xref: /spdk/lib/nvmf/tcp.c (revision 588dfe314bb83d86effdf67ec42837b11c2620bf)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2018 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/accel.h"
8 #include "spdk/stdinc.h"
9 #include "spdk/crc32.h"
10 #include "spdk/endian.h"
11 #include "spdk/assert.h"
12 #include "spdk/thread.h"
13 #include "spdk/nvmf_transport.h"
14 #include "spdk/string.h"
15 #include "spdk/trace.h"
16 #include "spdk/util.h"
17 #include "spdk/log.h"
18 
19 #include "spdk_internal/assert.h"
20 #include "spdk_internal/nvme_tcp.h"
21 #include "spdk_internal/sock.h"
22 
23 #include "nvmf_internal.h"
24 
25 #include "spdk_internal/trace_defs.h"
26 
27 #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
28 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
29 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
30 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
31 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
32 
33 #define SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH 2
34 #define SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH 65535
35 #define SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH 2
36 #define SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH 4096
37 
38 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH 128
39 #define SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH 128
40 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
41 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
42 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
43 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
44 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
45 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE 32
46 #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
47 #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
48 
49 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
50 
51 /* spdk nvmf related structure */
52 enum spdk_nvmf_tcp_req_state {
53 
54 	/* The request is not currently in use */
55 	TCP_REQUEST_STATE_FREE = 0,
56 
57 	/* Initial state when request first received */
58 	TCP_REQUEST_STATE_NEW = 1,
59 
60 	/* The request is queued until a data buffer is available. */
61 	TCP_REQUEST_STATE_NEED_BUFFER = 2,
62 
63 	/* The request is waiting for zcopy_start to finish */
64 	TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 3,
65 
66 	/* The request has received a zero-copy buffer */
67 	TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 4,
68 
69 	/* The request is currently transferring data from the host to the controller. */
70 	TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 5,
71 
72 	/* The request is waiting for the R2T send acknowledgement. */
73 	TCP_REQUEST_STATE_AWAITING_R2T_ACK = 6,
74 
75 	/* The request is ready to execute at the block device */
76 	TCP_REQUEST_STATE_READY_TO_EXECUTE = 7,
77 
78 	/* The request is currently executing at the block device */
79 	TCP_REQUEST_STATE_EXECUTING = 8,
80 
81 	/* The request is waiting for zcopy buffers to be commited */
82 	TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 9,
83 
84 	/* The request finished executing at the block device */
85 	TCP_REQUEST_STATE_EXECUTED = 10,
86 
87 	/* The request is ready to send a completion */
88 	TCP_REQUEST_STATE_READY_TO_COMPLETE = 11,
89 
90 	/* The request is currently transferring final pdus from the controller to the host. */
91 	TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 12,
92 
93 	/* The request is waiting for zcopy buffers to be released (without committing) */
94 	TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 13,
95 
96 	/* The request completed and can be marked free. */
97 	TCP_REQUEST_STATE_COMPLETED = 14,
98 
99 	/* Terminator */
100 	TCP_REQUEST_NUM_STATES,
101 };
102 
103 static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
104 	"Invalid PDU Header Field",
105 	"PDU Sequence Error",
106 	"Header Digiest Error",
107 	"Data Transfer Out of Range",
108 	"R2T Limit Exceeded",
109 	"Unsupported parameter",
110 };
111 
112 SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
113 {
114 	spdk_trace_register_owner(OWNER_NVMF_TCP, 't');
115 	spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
116 	spdk_trace_register_description("TCP_REQ_NEW",
117 					TRACE_TCP_REQUEST_STATE_NEW,
118 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1,
119 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
120 	spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
121 					TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
122 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
123 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
124 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START",
125 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START,
126 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
127 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
128 	spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL",
129 					TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED,
130 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
131 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
132 	spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
133 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
134 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
135 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
136 	spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
137 					TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
138 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
139 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
140 	spdk_trace_register_description("TCP_REQ_EXECUTING",
141 					TRACE_TCP_REQUEST_STATE_EXECUTING,
142 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
143 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
144 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT",
145 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT,
146 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
147 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
148 	spdk_trace_register_description("TCP_REQ_EXECUTED",
