187 	spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE,
188 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
189 					SPDK_TRACE_ARG_TYPE_INT, "state");
190 	spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT,
191 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
192 					SPDK_TRACE_ARG_TYPE_INT, "");
193 	spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY,
194 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
195 					SPDK_TRACE_ARG_TYPE_INT, "");
196 	spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ,
197 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
198 					SPDK_TRACE_ARG_TYPE_INT, "");
199 	spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE,
200 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
201 					SPDK_TRACE_ARG_TYPE_INT, "state");
202 
203 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1);
204 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0);
205 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_QUEUE, OBJECT_NVMF_TCP_IO, 0);
206 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_PEND, OBJECT_NVMF_TCP_IO, 0);
207 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_COMPLETE, OBJECT_NVMF_TCP_IO, 0);
208 }
209 
210 struct spdk_nvmf_tcp_req  {
211 	struct spdk_nvmf_request		req;
212 	struct spdk_nvme_cpl			rsp;
213 	struct spdk_nvme_cmd			cmd;
214 
215 	/* A PDU that can be used for sending responses. This is
216 	 * not the incoming PDU! */
217 	struct nvme_tcp_pdu			*pdu;
218 
219 	/* In-capsule data buffer */
220 	uint8_t					*buf;
221 
222 	struct spdk_nvmf_tcp_req		*fused_pair;
223 
224 	/*
225 	 * The PDU for a request may be used multiple times in serial over
226 	 * the request's lifetime. For example, first to send an R2T, then
227 	 * to send a completion. To catch mistakes where the PDU is used
228 	 * twice at the same time, add a debug flag here for init/fini.
229 	 */
230 	bool					pdu_in_use;
231 	bool					has_in_capsule_data;
232 	bool					fused_failed;
233 
234 	/* transfer_tag */
235 	uint16_t				ttag;
236 
237 	enum spdk_nvmf_tcp_req_state		state;
238 
239 	/*
240 	 * h2c_offset is used when we receive the h2c_data PDU.
241 	 */
242 	uint32_t				h2c_offset;
243 
244 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		link;
245 	TAILQ_ENTRY(spdk_nvmf_tcp_req)		state_link;
246 };
247 
248 struct spdk_nvmf_tcp_qpair {
249 	struct spdk_nvmf_qpair			qpair;
250 	struct spdk_nvmf_tcp_poll_group		*group;
251 	struct spdk_sock			*sock;
252 
253 	enum nvme_tcp_pdu_recv_state		recv_state;
254 	enum nvme_tcp_qpair_state		state;
255 
256 	/* PDU being actively received */
257 	struct nvme_tcp_pdu			*pdu_in_progress;
258 
259 	struct spdk_nvmf_tcp_req		*fused_first;
260 
261 	/* Queues to track the requests in all states */
262 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_working_queue;
263 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_free_queue;
264 	SLIST_HEAD(, nvme_tcp_pdu)		tcp_pdu_free_queue;
265 	/* Number of working pdus */
266 	uint32_t				tcp_pdu_working_count;
267 
268 	/* Number of requests in each state */
269 	uint32_t				state_cntr[TCP_REQUEST_NUM_STATES];
270 
271 	uint8_t					cpda;
272 
273 	bool					host_hdgst_enable;
274 	bool					host_ddgst_enable;
275 
276 	/* This is a spare PDU used for sending special management
277 	 * operations. Primarily, this is used for the initial
278 	 * connection response and c2h termination request. */
279 	struct nvme_tcp_pdu			*mgmt_pdu;
280 
281 	/* Arrays of in-capsule buffers, requests, and pdus.
282 	 * Each array is 'resource_count' number of elements */
283 	void					*bufs;
284 	struct spdk_nvmf_tcp_req		*reqs;
285 	struct nvme_tcp_pdu			*pdus;
286 	uint32_t				resource_count;
287 	uint32_t				recv_buf_size;
288 
289 	struct spdk_nvmf_tcp_port		*port;
290 
291 	/* IP address */
292 	char					initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
293 	char					target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
294 
295 	/* IP port */
296 	uint16_t				initiator_port;
297 	uint16_t				target_port;
298 
299 	/* Wait until the host terminates the connection (e.g. after sending C2HTermReq) */
300 	bool					wait_terminate;
301 
302 	/* Timer used to destroy qpair after detecting transport error issue if initiator does
303 	 *  not close the connection.
304 	 */
305 	struct spdk_poller			*timeout_poller;
306 
307 	spdk_nvmf_transport_qpair_fini_cb	fini_cb_fn;
308 	void					*fini_cb_arg;
309 
310 	TAILQ_ENTRY(spdk_nvmf_tcp_qpair)	link;
311 };
312 
313 struct spdk_nvmf_tcp_control_msg {
314 	STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
315 };
316 
317 struct spdk_nvmf_tcp_control_msg_list {
318 	void *msg_buf;
319 	STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
320 };
321 
322 struct spdk_nvmf_tcp_poll_group {
323 	struct spdk_nvmf_transport_poll_group	group;
324 	struct spdk_sock_group			*sock_group;
325 
326 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	qpairs;
327 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	await_req;
328 
329 	struct spdk_io_channel			*accel_channel;
330 	struct spdk_nvmf_tcp_control_msg_list	*control_msg_list;
331 
332 	TAILQ_ENTRY(spdk_nvmf_tcp_poll_group)	link;
333 };
334 
335 struct spdk_nvmf_tcp_port {
336 	const struct spdk_nvme_transport_id	*trid;
337 	struct spdk_sock			*listen_sock;
338 	TAILQ_ENTRY(spdk_nvmf_tcp_port)		link;
339 };
340 
341 struct tcp_transport_opts {
342 	bool		c2h_success;
343 	uint16_t	control_msg_num;
344 	uint32_t	sock_priority;
345 };
346 
347 struct tcp_psk_entry {
348 	char				hostnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
349 	char				subnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
350 	char				pskid[NVMF_PSK_IDENTITY_LEN];
351 	uint8_t				psk[SPDK_TLS_PSK_MAX_LEN];
352 	struct spdk_key			*key;
353 
354 	/* Original path saved to emit SPDK configuration via "save_config". */
355 	char				psk_path[PATH_MAX];
356 	uint32_t			psk_size;
357 	enum nvme_tcp_cipher_suite	tls_cipher_suite;
358 	TAILQ_ENTRY(tcp_psk_entry)	link;
359 };
360 
361 struct spdk_nvmf_tcp_transport {
362 	struct spdk_nvmf_transport		transport;
363 	struct tcp_transport_opts               tcp_opts;
364 	uint32_t				ack_timeout;
365 
366 	struct spdk_nvmf_tcp_poll_group		*next_pg;
367 
368 	struct spdk_poller			*accept_poller;
369 
370 	TAILQ_HEAD(, spdk_nvmf_tcp_port)	ports;
371 	TAILQ_HEAD(, spdk_nvmf_tcp_poll_group)	poll_groups;
372 
373 	TAILQ_HEAD(, tcp_psk_entry)		psks;
374 };
375 
376 static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
377 	{
378 		"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
379 		spdk_json_decode_bool, true
380 	},
381 	{
382 		"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
383 		spdk_json_decode_uint16, true
384 	},
385 	{
386 		"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
387 		spdk_json_decode_uint32, true
388 	},
389 };
390 
391 static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
392 				 struct spdk_nvmf_tcp_req *tcp_req);
393 static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
394 
395 static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
396 				    struct spdk_nvmf_tcp_req *tcp_req);
397 
398 static inline void
399 nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
400 		       enum spdk_nvmf_tcp_req_state state)
401 {
402 	struct spdk_nvmf_qpair *qpair;
403 	struct spdk_nvmf_tcp_qpair *tqpair;
404 
405 	qpair = tcp_req->req.qpair;
406 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
407 
408 	assert(tqpair->state_cntr[tcp_req->state] > 0);
409 	tqpair->state_cntr[tcp_req->state]--;
410 	tqpair->state_cntr[state]++;
411 
412 	tcp_req->state = state;
413 }
414 
415 static inline struct nvme_tcp_pdu *
416 nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
417 {
418 	assert(tcp_req->pdu_in_use == false);
419 
420 	memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
421 	tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
422 
423 	return tcp_req->pdu;
424 }
425 
426 static struct spdk_nvmf_tcp_req *
427 nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
428 {
429 	struct spdk_nvmf_tcp_req *tcp_req;
430 
431 	tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
432 	if (spdk_unlikely(!tcp_req)) {
433 		return NULL;
434 	}
435 
436 	memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
437 	tcp_req->h2c_offset = 0;
438 	tcp_req->has_in_capsule_data = false;
439 	tcp_req->req.dif_enabled = false;
440 	tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE;
441 
442 	TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
443 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
444 	tqpair->qpair.queue_depth++;
445 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
446 	return tcp_req;
447 }
448 
449 static inline void
450 nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
451 {
452 	assert(!tcp_req->pdu_in_use);
453 
454 	TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
455 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
456 	tqpair->qpair.queue_depth--;
457 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
458 }
459 
460 static void
461 nvmf_tcp_request_free(void *cb_arg)
462 {
463 	struct spdk_nvmf_tcp_transport *ttransport;
464 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
465 
466 	assert(tcp_req != NULL);
467 
468 	SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
469 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
470 				      struct spdk_nvmf_tcp_transport, transport);
471 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
472 	nvmf_tcp_req_process(ttransport, tcp_req);
473 }
474 
475 static int
476 nvmf_tcp_req_free(struct spdk_nvmf_request *req)
477 {
478 	struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
479 
480 	nvmf_tcp_request_free(tcp_req);
481 
482 	return 0;
483 }
484 
485 static void
486 nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
487 			   enum spdk_nvmf_tcp_req_state state)
488 {
489 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
490 
491 	assert(state != TCP_REQUEST_STATE_FREE);
492 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
493 		if (state == tcp_req->state) {
494 			nvmf_tcp_request_free(tcp_req);
495 		}
496 	}
497 }
498 
499 static void
500 nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
501 {
502 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
503 
504 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
505 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
506 
507 	/* Wipe the requests waiting for buffer from the global list */
508 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
509 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
510 			STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue, &tcp_req->req,
511 				      spdk_nvmf_request, buf_link);
512 		}
513 	}
514 
515 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
516 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
517 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
518 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
519 }
520 
521 static void
522 nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
523 {
524 	int i;
525 	struct spdk_nvmf_tcp_req *tcp_req;
526 
527 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
528 	for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
529 		SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
530 		TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
531 			if ((int)tcp_req->state == i) {
532 				SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
533 				SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
534 			}
535 		}
536 	}
537 }
538 
539 static void
540 _nvmf_tcp_qpair_destroy(void *_tqpair)
541 {
542 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
543 	spdk_nvmf_transport_qpair_fini_cb cb_fn = tqpair->fini_cb_fn;
544 	void *cb_arg = tqpair->fini_cb_arg;
545 	int err = 0;
546 
547 	spdk_trace_record(TRACE_TCP_QP_DESTROY, tqpair->qpair.trace_id, 0, 0);
548 
549 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
550 
551 	err = spdk_sock_close(&tqpair->sock);
552 	assert(err == 0);
553 	nvmf_tcp_cleanup_all_states(tqpair);
554 
555 	if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
556 		SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
557 			    tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
558 			    tqpair->resource_count);
559 		err++;
560 	}
561 
562 	if (err > 0) {
563 		nvmf_tcp_dump_qpair_req_contents(tqpair);
564 	}
565 
566 	/* The timeout poller might still be registered here if we close the qpair before host
567 	 * terminates the connection.
568 	 */
569 	spdk_poller_unregister(&tqpair->timeout_poller);
570 	spdk_dma_free(tqpair->pdus);
571 	free(tqpair->reqs);
572 	spdk_free(tqpair->bufs);
573 	spdk_trace_unregister_owner(tqpair->qpair.trace_id);
574 	free(tqpair);
575 
576 	if (cb_fn != NULL) {
577 		cb_fn(cb_arg);
578 	}
579 
580 	SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
581 }
582 
583 static void
584 nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
585 {
586 	/* Delay the destruction to make sure it isn't performed from the context of a sock
587 	 * callback.  Otherwise, spdk_sock_close() might not abort pending requests, causing their
588 	 * completions to be executed after the qpair is freed.  (Note: this fixed issue #2471.)
589 	 */
590 	spdk_thread_send_msg(spdk_get_thread(), _nvmf_tcp_qpair_destroy, tqpair);
591 }
592 
593 static void
594 nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
595 {
596 	struct spdk_nvmf_tcp_transport	*ttransport;
597 	assert(w != NULL);
598 
599 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
600 	spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
601 	spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
602 }
603 
604 static void
605 nvmf_tcp_free_psk_entry(struct tcp_psk_entry *entry)
606 {
607 	if (entry == NULL) {
608 		return;
609 	}
610 
611 	spdk_memset_s(entry->psk, sizeof(entry->psk), 0, sizeof(entry->psk));
612 	spdk_keyring_put_key(entry->key);
613 	free(entry);
614 }
615 
616 static int
617 nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
618 		 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
619 {
620 	struct spdk_nvmf_tcp_transport	*ttransport;
621 	struct tcp_psk_entry *entry, *tmp;
622 
623 	assert(transport != NULL);
624 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
625 
626 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
627 		TAILQ_REMOVE(&ttransport->psks, entry, link);
628 		nvmf_tcp_free_psk_entry(entry);
629 	}
630 
631 	spdk_poller_unregister(&ttransport->accept_poller);
632 	free(ttransport);
633 
634 	if (cb_fn) {
635 		cb_fn(cb_arg);
636 	}
637 	return 0;
638 }
639 
640 static int nvmf_tcp_accept(void *ctx);
641 
642 static struct spdk_nvmf_transport *
643 nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
644 {
645 	struct spdk_nvmf_tcp_transport *ttransport;
646 	uint32_t sge_count;
647 	uint32_t min_shared_buffers;
648 
649 	ttransport = calloc(1, sizeof(*ttransport));
650 	if (!ttransport) {
651 		return NULL;
652 	}
653 
654 	TAILQ_INIT(&ttransport->ports);
655 	TAILQ_INIT(&ttransport->poll_groups);
656 	TAILQ_INIT(&ttransport->psks);
657 
658 	ttransport->transport.ops = &spdk_nvmf_transport_tcp;
659 
660 	ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
661 	ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
662 	ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
663 	if (opts->transport_specific != NULL &&
664 	    spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
665 					    SPDK_COUNTOF(tcp_transport_opts_decoder),
666 					    &ttransport->tcp_opts)) {
667 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
668 		free(ttransport);
669 		return NULL;
670 	}
671 
672 	SPDK_NOTICELOG("*** TCP Transport Init ***\n");
673 
674 	SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
675 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
676 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
677 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
678 		     "  num_shared_buffers=%d, c2h_success=%d,\n"
679 		     "  dif_insert_or_strip=%d, sock_priority=%d\n"
680 		     "  abort_timeout_sec=%d, control_msg_num=%hu\n"
681 		     "  ack_timeout=%d\n",
682 		     opts->max_queue_depth,
683 		     opts->max_io_size,
684 		     opts->max_qpairs_per_ctrlr - 1,
685 		     opts->io_unit_size,
686 		     opts->in_capsule_data_size,
687 		     opts->max_aq_depth,
688 		     opts->num_shared_buffers,
689 		     ttransport->tcp_opts.c2h_success,
690 		     opts->dif_insert_or_strip,
691 		     ttransport->tcp_opts.sock_priority,
692 		     opts->abort_timeout_sec,
693 		     ttransport->tcp_opts.control_msg_num,
694 		     opts->ack_timeout);
695 
696 	if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
697 		SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
698 			    "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
699 			    ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
700 		free(ttransport);
701 		return NULL;
702 	}
703 
704 	if (ttransport->tcp_opts.control_msg_num == 0 &&
705 	    opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
706 		SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
707 			     SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
708 		ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
709 	}
710 
711 	/* I/O unit size cannot be larger than max I/O size */
712 	if (opts->io_unit_size > opts->max_io_size) {
713 		SPDK_WARNLOG("TCP param io_unit_size %u can't be larger than max_io_size %u. Using max_io_size as io_unit_size\n",
714 			     opts->io_unit_size, opts->max_io_size);
715 		opts->io_unit_size = opts->max_io_size;
716 	}
717 
718 	/* In capsule data size cannot be larger than max I/O size */
719 	if (opts->in_capsule_data_size > opts->max_io_size) {
720 		SPDK_WARNLOG("TCP param ICD size %u can't be larger than max_io_size %u. Using max_io_size as ICD size\n",
721 			     opts->io_unit_size, opts->max_io_size);
722 		opts->in_capsule_data_size = opts->max_io_size;
723 	}
724 
725 	/* max IO queue depth cannot be smaller than 2 or larger than 65535.
