xref: /spdk/lib/nvmf/tcp.c (revision 6eeabe6986acd8b06bb018fb314de1ddc14f8517)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2018 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2022, 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/accel.h"
8 #include "spdk/stdinc.h"
9 #include "spdk/crc32.h"
10 #include "spdk/endian.h"
11 #include "spdk/assert.h"
12 #include "spdk/thread.h"
13 #include "spdk/nvmf_transport.h"
14 #include "spdk/string.h"
15 #include "spdk/trace.h"
16 #include "spdk/util.h"
17 #include "spdk/log.h"
18 #include "spdk/keyring.h"
19 
20 #include "spdk_internal/assert.h"
21 #include "spdk_internal/nvme_tcp.h"
22 #include "spdk_internal/sock.h"
23 
24 #include "nvmf_internal.h"
25 
26 #include "spdk_internal/trace_defs.h"
27 
28 #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
29 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
30 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
31 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
32 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
33 
34 #define SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH 2
35 #define SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH 65535
36 #define SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH 2
37 #define SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH 4096
38 
39 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH 128
40 #define SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH 128
41 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
42 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
43 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
44 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
45 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
46 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX
47 #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
48 #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
49 
50 #define TCP_PSK_INVALID_PERMISSIONS 0177
51 
52 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
53 static bool g_tls_log = false;
54 
55 /* spdk nvmf related structure */
56 enum spdk_nvmf_tcp_req_state {
57 
58 	/* The request is not currently in use */
59 	TCP_REQUEST_STATE_FREE = 0,
60 
61 	/* Initial state when request first received */
62 	TCP_REQUEST_STATE_NEW = 1,
63 
64 	/* The request is queued until a data buffer is available. */
65 	TCP_REQUEST_STATE_NEED_BUFFER = 2,
66 
67 	/* The request is waiting for zcopy_start to finish */
68 	TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 3,
69 
70 	/* The request has received a zero-copy buffer */
71 	TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 4,
72 
73 	/* The request is currently transferring data from the host to the controller. */
74 	TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 5,
75 
76 	/* The request is waiting for the R2T send acknowledgement. */
77 	TCP_REQUEST_STATE_AWAITING_R2T_ACK = 6,
78 
79 	/* The request is ready to execute at the block device */
80 	TCP_REQUEST_STATE_READY_TO_EXECUTE = 7,
81 
82 	/* The request is currently executing at the block device */
83 	TCP_REQUEST_STATE_EXECUTING = 8,
84 
85 	/* The request is waiting for zcopy buffers to be committed */
86 	TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 9,
87 
88 	/* The request finished executing at the block device */
89 	TCP_REQUEST_STATE_EXECUTED = 10,
90 
91 	/* The request is ready to send a completion */
92 	TCP_REQUEST_STATE_READY_TO_COMPLETE = 11,
93 
94 	/* The request is currently transferring final pdus from the controller to the host. */
95 	TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 12,
96 
97 	/* The request is waiting for zcopy buffers to be released (without committing) */
98 	TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 13,
99 
100 	/* The request completed and can be marked free. */
101 	TCP_REQUEST_STATE_COMPLETED = 14,
102 
103 	/* Terminator */
104 	TCP_REQUEST_NUM_STATES,
105 };
106 
107 static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
108 	"Invalid PDU Header Field",
109 	"PDU Sequence Error",
110 	"Header Digiest Error",
111 	"Data Transfer Out of Range",
112 	"R2T Limit Exceeded",
113 	"Unsupported parameter",
114 };
115 
116 SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
117 {
118 	spdk_trace_register_owner(OWNER_NVMF_TCP, 't');
119 	spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
120 	spdk_trace_register_description("TCP_REQ_NEW",
121 					TRACE_TCP_REQUEST_STATE_NEW,
122 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1,
123 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
124 	spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
125 					TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
126 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
127 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
128 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START",
129 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START,
130 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
131 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
132 	spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL",
133 					TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED,
134 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
135 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
136 	spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
137 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
138 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
139 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
140 	spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
141 					TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
142 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
143 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
144 	spdk_trace_register_description("TCP_REQ_EXECUTING",
145 					TRACE_TCP_REQUEST_STATE_EXECUTING,
146 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
147 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
148 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT",
149 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT,
150 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
151 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
152 	spdk_trace_register_description("TCP_REQ_EXECUTED",
153 					TRACE_TCP_REQUEST_STATE_EXECUTED,
154 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
155 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
156 	spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
157 					TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
158 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
159 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
160 	spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
161 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
162 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
163 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
164 	spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS",
165 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE,
166 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
167 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
168 	spdk_trace_register_description("TCP_REQ_COMPLETED",
169 					TRACE_TCP_REQUEST_STATE_COMPLETED,
170 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
171 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
172 	spdk_trace_register_description("TCP_WRITE_START",
173 					TRACE_TCP_FLUSH_WRITEBUF_START,
174 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
175 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
176 	spdk_trace_register_description("TCP_WRITE_DONE",
177 					TRACE_TCP_FLUSH_WRITEBUF_DONE,
178 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
179 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
180 	spdk_trace_register_description("TCP_READ_DONE",
181 					TRACE_TCP_READ_FROM_SOCKET_DONE,
182 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
183 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
184 	spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
185 					TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
186 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
187 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
188 
189 	spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE,
190 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
191 					SPDK_TRACE_ARG_TYPE_INT, "");
192 	spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT,
193 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
194 					SPDK_TRACE_ARG_TYPE_INT, "");
195 	spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE,
196 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
197 					SPDK_TRACE_ARG_TYPE_INT, "state");
198 	spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT,
199 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
200 					SPDK_TRACE_ARG_TYPE_INT, "");
201 	spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY,
202 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
203 					SPDK_TRACE_ARG_TYPE_INT, "");
204 	spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ,
205 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
206 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
207 	spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE,
208 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
209 					SPDK_TRACE_ARG_TYPE_INT, "state");
210 
211 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1);
212 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0);
213 }
214 
215 struct spdk_nvmf_tcp_req  {
216 	struct spdk_nvmf_request		req;
217 	struct spdk_nvme_cpl			rsp;
218 	struct spdk_nvme_cmd			cmd;
219 
220 	/* A PDU that can be used for sending responses. This is
221 	 * not the incoming PDU! */
222 	struct nvme_tcp_pdu			*pdu;
223 
224 	/* In-capsule data buffer */
225 	uint8_t					*buf;
226 
227 	struct spdk_nvmf_tcp_req		*fused_pair;
228 
229 	/*
230 	 * The PDU for a request may be used multiple times in serial over
231 	 * the request's lifetime. For example, first to send an R2T, then
232 	 * to send a completion. To catch mistakes where the PDU is used
233 	 * twice at the same time, add a debug flag here for init/fini.
234 	 */
235 	bool					pdu_in_use;
236 	bool					has_in_capsule_data;
237 	bool					fused_failed;
238 
239 	/* transfer_tag */
240 	uint16_t				ttag;
241 
242 	enum spdk_nvmf_tcp_req_state		state;
243 
244 	/*
245 	 * h2c_offset is used when we receive the h2c_data PDU.
246 	 */
247 	uint32_t				h2c_offset;
248 
249 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		link;
250 	TAILQ_ENTRY(spdk_nvmf_tcp_req)		state_link;
251 };
252 
253 struct spdk_nvmf_tcp_qpair {
254 	struct spdk_nvmf_qpair			qpair;
255 	struct spdk_nvmf_tcp_poll_group		*group;
256 	struct spdk_sock			*sock;
257 
258 	enum nvme_tcp_pdu_recv_state		recv_state;
259 	enum nvme_tcp_qpair_state		state;
260 
261 	/* PDU being actively received */
262 	struct nvme_tcp_pdu			*pdu_in_progress;
263 
264 	struct spdk_nvmf_tcp_req		*fused_first;
265 
266 	/* Queues to track the requests in all states */
267 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_working_queue;
268 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_free_queue;
269 	SLIST_HEAD(, nvme_tcp_pdu)		tcp_pdu_free_queue;
270 	/* Number of working pdus */
271 	uint32_t				tcp_pdu_working_count;
272 
273 	/* Number of requests in each state */
274 	uint32_t				state_cntr[TCP_REQUEST_NUM_STATES];
275 
276 	uint8_t					cpda;
277 
278 	bool					host_hdgst_enable;
279 	bool					host_ddgst_enable;
280 
281 	/* This is a spare PDU used for sending special management
282 	 * operations. Primarily, this is used for the initial
283 	 * connection response and c2h termination request. */
284 	struct nvme_tcp_pdu			*mgmt_pdu;
285 
286 	/* Arrays of in-capsule buffers, requests, and pdus.
287 	 * Each array is 'resource_count' number of elements */
288 	void					*bufs;
289 	struct spdk_nvmf_tcp_req		*reqs;
290 	struct nvme_tcp_pdu			*pdus;
291 	uint32_t				resource_count;
292 	uint32_t				recv_buf_size;
293 
294 	struct spdk_nvmf_tcp_port		*port;
295 
296 	/* IP address */
297 	char					initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
298 	char					target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
299 
300 	/* IP port */
301 	uint16_t				initiator_port;
302 	uint16_t				target_port;
303 
304 	/* Wait until the host terminates the connection (e.g. after sending C2HTermReq) */
305 	bool					wait_terminate;
306 
307 	/* Timer used to destroy qpair after detecting transport error issue if initiator does
308 	 *  not close the connection.
309 	 */
310 	struct spdk_poller			*timeout_poller;
311 
312 	spdk_nvmf_transport_qpair_fini_cb	fini_cb_fn;
313 	void					*fini_cb_arg;
314 
315 	TAILQ_ENTRY(spdk_nvmf_tcp_qpair)	link;
316 };
317 
318 struct spdk_nvmf_tcp_control_msg {
319 	STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
320 };
321 
322 struct spdk_nvmf_tcp_control_msg_list {
323 	void *msg_buf;
324 	STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
325 };
326 
327 struct spdk_nvmf_tcp_poll_group {
328 	struct spdk_nvmf_transport_poll_group	group;
329 	struct spdk_sock_group			*sock_group;
330 
331 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	qpairs;
332 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	await_req;
333 
334 	struct spdk_io_channel			*accel_channel;
335 	struct spdk_nvmf_tcp_control_msg_list	*control_msg_list;
336 
337 	TAILQ_ENTRY(spdk_nvmf_tcp_poll_group)	link;
338 };
339 
340 struct spdk_nvmf_tcp_port {
341 	const struct spdk_nvme_transport_id	*trid;
342 	struct spdk_sock			*listen_sock;
343 	TAILQ_ENTRY(spdk_nvmf_tcp_port)		link;
344 };
345 
346 struct tcp_transport_opts {
347 	bool		c2h_success;
348 	uint16_t	control_msg_num;
349 	uint32_t	sock_priority;
350 };
351 
352 struct tcp_psk_entry {
353 	char				hostnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
354 	char				subnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
355 	char				pskid[NVMF_PSK_IDENTITY_LEN];
356 	uint8_t				psk[SPDK_TLS_PSK_MAX_LEN];
357 	struct spdk_key			*key;
358 
359 	/* Original path saved to emit SPDK configuration via "save_config". */
360 	char				psk_path[PATH_MAX];
361 	uint32_t			psk_size;
362 	enum nvme_tcp_cipher_suite	tls_cipher_suite;
363 	TAILQ_ENTRY(tcp_psk_entry)	link;
364 };
365 
366 struct spdk_nvmf_tcp_transport {
367 	struct spdk_nvmf_transport		transport;
368 	struct tcp_transport_opts               tcp_opts;
369 	uint32_t				ack_timeout;
370 
371 	struct spdk_nvmf_tcp_poll_group		*next_pg;
372 
373 	struct spdk_poller			*accept_poller;
374 
375 	TAILQ_HEAD(, spdk_nvmf_tcp_port)	ports;
376 	TAILQ_HEAD(, spdk_nvmf_tcp_poll_group)	poll_groups;
377 
378 	TAILQ_HEAD(, tcp_psk_entry)		psks;
379 };
380 
381 static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
382 	{
383 		"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
384 		spdk_json_decode_bool, true
385 	},
386 	{
387 		"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
388 		spdk_json_decode_uint16, true
389 	},
390 	{
391 		"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
392 		spdk_json_decode_uint32, true
393 	},
394 };
395 
396 static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
397 				 struct spdk_nvmf_tcp_req *tcp_req);
398 static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
399 
400 static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
401 				    struct spdk_nvmf_tcp_req *tcp_req);
402 
403 static inline void
404 nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
405 		       enum spdk_nvmf_tcp_req_state state)
406 {
407 	struct spdk_nvmf_qpair *qpair;
408 	struct spdk_nvmf_tcp_qpair *tqpair;
409 
410 	qpair = tcp_req->req.qpair;
411 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
412 
413 	assert(tqpair->state_cntr[tcp_req->state] > 0);
414 	tqpair->state_cntr[tcp_req->state]--;
415 	tqpair->state_cntr[state]++;
416 
417 	tcp_req->state = state;
418 }
419 
420 static inline struct nvme_tcp_pdu *
421 nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
422 {
423 	assert(tcp_req->pdu_in_use == false);
424 
425 	memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
426 	tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
427 
428 	return tcp_req->pdu;
429 }
430 
431 static struct spdk_nvmf_tcp_req *
432 nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
433 {
434 	struct spdk_nvmf_tcp_req *tcp_req;
435 
436 	tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
437 	if (spdk_unlikely(!tcp_req)) {
438 		return NULL;
439 	}
440 
441 	memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
442 	tcp_req->h2c_offset = 0;
443 	tcp_req->has_in_capsule_data = false;
444 	tcp_req->req.dif_enabled = false;
445 	tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE;
446 
447 	TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
448 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
449 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
450 	return tcp_req;
451 }
452 
453 static inline void
454 nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
455 {
456 	assert(!tcp_req->pdu_in_use);
457 
458 	TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
459 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
460 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
461 }
462 
463 static void
464 nvmf_tcp_request_free(void *cb_arg)
465 {
466 	struct spdk_nvmf_tcp_transport *ttransport;
467 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
468 
469 	assert(tcp_req != NULL);
470 
471 	SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
472 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
473 				      struct spdk_nvmf_tcp_transport, transport);
474 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
475 	nvmf_tcp_req_process(ttransport, tcp_req);
476 }
477 
478 static int
479 nvmf_tcp_req_free(struct spdk_nvmf_request *req)
480 {
481 	struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
482 
483 	nvmf_tcp_request_free(tcp_req);
484 
485 	return 0;
486 }
487 
488 static void
489 nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
490 			   enum spdk_nvmf_tcp_req_state state)
491 {
492 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
493 
494 	assert(state != TCP_REQUEST_STATE_FREE);
495 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
496 		if (state == tcp_req->state) {
497 			nvmf_tcp_request_free(tcp_req);
498 		}
499 	}
500 }
501 
502 static void
503 nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
504 {
505 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
506 
507 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
508 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
509 
510 	/* Wipe the requests waiting for buffer from the global list */
511 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
512 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
513 			STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue, &tcp_req->req,
514 				      spdk_nvmf_request, buf_link);
515 		}
516 	}
517 
518 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
519 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
520 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
521 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
522 }
523 
524 static void
525 nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
526 {
527 	int i;
528 	struct spdk_nvmf_tcp_req *tcp_req;
529 
530 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
531 	for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
532 		SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
533 		TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
534 			if ((int)tcp_req->state == i) {
535 				SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
536 				SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
537 			}
538 		}
539 	}
540 }
541 
542 static void
543 _nvmf_tcp_qpair_destroy(void *_tqpair)
544 {
545 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
546 	spdk_nvmf_transport_qpair_fini_cb cb_fn = tqpair->fini_cb_fn;
547 	void *cb_arg = tqpair->fini_cb_arg;
548 	int err = 0;
549 
550 	spdk_trace_record(TRACE_TCP_QP_DESTROY, 0, 0, (uintptr_t)tqpair);
551 
552 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
553 
554 	err = spdk_sock_close(&tqpair->sock);
555 	assert(err == 0);
556 	nvmf_tcp_cleanup_all_states(tqpair);
557 
558 	if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
559 		SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
560 			    tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
561 			    tqpair->resource_count);
562 		err++;
563 	}
564 
565 	if (err > 0) {
566 		nvmf_tcp_dump_qpair_req_contents(tqpair);
567 	}
568 
569 	/* The timeout poller might still be registered here if we close the qpair before host
570 	 * terminates the connection.