149 					TRACE_TCP_REQUEST_STATE_EXECUTED,
150 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
151 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
152 	spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
153 					TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
154 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
155 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
156 	spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
157 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
158 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
159 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
160 	spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS",
161 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE,
162 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
163 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
164 	spdk_trace_register_description("TCP_REQ_COMPLETED",
165 					TRACE_TCP_REQUEST_STATE_COMPLETED,
166 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
167 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
168 	spdk_trace_register_description("TCP_WRITE_START",
169 					TRACE_TCP_FLUSH_WRITEBUF_START,
170 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
171 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
172 	spdk_trace_register_description("TCP_WRITE_DONE",
173 					TRACE_TCP_FLUSH_WRITEBUF_DONE,
174 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
175 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
176 	spdk_trace_register_description("TCP_READ_DONE",
177 					TRACE_TCP_READ_FROM_SOCKET_DONE,
178 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
179 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
180 	spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
181 					TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
182 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
183 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
184 
185 	spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE,
186 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
187 					SPDK_TRACE_ARG_TYPE_INT, "");
188 	spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT,
189 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
190 					SPDK_TRACE_ARG_TYPE_INT, "");
191 	spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE,
192 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
193 					SPDK_TRACE_ARG_TYPE_INT, "state");
194 	spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT,
195 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
196 					SPDK_TRACE_ARG_TYPE_INT, "");
197 	spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY,
198 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
199 					SPDK_TRACE_ARG_TYPE_INT, "");
200 	spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ,
201 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
202 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
203 	spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE,
204 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
205 					SPDK_TRACE_ARG_TYPE_INT, "state");
206 
207 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1);
208 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0);
209 }
210 
211 struct spdk_nvmf_tcp_req  {
212 	struct spdk_nvmf_request		req;
213 	struct spdk_nvme_cpl			rsp;
214 	struct spdk_nvme_cmd			cmd;
215 
216 	/* A PDU that can be used for sending responses. This is
217 	 * not the incoming PDU! */
218 	struct nvme_tcp_pdu			*pdu;
219 
220 	/* In-capsule data buffer */
221 	uint8_t					*buf;
222 
223 	struct spdk_nvmf_tcp_req		*fused_pair;
224 
225 	/*
226 	 * The PDU for a request may be used multiple times in serial over
227 	 * the request's lifetime. For example, first to send an R2T, then
228 	 * to send a completion. To catch mistakes where the PDU is used
229 	 * twice at the same time, add a debug flag here for init/fini.
230 	 */
231 	bool					pdu_in_use;
232 	bool					has_in_capsule_data;
233 	bool					fused_failed;
234 
235 	/* transfer_tag */
236 	uint16_t				ttag;
237 
238 	enum spdk_nvmf_tcp_req_state		state;
239 
240 	/*
241 	 * h2c_offset is used when we receive the h2c_data PDU.
242 	 */
243 	uint32_t				h2c_offset;
244 
245 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		link;
246 	TAILQ_ENTRY(spdk_nvmf_tcp_req)		state_link;
247 };
248 
249 struct spdk_nvmf_tcp_qpair {
250 	struct spdk_nvmf_qpair			qpair;
251 	struct spdk_nvmf_tcp_poll_group		*group;
252 	struct spdk_sock			*sock;
253 
254 	enum nvme_tcp_pdu_recv_state		recv_state;
255 	enum nvme_tcp_qpair_state		state;
256 
257 	/* PDU being actively received */
258 	struct nvme_tcp_pdu			*pdu_in_progress;
259 
260 	struct spdk_nvmf_tcp_req		*fused_first;
261 
262 	/* Queues to track the requests in all states */
263 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_working_queue;
264 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_free_queue;
265 	SLIST_HEAD(, nvme_tcp_pdu)		tcp_pdu_free_queue;
266 
267 	/* Number of requests in each state */
268 	uint32_t				state_cntr[TCP_REQUEST_NUM_STATES];
269 
270 	uint8_t					cpda;
271 
272 	bool					host_hdgst_enable;
273 	bool					host_ddgst_enable;
274 
275 	/* This is a spare PDU used for sending special management
276 	 * operations. Primarily, this is used for the initial
277 	 * connection response and c2h termination request. */
278 	struct nvme_tcp_pdu			*mgmt_pdu;
279 
280 	/* Arrays of in-capsule buffers, requests, and pdus.
281 	 * Each array is 'resource_count' number of elements */
282 	void					*bufs;
283 	struct spdk_nvmf_tcp_req		*reqs;
284 	struct nvme_tcp_pdu			*pdus;
285 	uint32_t				resource_count;
286 	uint32_t				recv_buf_size;
287 
288 	struct spdk_nvmf_tcp_port		*port;
289 
290 	/* IP address */
291 	char					initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
292 	char					target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
293 
294 	/* IP port */
295 	uint16_t				initiator_port;
296 	uint16_t				target_port;
297 
298 	/* Timer used to destroy qpair after detecting transport error issue if initiator does
299 	 *  not close the connection.