726 	 * We will not check SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, because max_queue_depth is 16bits and always not larger than 64k. */
727 	if (opts->max_queue_depth < SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH) {
728 		SPDK_WARNLOG("TCP param max_queue_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
729 			     opts->max_queue_depth, SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH,
730 			     SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH);
731 		opts->max_queue_depth = SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
732 	}
733 
734 	/* max admin queue depth cannot be smaller than 2 or larger than 4096 */
735 	if (opts->max_aq_depth < SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH ||
736 	    opts->max_aq_depth > SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH) {
737 		SPDK_WARNLOG("TCP param max_aq_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
738 			     opts->max_aq_depth, SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH,
739 			     SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH);
740 		opts->max_aq_depth = SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
741 	}
742 
743 	sge_count = opts->max_io_size / opts->io_unit_size;
744 	if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
745 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
746 		free(ttransport);
747 		return NULL;
748 	}
749 
750 	/* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */
751 	if (opts->buf_cache_size < UINT32_MAX) {
752 		min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
753 		if (min_shared_buffers > opts->num_shared_buffers) {
754 			SPDK_ERRLOG("There are not enough buffers to satisfy "
755 				    "per-poll group caches for each thread. (%" PRIu32 ") "
756 				    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
757 			SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
758 			free(ttransport);
759 			return NULL;
760 		}
761 	}
762 
763 	ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport,
764 				    opts->acceptor_poll_rate);
765 	if (!ttransport->accept_poller) {
766 		free(ttransport);
767 		return NULL;
768 	}
769 
770 	return &ttransport->transport;
771 }
772 
773 static int
774 nvmf_tcp_trsvcid_to_int(const char *trsvcid)
775 {
776 	unsigned long long ull;
777 	char *end = NULL;
778 
779 	ull = strtoull(trsvcid, &end, 10);
780 	if (end == NULL || end == trsvcid || *end != '\0') {
781 		return -1;
782 	}
783 
784 	/* Valid TCP/IP port numbers are in [1, 65535] */
785 	if (ull == 0 || ull > 65535) {
786 		return -1;
787 	}
788 
789 	return (int)ull;
790 }
791 
792 /**
793  * Canonicalize a listen address trid.
794  */
795 static int
796 nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
797 			   const struct spdk_nvme_transport_id *trid)
798 {
799 	int trsvcid_int;
800 
801 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
802 	if (trsvcid_int < 0) {
803 		return -EINVAL;
804 	}
805 
806 	memset(canon_trid, 0, sizeof(*canon_trid));
807 	spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
808 	canon_trid->adrfam = trid->adrfam;
809 	snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
810 	snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
811 
812 	return 0;
813 }
814 
815 /**
816  * Find an existing listening port.
817  */
818 static struct spdk_nvmf_tcp_port *
819 nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
820 		   const struct spdk_nvme_transport_id *trid)
821 {
822 	struct spdk_nvme_transport_id canon_trid;
823 	struct spdk_nvmf_tcp_port *port;
824 
825 	if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
826 		return NULL;
827 	}
828 
829 	TAILQ_FOREACH(port, &ttransport->ports, link) {
830 		if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
831 			return port;
832 		}
833 	}
834 
835 	return NULL;
836 }
837 
838 static int
839 tcp_sock_get_key(uint8_t *out, int out_len, const char **cipher, const char *pskid,
840 		 void *get_key_ctx)
841 {
842 	struct tcp_psk_entry *entry;
843 	struct spdk_nvmf_tcp_transport *ttransport = get_key_ctx;
844 	size_t psk_len;
845 	int rc;
846 
847 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
848 		if (strcmp(pskid, entry->pskid) != 0) {
849 			continue;
850 		}
851 
852 		psk_len = entry->psk_size;
853 		if ((size_t)out_len < psk_len) {
854 			SPDK_ERRLOG("Out buffer of size: %" PRIu32 " cannot fit PSK of len: %lu\n",
855 				    out_len, psk_len);
856 			return -ENOBUFS;
857 		}
858 
859 		/* Convert PSK to the TLS PSK format. */
860 		rc = nvme_tcp_derive_tls_psk(entry->psk, psk_len, pskid, out, out_len,
861 					     entry->tls_cipher_suite);
862 		if (rc < 0) {
863 			SPDK_ERRLOG("Could not generate TLS PSK\n");
864 		}
865 
866 		switch (entry->tls_cipher_suite) {
867 		case NVME_TCP_CIPHER_AES_128_GCM_SHA256:
868 			*cipher = "TLS_AES_128_GCM_SHA256";
869 			break;
870 		case NVME_TCP_CIPHER_AES_256_GCM_SHA384:
871 			*cipher = "TLS_AES_256_GCM_SHA384";
872 			break;
873 		default:
874 			*cipher = NULL;
875 			return -ENOTSUP;
876 		}
877 
878 		return rc;
879 	}
880 
881 	SPDK_ERRLOG("Could not find PSK for identity: %s\n", pskid);
882 
883 	return -EINVAL;
884 }
885 
886 static int
887 nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
888 		struct spdk_nvmf_listen_opts *listen_opts)
889 {
890 	struct spdk_nvmf_tcp_transport *ttransport;
891 	struct spdk_nvmf_tcp_port *port;
892 	int trsvcid_int;
893 	uint8_t adrfam;
894 	const char *sock_impl_name;
895 	struct spdk_sock_impl_opts impl_opts;
896 	size_t impl_opts_size = sizeof(impl_opts);
897 	struct spdk_sock_opts opts;
898 
899 	if (!strlen(trid->trsvcid)) {
900 		SPDK_ERRLOG("Service id is required\n");
901 		return -EINVAL;
902 	}
903 
904 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
905 
906 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
907 	if (trsvcid_int < 0) {
908 		SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
909 		return -EINVAL;
910 	}
911 
912 	port = calloc(1, sizeof(*port));
913 	if (!port) {
914 		SPDK_ERRLOG("Port allocation failed\n");
915 		return -ENOMEM;
916 	}
917 
918 	port->trid = trid;
919 
920 	sock_impl_name = NULL;
921 
922 	opts.opts_size = sizeof(opts);
923 	spdk_sock_get_default_opts(&opts);
924 	opts.priority = ttransport->tcp_opts.sock_priority;
925 	opts.ack_timeout = transport->opts.ack_timeout;
926 	if (listen_opts->secure_channel) {
927 		if (!g_tls_log) {
928 			SPDK_NOTICELOG("TLS support is considered experimental\n");
929 			g_tls_log = true;
930 		}
931 		sock_impl_name = "ssl";
932 		spdk_sock_impl_get_opts(sock_impl_name, &impl_opts, &impl_opts_size);
933 		impl_opts.tls_version = SPDK_TLS_VERSION_1_3;
934 		impl_opts.get_key = tcp_sock_get_key;
935 		impl_opts.get_key_ctx = ttransport;
936 		impl_opts.tls_cipher_suites = "TLS_AES_256_GCM_SHA384:TLS_AES_128_GCM_SHA256";
937 		opts.impl_opts = &impl_opts;
938 		opts.impl_opts_size = sizeof(impl_opts);
939 	}
940 
941 	port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
942 			    sock_impl_name, &opts);
943 	if (port->listen_sock == NULL) {
944 		SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
945 			    trid->traddr, trsvcid_int,
946 			    spdk_strerror(errno), errno);
947 		free(port);
948 		return -errno;
949 	}
950 
951 	if (spdk_sock_is_ipv4(port->listen_sock)) {
952 		adrfam = SPDK_NVMF_ADRFAM_IPV4;
953 	} else if (spdk_sock_is_ipv6(port->listen_sock)) {
954 		adrfam = SPDK_NVMF_ADRFAM_IPV6;
955 	} else {
956 		SPDK_ERRLOG("Unhandled socket type\n");
957 		adrfam = 0;
958 	}
959 
960 	if (adrfam != trid->adrfam) {
961 		SPDK_ERRLOG("Socket address family mismatch\n");
962 		spdk_sock_close(&port->listen_sock);
963 		free(port);
964 		return -EINVAL;
965 	}
966 
967 	SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
968 		       trid->traddr, trid->trsvcid);
969 
970 	TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
971 	return 0;
972 }
973 
974 static void
975 nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
976 		     const struct spdk_nvme_transport_id *trid)
977 {
978 	struct spdk_nvmf_tcp_transport *ttransport;
979 	struct spdk_nvmf_tcp_port *port;
980 
981 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
982 
983 	SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
984 		      trid->traddr, trid->trsvcid);
985 
986 	port = nvmf_tcp_find_port(ttransport, trid);
987 	if (port) {
988 		TAILQ_REMOVE(&ttransport->ports, port, link);
989 		spdk_sock_close(&port->listen_sock);
990 		free(port);
991 	}
992 }
993 
994 static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
995 		enum nvme_tcp_pdu_recv_state state);
996 
997 static void
998 nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvme_tcp_qpair_state state)
999 {
1000 	tqpair->state = state;
1001 	spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0,
1002 			  (uint64_t)tqpair->state);
1003 }
1004 
1005 static void
1006 nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
1007 {
1008 	SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
1009 
1010 	spdk_trace_record(TRACE_TCP_QP_DISCONNECT, tqpair->qpair.trace_id, 0, 0);
1011 
1012 	if (tqpair->state <= NVME_TCP_QPAIR_STATE_RUNNING) {
1013 		nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITING);
1014 		assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1015 		spdk_poller_unregister(&tqpair->timeout_poller);
1016 
1017 		/* This will end up calling nvmf_tcp_close_qpair */
1018 		spdk_nvmf_qpair_disconnect(&tqpair->qpair);
1019 	}
1020 }
1021 
1022 static void
1023 _mgmt_pdu_write_done(void *_tqpair, int err)
1024 {
1025 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
1026 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1027 
1028 	if (spdk_unlikely(err != 0)) {
1029 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1030 		return;
1031 	}
1032 
1033 	assert(pdu->cb_fn != NULL);
1034 	pdu->cb_fn(pdu->cb_arg);
1035 }
1036 
1037 static void
1038 _req_pdu_write_done(void *req, int err)
1039 {
1040 	struct spdk_nvmf_tcp_req *tcp_req = req;
1041 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1042 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1043 
1044 	assert(tcp_req->pdu_in_use);
1045 	tcp_req->pdu_in_use = false;
1046 
1047 	/* If the request is in a completed state, we're waiting for write completion to free it */
1048 	if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) {
1049 		nvmf_tcp_request_free(tcp_req);
1050 		return;
1051 	}
1052 
1053 	if (spdk_unlikely(err != 0)) {
1054 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1055 		return;
1056 	}
1057 
1058 	assert(pdu->cb_fn != NULL);
1059 	pdu->cb_fn(pdu->cb_arg);
1060 }
1061 
1062 static void
1063 _pdu_write_done(struct nvme_tcp_pdu *pdu, int err)
1064 {
1065 	pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err);
1066 }
1067 
1068 static void
1069 _tcp_write_pdu(struct nvme_tcp_pdu *pdu)
1070 {
1071 	int rc;
1072 	uint32_t mapped_length;
1073 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1074 
1075 	pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
1076 			       tqpair->host_hdgst_enable, tqpair->host_ddgst_enable, &mapped_length);
1077 	spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
1078 
1079 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
1080 	    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
1081 		/* Try to force the send immediately. */
1082 		rc = spdk_sock_flush(tqpair->sock);
1083 		if (rc > 0 && (uint32_t)rc == mapped_length) {
1084 			_pdu_write_done(pdu, 0);
1085 		} else {
1086 			SPDK_ERRLOG("Could not write %s to socket: rc=%d, errno=%d\n",
1087 				    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ?
