xref: /spdk/lib/nvmf/tcp.c (revision 60982c759db49b4f4579f16e3b24df0725ba4b94)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2018 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2022, 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/accel.h"
8 #include "spdk/stdinc.h"
9 #include "spdk/crc32.h"
10 #include "spdk/endian.h"
11 #include "spdk/assert.h"
12 #include "spdk/thread.h"
13 #include "spdk/nvmf_transport.h"
14 #include "spdk/string.h"
15 #include "spdk/trace.h"
16 #include "spdk/util.h"
17 #include "spdk/log.h"
18 
19 #include "spdk_internal/assert.h"
20 #include "spdk_internal/nvme_tcp.h"
21 #include "spdk_internal/sock.h"
22 
23 #include "nvmf_internal.h"
24 
25 #include "spdk_internal/trace_defs.h"
26 
27 #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
28 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
29 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
30 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
31 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
32 
33 #define SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH 2
34 #define SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH 65535
35 #define SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH 2
36 #define SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH 4096
37 
38 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH 128
39 #define SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH 128
40 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
41 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
42 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
43 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
44 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
45 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX
46 #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
47 #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
48 
49 #define TCP_PSK_INVALID_PERMISSIONS 0177
50 
51 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
52 
53 /* spdk nvmf related structure */
54 enum spdk_nvmf_tcp_req_state {
55 
56 	/* The request is not currently in use */
57 	TCP_REQUEST_STATE_FREE = 0,
58 
59 	/* Initial state when request first received */
60 	TCP_REQUEST_STATE_NEW = 1,
61 
62 	/* The request is queued until a data buffer is available. */
63 	TCP_REQUEST_STATE_NEED_BUFFER = 2,
64 
65 	/* The request is waiting for zcopy_start to finish */
66 	TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 3,
67 
68 	/* The request has received a zero-copy buffer */
69 	TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 4,
70 
71 	/* The request is currently transferring data from the host to the controller. */
72 	TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 5,
73 
74 	/* The request is waiting for the R2T send acknowledgement. */
75 	TCP_REQUEST_STATE_AWAITING_R2T_ACK = 6,
76 
77 	/* The request is ready to execute at the block device */
78 	TCP_REQUEST_STATE_READY_TO_EXECUTE = 7,
79 
80 	/* The request is currently executing at the block device */
81 	TCP_REQUEST_STATE_EXECUTING = 8,
82 
83 	/* The request is waiting for zcopy buffers to be committed */
84 	TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 9,
85 
86 	/* The request finished executing at the block device */
87 	TCP_REQUEST_STATE_EXECUTED = 10,
88 
89 	/* The request is ready to send a completion */
90 	TCP_REQUEST_STATE_READY_TO_COMPLETE = 11,
91 
92 	/* The request is currently transferring final pdus from the controller to the host. */
93 	TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 12,
94 
95 	/* The request is waiting for zcopy buffers to be released (without committing) */
96 	TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 13,
97 
98 	/* The request completed and can be marked free. */
99 	TCP_REQUEST_STATE_COMPLETED = 14,
100 
101 	/* Terminator */
102 	TCP_REQUEST_NUM_STATES,
103 };
104 
105 static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
106 	"Invalid PDU Header Field",
107 	"PDU Sequence Error",
108 	"Header Digiest Error",
109 	"Data Transfer Out of Range",
110 	"R2T Limit Exceeded",
111 	"Unsupported parameter",
112 };
113 
114 SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
115 {
116 	spdk_trace_register_owner(OWNER_NVMF_TCP, 't');
117 	spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
118 	spdk_trace_register_description("TCP_REQ_NEW",
119 					TRACE_TCP_REQUEST_STATE_NEW,
120 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1,
121 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
122 	spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
123 					TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
124 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
125 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
126 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START",
127 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START,
128 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
129 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
130 	spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL",
131 					TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED,
132 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
133 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
134 	spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
135 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
136 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
137 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
138 	spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
139 					TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
140 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
141 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
142 	spdk_trace_register_description("TCP_REQ_EXECUTING",
143 					TRACE_TCP_REQUEST_STATE_EXECUTING,
144 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
145 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
146 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT",
147 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT,
148 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
149 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
150 	spdk_trace_register_description("TCP_REQ_EXECUTED",
151 					TRACE_TCP_REQUEST_STATE_EXECUTED,
152 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
153 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
154 	spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
155 					TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
156 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
157 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
158 	spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
159 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
160 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
161 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
162 	spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS",
163 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE,
164 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
165 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
166 	spdk_trace_register_description("TCP_REQ_COMPLETED",
167 					TRACE_TCP_REQUEST_STATE_COMPLETED,
168 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
169 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
170 	spdk_trace_register_description("TCP_WRITE_START",
171 					TRACE_TCP_FLUSH_WRITEBUF_START,
172 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
173 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
174 	spdk_trace_register_description("TCP_WRITE_DONE",
175 					TRACE_TCP_FLUSH_WRITEBUF_DONE,
176 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
177 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
178 	spdk_trace_register_description("TCP_READ_DONE",
179 					TRACE_TCP_READ_FROM_SOCKET_DONE,
180 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
181 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
182 	spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
183 					TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
184 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
185 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
186 
187 	spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE,
188 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
189 					SPDK_TRACE_ARG_TYPE_INT, "");
190 	spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT,
191 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
192 					SPDK_TRACE_ARG_TYPE_INT, "");
193 	spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE,
194 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
195 					SPDK_TRACE_ARG_TYPE_INT, "state");
196 	spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT,
197 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
198 					SPDK_TRACE_ARG_TYPE_INT, "");
199 	spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY,
200 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
201 					SPDK_TRACE_ARG_TYPE_INT, "");
202 	spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ,
203 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
204 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
205 	spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE,
206 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
207 					SPDK_TRACE_ARG_TYPE_INT, "state");
208 
209 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1);
210 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0);
211 }
212 
213 struct spdk_nvmf_tcp_req  {
214 	struct spdk_nvmf_request		req;
215 	struct spdk_nvme_cpl			rsp;
216 	struct spdk_nvme_cmd			cmd;
217 
218 	/* A PDU that can be used for sending responses. This is
219 	 * not the incoming PDU! */
220 	struct nvme_tcp_pdu			*pdu;
221 
222 	/* In-capsule data buffer */
223 	uint8_t					*buf;
224 
225 	struct spdk_nvmf_tcp_req		*fused_pair;
226 
227 	/*
228 	 * The PDU for a request may be used multiple times in serial over
229 	 * the request's lifetime. For example, first to send an R2T, then
230 	 * to send a completion. To catch mistakes where the PDU is used
231 	 * twice at the same time, add a debug flag here for init/fini.
232 	 */
233 	bool					pdu_in_use;
234 	bool					has_in_capsule_data;
235 	bool					fused_failed;
236 
237 	/* transfer_tag */
238 	uint16_t				ttag;
239 
240 	enum spdk_nvmf_tcp_req_state		state;
241 
242 	/*
243 	 * h2c_offset is used when we receive the h2c_data PDU.
244 	 */
245 	uint32_t				h2c_offset;
246 
247 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		link;
248 	TAILQ_ENTRY(spdk_nvmf_tcp_req)		state_link;
249 };
250 
251 struct spdk_nvmf_tcp_qpair {
252 	struct spdk_nvmf_qpair			qpair;
253 	struct spdk_nvmf_tcp_poll_group		*group;
254 	struct spdk_sock			*sock;
255 
256 	enum nvme_tcp_pdu_recv_state		recv_state;
257 	enum nvme_tcp_qpair_state		state;
258 
259 	/* PDU being actively received */
260 	struct nvme_tcp_pdu			*pdu_in_progress;
261 
262 	struct spdk_nvmf_tcp_req		*fused_first;
263 
264 	/* Queues to track the requests in all states */
265 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_working_queue;
266 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_free_queue;
267 	SLIST_HEAD(, nvme_tcp_pdu)		tcp_pdu_free_queue;
268 	/* Number of working pdus */
269 	uint32_t				tcp_pdu_working_count;
270 
271 	/* Number of requests in each state */
272 	uint32_t				state_cntr[TCP_REQUEST_NUM_STATES];
273 
274 	uint8_t					cpda;
275 
276 	bool					host_hdgst_enable;
277 	bool					host_ddgst_enable;
278 
279 	/* This is a spare PDU used for sending special management
280 	 * operations. Primarily, this is used for the initial
281 	 * connection response and c2h termination request. */
282 	struct nvme_tcp_pdu			*mgmt_pdu;
283 
284 	/* Arrays of in-capsule buffers, requests, and pdus.
285 	 * Each array is 'resource_count' number of elements */
286 	void					*bufs;
287 	struct spdk_nvmf_tcp_req		*reqs;
288 	struct nvme_tcp_pdu			*pdus;
289 	uint32_t				resource_count;
290 	uint32_t				recv_buf_size;
291 
292 	struct spdk_nvmf_tcp_port		*port;
293 
294 	/* IP address */
295 	char					initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
296 	char					target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
297 
298 	/* IP port */
299 	uint16_t				initiator_port;
300 	uint16_t				target_port;
301 
302 	/* Timer used to destroy qpair after detecting transport error issue if initiator does
303 	 *  not close the connection.
304 	 */
305 	struct spdk_poller			*timeout_poller;
306 
307 	spdk_nvmf_transport_qpair_fini_cb	fini_cb_fn;
308 	void					*fini_cb_arg;
309 
310 	TAILQ_ENTRY(spdk_nvmf_tcp_qpair)	link;
311 };
312 
313 struct spdk_nvmf_tcp_control_msg {
314 	STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
315 };
316 
317 struct spdk_nvmf_tcp_control_msg_list {
318 	void *msg_buf;
319 	STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
320 };
321 
322 struct spdk_nvmf_tcp_poll_group {
323 	struct spdk_nvmf_transport_poll_group	group;
324 	struct spdk_sock_group			*sock_group;
325 
326 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	qpairs;
327 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	await_req;
328 
329 	struct spdk_io_channel			*accel_channel;
330 	struct spdk_nvmf_tcp_control_msg_list	*control_msg_list;
331 
332 	TAILQ_ENTRY(spdk_nvmf_tcp_poll_group)	link;
333 };
334 
335 struct spdk_nvmf_tcp_port {
336 	const struct spdk_nvme_transport_id	*trid;
337 	struct spdk_sock			*listen_sock;
338 	TAILQ_ENTRY(spdk_nvmf_tcp_port)		link;
339 };
340 
341 struct tcp_transport_opts {
342 	bool		c2h_success;
343 	uint16_t	control_msg_num;
344 	uint32_t	sock_priority;
345 };
346 
347 struct tcp_psk_entry {
348 	char				hostnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
349 	char				subnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
350 	char				psk_identity[NVMF_PSK_IDENTITY_LEN];
351 	uint8_t				psk[SPDK_TLS_PSK_MAX_LEN];
352 
353 	/* Original path saved to emit SPDK configuration via "save_config". */
354 	char				psk_path[PATH_MAX];
355 	uint32_t			psk_size;
356 	enum nvme_tcp_cipher_suite	tls_cipher_suite;
357 	TAILQ_ENTRY(tcp_psk_entry)	link;
358 };
359 
360 struct spdk_nvmf_tcp_transport {
361 	struct spdk_nvmf_transport		transport;
362 	struct tcp_transport_opts               tcp_opts;
363 
364 	struct spdk_nvmf_tcp_poll_group		*next_pg;
365 
366 	struct spdk_poller			*accept_poller;
367 
368 	TAILQ_HEAD(, spdk_nvmf_tcp_port)	ports;
369 	TAILQ_HEAD(, spdk_nvmf_tcp_poll_group)	poll_groups;
370 
371 	TAILQ_HEAD(, tcp_psk_entry)		psks;
372 };
373 
374 static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
375 	{
376 		"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
377 		spdk_json_decode_bool, true
378 	},
379 	{
380 		"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
381 		spdk_json_decode_uint16, true
382 	},
383 	{
384 		"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
385 		spdk_json_decode_uint32, true
386 	},
387 };
388 
389 static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
390 				 struct spdk_nvmf_tcp_req *tcp_req);
391 static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
392 
393 static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
394 				    struct spdk_nvmf_tcp_req *tcp_req);
395 
396 static inline void
397 nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
398 		       enum spdk_nvmf_tcp_req_state state)
399 {
400 	struct spdk_nvmf_qpair *qpair;
401 	struct spdk_nvmf_tcp_qpair *tqpair;
402 
403 	qpair = tcp_req->req.qpair;
404 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
405 
406 	assert(tqpair->state_cntr[tcp_req->state] > 0);
407 	tqpair->state_cntr[tcp_req->state]--;
408 	tqpair->state_cntr[state]++;
409 
410 	tcp_req->state = state;
411 }
412 
413 static inline struct nvme_tcp_pdu *
414 nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
415 {
416 	assert(tcp_req->pdu_in_use == false);
417 
418 	memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
419 	tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
420 
421 	return tcp_req->pdu;
422 }
423 
424 static struct spdk_nvmf_tcp_req *
425 nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
426 {
427 	struct spdk_nvmf_tcp_req *tcp_req;
428 
429 	tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
430 	if (spdk_unlikely(!tcp_req)) {
431 		return NULL;
432 	}
433 
434 	memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
435 	tcp_req->h2c_offset = 0;
436 	tcp_req->has_in_capsule_data = false;
437 	tcp_req->req.dif_enabled = false;
438 	tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE;
439 
440 	TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
441 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
442 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
443 	return tcp_req;
444 }
445 
446 static inline void
447 nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
448 {
449 	assert(!tcp_req->pdu_in_use);
450 
451 	TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
452 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
453 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
454 }
455 
456 static void
457 nvmf_tcp_request_free(void *cb_arg)
458 {
459 	struct spdk_nvmf_tcp_transport *ttransport;
460 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
461 
462 	assert(tcp_req != NULL);
463 
464 	SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
465 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
466 				      struct spdk_nvmf_tcp_transport, transport);
467 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
468 	nvmf_tcp_req_process(ttransport, tcp_req);
469 }
470 
471 static int
472 nvmf_tcp_req_free(struct spdk_nvmf_request *req)
473 {
474 	struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
475 
476 	nvmf_tcp_request_free(tcp_req);
477 
478 	return 0;
479 }
480 
481 static void
482 nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
483 			   enum spdk_nvmf_tcp_req_state state)
484 {
485 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
486 
487 	assert(state != TCP_REQUEST_STATE_FREE);
488 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
489 		if (state == tcp_req->state) {
490 			nvmf_tcp_request_free(tcp_req);
491 		}
492 	}
493 }
494 
495 static void
496 nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
497 {
498 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
499 
500 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
501 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
502 
503 	/* Wipe the requests waiting for buffer from the global list */
504 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
505 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
506 			STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue, &tcp_req->req,
507 				      spdk_nvmf_request, buf_link);
508 		}
509 	}
510 
511 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
512 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
513 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
514 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
515 }
516 
517 static void
518 nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
519 {
520 	int i;
521 	struct spdk_nvmf_tcp_req *tcp_req;
522 
523 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
524 	for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
525 		SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
526 		TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
527 			if ((int)tcp_req->state == i) {
528 				SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
529 				SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
530 			}
531 		}
532 	}
533 }
534 
535 static void
536 _nvmf_tcp_qpair_destroy(void *_tqpair)
537 {
538 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
539 	spdk_nvmf_transport_qpair_fini_cb cb_fn = tqpair->fini_cb_fn;
540 	void *cb_arg = tqpair->fini_cb_arg;
541 	int err = 0;
542 
543 	spdk_trace_record(TRACE_TCP_QP_DESTROY, 0, 0, (uintptr_t)tqpair);
544 
545 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
546 
547 	err = spdk_sock_close(&tqpair->sock);
548 	assert(err == 0);
549 	nvmf_tcp_cleanup_all_states(tqpair);
550 
551 	if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
552 		SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
553 			    tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
554 			    tqpair->resource_count);
555 		err++;
556 	}
557 
558 	if (err > 0) {
559 		nvmf_tcp_dump_qpair_req_contents(tqpair);
560 	}
561 
562 	/* The timeout poller might still be registered here if we close the qpair before host
563 	 * terminates the connection.