571 	 */
572 	spdk_poller_unregister(&tqpair->timeout_poller);
573 	spdk_dma_free(tqpair->pdus);
574 	free(tqpair->reqs);
575 	spdk_free(tqpair->bufs);
576 	free(tqpair);
577 
578 	if (cb_fn != NULL) {
579 		cb_fn(cb_arg);
580 	}
581 
582 	SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
583 }
584 
585 static void
586 nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
587 {
588 	/* Delay the destruction to make sure it isn't performed from the context of a sock
589 	 * callback.  Otherwise, spdk_sock_close() might not abort pending requests, causing their
590 	 * completions to be executed after the qpair is freed.  (Note: this fixed issue #2471.)
591 	 */
592 	spdk_thread_send_msg(spdk_get_thread(), _nvmf_tcp_qpair_destroy, tqpair);
593 }
594 
595 static void
596 nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
597 {
598 	struct spdk_nvmf_tcp_transport	*ttransport;
599 	assert(w != NULL);
600 
601 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
602 	spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
603 	spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
604 }
605 
606 static void
607 nvmf_tcp_free_psk_entry(struct tcp_psk_entry *entry)
608 {
609 	if (entry == NULL) {
610 		return;
611 	}
612 
613 	spdk_memset_s(entry->psk, sizeof(entry->psk), 0, sizeof(entry->psk));
614 	spdk_keyring_put_key(entry->key);
615 	free(entry);
616 }
617 
618 static int
619 nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
620 		 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
621 {
622 	struct spdk_nvmf_tcp_transport	*ttransport;
623 	struct tcp_psk_entry *entry, *tmp;
624 
625 	assert(transport != NULL);
626 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
627 
628 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
629 		TAILQ_REMOVE(&ttransport->psks, entry, link);
630 		nvmf_tcp_free_psk_entry(entry);
631 	}
632 
633 	spdk_poller_unregister(&ttransport->accept_poller);
634 	free(ttransport);
635 
636 	if (cb_fn) {
637 		cb_fn(cb_arg);
638 	}
639 	return 0;
640 }
641 
642 static int nvmf_tcp_accept(void *ctx);
643 
644 static struct spdk_nvmf_transport *
645 nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
646 {
647 	struct spdk_nvmf_tcp_transport *ttransport;
648 	uint32_t sge_count;
649 	uint32_t min_shared_buffers;
650 
651 	ttransport = calloc(1, sizeof(*ttransport));
652 	if (!ttransport) {
653 		return NULL;
654 	}
655 
656 	TAILQ_INIT(&ttransport->ports);
657 	TAILQ_INIT(&ttransport->poll_groups);
658 	TAILQ_INIT(&ttransport->psks);
659 
660 	ttransport->transport.ops = &spdk_nvmf_transport_tcp;
661 
662 	ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
663 	ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
664 	ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
665 	if (opts->transport_specific != NULL &&
666 	    spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
667 					    SPDK_COUNTOF(tcp_transport_opts_decoder),
668 					    &ttransport->tcp_opts)) {
669 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
670 		free(ttransport);
671 		return NULL;
672 	}
673 
674 	SPDK_NOTICELOG("*** TCP Transport Init ***\n");
675 
676 	SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
677 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
678 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
679 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
680 		     "  num_shared_buffers=%d, c2h_success=%d,\n"
681 		     "  dif_insert_or_strip=%d, sock_priority=%d\n"
682 		     "  abort_timeout_sec=%d, control_msg_num=%hu\n"
683 		     "  ack_timeout=%d\n",
684 		     opts->max_queue_depth,
685 		     opts->max_io_size,
686 		     opts->max_qpairs_per_ctrlr - 1,
687 		     opts->io_unit_size,
688 		     opts->in_capsule_data_size,
689 		     opts->max_aq_depth,
690 		     opts->num_shared_buffers,
691 		     ttransport->tcp_opts.c2h_success,
692 		     opts->dif_insert_or_strip,
693 		     ttransport->tcp_opts.sock_priority,
694 		     opts->abort_timeout_sec,
695 		     ttransport->tcp_opts.control_msg_num,
696 		     opts->ack_timeout);
697 
698 	if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
699 		SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
700 			    "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
701 			    ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
702 		free(ttransport);
703 		return NULL;
704 	}
705 
706 	if (ttransport->tcp_opts.control_msg_num == 0 &&
707 	    opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
708 		SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
709 			     SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
710 		ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
711 	}
712 
713 	/* I/O unit size cannot be larger than max I/O size */
714 	if (opts->io_unit_size > opts->max_io_size) {
715 		SPDK_WARNLOG("TCP param io_unit_size %u can't be larger than max_io_size %u. Using max_io_size as io_unit_size\n",
716 			     opts->io_unit_size, opts->max_io_size);
717 		opts->io_unit_size = opts->max_io_size;
718 	}
719 
720 	/* In capsule data size cannot be larger than max I/O size */
721 	if (opts->in_capsule_data_size > opts->max_io_size) {
722 		SPDK_WARNLOG("TCP param ICD size %u can't be larger than max_io_size %u. Using max_io_size as ICD size\n",
723 			     opts->io_unit_size, opts->max_io_size);
724 		opts->in_capsule_data_size = opts->max_io_size;
725 	}
726 
727 	/* max IO queue depth cannot be smaller than 2 or larger than 65535.
728 	 * We will not check SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, because max_queue_depth is 16bits and always not larger than 64k. */
729 	if (opts->max_queue_depth < SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH) {
730 		SPDK_WARNLOG("TCP param max_queue_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
731 			     opts->max_queue_depth, SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH,
732 			     SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH);
733 		opts->max_queue_depth = SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
734 	}
735 
736 	/* max admin queue depth cannot be smaller than 2 or larger than 4096 */
737 	if (opts->max_aq_depth < SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH ||
738 	    opts->max_aq_depth > SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH) {
739 		SPDK_WARNLOG("TCP param max_aq_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
740 			     opts->max_aq_depth, SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH,
741 			     SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH);
742 		opts->max_aq_depth = SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
743 	}
744 
745 	sge_count = opts->max_io_size / opts->io_unit_size;
746 	if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
747 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
748 		free(ttransport);
749 		return NULL;
750 	}
751 
752 	/* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */
753 	if (opts->buf_cache_size < UINT32_MAX) {
754 		min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
755 		if (min_shared_buffers > opts->num_shared_buffers) {
756 			SPDK_ERRLOG("There are not enough buffers to satisfy "
757 				    "per-poll group caches for each thread. (%" PRIu32 ") "
758 				    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
759 			SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
760 			free(ttransport);
761 			return NULL;
762 		}
763 	}
764 
765 	ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport,
766 				    opts->acceptor_poll_rate);
767 	if (!ttransport->accept_poller) {
768 		free(ttransport);
769 		return NULL;
770 	}
771 
772 	return &ttransport->transport;
773 }
774 
775 static int
776 nvmf_tcp_trsvcid_to_int(const char *trsvcid)
777 {
778 	unsigned long long ull;
779 	char *end = NULL;
780 
781 	ull = strtoull(trsvcid, &end, 10);
782 	if (end == NULL || end == trsvcid || *end != '\0') {
783 		return -1;
784 	}
785 
786 	/* Valid TCP/IP port numbers are in [1, 65535] */
787 	if (ull == 0 || ull > 65535) {
788 		return -1;
789 	}
790 
791 	return (int)ull;
792 }
793 
794 /**
795  * Canonicalize a listen address trid.
796  */
797 static int
798 nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
799 			   const struct spdk_nvme_transport_id *trid)
800 {
801 	int trsvcid_int;
802 
803 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
804 	if (trsvcid_int < 0) {
805 		return -EINVAL;
806 	}
807 
808 	memset(canon_trid, 0, sizeof(*canon_trid));
809 	spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
810 	canon_trid->adrfam = trid->adrfam;
811 	snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
812 	snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
813 
814 	return 0;
815 }
816 
817 /**
818  * Find an existing listening port.
819  */
820 static struct spdk_nvmf_tcp_port *
821 nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
822 		   const struct spdk_nvme_transport_id *trid)
823 {
824 	struct spdk_nvme_transport_id canon_trid;
825 	struct spdk_nvmf_tcp_port *port;
826 
827 	if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
828 		return NULL;
829 	}
830 
831 	TAILQ_FOREACH(port, &ttransport->ports, link) {
832 		if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
833 			return port;
834 		}
835 	}
836 
837 	return NULL;
838 }
839 
840 static int
841 tcp_sock_get_key(uint8_t *out, int out_len, const char **cipher, const char *pskid,
842 		 void *get_key_ctx)
843 {
844 	struct tcp_psk_entry *entry;
845 	struct spdk_nvmf_tcp_transport *ttransport = get_key_ctx;
846 	size_t psk_len;
847 	int rc;
848 
849 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
850 		if (strcmp(pskid, entry->pskid) != 0) {
851 			continue;
852 		}
853 
854 		psk_len = entry->psk_size;
855 		if ((size_t)out_len < psk_len) {
856 			SPDK_ERRLOG("Out buffer of size: %" PRIu32 " cannot fit PSK of len: %lu\n",
857 				    out_len, psk_len);
858 			return -ENOBUFS;
859 		}
860 
861 		/* Convert PSK to the TLS PSK format. */
862 		rc = nvme_tcp_derive_tls_psk(entry->psk, psk_len, pskid, out, out_len,
863 					     entry->tls_cipher_suite);
864 		if (rc < 0) {
865 			SPDK_ERRLOG("Could not generate TLS PSK\n");
866 		}
867 
868 		switch (entry->tls_cipher_suite) {
869 		case NVME_TCP_CIPHER_AES_128_GCM_SHA256:
870 			*cipher = "TLS_AES_128_GCM_SHA256";
871 			break;
872 		case NVME_TCP_CIPHER_AES_256_GCM_SHA384:
873 			*cipher = "TLS_AES_256_GCM_SHA384";
874 			break;
875 		default:
876 			*cipher = NULL;
877 			return -ENOTSUP;
878 		}
879 
880 		return rc;
881 	}
882 
883 	SPDK_ERRLOG("Could not find PSK for identity: %s\n", pskid);
884 
885 	return -EINVAL;
886 }
887 
888 static int
889 nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
890 		struct spdk_nvmf_listen_opts *listen_opts)
891 {
892 	struct spdk_nvmf_tcp_transport *ttransport;
893 	struct spdk_nvmf_tcp_port *port;
894 	int trsvcid_int;
895 	uint8_t adrfam;
896 	const char *sock_impl_name;
897 	struct spdk_sock_impl_opts impl_opts;
898 	size_t impl_opts_size = sizeof(impl_opts);
899 	struct spdk_sock_opts opts;
900 
901 	if (!strlen(trid->trsvcid)) {
902 		SPDK_ERRLOG("Service id is required\n");
903 		return -EINVAL;
904 	}
905 
906 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
907 
908 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
909 	if (trsvcid_int < 0) {
910 		SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
911 		return -EINVAL;
912 	}
913 
914 	port = calloc(1, sizeof(*port));
915 	if (!port) {
916 		SPDK_ERRLOG("Port allocation failed\n");
917 		return -ENOMEM;
918 	}
919 
920 	port->trid = trid;
921 
922 	sock_impl_name = NULL;
923 
924 	opts.opts_size = sizeof(opts);
925 	spdk_sock_get_default_opts(&opts);
926 	opts.priority = ttransport->tcp_opts.sock_priority;
927 	opts.ack_timeout = transport->opts.ack_timeout;
928 	if (listen_opts->secure_channel) {
929 		if (!g_tls_log) {
930 			SPDK_NOTICELOG("TLS support is considered experimental\n");
931 			g_tls_log = true;
932 		}
933 		sock_impl_name = "ssl";
934 		spdk_sock_impl_get_opts(sock_impl_name, &impl_opts, &impl_opts_size);
935 		impl_opts.tls_version = SPDK_TLS_VERSION_1_3;
936 		impl_opts.get_key = tcp_sock_get_key;
937 		impl_opts.get_key_ctx = ttransport;
938 		impl_opts.tls_cipher_suites = "TLS_AES_256_GCM_SHA384:TLS_AES_128_GCM_SHA256";
939 		opts.impl_opts = &impl_opts;
940 		opts.impl_opts_size = sizeof(impl_opts);
941 	}
942 
943 	port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
944 			    sock_impl_name, &opts);
945 	if (port->listen_sock == NULL) {
946 		SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
947 			    trid->traddr, trsvcid_int,
948 			    spdk_strerror(errno), errno);
949 		free(port);
950 		return -errno;
951 	}
952 
953 	if (spdk_sock_is_ipv4(port->listen_sock)) {
954 		adrfam = SPDK_NVMF_ADRFAM_IPV4;
955 	} else if (spdk_sock_is_ipv6(port->listen_sock)) {
956 		adrfam = SPDK_NVMF_ADRFAM_IPV6;
957 	} else {
958 		SPDK_ERRLOG("Unhandled socket type\n");
959 		adrfam = 0;
960 	}
961 
962 	if (adrfam != trid->adrfam) {
963 		SPDK_ERRLOG("Socket address family mismatch\n");
964 		spdk_sock_close(&port->listen_sock);
965 		free(port);
966 		return -EINVAL;
967 	}
968 
969 	SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
970 		       trid->traddr, trid->trsvcid);
971 
972 	TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
973 	return 0;
974 }
975 
976 static void
977 nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
978 		     const struct spdk_nvme_transport_id *trid)
979 {
980 	struct spdk_nvmf_tcp_transport *ttransport;
981 	struct spdk_nvmf_tcp_port *port;
982 
983 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
984 
985 	SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
986 		      trid->traddr, trid->trsvcid);
987 
988 	port = nvmf_tcp_find_port(ttransport, trid);
989 	if (port) {
990 		TAILQ_REMOVE(&ttransport->ports, port, link);
991 		spdk_sock_close(&port->listen_sock);
992 		free(port);
993 	}
994 }
995 
996 static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
997 		enum nvme_tcp_pdu_recv_state state);
998 
999 static void
1000 nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvme_tcp_qpair_state state)
1001 {
1002 	tqpair->state = state;
1003 	spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
1004 			  tqpair->state);
1005 }
1006 
1007 static void
1008 nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
1009 {
1010 	SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
1011 
1012 	spdk_trace_record(TRACE_TCP_QP_DISCONNECT, 0, 0, (uintptr_t)tqpair);
1013 
1014 	if (tqpair->state <= NVME_TCP_QPAIR_STATE_RUNNING) {
1015 		nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITING);
1016 		assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1017 		spdk_poller_unregister(&tqpair->timeout_poller);
1018 
1019 		/* This will end up calling nvmf_tcp_close_qpair */
1020 		spdk_nvmf_qpair_disconnect(&tqpair->qpair, NULL, NULL);
1021 	}
1022 }
1023 
1024 static void
1025 _mgmt_pdu_write_done(void *_tqpair, int err)
1026 {
1027 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
1028 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1029 
1030 	if (spdk_unlikely(err != 0)) {
1031 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1032 		return;
1033 	}
1034 
1035 	assert(pdu->cb_fn != NULL);
1036 	pdu->cb_fn(pdu->cb_arg);
1037 }
1038 
1039 static void
1040 _req_pdu_write_done(void *req, int err)
1041 {
1042 	struct spdk_nvmf_tcp_req *tcp_req = req;
1043 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1044 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1045 
1046 	assert(tcp_req->pdu_in_use);
1047 	tcp_req->pdu_in_use = false;
1048 
1049 	/* If the request is in a completed state, we're waiting for write completion to free it */
1050 	if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) {
1051 		nvmf_tcp_request_free(tcp_req);
1052 		return;
1053 	}
1054 
1055 	if (spdk_unlikely(err != 0)) {
1056 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1057 		return;
1058 	}
1059 
1060 	assert(pdu->cb_fn != NULL);
1061 	pdu->cb_fn(pdu->cb_arg);
1062 }
1063 
1064 static void
1065 _pdu_write_done(struct nvme_tcp_pdu *pdu, int err)
1066 {
1067 	pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err);
1068 }
1069 
1070 static void
1071 _tcp_write_pdu(struct nvme_tcp_pdu *pdu)
1072 {
1073 	int rc;
1074 	uint32_t mapped_length;
1075 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1076 
1077 	pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
1078 			       tqpair->host_hdgst_enable, tqpair->host_ddgst_enable, &mapped_length);
1079 	spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
1080 
1081 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
1082 	    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
1083 		/* Try to force the send immediately. */
1084 		rc = spdk_sock_flush(tqpair->sock);
1085 		if (rc > 0 && (uint32_t)rc == mapped_length) {
1086 			_pdu_write_done(pdu, 0);
1087 		} else {
1088 			SPDK_ERRLOG("Could not write %s to socket: rc=%d, errno=%d\n",
1089 				    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ?