1088 				    "IC_RESP" : "TERM_REQ", rc, errno);
1089 			_pdu_write_done(pdu, rc >= 0 ? -EAGAIN : -errno);
1090 		}
1091 	}
1092 }
1093 
1094 static void
1095 data_crc32_accel_done(void *cb_arg, int status)
1096 {
1097 	struct nvme_tcp_pdu *pdu = cb_arg;
1098 
1099 	if (spdk_unlikely(status)) {
1100 		SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
1101 		_pdu_write_done(pdu, status);
1102 		return;
1103 	}
1104 
1105 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
1106 	MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
1107 
1108 	_tcp_write_pdu(pdu);
1109 }
1110 
1111 static void
1112 pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
1113 {
1114 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1115 	int rc = 0;
1116 
1117 	/* Data Digest */
1118 	if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
1119 		/* Only support this limitated case for the first step */
1120 		if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
1121 				&& tqpair->group)) {
1122 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
1123 						       pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
1124 			if (spdk_likely(rc == 0)) {
1125 				return;
1126 			}
1127 		} else {
1128 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1129 		}
1130 		data_crc32_accel_done(pdu, rc);
1131 	} else {
1132 		_tcp_write_pdu(pdu);
1133 	}
1134 }
1135 
1136 static void
1137 nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1138 			 struct nvme_tcp_pdu *pdu,
1139 			 nvme_tcp_qpair_xfer_complete_cb cb_fn,
1140 			 void *cb_arg)
1141 {
1142 	int hlen;
1143 	uint32_t crc32c;
1144 
1145 	assert(tqpair->pdu_in_progress != pdu);
1146 
1147 	hlen = pdu->hdr.common.hlen;
1148 	pdu->cb_fn = cb_fn;
1149 	pdu->cb_arg = cb_arg;
1150 
1151 	pdu->iov[0].iov_base = &pdu->hdr.raw;
1152 	pdu->iov[0].iov_len = hlen;
1153 
1154 	/* Header Digest */
1155 	if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) {
1156 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1157 		MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
1158 	}
1159 
1160 	/* Data Digest */
1161 	pdu_data_crc32_compute(pdu);
1162 }
1163 
1164 static void
1165 nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1166 			      nvme_tcp_qpair_xfer_complete_cb cb_fn,
1167 			      void *cb_arg)
1168 {
1169 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1170 
1171 	pdu->sock_req.cb_fn = _mgmt_pdu_write_done;
1172 	pdu->sock_req.cb_arg = tqpair;
1173 
1174 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1175 }
1176 
1177 static void
1178 nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1179 			     struct spdk_nvmf_tcp_req *tcp_req,
1180 			     nvme_tcp_qpair_xfer_complete_cb cb_fn,
1181 			     void *cb_arg)
1182 {
1183 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1184 
1185 	pdu->sock_req.cb_fn = _req_pdu_write_done;
1186 	pdu->sock_req.cb_arg = tcp_req;
1187 
1188 	assert(!tcp_req->pdu_in_use);
1189 	tcp_req->pdu_in_use = true;
1190 
1191 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1192 }
1193 
1194 static int
1195 nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
1196 {
1197 	uint32_t i;
1198 	struct spdk_nvmf_transport_opts *opts;
1199 	uint32_t in_capsule_data_size;
1200 
1201 	opts = &tqpair->qpair.transport->opts;
1202 
1203 	in_capsule_data_size = opts->in_capsule_data_size;
1204 	if (opts->dif_insert_or_strip) {
1205 		in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
1206 	}
1207 
1208 	tqpair->resource_count = opts->max_queue_depth;
1209 
1210 	tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
1211 	if (!tqpair->reqs) {
1212 		SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
1213 		return -1;
1214 	}
1215 
1216 	if (in_capsule_data_size) {
1217 		tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
1218 					    NULL, SPDK_ENV_LCORE_ID_ANY,
1219 					    SPDK_MALLOC_DMA);
1220 		if (!tqpair->bufs) {
1221 			SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
1222 			return -1;
1223 		}
1224 	}
1225 	/* prepare memory space for receiving pdus and tcp_req */
1226 	/* Add additional 1 member, which will be used for mgmt_pdu owned by the tqpair */
1227 	tqpair->pdus = spdk_dma_zmalloc((2 * tqpair->resource_count + 1) * sizeof(*tqpair->pdus), 0x1000,
1228 					NULL);
1229 	if (!tqpair->pdus) {
1230 		SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
1231 		return -1;
1232 	}
1233 
1234 	for (i = 0; i < tqpair->resource_count; i++) {
1235 		struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
1236 
1237 		tcp_req->ttag = i + 1;
1238 		tcp_req->req.qpair = &tqpair->qpair;
1239 
1240 		tcp_req->pdu = &tqpair->pdus[i];
1241 		tcp_req->pdu->qpair = tqpair;
1242 
1243 		/* Set up memory to receive commands */
1244 		if (tqpair->bufs) {
1245 			tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
1246 		}
1247 
1248 		/* Set the cmdn and rsp */
1249 		tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
1250 		tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
1251 
1252 		tcp_req->req.stripped_data = NULL;
1253 
1254 		/* Initialize request state to FREE */
1255 		tcp_req->state = TCP_REQUEST_STATE_FREE;
1256 		TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
1257 		tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
1258 	}
1259 
1260 	for (; i < 2 * tqpair->resource_count; i++) {
1261 		struct nvme_tcp_pdu *pdu = &tqpair->pdus[i];
1262 
1263 		pdu->qpair = tqpair;
1264 		SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1265 	}
1266 
1267 	tqpair->mgmt_pdu = &tqpair->pdus[i];
1268 	tqpair->mgmt_pdu->qpair = tqpair;
1269 	tqpair->pdu_in_progress = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
1270 	SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
1271 	tqpair->tcp_pdu_working_count = 1;
1272 
1273 	tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
1274 				 SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1275 
1276 	return 0;
1277 }
1278 
1279 static int
1280 nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
1281 {
1282 	struct spdk_nvmf_tcp_qpair *tqpair;
1283 
1284 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1285 
1286 	SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
1287 
1288 	spdk_trace_record(TRACE_TCP_QP_CREATE, tqpair->qpair.trace_id, 0, 0);
1289 
1290 	/* Initialise request state queues of the qpair */
1291 	TAILQ_INIT(&tqpair->tcp_req_free_queue);
1292 	TAILQ_INIT(&tqpair->tcp_req_working_queue);
1293 	SLIST_INIT(&tqpair->tcp_pdu_free_queue);
1294 	tqpair->qpair.queue_depth = 0;
1295 
1296 	tqpair->host_hdgst_enable = true;
1297 	tqpair->host_ddgst_enable = true;
1298 
1299 	return 0;
1300 }
1301 
1302 static int
1303 nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
1304 {
1305 	char saddr[32], caddr[32];
1306 	uint16_t sport, cport;
1307 	char owner[256];
1308 	int rc;
1309 
1310 	rc = spdk_sock_getaddr(tqpair->sock, saddr, sizeof(saddr), &sport,
1311 			       caddr, sizeof(caddr), &cport);
1312 	if (rc != 0) {
1313 		SPDK_ERRLOG("spdk_sock_getaddr() failed\n");
1314 		return rc;
1315 	}
1316 	snprintf(owner, sizeof(owner), "%s:%d", caddr, cport);
1317 	tqpair->qpair.trace_id = spdk_trace_register_owner(OWNER_TYPE_NVMF_TCP, owner);
1318 	spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, tqpair->qpair.trace_id, 0, 0);
1319 
1320 	/* set low water mark */
1321 	rc = spdk_sock_set_recvlowat(tqpair->sock, 1);
1322 	if (rc != 0) {
1323 		SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
1324 		return rc;
1325 	}
1326 
1327 	return 0;
1328 }
1329 
1330 static void
1331 nvmf_tcp_handle_connect(struct spdk_nvmf_transport *transport,
1332 			struct spdk_nvmf_tcp_port *port,
1333 			struct spdk_sock *sock)
1334 {
1335 	struct spdk_nvmf_tcp_qpair *tqpair;
1336 	int rc;
1337 
1338 	SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
1339 		      port->trid->traddr, port->trid->trsvcid);
1340 
1341 	tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
1342 	if (tqpair == NULL) {
1343 		SPDK_ERRLOG("Could not allocate new connection.\n");
1344 		spdk_sock_close(&sock);
1345 		return;
1346 	}
1347 
1348 	tqpair->sock = sock;
1349 	tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
1350 	tqpair->port = port;
1351 	tqpair->qpair.transport = transport;
1352 
1353 	rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
1354 			       sizeof(tqpair->target_addr), &tqpair->target_port,
1355 			       tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
1356 			       &tqpair->initiator_port);
1357 	if (rc < 0) {
1358 		SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
1359 		nvmf_tcp_qpair_destroy(tqpair);
1360 		return;
1361 	}
1362 
1363 	spdk_nvmf_tgt_new_qpair(transport->tgt, &tqpair->qpair);
1364 }
1365 
1366 static uint32_t
1367 nvmf_tcp_port_accept(struct spdk_nvmf_transport *transport, struct spdk_nvmf_tcp_port *port)
1368 {
1369 	struct spdk_sock *sock;
1370 	uint32_t count = 0;
1371 	int i;
1372 
1373 	for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
1374 		sock = spdk_sock_accept(port->listen_sock);
1375 		if (sock == NULL) {
1376 			break;
1377 		}
1378 		count++;
1379 		nvmf_tcp_handle_connect(transport, port, sock);
1380 	}
1381 
1382 	return count;
1383 }
1384 
1385 static int
1386 nvmf_tcp_accept(void *ctx)
1387 {
1388 	struct spdk_nvmf_transport *transport = ctx;
1389 	struct spdk_nvmf_tcp_transport *ttransport;
1390 	struct spdk_nvmf_tcp_port *port;
1391 	uint32_t count = 0;
1392 
1393 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1394 
1395 	TAILQ_FOREACH(port, &ttransport->ports, link) {
1396 		count += nvmf_tcp_port_accept(transport, port);
1397 	}
1398 
1399 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1400 }
1401 
1402 static void
1403 nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
1404 		  struct spdk_nvme_transport_id *trid,
1405 		  struct spdk_nvmf_discovery_log_page_entry *entry)
1406 {
1407 	struct spdk_nvmf_tcp_port *port;
1408 	struct spdk_nvmf_tcp_transport *ttransport;
1409 
1410 	entry->trtype = SPDK_NVMF_TRTYPE_TCP;
1411 	entry->adrfam = trid->adrfam;
1412 
1413 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
1414 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
1415 
1416 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1417 	port = nvmf_tcp_find_port(ttransport, trid);
1418 
1419 	assert(port != NULL);
1420 
1421 	if (strcmp(spdk_sock_get_impl_name(port->listen_sock), "ssl") == 0) {
1422 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_REQUIRED;
1423 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_TLS_1_3;
1424 	} else {
1425 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
1426 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
1427 	}
1428 }
1429 
1430 static struct spdk_nvmf_tcp_control_msg_list *
1431 nvmf_tcp_control_msg_list_create(uint16_t num_messages)
1432 {
1433 	struct spdk_nvmf_tcp_control_msg_list *list;
1434 	struct spdk_nvmf_tcp_control_msg *msg;
1435 	uint16_t i;
1436 
1437 	list = calloc(1, sizeof(*list));
1438 	if (!list) {
1439 		SPDK_ERRLOG("Failed to allocate memory for list structure\n");
1440 		return NULL;
1441 	}
1442 
1443 	list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
1444 				     NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
1445 	if (!list->msg_buf) {
1446 		SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
1447 		free(list);
1448 		return NULL;
1449 	}
1450 
1451 	STAILQ_INIT(&list->free_msgs);
1452 
1453 	for (i = 0; i < num_messages; i++) {
1454 		msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
1455 				SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1456 		STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
1457 	}
1458 
1459 	return list;
1460 }
1461 
1462 static void
1463 nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
1464 {
1465 	if (!list) {
1466 		return;
1467 	}
1468 
1469 	spdk_free(list->msg_buf);
1470 	free(list);
1471 }
1472 
1473 static struct spdk_nvmf_transport_poll_group *
1474 nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport,
1475 			   struct spdk_nvmf_poll_group *group)
1476 {
1477 	struct spdk_nvmf_tcp_transport	*ttransport;
1478 	struct spdk_nvmf_tcp_poll_group *tgroup;
1479 
1480 	if (spdk_interrupt_mode_is_enabled()) {
1481 		SPDK_ERRLOG("TCP transport does not support interrupt mode\n");
1482 		return NULL;
1483 	}
1484 
1485 	tgroup = calloc(1, sizeof(*tgroup));
1486 	if (!tgroup) {
1487 		return NULL;
1488 	}
1489 
1490 	tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
1491 	if (!tgroup->sock_group) {
1492 		goto cleanup;
1493 	}
1494 
1495 	TAILQ_INIT(&tgroup->qpairs);
1496 	TAILQ_INIT(&tgroup->await_req);
1497 
1498 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1499 
1500 	if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
1501 		SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
1502 			      "Creating control messages list\n", transport->opts.in_capsule_data_size,
1503 			      SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1504 		tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
1505 		if (!tgroup->control_msg_list) {
1506 			goto cleanup;
1507 		}
1508 	}
1509 
1510 	tgroup->accel_channel = spdk_accel_get_io_channel();
1511 	if (spdk_unlikely(!tgroup->accel_channel)) {
1512 		SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
1513 		goto cleanup;
1514 	}
1515 
1516 	TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link);
1517 	if (ttransport->next_pg == NULL) {
1518 		ttransport->next_pg = tgroup;
1519 	}
1520 
1521 	return &tgroup->group;
1522 
1523 cleanup:
1524 	nvmf_tcp_poll_group_destroy(&tgroup->group);
1525 	return NULL;
1526 }
1527 
1528 static struct spdk_nvmf_transport_poll_group *
1529 nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
1530 {
1531 	struct spdk_nvmf_tcp_transport *ttransport;
1532 	struct spdk_nvmf_tcp_poll_group **pg;
1533 	struct spdk_nvmf_tcp_qpair *tqpair;
1534 	struct spdk_sock_group *group = NULL, *hint = NULL;
1535 	int rc;
1536 
1537 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
1538 
1539 	if (TAILQ_EMPTY(&ttransport->poll_groups)) {
1540 		return NULL;
1541 	}
1542 
1543 	pg = &ttransport->next_pg;
1544 	assert(*pg != NULL);
1545 	hint = (*pg)->sock_group;
1546 
1547 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1548 	rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint);
1549 	if (rc != 0) {
1550 		return NULL;
1551 	} else if (group != NULL) {
1552 		/* Optimal poll group was found */
1553 		return spdk_sock_group_get_ctx(group);
1554 	}
1555 
1556 	/* The hint was used for optimal poll group, advance next_pg. */
1557 	*pg = TAILQ_NEXT(*pg, link);
1558 	if (*pg == NULL) {
1559 		*pg = TAILQ_FIRST(&ttransport->poll_groups);
1560 	}
1561 
1562 	return spdk_sock_group_get_ctx(hint);
1563 }
1564 
1565 static void
1566 nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
1567 {
1568 	struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup;
1569 	struct spdk_nvmf_tcp_transport *ttransport;
1570 
1571 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
1572 	spdk_sock_group_close(&tgroup->sock_group);
1573 	if (tgroup->control_msg_list) {
1574 		nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
1575 	}
1576 
1577 	if (tgroup->accel_channel) {
1578 		spdk_put_io_channel(tgroup->accel_channel);
1579 	}
1580 
1581 	if (tgroup->group.transport == NULL) {
1582 		/* Transport can be NULL when nvmf_tcp_poll_group_create()
1583 		 * calls this function directly in a failure path. */
1584 		free(tgroup);
1585 		return;
1586 	}
1587 
1588 	ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport);
1589 
1590 	next_tgroup = TAILQ_NEXT(tgroup, link);
1591 	TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link);
1592 	if (next_tgroup == NULL) {
1593 		next_tgroup = TAILQ_FIRST(&ttransport->poll_groups);
1594 	}
1595 	if (ttransport->next_pg == tgroup) {
1596 		ttransport->next_pg = next_tgroup;
1597 	}
1598 
1599 	free(tgroup);
1600 }
1601 
1602 static void
1603 nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1604 			      enum nvme_tcp_pdu_recv_state state)
1605 {
1606 	if (tqpair->recv_state == state) {
1607 		SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
1608 			    tqpair, state);
1609 		return;
1610 	}
1611 
1612 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_QUIESCING)) {
1613 		if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH && tqpair->pdu_in_progress) {
1614 			SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, tqpair->pdu_in_progress, slist);
1615 			tqpair->tcp_pdu_working_count--;
1616 		}
1617 	}
1618 
1619 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_ERROR)) {
1620 		assert(tqpair->tcp_pdu_working_count == 0);
1621 	}
1622 
1623 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1624 		/* When leaving the await req state, move the qpair to the main list */
1625 		TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link);
1626 		TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link);
1627 	} else if (state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1628 		TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link);
1629 		TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link);
1630 	}
1631 
1632 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
1633 	tqpair->recv_state = state;
1634 
1635 	spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0,
1636 			  (uint64_t)tqpair->recv_state);
1637 }
1638 
1639 static int
1640 nvmf_tcp_qpair_handle_timeout(void *ctx)
1641 {
1642 	struct spdk_nvmf_tcp_qpair *tqpair = ctx;
1643 
1644 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1645 
1646 	SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
1647 		    SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
1648 
1649 	nvmf_tcp_qpair_disconnect(tqpair);
1650 	return SPDK_POLLER_BUSY;
1651 }
1652 
1653 static void
1654 nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
1655 {
1656 	struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
1657 
1658 	if (!tqpair->timeout_poller) {
1659 		tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
1660 					 SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
1661 	}
1662 }
1663 
1664 static void
1665 nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
1666 			   enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
1667 {
1668 	struct nvme_tcp_pdu *rsp_pdu;
1669 	struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
1670 	uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
1671 	uint32_t copy_len;
1672 
1673 	rsp_pdu = tqpair->mgmt_pdu;
1674 
1675 	c2h_term_req = &rsp_pdu->hdr.term_req;
1676 	c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
1677 	c2h_term_req->common.hlen = c2h_term_req_hdr_len;
1678 	c2h_term_req->fes = fes;
1679 
1680 	if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1681 	    (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1682 		DSET32(&c2h_term_req->fei, error_offset);
1683 	}
1684 
1685 	copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
1686 
1687 	/* Copy the error info into the buffer */
1688 	memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
1689 	nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
1690 
1691 	/* Contain the header of the wrong received pdu */
1692 	c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
1693 	tqpair->wait_terminate = true;
1694 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1695 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair);
1696 }
1697 
1698 static void
1699 nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1700 				struct spdk_nvmf_tcp_qpair *tqpair,
1701 				struct nvme_tcp_pdu *pdu)
1702 {
1703 	struct spdk_nvmf_tcp_req *tcp_req;
1704 
1705 	assert(pdu->psh_valid_bytes == pdu->psh_len);
1706 	assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
1707 
1708 	tcp_req = nvmf_tcp_req_get(tqpair);
1709 	if (!tcp_req) {
1710 		/* Directly return and make the allocation retry again.  This can happen if we're
1711 		 * using asynchronous writes to send the response to the host or when releasing
1712 		 * zero-copy buffers after a response has been sent.  In both cases, the host might
1713 		 * receive the response before we've finished processing the request and is free to
1714 		 * send another one.