564 	 */
565 	spdk_poller_unregister(&tqpair->timeout_poller);
566 	spdk_dma_free(tqpair->pdus);
567 	free(tqpair->reqs);
568 	spdk_free(tqpair->bufs);
569 	free(tqpair);
570 
571 	if (cb_fn != NULL) {
572 		cb_fn(cb_arg);
573 	}
574 
575 	SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
576 }
577 
578 static void
579 nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
580 {
581 	/* Delay the destruction to make sure it isn't performed from the context of a sock
582 	 * callback.  Otherwise, spdk_sock_close() might not abort pending requests, causing their
583 	 * completions to be executed after the qpair is freed.  (Note: this fixed issue #2471.)
584 	 */
585 	spdk_thread_send_msg(spdk_get_thread(), _nvmf_tcp_qpair_destroy, tqpair);
586 }
587 
588 static void
589 nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
590 {
591 	struct spdk_nvmf_tcp_transport	*ttransport;
592 	assert(w != NULL);
593 
594 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
595 	spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
596 	spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
597 }
598 
599 static int
600 nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
601 		 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
602 {
603 	struct spdk_nvmf_tcp_transport	*ttransport;
604 	struct tcp_psk_entry *entry, *tmp;
605 
606 	assert(transport != NULL);
607 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
608 
609 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
610 		TAILQ_REMOVE(&ttransport->psks, entry, link);
611 		free(entry);
612 	}
613 
614 	spdk_poller_unregister(&ttransport->accept_poller);
615 	free(ttransport);
616 
617 	if (cb_fn) {
618 		cb_fn(cb_arg);
619 	}
620 	return 0;
621 }
622 
623 static int nvmf_tcp_accept(void *ctx);
624 
625 static struct spdk_nvmf_transport *
626 nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
627 {
628 	struct spdk_nvmf_tcp_transport *ttransport;
629 	uint32_t sge_count;
630 	uint32_t min_shared_buffers;
631 
632 	ttransport = calloc(1, sizeof(*ttransport));
633 	if (!ttransport) {
634 		return NULL;
635 	}
636 
637 	TAILQ_INIT(&ttransport->ports);
638 	TAILQ_INIT(&ttransport->poll_groups);
639 	TAILQ_INIT(&ttransport->psks);
640 
641 	ttransport->transport.ops = &spdk_nvmf_transport_tcp;
642 
643 	ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
644 	ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
645 	ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
646 	if (opts->transport_specific != NULL &&
647 	    spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
648 					    SPDK_COUNTOF(tcp_transport_opts_decoder),
649 					    &ttransport->tcp_opts)) {
650 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
651 		free(ttransport);
652 		return NULL;
653 	}
654 
655 	SPDK_NOTICELOG("*** TCP Transport Init ***\n");
656 
657 	SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
658 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
659 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
660 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
661 		     "  num_shared_buffers=%d, c2h_success=%d,\n"
662 		     "  dif_insert_or_strip=%d, sock_priority=%d\n"
663 		     "  abort_timeout_sec=%d, control_msg_num=%hu\n",
664 		     opts->max_queue_depth,
665 		     opts->max_io_size,
666 		     opts->max_qpairs_per_ctrlr - 1,
667 		     opts->io_unit_size,
668 		     opts->in_capsule_data_size,
669 		     opts->max_aq_depth,
670 		     opts->num_shared_buffers,
671 		     ttransport->tcp_opts.c2h_success,
672 		     opts->dif_insert_or_strip,
673 		     ttransport->tcp_opts.sock_priority,
674 		     opts->abort_timeout_sec,
675 		     ttransport->tcp_opts.control_msg_num);
676 
677 	if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
678 		SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
679 			    "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
680 			    ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
681 		free(ttransport);
682 		return NULL;
683 	}
684 
685 	if (ttransport->tcp_opts.control_msg_num == 0 &&
686 	    opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
687 		SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
688 			     SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
689 		ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
690 	}
691 
692 	/* I/O unit size cannot be larger than max I/O size */
693 	if (opts->io_unit_size > opts->max_io_size) {
694 		SPDK_WARNLOG("TCP param io_unit_size %u can't be larger than max_io_size %u. Using max_io_size as io_unit_size\n",
695 			     opts->io_unit_size, opts->max_io_size);
696 		opts->io_unit_size = opts->max_io_size;
697 	}
698 
699 	/* In capsule data size cannot be larger than max I/O size */
700 	if (opts->in_capsule_data_size > opts->max_io_size) {
701 		SPDK_WARNLOG("TCP param ICD size %u can't be larger than max_io_size %u. Using max_io_size as ICD size\n",
702 			     opts->io_unit_size, opts->max_io_size);
703 		opts->in_capsule_data_size = opts->max_io_size;
704 	}
705 
706 	/* max IO queue depth cannot be smaller than 2 or larger than 65535.
707 	 * We will not check SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, because max_queue_depth is 16bits and always not larger than 64k. */
708 	if (opts->max_queue_depth < SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH) {
709 		SPDK_WARNLOG("TCP param max_queue_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
710 			     opts->max_queue_depth, SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH,
711 			     SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH);
712 		opts->max_queue_depth = SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
713 	}
714 
715 	/* max admin queue depth cannot be smaller than 2 or larger than 4096 */
716 	if (opts->max_aq_depth < SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH ||
717 	    opts->max_aq_depth > SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH) {
718 		SPDK_WARNLOG("TCP param max_aq_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
719 			     opts->max_aq_depth, SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH,
720 			     SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH);
721 		opts->max_aq_depth = SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
722 	}
723 
724 	sge_count = opts->max_io_size / opts->io_unit_size;
725 	if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
726 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
727 		free(ttransport);
728 		return NULL;
729 	}
730 
731 	/* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */
732 	if (opts->buf_cache_size < UINT32_MAX) {
733 		min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
734 		if (min_shared_buffers > opts->num_shared_buffers) {
735 			SPDK_ERRLOG("There are not enough buffers to satisfy "
736 				    "per-poll group caches for each thread. (%" PRIu32 ") "
737 				    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
738 			SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
739 			free(ttransport);
740 			return NULL;
741 		}
742 	}
743 
744 	ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport,
745 				    opts->acceptor_poll_rate);
746 	if (!ttransport->accept_poller) {
747 		free(ttransport);
748 		return NULL;
749 	}
750 
751 	return &ttransport->transport;
752 }
753 
754 static int
755 nvmf_tcp_trsvcid_to_int(const char *trsvcid)
756 {
757 	unsigned long long ull;
758 	char *end = NULL;
759 
760 	ull = strtoull(trsvcid, &end, 10);
761 	if (end == NULL || end == trsvcid || *end != '\0') {
762 		return -1;
763 	}
764 
765 	/* Valid TCP/IP port numbers are in [0, 65535] */
766 	if (ull > 65535) {
767 		return -1;
768 	}
769 
770 	return (int)ull;
771 }
772 
773 /**
774  * Canonicalize a listen address trid.
775  */
776 static int
777 nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
778 			   const struct spdk_nvme_transport_id *trid)
779 {
780 	int trsvcid_int;
781 
782 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
783 	if (trsvcid_int < 0) {
784 		return -EINVAL;
785 	}
786 
787 	memset(canon_trid, 0, sizeof(*canon_trid));
788 	spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
789 	canon_trid->adrfam = trid->adrfam;
790 	snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
791 	snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
792 
793 	return 0;
794 }
795 
796 /**
797  * Find an existing listening port.
798  */
799 static struct spdk_nvmf_tcp_port *
800 nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
801 		   const struct spdk_nvme_transport_id *trid)
802 {
803 	struct spdk_nvme_transport_id canon_trid;
804 	struct spdk_nvmf_tcp_port *port;
805 
806 	if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
807 		return NULL;
808 	}
809 
810 	TAILQ_FOREACH(port, &ttransport->ports, link) {
811 		if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
812 			return port;
813 		}
814 	}
815 
816 	return NULL;
817 }
818 
819 static int
820 tcp_sock_get_key(uint8_t *out, int out_len, const char **cipher, const char *psk_identity,
821 		 void *get_key_ctx)
822 {
823 	struct tcp_psk_entry *entry;
824 	struct spdk_nvmf_tcp_transport *ttransport = get_key_ctx;
825 	size_t psk_len;
826 	int rc;
827 
828 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
829 		if (strcmp(psk_identity, entry->psk_identity) != 0) {
830 			continue;
831 		}
832 
833 		psk_len = entry->psk_size;
834 		if ((size_t)out_len < psk_len) {
835 			SPDK_ERRLOG("Out buffer of size: %" PRIu32 " cannot fit PSK of len: %lu\n",
836 				    out_len, psk_len);
837 			return -ENOBUFS;
838 		}
839 
840 		/* Convert PSK to the TLS PSK format. */
841 		rc = nvme_tcp_derive_tls_psk(entry->psk, psk_len, psk_identity, out, out_len,
842 					     entry->tls_cipher_suite);
843 		if (rc < 0) {
844 			SPDK_ERRLOG("Could not generate TLS PSK\n");
845 		}
846 
847 		switch (entry->tls_cipher_suite) {
848 		case NVME_TCP_CIPHER_AES_128_GCM_SHA256:
849 			*cipher = "TLS_AES_128_GCM_SHA256";
850 			break;
851 		case NVME_TCP_CIPHER_AES_256_GCM_SHA384:
852 			*cipher = "TLS_AES_256_GCM_SHA384";
853 			break;
854 		default:
855 			*cipher = NULL;
856 			return -ENOTSUP;
857 		}
858 
859 		return rc;
860 	}
861 
862 	SPDK_ERRLOG("Could not find PSK for identity: %s\n", psk_identity);
863 
864 	return -EINVAL;
865 }
866 
867 static int
868 nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
869 		struct spdk_nvmf_listen_opts *listen_opts)
870 {
871 	struct spdk_nvmf_tcp_transport *ttransport;
872 	struct spdk_nvmf_tcp_port *port;
873 	int trsvcid_int;
874 	uint8_t adrfam;
875 	const char *sock_impl_name;
876 	struct spdk_sock_impl_opts impl_opts;
877 	size_t impl_opts_size = sizeof(impl_opts);
878 	struct spdk_sock_opts opts;
879 
880 	if (!strlen(trid->trsvcid)) {
881 		SPDK_ERRLOG("Service id is required\n");
882 		return -EINVAL;
883 	}
884 
885 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
886 
887 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
888 	if (trsvcid_int < 0) {
889 		SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
890 		return -EINVAL;
891 	}
892 
893 	port = calloc(1, sizeof(*port));
894 	if (!port) {
895 		SPDK_ERRLOG("Port allocation failed\n");
896 		return -ENOMEM;
897 	}
898 
899 	port->trid = trid;
900 
901 	sock_impl_name = NULL;
902 
903 	opts.opts_size = sizeof(opts);
904 	spdk_sock_get_default_opts(&opts);
905 	opts.priority = ttransport->tcp_opts.sock_priority;
906 	if (listen_opts->secure_channel) {
907 		sock_impl_name = "ssl";
908 		spdk_sock_impl_get_opts(sock_impl_name, &impl_opts, &impl_opts_size);
909 		impl_opts.tls_version = SPDK_TLS_VERSION_1_3;
910 		impl_opts.get_key = tcp_sock_get_key;
911 		impl_opts.get_key_ctx = ttransport;
912 		impl_opts.tls_cipher_suites = "TLS_AES_256_GCM_SHA384:TLS_AES_128_GCM_SHA256";
913 		opts.impl_opts = &impl_opts;
914 		opts.impl_opts_size = sizeof(impl_opts);
915 	}
916 
917 	port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
918 			    sock_impl_name, &opts);
919 	if (port->listen_sock == NULL) {
920 		SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
921 			    trid->traddr, trsvcid_int,
922 			    spdk_strerror(errno), errno);
923 		free(port);
924 		return -errno;
925 	}
926 
927 	if (spdk_sock_is_ipv4(port->listen_sock)) {
928 		adrfam = SPDK_NVMF_ADRFAM_IPV4;
929 	} else if (spdk_sock_is_ipv6(port->listen_sock)) {
930 		adrfam = SPDK_NVMF_ADRFAM_IPV6;
931 	} else {
932 		SPDK_ERRLOG("Unhandled socket type\n");
933 		adrfam = 0;
934 	}
935 
936 	if (adrfam != trid->adrfam) {
937 		SPDK_ERRLOG("Socket address family mismatch\n");
938 		spdk_sock_close(&port->listen_sock);
939 		free(port);
940 		return -EINVAL;
941 	}
942 
943 	SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
944 		       trid->traddr, trid->trsvcid);
945 
946 	TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
947 	return 0;
948 }
949 
950 static void
951 nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
952 		     const struct spdk_nvme_transport_id *trid)
953 {
954 	struct spdk_nvmf_tcp_transport *ttransport;
955 	struct spdk_nvmf_tcp_port *port;
956 
957 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
958 
959 	SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
960 		      trid->traddr, trid->trsvcid);
961 
962 	port = nvmf_tcp_find_port(ttransport, trid);
963 	if (port) {
964 		TAILQ_REMOVE(&ttransport->ports, port, link);
965 		spdk_sock_close(&port->listen_sock);
966 		free(port);
967 	}
968 }
969 
970 static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
971 		enum nvme_tcp_pdu_recv_state state);
972 
973 static void
974 nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvme_tcp_qpair_state state)
975 {
976 	tqpair->state = state;
977 	spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
978 			  tqpair->state);
979 }
980 
981 static void
982 nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
983 {
984 	SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
985 
986 	spdk_trace_record(TRACE_TCP_QP_DISCONNECT, 0, 0, (uintptr_t)tqpair);
987 
988 	if (tqpair->state <= NVME_TCP_QPAIR_STATE_RUNNING) {
989 		nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITING);
990 		assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
991 		spdk_poller_unregister(&tqpair->timeout_poller);
992 
993 		/* This will end up calling nvmf_tcp_close_qpair */
994 		spdk_nvmf_qpair_disconnect(&tqpair->qpair, NULL, NULL);
995 	}
996 }
997 
998 static void
999 _mgmt_pdu_write_done(void *_tqpair, int err)
1000 {
1001 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
1002 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1003 
1004 	if (spdk_unlikely(err != 0)) {
1005 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1006 		return;
1007 	}
1008 
1009 	assert(pdu->cb_fn != NULL);
1010 	pdu->cb_fn(pdu->cb_arg);
1011 }
1012 
1013 static void
1014 _req_pdu_write_done(void *req, int err)
1015 {
1016 	struct spdk_nvmf_tcp_req *tcp_req = req;
1017 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1018 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1019 
1020 	assert(tcp_req->pdu_in_use);
1021 	tcp_req->pdu_in_use = false;
1022 
1023 	/* If the request is in a completed state, we're waiting for write completion to free it */
1024 	if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) {
1025 		nvmf_tcp_request_free(tcp_req);
1026 		return;
1027 	}
1028 
1029 	if (spdk_unlikely(err != 0)) {
1030 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1031 		return;
1032 	}
1033 
1034 	assert(pdu->cb_fn != NULL);
1035 	pdu->cb_fn(pdu->cb_arg);
1036 }
1037 
1038 static void
1039 _pdu_write_done(struct nvme_tcp_pdu *pdu, int err)
1040 {
1041 	pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err);
1042 }
1043 
1044 static void
1045 _tcp_write_pdu(struct nvme_tcp_pdu *pdu)
1046 {
1047 	int rc;
1048 	uint32_t mapped_length;
1049 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1050 
1051 	pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
1052 			       tqpair->host_hdgst_enable, tqpair->host_ddgst_enable, &mapped_length);
1053 	spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
1054 
1055 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
1056 	    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
1057 		/* Try to force the send immediately. */
1058 		rc = spdk_sock_flush(tqpair->sock);
1059 		if (rc > 0 && (uint32_t)rc == mapped_length) {
1060 			_pdu_write_done(pdu, 0);
1061 		} else {
1062 			SPDK_ERRLOG("Could not write %s to socket: rc=%d, errno=%d\n",
1063 				    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ?