300 	 */
301 	struct spdk_poller			*timeout_poller;
302 
303 	spdk_nvmf_transport_qpair_fini_cb	fini_cb_fn;
304 	void					*fini_cb_arg;
305 
306 	TAILQ_ENTRY(spdk_nvmf_tcp_qpair)	link;
307 };
308 
309 struct spdk_nvmf_tcp_control_msg {
310 	STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
311 };
312 
313 struct spdk_nvmf_tcp_control_msg_list {
314 	void *msg_buf;
315 	STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
316 };
317 
318 struct spdk_nvmf_tcp_poll_group {
319 	struct spdk_nvmf_transport_poll_group	group;
320 	struct spdk_sock_group			*sock_group;
321 
322 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	qpairs;
323 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	await_req;
324 
325 	struct spdk_io_channel			*accel_channel;
326 	struct spdk_nvmf_tcp_control_msg_list	*control_msg_list;
327 
328 	TAILQ_ENTRY(spdk_nvmf_tcp_poll_group)	link;
329 };
330 
331 struct spdk_nvmf_tcp_port {
332 	const struct spdk_nvme_transport_id	*trid;
333 	struct spdk_sock			*listen_sock;
334 	TAILQ_ENTRY(spdk_nvmf_tcp_port)		link;
335 };
336 
337 struct tcp_transport_opts {
338 	bool		c2h_success;
339 	uint16_t	control_msg_num;
340 	uint32_t	sock_priority;
341 };
342 
343 struct spdk_nvmf_tcp_transport {
344 	struct spdk_nvmf_transport		transport;
345 	struct tcp_transport_opts               tcp_opts;
346 
347 	struct spdk_nvmf_tcp_poll_group		*next_pg;
348 
349 	struct spdk_poller			*accept_poller;
350 
351 	TAILQ_HEAD(, spdk_nvmf_tcp_port)	ports;
352 	TAILQ_HEAD(, spdk_nvmf_tcp_poll_group)	poll_groups;
353 };
354 
355 static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
356 	{
357 		"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
358 		spdk_json_decode_bool, true
359 	},
360 	{
361 		"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
362 		spdk_json_decode_uint16, true
363 	},
364 	{
365 		"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
366 		spdk_json_decode_uint32, true
367 	},
368 };
369 
370 static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
371 				 struct spdk_nvmf_tcp_req *tcp_req);
372 static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
373 
374 static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
375 				    struct spdk_nvmf_tcp_req *tcp_req);
376 
377 static inline void
378 nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
379 		       enum spdk_nvmf_tcp_req_state state)
380 {
381 	struct spdk_nvmf_qpair *qpair;
382 	struct spdk_nvmf_tcp_qpair *tqpair;
383 
384 	qpair = tcp_req->req.qpair;
385 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
386 
387 	assert(tqpair->state_cntr[tcp_req->state] > 0);
388 	tqpair->state_cntr[tcp_req->state]--;
389 	tqpair->state_cntr[state]++;
390 
391 	tcp_req->state = state;
392 }
393 
394 static inline struct nvme_tcp_pdu *
395 nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
396 {
397 	assert(tcp_req->pdu_in_use == false);
398 
399 	memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
400 	tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
401 
402 	return tcp_req->pdu;
403 }
404 
405 static struct spdk_nvmf_tcp_req *
406 nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
407 {
408 	struct spdk_nvmf_tcp_req *tcp_req;
409 
410 	tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
411 	if (spdk_unlikely(!tcp_req)) {
412 		return NULL;
413 	}
414 
415 	memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
416 	tcp_req->h2c_offset = 0;
417 	tcp_req->has_in_capsule_data = false;
418 	tcp_req->req.dif_enabled = false;
419 	tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE;
420 
421 	TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
422 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
423 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
424 	return tcp_req;
425 }
426 
427 static inline void
428 nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
429 {
430 	assert(!tcp_req->pdu_in_use);
431 
432 	TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
433 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
434 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
435 }
436 
437 static void
438 nvmf_tcp_request_free(void *cb_arg)
439 {
440 	struct spdk_nvmf_tcp_transport *ttransport;
441 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
442 
443 	assert(tcp_req != NULL);
444 
445 	SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
446 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
447 				      struct spdk_nvmf_tcp_transport, transport);
448 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
449 	nvmf_tcp_req_process(ttransport, tcp_req);
450 }
451 
452 static int
453 nvmf_tcp_req_free(struct spdk_nvmf_request *req)
454 {
455 	struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
456 
457 	nvmf_tcp_request_free(tcp_req);
458 
459 	return 0;
460 }
461 
462 static void
463 nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
464 			   enum spdk_nvmf_tcp_req_state state)
465 {
466 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
467 
468 	assert(state != TCP_REQUEST_STATE_FREE);
469 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
470 		if (state == tcp_req->state) {
471 			nvmf_tcp_request_free(tcp_req);
472 		}
473 	}
474 }
475 
476 static void
477 nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
478 {
479 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
480 
481 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
482 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
483 
484 	/* Wipe the requests waiting for buffer from the global list */
485 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
486 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
487 			STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue, &tcp_req->req,
488 				      spdk_nvmf_request, buf_link);
489 		}
490 	}
491 
492 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
493 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
494 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
495 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
496 }
497 
498 static void
499 nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
500 {
501 	int i;
502 	struct spdk_nvmf_tcp_req *tcp_req;
503 
504 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
505 	for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
506 		SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
507 		TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
508 			if ((int)tcp_req->state == i) {
509 				SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
510 				SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
511 			}
512 		}
513 	}
514 }
515 
516 static void
517 _nvmf_tcp_qpair_destroy(void *_tqpair)
518 {
519 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
520 	spdk_nvmf_transport_qpair_fini_cb cb_fn = tqpair->fini_cb_fn;
521 	void *cb_arg = tqpair->fini_cb_arg;
522 	int err = 0;
523 
524 	spdk_trace_record(TRACE_TCP_QP_DESTROY, 0, 0, (uintptr_t)tqpair);
525 
526 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
527 
528 	err = spdk_sock_close(&tqpair->sock);
529 	assert(err == 0);
530 	nvmf_tcp_cleanup_all_states(tqpair);
531 
532 	if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
533 		SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
534 			    tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
535 			    tqpair->resource_count);
536 		err++;
537 	}
538 
539 	if (err > 0) {
540 		nvmf_tcp_dump_qpair_req_contents(tqpair);
541 	}
542 
543 	/* The timeout poller might still be registered here if we close the qpair before host
544 	 * terminates the connection.