1090 				    "IC_RESP" : "TERM_REQ", rc, errno);
1091 			_pdu_write_done(pdu, rc >= 0 ? -EAGAIN : -errno);
1092 		}
1093 	}
1094 }
1095 
1096 static void
1097 data_crc32_accel_done(void *cb_arg, int status)
1098 {
1099 	struct nvme_tcp_pdu *pdu = cb_arg;
1100 
1101 	if (spdk_unlikely(status)) {
1102 		SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
1103 		_pdu_write_done(pdu, status);
1104 		return;
1105 	}
1106 
1107 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
1108 	MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
1109 
1110 	_tcp_write_pdu(pdu);
1111 }
1112 
1113 static void
1114 pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
1115 {
1116 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1117 	int rc = 0;
1118 
1119 	/* Data Digest */
1120 	if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
1121 		/* Only support this limitated case for the first step */
1122 		if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
1123 				&& tqpair->group)) {
1124 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
1125 						       pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
1126 			if (spdk_likely(rc == 0)) {
1127 				return;
1128 			}
1129 		} else {
1130 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1131 		}
1132 		data_crc32_accel_done(pdu, rc);
1133 	} else {
1134 		_tcp_write_pdu(pdu);
1135 	}
1136 }
1137 
1138 static void
1139 nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1140 			 struct nvme_tcp_pdu *pdu,
1141 			 nvme_tcp_qpair_xfer_complete_cb cb_fn,
1142 			 void *cb_arg)
1143 {
1144 	int hlen;
1145 	uint32_t crc32c;
1146 
1147 	assert(tqpair->pdu_in_progress != pdu);
1148 
1149 	hlen = pdu->hdr.common.hlen;
1150 	pdu->cb_fn = cb_fn;
1151 	pdu->cb_arg = cb_arg;
1152 
1153 	pdu->iov[0].iov_base = &pdu->hdr.raw;
1154 	pdu->iov[0].iov_len = hlen;
1155 
1156 	/* Header Digest */
1157 	if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) {
1158 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1159 		MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
1160 	}
1161 
1162 	/* Data Digest */
1163 	pdu_data_crc32_compute(pdu);
1164 }
1165 
1166 static void
1167 nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1168 			      nvme_tcp_qpair_xfer_complete_cb cb_fn,
1169 			      void *cb_arg)
1170 {
1171 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1172 
1173 	pdu->sock_req.cb_fn = _mgmt_pdu_write_done;
1174 	pdu->sock_req.cb_arg = tqpair;
1175 
1176 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1177 }
1178 
1179 static void
1180 nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1181 			     struct spdk_nvmf_tcp_req *tcp_req,
1182 			     nvme_tcp_qpair_xfer_complete_cb cb_fn,
1183 			     void *cb_arg)
1184 {
1185 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1186 
1187 	pdu->sock_req.cb_fn = _req_pdu_write_done;
1188 	pdu->sock_req.cb_arg = tcp_req;
1189 
1190 	assert(!tcp_req->pdu_in_use);
1191 	tcp_req->pdu_in_use = true;
1192 
1193 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1194 }
1195 
1196 static int
1197 nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
1198 {
1199 	uint32_t i;
1200 	struct spdk_nvmf_transport_opts *opts;
1201 	uint32_t in_capsule_data_size;
1202 
1203 	opts = &tqpair->qpair.transport->opts;
1204 
1205 	in_capsule_data_size = opts->in_capsule_data_size;
1206 	if (opts->dif_insert_or_strip) {
1207 		in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
1208 	}
1209 
1210 	tqpair->resource_count = opts->max_queue_depth;
1211 
1212 	tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
1213 	if (!tqpair->reqs) {
1214 		SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
1215 		return -1;
1216 	}
1217 
1218 	if (in_capsule_data_size) {
1219 		tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
1220 					    NULL, SPDK_ENV_LCORE_ID_ANY,
1221 					    SPDK_MALLOC_DMA);
1222 		if (!tqpair->bufs) {
1223 			SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
1224 			return -1;
1225 		}
1226 	}
1227 	/* prepare memory space for receiving pdus and tcp_req */
1228 	/* Add additional 1 member, which will be used for mgmt_pdu owned by the tqpair */
1229 	tqpair->pdus = spdk_dma_zmalloc((2 * tqpair->resource_count + 1) * sizeof(*tqpair->pdus), 0x1000,
1230 					NULL);
1231 	if (!tqpair->pdus) {
1232 		SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
1233 		return -1;
1234 	}
1235 
1236 	for (i = 0; i < tqpair->resource_count; i++) {
1237 		struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
1238 
1239 		tcp_req->ttag = i + 1;
1240 		tcp_req->req.qpair = &tqpair->qpair;
1241 
1242 		tcp_req->pdu = &tqpair->pdus[i];
1243 		tcp_req->pdu->qpair = tqpair;
1244 
1245 		/* Set up memory to receive commands */
1246 		if (tqpair->bufs) {
1247 			tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
1248 		}
1249 
1250 		/* Set the cmdn and rsp */
1251 		tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
1252 		tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
1253 
1254 		tcp_req->req.stripped_data = NULL;
1255 
1256 		/* Initialize request state to FREE */
1257 		tcp_req->state = TCP_REQUEST_STATE_FREE;
1258 		TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
1259 		tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
1260 	}
1261 
1262 	for (; i < 2 * tqpair->resource_count; i++) {
1263 		struct nvme_tcp_pdu *pdu = &tqpair->pdus[i];
1264 
1265 		pdu->qpair = tqpair;
1266 		SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1267 	}
1268 
1269 	tqpair->mgmt_pdu = &tqpair->pdus[i];
1270 	tqpair->mgmt_pdu->qpair = tqpair;
1271 	tqpair->pdu_in_progress = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
1272 	SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
1273 	tqpair->tcp_pdu_working_count = 1;
1274 
1275 	tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
1276 				 SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1277 
1278 	return 0;
1279 }
1280 
1281 static int
1282 nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
1283 {
1284 	struct spdk_nvmf_tcp_qpair *tqpair;
1285 
1286 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1287 
1288 	SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
1289 
1290 	spdk_trace_record(TRACE_TCP_QP_CREATE, 0, 0, (uintptr_t)tqpair);
1291 
1292 	/* Initialise request state queues of the qpair */
1293 	TAILQ_INIT(&tqpair->tcp_req_free_queue);
1294 	TAILQ_INIT(&tqpair->tcp_req_working_queue);
1295 	SLIST_INIT(&tqpair->tcp_pdu_free_queue);
1296 
1297 	tqpair->host_hdgst_enable = true;
1298 	tqpair->host_ddgst_enable = true;
1299 
1300 	return 0;
1301 }
1302 
1303 static int
1304 nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
1305 {
1306 	int rc;
1307 
1308 	spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, 0, 0, (uintptr_t)tqpair);
1309 
1310 	/* set low water mark */
1311 	rc = spdk_sock_set_recvlowat(tqpair->sock, 1);
1312 	if (rc != 0) {
1313 		SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
1314 		return rc;
1315 	}
1316 
1317 	return 0;
1318 }
1319 
1320 static void
1321 nvmf_tcp_handle_connect(struct spdk_nvmf_transport *transport,
1322 			struct spdk_nvmf_tcp_port *port,
1323 			struct spdk_sock *sock)
1324 {
1325 	struct spdk_nvmf_tcp_qpair *tqpair;
1326 	int rc;
1327 
1328 	SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
1329 		      port->trid->traddr, port->trid->trsvcid);
1330 
1331 	tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
1332 	if (tqpair == NULL) {
1333 		SPDK_ERRLOG("Could not allocate new connection.\n");
1334 		spdk_sock_close(&sock);
1335 		return;
1336 	}
1337 
1338 	tqpair->sock = sock;
1339 	tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
1340 	tqpair->port = port;
1341 	tqpair->qpair.transport = transport;
1342 
1343 	rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
1344 			       sizeof(tqpair->target_addr), &tqpair->target_port,
1345 			       tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
1346 			       &tqpair->initiator_port);
1347 	if (rc < 0) {
1348 		SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
1349 		nvmf_tcp_qpair_destroy(tqpair);
1350 		return;
1351 	}
1352 
1353 	spdk_nvmf_tgt_new_qpair(transport->tgt, &tqpair->qpair);
1354 }
1355 
1356 static uint32_t
1357 nvmf_tcp_port_accept(struct spdk_nvmf_transport *transport, struct spdk_nvmf_tcp_port *port)
1358 {
1359 	struct spdk_sock *sock;
1360 	uint32_t count = 0;
1361 	int i;
1362 
1363 	for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
1364 		sock = spdk_sock_accept(port->listen_sock);
1365 		if (sock == NULL) {
1366 			break;
1367 		}
1368 		count++;
1369 		nvmf_tcp_handle_connect(transport, port, sock);
1370 	}
1371 
1372 	return count;
1373 }
1374 
1375 static int
1376 nvmf_tcp_accept(void *ctx)
1377 {
1378 	struct spdk_nvmf_transport *transport = ctx;
1379 	struct spdk_nvmf_tcp_transport *ttransport;
1380 	struct spdk_nvmf_tcp_port *port;
1381 	uint32_t count = 0;
1382 
1383 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1384 
1385 	TAILQ_FOREACH(port, &ttransport->ports, link) {
1386 		count += nvmf_tcp_port_accept(transport, port);
1387 	}
1388 
1389 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1390 }
1391 
1392 static void
1393 nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
1394 		  struct spdk_nvme_transport_id *trid,
1395 		  struct spdk_nvmf_discovery_log_page_entry *entry)
1396 {
1397 	struct spdk_nvmf_tcp_port *port;
1398 	struct spdk_nvmf_tcp_transport *ttransport;
1399 
1400 	entry->trtype = SPDK_NVMF_TRTYPE_TCP;
1401 	entry->adrfam = trid->adrfam;
1402 
1403 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
1404 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
1405 
1406 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1407 	port = nvmf_tcp_find_port(ttransport, trid);
1408 
1409 	assert(port != NULL);
1410 
1411 	if (strcmp(spdk_sock_get_impl_name(port->listen_sock), "ssl") == 0) {
1412 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_REQUIRED;
1413 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_TLS_1_3;
1414 	} else {
1415 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
1416 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
1417 	}
1418 }
1419 
1420 static struct spdk_nvmf_tcp_control_msg_list *
1421 nvmf_tcp_control_msg_list_create(uint16_t num_messages)
1422 {
1423 	struct spdk_nvmf_tcp_control_msg_list *list;
1424 	struct spdk_nvmf_tcp_control_msg *msg;
1425 	uint16_t i;
1426 
1427 	list = calloc(1, sizeof(*list));
1428 	if (!list) {
1429 		SPDK_ERRLOG("Failed to allocate memory for list structure\n");
1430 		return NULL;
1431 	}
1432 
1433 	list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
1434 				     NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
1435 	if (!list->msg_buf) {
1436 		SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
1437 		free(list);
1438 		return NULL;
1439 	}
1440 
1441 	STAILQ_INIT(&list->free_msgs);
1442 
1443 	for (i = 0; i < num_messages; i++) {
1444 		msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
1445 				SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1446 		STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
1447 	}
1448 
1449 	return list;
1450 }
1451 
1452 static void
1453 nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
1454 {
1455 	if (!list) {
1456 		return;
1457 	}
1458 
1459 	spdk_free(list->msg_buf);
1460 	free(list);
1461 }
1462 
1463 static struct spdk_nvmf_transport_poll_group *
1464 nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport,
1465 			   struct spdk_nvmf_poll_group *group)
1466 {
1467 	struct spdk_nvmf_tcp_transport	*ttransport;
1468 	struct spdk_nvmf_tcp_poll_group *tgroup;
1469 
1470 	tgroup = calloc(1, sizeof(*tgroup));
1471 	if (!tgroup) {
1472 		return NULL;
1473 	}
1474 
1475 	tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
1476 	if (!tgroup->sock_group) {
1477 		goto cleanup;
1478 	}
1479 
1480 	TAILQ_INIT(&tgroup->qpairs);
1481 	TAILQ_INIT(&tgroup->await_req);
1482 
1483 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1484 
1485 	if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
1486 		SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
1487 			      "Creating control messages list\n", transport->opts.in_capsule_data_size,
1488 			      SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1489 		tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
1490 		if (!tgroup->control_msg_list) {
1491 			goto cleanup;
1492 		}
1493 	}
1494 
1495 	tgroup->accel_channel = spdk_accel_get_io_channel();
1496 	if (spdk_unlikely(!tgroup->accel_channel)) {
1497 		SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
1498 		goto cleanup;
1499 	}
1500 
1501 	TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link);
1502 	if (ttransport->next_pg == NULL) {
1503 		ttransport->next_pg = tgroup;
1504 	}
1505 
1506 	return &tgroup->group;
1507 
1508 cleanup:
1509 	nvmf_tcp_poll_group_destroy(&tgroup->group);
1510 	return NULL;
1511 }
1512 
1513 static struct spdk_nvmf_transport_poll_group *
1514 nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
1515 {
1516 	struct spdk_nvmf_tcp_transport *ttransport;
1517 	struct spdk_nvmf_tcp_poll_group **pg;
1518 	struct spdk_nvmf_tcp_qpair *tqpair;
1519 	struct spdk_sock_group *group = NULL, *hint = NULL;
1520 	int rc;
1521 
1522 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
1523 
1524 	if (TAILQ_EMPTY(&ttransport->poll_groups)) {
1525 		return NULL;
1526 	}
1527 
1528 	pg = &ttransport->next_pg;
1529 	assert(*pg != NULL);
1530 	hint = (*pg)->sock_group;
1531 
1532 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1533 	rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint);
1534 	if (rc != 0) {
1535 		return NULL;
1536 	} else if (group != NULL) {
1537 		/* Optimal poll group was found */
1538 		return spdk_sock_group_get_ctx(group);
1539 	}
1540 
1541 	/* The hint was used for optimal poll group, advance next_pg. */
1542 	*pg = TAILQ_NEXT(*pg, link);
1543 	if (*pg == NULL) {
1544 		*pg = TAILQ_FIRST(&ttransport->poll_groups);
1545 	}
1546 
1547 	return spdk_sock_group_get_ctx(hint);
1548 }
1549 
1550 static void
1551 nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
1552 {
1553 	struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup;
1554 	struct spdk_nvmf_tcp_transport *ttransport;
1555 
1556 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
1557 	spdk_sock_group_close(&tgroup->sock_group);
1558 	if (tgroup->control_msg_list) {
1559 		nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
1560 	}
1561 
1562 	if (tgroup->accel_channel) {
1563 		spdk_put_io_channel(tgroup->accel_channel);
1564 	}
1565 
1566 	if (tgroup->group.transport == NULL) {
1567 		/* Transport can be NULL when nvmf_tcp_poll_group_create()
1568 		 * calls this function directly in a failure path. */
1569 		free(tgroup);
1570 		return;
1571 	}
1572 
1573 	ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport);
1574 
1575 	next_tgroup = TAILQ_NEXT(tgroup, link);
1576 	TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link);
1577 	if (next_tgroup == NULL) {
1578 		next_tgroup = TAILQ_FIRST(&ttransport->poll_groups);
1579 	}
1580 	if (ttransport->next_pg == tgroup) {
1581 		ttransport->next_pg = next_tgroup;
1582 	}
1583 
1584 	free(tgroup);
1585 }
1586 
1587 static void
1588 nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1589 			      enum nvme_tcp_pdu_recv_state state)
1590 {
1591 	if (tqpair->recv_state == state) {
1592 		SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
1593 			    tqpair, state);
1594 		return;
1595 	}
1596 
1597 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_QUIESCING)) {
1598 		if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH && tqpair->pdu_in_progress) {
1599 			SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, tqpair->pdu_in_progress, slist);
1600 			tqpair->tcp_pdu_working_count--;
1601 		}
1602 	}
1603 
1604 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_ERROR)) {
1605 		assert(tqpair->tcp_pdu_working_count == 0);
1606 	}
1607 
1608 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1609 		/* When leaving the await req state, move the qpair to the main list */
1610 		TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link);
1611 		TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link);
1612 	} else if (state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1613 		TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link);
1614 		TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link);
1615 	}
1616 
1617 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
1618 	tqpair->recv_state = state;
1619 
1620 	spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
1621 			  tqpair->recv_state);
1622 }
1623 
1624 static int
1625 nvmf_tcp_qpair_handle_timeout(void *ctx)
1626 {
1627 	struct spdk_nvmf_tcp_qpair *tqpair = ctx;
1628 
1629 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1630 
1631 	SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
1632 		    SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
1633 
1634 	nvmf_tcp_qpair_disconnect(tqpair);
1635 	return SPDK_POLLER_BUSY;
1636 }
1637 
1638 static void
1639 nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
1640 {
1641 	struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
1642 
1643 	if (!tqpair->timeout_poller) {
1644 		tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
1645 					 SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
1646 	}
1647 }
1648 
1649 static void
1650 nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
1651 			   enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