1715 		 */
1716 		if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 ||
1717 		    tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) {
1718 			return;
1719 		}
1720 
1721 		/* The host sent more commands than the maximum queue depth. */
1722 		SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
1723 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1724 		return;
1725 	}
1726 
1727 	pdu->req = tcp_req;
1728 	assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
1729 	nvmf_tcp_req_process(ttransport, tcp_req);
1730 }
1731 
1732 static void
1733 nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1734 				    struct spdk_nvmf_tcp_qpair *tqpair,
1735 				    struct nvme_tcp_pdu *pdu)
1736 {
1737 	struct spdk_nvmf_tcp_req *tcp_req;
1738 	struct spdk_nvme_tcp_cmd *capsule_cmd;
1739 	uint32_t error_offset = 0;
1740 	enum spdk_nvme_tcp_term_req_fes fes;
1741 	struct spdk_nvme_cpl *rsp;
1742 
1743 	capsule_cmd = &pdu->hdr.capsule_cmd;
1744 	tcp_req = pdu->req;
1745 	assert(tcp_req != NULL);
1746 
1747 	/* Zero-copy requests don't support ICD */
1748 	assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req));
1749 
1750 	if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
1751 		SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
1752 			    SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
1753 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1754 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
1755 		goto err;
1756 	}
1757 
1758 	rsp = &tcp_req->req.rsp->nvme_cpl;
1759 	if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1760 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1761 	} else {
1762 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1763 	}
1764 
1765 	nvmf_tcp_req_process(ttransport, tcp_req);
1766 
1767 	return;
1768 err:
1769 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1770 }
1771 
1772 static void
1773 nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1774 			     struct spdk_nvmf_tcp_qpair *tqpair,
1775 			     struct nvme_tcp_pdu *pdu)
1776 {
1777 	struct spdk_nvmf_tcp_req *tcp_req;
1778 	uint32_t error_offset = 0;
1779 	enum spdk_nvme_tcp_term_req_fes fes = 0;
1780 	struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
1781 
1782 	h2c_data = &pdu->hdr.h2c_data;
1783 
1784 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
1785 		      tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
1786 
1787 	if (h2c_data->ttag > tqpair->resource_count) {
1788 		SPDK_DEBUGLOG(nvmf_tcp, "ttag %u is larger than allowed %u.\n", h2c_data->ttag,
1789 			      tqpair->resource_count);
1790 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1791 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1792 		goto err;
1793 	}
1794 
1795 	tcp_req = &tqpair->reqs[h2c_data->ttag - 1];
1796 
1797 	if (spdk_unlikely(tcp_req->state != TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER &&
1798 			  tcp_req->state != TCP_REQUEST_STATE_AWAITING_R2T_ACK)) {
1799 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, has error state in %d\n", tcp_req, tqpair,
1800 			      tcp_req->state);
1801 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1802 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1803 		goto err;
1804 	}
1805 
1806 	if (spdk_unlikely(tcp_req->req.cmd->nvme_cmd.cid != h2c_data->cccid)) {
1807 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, expected %u but %u for cccid.\n", tcp_req, tqpair,
1808 			      tcp_req->req.cmd->nvme_cmd.cid, h2c_data->cccid);
1809 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1810 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
1811 		goto err;
1812 	}
1813 
1814 	if (tcp_req->h2c_offset != h2c_data->datao) {
1815 		SPDK_DEBUGLOG(nvmf_tcp,
1816 			      "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
1817 			      tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
1818 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1819 		goto err;
1820 	}
1821 
1822 	if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
1823 		SPDK_DEBUGLOG(nvmf_tcp,
1824 			      "tcp_req(%p), tqpair=%p,  (datao=%u + datal=%u) exceeds requested length=%u\n",
1825 			      tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
1826 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1827 		goto err;
1828 	}
1829 
1830 	pdu->req = tcp_req;
1831 
1832 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
1833 		pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
1834 	}
1835 
1836 	nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
1837 				  h2c_data->datao, h2c_data->datal);
1838 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1839 	return;
1840 
1841 err:
1842 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1843 }
1844 
1845 static void
1846 nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
1847 			       struct spdk_nvmf_tcp_qpair *tqpair)
1848 {
1849 	struct nvme_tcp_pdu *rsp_pdu;
1850 	struct spdk_nvme_tcp_rsp *capsule_resp;
1851 
1852 	SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
1853 
1854 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1855 	assert(rsp_pdu != NULL);
1856 
1857 	capsule_resp = &rsp_pdu->hdr.capsule_resp;
1858 	capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
1859 	capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
1860 	capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
1861 	if (tqpair->host_hdgst_enable) {
1862 		capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1863 		capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1864 	}
1865 
1866 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req);
1867 }
1868 
1869 static void
1870 nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
1871 {
1872 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1873 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
1874 					     struct spdk_nvmf_tcp_qpair, qpair);
1875 
1876 	assert(tqpair != NULL);
1877 
1878 	if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
1879 		SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
1880 			      tcp_req->req.length);
1881 		_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
1882 		return;
1883 	}
1884 
1885 	if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
1886 		nvmf_tcp_request_free(tcp_req);
1887 	} else {
1888 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
1889 	}
1890 }
1891 
1892 static void
1893 nvmf_tcp_r2t_complete(void *cb_arg)
1894 {
1895 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1896 	struct spdk_nvmf_tcp_transport *ttransport;
1897 
1898 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
1899 				      struct spdk_nvmf_tcp_transport, transport);
1900 
1901 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
1902 
1903 	if (tcp_req->h2c_offset == tcp_req->req.length) {
1904 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1905 		nvmf_tcp_req_process(ttransport, tcp_req);
1906 	}
1907 }
1908 
1909 static void
1910 nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1911 		      struct spdk_nvmf_tcp_req *tcp_req)
1912 {
1913 	struct nvme_tcp_pdu *rsp_pdu;
1914 	struct spdk_nvme_tcp_r2t_hdr *r2t;
1915 
1916 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1917 	assert(rsp_pdu != NULL);
1918 
1919 	r2t = &rsp_pdu->hdr.r2t;
1920 	r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
1921 	r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
1922 
1923 	if (tqpair->host_hdgst_enable) {
1924 		r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1925 		r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1926 	}
1927 
1928 	r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
1929 	r2t->ttag = tcp_req->ttag;
1930 	r2t->r2to = tcp_req->h2c_offset;
1931 	r2t->r2tl = tcp_req->req.length;
1932 
1933 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
1934 
1935 	SPDK_DEBUGLOG(nvmf_tcp,
1936 		      "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
1937 		      tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
1938 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req);
1939 }
1940 
1941 static void
1942 nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1943 				 struct spdk_nvmf_tcp_qpair *tqpair,
1944 				 struct nvme_tcp_pdu *pdu)
1945 {
1946 	struct spdk_nvmf_tcp_req *tcp_req;
1947 	struct spdk_nvme_cpl *rsp;
1948 
1949 	tcp_req = pdu->req;
1950 	assert(tcp_req != NULL);
1951 
1952 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1953 
1954 	tcp_req->h2c_offset += pdu->data_len;
1955 
1956 	/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
1957 	 * acknowledged before moving on. */
1958 	if (tcp_req->h2c_offset == tcp_req->req.length &&
1959 	    tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
1960 		/* After receiving all the h2c data, we need to check whether there is
1961 		 * transient transport error */
1962 		rsp = &tcp_req->req.rsp->nvme_cpl;
1963 		if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1964 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1965 		} else {
1966 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1967 		}
1968 		nvmf_tcp_req_process(ttransport, tcp_req);
1969 	}
1970 }
1971 
1972 static void
1973 nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
1974 {
1975 	SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
1976 		    spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
1977 	if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1978 	    (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1979 		SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
1980 			      DGET32(h2c_term_req->fei));
1981 	}
1982 }
1983 
1984 static void
1985 nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1986 				 struct nvme_tcp_pdu *pdu)
1987 {
1988 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1989 	uint32_t error_offset = 0;
1990 	enum spdk_nvme_tcp_term_req_fes fes;
1991 
1992 	if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
1993 		SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
1994 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1995 		error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
1996 		goto end;
1997 	}
1998 
1999 	/* set the data buffer */
2000 	nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
2001 			      h2c_term_req->common.plen - h2c_term_req->common.hlen);
2002 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2003 	return;
2004 end:
2005 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2006 }
2007 
2008 static void
2009 nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2010 				     struct nvme_tcp_pdu *pdu)
2011 {
2012 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
2013 
2014 	nvmf_tcp_h2c_term_req_dump(h2c_term_req);
2015 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2016 }
2017 
2018 static void
2019 _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2020 {
2021 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2022 			struct spdk_nvmf_tcp_transport, transport);
2023 
2024 	switch (pdu->hdr.common.pdu_type) {
2025 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2026 		nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
2027 		break;
2028 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2029 		nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
2030 		break;
2031 
2032 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2033 		nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
2034 		break;
2035 
2036 	default:
2037 		/* The code should not go to here */
2038 		SPDK_ERRLOG("ERROR pdu type %d\n", pdu->hdr.common.pdu_type);
2039 		break;
2040 	}
2041 	SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
2042 	tqpair->tcp_pdu_working_count--;
2043 }
2044 
2045 static inline void
2046 nvmf_tcp_req_set_cpl(struct spdk_nvmf_tcp_req *treq, int sct, int sc)
2047 {
2048 	treq->req.rsp->nvme_cpl.status.sct = sct;
2049 	treq->req.rsp->nvme_cpl.status.sc = sc;
2050 	treq->req.rsp->nvme_cpl.cid = treq->req.cmd->nvme_cmd.cid;
2051 }
2052 
2053 static void
2054 data_crc32_calc_done(void *cb_arg, int status)
2055 {
2056 	struct nvme_tcp_pdu *pdu = cb_arg;
2057 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
2058 
2059 	/* async crc32 calculation is failed and use direct calculation to check */
2060 	if (spdk_unlikely(status)) {
2061 		SPDK_ERRLOG("Data digest on tqpair=(%p) with pdu=%p failed to be calculated asynchronously\n",
2062 			    tqpair, pdu);
2063 		pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2064 	}
2065 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
2066 	if (!MATCH_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32)) {
2067 		SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2068 		assert(pdu->req != NULL);
2069 		nvmf_tcp_req_set_cpl(pdu->req, SPDK_NVME_SCT_GENERIC,
2070 				     SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR);
2071 	}
2072 	_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2073 }
2074 
2075 static void
2076 nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2077 {
2078 	int rc = 0;
2079 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2080 	tqpair->pdu_in_progress = NULL;
2081 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2082 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2083 	/* check data digest if need */
2084 	if (pdu->ddgst_enable) {
2085 		if (tqpair->qpair.qid != 0 && !pdu->dif_ctx && tqpair->group &&
2086 		    (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)) {
2087 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
2088 						       pdu->data_iovcnt, 0, data_crc32_calc_done, pdu);
2089 			if (spdk_likely(rc == 0)) {
2090 				return;
2091 			}
2092 		} else {
2093 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2094 		}
2095 		data_crc32_calc_done(pdu, rc);
2096 	} else {
2097 		_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2098 	}
2099 }
2100 
2101 static void
2102 nvmf_tcp_send_icresp_complete(void *cb_arg)
2103 {
2104 	struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
2105 
2106 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_RUNNING);
2107 }
2108 
2109 static void
2110 nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
2111 		      struct spdk_nvmf_tcp_qpair *tqpair,
2112 		      struct nvme_tcp_pdu *pdu)
2113 {
2114 	struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
2115 	struct nvme_tcp_pdu *rsp_pdu;
2116 	struct spdk_nvme_tcp_ic_resp *ic_resp;
2117 	uint32_t error_offset = 0;
2118 	enum spdk_nvme_tcp_term_req_fes fes;
2119 
2120 	/* Only PFV 0 is defined currently */
2121 	if (ic_req->pfv != 0) {
2122 		SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
2123 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2124 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
2125 		goto end;
2126 	}
2127 
2128 	/* This value is 0’s based value in units of dwords should not be larger than SPDK_NVME_TCP_HPDA_MAX */
2129 	if (ic_req->hpda > SPDK_NVME_TCP_HPDA_MAX) {
2130 		SPDK_ERRLOG("ICReq HPDA out of range 0 to 31, got %u\n", ic_req->hpda);
2131 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2132 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, hpda);
2133 		goto end;
2134 	}
2135 
2136 	/* MAXR2T is 0's based */
2137 	SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
2138 
2139 	tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
2140 	if (!tqpair->host_hdgst_enable) {
2141 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2142 	}
2143 
2144 	tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
2145 	if (!tqpair->host_ddgst_enable) {
2146 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2147 	}
2148 
2149 	tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
2150 	/* Now that we know whether digests are enabled, properly size the receive buffer */
2151 	if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
2152 		SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
2153 			     tqpair,
2154 			     tqpair->recv_buf_size);
2155 		/* Not fatal. */
2156 	}
2157 
2158 	tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
2159 	SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
2160 
2161 	rsp_pdu = tqpair->mgmt_pdu;
2162 
2163 	ic_resp = &rsp_pdu->hdr.ic_resp;
2164 	ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
2165 	ic_resp->common.hlen = ic_resp->common.plen =  sizeof(*ic_resp);
2166 	ic_resp->pfv = 0;
2167 	ic_resp->cpda = tqpair->cpda;
2168 	ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
2169 	ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
2170 	ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
2171 
2172 	SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