545 	 */
546 	spdk_poller_unregister(&tqpair->timeout_poller);
547 	spdk_dma_free(tqpair->pdus);
548 	free(tqpair->reqs);
549 	spdk_free(tqpair->bufs);
550 	free(tqpair);
551 
552 	if (cb_fn != NULL) {
553 		cb_fn(cb_arg);
554 	}
555 
556 	SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
557 }
558 
559 static void
560 nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
561 {
562 	/* Delay the destruction to make sure it isn't performed from the context of a sock
563 	 * callback.  Otherwise, spdk_sock_close() might not abort pending requests, causing their
564 	 * completions to be executed after the qpair is freed.  (Note: this fixed issue #2471.)
565 	 */
566 	spdk_thread_send_msg(spdk_get_thread(), _nvmf_tcp_qpair_destroy, tqpair);
567 }
568 
569 static void
570 nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
571 {
572 	struct spdk_nvmf_tcp_transport	*ttransport;
573 	assert(w != NULL);
574 
575 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
576 	spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
577 	spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
578 }
579 
580 static int
581 nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
582 		 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
583 {
584 	struct spdk_nvmf_tcp_transport	*ttransport;
585 
586 	assert(transport != NULL);
587 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
588 
589 	spdk_poller_unregister(&ttransport->accept_poller);
590 	free(ttransport);
591 
592 	if (cb_fn) {
593 		cb_fn(cb_arg);
594 	}
595 	return 0;
596 }
597 
598 static int nvmf_tcp_accept(void *ctx);
599 
600 static struct spdk_nvmf_transport *
601 nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
602 {
603 	struct spdk_nvmf_tcp_transport *ttransport;
604 	uint32_t sge_count;
605 	uint32_t min_shared_buffers;
606 
607 	ttransport = calloc(1, sizeof(*ttransport));
608 	if (!ttransport) {
609 		return NULL;
610 	}
611 
612 	TAILQ_INIT(&ttransport->ports);
613 	TAILQ_INIT(&ttransport->poll_groups);
614 
615 	ttransport->transport.ops = &spdk_nvmf_transport_tcp;
616 
617 	ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
618 	ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
619 	ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
620 	if (opts->transport_specific != NULL &&
621 	    spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
622 					    SPDK_COUNTOF(tcp_transport_opts_decoder),
623 					    &ttransport->tcp_opts)) {
624 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
625 		free(ttransport);
626 		return NULL;
627 	}
628 
629 	SPDK_NOTICELOG("*** TCP Transport Init ***\n");
630 
631 	SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
632 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
633 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
634 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
635 		     "  num_shared_buffers=%d, c2h_success=%d,\n"
636 		     "  dif_insert_or_strip=%d, sock_priority=%d\n"
637 		     "  abort_timeout_sec=%d, control_msg_num=%hu\n",
638 		     opts->max_queue_depth,
639 		     opts->max_io_size,
640 		     opts->max_qpairs_per_ctrlr - 1,
641 		     opts->io_unit_size,
642 		     opts->in_capsule_data_size,
643 		     opts->max_aq_depth,
644 		     opts->num_shared_buffers,
645 		     ttransport->tcp_opts.c2h_success,
646 		     opts->dif_insert_or_strip,
647 		     ttransport->tcp_opts.sock_priority,
648 		     opts->abort_timeout_sec,
649 		     ttransport->tcp_opts.control_msg_num);
650 
651 	if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
652 		SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
653 			    "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
654 			    ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
655 		free(ttransport);
656 		return NULL;
657 	}
658 
659 	if (ttransport->tcp_opts.control_msg_num == 0 &&
660 	    opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
661 		SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
662 			     SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
663 		ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
664 	}
665 
666 	/* I/O unit size cannot be larger than max I/O size */
667 	if (opts->io_unit_size > opts->max_io_size) {
668 		SPDK_WARNLOG("TCP param io_unit_size %u can't be larger than max_io_size %u. Using max_io_size as io_unit_size\n",
669 			     opts->io_unit_size, opts->max_io_size);
670 		opts->io_unit_size = opts->max_io_size;
671 	}
672 
673 	/* In capsule data size cannot be larger than max I/O size */
674 	if (opts->in_capsule_data_size > opts->max_io_size) {
675 		SPDK_WARNLOG("TCP param ICD size %u can't be larger than max_io_size %u. Using max_io_size as ICD size\n",
676 			     opts->io_unit_size, opts->max_io_size);
677 		opts->in_capsule_data_size = opts->max_io_size;
678 	}
679 
680 	/* max IO queue depth cannot be smaller than 2 or larger than 65535.