1064 				    "IC_RESP" : "TERM_REQ", rc, errno);
1065 			_pdu_write_done(pdu, rc >= 0 ? -EAGAIN : -errno);
1066 		}
1067 	}
1068 }
1069 
1070 static void
1071 data_crc32_accel_done(void *cb_arg, int status)
1072 {
1073 	struct nvme_tcp_pdu *pdu = cb_arg;
1074 
1075 	if (spdk_unlikely(status)) {
1076 		SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
1077 		_pdu_write_done(pdu, status);
1078 		return;
1079 	}
1080 
1081 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
1082 	MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
1083 
1084 	_tcp_write_pdu(pdu);
1085 }
1086 
1087 static void
1088 pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
1089 {
1090 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1091 	int rc = 0;
1092 
1093 	/* Data Digest */
1094 	if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
1095 		/* Only support this limitated case for the first step */
1096 		if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
1097 				&& tqpair->group)) {
1098 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
1099 						       pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
1100 			if (spdk_likely(rc == 0)) {
1101 				return;
1102 			}
1103 		} else {
1104 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1105 		}
1106 		data_crc32_accel_done(pdu, rc);
1107 	} else {
1108 		_tcp_write_pdu(pdu);
1109 	}
1110 }
1111 
1112 static void
1113 nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1114 			 struct nvme_tcp_pdu *pdu,
1115 			 nvme_tcp_qpair_xfer_complete_cb cb_fn,
1116 			 void *cb_arg)
1117 {
1118 	int hlen;
1119 	uint32_t crc32c;
1120 
1121 	assert(tqpair->pdu_in_progress != pdu);
1122 
1123 	hlen = pdu->hdr.common.hlen;
1124 	pdu->cb_fn = cb_fn;
1125 	pdu->cb_arg = cb_arg;
1126 
1127 	pdu->iov[0].iov_base = &pdu->hdr.raw;
1128 	pdu->iov[0].iov_len = hlen;
1129 
1130 	/* Header Digest */
1131 	if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) {
1132 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1133 		MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
1134 	}
1135 
1136 	/* Data Digest */
1137 	pdu_data_crc32_compute(pdu);
1138 }
1139 
1140 static void
1141 nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1142 			      nvme_tcp_qpair_xfer_complete_cb cb_fn,
1143 			      void *cb_arg)
1144 {
1145 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1146 
1147 	pdu->sock_req.cb_fn = _mgmt_pdu_write_done;
1148 	pdu->sock_req.cb_arg = tqpair;
1149 
1150 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1151 }
1152 
1153 static void
1154 nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1155 			     struct spdk_nvmf_tcp_req *tcp_req,
1156 			     nvme_tcp_qpair_xfer_complete_cb cb_fn,
1157 			     void *cb_arg)
1158 {
1159 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1160 
1161 	pdu->sock_req.cb_fn = _req_pdu_write_done;
1162 	pdu->sock_req.cb_arg = tcp_req;
1163 
1164 	assert(!tcp_req->pdu_in_use);
1165 	tcp_req->pdu_in_use = true;
1166 
1167 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1168 }
1169 
1170 static int
1171 nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
1172 {
1173 	uint32_t i;
1174 	struct spdk_nvmf_transport_opts *opts;
1175 	uint32_t in_capsule_data_size;
1176 
1177 	opts = &tqpair->qpair.transport->opts;
1178 
1179 	in_capsule_data_size = opts->in_capsule_data_size;
1180 	if (opts->dif_insert_or_strip) {
1181 		in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
1182 	}
1183 
1184 	tqpair->resource_count = opts->max_queue_depth;
1185 
1186 	tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
1187 	if (!tqpair->reqs) {
1188 		SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
1189 		return -1;
1190 	}
1191 
1192 	if (in_capsule_data_size) {
1193 		tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
1194 					    NULL, SPDK_ENV_LCORE_ID_ANY,
1195 					    SPDK_MALLOC_DMA);
1196 		if (!tqpair->bufs) {
1197 			SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
1198 			return -1;
1199 		}
1200 	}
1201 	/* prepare memory space for receiving pdus and tcp_req */
1202 	/* Add additional 1 member, which will be used for mgmt_pdu owned by the tqpair */
1203 	tqpair->pdus = spdk_dma_zmalloc((2 * tqpair->resource_count + 1) * sizeof(*tqpair->pdus), 0x1000,
1204 					NULL);
1205 	if (!tqpair->pdus) {
1206 		SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
1207 		return -1;
1208 	}
1209 
1210 	for (i = 0; i < tqpair->resource_count; i++) {
1211 		struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
1212 
1213 		tcp_req->ttag = i + 1;
1214 		tcp_req->req.qpair = &tqpair->qpair;
1215 
1216 		tcp_req->pdu = &tqpair->pdus[i];
1217 		tcp_req->pdu->qpair = tqpair;
1218 
1219 		/* Set up memory to receive commands */
1220 		if (tqpair->bufs) {
1221 			tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
1222 		}
1223 
1224 		/* Set the cmdn and rsp */
1225 		tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
1226 		tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
1227 
1228 		tcp_req->req.stripped_data = NULL;
1229 
1230 		/* Initialize request state to FREE */
1231 		tcp_req->state = TCP_REQUEST_STATE_FREE;
1232 		TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
1233 		tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
1234 	}
1235 
1236 	for (; i < 2 * tqpair->resource_count; i++) {
1237 		struct nvme_tcp_pdu *pdu = &tqpair->pdus[i];
1238 
1239 		pdu->qpair = tqpair;
1240 		SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1241 	}
1242 
1243 	tqpair->mgmt_pdu = &tqpair->pdus[i];
1244 	tqpair->mgmt_pdu->qpair = tqpair;
1245 	tqpair->pdu_in_progress = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
1246 	SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
1247 	tqpair->tcp_pdu_working_count = 1;
1248 
1249 	tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
1250 				 SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1251 
1252 	return 0;
1253 }
1254 
1255 static int
1256 nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
1257 {
1258 	struct spdk_nvmf_tcp_qpair *tqpair;
1259 
1260 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1261 
1262 	SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
1263 
1264 	spdk_trace_record(TRACE_TCP_QP_CREATE, 0, 0, (uintptr_t)tqpair);
1265 
1266 	/* Initialise request state queues of the qpair */
1267 	TAILQ_INIT(&tqpair->tcp_req_free_queue);
1268 	TAILQ_INIT(&tqpair->tcp_req_working_queue);
1269 	SLIST_INIT(&tqpair->tcp_pdu_free_queue);
1270 
1271 	tqpair->host_hdgst_enable = true;
1272 	tqpair->host_ddgst_enable = true;
1273 
1274 	return 0;
1275 }
1276 
1277 static int
1278 nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
1279 {
1280 	int rc;
1281 
1282 	spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, 0, 0, (uintptr_t)tqpair);
1283 
1284 	/* set low water mark */
1285 	rc = spdk_sock_set_recvlowat(tqpair->sock, 1);
1286 	if (rc != 0) {
1287 		SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
1288 		return rc;
1289 	}
1290 
1291 	return 0;
1292 }
1293 
1294 static void
1295 nvmf_tcp_handle_connect(struct spdk_nvmf_transport *transport,
1296 			struct spdk_nvmf_tcp_port *port,
1297 			struct spdk_sock *sock)
1298 {
1299 	struct spdk_nvmf_tcp_qpair *tqpair;
1300 	int rc;
1301 
1302 	SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
1303 		      port->trid->traddr, port->trid->trsvcid);
1304 
1305 	tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
1306 	if (tqpair == NULL) {
1307 		SPDK_ERRLOG("Could not allocate new connection.\n");
1308 		spdk_sock_close(&sock);
1309 		return;
1310 	}
1311 
1312 	tqpair->sock = sock;
1313 	tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
1314 	tqpair->port = port;
1315 	tqpair->qpair.transport = transport;
1316 
1317 	rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
1318 			       sizeof(tqpair->target_addr), &tqpair->target_port,
1319 			       tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
1320 			       &tqpair->initiator_port);
1321 	if (rc < 0) {
1322 		SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
1323 		nvmf_tcp_qpair_destroy(tqpair);
1324 		return;
1325 	}
1326 
1327 	spdk_nvmf_tgt_new_qpair(transport->tgt, &tqpair->qpair);
1328 }
1329 
1330 static uint32_t
1331 nvmf_tcp_port_accept(struct spdk_nvmf_transport *transport, struct spdk_nvmf_tcp_port *port)
1332 {
1333 	struct spdk_sock *sock;
1334 	uint32_t count = 0;
1335 	int i;
1336 
1337 	for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
1338 		sock = spdk_sock_accept(port->listen_sock);
1339 		if (sock == NULL) {
1340 			break;
1341 		}
1342 		count++;
1343 		nvmf_tcp_handle_connect(transport, port, sock);
1344 	}
1345 
1346 	return count;
1347 }
1348 
1349 static int
1350 nvmf_tcp_accept(void *ctx)
1351 {
1352 	struct spdk_nvmf_transport *transport = ctx;
1353 	struct spdk_nvmf_tcp_transport *ttransport;
1354 	struct spdk_nvmf_tcp_port *port;
1355 	uint32_t count = 0;
1356 
1357 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1358 
1359 	TAILQ_FOREACH(port, &ttransport->ports, link) {
1360 		count += nvmf_tcp_port_accept(transport, port);
1361 	}
1362 
1363 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1364 }
1365 
1366 static void
1367 nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
1368 		  struct spdk_nvme_transport_id *trid,
1369 		  struct spdk_nvmf_discovery_log_page_entry *entry)
1370 {
1371 	struct spdk_nvmf_tcp_port *port;
1372 	struct spdk_nvmf_tcp_transport *ttransport;
1373 
1374 	entry->trtype = SPDK_NVMF_TRTYPE_TCP;
1375 	entry->adrfam = trid->adrfam;
1376 
1377 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
1378 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
1379 
1380 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1381 	port = nvmf_tcp_find_port(ttransport, trid);
1382 
1383 	assert(port != NULL);
1384 
1385 	if (strcmp(spdk_sock_get_impl_name(port->listen_sock), "ssl") == 0) {
1386 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_REQUIRED;
1387 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_TLS_1_3;
1388 	} else {
1389 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
1390 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
1391 	}
1392 }
1393 
1394 static struct spdk_nvmf_tcp_control_msg_list *
1395 nvmf_tcp_control_msg_list_create(uint16_t num_messages)
1396 {
1397 	struct spdk_nvmf_tcp_control_msg_list *list;
1398 	struct spdk_nvmf_tcp_control_msg *msg;
1399 	uint16_t i;
1400 
1401 	list = calloc(1, sizeof(*list));
1402 	if (!list) {
1403 		SPDK_ERRLOG("Failed to allocate memory for list structure\n");
1404 		return NULL;
1405 	}
1406 
1407 	list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
1408 				     NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
1409 	if (!list->msg_buf) {
1410 		SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
1411 		free(list);
1412 		return NULL;
1413 	}
1414 
1415 	STAILQ_INIT(&list->free_msgs);
1416 
1417 	for (i = 0; i < num_messages; i++) {
1418 		msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
1419 				SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1420 		STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
1421 	}
1422 
1423 	return list;
1424 }
1425 
1426 static void
1427 nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
1428 {
1429 	if (!list) {
1430 		return;
1431 	}
1432 
1433 	spdk_free(list->msg_buf);
1434 	free(list);
1435 }
1436 
1437 static struct spdk_nvmf_transport_poll_group *
1438 nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport,
1439 			   struct spdk_nvmf_poll_group *group)
1440 {
1441 	struct spdk_nvmf_tcp_transport	*ttransport;
1442 	struct spdk_nvmf_tcp_poll_group *tgroup;
1443 
1444 	tgroup = calloc(1, sizeof(*tgroup));
1445 	if (!tgroup) {
1446 		return NULL;
1447 	}
1448 
1449 	tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
1450 	if (!tgroup->sock_group) {
1451 		goto cleanup;
1452 	}
1453 
1454 	TAILQ_INIT(&tgroup->qpairs);
1455 	TAILQ_INIT(&tgroup->await_req);
1456 
1457 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1458 
1459 	if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
1460 		SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
1461 			      "Creating control messages list\n", transport->opts.in_capsule_data_size,
1462 			      SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1463 		tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
1464 		if (!tgroup->control_msg_list) {
1465 			goto cleanup;
1466 		}
1467 	}
1468 
1469 	tgroup->accel_channel = spdk_accel_get_io_channel();
1470 	if (spdk_unlikely(!tgroup->accel_channel)) {
1471 		SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
1472 		goto cleanup;
1473 	}
1474 
1475 	TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link);
1476 	if (ttransport->next_pg == NULL) {
1477 		ttransport->next_pg = tgroup;
1478 	}
1479 
1480 	return &tgroup->group;
1481 
1482 cleanup:
1483 	nvmf_tcp_poll_group_destroy(&tgroup->group);
1484 	return NULL;
1485 }
1486 
1487 static struct spdk_nvmf_transport_poll_group *
1488 nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
1489 {
1490 	struct spdk_nvmf_tcp_transport *ttransport;
1491 	struct spdk_nvmf_tcp_poll_group **pg;
1492 	struct spdk_nvmf_tcp_qpair *tqpair;
1493 	struct spdk_sock_group *group = NULL, *hint = NULL;
1494 	int rc;
1495 
1496 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
1497 
1498 	if (TAILQ_EMPTY(&ttransport->poll_groups)) {
1499 		return NULL;
1500 	}
1501 
1502 	pg = &ttransport->next_pg;
1503 	assert(*pg != NULL);
1504 	hint = (*pg)->sock_group;
1505 
1506 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1507 	rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint);
1508 	if (rc != 0) {
1509 		return NULL;
1510 	} else if (group != NULL) {
1511 		/* Optimal poll group was found */
1512 		return spdk_sock_group_get_ctx(group);
1513 	}
1514 
1515 	/* The hint was used for optimal poll group, advance next_pg. */
1516 	*pg = TAILQ_NEXT(*pg, link);
1517 	if (*pg == NULL) {
1518 		*pg = TAILQ_FIRST(&ttransport->poll_groups);
1519 	}
1520 
1521 	return spdk_sock_group_get_ctx(hint);
1522 }
1523 
1524 static void
1525 nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
1526 {
1527 	struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup;
1528 	struct spdk_nvmf_tcp_transport *ttransport;
1529 
1530 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
1531 	spdk_sock_group_close(&tgroup->sock_group);
1532 	if (tgroup->control_msg_list) {
1533 		nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
1534 	}
1535 
1536 	if (tgroup->accel_channel) {
1537 		spdk_put_io_channel(tgroup->accel_channel);
1538 	}
1539 
1540 	if (tgroup->group.transport == NULL) {
1541 		/* Transport can be NULL when nvmf_tcp_poll_group_create()
1542 		 * calls this function directly in a failure path. */
1543 		free(tgroup);
1544 		return;
1545 	}
1546 
1547 	ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport);
1548 
1549 	next_tgroup = TAILQ_NEXT(tgroup, link);
1550 	TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link);
1551 	if (next_tgroup == NULL) {
1552 		next_tgroup = TAILQ_FIRST(&ttransport->poll_groups);
1553 	}
1554 	if (ttransport->next_pg == tgroup) {
1555 		ttransport->next_pg = next_tgroup;
1556 	}
1557 
1558 	free(tgroup);
1559 }
1560 
1561 static void
1562 nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1563 			      enum nvme_tcp_pdu_recv_state state)
1564 {
1565 	if (tqpair->recv_state == state) {
1566 		SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
1567 			    tqpair, state);
1568 		return;
1569 	}
1570 
1571 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_QUIESCING)) {
1572 		if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH && tqpair->pdu_in_progress) {
1573 			SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, tqpair->pdu_in_progress, slist);
1574 			tqpair->tcp_pdu_working_count--;
1575 		}
1576 	}
1577 
1578 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_ERROR)) {
1579 		assert(tqpair->tcp_pdu_working_count == 0);
1580 	}
1581 
1582 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1583 		/* When leaving the await req state, move the qpair to the main list */
1584 		TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link);
1585 		TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link);
1586 	} else if (state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1587 		TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link);
1588 		TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link);
1589 	}
1590 
1591 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
1592 	tqpair->recv_state = state;
1593 
1594 	spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
1595 			  tqpair->recv_state);
1596 }
1597 
1598 static int
1599 nvmf_tcp_qpair_handle_timeout(void *ctx)
1600 {
1601 	struct spdk_nvmf_tcp_qpair *tqpair = ctx;
1602 
1603 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1604 
1605 	SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
1606 		    SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
1607 
1608 	nvmf_tcp_qpair_disconnect(tqpair);
1609 	return SPDK_POLLER_BUSY;
1610 }
1611 
1612 static void
1613 nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
1614 {
1615 	struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
1616 
1617 	if (!tqpair->timeout_poller) {
1618 		tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
1619 					 SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
1620 	}
1621 }
1622 
1623 static void