1652 {
1653 	struct nvme_tcp_pdu *rsp_pdu;
1654 	struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
1655 	uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
1656 	uint32_t copy_len;
1657 
1658 	rsp_pdu = tqpair->mgmt_pdu;
1659 
1660 	c2h_term_req = &rsp_pdu->hdr.term_req;
1661 	c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
1662 	c2h_term_req->common.hlen = c2h_term_req_hdr_len;
1663 	c2h_term_req->fes = fes;
1664 
1665 	if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1666 	    (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1667 		DSET32(&c2h_term_req->fei, error_offset);
1668 	}
1669 
1670 	copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
1671 
1672 	/* Copy the error info into the buffer */
1673 	memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
1674 	nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
1675 
1676 	/* Contain the header of the wrong received pdu */
1677 	c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
1678 	tqpair->wait_terminate = true;
1679 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1680 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair);
1681 }
1682 
1683 static void
1684 nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1685 				struct spdk_nvmf_tcp_qpair *tqpair,
1686 				struct nvme_tcp_pdu *pdu)
1687 {
1688 	struct spdk_nvmf_tcp_req *tcp_req;
1689 
1690 	assert(pdu->psh_valid_bytes == pdu->psh_len);
1691 	assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
1692 
1693 	tcp_req = nvmf_tcp_req_get(tqpair);
1694 	if (!tcp_req) {
1695 		/* Directly return and make the allocation retry again.  This can happen if we're
1696 		 * using asynchronous writes to send the response to the host or when releasing
1697 		 * zero-copy buffers after a response has been sent.  In both cases, the host might
1698 		 * receive the response before we've finished processing the request and is free to
1699 		 * send another one.
1700 		 */
1701 		if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 ||
1702 		    tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) {
1703 			return;
1704 		}
1705 
1706 		/* The host sent more commands than the maximum queue depth. */
1707 		SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
1708 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1709 		return;
1710 	}
1711 
1712 	pdu->req = tcp_req;
1713 	assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
1714 	nvmf_tcp_req_process(ttransport, tcp_req);
1715 }
1716 
1717 static void
1718 nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1719 				    struct spdk_nvmf_tcp_qpair *tqpair,
1720 				    struct nvme_tcp_pdu *pdu)
1721 {
1722 	struct spdk_nvmf_tcp_req *tcp_req;
1723 	struct spdk_nvme_tcp_cmd *capsule_cmd;
1724 	uint32_t error_offset = 0;
1725 	enum spdk_nvme_tcp_term_req_fes fes;
1726 	struct spdk_nvme_cpl *rsp;
1727 
1728 	capsule_cmd = &pdu->hdr.capsule_cmd;
1729 	tcp_req = pdu->req;
1730 	assert(tcp_req != NULL);
1731 
1732 	/* Zero-copy requests don't support ICD */
1733 	assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req));
1734 
1735 	if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
1736 		SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
1737 			    SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
1738 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1739 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
1740 		goto err;
1741 	}
1742 
1743 	rsp = &tcp_req->req.rsp->nvme_cpl;
1744 	if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1745 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1746 	} else {
1747 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1748 	}
1749 
1750 	nvmf_tcp_req_process(ttransport, tcp_req);
1751 
1752 	return;
1753 err:
1754 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1755 }
1756 
1757 static void
1758 nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1759 			     struct spdk_nvmf_tcp_qpair *tqpair,
1760 			     struct nvme_tcp_pdu *pdu)
1761 {
1762 	struct spdk_nvmf_tcp_req *tcp_req;
1763 	uint32_t error_offset = 0;
1764 	enum spdk_nvme_tcp_term_req_fes fes = 0;
1765 	struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
1766 
1767 	h2c_data = &pdu->hdr.h2c_data;
1768 
1769 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
1770 		      tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
1771 
1772 	if (h2c_data->ttag > tqpair->resource_count) {
1773 		SPDK_DEBUGLOG(nvmf_tcp, "ttag %u is larger than allowed %u.\n", h2c_data->ttag,
1774 			      tqpair->resource_count);
1775 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1776 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1777 		goto err;
1778 	}
1779 
1780 	tcp_req = &tqpair->reqs[h2c_data->ttag - 1];
1781 
1782 	if (spdk_unlikely(tcp_req->state != TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER &&
1783 			  tcp_req->state != TCP_REQUEST_STATE_AWAITING_R2T_ACK)) {
1784 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, has error state in %d\n", tcp_req, tqpair,
1785 			      tcp_req->state);
1786 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1787 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1788 		goto err;
1789 	}
1790 
1791 	if (spdk_unlikely(tcp_req->req.cmd->nvme_cmd.cid != h2c_data->cccid)) {
1792 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, expected %u but %u for cccid.\n", tcp_req, tqpair,
1793 			      tcp_req->req.cmd->nvme_cmd.cid, h2c_data->cccid);
1794 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1795 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
1796 		goto err;
1797 	}
1798 
1799 	if (tcp_req->h2c_offset != h2c_data->datao) {
1800 		SPDK_DEBUGLOG(nvmf_tcp,
1801 			      "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
1802 			      tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
1803 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1804 		goto err;
1805 	}
1806 
1807 	if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
1808 		SPDK_DEBUGLOG(nvmf_tcp,
1809 			      "tcp_req(%p), tqpair=%p,  (datao=%u + datal=%u) exceeds requested length=%u\n",
1810 			      tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
1811 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1812 		goto err;
1813 	}
1814 
1815 	pdu->req = tcp_req;
1816 
1817 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
1818 		pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
1819 	}
1820 
1821 	nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
1822 				  h2c_data->datao, h2c_data->datal);
1823 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1824 	return;
1825 
1826 err:
1827 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1828 }
1829 
1830 static void
1831 nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
1832 			       struct spdk_nvmf_tcp_qpair *tqpair)
1833 {
1834 	struct nvme_tcp_pdu *rsp_pdu;
1835 	struct spdk_nvme_tcp_rsp *capsule_resp;
1836 
1837 	SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
1838 
1839 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1840 	assert(rsp_pdu != NULL);
1841 
1842 	capsule_resp = &rsp_pdu->hdr.capsule_resp;
1843 	capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
1844 	capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
1845 	capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
1846 	if (tqpair->host_hdgst_enable) {
1847 		capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1848 		capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1849 	}
1850 
1851 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req);
1852 }
1853 
1854 static void
1855 nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
1856 {
1857 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1858 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
1859 					     struct spdk_nvmf_tcp_qpair, qpair);
1860 
1861 	assert(tqpair != NULL);
1862 
1863 	if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
1864 		SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
1865 			      tcp_req->req.length);
1866 		_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
1867 		return;
1868 	}
1869 
1870 	if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
1871 		nvmf_tcp_request_free(tcp_req);
1872 	} else {
1873 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
1874 	}
1875 }
1876 
1877 static void
1878 nvmf_tcp_r2t_complete(void *cb_arg)
1879 {
1880 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1881 	struct spdk_nvmf_tcp_transport *ttransport;
1882 
1883 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
1884 				      struct spdk_nvmf_tcp_transport, transport);
1885 
1886 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
1887 
1888 	if (tcp_req->h2c_offset == tcp_req->req.length) {
1889 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1890 		nvmf_tcp_req_process(ttransport, tcp_req);
1891 	}
1892 }
1893 
1894 static void
1895 nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1896 		      struct spdk_nvmf_tcp_req *tcp_req)
1897 {
1898 	struct nvme_tcp_pdu *rsp_pdu;
1899 	struct spdk_nvme_tcp_r2t_hdr *r2t;
1900 
1901 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1902 	assert(rsp_pdu != NULL);
1903 
1904 	r2t = &rsp_pdu->hdr.r2t;
1905 	r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
1906 	r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
1907 
1908 	if (tqpair->host_hdgst_enable) {
1909 		r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1910 		r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1911 	}
1912 
1913 	r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
1914 	r2t->ttag = tcp_req->ttag;
1915 	r2t->r2to = tcp_req->h2c_offset;
1916 	r2t->r2tl = tcp_req->req.length;
1917 
1918 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
1919 
1920 	SPDK_DEBUGLOG(nvmf_tcp,
1921 		      "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
1922 		      tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
1923 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req);
1924 }
1925 
1926 static void
1927 nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1928 				 struct spdk_nvmf_tcp_qpair *tqpair,
1929 				 struct nvme_tcp_pdu *pdu)
1930 {
1931 	struct spdk_nvmf_tcp_req *tcp_req;
1932 	struct spdk_nvme_cpl *rsp;
1933 
1934 	tcp_req = pdu->req;
1935 	assert(tcp_req != NULL);
1936 
1937 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1938 
1939 	tcp_req->h2c_offset += pdu->data_len;
1940 
1941 	/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
1942 	 * acknowledged before moving on. */
1943 	if (tcp_req->h2c_offset == tcp_req->req.length &&
1944 	    tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
1945 		/* After receiving all the h2c data, we need to check whether there is
1946 		 * transient transport error */
1947 		rsp = &tcp_req->req.rsp->nvme_cpl;
1948 		if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1949 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1950 		} else {
1951 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1952 		}
1953 		nvmf_tcp_req_process(ttransport, tcp_req);
1954 	}
1955 }
1956 
1957 static void
1958 nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
1959 {
1960 	SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
1961 		    spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
1962 	if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1963 	    (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1964 		SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
1965 			      DGET32(h2c_term_req->fei));
1966 	}
1967 }
1968 
1969 static void
1970 nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1971 				 struct nvme_tcp_pdu *pdu)
1972 {
1973 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1974 	uint32_t error_offset = 0;
1975 	enum spdk_nvme_tcp_term_req_fes fes;
1976 
1977 	if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
1978 		SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
1979 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1980 		error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
1981 		goto end;
1982 	}
1983 
1984 	/* set the data buffer */
1985 	nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
1986 			      h2c_term_req->common.plen - h2c_term_req->common.hlen);
1987 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1988 	return;
1989 end:
1990 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1991 }
1992 
1993 static void
1994 nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1995 				     struct nvme_tcp_pdu *pdu)
1996 {
1997 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1998 
1999 	nvmf_tcp_h2c_term_req_dump(h2c_term_req);
2000 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2001 }
2002 
2003 static void
2004 _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2005 {
2006 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2007 			struct spdk_nvmf_tcp_transport, transport);
2008 
2009 	switch (pdu->hdr.common.pdu_type) {
2010 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2011 		nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
2012 		break;
2013 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2014 		nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
2015 		break;
2016 
2017 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2018 		nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
2019 		break;
2020 
2021 	default:
2022 		/* The code should not go to here */
2023 		SPDK_ERRLOG("ERROR pdu type %d\n", pdu->hdr.common.pdu_type);
2024 		break;
2025 	}
2026 	SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
2027 	tqpair->tcp_pdu_working_count--;
2028 }
2029 
2030 static inline void
2031 nvmf_tcp_req_set_cpl(struct spdk_nvmf_tcp_req *treq, int sct, int sc)
2032 {
2033 	treq->req.rsp->nvme_cpl.status.sct = sct;
2034 	treq->req.rsp->nvme_cpl.status.sc = sc;
2035 	treq->req.rsp->nvme_cpl.cid = treq->req.cmd->nvme_cmd.cid;
2036 }
2037 
2038 static void
2039 data_crc32_calc_done(void *cb_arg, int status)
2040 {
2041 	struct nvme_tcp_pdu *pdu = cb_arg;
2042 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
2043 
2044 	/* async crc32 calculation is failed and use direct calculation to check */
2045 	if (spdk_unlikely(status)) {
2046 		SPDK_ERRLOG("Data digest on tqpair=(%p) with pdu=%p failed to be calculated asynchronously\n",
2047 			    tqpair, pdu);
2048 		pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2049 	}
2050 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
2051 	if (!MATCH_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32)) {
2052 		SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2053 		assert(pdu->req != NULL);
2054 		nvmf_tcp_req_set_cpl(pdu->req, SPDK_NVME_SCT_GENERIC,
2055 				     SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR);
2056 	}
2057 	_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2058 }
2059 
2060 static void
2061 nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2062 {
2063 	int rc = 0;
2064 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2065 	tqpair->pdu_in_progress = NULL;
2066 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2067 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2068 	/* check data digest if need */
2069 	if (pdu->ddgst_enable) {
2070 		if (tqpair->qpair.qid != 0 && !pdu->dif_ctx && tqpair->group &&
2071 		    (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)) {
2072 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
2073 						       pdu->data_iovcnt, 0, data_crc32_calc_done, pdu);
2074 			if (spdk_likely(rc == 0)) {
2075 				return;
2076 			}
2077 		} else {
2078 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2079 		}
2080 		data_crc32_calc_done(pdu, rc);
2081 	} else {
2082 		_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2083 	}
2084 }
2085 
2086 static void
2087 nvmf_tcp_send_icresp_complete(void *cb_arg)
2088 {
2089 	struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
2090 
2091 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_RUNNING);
2092 }
2093 
2094 static void
2095 nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
2096 		      struct spdk_nvmf_tcp_qpair *tqpair,
2097 		      struct nvme_tcp_pdu *pdu)
2098 {
2099 	struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
2100 	struct nvme_tcp_pdu *rsp_pdu;
2101 	struct spdk_nvme_tcp_ic_resp *ic_resp;
2102 	uint32_t error_offset = 0;
2103 	enum spdk_nvme_tcp_term_req_fes fes;
2104 
2105 	/* Only PFV 0 is defined currently */
2106 	if (ic_req->pfv != 0) {
2107 		SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
2108 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2109 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
2110 		goto end;
2111 	}
2112 
2113 	/* This value is 0’s based value in units of dwords should not be larger than SPDK_NVME_TCP_HPDA_MAX */
2114 	if (ic_req->hpda > SPDK_NVME_TCP_HPDA_MAX) {
2115 		SPDK_ERRLOG("ICReq HPDA out of range 0 to 31, got %u\n", ic_req->hpda);
2116 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2117 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, hpda);
2118 		goto end;
2119 	}
2120 
2121 	/* MAXR2T is 0's based */
2122 	SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
2123 
2124 	tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
2125 	if (!tqpair->host_hdgst_enable) {
2126 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2127 	}
2128 
2129 	tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
2130 	if (!tqpair->host_ddgst_enable) {
2131 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2132 	}
2133 
2134 	tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