681 	 * We will not check SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, because max_queue_depth is 16bits and always not larger than 64k. */
682 	if (opts->max_queue_depth < SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH) {
683 		SPDK_WARNLOG("TCP param max_queue_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
684 			     opts->max_queue_depth, SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH,
685 			     SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH);
686 		opts->max_queue_depth = SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
687 	}
688 
689 	/* max admin queue depth cannot be smaller than 2 or larger than 4096 */
690 	if (opts->max_aq_depth < SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH ||
691 	    opts->max_aq_depth > SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH) {
692 		SPDK_WARNLOG("TCP param max_aq_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
693 			     opts->max_aq_depth, SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH,
694 			     SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH);
695 		opts->max_aq_depth = SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
696 	}
697 
698 	sge_count = opts->max_io_size / opts->io_unit_size;
699 	if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
700 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
701 		free(ttransport);
702 		return NULL;
703 	}
704 
705 	min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
706 	if (min_shared_buffers > opts->num_shared_buffers) {
707 		SPDK_ERRLOG("There are not enough buffers to satisfy "
708 			    "per-poll group caches for each thread. (%" PRIu32 ") "
709 			    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
710 		SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
711 		free(ttransport);
712 		return NULL;
713 	}
714 
715 	ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport,
716 				    opts->acceptor_poll_rate);
717 	if (!ttransport->accept_poller) {
718 		free(ttransport);
719 		return NULL;
720 	}
721 
722 	return &ttransport->transport;
723 }
724 
725 static int
726 nvmf_tcp_trsvcid_to_int(const char *trsvcid)
727 {
728 	unsigned long long ull;
729 	char *end = NULL;
730 
731 	ull = strtoull(trsvcid, &end, 10);
732 	if (end == NULL || end == trsvcid || *end != '\0') {
733 		return -1;
734 	}
735 
736 	/* Valid TCP/IP port numbers are in [0, 65535] */
737 	if (ull > 65535) {
738 		return -1;
739 	}
740 
741 	return (int)ull;
742 }
743 
744 /**
745  * Canonicalize a listen address trid.
746  */
747 static int
748 nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
749 			   const struct spdk_nvme_transport_id *trid)
750 {
751 	int trsvcid_int;
752 
753 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
754 	if (trsvcid_int < 0) {
755 		return -EINVAL;
756 	}
757 
758 	memset(canon_trid, 0, sizeof(*canon_trid));
759 	spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
760 	canon_trid->adrfam = trid->adrfam;
761 	snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
762 	snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
763 
764 	return 0;
765 }
766 
767 /**
768  * Find an existing listening port.
769  */
770 static struct spdk_nvmf_tcp_port *
771 nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
772 		   const struct spdk_nvme_transport_id *trid)
773 {
774 	struct spdk_nvme_transport_id canon_trid;
775 	struct spdk_nvmf_tcp_port *port;
776 
777 	if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
778 		return NULL;
779 	}
780 
781 	TAILQ_FOREACH(port, &ttransport->ports, link) {
782 		if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
783 			return port;
784 		}
785 	}
786 
787 	return NULL;
788 }
789 
790 static int
791 nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
792 		struct spdk_nvmf_listen_opts *listen_opts)
793 {
794 	struct spdk_nvmf_tcp_transport *ttransport;
795 	struct spdk_nvmf_tcp_port *port;
796 	int trsvcid_int;
797 	uint8_t adrfam;
798 	struct spdk_sock_opts opts;
799 
800 	if (!strlen(trid->trsvcid)) {
801 		SPDK_ERRLOG("Service id is required\n");
802 		return -EINVAL;
803 	}
804 
805 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
806 
807 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
808 	if (trsvcid_int < 0) {
809 		SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
810 		return -EINVAL;
811 	}
812 
813 	port = calloc(1, sizeof(*port));
814 	if (!port) {
815 		SPDK_ERRLOG("Port allocation failed\n");
816 		return -ENOMEM;
817 	}
818 
819 	port->trid = trid;
820 	opts.opts_size = sizeof(opts);
821 	spdk_sock_get_default_opts(&opts);
822 	opts.priority = ttransport->tcp_opts.sock_priority;
823 	/* TODO: also add impl_opts like on the initiator side */
824 	port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