1624 nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
1625 			   enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
1626 {
1627 	struct nvme_tcp_pdu *rsp_pdu;
1628 	struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
1629 	uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
1630 	uint32_t copy_len;
1631 
1632 	rsp_pdu = tqpair->mgmt_pdu;
1633 
1634 	c2h_term_req = &rsp_pdu->hdr.term_req;
1635 	c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
1636 	c2h_term_req->common.hlen = c2h_term_req_hdr_len;
1637 	c2h_term_req->fes = fes;
1638 
1639 	if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1640 	    (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1641 		DSET32(&c2h_term_req->fei, error_offset);
1642 	}
1643 
1644 	copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
1645 
1646 	/* Copy the error info into the buffer */
1647 	memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
1648 	nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
1649 
1650 	/* Contain the header of the wrong received pdu */
1651 	c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
1652 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1653 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair);
1654 }
1655 
1656 static void
1657 nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1658 				struct spdk_nvmf_tcp_qpair *tqpair,
1659 				struct nvme_tcp_pdu *pdu)
1660 {
1661 	struct spdk_nvmf_tcp_req *tcp_req;
1662 
1663 	assert(pdu->psh_valid_bytes == pdu->psh_len);
1664 	assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
1665 
1666 	tcp_req = nvmf_tcp_req_get(tqpair);
1667 	if (!tcp_req) {
1668 		/* Directly return and make the allocation retry again.  This can happen if we're
1669 		 * using asynchronous writes to send the response to the host or when releasing
1670 		 * zero-copy buffers after a response has been sent.  In both cases, the host might
1671 		 * receive the response before we've finished processing the request and is free to
1672 		 * send another one.
1673 		 */
1674 		if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 ||
1675 		    tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) {
1676 			return;
1677 		}
1678 
1679 		/* The host sent more commands than the maximum queue depth. */
1680 		SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
1681 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1682 		return;
1683 	}
1684 
1685 	pdu->req = tcp_req;
1686 	assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
1687 	nvmf_tcp_req_process(ttransport, tcp_req);
1688 }
1689 
1690 static void
1691 nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1692 				    struct spdk_nvmf_tcp_qpair *tqpair,
1693 				    struct nvme_tcp_pdu *pdu)
1694 {
1695 	struct spdk_nvmf_tcp_req *tcp_req;
1696 	struct spdk_nvme_tcp_cmd *capsule_cmd;
1697 	uint32_t error_offset = 0;
1698 	enum spdk_nvme_tcp_term_req_fes fes;
1699 	struct spdk_nvme_cpl *rsp;
1700 
1701 	capsule_cmd = &pdu->hdr.capsule_cmd;
1702 	tcp_req = pdu->req;
1703 	assert(tcp_req != NULL);
1704 
1705 	/* Zero-copy requests don't support ICD */
1706 	assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req));
1707 
1708 	if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
1709 		SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
1710 			    SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
1711 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1712 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
1713 		goto err;
1714 	}
1715 
1716 	rsp = &tcp_req->req.rsp->nvme_cpl;
1717 	if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1718 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1719 	} else {
1720 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1721 	}
1722 
1723 	nvmf_tcp_req_process(ttransport, tcp_req);
1724 
1725 	return;
1726 err:
1727 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1728 }
1729 
1730 static void
1731 nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1732 			     struct spdk_nvmf_tcp_qpair *tqpair,
1733 			     struct nvme_tcp_pdu *pdu)
1734 {
1735 	struct spdk_nvmf_tcp_req *tcp_req;
1736 	uint32_t error_offset = 0;
1737 	enum spdk_nvme_tcp_term_req_fes fes = 0;
1738 	struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
1739 
1740 	h2c_data = &pdu->hdr.h2c_data;
1741 
1742 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
1743 		      tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
1744 
1745 	if (h2c_data->ttag > tqpair->resource_count) {
1746 		SPDK_DEBUGLOG(nvmf_tcp, "ttag %u is larger than allowed %u.\n", h2c_data->ttag,
1747 			      tqpair->resource_count);
1748 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1749 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1750 		goto err;
1751 	}
1752 
1753 	tcp_req = &tqpair->reqs[h2c_data->ttag - 1];
1754 
1755 	if (spdk_unlikely(tcp_req->state != TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER &&
1756 			  tcp_req->state != TCP_REQUEST_STATE_AWAITING_R2T_ACK)) {
1757 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, has error state in %d\n", tcp_req, tqpair,
1758 			      tcp_req->state);
1759 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1760 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1761 		goto err;
1762 	}
1763 
1764 	if (spdk_unlikely(tcp_req->req.cmd->nvme_cmd.cid != h2c_data->cccid)) {
1765 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, expected %u but %u for cccid.\n", tcp_req, tqpair,
1766 			      tcp_req->req.cmd->nvme_cmd.cid, h2c_data->cccid);
1767 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1768 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
1769 		goto err;
1770 	}
1771 
1772 	if (tcp_req->h2c_offset != h2c_data->datao) {
1773 		SPDK_DEBUGLOG(nvmf_tcp,
1774 			      "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
1775 			      tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
1776 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1777 		goto err;
1778 	}
1779 
1780 	if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
1781 		SPDK_DEBUGLOG(nvmf_tcp,
1782 			      "tcp_req(%p), tqpair=%p,  (datao=%u + datal=%u) exceeds requested length=%u\n",
1783 			      tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
1784 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1785 		goto err;
1786 	}
1787 
1788 	pdu->req = tcp_req;
1789 
1790 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
1791 		pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
1792 	}
1793 
1794 	nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
1795 				  h2c_data->datao, h2c_data->datal);
1796 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1797 	return;
1798 
1799 err:
1800 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1801 }
1802 
1803 static void
1804 nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
1805 			       struct spdk_nvmf_tcp_qpair *tqpair)
1806 {
1807 	struct nvme_tcp_pdu *rsp_pdu;
1808 	struct spdk_nvme_tcp_rsp *capsule_resp;
1809 
1810 	SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
1811 
1812 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1813 	assert(rsp_pdu != NULL);
1814 
1815 	capsule_resp = &rsp_pdu->hdr.capsule_resp;
1816 	capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
1817 	capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
1818 	capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
1819 	if (tqpair->host_hdgst_enable) {
1820 		capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1821 		capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1822 	}
1823 
1824 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req);
1825 }
1826 
1827 static void
1828 nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
1829 {
1830 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1831 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
1832 					     struct spdk_nvmf_tcp_qpair, qpair);
1833 
1834 	assert(tqpair != NULL);
1835 
1836 	if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
1837 		SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
1838 			      tcp_req->req.length);
1839 		_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
1840 		return;
1841 	}
1842 
1843 	if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
1844 		nvmf_tcp_request_free(tcp_req);
1845 	} else {
1846 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
1847 	}
1848 }
1849 
1850 static void
1851 nvmf_tcp_r2t_complete(void *cb_arg)
1852 {
1853 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1854 	struct spdk_nvmf_tcp_transport *ttransport;
1855 
1856 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
1857 				      struct spdk_nvmf_tcp_transport, transport);
1858 
1859 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
1860 
1861 	if (tcp_req->h2c_offset == tcp_req->req.length) {
1862 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1863 		nvmf_tcp_req_process(ttransport, tcp_req);
1864 	}
1865 }
1866 
1867 static void
1868 nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1869 		      struct spdk_nvmf_tcp_req *tcp_req)
1870 {
1871 	struct nvme_tcp_pdu *rsp_pdu;
1872 	struct spdk_nvme_tcp_r2t_hdr *r2t;
1873 
1874 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1875 	assert(rsp_pdu != NULL);
1876 
1877 	r2t = &rsp_pdu->hdr.r2t;
1878 	r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
1879 	r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
1880 
1881 	if (tqpair->host_hdgst_enable) {
1882 		r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1883 		r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1884 	}
1885 
1886 	r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
1887 	r2t->ttag = tcp_req->ttag;
1888 	r2t->r2to = tcp_req->h2c_offset;
1889 	r2t->r2tl = tcp_req->req.length;
1890 
1891 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
1892 
1893 	SPDK_DEBUGLOG(nvmf_tcp,
1894 		      "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
1895 		      tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
1896 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req);
1897 }
1898 
1899 static void
1900 nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1901 				 struct spdk_nvmf_tcp_qpair *tqpair,
1902 				 struct nvme_tcp_pdu *pdu)
1903 {
1904 	struct spdk_nvmf_tcp_req *tcp_req;
1905 	struct spdk_nvme_cpl *rsp;
1906 
1907 	tcp_req = pdu->req;
1908 	assert(tcp_req != NULL);
1909 
1910 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1911 
1912 	tcp_req->h2c_offset += pdu->data_len;
1913 
1914 	/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
1915 	 * acknowledged before moving on. */
1916 	if (tcp_req->h2c_offset == tcp_req->req.length &&
1917 	    tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
1918 		/* After receiving all the h2c data, we need to check whether there is
1919 		 * transient transport error */
1920 		rsp = &tcp_req->req.rsp->nvme_cpl;
1921 		if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1922 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1923 		} else {
1924 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1925 		}
1926 		nvmf_tcp_req_process(ttransport, tcp_req);
1927 	}
1928 }
1929 
1930 static void
1931 nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
1932 {
1933 	SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
1934 		    spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
1935 	if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1936 	    (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1937 		SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
1938 			      DGET32(h2c_term_req->fei));
1939 	}
1940 }
1941 
1942 static void
1943 nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1944 				 struct nvme_tcp_pdu *pdu)
1945 {
1946 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1947 	uint32_t error_offset = 0;
1948 	enum spdk_nvme_tcp_term_req_fes fes;
1949 
1950 	if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
1951 		SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
1952 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1953 		error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
1954 		goto end;
1955 	}
1956 
1957 	/* set the data buffer */
1958 	nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
1959 			      h2c_term_req->common.plen - h2c_term_req->common.hlen);
1960 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1961 	return;
1962 end:
1963 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1964 }
1965 
1966 static void
1967 nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1968 				     struct nvme_tcp_pdu *pdu)
1969 {
1970 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1971 
1972 	nvmf_tcp_h2c_term_req_dump(h2c_term_req);
1973 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1974 }
1975 
1976 static void
1977 _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
1978 {
1979 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
1980 			struct spdk_nvmf_tcp_transport, transport);
1981 
1982 	switch (pdu->hdr.common.pdu_type) {
1983 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
1984 		nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
1985 		break;
1986 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
1987 		nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
1988 		break;
1989 
1990 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
1991 		nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
1992 		break;
1993 
1994 	default:
1995 		/* The code should not go to here */
1996 		SPDK_ERRLOG("ERROR pdu type %d\n", pdu->hdr.common.pdu_type);
1997 		break;
1998 	}
1999 	SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
2000 	tqpair->tcp_pdu_working_count--;
2001 }
2002 
2003 static void
2004 data_crc32_calc_done(void *cb_arg, int status)
2005 {
2006 	struct nvme_tcp_pdu *pdu = cb_arg;
2007 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
2008 	struct spdk_nvmf_tcp_req *tcp_req;
2009 	struct spdk_nvme_cpl *rsp;
2010 
2011 	/* async crc32 calculation is failed and use direct calculation to check */
2012 	if (spdk_unlikely(status)) {
2013 		SPDK_ERRLOG("Data digest on tqpair=(%p) with pdu=%p failed to be calculated asynchronously\n",
2014 			    tqpair, pdu);
2015 		pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2016 	}
2017 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
2018 	if (!MATCH_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32)) {
2019 		SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2020 		tcp_req = pdu->req;
2021 		assert(tcp_req != NULL);
2022 		rsp = &tcp_req->req.rsp->nvme_cpl;
2023 		rsp->status.sc = SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR;
2024 	}
2025 	_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2026 }
2027 
2028 static void
2029 nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2030 {
2031 	int rc = 0;
2032 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2033 	tqpair->pdu_in_progress = NULL;
2034 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2035 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2036 	/* check data digest if need */
2037 	if (pdu->ddgst_enable) {
2038 		if (tqpair->qpair.qid != 0 && !pdu->dif_ctx && tqpair->group &&
2039 		    (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)) {
2040 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
2041 						       pdu->data_iovcnt, 0, data_crc32_calc_done, pdu);
2042 			if (spdk_likely(rc == 0)) {
2043 				return;
2044 			}
2045 		} else {
2046 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2047 		}
2048 		data_crc32_calc_done(pdu, rc);
2049 	} else {
2050 		_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2051 	}
2052 }
2053 
2054 static void
2055 nvmf_tcp_send_icresp_complete(void *cb_arg)
2056 {
2057 	struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
2058 
2059 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_RUNNING);
2060 }
2061 
2062 static void
2063 nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
2064 		      struct spdk_nvmf_tcp_qpair *tqpair,
2065 		      struct nvme_tcp_pdu *pdu)
2066 {
2067 	struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
2068 	struct nvme_tcp_pdu *rsp_pdu;
2069 	struct spdk_nvme_tcp_ic_resp *ic_resp;
2070 	uint32_t error_offset = 0;
2071 	enum spdk_nvme_tcp_term_req_fes fes;
2072 
2073 	/* Only PFV 0 is defined currently */
2074 	if (ic_req->pfv != 0) {
2075 		SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
2076 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2077 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
2078 		goto end;
2079 	}
2080 
2081 	/* This value is 0’s based value in units of dwords should not be larger than SPDK_NVME_TCP_HPDA_MAX */
2082 	if (ic_req->hpda > SPDK_NVME_TCP_HPDA_MAX) {
2083 		SPDK_ERRLOG("ICReq HPDA out of range 0 to 31, got %u\n", ic_req->hpda);
2084 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2085 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, hpda);
2086 		goto end;
2087 	}
2088 
2089 	/* MAXR2T is 0's based */
2090 	SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
2091 
2092 	tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
2093 	if (!tqpair->host_hdgst_enable) {
2094 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2095 	}
2096 
2097 	tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
2098 	if (!tqpair->host_ddgst_enable) {
2099 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2100 	}
2101 
2102 	tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