2173 	SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
2174 
2175 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INITIALIZING);
2176 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair);
2177 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2178 	return;
2179 end:
2180 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2181 }
2182 
2183 static void
2184 nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2185 			struct spdk_nvmf_tcp_transport *ttransport)
2186 {
2187 	struct nvme_tcp_pdu *pdu;
2188 	int rc;
2189 	uint32_t crc32c, error_offset = 0;
2190 	enum spdk_nvme_tcp_term_req_fes fes;
2191 
2192 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2193 	pdu = tqpair->pdu_in_progress;
2194 
2195 	SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
2196 		      pdu->hdr.common.pdu_type);
2197 	/* check header digest if needed */
2198 	if (pdu->has_hdgst) {
2199 		SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
2200 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
2201 		rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
2202 		if (rc == 0) {
2203 			SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2204 			fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
2205 			nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2206 			return;
2207 
2208 		}
2209 	}
2210 
2211 	switch (pdu->hdr.common.pdu_type) {
2212 	case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
2213 		nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
2214 		break;
2215 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2216 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
2217 		break;
2218 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2219 		nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
2220 		break;
2221 
2222 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2223 		nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
2224 		break;
2225 
2226 	default:
2227 		SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
2228 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2229 		error_offset = 1;
2230 		nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2231 		break;
2232 	}
2233 }
2234 
2235 static void
2236 nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
2237 {
2238 	struct nvme_tcp_pdu *pdu;
2239 	uint32_t error_offset = 0;
2240 	enum spdk_nvme_tcp_term_req_fes fes;
2241 	uint8_t expected_hlen, pdo;
2242 	bool plen_error = false, pdo_error = false;
2243 
2244 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2245 	pdu = tqpair->pdu_in_progress;
2246 	assert(pdu);
2247 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
2248 		if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) {
2249 			SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
2250 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2251 			goto err;
2252 		}
2253 		expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
2254 		if (pdu->hdr.common.plen != expected_hlen) {
2255 			plen_error = true;
2256 		}
2257 	} else {
2258 		if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) {
2259 			SPDK_ERRLOG("The TCP/IP connection is not negotiated\n");
2260 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2261 			goto err;
2262 		}
2263 
2264 		switch (pdu->hdr.common.pdu_type) {
2265 		case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2266 			expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
2267 			pdo = pdu->hdr.common.pdo;
2268 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2269 				pdo_error = true;
2270 				break;
2271 			}
2272 
2273 			if (pdu->hdr.common.plen < expected_hlen) {
2274 				plen_error = true;
2275 			}
2276 			break;
2277 		case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2278 			expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
2279 			pdo = pdu->hdr.common.pdo;
2280 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2281 				pdo_error = true;
2282 				break;
2283 			}
2284 			if (pdu->hdr.common.plen < expected_hlen) {
2285 				plen_error = true;
2286 			}
2287 			break;
2288 
2289 		case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2290 			expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
2291 			if ((pdu->hdr.common.plen <= expected_hlen) ||
2292 			    (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
2293 				plen_error = true;
2294 			}
2295 			break;
2296 
2297 		default:
2298 			SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
2299 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2300 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
2301 			goto err;
2302 		}
2303 	}
2304 
2305 	if (pdu->hdr.common.hlen != expected_hlen) {
2306 		SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
2307 			    pdu->hdr.common.pdu_type,
2308 			    expected_hlen, pdu->hdr.common.hlen, tqpair);
2309 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2310 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
2311 		goto err;
2312 	} else if (pdo_error) {
2313 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2314 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
2315 	} else if (plen_error) {
2316 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2317 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2318 		goto err;
2319 	} else {
2320 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2321 		nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
2322 		return;
2323 	}
2324 err:
2325 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2326 }
2327 
2328 static int
2329 nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
2330 {
2331 	int rc = 0;
2332 	struct nvme_tcp_pdu *pdu;
2333 	enum nvme_tcp_pdu_recv_state prev_state;
2334 	uint32_t data_len;
2335 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2336 			struct spdk_nvmf_tcp_transport, transport);
2337 
2338 	/* The loop here is to allow for several back-to-back state changes. */
2339 	do {
2340 		prev_state = tqpair->recv_state;
2341 		SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
2342 
2343 		pdu = tqpair->pdu_in_progress;
2344 		assert(pdu != NULL ||
2345 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY ||
2346 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_QUIESCING ||
2347 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
2348 
2349 		switch (tqpair->recv_state) {
2350 		/* Wait for the common header  */
2351 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
2352 			if (!pdu) {
2353 				pdu = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
2354 				if (spdk_unlikely(!pdu)) {
2355 					return NVME_TCP_PDU_IN_PROGRESS;
2356 				}
2357 				SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
2358 				tqpair->pdu_in_progress = pdu;
2359 				tqpair->tcp_pdu_working_count++;
2360 			}
2361 			memset(pdu, 0, offsetof(struct nvme_tcp_pdu, qpair));
2362 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2363 		/* FALLTHROUGH */
2364 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
2365 			if (spdk_unlikely(tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING)) {
2366 				return rc;
2367 			}
2368 
2369 			rc = nvme_tcp_read_data(tqpair->sock,
2370 						sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
2371 						(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
2372 			if (rc < 0) {
2373 				SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
2374 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2375 				break;
2376 			} else if (rc > 0) {
2377 				pdu->ch_valid_bytes += rc;
2378 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0);
2379 			}
2380 
2381 			if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
2382 				return NVME_TCP_PDU_IN_PROGRESS;
2383 			}
2384 
2385 			/* The command header of this PDU has now been read from the socket. */
2386 			nvmf_tcp_pdu_ch_handle(tqpair);
2387 			break;
2388 		/* Wait for the pdu specific header  */
2389 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
2390 			rc = nvme_tcp_read_data(tqpair->sock,
2391 						pdu->psh_len - pdu->psh_valid_bytes,
2392 						(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
2393 			if (rc < 0) {
2394 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2395 				break;
2396 			} else if (rc > 0) {
2397 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0);
2398 				pdu->psh_valid_bytes += rc;
2399 			}
2400 
2401 			if (pdu->psh_valid_bytes < pdu->psh_len) {
2402 				return NVME_TCP_PDU_IN_PROGRESS;
2403 			}
2404 
2405 			/* All header(ch, psh, head digist) of this PDU has now been read from the socket. */
2406 			nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
2407 			break;
2408 		/* Wait for the req slot */
2409 		case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
2410 			nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
2411 			break;
2412 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
2413 			/* check whether the data is valid, if not we just return */
2414 			if (!pdu->data_len) {
2415 				return NVME_TCP_PDU_IN_PROGRESS;
2416 			}
2417 
2418 			data_len = pdu->data_len;
2419 			/* data digest */
2420 			if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
2421 					  tqpair->host_ddgst_enable)) {
2422 				data_len += SPDK_NVME_TCP_DIGEST_LEN;
2423 				pdu->ddgst_enable = true;
2424 			}
2425 
2426 			rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
2427 			if (rc < 0) {
2428 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2429 				break;
2430 			}
2431 			pdu->rw_offset += rc;
2432 
2433 			if (pdu->rw_offset < data_len) {
2434 				return NVME_TCP_PDU_IN_PROGRESS;
2435 			}
2436 
2437 			/* Generate and insert DIF to whole data block received if DIF is enabled */
2438 			if (spdk_unlikely(pdu->dif_ctx != NULL) &&
2439 			    spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt, 0, data_len,
2440 						     pdu->dif_ctx) != 0) {
2441 				SPDK_ERRLOG("DIF generate failed\n");
2442 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2443 				break;
2444 			}
2445 
2446 			/* All of this PDU has now been read from the socket. */
2447 			nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2448 			break;
2449 		case NVME_TCP_PDU_RECV_STATE_QUIESCING:
2450 			if (tqpair->tcp_pdu_working_count != 0) {
2451 				return NVME_TCP_PDU_IN_PROGRESS;
2452 			}
2453 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
2454 			break;
2455 		case NVME_TCP_PDU_RECV_STATE_ERROR:
2456 			if (spdk_sock_is_connected(tqpair->sock) && tqpair->wait_terminate) {
2457 				return NVME_TCP_PDU_IN_PROGRESS;
2458 			}
2459 			return NVME_TCP_PDU_FATAL;
2460 		default:
2461 			SPDK_ERRLOG("The state(%d) is invalid\n", tqpair->recv_state);
2462 			abort();
2463 			break;
2464 		}
2465 	} while (tqpair->recv_state != prev_state);
2466 
2467 	return rc;
2468 }
2469 
2470 static inline void *
2471 nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list)
2472 {
2473 	struct spdk_nvmf_tcp_control_msg *msg;
2474 
2475 	assert(list);
2476 
2477 	msg = STAILQ_FIRST(&list->free_msgs);
2478 	if (!msg) {
2479 		SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
2480 		return NULL;
2481 	}
2482 	STAILQ_REMOVE_HEAD(&list->free_msgs, link);
2483 	return msg;
2484 }
2485 
2486 static inline void
2487 nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
2488 {
2489 	struct spdk_nvmf_tcp_control_msg *msg = _msg;
2490 
2491 	assert(list);
2492 	STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
2493 }
2494 
2495 static int
2496 nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
2497 		       struct spdk_nvmf_transport *transport,
2498 		       struct spdk_nvmf_transport_poll_group *group)
2499 {
2500 	struct spdk_nvmf_request		*req = &tcp_req->req;
2501 	struct spdk_nvme_cmd			*cmd;
2502 	struct spdk_nvme_sgl_descriptor		*sgl;
2503 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2504 	enum spdk_nvme_tcp_term_req_fes		fes;
2505 	struct nvme_tcp_pdu			*pdu;
2506 	struct spdk_nvmf_tcp_qpair		*tqpair;
2507 	uint32_t				length, error_offset = 0;
2508 
2509 	cmd = &req->cmd->nvme_cmd;
2510 	sgl = &cmd->dptr.sgl1;
2511 
2512 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
2513 	    sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
2514 		/* get request length from sgl */
2515 		length = sgl->unkeyed.length;
2516 		if (spdk_unlikely(length > transport->opts.max_io_size)) {
2517 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
2518 				    length, transport->opts.max_io_size);
2519 			fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2520 			goto fatal_err;
2521 		}
2522 
2523 		/* fill request length and populate iovs */
2524 		req->length = length;
2525 
2526 		SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
2527 
2528 		if (spdk_unlikely(req->dif_enabled)) {
2529 			req->dif.orig_length = length;
2530 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2531 			req->dif.elba_length = length;
2532 		}
2533 
2534 		if (nvmf_ctrlr_use_zcopy(req)) {
2535 			SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req);
2536 			req->data_from_pool = false;
2537 			return 0;
2538 		}
2539 
2540 		if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
2541 			/* No available buffers. Queue this request up. */
2542 			SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
2543 				      tcp_req);
2544 			return 0;
2545 		}
2546 
2547 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
2548 			      tcp_req, req->iovcnt, req->iov[0].iov_base);
2549 
2550 		return 0;
2551 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
2552 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
2553 		uint64_t offset = sgl->address;
2554 		uint32_t max_len = transport->opts.in_capsule_data_size;
2555 
2556 		assert(tcp_req->has_in_capsule_data);
2557 		/* Capsule Cmd with In-capsule Data should get data length from pdu header */
2558 		tqpair = tcp_req->pdu->qpair;
2559 		/* receiving pdu is not same with the pdu in tcp_req */
2560 		pdu = tqpair->pdu_in_progress;
2561 		length = pdu->hdr.common.plen - pdu->psh_len - sizeof(struct spdk_nvme_tcp_common_pdu_hdr);
2562 		if (tqpair->host_ddgst_enable) {
2563 			length -= SPDK_NVME_TCP_DIGEST_LEN;
2564 		}
2565 		/* This error is not defined in NVMe/TCP spec, take this error as fatal error */
2566 		if (spdk_unlikely(length != sgl->unkeyed.length)) {
2567 			SPDK_ERRLOG("In-Capsule Data length 0x%x is not equal to SGL data length 0x%x\n",
2568 				    length, sgl->unkeyed.length);
2569 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2570 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2571 			goto fatal_err;
2572 		}
2573 
2574 		SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
2575 			      offset, length);
2576 
2577 		/* The NVMe/TCP transport does not use ICDOFF to control the in-capsule data offset. ICDOFF should be '0' */
2578 		if (spdk_unlikely(offset != 0)) {
2579 			/* Not defined fatal error in NVMe/TCP spec, handle this error as a fatal error */
2580 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " should be ZERO in NVMe/TCP\n", offset);
2581 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2582 			error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.address);
2583 			goto fatal_err;
2584 		}
2585 
2586 		if (spdk_unlikely(length > max_len)) {
2587 			/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
2588 			if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
2589 			    (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
2590 
2591 				/* Get a buffer from dedicated list */
2592 				SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
2593 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2594 				assert(tgroup->control_msg_list);
2595 				req->iov[0].iov_base = nvmf_tcp_control_msg_get(tgroup->control_msg_list);
2596 				if (!req->iov[0].iov_base) {
2597 					/* No available buffers. Queue this request up. */
2598 					SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
2599 					return 0;
2600 				}
2601 			} else {
2602 				SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
2603 					    length, max_len);
2604 				fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2605 				goto fatal_err;
2606 			}
2607 		} else {
2608 			req->iov[0].iov_base = tcp_req->buf;
2609 		}
2610 
2611 		req->length = length;
2612 		req->data_from_pool = false;
2613 
2614 		if (spdk_unlikely(req->dif_enabled)) {
2615 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2616 			req->dif.elba_length = length;
2617 		}
2618 
2619 		req->iov[0].iov_len = length;
2620 		req->iovcnt = 1;
2621 
2622 		return 0;
2623 	}
2624 	/* If we want to handle the problem here, then we can't skip the following data segment.