825 			    NULL, &opts);
826 	if (port->listen_sock == NULL) {
827 		SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
828 			    trid->traddr, trsvcid_int,
829 			    spdk_strerror(errno), errno);
830 		free(port);
831 		return -errno;
832 	}
833 
834 	if (spdk_sock_is_ipv4(port->listen_sock)) {
835 		adrfam = SPDK_NVMF_ADRFAM_IPV4;
836 	} else if (spdk_sock_is_ipv6(port->listen_sock)) {
837 		adrfam = SPDK_NVMF_ADRFAM_IPV6;
838 	} else {
839 		SPDK_ERRLOG("Unhandled socket type\n");
840 		adrfam = 0;
841 	}
842 
843 	if (adrfam != trid->adrfam) {
844 		SPDK_ERRLOG("Socket address family mismatch\n");
845 		spdk_sock_close(&port->listen_sock);
846 		free(port);
847 		return -EINVAL;
848 	}
849 
850 	SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
851 		       trid->traddr, trid->trsvcid);
852 
853 	TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
854 	return 0;
855 }
856 
857 static void
858 nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
859 		     const struct spdk_nvme_transport_id *trid)
860 {
861 	struct spdk_nvmf_tcp_transport *ttransport;
862 	struct spdk_nvmf_tcp_port *port;
863 
864 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
865 
866 	SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
867 		      trid->traddr, trid->trsvcid);
868 
869 	port = nvmf_tcp_find_port(ttransport, trid);
870 	if (port) {
871 		TAILQ_REMOVE(&ttransport->ports, port, link);
872 		spdk_sock_close(&port->listen_sock);
873 		free(port);
874 	}
875 }
876 
877 static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
878 		enum nvme_tcp_pdu_recv_state state);
879 
880 static void
881 nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvme_tcp_qpair_state state)
882 {
883 	tqpair->state = state;
884 	spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
885 			  tqpair->state);
886 }
887 
888 static void
889 nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
890 {
891 	SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
892 
893 	spdk_trace_record(TRACE_TCP_QP_DISCONNECT, 0, 0, (uintptr_t)tqpair);
894 
895 	if (tqpair->state <= NVME_TCP_QPAIR_STATE_RUNNING) {
896 		nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITING);
897 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
898 		spdk_poller_unregister(&tqpair->timeout_poller);
899 
900 		/* This will end up calling nvmf_tcp_close_qpair */
901 		spdk_nvmf_qpair_disconnect(&tqpair->qpair, NULL, NULL);
902 	}
903 }
904 
905 static void
906 _mgmt_pdu_write_done(void *_tqpair, int err)
907 {
908 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
909 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
910 
911 	if (spdk_unlikely(err != 0)) {
912 		nvmf_tcp_qpair_disconnect(tqpair);
913 		return;
914 	}
915 
916 	assert(pdu->cb_fn != NULL);
917 	pdu->cb_fn(pdu->cb_arg);
918 }
919 
920 static void
921 _req_pdu_write_done(void *req, int err)
922 {
923 	struct spdk_nvmf_tcp_req *tcp_req = req;
924 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
925 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
926 
927 	assert(tcp_req->pdu_in_use);
928 	tcp_req->pdu_in_use = false;
929 
930 	/* If the request is in a completed state, we're waiting for write completion to free it */
931 	if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) {
932 		nvmf_tcp_request_free(tcp_req);
933 		return;
934 	}
935 
936 	if (spdk_unlikely(err != 0)) {
937 		nvmf_tcp_qpair_disconnect(tqpair);
938 		return;
939 	}
940 
941 	assert(pdu->cb_fn != NULL);
942 	pdu->cb_fn(pdu->cb_arg);
943 }
944 
945 static void
946 _pdu_write_done(struct nvme_tcp_pdu *pdu, int err)
947 {
948 	pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err);
949 }
950 
951 static void
952 _tcp_write_pdu(struct nvme_tcp_pdu *pdu)
953 {
954 	uint32_t mapped_length = 0;
955 	ssize_t rc;
956 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
957 
958 	pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
959 			       tqpair->host_hdgst_enable, tqpair->host_ddgst_enable,
960 			       &mapped_length);
961 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
962 	    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
963 		rc = spdk_sock_writev(tqpair->sock, pdu->iov, pdu->sock_req.iovcnt);
964 		if (rc == mapped_length) {
965 			_pdu_write_done(pdu, 0);
966 		} else {
967 			SPDK_ERRLOG("IC_RESP or TERM_REQ could not write to socket.\n");
968 			_pdu_write_done(pdu, -1);
969 		}
970 	} else {
971 		spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
972 	}
973 }
974 
975 static void
976 data_crc32_accel_done(void *cb_arg, int status)
977 {
978 	struct nvme_tcp_pdu *pdu = cb_arg;
979 
980 	if (spdk_unlikely(status)) {
981 		SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
982 		_pdu_write_done(pdu, status);
983 		return;
984 	}
985 