2103 	/* Now that we know whether digests are enabled, properly size the receive buffer */
2104 	if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
2105 		SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
2106 			     tqpair,
2107 			     tqpair->recv_buf_size);
2108 		/* Not fatal. */
2109 	}
2110 
2111 	tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
2112 	SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
2113 
2114 	rsp_pdu = tqpair->mgmt_pdu;
2115 
2116 	ic_resp = &rsp_pdu->hdr.ic_resp;
2117 	ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
2118 	ic_resp->common.hlen = ic_resp->common.plen =  sizeof(*ic_resp);
2119 	ic_resp->pfv = 0;
2120 	ic_resp->cpda = tqpair->cpda;
2121 	ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
2122 	ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
2123 	ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
2124 
2125 	SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
2126 	SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
2127 
2128 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INITIALIZING);
2129 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair);
2130 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2131 	return;
2132 end:
2133 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2134 }
2135 
2136 static void
2137 nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2138 			struct spdk_nvmf_tcp_transport *ttransport)
2139 {
2140 	struct nvme_tcp_pdu *pdu;
2141 	int rc;
2142 	uint32_t crc32c, error_offset = 0;
2143 	enum spdk_nvme_tcp_term_req_fes fes;
2144 
2145 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2146 	pdu = tqpair->pdu_in_progress;
2147 
2148 	SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
2149 		      pdu->hdr.common.pdu_type);
2150 	/* check header digest if needed */
2151 	if (pdu->has_hdgst) {
2152 		SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
2153 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
2154 		rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
2155 		if (rc == 0) {
2156 			SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2157 			fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
2158 			nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2159 			return;
2160 
2161 		}
2162 	}
2163 
2164 	switch (pdu->hdr.common.pdu_type) {
2165 	case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
2166 		nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
2167 		break;
2168 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2169 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
2170 		break;
2171 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2172 		nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
2173 		break;
2174 
2175 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2176 		nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
2177 		break;
2178 
2179 	default:
2180 		SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
2181 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2182 		error_offset = 1;
2183 		nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2184 		break;
2185 	}
2186 }
2187 
2188 static void
2189 nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
2190 {
2191 	struct nvme_tcp_pdu *pdu;
2192 	uint32_t error_offset = 0;
2193 	enum spdk_nvme_tcp_term_req_fes fes;
2194 	uint8_t expected_hlen, pdo;
2195 	bool plen_error = false, pdo_error = false;
2196 
2197 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2198 	pdu = tqpair->pdu_in_progress;
2199 	assert(pdu);
2200 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
2201 		if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) {
2202 			SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
2203 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2204 			goto err;
2205 		}
2206 		expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
2207 		if (pdu->hdr.common.plen != expected_hlen) {
2208 			plen_error = true;
2209 		}
2210 	} else {
2211 		if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) {
2212 			SPDK_ERRLOG("The TCP/IP connection is not negotiated\n");
2213 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2214 			goto err;
2215 		}
2216 
2217 		switch (pdu->hdr.common.pdu_type) {
2218 		case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2219 			expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
2220 			pdo = pdu->hdr.common.pdo;
2221 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2222 				pdo_error = true;
2223 				break;
2224 			}
2225 
2226 			if (pdu->hdr.common.plen < expected_hlen) {
2227 				plen_error = true;
2228 			}
2229 			break;
2230 		case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2231 			expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
2232 			pdo = pdu->hdr.common.pdo;
2233 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2234 				pdo_error = true;
2235 				break;
2236 			}
2237 			if (pdu->hdr.common.plen < expected_hlen) {
2238 				plen_error = true;
2239 			}
2240 			break;
2241 
2242 		case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2243 			expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
2244 			if ((pdu->hdr.common.plen <= expected_hlen) ||
2245 			    (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
2246 				plen_error = true;
2247 			}
2248 			break;
2249 
2250 		default:
2251 			SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
2252 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2253 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
2254 			goto err;
2255 		}
2256 	}
2257 
2258 	if (pdu->hdr.common.hlen != expected_hlen) {
2259 		SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
2260 			    pdu->hdr.common.pdu_type,
2261 			    expected_hlen, pdu->hdr.common.hlen, tqpair);
2262 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2263 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
2264 		goto err;
2265 	} else if (pdo_error) {
2266 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2267 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
2268 	} else if (plen_error) {
2269 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2270 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2271 		goto err;
2272 	} else {
2273 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2274 		nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
2275 		return;
2276 	}
2277 err:
2278 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2279 }
2280 
2281 static int
2282 nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
2283 {
2284 	int rc = 0;
2285 	struct nvme_tcp_pdu *pdu;
2286 	enum nvme_tcp_pdu_recv_state prev_state;
2287 	uint32_t data_len;
2288 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2289 			struct spdk_nvmf_tcp_transport, transport);
2290 
2291 	/* The loop here is to allow for several back-to-back state changes. */
2292 	do {
2293 		prev_state = tqpair->recv_state;
2294 		SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
2295 
2296 		pdu = tqpair->pdu_in_progress;
2297 		assert(pdu || tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2298 		switch (tqpair->recv_state) {
2299 		/* Wait for the common header  */
2300 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
2301 			if (!pdu) {
2302 				pdu = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
2303 				if (spdk_unlikely(!pdu)) {
2304 					return NVME_TCP_PDU_IN_PROGRESS;
2305 				}
2306 				SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
2307 				tqpair->pdu_in_progress = pdu;
2308 				tqpair->tcp_pdu_working_count++;
2309 			}
2310 			memset(pdu, 0, offsetof(struct nvme_tcp_pdu, qpair));
2311 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2312 		/* FALLTHROUGH */
2313 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
2314 			if (spdk_unlikely(tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING)) {
2315 				return rc;
2316 			}
2317 
2318 			rc = nvme_tcp_read_data(tqpair->sock,
2319 						sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
2320 						(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
2321 			if (rc < 0) {
2322 				SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
2323 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2324 				break;
2325 			} else if (rc > 0) {
2326 				pdu->ch_valid_bytes += rc;
2327 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2328 			}
2329 
2330 			if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
2331 				return NVME_TCP_PDU_IN_PROGRESS;
2332 			}
2333 
2334 			/* The command header of this PDU has now been read from the socket. */
2335 			nvmf_tcp_pdu_ch_handle(tqpair);
2336 			break;
2337 		/* Wait for the pdu specific header  */
2338 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
2339 			rc = nvme_tcp_read_data(tqpair->sock,
2340 						pdu->psh_len - pdu->psh_valid_bytes,
2341 						(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
2342 			if (rc < 0) {
2343 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2344 				break;
2345 			} else if (rc > 0) {
2346 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2347 				pdu->psh_valid_bytes += rc;
2348 			}
2349 
2350 			if (pdu->psh_valid_bytes < pdu->psh_len) {
2351 				return NVME_TCP_PDU_IN_PROGRESS;
2352 			}
2353 
2354 			/* All header(ch, psh, head digist) of this PDU has now been read from the socket. */
2355 			nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
2356 			break;
2357 		/* Wait for the req slot */
2358 		case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
2359 			nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
2360 			break;
2361 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
2362 			/* check whether the data is valid, if not we just return */
2363 			if (!pdu->data_len) {
2364 				return NVME_TCP_PDU_IN_PROGRESS;
2365 			}
2366 
2367 			data_len = pdu->data_len;
2368 			/* data digest */
2369 			if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
2370 					  tqpair->host_ddgst_enable)) {
2371 				data_len += SPDK_NVME_TCP_DIGEST_LEN;
2372 				pdu->ddgst_enable = true;
2373 			}
2374 
2375 			rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
2376 			if (rc < 0) {
2377 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2378 				break;
2379 			}
2380 			pdu->rw_offset += rc;
2381 
2382 			if (pdu->rw_offset < data_len) {
2383 				return NVME_TCP_PDU_IN_PROGRESS;
2384 			}
2385 
2386 			/* Generate and insert DIF to whole data block received if DIF is enabled */
2387 			if (spdk_unlikely(pdu->dif_ctx != NULL) &&
2388 			    spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt, 0, data_len,
2389 						     pdu->dif_ctx) != 0) {
2390 				SPDK_ERRLOG("DIF generate failed\n");
2391 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2392 				break;
2393 			}
2394 
2395 			/* All of this PDU has now been read from the socket. */
2396 			nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2397 			break;
2398 		case NVME_TCP_PDU_RECV_STATE_QUIESCING:
2399 			if (tqpair->tcp_pdu_working_count != 0) {
2400 				return NVME_TCP_PDU_IN_PROGRESS;
2401 			}
2402 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
2403 			break;
2404 		case NVME_TCP_PDU_RECV_STATE_ERROR:
2405 			if (!spdk_sock_is_connected(tqpair->sock)) {
2406 				return NVME_TCP_PDU_FATAL;
2407 			}
2408 			return NVME_TCP_PDU_IN_PROGRESS;
2409 		default:
2410 			SPDK_ERRLOG("The state(%d) is invalid\n", tqpair->recv_state);
2411 			abort();
2412 			break;
2413 		}
2414 	} while (tqpair->recv_state != prev_state);
2415 
2416 	return rc;
2417 }
2418 
2419 static inline void *
2420 nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list)
2421 {
2422 	struct spdk_nvmf_tcp_control_msg *msg;
2423 
2424 	assert(list);
2425 
2426 	msg = STAILQ_FIRST(&list->free_msgs);
2427 	if (!msg) {
2428 		SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
2429 		return NULL;
2430 	}
2431 	STAILQ_REMOVE_HEAD(&list->free_msgs, link);
2432 	return msg;
2433 }
2434 
2435 static inline void
2436 nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
2437 {
2438 	struct spdk_nvmf_tcp_control_msg *msg = _msg;
2439 
2440 	assert(list);
2441 	STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
2442 }
2443 
2444 static int
2445 nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
2446 		       struct spdk_nvmf_transport *transport,
2447 		       struct spdk_nvmf_transport_poll_group *group)
2448 {
2449 	struct spdk_nvmf_request		*req = &tcp_req->req;
2450 	struct spdk_nvme_cmd			*cmd;
2451 	struct spdk_nvme_sgl_descriptor		*sgl;
2452 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2453 	enum spdk_nvme_tcp_term_req_fes		fes;
2454 	struct nvme_tcp_pdu			*pdu;
2455 	struct spdk_nvmf_tcp_qpair		*tqpair;
2456 	uint32_t				length, error_offset = 0;
2457 
2458 	cmd = &req->cmd->nvme_cmd;
2459 	sgl = &cmd->dptr.sgl1;
2460 
2461 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
2462 	    sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
2463 		/* get request length from sgl */
2464 		length = sgl->unkeyed.length;
2465 		if (spdk_unlikely(length > transport->opts.max_io_size)) {
2466 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
2467 				    length, transport->opts.max_io_size);
2468 			fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2469 			goto fatal_err;
2470 		}
2471 
2472 		/* fill request length and populate iovs */
2473 		req->length = length;
2474 
2475 		SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
2476 
2477 		if (spdk_unlikely(req->dif_enabled)) {
2478 			req->dif.orig_length = length;
2479 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2480 			req->dif.elba_length = length;
2481 		}
2482 
2483 		if (nvmf_ctrlr_use_zcopy(req)) {
2484 			SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req);
2485 			req->data_from_pool = false;
2486 			return 0;
2487 		}
2488 
2489 		if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
2490 			/* No available buffers. Queue this request up. */
2491 			SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
2492 				      tcp_req);
2493 			return 0;
2494 		}
2495 
2496 		/* backward compatible */
2497 		req->data = req->iov[0].iov_base;
2498 
2499 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
2500 			      tcp_req, req->iovcnt, req->iov[0].iov_base);
2501 
2502 		return 0;
2503 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
2504 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
2505 		uint64_t offset = sgl->address;
2506 		uint32_t max_len = transport->opts.in_capsule_data_size;
2507 
2508 		assert(tcp_req->has_in_capsule_data);
2509 		/* Capsule Cmd with In-capsule Data should get data length from pdu header */
2510 		tqpair = tcp_req->pdu->qpair;
2511 		/* receiving pdu is not same with the pdu in tcp_req */
2512 		pdu = tqpair->pdu_in_progress;
2513 		length = pdu->hdr.common.plen - pdu->psh_len - sizeof(struct spdk_nvme_tcp_common_pdu_hdr);
2514 		if (tqpair->host_ddgst_enable) {
2515 			length -= SPDK_NVME_TCP_DIGEST_LEN;
2516 		}
2517 		/* This error is not defined in NVMe/TCP spec, take this error as fatal error */
2518 		if (spdk_unlikely(length != sgl->unkeyed.length)) {
2519 			SPDK_ERRLOG("In-Capsule Data length 0x%x is not equal to SGL data length 0x%x\n",
2520 				    length, sgl->unkeyed.length);
2521 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2522 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2523 			goto fatal_err;
2524 		}
2525 
2526 		SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
2527 			      offset, length);
2528 
2529 		/* The NVMe/TCP transport does not use ICDOFF to control the in-capsule data offset. ICDOFF should be '0' */
2530 		if (spdk_unlikely(offset != 0)) {
2531 			/* Not defined fatal error in NVMe/TCP spec, handle this error as a fatal error */
2532 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " should be ZERO in NVMe/TCP\n", offset);
2533 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2534 			error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.address);
2535 			goto fatal_err;
2536 		}
2537 
2538 		if (spdk_unlikely(length > max_len)) {
2539 			/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
2540 			if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
2541 			    (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
2542 
2543 				/* Get a buffer from dedicated list */
2544 				SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
2545 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2546 				assert(tgroup->control_msg_list);
2547 				req->iov[0].iov_base = nvmf_tcp_control_msg_get(tgroup->control_msg_list);
2548 				if (!req->iov[0].iov_base) {
2549 					/* No available buffers. Queue this request up. */
2550 					SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
2551 					return 0;
2552 				}
2553 			} else {
2554 				SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
2555 					    length, max_len);
2556 				fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2557 				goto fatal_err;
2558 			}
2559 		} else {
2560 			req->iov[0].iov_base = tcp_req->buf;
2561 		}
2562 
2563 		req->length = length;
2564 		req->data_from_pool = false;
2565 		req->data = req->iov[0].iov_base;
2566 
2567 		if (spdk_unlikely(req->dif_enabled)) {
2568 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2569 			req->dif.elba_length = length;
2570 		}
2571 
2572 		req->iov[0].iov_len = length;
2573 		req->iovcnt = 1;
2574 
2575 		return 0;
2576 	}
2577 	/* If we want to handle the problem here, then we can't skip the following data segment.