2135 	/* Now that we know whether digests are enabled, properly size the receive buffer */
2136 	if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
2137 		SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
2138 			     tqpair,
2139 			     tqpair->recv_buf_size);
2140 		/* Not fatal. */
2141 	}
2142 
2143 	tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
2144 	SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
2145 
2146 	rsp_pdu = tqpair->mgmt_pdu;
2147 
2148 	ic_resp = &rsp_pdu->hdr.ic_resp;
2149 	ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
2150 	ic_resp->common.hlen = ic_resp->common.plen =  sizeof(*ic_resp);
2151 	ic_resp->pfv = 0;
2152 	ic_resp->cpda = tqpair->cpda;
2153 	ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
2154 	ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
2155 	ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
2156 
2157 	SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
2158 	SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
2159 
2160 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INITIALIZING);
2161 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair);
2162 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2163 	return;
2164 end:
2165 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2166 }
2167 
2168 static void
2169 nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2170 			struct spdk_nvmf_tcp_transport *ttransport)
2171 {
2172 	struct nvme_tcp_pdu *pdu;
2173 	int rc;
2174 	uint32_t crc32c, error_offset = 0;
2175 	enum spdk_nvme_tcp_term_req_fes fes;
2176 
2177 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2178 	pdu = tqpair->pdu_in_progress;
2179 
2180 	SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
2181 		      pdu->hdr.common.pdu_type);
2182 	/* check header digest if needed */
2183 	if (pdu->has_hdgst) {
2184 		SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
2185 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
2186 		rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
2187 		if (rc == 0) {
2188 			SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2189 			fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
2190 			nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2191 			return;
2192 
2193 		}
2194 	}
2195 
2196 	switch (pdu->hdr.common.pdu_type) {
2197 	case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
2198 		nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
2199 		break;
2200 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2201 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
2202 		break;
2203 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2204 		nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
2205 		break;
2206 
2207 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2208 		nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
2209 		break;
2210 
2211 	default:
2212 		SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
2213 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2214 		error_offset = 1;
2215 		nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2216 		break;
2217 	}
2218 }
2219 
2220 static void
2221 nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
2222 {
2223 	struct nvme_tcp_pdu *pdu;
2224 	uint32_t error_offset = 0;
2225 	enum spdk_nvme_tcp_term_req_fes fes;
2226 	uint8_t expected_hlen, pdo;
2227 	bool plen_error = false, pdo_error = false;
2228 
2229 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2230 	pdu = tqpair->pdu_in_progress;
2231 	assert(pdu);
2232 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
2233 		if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) {
2234 			SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
2235 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2236 			goto err;
2237 		}
2238 		expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
2239 		if (pdu->hdr.common.plen != expected_hlen) {
2240 			plen_error = true;
2241 		}
2242 	} else {
2243 		if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) {
2244 			SPDK_ERRLOG("The TCP/IP connection is not negotiated\n");
2245 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2246 			goto err;
2247 		}
2248 
2249 		switch (pdu->hdr.common.pdu_type) {
2250 		case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2251 			expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
2252 			pdo = pdu->hdr.common.pdo;
2253 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2254 				pdo_error = true;
2255 				break;
2256 			}
2257 
2258 			if (pdu->hdr.common.plen < expected_hlen) {
2259 				plen_error = true;
2260 			}
2261 			break;
2262 		case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2263 			expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
2264 			pdo = pdu->hdr.common.pdo;
2265 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2266 				pdo_error = true;
2267 				break;
2268 			}
2269 			if (pdu->hdr.common.plen < expected_hlen) {
2270 				plen_error = true;
2271 			}
2272 			break;
2273 
2274 		case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2275 			expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
2276 			if ((pdu->hdr.common.plen <= expected_hlen) ||
2277 			    (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
2278 				plen_error = true;
2279 			}
2280 			break;
2281 
2282 		default:
2283 			SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
2284 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2285 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
2286 			goto err;
2287 		}
2288 	}
2289 
2290 	if (pdu->hdr.common.hlen != expected_hlen) {
2291 		SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
2292 			    pdu->hdr.common.pdu_type,
2293 			    expected_hlen, pdu->hdr.common.hlen, tqpair);
2294 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2295 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
2296 		goto err;
2297 	} else if (pdo_error) {
2298 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2299 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
2300 	} else if (plen_error) {
2301 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2302 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2303 		goto err;
2304 	} else {
2305 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2306 		nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
2307 		return;
2308 	}
2309 err:
2310 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2311 }
2312 
2313 static int
2314 nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
2315 {
2316 	int rc = 0;
2317 	struct nvme_tcp_pdu *pdu;
2318 	enum nvme_tcp_pdu_recv_state prev_state;
2319 	uint32_t data_len;
2320 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2321 			struct spdk_nvmf_tcp_transport, transport);
2322 
2323 	/* The loop here is to allow for several back-to-back state changes. */
2324 	do {
2325 		prev_state = tqpair->recv_state;
2326 		SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
2327 
2328 		pdu = tqpair->pdu_in_progress;
2329 		assert(pdu != NULL ||
2330 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY ||
2331 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_QUIESCING ||
2332 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
2333 
2334 		switch (tqpair->recv_state) {
2335 		/* Wait for the common header  */
2336 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
2337 			if (!pdu) {
2338 				pdu = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
2339 				if (spdk_unlikely(!pdu)) {
2340 					return NVME_TCP_PDU_IN_PROGRESS;
2341 				}
2342 				SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
2343 				tqpair->pdu_in_progress = pdu;
2344 				tqpair->tcp_pdu_working_count++;
2345 			}
2346 			memset(pdu, 0, offsetof(struct nvme_tcp_pdu, qpair));
2347 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2348 		/* FALLTHROUGH */
2349 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
2350 			if (spdk_unlikely(tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING)) {
2351 				return rc;
2352 			}
2353 
2354 			rc = nvme_tcp_read_data(tqpair->sock,
2355 						sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
2356 						(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
2357 			if (rc < 0) {
2358 				SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
2359 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2360 				break;
2361 			} else if (rc > 0) {
2362 				pdu->ch_valid_bytes += rc;
2363 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2364 			}
2365 
2366 			if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
2367 				return NVME_TCP_PDU_IN_PROGRESS;
2368 			}
2369 
2370 			/* The command header of this PDU has now been read from the socket. */
2371 			nvmf_tcp_pdu_ch_handle(tqpair);
2372 			break;
2373 		/* Wait for the pdu specific header  */
2374 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
2375 			rc = nvme_tcp_read_data(tqpair->sock,
2376 						pdu->psh_len - pdu->psh_valid_bytes,
2377 						(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
2378 			if (rc < 0) {
2379 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2380 				break;
2381 			} else if (rc > 0) {
2382 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2383 				pdu->psh_valid_bytes += rc;
2384 			}
2385 
2386 			if (pdu->psh_valid_bytes < pdu->psh_len) {
2387 				return NVME_TCP_PDU_IN_PROGRESS;
2388 			}
2389 
2390 			/* All header(ch, psh, head digist) of this PDU has now been read from the socket. */
2391 			nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
2392 			break;
2393 		/* Wait for the req slot */
2394 		case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
2395 			nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
2396 			break;
2397 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
2398 			/* check whether the data is valid, if not we just return */
2399 			if (!pdu->data_len) {
2400 				return NVME_TCP_PDU_IN_PROGRESS;
2401 			}
2402 
2403 			data_len = pdu->data_len;
2404 			/* data digest */
2405 			if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
2406 					  tqpair->host_ddgst_enable)) {
2407 				data_len += SPDK_NVME_TCP_DIGEST_LEN;
2408 				pdu->ddgst_enable = true;
2409 			}
2410 
2411 			rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
2412 			if (rc < 0) {
2413 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2414 				break;
2415 			}
2416 			pdu->rw_offset += rc;
2417 
2418 			if (pdu->rw_offset < data_len) {
2419 				return NVME_TCP_PDU_IN_PROGRESS;
2420 			}
2421 
2422 			/* Generate and insert DIF to whole data block received if DIF is enabled */
2423 			if (spdk_unlikely(pdu->dif_ctx != NULL) &&
2424 			    spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt, 0, data_len,
2425 						     pdu->dif_ctx) != 0) {
2426 				SPDK_ERRLOG("DIF generate failed\n");
2427 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2428 				break;
2429 			}
2430 
2431 			/* All of this PDU has now been read from the socket. */
2432 			nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2433 			break;
2434 		case NVME_TCP_PDU_RECV_STATE_QUIESCING:
2435 			if (tqpair->tcp_pdu_working_count != 0) {
2436 				return NVME_TCP_PDU_IN_PROGRESS;
2437 			}
2438 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
2439 			break;
2440 		case NVME_TCP_PDU_RECV_STATE_ERROR:
2441 			if (spdk_sock_is_connected(tqpair->sock) && tqpair->wait_terminate) {
2442 				return NVME_TCP_PDU_IN_PROGRESS;
2443 			}
2444 			return NVME_TCP_PDU_FATAL;
2445 		default:
2446 			SPDK_ERRLOG("The state(%d) is invalid\n", tqpair->recv_state);
2447 			abort();
2448 			break;
2449 		}
2450 	} while (tqpair->recv_state != prev_state);
2451 
2452 	return rc;
2453 }
2454 
2455 static inline void *
2456 nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list)
2457 {
2458 	struct spdk_nvmf_tcp_control_msg *msg;
2459 
2460 	assert(list);
2461 
2462 	msg = STAILQ_FIRST(&list->free_msgs);
2463 	if (!msg) {
2464 		SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
2465 		return NULL;
2466 	}
2467 	STAILQ_REMOVE_HEAD(&list->free_msgs, link);
2468 	return msg;
2469 }
2470 
2471 static inline void
2472 nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
2473 {
2474 	struct spdk_nvmf_tcp_control_msg *msg = _msg;
2475 
2476 	assert(list);
2477 	STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
2478 }
2479 
2480 static int
2481 nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
2482 		       struct spdk_nvmf_transport *transport,
2483 		       struct spdk_nvmf_transport_poll_group *group)
2484 {
2485 	struct spdk_nvmf_request		*req = &tcp_req->req;
2486 	struct spdk_nvme_cmd			*cmd;
2487 	struct spdk_nvme_sgl_descriptor		*sgl;
2488 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2489 	enum spdk_nvme_tcp_term_req_fes		fes;
2490 	struct nvme_tcp_pdu			*pdu;
2491 	struct spdk_nvmf_tcp_qpair		*tqpair;
2492 	uint32_t				length, error_offset = 0;
2493 
2494 	cmd = &req->cmd->nvme_cmd;
2495 	sgl = &cmd->dptr.sgl1;
2496 
2497 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
2498 	    sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
2499 		/* get request length from sgl */
2500 		length = sgl->unkeyed.length;
2501 		if (spdk_unlikely(length > transport->opts.max_io_size)) {
2502 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
2503 				    length, transport->opts.max_io_size);
2504 			fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2505 			goto fatal_err;
2506 		}
2507 
2508 		/* fill request length and populate iovs */
2509 		req->length = length;
2510 
2511 		SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
2512 
2513 		if (spdk_unlikely(req->dif_enabled)) {
2514 			req->dif.orig_length = length;
2515 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2516 			req->dif.elba_length = length;
2517 		}
2518 
2519 		if (nvmf_ctrlr_use_zcopy(req)) {
2520 			SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req);
2521 			req->data_from_pool = false;
2522 			return 0;
2523 		}
2524 
2525 		if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
2526 			/* No available buffers. Queue this request up. */
2527 			SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
2528 				      tcp_req);
2529 			return 0;
2530 		}
2531 
2532 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
2533 			      tcp_req, req->iovcnt, req->iov[0].iov_base);
2534 
2535 		return 0;
2536 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
2537 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
2538 		uint64_t offset = sgl->address;
2539 		uint32_t max_len = transport->opts.in_capsule_data_size;
2540 
2541 		assert(tcp_req->has_in_capsule_data);
2542 		/* Capsule Cmd with In-capsule Data should get data length from pdu header */
2543 		tqpair = tcp_req->pdu->qpair;
2544 		/* receiving pdu is not same with the pdu in tcp_req */
2545 		pdu = tqpair->pdu_in_progress;
2546 		length = pdu->hdr.common.plen - pdu->psh_len - sizeof(struct spdk_nvme_tcp_common_pdu_hdr);
2547 		if (tqpair->host_ddgst_enable) {
2548 			length -= SPDK_NVME_TCP_DIGEST_LEN;
2549 		}
2550 		/* This error is not defined in NVMe/TCP spec, take this error as fatal error */
2551 		if (spdk_unlikely(length != sgl->unkeyed.length)) {
2552 			SPDK_ERRLOG("In-Capsule Data length 0x%x is not equal to SGL data length 0x%x\n",
2553 				    length, sgl->unkeyed.length);
2554 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2555 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2556 			goto fatal_err;
2557 		}
2558 
2559 		SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
2560 			      offset, length);
2561 
2562 		/* The NVMe/TCP transport does not use ICDOFF to control the in-capsule data offset. ICDOFF should be '0' */
2563 		if (spdk_unlikely(offset != 0)) {
2564 			/* Not defined fatal error in NVMe/TCP spec, handle this error as a fatal error */
2565 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " should be ZERO in NVMe/TCP\n", offset);
2566 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2567 			error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.address);
2568 			goto fatal_err;
2569 		}
2570 
2571 		if (spdk_unlikely(length > max_len)) {
2572 			/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
2573 			if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
2574 			    (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
2575 
2576 				/* Get a buffer from dedicated list */
2577 				SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
2578 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2579 				assert(tgroup->control_msg_list);
2580 				req->iov[0].iov_base = nvmf_tcp_control_msg_get(tgroup->control_msg_list);
2581 				if (!req->iov[0].iov_base) {
2582 					/* No available buffers. Queue this request up. */
2583 					SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
2584 					return 0;
2585 				}
2586 			} else {
2587 				SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
2588 					    length, max_len);
2589 				fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2590 				goto fatal_err;
2591 			}
2592 		} else {
2593 			req->iov[0].iov_base = tcp_req->buf;
2594 		}
2595 
2596 		req->length = length;
2597 		req->data_from_pool = false;
2598 
2599 		if (spdk_unlikely(req->dif_enabled)) {
2600 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2601 			req->dif.elba_length = length;
2602 		}
2603 
2604 		req->iov[0].iov_len = length;
2605 		req->iovcnt = 1;
2606 
2607 		return 0;
2608 	}
2609 	/* If we want to handle the problem here, then we can't skip the following data segment.