986 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
987 	MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
988 
989 	_tcp_write_pdu(pdu);
990 }
991 
992 static void
993 pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
994 {
995 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
996 	int rc = 0;
997 
998 	/* Data Digest */
999 	if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
1000 		/* Only suport this limitated case for the first step */
1001 		if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
1002 				&& tqpair->group)) {
1003 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
1004 						       pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
1005 			if (spdk_likely(rc == 0)) {
1006 				return;
1007 			}
1008 		} else {
1009 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1010 		}
1011 		data_crc32_accel_done(pdu, rc);
1012 	} else {
1013 		_tcp_write_pdu(pdu);
1014 	}
1015 }
1016 
1017 static void
1018 nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1019 			 struct nvme_tcp_pdu *pdu,
1020 			 nvme_tcp_qpair_xfer_complete_cb cb_fn,
1021 			 void *cb_arg)
1022 {
1023 	int hlen;
1024 	uint32_t crc32c;
1025 
1026 	assert(tqpair->pdu_in_progress != pdu);
1027 
1028 	hlen = pdu->hdr.common.hlen;
1029 	pdu->cb_fn = cb_fn;
1030 	pdu->cb_arg = cb_arg;
1031 
1032 	pdu->iov[0].iov_base = &pdu->hdr.raw;
1033 	pdu->iov[0].iov_len = hlen;
1034 
1035 	/* Header Digest */
1036 	if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) {
1037 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1038 		MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
1039 	}
1040 
1041 	/* Data Digest */
1042 	pdu_data_crc32_compute(pdu);
1043 }
1044 
1045 static void
1046 nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1047 			      nvme_tcp_qpair_xfer_complete_cb cb_fn,
1048 			      void *cb_arg)
1049 {
1050 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1051 
1052 	pdu->sock_req.cb_fn = _mgmt_pdu_write_done;
1053 	pdu->sock_req.cb_arg = tqpair;
1054 
1055 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1056 }
1057 
1058 static void
1059 nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1060 			     struct spdk_nvmf_tcp_req *tcp_req,
1061 			     nvme_tcp_qpair_xfer_complete_cb cb_fn,
1062 			     void *cb_arg)
1063 {
1064 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1065 
1066 	pdu->sock_req.cb_fn = _req_pdu_write_done;
1067 	pdu->sock_req.cb_arg = tcp_req;
1068 
1069 	assert(!tcp_req->pdu_in_use);
1070 	tcp_req->pdu_in_use = true;
1071 
1072 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1073 }
1074 
1075 static int
1076 nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
1077 {
1078 	uint32_t i;
1079 	struct spdk_nvmf_transport_opts *opts;
1080 	uint32_t in_capsule_data_size;
1081 
1082 	opts = &tqpair->qpair.transport->opts;
1083 
1084 	in_capsule_data_size = opts->in_capsule_data_size;
1085 	if (opts->dif_insert_or_strip) {
1086 		in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
1087 	}
1088 
1089 	tqpair->resource_count = opts->max_queue_depth;
1090 
1091 	tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
1092 	if (!tqpair->reqs) {
1093 		SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
1094 		return -1;
1095 	}
1096 
1097 	if (in_capsule_data_size) {
1098 		tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
1099 					    NULL, SPDK_ENV_LCORE_ID_ANY,
1100 					    SPDK_MALLOC_DMA);
1101 		if (!tqpair->bufs) {
1102 			SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
1103 			return -1;
1104 		}
1105 	}
1106 	/* prepare memory space for receiving pdus and tcp_req */
1107 	/* Add additional 1 member, which will be used for mgmt_pdu owned by the tqpair */
1108 	tqpair->pdus = spdk_dma_zmalloc((2 * tqpair->resource_count + 1) * sizeof(*tqpair->pdus), 0x1000,
1109 					NULL);
1110 	if (!tqpair->pdus) {
1111 		SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
1112 		return -1;
1113 	}
1114 
1115 	for (i = 0; i < tqpair->resource_count; i++) {
1116 		struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
1117 
1118 		tcp_req->ttag = i + 1;
1119 		tcp_req->req.qpair = &tqpair->qpair;
1120 
1121 		tcp_req->pdu = &tqpair->pdus[i];
1122 		tcp_req->pdu->qpair = tqpair;
1123 
1124 		/* Set up memory to receive commands */
1125 		if (tqpair->bufs) {
1126 			tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
1127 		}
1128 
1129 		/* Set the cmdn and rsp */
1130 		tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
1131 		tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
1132 
1133 		tcp_req->req.stripped_data = NULL;
1134 
1135 		/* Initialize request state to FREE */
1136 		tcp_req->state = TCP_REQUEST_STATE_FREE;
1137 		TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