2578 	 * Because this function runs before reading data part, now handle all errors as fatal errors. */
2579 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2580 		    sgl->generic.type, sgl->generic.subtype);
2581 	fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2582 	error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.generic);
2583 fatal_err:
2584 	nvmf_tcp_send_c2h_term_req(tcp_req->pdu->qpair, tcp_req->pdu, fes, error_offset);
2585 	return -1;
2586 }
2587 
2588 static inline enum spdk_nvme_media_error_status_code
2589 nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
2590 	enum spdk_nvme_media_error_status_code result;
2591 
2592 	switch (err_type)
2593 	{
2594 	case SPDK_DIF_REFTAG_ERROR:
2595 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
2596 		break;
2597 	case SPDK_DIF_APPTAG_ERROR:
2598 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
2599 		break;
2600 	case SPDK_DIF_GUARD_ERROR:
2601 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
2602 		break;
2603 	default:
2604 		SPDK_UNREACHABLE();
2605 		break;
2606 	}
2607 
2608 	return result;
2609 }
2610 
2611 static void
2612 _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2613 			struct spdk_nvmf_tcp_req *tcp_req)
2614 {
2615 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
2616 				tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
2617 	struct nvme_tcp_pdu *rsp_pdu;
2618 	struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
2619 	uint32_t plen, pdo, alignment;
2620 	int rc;
2621 
2622 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2623 
2624 	rsp_pdu = tcp_req->pdu;
2625 	assert(rsp_pdu != NULL);
2626 
2627 	c2h_data = &rsp_pdu->hdr.c2h_data;
2628 	c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
2629 	plen = c2h_data->common.hlen = sizeof(*c2h_data);
2630 
2631 	if (tqpair->host_hdgst_enable) {
2632 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2633 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2634 	}
2635 
2636 	/* set the psh */
2637 	c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2638 	c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
2639 	c2h_data->datao = tcp_req->pdu->rw_offset;
2640 
2641 	/* set the padding */
2642 	rsp_pdu->padding_len = 0;
2643 	pdo = plen;
2644 	if (tqpair->cpda) {
2645 		alignment = (tqpair->cpda + 1) << 2;
2646 		if (plen % alignment != 0) {
2647 			pdo = (plen + alignment) / alignment * alignment;
2648 			rsp_pdu->padding_len = pdo - plen;
2649 			plen = pdo;
2650 		}
2651 	}
2652 
2653 	c2h_data->common.pdo = pdo;
2654 	plen += c2h_data->datal;
2655 	if (tqpair->host_ddgst_enable) {
2656 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
2657 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2658 	}
2659 
2660 	c2h_data->common.plen = plen;
2661 
2662 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2663 		rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2664 	}
2665 
2666 	nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2667 				  c2h_data->datao, c2h_data->datal);
2668 
2669 
2670 	c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
2671 	/* Need to send the capsule response if response is not all 0 */
2672 	if (ttransport->tcp_opts.c2h_success &&
2673 	    tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
2674 		c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
2675 	}
2676 
2677 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2678 		struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
2679 		struct spdk_dif_error err_blk = {};
2680 		uint32_t mapped_length = 0;
2681 		uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
2682 		uint32_t ddgst_len = 0;
2683 
2684 		if (tqpair->host_ddgst_enable) {
2685 			/* Data digest consumes additional iov entry */
2686 			available_iovs--;
2687 			/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
2688 			ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
2689 			c2h_data->common.plen -= ddgst_len;
2690 		}
2691 		/* Temp call to estimate if data can be described by limited number of iovs.
2692 		 * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
2693 		nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
2694 				    false, &mapped_length);
2695 
2696 		if (mapped_length != c2h_data->common.plen) {
2697 			c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
2698 			SPDK_DEBUGLOG(nvmf_tcp,
2699 				      "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
2700 				      c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
2701 			c2h_data->common.plen = mapped_length;
2702 
2703 			/* Rebuild pdu->data_iov since data length is changed */
2704 			nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
2705 						  c2h_data->datal);
2706 
2707 			c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
2708 						    SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
2709 		}
2710 
2711 		c2h_data->common.plen += ddgst_len;
2712 
2713 		assert(rsp_pdu->rw_offset <= tcp_req->req.length);
2714 
2715 		rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
2716 					    0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
2717 		if (rc != 0) {
2718 			SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
2719 				    err_blk.err_type, err_blk.err_offset);
2720 			rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2721 			rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
2722 			nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2723 			return;
2724 		}
2725 	}
2726 
2727 	rsp_pdu->rw_offset += c2h_data->datal;
2728 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
2729 }
2730 
2731 static void
2732 nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2733 		       struct spdk_nvmf_tcp_req *tcp_req)
2734 {
2735 	nvmf_tcp_req_pdu_init(tcp_req);
2736 	_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2737 }
2738 
2739 static int
2740 request_transfer_out(struct spdk_nvmf_request *req)
2741 {
2742 	struct spdk_nvmf_tcp_req	*tcp_req;
2743 	struct spdk_nvmf_qpair		*qpair;
2744 	struct spdk_nvmf_tcp_qpair	*tqpair;
2745 	struct spdk_nvme_cpl		*rsp;
2746 
2747 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2748 
2749 	qpair = req->qpair;
2750 	rsp = &req->rsp->nvme_cpl;
2751 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
2752 
2753 	/* Advance our sq_head pointer */
2754 	if (qpair->sq_head == qpair->sq_head_max) {
2755 		qpair->sq_head = 0;
2756 	} else {
2757 		qpair->sq_head++;
2758 	}
2759 	rsp->sqhd = qpair->sq_head;
2760 
2761 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2762 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
2763 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2764 		nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2765 	} else {
2766 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2767 	}
2768 
2769 	return 0;
2770 }
2771 
2772 static void
2773 nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport,
2774 			      struct spdk_nvmf_tcp_qpair *tqpair,
2775 			      struct spdk_nvmf_tcp_req *tcp_req)
2776 {
2777 	enum spdk_nvme_cmd_fuse last, next;
2778 
2779 	last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2780 	next = tcp_req->cmd.fuse;
2781 
2782 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2783 
2784 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2785 		return;
2786 	}
2787 
2788 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2789 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2790 			/* This is a valid pair of fused commands.  Point them at each other
2791 			 * so they can be submitted consecutively once ready to be executed.
2792 			 */
2793 			tqpair->fused_first->fused_pair = tcp_req;
2794 			tcp_req->fused_pair = tqpair->fused_first;
2795 			tqpair->fused_first = NULL;
2796 			return;
2797 		} else {
2798 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2799 			tqpair->fused_first->fused_failed = true;
2800 
2801 			/*
2802 			 * If the last req is in READY_TO_EXECUTE state, then call
2803 			 * nvmf_tcp_req_process(), otherwise nothing else will kick it.
2804 			 */
2805 			if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2806 				nvmf_tcp_req_process(ttransport, tqpair->fused_first);
2807 			}
2808 
2809 			tqpair->fused_first = NULL;
2810 		}
2811 	}
2812 
2813 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2814 		/* Set tqpair->fused_first here so that we know to check that the next request
2815 		 * is a SECOND (and to fail this one if it isn't).
2816 		 */
2817 		tqpair->fused_first = tcp_req;
2818 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2819 		/* Mark this req failed since it is a SECOND and the last one was not a FIRST. */
2820 		tcp_req->fused_failed = true;
2821 	}
2822 }
2823 
2824 static bool
2825 nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
2826 		     struct spdk_nvmf_tcp_req *tcp_req)
2827 {
2828 	struct spdk_nvmf_tcp_qpair		*tqpair;
2829 	uint32_t				plen;
2830 	struct nvme_tcp_pdu			*pdu;
2831 	enum spdk_nvmf_tcp_req_state		prev_state;
2832 	bool					progress = false;
2833 	struct spdk_nvmf_transport		*transport = &ttransport->transport;
2834 	struct spdk_nvmf_transport_poll_group	*group;
2835 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2836 
2837 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2838 	group = &tqpair->group->group;
2839 	assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
2840 
2841 	/* If the qpair is not active, we need to abort the outstanding requests. */
2842 	if (tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2843 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
2844 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2845 		}
2846 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
2847 	}
2848 
2849 	/* The loop here is to allow for several back-to-back state changes. */
2850 	do {
2851 		prev_state = tcp_req->state;
2852 
2853 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
2854 			      tqpair);
2855 
2856 		switch (tcp_req->state) {
2857 		case TCP_REQUEST_STATE_FREE:
2858 			/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
2859 			 * to escape this state. */
2860 			break;
2861 		case TCP_REQUEST_STATE_NEW:
2862 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.qid, 0, (uintptr_t)tcp_req, tqpair);
2863 
2864 			/* copy the cmd from the receive pdu */
2865 			tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
2866 
2867 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
2868 				tcp_req->req.dif_enabled = true;
2869 				tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
2870 			}
2871 
2872 			nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req);
2873 
2874 			/* The next state transition depends on the data transfer needs of this request. */
2875 			tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
2876 
2877 			if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2878 				tcp_req->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2879 				tcp_req->req.rsp->nvme_cpl.status.sc  = SPDK_NVME_SC_INVALID_OPCODE;
2880 				tcp_req->req.rsp->nvme_cpl.cid = tcp_req->req.cmd->nvme_cmd.cid;
2881 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2882 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2883 				SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
2884 				break;
2885 			}
2886 
2887 			/* If no data to transfer, ready to execute. */
2888 			if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
2889 				/* Reset the tqpair receiving pdu state */
2890 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2891 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2892 				break;
2893 			}
2894 
2895 			pdu = tqpair->pdu_in_progress;
2896 			plen = pdu->hdr.common.hlen;
2897 			if (tqpair->host_hdgst_enable) {
2898 				plen += SPDK_NVME_TCP_DIGEST_LEN;
2899 			}
2900 			if (pdu->hdr.common.plen != plen) {
2901 				tcp_req->has_in_capsule_data = true;
2902 			} else {
2903 				/* Data is transmitted by C2H PDUs */
2904 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2905 			}
2906 
2907 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
2908 			STAILQ_INSERT_TAIL(&group->pending_buf_queue, &tcp_req->req, buf_link);
2909 			break;
2910 		case TCP_REQUEST_STATE_NEED_BUFFER:
2911 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2912 					  tqpair);
2913 
2914 			assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
2915 
2916 			if (!tcp_req->has_in_capsule_data && (&tcp_req->req != STAILQ_FIRST(&group->pending_buf_queue))) {
2917 				SPDK_DEBUGLOG(nvmf_tcp,
2918 					      "Not the first element to wait for the buf for tcp_req(%p) on tqpair=%p\n",
2919 					      tcp_req, tqpair);
2920 				/* This request needs to wait in line to obtain a buffer */
2921 				break;
2922 			}
2923 
2924 			/* Try to get a data buffer */
2925 			if (nvmf_tcp_req_parse_sgl(tcp_req, transport, group) < 0) {
2926 				break;
2927 			}
2928 
2929 			/* Get a zcopy buffer if the request can be serviced through zcopy */
2930 			if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2931 				if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2932 					assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2933 					tcp_req->req.length = tcp_req->req.dif.elba_length;
2934 				}
2935 
2936 				STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2937 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START);
2938 				spdk_nvmf_request_zcopy_start(&tcp_req->req);
2939 				break;
2940 			}
2941 
2942 			if (tcp_req->req.iovcnt < 1) {
2943 				SPDK_DEBUGLOG(nvmf_tcp, "No buffer allocated for tcp_req(%p) on tqpair(%p\n)",
2944 					      tcp_req, tqpair);
2945 				/* No buffers available. */
2946 				break;
2947 			}
2948 
2949 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2950 
2951 			/* If data is transferring from host to controller, we need to do a transfer from the host. */
2952 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2953 				if (tcp_req->req.data_from_pool) {
2954 					SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2955 					nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2956 				} else {
2957 					struct nvme_tcp_pdu *pdu;
2958 
2959 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
2960 
2961 					pdu = tqpair->pdu_in_progress;
2962 					SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
2963 						      tqpair);
2964 					/* No need to send r2t, contained in the capsuled data */
2965 					nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2966 								  0, tcp_req->req.length);
2967 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2968 				}
2969 				break;
2970 			}
2971 
2972 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2973 			break;
2974 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
2975 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.qid, 0,
2976 					  (uintptr_t)tcp_req, tqpair);
2977 			/* Some external code must kick a request into  TCP_REQUEST_STATE_ZCOPY_START_COMPLETED
2978 			 * to escape this state. */
2979 			break;
2980 		case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
2981 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.qid, 0,
2982 					  (uintptr_t)tcp_req, tqpair);
2983 			if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) {
2984 				SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n",
2985 					      tcp_req, tqpair);
2986 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2987 				break;
2988 			}
2989 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2990 				SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2991 				nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2992 			} else {
2993 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
2994 			}
2995 			break;
2996 		case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
2997 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2998 					  tqpair);
2999 			/* The R2T completion or the h2c data incoming will kick it out of this state. */
3000 			break;
3001 		case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3002 
3003 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.qid, 0,
3004 					  (uintptr_t)tcp_req, tqpair);
3005 			/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
3006 			 * to escape this state. */
3007 			break;
3008 		case TCP_REQUEST_STATE_READY_TO_EXECUTE:
3009 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.qid, 0,
3010 					  (uintptr_t)tcp_req, tqpair);
3011 
3012 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3013 				assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
3014 				tcp_req->req.length = tcp_req->req.dif.elba_length;
3015 			}
3016 
3017 			if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
3018 				if (tcp_req->fused_failed) {
3019 					/* This request failed FUSED semantics.  Fail it immediately, without
3020 					 * even sending it to the target layer.