2610 	 * Because this function runs before reading data part, now handle all errors as fatal errors. */
2611 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2612 		    sgl->generic.type, sgl->generic.subtype);
2613 	fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2614 	error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.generic);
2615 fatal_err:
2616 	nvmf_tcp_send_c2h_term_req(tcp_req->pdu->qpair, tcp_req->pdu, fes, error_offset);
2617 	return -1;
2618 }
2619 
2620 static inline enum spdk_nvme_media_error_status_code
2621 nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
2622 	enum spdk_nvme_media_error_status_code result;
2623 
2624 	switch (err_type)
2625 	{
2626 	case SPDK_DIF_REFTAG_ERROR:
2627 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
2628 		break;
2629 	case SPDK_DIF_APPTAG_ERROR:
2630 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
2631 		break;
2632 	case SPDK_DIF_GUARD_ERROR:
2633 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
2634 		break;
2635 	default:
2636 		SPDK_UNREACHABLE();
2637 		break;
2638 	}
2639 
2640 	return result;
2641 }
2642 
2643 static void
2644 _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2645 			struct spdk_nvmf_tcp_req *tcp_req)
2646 {
2647 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
2648 				tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
2649 	struct nvme_tcp_pdu *rsp_pdu;
2650 	struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
2651 	uint32_t plen, pdo, alignment;
2652 	int rc;
2653 
2654 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2655 
2656 	rsp_pdu = tcp_req->pdu;
2657 	assert(rsp_pdu != NULL);
2658 
2659 	c2h_data = &rsp_pdu->hdr.c2h_data;
2660 	c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
2661 	plen = c2h_data->common.hlen = sizeof(*c2h_data);
2662 
2663 	if (tqpair->host_hdgst_enable) {
2664 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2665 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2666 	}
2667 
2668 	/* set the psh */
2669 	c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2670 	c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
2671 	c2h_data->datao = tcp_req->pdu->rw_offset;
2672 
2673 	/* set the padding */
2674 	rsp_pdu->padding_len = 0;
2675 	pdo = plen;
2676 	if (tqpair->cpda) {
2677 		alignment = (tqpair->cpda + 1) << 2;
2678 		if (plen % alignment != 0) {
2679 			pdo = (plen + alignment) / alignment * alignment;
2680 			rsp_pdu->padding_len = pdo - plen;
2681 			plen = pdo;
2682 		}
2683 	}
2684 
2685 	c2h_data->common.pdo = pdo;
2686 	plen += c2h_data->datal;
2687 	if (tqpair->host_ddgst_enable) {
2688 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
2689 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2690 	}
2691 
2692 	c2h_data->common.plen = plen;
2693 
2694 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2695 		rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2696 	}
2697 
2698 	nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2699 				  c2h_data->datao, c2h_data->datal);
2700 
2701 
2702 	c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
2703 	/* Need to send the capsule response if response is not all 0 */
2704 	if (ttransport->tcp_opts.c2h_success &&
2705 	    tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
2706 		c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
2707 	}
2708 
2709 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2710 		struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
2711 		struct spdk_dif_error err_blk = {};
2712 		uint32_t mapped_length = 0;
2713 		uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
2714 		uint32_t ddgst_len = 0;
2715 
2716 		if (tqpair->host_ddgst_enable) {
2717 			/* Data digest consumes additional iov entry */
2718 			available_iovs--;
2719 			/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
2720 			ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
2721 			c2h_data->common.plen -= ddgst_len;
2722 		}
2723 		/* Temp call to estimate if data can be described by limited number of iovs.
2724 		 * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
2725 		nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
2726 				    false, &mapped_length);
2727 
2728 		if (mapped_length != c2h_data->common.plen) {
2729 			c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
2730 			SPDK_DEBUGLOG(nvmf_tcp,
2731 				      "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
2732 				      c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
2733 			c2h_data->common.plen = mapped_length;
2734 
2735 			/* Rebuild pdu->data_iov since data length is changed */
2736 			nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
2737 						  c2h_data->datal);
2738 
2739 			c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
2740 						    SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
2741 		}
2742 
2743 		c2h_data->common.plen += ddgst_len;
2744 
2745 		assert(rsp_pdu->rw_offset <= tcp_req->req.length);
2746 
2747 		rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
2748 					    0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
2749 		if (rc != 0) {
2750 			SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
2751 				    err_blk.err_type, err_blk.err_offset);
2752 			rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2753 			rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
2754 			nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2755 			return;
2756 		}
2757 	}
2758 
2759 	rsp_pdu->rw_offset += c2h_data->datal;
2760 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
2761 }
2762 
2763 static void
2764 nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2765 		       struct spdk_nvmf_tcp_req *tcp_req)
2766 {
2767 	nvmf_tcp_req_pdu_init(tcp_req);
2768 	_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2769 }
2770 
2771 static int
2772 request_transfer_out(struct spdk_nvmf_request *req)
2773 {
2774 	struct spdk_nvmf_tcp_req	*tcp_req;
2775 	struct spdk_nvmf_qpair		*qpair;
2776 	struct spdk_nvmf_tcp_qpair	*tqpair;
2777 	struct spdk_nvme_cpl		*rsp;
2778 
2779 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2780 
2781 	qpair = req->qpair;
2782 	rsp = &req->rsp->nvme_cpl;
2783 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
2784 
2785 	/* Advance our sq_head pointer */
2786 	if (qpair->sq_head == qpair->sq_head_max) {
2787 		qpair->sq_head = 0;
2788 	} else {
2789 		qpair->sq_head++;
2790 	}
2791 	rsp->sqhd = qpair->sq_head;
2792 
2793 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2794 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
2795 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2796 		nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2797 	} else {
2798 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2799 	}
2800 
2801 	return 0;
2802 }
2803 
2804 static void
2805 nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport,
2806 			      struct spdk_nvmf_tcp_qpair *tqpair,
2807 			      struct spdk_nvmf_tcp_req *tcp_req)
2808 {
2809 	enum spdk_nvme_cmd_fuse last, next;
2810 
2811 	last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2812 	next = tcp_req->cmd.fuse;
2813 
2814 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2815 
2816 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2817 		return;
2818 	}
2819 
2820 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2821 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2822 			/* This is a valid pair of fused commands.  Point them at each other
2823 			 * so they can be submitted consecutively once ready to be executed.
2824 			 */
2825 			tqpair->fused_first->fused_pair = tcp_req;
2826 			tcp_req->fused_pair = tqpair->fused_first;
2827 			tqpair->fused_first = NULL;
2828 			return;
2829 		} else {
2830 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2831 			tqpair->fused_first->fused_failed = true;
2832 
2833 			/*
2834 			 * If the last req is in READY_TO_EXECUTE state, then call
2835 			 * nvmf_tcp_req_process(), otherwise nothing else will kick it.
2836 			 */
2837 			if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2838 				nvmf_tcp_req_process(ttransport, tqpair->fused_first);
2839 			}
2840 
2841 			tqpair->fused_first = NULL;
2842 		}
2843 	}
2844 
2845 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2846 		/* Set tqpair->fused_first here so that we know to check that the next request
2847 		 * is a SECOND (and to fail this one if it isn't).
2848 		 */
2849 		tqpair->fused_first = tcp_req;
2850 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2851 		/* Mark this req failed since it is a SECOND and the last one was not a FIRST. */
2852 		tcp_req->fused_failed = true;
2853 	}
2854 }
2855 
2856 static bool
2857 nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
2858 		     struct spdk_nvmf_tcp_req *tcp_req)
2859 {
2860 	struct spdk_nvmf_tcp_qpair		*tqpair;
2861 	uint32_t				plen;
2862 	struct nvme_tcp_pdu			*pdu;
2863 	enum spdk_nvmf_tcp_req_state		prev_state;
2864 	bool					progress = false;
2865 	struct spdk_nvmf_transport		*transport = &ttransport->transport;
2866 	struct spdk_nvmf_transport_poll_group	*group;
2867 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2868 
2869 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2870 	group = &tqpair->group->group;
2871 	assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
2872 
2873 	/* If the qpair is not active, we need to abort the outstanding requests. */
2874 	if (tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2875 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
2876 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2877 		}
2878 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
2879 	}
2880 
2881 	/* The loop here is to allow for several back-to-back state changes. */
2882 	do {
2883 		prev_state = tcp_req->state;
2884 
2885 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
2886 			      tqpair);
2887 
2888 		switch (tcp_req->state) {
2889 		case TCP_REQUEST_STATE_FREE:
2890 			/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
2891 			 * to escape this state. */
2892 			break;
2893 		case TCP_REQUEST_STATE_NEW:
2894 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.qid, 0, (uintptr_t)tcp_req, tqpair);
2895 
2896 			/* copy the cmd from the receive pdu */
2897 			tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
2898 
2899 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
2900 				tcp_req->req.dif_enabled = true;
2901 				tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
2902 			}
2903 
2904 			nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req);
2905 
2906 			/* The next state transition depends on the data transfer needs of this request. */
2907 			tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
2908 
2909 			if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2910 				nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_INVALID_OPCODE);
2911 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2912 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2913 				SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
2914 				break;
2915 			}
2916 
2917 			/* If no data to transfer, ready to execute. */
2918 			if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
2919 				/* Reset the tqpair receiving pdu state */
2920 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2921 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2922 				break;
2923 			}
2924 
2925 			pdu = tqpair->pdu_in_progress;
2926 			plen = pdu->hdr.common.hlen;
2927 			if (tqpair->host_hdgst_enable) {
2928 				plen += SPDK_NVME_TCP_DIGEST_LEN;
2929 			}
2930 			if (pdu->hdr.common.plen != plen) {
2931 				tcp_req->has_in_capsule_data = true;
2932 			} else {
2933 				/* Data is transmitted by C2H PDUs */
2934 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2935 			}
2936 
2937 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
2938 			STAILQ_INSERT_TAIL(&group->pending_buf_queue, &tcp_req->req, buf_link);
2939 			break;
2940 		case TCP_REQUEST_STATE_NEED_BUFFER:
2941 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2942 					  tqpair);
2943 
2944 			assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
2945 
2946 			if (!tcp_req->has_in_capsule_data && (&tcp_req->req != STAILQ_FIRST(&group->pending_buf_queue))) {
2947 				SPDK_DEBUGLOG(nvmf_tcp,
2948 					      "Not the first element to wait for the buf for tcp_req(%p) on tqpair=%p\n",
2949 					      tcp_req, tqpair);
2950 				/* This request needs to wait in line to obtain a buffer */
2951 				break;
2952 			}
2953 
2954 			/* Try to get a data buffer */
2955 			if (nvmf_tcp_req_parse_sgl(tcp_req, transport, group) < 0) {
2956 				break;
2957 			}
2958 
2959 			/* Get a zcopy buffer if the request can be serviced through zcopy */
2960 			if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2961 				if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2962 					assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2963 					tcp_req->req.length = tcp_req->req.dif.elba_length;
2964 				}
2965 
2966 				STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2967 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START);
2968 				spdk_nvmf_request_zcopy_start(&tcp_req->req);
2969 				break;
2970 			}
2971 
2972 			if (tcp_req->req.iovcnt < 1) {
2973 				SPDK_DEBUGLOG(nvmf_tcp, "No buffer allocated for tcp_req(%p) on tqpair(%p\n)",
2974 					      tcp_req, tqpair);
2975 				/* No buffers available. */
2976 				break;
2977 			}
2978 
2979 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2980 
2981 			/* If data is transferring from host to controller, we need to do a transfer from the host. */
2982 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2983 				if (tcp_req->req.data_from_pool) {
2984 					SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2985 					nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2986 				} else {
2987 					struct nvme_tcp_pdu *pdu;
2988 
2989 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
2990 
2991 					pdu = tqpair->pdu_in_progress;
2992 					SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
2993 						      tqpair);
2994 					/* No need to send r2t, contained in the capsuled data */
2995 					nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2996 								  0, tcp_req->req.length);
2997 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2998 				}
2999 				break;
3000 			}
3001 
3002 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
3003 			break;
3004 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3005 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.qid, 0,
3006 					  (uintptr_t)tcp_req, tqpair);
3007 			/* Some external code must kick a request into  TCP_REQUEST_STATE_ZCOPY_START_COMPLETED
3008 			 * to escape this state. */
3009 			break;
3010 		case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
3011 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.qid, 0,
3012 					  (uintptr_t)tcp_req, tqpair);
3013 			if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) {
3014 				SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n",
3015 					      tcp_req, tqpair);
3016 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3017 				break;
3018 			}
3019 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
3020 				SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
3021 				nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
3022 			} else {
3023 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3024 			}
3025 			break;
3026 		case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3027 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
3028 					  tqpair);
3029 			/* The R2T completion or the h2c data incoming will kick it out of this state. */
3030 			break;
3031 		case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3032 
3033 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.qid, 0,
3034 					  (uintptr_t)tcp_req, tqpair);
3035 			/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
3036 			 * to escape this state. */
3037 			break;
3038 		case TCP_REQUEST_STATE_READY_TO_EXECUTE:
3039 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.qid, 0,
3040 					  (uintptr_t)tcp_req, tqpair);
3041 
3042 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3043 				assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
3044 				tcp_req->req.length = tcp_req->req.dif.elba_length;
3045 			}
3046 
3047 			if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
3048 				if (tcp_req->fused_failed) {
3049 					/* This request failed FUSED semantics.  Fail it immediately, without
3050 					 * even sending it to the target layer.