2625 	 * Because this function runs before reading data part, now handle all errors as fatal errors. */
2626 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2627 		    sgl->generic.type, sgl->generic.subtype);
2628 	fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2629 	error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.generic);
2630 fatal_err:
2631 	nvmf_tcp_send_c2h_term_req(tcp_req->pdu->qpair, tcp_req->pdu, fes, error_offset);
2632 	return -1;
2633 }
2634 
2635 static inline enum spdk_nvme_media_error_status_code
2636 nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
2637 	enum spdk_nvme_media_error_status_code result;
2638 
2639 	switch (err_type)
2640 	{
2641 	case SPDK_DIF_REFTAG_ERROR:
2642 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
2643 		break;
2644 	case SPDK_DIF_APPTAG_ERROR:
2645 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
2646 		break;
2647 	case SPDK_DIF_GUARD_ERROR:
2648 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
2649 		break;
2650 	default:
2651 		SPDK_UNREACHABLE();
2652 		break;
2653 	}
2654 
2655 	return result;
2656 }
2657 
2658 static void
2659 _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2660 			struct spdk_nvmf_tcp_req *tcp_req)
2661 {
2662 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
2663 				tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
2664 	struct nvme_tcp_pdu *rsp_pdu;
2665 	struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
2666 	uint32_t plen, pdo, alignment;
2667 	int rc;
2668 
2669 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2670 
2671 	rsp_pdu = tcp_req->pdu;
2672 	assert(rsp_pdu != NULL);
2673 
2674 	c2h_data = &rsp_pdu->hdr.c2h_data;
2675 	c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
2676 	plen = c2h_data->common.hlen = sizeof(*c2h_data);
2677 
2678 	if (tqpair->host_hdgst_enable) {
2679 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2680 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2681 	}
2682 
2683 	/* set the psh */
2684 	c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2685 	c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
2686 	c2h_data->datao = tcp_req->pdu->rw_offset;
2687 
2688 	/* set the padding */
2689 	rsp_pdu->padding_len = 0;
2690 	pdo = plen;
2691 	if (tqpair->cpda) {
2692 		alignment = (tqpair->cpda + 1) << 2;
2693 		if (plen % alignment != 0) {
2694 			pdo = (plen + alignment) / alignment * alignment;
2695 			rsp_pdu->padding_len = pdo - plen;
2696 			plen = pdo;
2697 		}
2698 	}
2699 
2700 	c2h_data->common.pdo = pdo;
2701 	plen += c2h_data->datal;
2702 	if (tqpair->host_ddgst_enable) {
2703 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
2704 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2705 	}
2706 
2707 	c2h_data->common.plen = plen;
2708 
2709 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2710 		rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2711 	}
2712 
2713 	nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2714 				  c2h_data->datao, c2h_data->datal);
2715 
2716 
2717 	c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
2718 	/* Need to send the capsule response if response is not all 0 */
2719 	if (ttransport->tcp_opts.c2h_success &&
2720 	    tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
2721 		c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
2722 	}
2723 
2724 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2725 		struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
2726 		struct spdk_dif_error err_blk = {};
2727 		uint32_t mapped_length = 0;
2728 		uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
2729 		uint32_t ddgst_len = 0;
2730 
2731 		if (tqpair->host_ddgst_enable) {
2732 			/* Data digest consumes additional iov entry */
2733 			available_iovs--;
2734 			/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
2735 			ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
2736 			c2h_data->common.plen -= ddgst_len;
2737 		}
2738 		/* Temp call to estimate if data can be described by limited number of iovs.
2739 		 * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
2740 		nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
2741 				    false, &mapped_length);
2742 
2743 		if (mapped_length != c2h_data->common.plen) {
2744 			c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
2745 			SPDK_DEBUGLOG(nvmf_tcp,
2746 				      "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
2747 				      c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
2748 			c2h_data->common.plen = mapped_length;
2749 
2750 			/* Rebuild pdu->data_iov since data length is changed */
2751 			nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
2752 						  c2h_data->datal);
2753 
2754 			c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
2755 						    SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
2756 		}
2757 
2758 		c2h_data->common.plen += ddgst_len;
2759 
2760 		assert(rsp_pdu->rw_offset <= tcp_req->req.length);
2761 
2762 		rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
2763 					    0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
2764 		if (rc != 0) {
2765 			SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
2766 				    err_blk.err_type, err_blk.err_offset);
2767 			rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2768 			rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
2769 			nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2770 			return;
2771 		}
2772 	}
2773 
2774 	rsp_pdu->rw_offset += c2h_data->datal;
2775 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
2776 }
2777 
2778 static void
2779 nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2780 		       struct spdk_nvmf_tcp_req *tcp_req)
2781 {
2782 	nvmf_tcp_req_pdu_init(tcp_req);
2783 	_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2784 }
2785 
2786 static int
2787 request_transfer_out(struct spdk_nvmf_request *req)
2788 {
2789 	struct spdk_nvmf_tcp_req	*tcp_req;
2790 	struct spdk_nvmf_qpair		*qpair;
2791 	struct spdk_nvmf_tcp_qpair	*tqpair;
2792 	struct spdk_nvme_cpl		*rsp;
2793 
2794 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2795 
2796 	qpair = req->qpair;
2797 	rsp = &req->rsp->nvme_cpl;
2798 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
2799 
2800 	/* Advance our sq_head pointer */
2801 	if (qpair->sq_head == qpair->sq_head_max) {
2802 		qpair->sq_head = 0;
2803 	} else {
2804 		qpair->sq_head++;
2805 	}
2806 	rsp->sqhd = qpair->sq_head;
2807 
2808 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2809 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
2810 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2811 		nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2812 	} else {
2813 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2814 	}
2815 
2816 	return 0;
2817 }
2818 
2819 static void
2820 nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport,
2821 			      struct spdk_nvmf_tcp_qpair *tqpair,
2822 			      struct spdk_nvmf_tcp_req *tcp_req)
2823 {
2824 	enum spdk_nvme_cmd_fuse last, next;
2825 
2826 	last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2827 	next = tcp_req->cmd.fuse;
2828 
2829 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2830 
2831 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2832 		return;
2833 	}
2834 
2835 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2836 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2837 			/* This is a valid pair of fused commands.  Point them at each other
2838 			 * so they can be submitted consecutively once ready to be executed.
2839 			 */
2840 			tqpair->fused_first->fused_pair = tcp_req;
2841 			tcp_req->fused_pair = tqpair->fused_first;
2842 			tqpair->fused_first = NULL;
2843 			return;
2844 		} else {
2845 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2846 			tqpair->fused_first->fused_failed = true;
2847 
2848 			/*
2849 			 * If the last req is in READY_TO_EXECUTE state, then call
2850 			 * nvmf_tcp_req_process(), otherwise nothing else will kick it.
2851 			 */
2852 			if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2853 				nvmf_tcp_req_process(ttransport, tqpair->fused_first);
2854 			}
2855 
2856 			tqpair->fused_first = NULL;
2857 		}
2858 	}
2859 
2860 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2861 		/* Set tqpair->fused_first here so that we know to check that the next request
2862 		 * is a SECOND (and to fail this one if it isn't).
2863 		 */
2864 		tqpair->fused_first = tcp_req;
2865 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2866 		/* Mark this req failed since it is a SECOND and the last one was not a FIRST. */
2867 		tcp_req->fused_failed = true;
2868 	}
2869 }
2870 
2871 static bool
2872 nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
2873 		     struct spdk_nvmf_tcp_req *tcp_req)
2874 {
2875 	struct spdk_nvmf_tcp_qpair		*tqpair;
2876 	uint32_t				plen;
2877 	struct nvme_tcp_pdu			*pdu;
2878 	enum spdk_nvmf_tcp_req_state		prev_state;
2879 	bool					progress = false;
2880 	struct spdk_nvmf_transport		*transport = &ttransport->transport;
2881 	struct spdk_nvmf_transport_poll_group	*group;
2882 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2883 
2884 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2885 	group = &tqpair->group->group;
2886 	assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
2887 
2888 	/* If the qpair is not active, we need to abort the outstanding requests. */
2889 	if (!spdk_nvmf_qpair_is_active(&tqpair->qpair)) {
2890 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
2891 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2892 		}
2893 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
2894 	}
2895 
2896 	/* The loop here is to allow for several back-to-back state changes. */
2897 	do {
2898 		prev_state = tcp_req->state;
2899 
2900 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
2901 			      tqpair);
2902 
2903 		switch (tcp_req->state) {
2904 		case TCP_REQUEST_STATE_FREE:
2905 			/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
2906 			 * to escape this state. */
2907 			break;
2908 		case TCP_REQUEST_STATE_NEW:
2909 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req,
2910 					  tqpair->qpair.queue_depth);
2911 
2912 			/* copy the cmd from the receive pdu */
2913 			tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
2914 
2915 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
2916 				tcp_req->req.dif_enabled = true;
2917 				tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
2918 			}
2919 
2920 			nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req);
2921 
2922 			/* The next state transition depends on the data transfer needs of this request. */
2923 			tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
2924 
2925 			if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2926 				nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_INVALID_OPCODE);
2927 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2928 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2929 				SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
2930 				break;
2931 			}
2932 
2933 			/* If no data to transfer, ready to execute. */
2934 			if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
2935 				/* Reset the tqpair receiving pdu state */
2936 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2937 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2938 				break;
2939 			}
2940 
2941 			pdu = tqpair->pdu_in_progress;
2942 			plen = pdu->hdr.common.hlen;
2943 			if (tqpair->host_hdgst_enable) {
2944 				plen += SPDK_NVME_TCP_DIGEST_LEN;
2945 			}
2946 			if (pdu->hdr.common.plen != plen) {
2947 				tcp_req->has_in_capsule_data = true;
2948 			} else {
2949 				/* Data is transmitted by C2H PDUs */
2950 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2951 			}
2952 
2953 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
2954 			STAILQ_INSERT_TAIL(&group->pending_buf_queue, &tcp_req->req, buf_link);
2955 			break;
2956 		case TCP_REQUEST_STATE_NEED_BUFFER:
2957 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.trace_id, 0,
2958 					  (uintptr_t)tcp_req);
2959 
2960 			assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
2961 
2962 			if (!tcp_req->has_in_capsule_data && (&tcp_req->req != STAILQ_FIRST(&group->pending_buf_queue))) {
2963 				SPDK_DEBUGLOG(nvmf_tcp,
2964 					      "Not the first element to wait for the buf for tcp_req(%p) on tqpair=%p\n",
2965 					      tcp_req, tqpair);
2966 				/* This request needs to wait in line to obtain a buffer */
2967 				break;
2968 			}
2969 
2970 			/* Try to get a data buffer */
2971 			if (nvmf_tcp_req_parse_sgl(tcp_req, transport, group) < 0) {
2972 				break;
2973 			}
2974 
2975 			/* Get a zcopy buffer if the request can be serviced through zcopy */
2976 			if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2977 				if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2978 					assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2979 					tcp_req->req.length = tcp_req->req.dif.elba_length;
2980 				}
2981 
2982 				STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2983 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START);
2984 				spdk_nvmf_request_zcopy_start(&tcp_req->req);
2985 				break;
2986 			}
2987 
2988 			if (tcp_req->req.iovcnt < 1) {
2989 				SPDK_DEBUGLOG(nvmf_tcp, "No buffer allocated for tcp_req(%p) on tqpair(%p\n)",
2990 					      tcp_req, tqpair);
2991 				/* No buffers available. */
2992 				break;
2993 			}
2994 
2995 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2996 
2997 			/* If data is transferring from host to controller, we need to do a transfer from the host. */
2998 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2999 				if (tcp_req->req.data_from_pool) {
3000 					SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
3001 					nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
3002 				} else {
3003 					struct nvme_tcp_pdu *pdu;
3004 
3005 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
3006 
3007 					pdu = tqpair->pdu_in_progress;
3008 					SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
3009 						      tqpair);
3010 					/* No need to send r2t, contained in the capsuled data */
3011 					nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
3012 								  0, tcp_req->req.length);
3013 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
3014 				}
3015 				break;
3016 			}
3017 
3018 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
3019 			break;
3020 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3021 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.trace_id, 0,
3022 					  (uintptr_t)tcp_req);
3023 			/* Some external code must kick a request into  TCP_REQUEST_STATE_ZCOPY_START_COMPLETED
3024 			 * to escape this state. */
3025 			break;
3026 		case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
3027 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.trace_id, 0,
3028 					  (uintptr_t)tcp_req);
3029 			if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) {
3030 				SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n",
3031 					      tcp_req, tqpair);
3032 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3033 				break;
3034 			}
3035 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
3036 				SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
3037 				nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
3038 			} else {
3039 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3040 			}
3041 			break;
3042 		case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3043 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.trace_id, 0,
3044 					  (uintptr_t)tcp_req);
3045 			/* The R2T completion or the h2c data incoming will kick it out of this state. */
3046 			break;
3047 		case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3048 
3049 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.trace_id,
3050 					  0, (uintptr_t)tcp_req);
3051 			/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
3052 			 * to escape this state. */
3053 			break;
3054 		case TCP_REQUEST_STATE_READY_TO_EXECUTE:
3055 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.trace_id, 0,
3056 					  (uintptr_t)tcp_req);
3057 
3058 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3059 				assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
3060 				tcp_req->req.length = tcp_req->req.dif.elba_length;
3061 			}
3062 
3063 			if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
3064 				if (tcp_req->fused_failed) {
3065 					/* This request failed FUSED semantics.  Fail it immediately, without
3066 					 * even sending it to the target layer.