3021 					 */
3022 					tcp_req->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
3023 					tcp_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED;
3024 					tcp_req->req.rsp->nvme_cpl.cid = tcp_req->req.cmd->nvme_cmd.cid;
3025 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3026 					break;
3027 				}
3028 
3029 				if (tcp_req->fused_pair == NULL ||
3030 				    tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3031 					/* This request is ready to execute, but either we don't know yet if it's
3032 					 * valid - i.e. this is a FIRST but we haven't received the next request yet),
3033 					 * or the other request of this fused pair isn't ready to execute. So
3034 					 * break here and this request will get processed later either when the
3035 					 * other request is ready or we find that this request isn't valid.
3036 					 */
3037 					break;
3038 				}
3039 			}
3040 
3041 			if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
3042 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
3043 				/* If we get to this point, and this request is a fused command, we know that
3044 				 * it is part of a valid sequence (FIRST followed by a SECOND) and that both
3045 				 * requests are READY_TO_EXECUTE.  So call spdk_nvmf_request_exec() both on this
3046 				 * request, and the other request of the fused pair, in the correct order.
3047 				 * Also clear the ->fused_pair pointers on both requests, since after this point
3048 				 * we no longer need to maintain the relationship between these two requests.
3049 				 */
3050 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
3051 					assert(tcp_req->fused_pair != NULL);
3052 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3053 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3054 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3055 					tcp_req->fused_pair->fused_pair = NULL;
3056 					tcp_req->fused_pair = NULL;
3057 				}
3058 				spdk_nvmf_request_exec(&tcp_req->req);
3059 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
3060 					assert(tcp_req->fused_pair != NULL);
3061 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3062 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3063 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3064 					tcp_req->fused_pair->fused_pair = NULL;
3065 					tcp_req->fused_pair = NULL;
3066 				}
3067 			} else {
3068 				/* For zero-copy, only requests with data coming from host to the
3069 				 * controller can end up here. */
3070 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
3071 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT);
3072 				spdk_nvmf_request_zcopy_end(&tcp_req->req, true);
3073 			}
3074 
3075 			break;
3076 		case TCP_REQUEST_STATE_EXECUTING:
3077 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
3078 					  tqpair);
3079 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3080 			 * to escape this state. */
3081 			break;
3082 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3083 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.qid, 0,
3084 					  (uintptr_t)tcp_req, tqpair);
3085 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3086 			 * to escape this state. */
3087 			break;
3088 		case TCP_REQUEST_STATE_EXECUTED:
3089 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
3090 					  tqpair);
3091 
3092 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3093 				tcp_req->req.length = tcp_req->req.dif.orig_length;
3094 			}
3095 
3096 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3097 			break;
3098 		case TCP_REQUEST_STATE_READY_TO_COMPLETE:
3099 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.qid, 0,
3100 					  (uintptr_t)tcp_req, tqpair);
3101 			if (request_transfer_out(&tcp_req->req) != 0) {
3102 				assert(0); /* No good way to handle this currently */
3103 			}
3104 			break;
3105 		case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
3106 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.qid, 0,
3107 					  (uintptr_t)tcp_req, tqpair);
3108 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3109 			 * to escape this state. */
3110 			break;
3111 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3112 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.qid, 0,
3113 					  (uintptr_t)tcp_req, tqpair);
3114 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3115 			 * to escape this state. */
3116 			break;
3117 		case TCP_REQUEST_STATE_COMPLETED:
3118 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
3119 					  tqpair);
3120 			/* If there's an outstanding PDU sent to the host, the request is completed
3121 			 * due to the qpair being disconnected.  We must delay the completion until
3122 			 * that write is done to avoid freeing the request twice. */
3123 			if (spdk_unlikely(tcp_req->pdu_in_use)) {
3124 				SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding "
3125 					      "write on req=%p\n", tcp_req);
3126 				/* This can only happen for zcopy requests */
3127 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3128 				assert(tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
3129 				break;
3130 			}
3131 
3132 			if (tcp_req->req.data_from_pool) {
3133 				spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
3134 			} else if (spdk_unlikely(tcp_req->has_in_capsule_data &&
3135 						 (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
3136 						  tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
3137 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3138 				assert(tgroup->control_msg_list);
3139 				SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
3140 				nvmf_tcp_control_msg_put(tgroup->control_msg_list,
3141 							 tcp_req->req.iov[0].iov_base);
3142 			} else if (tcp_req->req.zcopy_bdev_io != NULL) {
3143 				/* If the request has an unreleased zcopy bdev_io, it's either a
3144 				 * read, a failed write, or the qpair is being disconnected */
3145 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3146 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
3147 				       spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) ||
3148 				       tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
3149 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE);
3150 				spdk_nvmf_request_zcopy_end(&tcp_req->req, false);
3151 				break;
3152 			}
3153 			tcp_req->req.length = 0;
3154 			tcp_req->req.iovcnt = 0;
3155 			tcp_req->req.data = NULL;
3156 			tcp_req->fused_failed = false;
3157 			if (tcp_req->fused_pair) {
3158 				/* This req was part of a valid fused pair, but failed before it got to
3159 				 * READ_TO_EXECUTE state.  This means we need to fail the other request
3160 				 * in the pair, because it is no longer part of a valid pair.  If the pair
3161 				 * already reached READY_TO_EXECUTE state, we need to kick it.
3162 				 */
3163 				tcp_req->fused_pair->fused_failed = true;
3164 				if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3165 					nvmf_tcp_req_process(ttransport, tcp_req->fused_pair);
3166 				}
3167 				tcp_req->fused_pair = NULL;
3168 			}
3169 
3170 			nvmf_tcp_req_put(tqpair, tcp_req);
3171 			break;
3172 		case TCP_REQUEST_NUM_STATES:
3173 		default:
3174 			assert(0);
3175 			break;
3176 		}
3177 
3178 		if (tcp_req->state != prev_state) {
3179 			progress = true;
3180 		}
3181 	} while (tcp_req->state != prev_state);
3182 
3183 	return progress;
3184 }
3185 
3186 static void
3187 nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
3188 {
3189 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
3190 	int rc;
3191 
3192 	assert(tqpair != NULL);
3193 	rc = nvmf_tcp_sock_process(tqpair);
3194 
3195 	/* If there was a new socket error, disconnect */
3196 	if (rc < 0) {
3197 		nvmf_tcp_qpair_disconnect(tqpair);
3198 	}
3199 }
3200 
3201 static int
3202 nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3203 			struct spdk_nvmf_qpair *qpair)
3204 {
3205 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3206 	struct spdk_nvmf_tcp_qpair	*tqpair;
3207 	int				rc;
3208 
3209 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3210 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3211 
3212 	rc =  nvmf_tcp_qpair_sock_init(tqpair);
3213 	if (rc != 0) {
3214 		SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
3215 		return -1;
3216 	}
3217 
3218 	rc = nvmf_tcp_qpair_init(&tqpair->qpair);
3219 	if (rc < 0) {
3220 		SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
3221 		return -1;
3222 	}
3223 
3224 	rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
3225 	if (rc < 0) {
3226 		SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
3227 		return -1;
3228 	}
3229 
3230 	rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
3231 				      nvmf_tcp_sock_cb, tqpair);
3232 	if (rc != 0) {
3233 		SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
3234 			    spdk_strerror(errno), errno);
3235 		return -1;
3236 	}
3237 
3238 	tqpair->group = tgroup;
3239 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INVALID);
3240 	TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
3241 
3242 	return 0;
3243 }
3244 
3245 static int
3246 nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3247 			   struct spdk_nvmf_qpair *qpair)
3248 {
3249 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3250 	struct spdk_nvmf_tcp_qpair		*tqpair;
3251 	int				rc;
3252 
3253 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3254 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3255 
3256 	assert(tqpair->group == tgroup);
3257 
3258 	SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
3259 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
3260 		TAILQ_REMOVE(&tgroup->await_req, tqpair, link);
3261 	} else {
3262 		TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
3263 	}
3264 
3265 	rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
3266 	if (rc != 0) {
3267 		SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
3268 			    spdk_strerror(errno), errno);
3269 	}
3270 
3271 	return rc;
3272 }
3273 
3274 static int
3275 nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
3276 {
3277 	struct spdk_nvmf_tcp_transport *ttransport;
3278 	struct spdk_nvmf_tcp_req *tcp_req;
3279 
3280 	ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3281 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3282 
3283 	switch (tcp_req->state) {
3284 	case TCP_REQUEST_STATE_EXECUTING:
3285 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3286 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3287 		break;
3288 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3289 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED);
3290 		break;
3291 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3292 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3293 		break;
3294 	default:
3295 		assert(0 && "Unexpected request state");
3296 		break;
3297 	}
3298 
3299 	nvmf_tcp_req_process(ttransport, tcp_req);
3300 
3301 	return 0;
3302 }
3303 
3304 static void
3305 nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
3306 		     spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3307 {
3308 	struct spdk_nvmf_tcp_qpair *tqpair;
3309 
3310 	SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
3311 
3312 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3313 
3314 	assert(tqpair->fini_cb_fn == NULL);
3315 	tqpair->fini_cb_fn = cb_fn;
3316 	tqpair->fini_cb_arg = cb_arg;
3317 
3318 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITED);
3319 	nvmf_tcp_qpair_destroy(tqpair);
3320 }
3321 
3322 static int
3323 nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3324 {
3325 	struct spdk_nvmf_tcp_poll_group *tgroup;
3326 	int rc;
3327 	struct spdk_nvmf_request *req, *req_tmp;
3328 	struct spdk_nvmf_tcp_req *tcp_req;
3329 	struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp;
3330 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(group->transport,
3331 			struct spdk_nvmf_tcp_transport, transport);
3332 
3333 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3334 
3335 	if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) {
3336 		return 0;
3337 	}
3338 
3339 	STAILQ_FOREACH_SAFE(req, &group->pending_buf_queue, buf_link, req_tmp) {
3340 		tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3341 		if (nvmf_tcp_req_process(ttransport, tcp_req) == false) {
3342 			break;
3343 		}
3344 	}
3345 
3346 	rc = spdk_sock_group_poll(tgroup->sock_group);
3347 	if (rc < 0) {
3348 		SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
3349 	}
3350 
3351 	TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) {
3352 		rc = nvmf_tcp_sock_process(tqpair);
3353 
3354 		/* If there was a new socket error, disconnect */
3355 		if (rc < 0) {
3356 			nvmf_tcp_qpair_disconnect(tqpair);
3357 		}
3358 	}
3359 
3360 	return rc;
3361 }
3362 
3363 static int
3364 nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
3365 			struct spdk_nvme_transport_id *trid, bool peer)
3366 {
3367 	struct spdk_nvmf_tcp_qpair     *tqpair;
3368 	uint16_t			port;
3369 
3370 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3371 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
3372 
3373 	if (peer) {
3374 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
3375 		port = tqpair->initiator_port;
3376 	} else {
3377 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
3378 		port = tqpair->target_port;
3379 	}
3380 
3381 	if (spdk_sock_is_ipv4(tqpair->sock)) {
3382 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3383 	} else if (spdk_sock_is_ipv6(tqpair->sock)) {
3384 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3385 	} else {
3386 		return -1;
3387 	}
3388 
3389 	snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
3390 	return 0;
3391 }
3392 
3393 static int
3394 nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3395 			      struct spdk_nvme_transport_id *trid)
3396 {
3397 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3398 }
3399 
3400 static int
3401 nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3402 			     struct spdk_nvme_transport_id *trid)
3403 {
3404 	return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
3405 }
3406 
3407 static int
3408 nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3409 			       struct spdk_nvme_transport_id *trid)
3410 {
3411 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3412 }
3413 
3414 static void
3415 nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
3416 			      struct spdk_nvmf_tcp_req *tcp_req_to_abort)
3417 {
3418 	tcp_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
3419 	tcp_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
3420 	tcp_req_to_abort->req.rsp->nvme_cpl.cid = tcp_req_to_abort->req.cmd->nvme_cmd.cid;
3421 
3422 	nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3423 
3424 	req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
3425 }
3426 
3427 static int
3428 _nvmf_tcp_qpair_abort_request(void *ctx)
3429 {
3430 	struct spdk_nvmf_request *req = ctx;
3431 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
3432 			struct spdk_nvmf_tcp_req, req);
3433 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
3434 					     struct spdk_nvmf_tcp_qpair, qpair);
3435 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
3436 			struct spdk_nvmf_tcp_transport, transport);
3437 	int rc;
3438 
3439 	spdk_poller_unregister(&req->poller);
3440 
3441 	switch (tcp_req_to_abort->state) {
3442 	case TCP_REQUEST_STATE_EXECUTING:
3443 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3444 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3445 		rc = nvmf_ctrlr_abort_request(req);
3446 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
3447 			return SPDK_POLLER_BUSY;
3448 		}
3449 		break;
3450 
3451 	case TCP_REQUEST_STATE_NEED_BUFFER:
3452 		STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue,
3453 			      &tcp_req_to_abort->req, spdk_nvmf_request, buf_link);
3454 
3455 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3456 		nvmf_tcp_req_process(ttransport, tcp_req_to_abort);
3457 		break;
3458 
3459 	case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3460 	case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3461 		if (spdk_get_ticks() < req->timeout_tsc) {
3462 			req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
3463 			return SPDK_POLLER_BUSY;
3464 		}
3465 		break;
3466 
3467 	default:
3468 		/* Requests in other states are either un-abortable (e.g.