3051 					 */
3052 					nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_MISSING_FUSED);
3053 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3054 					break;
3055 				}
3056 
3057 				if (tcp_req->fused_pair == NULL ||
3058 				    tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3059 					/* This request is ready to execute, but either we don't know yet if it's
3060 					 * valid - i.e. this is a FIRST but we haven't received the next request yet),
3061 					 * or the other request of this fused pair isn't ready to execute. So
3062 					 * break here and this request will get processed later either when the
3063 					 * other request is ready or we find that this request isn't valid.
3064 					 */
3065 					break;
3066 				}
3067 			}
3068 
3069 			if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
3070 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
3071 				/* If we get to this point, and this request is a fused command, we know that
3072 				 * it is part of a valid sequence (FIRST followed by a SECOND) and that both
3073 				 * requests are READY_TO_EXECUTE.  So call spdk_nvmf_request_exec() both on this
3074 				 * request, and the other request of the fused pair, in the correct order.
3075 				 * Also clear the ->fused_pair pointers on both requests, since after this point
3076 				 * we no longer need to maintain the relationship between these two requests.
3077 				 */
3078 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
3079 					assert(tcp_req->fused_pair != NULL);
3080 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3081 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3082 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3083 					tcp_req->fused_pair->fused_pair = NULL;
3084 					tcp_req->fused_pair = NULL;
3085 				}
3086 				spdk_nvmf_request_exec(&tcp_req->req);
3087 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
3088 					assert(tcp_req->fused_pair != NULL);
3089 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3090 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3091 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3092 					tcp_req->fused_pair->fused_pair = NULL;
3093 					tcp_req->fused_pair = NULL;
3094 				}
3095 			} else {
3096 				/* For zero-copy, only requests with data coming from host to the
3097 				 * controller can end up here. */
3098 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
3099 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT);
3100 				spdk_nvmf_request_zcopy_end(&tcp_req->req, true);
3101 			}
3102 
3103 			break;
3104 		case TCP_REQUEST_STATE_EXECUTING:
3105 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
3106 					  tqpair);
3107 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3108 			 * to escape this state. */
3109 			break;
3110 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3111 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.qid, 0,
3112 					  (uintptr_t)tcp_req, tqpair);
3113 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3114 			 * to escape this state. */
3115 			break;
3116 		case TCP_REQUEST_STATE_EXECUTED:
3117 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
3118 					  tqpair);
3119 
3120 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3121 				tcp_req->req.length = tcp_req->req.dif.orig_length;
3122 			}
3123 
3124 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3125 			break;
3126 		case TCP_REQUEST_STATE_READY_TO_COMPLETE:
3127 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.qid, 0,
3128 					  (uintptr_t)tcp_req, tqpair);
3129 			if (request_transfer_out(&tcp_req->req) != 0) {
3130 				assert(0); /* No good way to handle this currently */
3131 			}
3132 			break;
3133 		case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
3134 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.qid, 0,
3135 					  (uintptr_t)tcp_req, tqpair);
3136 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3137 			 * to escape this state. */
3138 			break;
3139 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3140 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.qid, 0,
3141 					  (uintptr_t)tcp_req, tqpair);
3142 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3143 			 * to escape this state. */
3144 			break;
3145 		case TCP_REQUEST_STATE_COMPLETED:
3146 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
3147 					  tqpair);
3148 			/* If there's an outstanding PDU sent to the host, the request is completed
3149 			 * due to the qpair being disconnected.  We must delay the completion until
3150 			 * that write is done to avoid freeing the request twice. */
3151 			if (spdk_unlikely(tcp_req->pdu_in_use)) {
3152 				SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding "
3153 					      "write on req=%p\n", tcp_req);
3154 				/* This can only happen for zcopy requests */
3155 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3156 				assert(tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
3157 				break;
3158 			}
3159 
3160 			if (tcp_req->req.data_from_pool) {
3161 				spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
3162 			} else if (spdk_unlikely(tcp_req->has_in_capsule_data &&
3163 						 (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
3164 						  tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
3165 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3166 				assert(tgroup->control_msg_list);
3167 				SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
3168 				nvmf_tcp_control_msg_put(tgroup->control_msg_list,
3169 							 tcp_req->req.iov[0].iov_base);
3170 			} else if (tcp_req->req.zcopy_bdev_io != NULL) {
3171 				/* If the request has an unreleased zcopy bdev_io, it's either a
3172 				 * read, a failed write, or the qpair is being disconnected */
3173 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3174 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
3175 				       spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) ||
3176 				       tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
3177 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE);
3178 				spdk_nvmf_request_zcopy_end(&tcp_req->req, false);
3179 				break;
3180 			}
3181 			tcp_req->req.length = 0;
3182 			tcp_req->req.iovcnt = 0;
3183 			tcp_req->fused_failed = false;
3184 			if (tcp_req->fused_pair) {
3185 				/* This req was part of a valid fused pair, but failed before it got to
3186 				 * READ_TO_EXECUTE state.  This means we need to fail the other request
3187 				 * in the pair, because it is no longer part of a valid pair.  If the pair
3188 				 * already reached READY_TO_EXECUTE state, we need to kick it.
3189 				 */
3190 				tcp_req->fused_pair->fused_failed = true;
3191 				if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3192 					nvmf_tcp_req_process(ttransport, tcp_req->fused_pair);
3193 				}
3194 				tcp_req->fused_pair = NULL;
3195 			}
3196 
3197 			nvmf_tcp_req_put(tqpair, tcp_req);
3198 			break;
3199 		case TCP_REQUEST_NUM_STATES:
3200 		default:
3201 			assert(0);
3202 			break;
3203 		}
3204 
3205 		if (tcp_req->state != prev_state) {
3206 			progress = true;
3207 		}
3208 	} while (tcp_req->state != prev_state);
3209 
3210 	return progress;
3211 }
3212 
3213 static void
3214 nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
3215 {
3216 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
3217 	int rc;
3218 
3219 	assert(tqpair != NULL);
3220 	rc = nvmf_tcp_sock_process(tqpair);
3221 
3222 	/* If there was a new socket error, disconnect */
3223 	if (rc < 0) {
3224 		nvmf_tcp_qpair_disconnect(tqpair);
3225 	}
3226 }
3227 
3228 static int
3229 nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3230 			struct spdk_nvmf_qpair *qpair)
3231 {
3232 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3233 	struct spdk_nvmf_tcp_qpair	*tqpair;
3234 	int				rc;
3235 
3236 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3237 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3238 
3239 	rc =  nvmf_tcp_qpair_sock_init(tqpair);
3240 	if (rc != 0) {
3241 		SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
3242 		return -1;
3243 	}
3244 
3245 	rc = nvmf_tcp_qpair_init(&tqpair->qpair);
3246 	if (rc < 0) {
3247 		SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
3248 		return -1;
3249 	}
3250 
3251 	rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
3252 	if (rc < 0) {
3253 		SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
3254 		return -1;
3255 	}
3256 
3257 	rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
3258 				      nvmf_tcp_sock_cb, tqpair);
3259 	if (rc != 0) {
3260 		SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
3261 			    spdk_strerror(errno), errno);
3262 		return -1;
3263 	}
3264 
3265 	tqpair->group = tgroup;
3266 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INVALID);
3267 	TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
3268 
3269 	return 0;
3270 }
3271 
3272 static int
3273 nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3274 			   struct spdk_nvmf_qpair *qpair)
3275 {
3276 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3277 	struct spdk_nvmf_tcp_qpair		*tqpair;
3278 	int				rc;
3279 
3280 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3281 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3282 
3283 	assert(tqpair->group == tgroup);
3284 
3285 	SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
3286 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
3287 		/* Change the state to move the qpair from the await_req list to the main list
3288 		 * and prevent adding it again later by nvmf_tcp_qpair_set_recv_state() */
3289 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
3290 	}
3291 	TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
3292 
3293 	rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
3294 	if (rc != 0) {
3295 		SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
3296 			    spdk_strerror(errno), errno);
3297 	}
3298 
3299 	return rc;
3300 }
3301 
3302 static int
3303 nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
3304 {
3305 	struct spdk_nvmf_tcp_transport *ttransport;
3306 	struct spdk_nvmf_tcp_req *tcp_req;
3307 
3308 	ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3309 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3310 
3311 	switch (tcp_req->state) {
3312 	case TCP_REQUEST_STATE_EXECUTING:
3313 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3314 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3315 		break;
3316 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3317 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED);
3318 		break;
3319 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3320 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3321 		break;
3322 	default:
3323 		assert(0 && "Unexpected request state");
3324 		break;
3325 	}
3326 
3327 	nvmf_tcp_req_process(ttransport, tcp_req);
3328 
3329 	return 0;
3330 }
3331 
3332 static void
3333 nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
3334 		     spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3335 {
3336 	struct spdk_nvmf_tcp_qpair *tqpair;
3337 
3338 	SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
3339 
3340 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3341 
3342 	assert(tqpair->fini_cb_fn == NULL);
3343 	tqpair->fini_cb_fn = cb_fn;
3344 	tqpair->fini_cb_arg = cb_arg;
3345 
3346 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITED);
3347 	nvmf_tcp_qpair_destroy(tqpair);
3348 }
3349 
3350 static int
3351 nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3352 {
3353 	struct spdk_nvmf_tcp_poll_group *tgroup;
3354 	int rc;
3355 	struct spdk_nvmf_request *req, *req_tmp;
3356 	struct spdk_nvmf_tcp_req *tcp_req;
3357 	struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp;
3358 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(group->transport,
3359 			struct spdk_nvmf_tcp_transport, transport);
3360 
3361 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3362 
3363 	if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) {
3364 		return 0;
3365 	}
3366 
3367 	STAILQ_FOREACH_SAFE(req, &group->pending_buf_queue, buf_link, req_tmp) {
3368 		tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3369 		if (nvmf_tcp_req_process(ttransport, tcp_req) == false) {
3370 			break;
3371 		}
3372 	}
3373 
3374 	rc = spdk_sock_group_poll(tgroup->sock_group);
3375 	if (rc < 0) {
3376 		SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
3377 	}
3378 
3379 	TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) {
3380 		rc = nvmf_tcp_sock_process(tqpair);
3381 
3382 		/* If there was a new socket error, disconnect */
3383 		if (rc < 0) {
3384 			nvmf_tcp_qpair_disconnect(tqpair);
3385 		}
3386 	}
3387 
3388 	return rc;
3389 }
3390 
3391 static int
3392 nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
3393 			struct spdk_nvme_transport_id *trid, bool peer)
3394 {
3395 	struct spdk_nvmf_tcp_qpair     *tqpair;
3396 	uint16_t			port;
3397 
3398 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3399 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
3400 
3401 	if (peer) {
3402 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
3403 		port = tqpair->initiator_port;
3404 	} else {
3405 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
3406 		port = tqpair->target_port;
3407 	}
3408 
3409 	if (spdk_sock_is_ipv4(tqpair->sock)) {
3410 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3411 	} else if (spdk_sock_is_ipv6(tqpair->sock)) {
3412 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3413 	} else {
3414 		return -1;
3415 	}
3416 
3417 	snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
3418 	return 0;
3419 }
3420 
3421 static int
3422 nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3423 			      struct spdk_nvme_transport_id *trid)
3424 {
3425 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3426 }
3427 
3428 static int
3429 nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3430 			     struct spdk_nvme_transport_id *trid)
3431 {
3432 	return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
3433 }
3434 
3435 static int
3436 nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3437 			       struct spdk_nvme_transport_id *trid)
3438 {
3439 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3440 }
3441 
3442 static void
3443 nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
3444 			      struct spdk_nvmf_tcp_req *tcp_req_to_abort)
3445 {
3446 	nvmf_tcp_req_set_cpl(tcp_req_to_abort, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_BY_REQUEST);
3447 	nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3448 
3449 	req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
3450 }
3451 
3452 static int
3453 _nvmf_tcp_qpair_abort_request(void *ctx)
3454 {
3455 	struct spdk_nvmf_request *req = ctx;
3456 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
3457 			struct spdk_nvmf_tcp_req, req);
3458 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
3459 					     struct spdk_nvmf_tcp_qpair, qpair);
3460 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
3461 			struct spdk_nvmf_tcp_transport, transport);
3462 	int rc;
3463 
3464 	spdk_poller_unregister(&req->poller);
3465 
3466 	switch (tcp_req_to_abort->state) {
3467 	case TCP_REQUEST_STATE_EXECUTING:
3468 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3469 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3470 		rc = nvmf_ctrlr_abort_request(req);
3471 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
3472 			return SPDK_POLLER_BUSY;
3473 		}
3474 		break;
3475 
3476 	case TCP_REQUEST_STATE_NEED_BUFFER:
3477 		STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue,
3478 			      &tcp_req_to_abort->req, spdk_nvmf_request, buf_link);
3479 
3480 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3481 		nvmf_tcp_req_process(ttransport, tcp_req_to_abort);
3482 		break;
3483 
3484 	case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3485 	case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3486 		if (spdk_get_ticks() < req->timeout_tsc) {
3487 			req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
3488 			return SPDK_POLLER_BUSY;
3489 		}
3490 		break;
3491 
3492 	default:
3493 		/* Requests in other states are either un-abortable (e.g.