3067 					 */
3068 					nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_MISSING_FUSED);
3069 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3070 					break;
3071 				}
3072 
3073 				if (tcp_req->fused_pair == NULL ||
3074 				    tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3075 					/* This request is ready to execute, but either we don't know yet if it's
3076 					 * valid - i.e. this is a FIRST but we haven't received the next request yet),
3077 					 * or the other request of this fused pair isn't ready to execute. So
3078 					 * break here and this request will get processed later either when the
3079 					 * other request is ready or we find that this request isn't valid.
3080 					 */
3081 					break;
3082 				}
3083 			}
3084 
3085 			if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
3086 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
3087 				/* If we get to this point, and this request is a fused command, we know that
3088 				 * it is part of a valid sequence (FIRST followed by a SECOND) and that both
3089 				 * requests are READY_TO_EXECUTE.  So call spdk_nvmf_request_exec() both on this
3090 				 * request, and the other request of the fused pair, in the correct order.
3091 				 * Also clear the ->fused_pair pointers on both requests, since after this point
3092 				 * we no longer need to maintain the relationship between these two requests.
3093 				 */
3094 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
3095 					assert(tcp_req->fused_pair != NULL);
3096 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3097 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3098 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3099 					tcp_req->fused_pair->fused_pair = NULL;
3100 					tcp_req->fused_pair = NULL;
3101 				}
3102 				spdk_nvmf_request_exec(&tcp_req->req);
3103 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
3104 					assert(tcp_req->fused_pair != NULL);
3105 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3106 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3107 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3108 					tcp_req->fused_pair->fused_pair = NULL;
3109 					tcp_req->fused_pair = NULL;
3110 				}
3111 			} else {
3112 				/* For zero-copy, only requests with data coming from host to the
3113 				 * controller can end up here. */
3114 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
3115 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT);
3116 				spdk_nvmf_request_zcopy_end(&tcp_req->req, true);
3117 			}
3118 
3119 			break;
3120 		case TCP_REQUEST_STATE_EXECUTING:
3121 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
3122 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3123 			 * to escape this state. */
3124 			break;
3125 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3126 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.trace_id, 0,
3127 					  (uintptr_t)tcp_req);
3128 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3129 			 * to escape this state. */
3130 			break;
3131 		case TCP_REQUEST_STATE_EXECUTED:
3132 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
3133 
3134 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3135 				tcp_req->req.length = tcp_req->req.dif.orig_length;
3136 			}
3137 
3138 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3139 			break;
3140 		case TCP_REQUEST_STATE_READY_TO_COMPLETE:
3141 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.trace_id, 0,
3142 					  (uintptr_t)tcp_req);
3143 			if (request_transfer_out(&tcp_req->req) != 0) {
3144 				assert(0); /* No good way to handle this currently */
3145 			}
3146 			break;
3147 		case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
3148 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.trace_id,
3149 					  0, (uintptr_t)tcp_req);
3150 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3151 			 * to escape this state. */
3152 			break;
3153 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3154 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.trace_id, 0,
3155 					  (uintptr_t)tcp_req);
3156 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3157 			 * to escape this state. */
3158 			break;
3159 		case TCP_REQUEST_STATE_COMPLETED:
3160 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req,
3161 					  tqpair->qpair.queue_depth);
3162 			/* If there's an outstanding PDU sent to the host, the request is completed
3163 			 * due to the qpair being disconnected.  We must delay the completion until
3164 			 * that write is done to avoid freeing the request twice. */
3165 			if (spdk_unlikely(tcp_req->pdu_in_use)) {
3166 				SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding "
3167 					      "write on req=%p\n", tcp_req);
3168 				/* This can only happen for zcopy requests */
3169 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3170 				assert(!spdk_nvmf_qpair_is_active(&tqpair->qpair));
3171 				break;
3172 			}
3173 
3174 			if (tcp_req->req.data_from_pool) {
3175 				spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
3176 			} else if (spdk_unlikely(tcp_req->has_in_capsule_data &&
3177 						 (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
3178 						  tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
3179 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3180 				assert(tgroup->control_msg_list);
3181 				SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
3182 				nvmf_tcp_control_msg_put(tgroup->control_msg_list,
3183 							 tcp_req->req.iov[0].iov_base);
3184 			} else if (tcp_req->req.zcopy_bdev_io != NULL) {
3185 				/* If the request has an unreleased zcopy bdev_io, it's either a
3186 				 * read, a failed write, or the qpair is being disconnected */
3187 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3188 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
3189 				       spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) ||
3190 				       !spdk_nvmf_qpair_is_active(&tqpair->qpair));
3191 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE);
3192 				spdk_nvmf_request_zcopy_end(&tcp_req->req, false);
3193 				break;
3194 			}
3195 			tcp_req->req.length = 0;
3196 			tcp_req->req.iovcnt = 0;
3197 			tcp_req->fused_failed = false;
3198 			if (tcp_req->fused_pair) {
3199 				/* This req was part of a valid fused pair, but failed before it got to
3200 				 * READ_TO_EXECUTE state.  This means we need to fail the other request
3201 				 * in the pair, because it is no longer part of a valid pair.  If the pair
3202 				 * already reached READY_TO_EXECUTE state, we need to kick it.
3203 				 */
3204 				tcp_req->fused_pair->fused_failed = true;
3205 				if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3206 					nvmf_tcp_req_process(ttransport, tcp_req->fused_pair);
3207 				}
3208 				tcp_req->fused_pair = NULL;
3209 			}
3210 
3211 			nvmf_tcp_req_put(tqpair, tcp_req);
3212 			break;
3213 		case TCP_REQUEST_NUM_STATES:
3214 		default:
3215 			assert(0);
3216 			break;
3217 		}
3218 
3219 		if (tcp_req->state != prev_state) {
3220 			progress = true;
3221 		}
3222 	} while (tcp_req->state != prev_state);
3223 
3224 	return progress;
3225 }
3226 
3227 static void
3228 nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
3229 {
3230 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
3231 	int rc;
3232 
3233 	assert(tqpair != NULL);
3234 	rc = nvmf_tcp_sock_process(tqpair);
3235 
3236 	/* If there was a new socket error, disconnect */
3237 	if (rc < 0) {
3238 		nvmf_tcp_qpair_disconnect(tqpair);
3239 	}
3240 }
3241 
3242 static int
3243 nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3244 			struct spdk_nvmf_qpair *qpair)
3245 {
3246 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3247 	struct spdk_nvmf_tcp_qpair	*tqpair;
3248 	int				rc;
3249 
3250 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3251 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3252 
3253 	rc =  nvmf_tcp_qpair_sock_init(tqpair);
3254 	if (rc != 0) {
3255 		SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
3256 		return -1;
3257 	}
3258 
3259 	rc = nvmf_tcp_qpair_init(&tqpair->qpair);
3260 	if (rc < 0) {
3261 		SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
3262 		return -1;
3263 	}
3264 
3265 	rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
3266 	if (rc < 0) {
3267 		SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
3268 		return -1;
3269 	}
3270 
3271 	rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
3272 				      nvmf_tcp_sock_cb, tqpair);
3273 	if (rc != 0) {
3274 		SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
3275 			    spdk_strerror(errno), errno);
3276 		return -1;
3277 	}
3278 
3279 	tqpair->group = tgroup;
3280 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INVALID);
3281 	TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
3282 
3283 	return 0;
3284 }
3285 
3286 static int
3287 nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3288 			   struct spdk_nvmf_qpair *qpair)
3289 {
3290 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3291 	struct spdk_nvmf_tcp_qpair		*tqpair;
3292 	int				rc;
3293 
3294 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3295 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3296 
3297 	assert(tqpair->group == tgroup);
3298 
3299 	SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
3300 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
3301 		/* Change the state to move the qpair from the await_req list to the main list
3302 		 * and prevent adding it again later by nvmf_tcp_qpair_set_recv_state() */
3303 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
3304 	}
3305 	TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
3306 
3307 	/* Try to force out any pending writes */
3308 	spdk_sock_flush(tqpair->sock);
3309 
3310 	rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
3311 	if (rc != 0) {
3312 		SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
3313 			    spdk_strerror(errno), errno);
3314 	}
3315 
3316 	return rc;
3317 }
3318 
3319 static int
3320 nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
3321 {
3322 	struct spdk_nvmf_tcp_transport *ttransport;
3323 	struct spdk_nvmf_tcp_req *tcp_req;
3324 
3325 	ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3326 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3327 
3328 	switch (tcp_req->state) {
3329 	case TCP_REQUEST_STATE_EXECUTING:
3330 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3331 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3332 		break;
3333 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3334 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED);
3335 		break;
3336 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3337 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3338 		break;
3339 	default:
3340 		SPDK_ERRLOG("Unexpected request state %d (cntlid:%d, qid:%d)\n",
3341 			    tcp_req->state, req->qpair->ctrlr->cntlid, req->qpair->qid);
3342 		assert(0 && "Unexpected request state");
3343 		break;
3344 	}
3345 
3346 	nvmf_tcp_req_process(ttransport, tcp_req);
3347 
3348 	return 0;
3349 }
3350 
3351 static void
3352 nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
3353 		     spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3354 {
3355 	struct spdk_nvmf_tcp_qpair *tqpair;
3356 
3357 	SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
3358 
3359 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3360 
3361 	assert(tqpair->fini_cb_fn == NULL);
3362 	tqpair->fini_cb_fn = cb_fn;
3363 	tqpair->fini_cb_arg = cb_arg;
3364 
3365 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITED);
3366 	nvmf_tcp_qpair_destroy(tqpair);
3367 }
3368 
3369 static int
3370 nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3371 {
3372 	struct spdk_nvmf_tcp_poll_group *tgroup;
3373 	int num_events, rc = 0, rc2;
3374 	struct spdk_nvmf_request *req, *req_tmp;
3375 	struct spdk_nvmf_tcp_req *tcp_req;
3376 	struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp;
3377 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(group->transport,
3378 			struct spdk_nvmf_tcp_transport, transport);
3379 
3380 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3381 
3382 	if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) {
3383 		return 0;
3384 	}
3385 
3386 	STAILQ_FOREACH_SAFE(req, &group->pending_buf_queue, buf_link, req_tmp) {
3387 		tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3388 		if (nvmf_tcp_req_process(ttransport, tcp_req) == false) {
3389 			break;
3390 		}
3391 	}
3392 
3393 	num_events = spdk_sock_group_poll(tgroup->sock_group);
3394 	if (spdk_unlikely(num_events < 0)) {
3395 		SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
3396 	}
3397 
3398 	TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) {
3399 		rc2 = nvmf_tcp_sock_process(tqpair);
3400 
3401 		/* If there was a new socket error, disconnect */
3402 		if (spdk_unlikely(rc2 < 0)) {
3403 			nvmf_tcp_qpair_disconnect(tqpair);
3404 			if (rc == 0) {
3405 				rc = rc2;
3406 			}
3407 		}
3408 	}
3409 
3410 	return rc == 0 ? num_events : rc;
3411 }
3412 
3413 static int
3414 nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
3415 			struct spdk_nvme_transport_id *trid, bool peer)
3416 {
3417 	struct spdk_nvmf_tcp_qpair     *tqpair;
3418 	uint16_t			port;
3419 
3420 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3421 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
3422 
3423 	if (peer) {
3424 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
3425 		port = tqpair->initiator_port;
3426 	} else {
3427 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
3428 		port = tqpair->target_port;
3429 	}
3430 
3431 	if (spdk_sock_is_ipv4(tqpair->sock)) {
3432 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3433 	} else if (spdk_sock_is_ipv6(tqpair->sock)) {
3434 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3435 	} else {
3436 		return -1;
3437 	}
3438 
3439 	snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
3440 	return 0;
3441 }
3442 
3443 static int
3444 nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3445 			      struct spdk_nvme_transport_id *trid)
3446 {
3447 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3448 }
3449 
3450 static int
3451 nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3452 			     struct spdk_nvme_transport_id *trid)
3453 {
3454 	return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
3455 }
3456 
3457 static int
3458 nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3459 			       struct spdk_nvme_transport_id *trid)
3460 {
3461 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3462 }
3463 
3464 static void
3465 nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
3466 			      struct spdk_nvmf_tcp_req *tcp_req_to_abort)
3467 {
3468 	nvmf_tcp_req_set_cpl(tcp_req_to_abort, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_BY_REQUEST);
3469 	nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3470 
3471 	req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
3472 }
3473 
3474 static int
3475 _nvmf_tcp_qpair_abort_request(void *ctx)
3476 {
3477 	struct spdk_nvmf_request *req = ctx;
3478 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
3479 			struct spdk_nvmf_tcp_req, req);
3480 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
3481 					     struct spdk_nvmf_tcp_qpair, qpair);
3482 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
3483 			struct spdk_nvmf_tcp_transport, transport);
3484 	int rc;
3485 
3486 	spdk_poller_unregister(&req->poller);
3487 
3488 	switch (tcp_req_to_abort->state) {
3489 	case TCP_REQUEST_STATE_EXECUTING:
3490 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3491 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3492 		rc = nvmf_ctrlr_abort_request(req);
3493 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
3494 			return SPDK_POLLER_BUSY;
3495 		}
3496 		break;
3497 
3498 	case TCP_REQUEST_STATE_NEED_BUFFER:
3499 		STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue,
3500 			      &tcp_req_to_abort->req, spdk_nvmf_request, buf_link);
3501 
3502 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3503 		nvmf_tcp_req_process(ttransport, tcp_req_to_abort);
3504 		break;
3505 
3506 	case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3507 	case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3508 		if (spdk_get_ticks() < req->timeout_tsc) {
3509 			req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
3510 			return SPDK_POLLER_BUSY;
3511 		}
3512 		break;
3513 
3514 	default:
3515 		/* Requests in other states are either un-abortable (e.g.
3516 		 * TRANSFERRING_CONTROLLER_TO_HOST) or should never end up here, as they're
3517 		 * immediately transitioned to other states in nvmf_tcp_req_process() (e.g.