3469 		 * TRANSFERRING_CONTROLLER_TO_HOST) or should never end up here, as they're
3470 		 * immediately transitioned to other states in nvmf_tcp_req_process() (e.g.
3471 		 * READY_TO_EXECUTE).  But it is fine to end up here, as we'll simply complete the
3472 		 * abort request with the bit0 of dword0 set (command not aborted).
3473 		 */
3474 		break;
3475 	}
3476 
3477 	spdk_nvmf_request_complete(req);
3478 	return SPDK_POLLER_BUSY;
3479 }
3480 
3481 static void
3482 nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
3483 			     struct spdk_nvmf_request *req)
3484 {
3485 	struct spdk_nvmf_tcp_qpair *tqpair;
3486 	struct spdk_nvmf_tcp_transport *ttransport;
3487 	struct spdk_nvmf_transport *transport;
3488 	uint16_t cid;
3489 	uint32_t i;
3490 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
3491 
3492 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3493 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3494 	transport = &ttransport->transport;
3495 
3496 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
3497 
3498 	for (i = 0; i < tqpair->resource_count; i++) {
3499 		if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
3500 		    tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
3501 			tcp_req_to_abort = &tqpair->reqs[i];
3502 			break;
3503 		}
3504 	}
3505 
3506 	spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, qpair->qid, 0, (uintptr_t)req, tqpair);
3507 
3508 	if (tcp_req_to_abort == NULL) {
3509 		spdk_nvmf_request_complete(req);
3510 		return;
3511 	}
3512 
3513 	req->req_to_abort = &tcp_req_to_abort->req;
3514 	req->timeout_tsc = spdk_get_ticks() +
3515 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
3516 	req->poller = NULL;
3517 
3518 	_nvmf_tcp_qpair_abort_request(req);
3519 }
3520 
3521 struct tcp_subsystem_add_host_opts {
3522 	char *psk;
3523 };
3524 
3525 static const struct spdk_json_object_decoder tcp_subsystem_add_host_opts_decoder[] = {
3526 	{"psk", offsetof(struct tcp_subsystem_add_host_opts, psk), spdk_json_decode_string, true},
3527 };
3528 
3529 static int
3530 tcp_load_psk(const char *fname, char *buf, size_t bufsz)
3531 {
3532 	FILE *psk_file;
3533 	struct stat statbuf;
3534 	int rc;
3535 
3536 	if (stat(fname, &statbuf) != 0) {
3537 		SPDK_ERRLOG("Could not read permissions for PSK file\n");
3538 		return -EACCES;
3539 	}
3540 
3541 	if ((statbuf.st_mode & TCP_PSK_INVALID_PERMISSIONS) != 0) {
3542 		SPDK_ERRLOG("Incorrect permissions for PSK file\n");
3543 		return -EPERM;
3544 	}
3545 	if ((size_t)statbuf.st_size >= bufsz) {
3546 		SPDK_ERRLOG("Invalid PSK: too long\n");
3547 		return -EINVAL;
3548 	}
3549 	psk_file = fopen(fname, "r");
3550 	if (psk_file == NULL) {
3551 		SPDK_ERRLOG("Could not open PSK file\n");
3552 		return -EINVAL;
3553 	}
3554 
3555 	memset(buf, 0, bufsz);
3556 	rc = fread(buf, 1, statbuf.st_size, psk_file);
3557 	if (rc != statbuf.st_size) {
3558 		SPDK_ERRLOG("Failed to read PSK\n");
3559 		fclose(psk_file);
3560 		return -EINVAL;
3561 	}
3562 
3563 	fclose(psk_file);
3564 	return 0;
3565 }
3566 
3567 static int
3568 nvmf_tcp_subsystem_add_host(struct spdk_nvmf_transport *transport,
3569 			    const struct spdk_nvmf_subsystem *subsystem,
3570 			    const char *hostnqn,
3571 			    const struct spdk_json_val *transport_specific)
3572 {
3573 	struct tcp_subsystem_add_host_opts opts;
3574 	struct spdk_nvmf_tcp_transport *ttransport;
3575 	struct tcp_psk_entry *entry;
3576 	char psk_identity[NVMF_PSK_IDENTITY_LEN];
3577 	uint8_t psk_configured[SPDK_TLS_PSK_MAX_LEN] = {};
3578 	char psk_interchange[SPDK_TLS_PSK_MAX_LEN] = {};
3579 	uint8_t tls_cipher_suite;
3580 	int rc = 0;
3581 	uint8_t psk_retained_hash;
3582 	uint64_t psk_configured_size;
3583 
3584 	if (transport_specific == NULL) {
3585 		return 0;
3586 	}
3587 
3588 	assert(transport != NULL);
3589 	assert(subsystem != NULL);
3590 
3591 	memset(&opts, 0, sizeof(opts));
3592 
3593 	/* Decode PSK file path */
3594 	if (spdk_json_decode_object_relaxed(transport_specific, tcp_subsystem_add_host_opts_decoder,
3595 					    SPDK_COUNTOF(tcp_subsystem_add_host_opts_decoder), &opts)) {
3596 		SPDK_ERRLOG("spdk_json_decode_object failed\n");
3597 		return -EINVAL;
3598 	}
3599 
3600 	if (opts.psk == NULL) {
3601 		return 0;
3602 	}
3603 	if (strlen(opts.psk) >= sizeof(entry->psk)) {
3604 		SPDK_ERRLOG("PSK path too long\n");
3605 		rc = -EINVAL;
3606 		goto end;
3607 	}
3608 
3609 	rc = tcp_load_psk(opts.psk, psk_interchange, sizeof(psk_interchange));
3610 	if (rc) {
3611 		SPDK_ERRLOG("Could not retrieve PSK from file\n");
3612 		goto end;
3613 	}
3614 
3615 	/* Parse PSK interchange to get length of base64 encoded data.
3616 	 * This is then used to decide which cipher suite should be used
3617 	 * to generate PSK identity and TLS PSK later on. */
3618 	rc = nvme_tcp_parse_interchange_psk(psk_interchange, psk_configured, sizeof(psk_configured),
3619 					    &psk_configured_size, &psk_retained_hash);
3620 	if (rc < 0) {
3621 		SPDK_ERRLOG("Failed to parse PSK interchange!\n");
3622 		goto end;
3623 	}
3624 
3625 	/* The Base64 string encodes the configured PSK (32 or 48 bytes binary).
3626 	 * This check also ensures that psk_configured_size is smaller than
3627 	 * psk_retained buffer size. */
3628 	if (psk_configured_size == SHA256_DIGEST_LENGTH) {
3629 		tls_cipher_suite = NVME_TCP_CIPHER_AES_128_GCM_SHA256;
3630 	} else if (psk_configured_size == SHA384_DIGEST_LENGTH) {
3631 		tls_cipher_suite = NVME_TCP_CIPHER_AES_256_GCM_SHA384;
3632 	} else {
3633 		SPDK_ERRLOG("Unrecognized cipher suite!\n");
3634 		rc = -EINVAL;
3635 		goto end;
3636 	}
3637 
3638 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3639 	/* Generate PSK identity. */
3640 	rc = nvme_tcp_generate_psk_identity(psk_identity, NVMF_PSK_IDENTITY_LEN, hostnqn,
3641 					    subsystem->subnqn, tls_cipher_suite);
3642 	if (rc) {
3643 		rc = -EINVAL;
3644 		goto end;
3645 	}
3646 	/* Check if PSK identity entry already exists. */
3647 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
3648 		if (strncmp(entry->psk_identity, psk_identity, NVMF_PSK_IDENTITY_LEN) == 0) {
3649 			SPDK_ERRLOG("Given PSK identity: %s entry already exists!\n", psk_identity);
3650 			rc = -EEXIST;
3651 			goto end;
3652 		}
3653 	}
3654 	entry = calloc(1, sizeof(struct tcp_psk_entry));
3655 	if (entry == NULL) {
3656 		SPDK_ERRLOG("Unable to allocate memory for PSK entry!\n");
3657 		rc = -ENOMEM;
3658 		goto end;
3659 	}
3660 
3661 	if (snprintf(entry->hostnqn, sizeof(entry->hostnqn), "%s", hostnqn) < 0) {
3662 		SPDK_ERRLOG("Could not write hostnqn string!\n");
3663 		rc = -EINVAL;
3664 		free(entry);
3665 		goto end;
3666 	}
3667 	if (snprintf(entry->subnqn, sizeof(entry->subnqn), "%s", subsystem->subnqn) < 0) {
3668 		SPDK_ERRLOG("Could not write subnqn string!\n");
3669 		rc = -EINVAL;
3670 		free(entry);
3671 		goto end;
3672 	}
3673 	if (snprintf(entry->psk_identity, sizeof(entry->psk_identity), "%s", psk_identity) < 0) {
3674 		SPDK_ERRLOG("Could not write PSK identity string!\n");
3675 		rc = -EINVAL;
3676 		free(entry);
3677 		goto end;
3678 	}
3679 	entry->tls_cipher_suite = tls_cipher_suite;
3680 
3681 	/* No hash indicates that Configured PSK must be used as Retained PSK. */
3682 	if (psk_retained_hash == NVME_TCP_HASH_ALGORITHM_NONE) {
3683 		/* Psk configured is either 32 or 48 bytes long. */
3684 		memcpy(entry->psk, psk_configured, psk_configured_size);
3685 		entry->psk_size = psk_configured_size;
3686 	} else {
3687 		/* Derive retained PSK. */
3688 		rc = nvme_tcp_derive_retained_psk(psk_configured, psk_configured_size, hostnqn, entry->psk,
3689 						  SPDK_TLS_PSK_MAX_LEN, psk_retained_hash);
3690 		if (rc < 0) {
3691 			SPDK_ERRLOG("Unable to derive retained PSK!\n");
3692 			free(entry);
3693 			goto end;
3694 		}
3695 		entry->psk_size = rc;
3696 	}
3697 
3698 	TAILQ_INSERT_TAIL(&ttransport->psks, entry, link);
3699 	rc = 0;
3700 
3701 end:
3702 	spdk_memset_s(psk_configured, sizeof(psk_configured), 0, sizeof(psk_configured));
3703 	spdk_memset_s(psk_interchange, sizeof(psk_interchange), 0, sizeof(psk_interchange));
3704 
3705 	free(opts.psk);
3706 
3707 	return rc;
3708 }
3709 
3710 static void
3711 nvmf_tcp_subsystem_remove_host(struct spdk_nvmf_transport *transport,
3712 			       const struct spdk_nvmf_subsystem *subsystem,
3713 			       const char *hostnqn)
3714 {
3715 	struct spdk_nvmf_tcp_transport *ttransport;
3716 	struct tcp_psk_entry *entry, *tmp;
3717 
3718 	assert(transport != NULL);
3719 	assert(subsystem != NULL);
3720 
3721 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3722 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
3723 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3724 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3725 			TAILQ_REMOVE(&ttransport->psks, entry, link);
3726 			spdk_memset_s(entry->psk, sizeof(entry->psk), 0, sizeof(entry->psk));
3727 			free(entry);
3728 			break;
3729 		}
3730 	}
3731 }
3732 
3733 static void
3734 nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
3735 {
3736 	opts->max_queue_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
3737 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
3738 	opts->in_capsule_data_size =	SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
3739 	opts->max_io_size =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
3740 	opts->io_unit_size =		SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
3741 	opts->max_aq_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
3742 	opts->num_shared_buffers =	SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
3743 	opts->buf_cache_size =		SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
3744 	opts->dif_insert_or_strip =	SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
3745 	opts->abort_timeout_sec =	SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
3746 	opts->transport_specific =      NULL;
3747 }
3748 
3749 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
3750 	.name = "TCP",
3751 	.type = SPDK_NVME_TRANSPORT_TCP,
3752 	.opts_init = nvmf_tcp_opts_init,
3753 	.create = nvmf_tcp_create,
3754 	.dump_opts = nvmf_tcp_dump_opts,
3755 	.destroy = nvmf_tcp_destroy,
3756 
3757 	.listen = nvmf_tcp_listen,
3758 	.stop_listen = nvmf_tcp_stop_listen,
3759 
3760 	.listener_discover = nvmf_tcp_discover,
3761 
3762 	.poll_group_create = nvmf_tcp_poll_group_create,
3763 	.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
3764 	.poll_group_destroy = nvmf_tcp_poll_group_destroy,
3765 	.poll_group_add = nvmf_tcp_poll_group_add,
3766 	.poll_group_remove = nvmf_tcp_poll_group_remove,
3767 	.poll_group_poll = nvmf_tcp_poll_group_poll,
3768 
3769 	.req_free = nvmf_tcp_req_free,
3770 	.req_complete = nvmf_tcp_req_complete,
3771 
3772 	.qpair_fini = nvmf_tcp_close_qpair,
3773 	.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
3774 	.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
3775 	.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
3776 	.qpair_abort_request = nvmf_tcp_qpair_abort_request,
3777 	.subsystem_add_host = nvmf_tcp_subsystem_add_host,
3778 	.subsystem_remove_host = nvmf_tcp_subsystem_remove_host,
3779 };
3780 
3781 SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
3782 SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)
3783