3494 		 * TRANSFERRING_CONTROLLER_TO_HOST) or should never end up here, as they're
3495 		 * immediately transitioned to other states in nvmf_tcp_req_process() (e.g.
3496 		 * READY_TO_EXECUTE).  But it is fine to end up here, as we'll simply complete the
3497 		 * abort request with the bit0 of dword0 set (command not aborted).
3498 		 */
3499 		break;
3500 	}
3501 
3502 	spdk_nvmf_request_complete(req);
3503 	return SPDK_POLLER_BUSY;
3504 }
3505 
3506 static void
3507 nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
3508 			     struct spdk_nvmf_request *req)
3509 {
3510 	struct spdk_nvmf_tcp_qpair *tqpair;
3511 	struct spdk_nvmf_tcp_transport *ttransport;
3512 	struct spdk_nvmf_transport *transport;
3513 	uint16_t cid;
3514 	uint32_t i;
3515 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
3516 
3517 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3518 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3519 	transport = &ttransport->transport;
3520 
3521 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
3522 
3523 	for (i = 0; i < tqpair->resource_count; i++) {
3524 		if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
3525 		    tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
3526 			tcp_req_to_abort = &tqpair->reqs[i];
3527 			break;
3528 		}
3529 	}
3530 
3531 	spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, qpair->qid, 0, (uintptr_t)req, tqpair);
3532 
3533 	if (tcp_req_to_abort == NULL) {
3534 		spdk_nvmf_request_complete(req);
3535 		return;
3536 	}
3537 
3538 	req->req_to_abort = &tcp_req_to_abort->req;
3539 	req->timeout_tsc = spdk_get_ticks() +
3540 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
3541 	req->poller = NULL;
3542 
3543 	_nvmf_tcp_qpair_abort_request(req);
3544 }
3545 
3546 struct tcp_subsystem_add_host_opts {
3547 	char *psk;
3548 };
3549 
3550 static const struct spdk_json_object_decoder tcp_subsystem_add_host_opts_decoder[] = {
3551 	{"psk", offsetof(struct tcp_subsystem_add_host_opts, psk), spdk_json_decode_string, true},
3552 };
3553 
3554 static int
3555 tcp_load_psk(const char *fname, char *buf, size_t bufsz)
3556 {
3557 	FILE *psk_file;
3558 	struct stat statbuf;
3559 	int rc;
3560 
3561 	if (stat(fname, &statbuf) != 0) {
3562 		SPDK_ERRLOG("Could not read permissions for PSK file\n");
3563 		return -EACCES;
3564 	}
3565 
3566 	if ((statbuf.st_mode & TCP_PSK_INVALID_PERMISSIONS) != 0) {
3567 		SPDK_ERRLOG("Incorrect permissions for PSK file\n");
3568 		return -EPERM;
3569 	}
3570 	if ((size_t)statbuf.st_size > bufsz) {
3571 		SPDK_ERRLOG("Invalid PSK: too long\n");
3572 		return -EINVAL;
3573 	}
3574 	psk_file = fopen(fname, "r");
3575 	if (psk_file == NULL) {
3576 		SPDK_ERRLOG("Could not open PSK file\n");
3577 		return -EINVAL;
3578 	}
3579 
3580 	rc = fread(buf, 1, statbuf.st_size, psk_file);
3581 	if (rc != statbuf.st_size) {
3582 		SPDK_ERRLOG("Failed to read PSK\n");
3583 		fclose(psk_file);
3584 		return -EINVAL;
3585 	}
3586 
3587 	fclose(psk_file);
3588 	return 0;
3589 }
3590 
3591 SPDK_LOG_DEPRECATION_REGISTER(nvmf_tcp_psk_path, "PSK path", "v24.09", 0);
3592 
3593 static int
3594 nvmf_tcp_subsystem_add_host(struct spdk_nvmf_transport *transport,
3595 			    const struct spdk_nvmf_subsystem *subsystem,
3596 			    const char *hostnqn,
3597 			    const struct spdk_json_val *transport_specific)
3598 {
3599 	struct tcp_subsystem_add_host_opts opts;
3600 	struct spdk_nvmf_tcp_transport *ttransport;
3601 	struct tcp_psk_entry *tmp, *entry = NULL;
3602 	uint8_t psk_configured[SPDK_TLS_PSK_MAX_LEN] = {};
3603 	char psk_interchange[SPDK_TLS_PSK_MAX_LEN + 1] = {};
3604 	uint8_t tls_cipher_suite;
3605 	int rc = 0;
3606 	uint8_t psk_retained_hash;
3607 	uint64_t psk_configured_size;
3608 
3609 	if (transport_specific == NULL) {
3610 		return 0;
3611 	}
3612 
3613 	assert(transport != NULL);
3614 	assert(subsystem != NULL);
3615 
3616 	memset(&opts, 0, sizeof(opts));
3617 
3618 	/* Decode PSK (either name of a key or file path) */
3619 	if (spdk_json_decode_object_relaxed(transport_specific, tcp_subsystem_add_host_opts_decoder,
3620 					    SPDK_COUNTOF(tcp_subsystem_add_host_opts_decoder), &opts)) {
3621 		SPDK_ERRLOG("spdk_json_decode_object failed\n");
3622 		return -EINVAL;
3623 	}
3624 
3625 	if (opts.psk == NULL) {
3626 		return 0;
3627 	}
3628 
3629 	entry = calloc(1, sizeof(struct tcp_psk_entry));
3630 	if (entry == NULL) {
3631 		SPDK_ERRLOG("Unable to allocate memory for PSK entry!\n");
3632 		rc = -ENOMEM;
3633 		goto end;
3634 	}
3635 
3636 	entry->key = spdk_keyring_get_key(opts.psk);
3637 	if (entry->key != NULL) {
3638 		rc = spdk_key_get_key(entry->key, psk_interchange, SPDK_TLS_PSK_MAX_LEN);
3639 		if (rc < 0) {
3640 			SPDK_ERRLOG("Failed to retreive PSK '%s'\n", opts.psk);
3641 			rc = -EINVAL;
3642 			goto end;
3643 		}
3644 	} else {
3645 		if (strlen(opts.psk) >= sizeof(entry->psk)) {
3646 			SPDK_ERRLOG("PSK path too long\n");
3647 			rc = -EINVAL;
3648 			goto end;
3649 		}
3650 
3651 		rc = tcp_load_psk(opts.psk, psk_interchange, SPDK_TLS_PSK_MAX_LEN);
3652 		if (rc) {
3653 			SPDK_ERRLOG("Could not retrieve PSK from file\n");
3654 			goto end;
3655 		}
3656 
3657 		SPDK_LOG_DEPRECATED(nvmf_tcp_psk_path);
3658 	}
3659 
3660 	/* Parse PSK interchange to get length of base64 encoded data.
3661 	 * This is then used to decide which cipher suite should be used
3662 	 * to generate PSK identity and TLS PSK later on. */
3663 	rc = nvme_tcp_parse_interchange_psk(psk_interchange, psk_configured, sizeof(psk_configured),
3664 					    &psk_configured_size, &psk_retained_hash);
3665 	if (rc < 0) {
3666 		SPDK_ERRLOG("Failed to parse PSK interchange!\n");
3667 		goto end;
3668 	}
3669 
3670 	/* The Base64 string encodes the configured PSK (32 or 48 bytes binary).
3671 	 * This check also ensures that psk_configured_size is smaller than
3672 	 * psk_retained buffer size. */
3673 	if (psk_configured_size == SHA256_DIGEST_LENGTH) {
3674 		tls_cipher_suite = NVME_TCP_CIPHER_AES_128_GCM_SHA256;
3675 	} else if (psk_configured_size == SHA384_DIGEST_LENGTH) {
3676 		tls_cipher_suite = NVME_TCP_CIPHER_AES_256_GCM_SHA384;
3677 	} else {
3678 		SPDK_ERRLOG("Unrecognized cipher suite!\n");
3679 		rc = -EINVAL;
3680 		goto end;
3681 	}
3682 
3683 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3684 	/* Generate PSK identity. */
3685 	rc = nvme_tcp_generate_psk_identity(entry->pskid, sizeof(entry->pskid), hostnqn,
3686 					    subsystem->subnqn, tls_cipher_suite);
3687 	if (rc) {
3688 		rc = -EINVAL;
3689 		goto end;
3690 	}
3691 	/* Check if PSK identity entry already exists. */
3692 	TAILQ_FOREACH(tmp, &ttransport->psks, link) {
3693 		if (strncmp(tmp->pskid, entry->pskid, NVMF_PSK_IDENTITY_LEN) == 0) {
3694 			SPDK_ERRLOG("Given PSK identity: %s entry already exists!\n", entry->pskid);
3695 			rc = -EEXIST;
3696 			goto end;
3697 		}
3698 	}
3699 
3700 	if (snprintf(entry->hostnqn, sizeof(entry->hostnqn), "%s", hostnqn) < 0) {
3701 		SPDK_ERRLOG("Could not write hostnqn string!\n");
3702 		rc = -EINVAL;
3703 		goto end;
3704 	}
3705 	if (snprintf(entry->subnqn, sizeof(entry->subnqn), "%s", subsystem->subnqn) < 0) {
3706 		SPDK_ERRLOG("Could not write subnqn string!\n");
3707 		rc = -EINVAL;
3708 		goto end;
3709 	}
3710 
3711 	entry->tls_cipher_suite = tls_cipher_suite;
3712 
3713 	/* No hash indicates that Configured PSK must be used as Retained PSK. */
3714 	if (psk_retained_hash == NVME_TCP_HASH_ALGORITHM_NONE) {
3715 		/* Psk configured is either 32 or 48 bytes long. */
3716 		memcpy(entry->psk, psk_configured, psk_configured_size);
3717 		entry->psk_size = psk_configured_size;
3718 	} else {
3719 		/* Derive retained PSK. */
3720 		rc = nvme_tcp_derive_retained_psk(psk_configured, psk_configured_size, hostnqn, entry->psk,
3721 						  SPDK_TLS_PSK_MAX_LEN, psk_retained_hash);
3722 		if (rc < 0) {
3723 			SPDK_ERRLOG("Unable to derive retained PSK!\n");
3724 			goto end;
3725 		}
3726 		entry->psk_size = rc;
3727 	}
3728 
3729 	if (entry->key == NULL) {
3730 		rc = snprintf(entry->psk_path, sizeof(entry->psk_path), "%s", opts.psk);
3731 		if (rc < 0 || (size_t)rc >= sizeof(entry->psk_path)) {
3732 			SPDK_ERRLOG("Could not save PSK path!\n");
3733 			rc = -ENAMETOOLONG;
3734 			goto end;
3735 		}
3736 	}
3737 
3738 	TAILQ_INSERT_TAIL(&ttransport->psks, entry, link);
3739 	rc = 0;
3740 
3741 end:
3742 	spdk_memset_s(psk_configured, sizeof(psk_configured), 0, sizeof(psk_configured));
3743 	spdk_memset_s(psk_interchange, sizeof(psk_interchange), 0, sizeof(psk_interchange));
3744 
3745 	free(opts.psk);
3746 	if (rc != 0) {
3747 		nvmf_tcp_free_psk_entry(entry);
3748 	}
3749 
3750 	return rc;
3751 }
3752 
3753 static void
3754 nvmf_tcp_subsystem_remove_host(struct spdk_nvmf_transport *transport,
3755 			       const struct spdk_nvmf_subsystem *subsystem,
3756 			       const char *hostnqn)
3757 {
3758 	struct spdk_nvmf_tcp_transport *ttransport;
3759 	struct tcp_psk_entry *entry, *tmp;
3760 
3761 	assert(transport != NULL);
3762 	assert(subsystem != NULL);
3763 
3764 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3765 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
3766 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3767 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3768 			TAILQ_REMOVE(&ttransport->psks, entry, link);
3769 			nvmf_tcp_free_psk_entry(entry);
3770 			break;
3771 		}
3772 	}
3773 }
3774 
3775 static void
3776 nvmf_tcp_subsystem_dump_host(struct spdk_nvmf_transport *transport,
3777 			     const struct spdk_nvmf_subsystem *subsystem, const char *hostnqn,
3778 			     struct spdk_json_write_ctx *w)
3779 {
3780 	struct spdk_nvmf_tcp_transport *ttransport;
3781 	struct tcp_psk_entry *entry;
3782 
3783 	assert(transport != NULL);
3784 	assert(subsystem != NULL);
3785 
3786 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3787 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
3788 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3789 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3790 			spdk_json_write_named_string(w, "psk", entry->key ?
3791 						     spdk_key_get_name(entry->key) : entry->psk_path);
3792 			break;
3793 		}
3794 	}
3795 }
3796 
3797 static void
3798 nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
3799 {
3800 	opts->max_queue_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
3801 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
3802 	opts->in_capsule_data_size =	SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
3803 	opts->max_io_size =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
3804 	opts->io_unit_size =		SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
3805 	opts->max_aq_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
3806 	opts->num_shared_buffers =	SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
3807 	opts->buf_cache_size =		SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
3808 	opts->dif_insert_or_strip =	SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
3809 	opts->abort_timeout_sec =	SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
3810 	opts->transport_specific =      NULL;
3811 }
3812 
3813 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
3814 	.name = "TCP",
3815 	.type = SPDK_NVME_TRANSPORT_TCP,
3816 	.opts_init = nvmf_tcp_opts_init,
3817 	.create = nvmf_tcp_create,
3818 	.dump_opts = nvmf_tcp_dump_opts,
3819 	.destroy = nvmf_tcp_destroy,
3820 
3821 	.listen = nvmf_tcp_listen,
3822 	.stop_listen = nvmf_tcp_stop_listen,
3823 
3824 	.listener_discover = nvmf_tcp_discover,
3825 
3826 	.poll_group_create = nvmf_tcp_poll_group_create,
3827 	.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
3828 	.poll_group_destroy = nvmf_tcp_poll_group_destroy,
3829 	.poll_group_add = nvmf_tcp_poll_group_add,
3830 	.poll_group_remove = nvmf_tcp_poll_group_remove,
3831 	.poll_group_poll = nvmf_tcp_poll_group_poll,
3832 
3833 	.req_free = nvmf_tcp_req_free,
3834 	.req_complete = nvmf_tcp_req_complete,
3835 
3836 	.qpair_fini = nvmf_tcp_close_qpair,
3837 	.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
3838 	.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
3839 	.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
3840 	.qpair_abort_request = nvmf_tcp_qpair_abort_request,
3841 	.subsystem_add_host = nvmf_tcp_subsystem_add_host,
3842 	.subsystem_remove_host = nvmf_tcp_subsystem_remove_host,
3843 	.subsystem_dump_host = nvmf_tcp_subsystem_dump_host,
3844 };
3845 
3846 SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
3847 SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)
3848