3518 		 * READY_TO_EXECUTE).  But it is fine to end up here, as we'll simply complete the
3519 		 * abort request with the bit0 of dword0 set (command not aborted).
3520 		 */
3521 		break;
3522 	}
3523 
3524 	spdk_nvmf_request_complete(req);
3525 	return SPDK_POLLER_BUSY;
3526 }
3527 
3528 static void
3529 nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
3530 			     struct spdk_nvmf_request *req)
3531 {
3532 	struct spdk_nvmf_tcp_qpair *tqpair;
3533 	struct spdk_nvmf_tcp_transport *ttransport;
3534 	struct spdk_nvmf_transport *transport;
3535 	uint16_t cid;
3536 	uint32_t i;
3537 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
3538 
3539 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3540 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3541 	transport = &ttransport->transport;
3542 
3543 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
3544 
3545 	for (i = 0; i < tqpair->resource_count; i++) {
3546 		if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
3547 		    tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
3548 			tcp_req_to_abort = &tqpair->reqs[i];
3549 			break;
3550 		}
3551 	}
3552 
3553 	spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, tqpair->qpair.trace_id, 0, (uintptr_t)req);
3554 
3555 	if (tcp_req_to_abort == NULL) {
3556 		spdk_nvmf_request_complete(req);
3557 		return;
3558 	}
3559 
3560 	req->req_to_abort = &tcp_req_to_abort->req;
3561 	req->timeout_tsc = spdk_get_ticks() +
3562 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
3563 	req->poller = NULL;
3564 
3565 	_nvmf_tcp_qpair_abort_request(req);
3566 }
3567 
3568 struct tcp_subsystem_add_host_opts {
3569 	char *psk;
3570 };
3571 
3572 static const struct spdk_json_object_decoder tcp_subsystem_add_host_opts_decoder[] = {
3573 	{"psk", offsetof(struct tcp_subsystem_add_host_opts, psk), spdk_json_decode_string, true},
3574 };
3575 
3576 static int
3577 tcp_load_psk(const char *fname, char *buf, size_t bufsz)
3578 {
3579 	FILE *psk_file;
3580 	struct stat statbuf;
3581 	int rc;
3582 
3583 	if (stat(fname, &statbuf) != 0) {
3584 		SPDK_ERRLOG("Could not read permissions for PSK file\n");
3585 		return -EACCES;
3586 	}
3587 
3588 	if ((statbuf.st_mode & TCP_PSK_INVALID_PERMISSIONS) != 0) {
3589 		SPDK_ERRLOG("Incorrect permissions for PSK file\n");
3590 		return -EPERM;
3591 	}
3592 	if ((size_t)statbuf.st_size > bufsz) {
3593 		SPDK_ERRLOG("Invalid PSK: too long\n");
3594 		return -EINVAL;
3595 	}
3596 	psk_file = fopen(fname, "r");
3597 	if (psk_file == NULL) {
3598 		SPDK_ERRLOG("Could not open PSK file\n");
3599 		return -EINVAL;
3600 	}
3601 
3602 	rc = fread(buf, 1, statbuf.st_size, psk_file);
3603 	if (rc != statbuf.st_size) {
3604 		SPDK_ERRLOG("Failed to read PSK\n");
3605 		fclose(psk_file);
3606 		return -EINVAL;
3607 	}
3608 
3609 	fclose(psk_file);
3610 	return 0;
3611 }
3612 
3613 SPDK_LOG_DEPRECATION_REGISTER(nvmf_tcp_psk_path, "PSK path", "v24.09", 0);
3614 
3615 static int
3616 nvmf_tcp_subsystem_add_host(struct spdk_nvmf_transport *transport,
3617 			    const struct spdk_nvmf_subsystem *subsystem,
3618 			    const char *hostnqn,
3619 			    const struct spdk_json_val *transport_specific)
3620 {
3621 	struct tcp_subsystem_add_host_opts opts;
3622 	struct spdk_nvmf_tcp_transport *ttransport;
3623 	struct tcp_psk_entry *tmp, *entry = NULL;
3624 	uint8_t psk_configured[SPDK_TLS_PSK_MAX_LEN] = {};
3625 	char psk_interchange[SPDK_TLS_PSK_MAX_LEN + 1] = {};
3626 	uint8_t tls_cipher_suite;
3627 	int rc = 0;
3628 	uint8_t psk_retained_hash;
3629 	uint64_t psk_configured_size;
3630 
3631 	if (transport_specific == NULL) {
3632 		return 0;
3633 	}
3634 
3635 	assert(transport != NULL);
3636 	assert(subsystem != NULL);
3637 
3638 	memset(&opts, 0, sizeof(opts));
3639 
3640 	/* Decode PSK (either name of a key or file path) */
3641 	if (spdk_json_decode_object_relaxed(transport_specific, tcp_subsystem_add_host_opts_decoder,
3642 					    SPDK_COUNTOF(tcp_subsystem_add_host_opts_decoder), &opts)) {
3643 		SPDK_ERRLOG("spdk_json_decode_object failed\n");
3644 		return -EINVAL;
3645 	}
3646 
3647 	if (opts.psk == NULL) {
3648 		return 0;
3649 	}
3650 
3651 	entry = calloc(1, sizeof(struct tcp_psk_entry));
3652 	if (entry == NULL) {
3653 		SPDK_ERRLOG("Unable to allocate memory for PSK entry!\n");
3654 		rc = -ENOMEM;
3655 		goto end;
3656 	}
3657 
3658 	entry->key = spdk_keyring_get_key(opts.psk);
3659 	if (entry->key != NULL) {
3660 		rc = spdk_key_get_key(entry->key, psk_interchange, SPDK_TLS_PSK_MAX_LEN);
3661 		if (rc < 0) {
3662 			SPDK_ERRLOG("Failed to retreive PSK '%s'\n", opts.psk);
3663 			rc = -EINVAL;
3664 			goto end;
3665 		}
3666 	} else {
3667 		if (strlen(opts.psk) >= sizeof(entry->psk)) {
3668 			SPDK_ERRLOG("PSK path too long\n");
3669 			rc = -EINVAL;
3670 			goto end;
3671 		}
3672 
3673 		rc = tcp_load_psk(opts.psk, psk_interchange, SPDK_TLS_PSK_MAX_LEN);
3674 		if (rc) {
3675 			SPDK_ERRLOG("Could not retrieve PSK from file\n");
3676 			goto end;
3677 		}
3678 
3679 		SPDK_LOG_DEPRECATED(nvmf_tcp_psk_path);
3680 	}
3681 
3682 	/* Parse PSK interchange to get length of base64 encoded data.
3683 	 * This is then used to decide which cipher suite should be used
3684 	 * to generate PSK identity and TLS PSK later on. */
3685 	rc = nvme_tcp_parse_interchange_psk(psk_interchange, psk_configured, sizeof(psk_configured),
3686 					    &psk_configured_size, &psk_retained_hash);
3687 	if (rc < 0) {
3688 		SPDK_ERRLOG("Failed to parse PSK interchange!\n");
3689 		goto end;
3690 	}
3691 
3692 	/* The Base64 string encodes the configured PSK (32 or 48 bytes binary).
3693 	 * This check also ensures that psk_configured_size is smaller than
3694 	 * psk_retained buffer size. */
3695 	if (psk_configured_size == SHA256_DIGEST_LENGTH) {
3696 		tls_cipher_suite = NVME_TCP_CIPHER_AES_128_GCM_SHA256;
3697 	} else if (psk_configured_size == SHA384_DIGEST_LENGTH) {
3698 		tls_cipher_suite = NVME_TCP_CIPHER_AES_256_GCM_SHA384;
3699 	} else {
3700 		SPDK_ERRLOG("Unrecognized cipher suite!\n");
3701 		rc = -EINVAL;
3702 		goto end;
3703 	}
3704 
3705 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3706 	/* Generate PSK identity. */
3707 	rc = nvme_tcp_generate_psk_identity(entry->pskid, sizeof(entry->pskid), hostnqn,
3708 					    subsystem->subnqn, tls_cipher_suite);
3709 	if (rc) {
3710 		rc = -EINVAL;
3711 		goto end;
3712 	}
3713 	/* Check if PSK identity entry already exists. */
3714 	TAILQ_FOREACH(tmp, &ttransport->psks, link) {
3715 		if (strncmp(tmp->pskid, entry->pskid, NVMF_PSK_IDENTITY_LEN) == 0) {
3716 			SPDK_ERRLOG("Given PSK identity: %s entry already exists!\n", entry->pskid);
3717 			rc = -EEXIST;
3718 			goto end;
3719 		}
3720 	}
3721 
3722 	if (snprintf(entry->hostnqn, sizeof(entry->hostnqn), "%s", hostnqn) < 0) {
3723 		SPDK_ERRLOG("Could not write hostnqn string!\n");
3724 		rc = -EINVAL;
3725 		goto end;
3726 	}
3727 	if (snprintf(entry->subnqn, sizeof(entry->subnqn), "%s", subsystem->subnqn) < 0) {
3728 		SPDK_ERRLOG("Could not write subnqn string!\n");
3729 		rc = -EINVAL;
3730 		goto end;
3731 	}
3732 
3733 	entry->tls_cipher_suite = tls_cipher_suite;
3734 
3735 	/* No hash indicates that Configured PSK must be used as Retained PSK. */
3736 	if (psk_retained_hash == NVME_TCP_HASH_ALGORITHM_NONE) {
3737 		/* Psk configured is either 32 or 48 bytes long. */
3738 		memcpy(entry->psk, psk_configured, psk_configured_size);
3739 		entry->psk_size = psk_configured_size;
3740 	} else {
3741 		/* Derive retained PSK. */
3742 		rc = nvme_tcp_derive_retained_psk(psk_configured, psk_configured_size, hostnqn, entry->psk,
3743 						  SPDK_TLS_PSK_MAX_LEN, psk_retained_hash);
3744 		if (rc < 0) {
3745 			SPDK_ERRLOG("Unable to derive retained PSK!\n");
3746 			goto end;
3747 		}
3748 		entry->psk_size = rc;
3749 	}
3750 
3751 	if (entry->key == NULL) {
3752 		rc = snprintf(entry->psk_path, sizeof(entry->psk_path), "%s", opts.psk);
3753 		if (rc < 0 || (size_t)rc >= sizeof(entry->psk_path)) {
3754 			SPDK_ERRLOG("Could not save PSK path!\n");
3755 			rc = -ENAMETOOLONG;
3756 			goto end;
3757 		}
3758 	}
3759 
3760 	TAILQ_INSERT_TAIL(&ttransport->psks, entry, link);
3761 	rc = 0;
3762 
3763 end:
3764 	spdk_memset_s(psk_configured, sizeof(psk_configured), 0, sizeof(psk_configured));
3765 	spdk_memset_s(psk_interchange, sizeof(psk_interchange), 0, sizeof(psk_interchange));
3766 
3767 	free(opts.psk);
3768 	if (rc != 0) {
3769 		nvmf_tcp_free_psk_entry(entry);
3770 	}
3771 
3772 	return rc;
3773 }
3774 
3775 static void
3776 nvmf_tcp_subsystem_remove_host(struct spdk_nvmf_transport *transport,
3777 			       const struct spdk_nvmf_subsystem *subsystem,
3778 			       const char *hostnqn)
3779 {
3780 	struct spdk_nvmf_tcp_transport *ttransport;
3781 	struct tcp_psk_entry *entry, *tmp;
3782 
3783 	assert(transport != NULL);
3784 	assert(subsystem != NULL);
3785 
3786 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3787 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
3788 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3789 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3790 			TAILQ_REMOVE(&ttransport->psks, entry, link);
3791 			nvmf_tcp_free_psk_entry(entry);
3792 			break;
3793 		}
3794 	}
3795 }
3796 
3797 static void
3798 nvmf_tcp_subsystem_dump_host(struct spdk_nvmf_transport *transport,
3799 			     const struct spdk_nvmf_subsystem *subsystem, const char *hostnqn,
3800 			     struct spdk_json_write_ctx *w)
3801 {
3802 	struct spdk_nvmf_tcp_transport *ttransport;
3803 	struct tcp_psk_entry *entry;
3804 
3805 	assert(transport != NULL);
3806 	assert(subsystem != NULL);
3807 
3808 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3809 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
3810 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3811 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3812 			spdk_json_write_named_string(w, "psk", entry->key ?
3813 						     spdk_key_get_name(entry->key) : entry->psk_path);
3814 			break;
3815 		}
3816 	}
3817 }
3818 
3819 static void
3820 nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
3821 {
3822 	opts->max_queue_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
3823 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
3824 	opts->in_capsule_data_size =	SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
3825 	opts->max_io_size =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
3826 	opts->io_unit_size =		SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
3827 	opts->max_aq_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
3828 	opts->num_shared_buffers =	SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
3829 	opts->buf_cache_size =		SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
3830 	opts->dif_insert_or_strip =	SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
3831 	opts->abort_timeout_sec =	SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
3832 	opts->transport_specific =      NULL;
3833 }
3834 
3835 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
3836 	.name = "TCP",
3837 	.type = SPDK_NVME_TRANSPORT_TCP,
3838 	.opts_init = nvmf_tcp_opts_init,
3839 	.create = nvmf_tcp_create,
3840 	.dump_opts = nvmf_tcp_dump_opts,
3841 	.destroy = nvmf_tcp_destroy,
3842 
3843 	.listen = nvmf_tcp_listen,
3844 	.stop_listen = nvmf_tcp_stop_listen,
3845 
3846 	.listener_discover = nvmf_tcp_discover,
3847 
3848 	.poll_group_create = nvmf_tcp_poll_group_create,
3849 	.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
3850 	.poll_group_destroy = nvmf_tcp_poll_group_destroy,
3851 	.poll_group_add = nvmf_tcp_poll_group_add,
3852 	.poll_group_remove = nvmf_tcp_poll_group_remove,
3853 	.poll_group_poll = nvmf_tcp_poll_group_poll,
3854 
3855 	.req_free = nvmf_tcp_req_free,
3856 	.req_complete = nvmf_tcp_req_complete,
3857 
3858 	.qpair_fini = nvmf_tcp_close_qpair,
3859 	.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
3860 	.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
3861 	.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
3862 	.qpair_abort_request = nvmf_tcp_qpair_abort_request,
3863 	.subsystem_add_host = nvmf_tcp_subsystem_add_host,
3864 	.subsystem_remove_host = nvmf_tcp_subsystem_remove_host,
3865 	.subsystem_dump_host = nvmf_tcp_subsystem_dump_host,
3866 };
3867 
3868 SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
3869 SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)
3870