1138 		tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
1139 	}
1140 
1141 	for (; i < 2 * tqpair->resource_count; i++) {
1142 		struct nvme_tcp_pdu *pdu = &tqpair->pdus[i];
1143 
1144 		pdu->qpair = tqpair;
1145 		SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1146 	}
1147 
1148 	tqpair->mgmt_pdu = &tqpair->pdus[i];
1149 	tqpair->mgmt_pdu->qpair = tqpair;
1150 	tqpair->pdu_in_progress = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
1151 	SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
1152 
1153 	tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
1154 				 SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1155 
1156 	return 0;
1157 }
1158 
1159 static int
1160 nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
1161 {
1162 	struct spdk_nvmf_tcp_qpair *tqpair;
1163 
1164 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1165 
1166 	SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
1167 
1168 	spdk_trace_record(TRACE_TCP_QP_CREATE, 0, 0, (uintptr_t)tqpair);
1169 
1170 	/* Initialise request state queues of the qpair */
1171 	TAILQ_INIT(&tqpair->tcp_req_free_queue);
1172 	TAILQ_INIT(&tqpair->tcp_req_working_queue);
1173 	SLIST_INIT(&tqpair->tcp_pdu_free_queue);
1174 
1175 	tqpair->host_hdgst_enable = true;
1176 	tqpair->host_ddgst_enable = true;
1177 
1178 	return 0;
1179 }
1180 
1181 static int
1182 nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
1183 {
1184 	int rc;
1185 
1186 	spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, 0, 0, (uintptr_t)tqpair);
1187 
1188 	/* set low water mark */
1189 	rc = spdk_sock_set_recvlowat(tqpair->sock, 1);
1190 	if (rc != 0) {
1191 		SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
1192 		return rc;
1193 	}
1194 
1195 	return 0;
1196 }
1197 
1198 static void
1199 nvmf_tcp_handle_connect(struct spdk_nvmf_transport *transport,
1200 			struct spdk_nvmf_tcp_port *port,
1201 			struct spdk_sock *sock)
1202 {
1203 	struct spdk_nvmf_tcp_qpair *tqpair;
1204 	int rc;
1205 
1206 	SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
1207 		      port->trid->traddr, port->trid->trsvcid);
1208 
1209 	tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
1210 	if (tqpair == NULL) {
1211 		SPDK_ERRLOG("Could not allocate new connection.\n");
1212 		spdk_sock_close(&sock);
1213 		return;
1214 	}
1215 
1216 	tqpair->sock = sock;
1217 	tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
1218 	tqpair->port = port;
1219 	tqpair->qpair.transport = transport;
1220 
1221 	rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
1222 			       sizeof(tqpair->target_addr), &tqpair->target_port,
1223 			       tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
1224 			       &tqpair->initiator_port);
1225 	if (rc < 0) {
1226 		SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
1227 		nvmf_tcp_qpair_destroy(tqpair);
1228 		return;
1229 	}
1230 
1231 	spdk_nvmf_tgt_new_qpair(transport->tgt, &tqpair->qpair);
1232 }
1233 
1234 static uint32_t
1235 nvmf_tcp_port_accept(struct spdk_nvmf_transport *transport, struct spdk_nvmf_tcp_port *port)
1236 {
1237 	struct spdk_sock *sock;
1238 	uint32_t count = 0;
1239 	int i;
1240 
1241 	for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
1242 		sock = spdk_sock_accept(port->listen_sock);
1243 		if (sock == NULL) {
1244 			break;
1245 		}
1246 		count++;
1247 		nvmf_tcp_handle_connect(transport, port, sock);
1248 	}
1249 
1250 	return count;
1251 }
1252 
1253 static int
1254 nvmf_tcp_accept(void *ctx)
1255 {
1256 	struct spdk_nvmf_transport *transport = ctx;
1257 	struct spdk_nvmf_tcp_transport *ttransport;
1258 	struct spdk_nvmf_tcp_port *port;
1259 	uint32_t count = 0;
1260 
1261 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1262 
1263 	TAILQ_FOREACH(port, &ttransport->ports, link) {
1264 		count += nvmf_tcp_port_accept(transport, port);
1265 	}
1266 
1267 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1268 }
1269 
1270 static void
1271 nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
1272 		  struct spdk_nvme_transport_id *trid,
1273 		  struct spdk_nvmf_discovery_log_page_entry *entry)
1274 {
1275 	entry->trtype = SPDK_NVMF_TRTYPE_TCP;
1276 	entry->adrfam = trid->adrfam;
1277 	entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
1278 
1279 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
1280 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
1281 
1282 	entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
1283 }
1284 
1285 static struct spdk_nvmf_tcp_control_msg_list *
1286 nvmf_tcp_control_msg_list_create(uint16_t num_messages)
1287 {
1288 	struct spdk_nvmf_tcp_control_msg_list *list;
1289 	struct spdk_nvmf_tcp_control_msg *msg;
1290 	uint16_t i;
1291 
1292 	list = calloc(1, sizeof(*list));
1293 	if (!list) {
1294 		SPDK_ERRLOG("Failed to allocate memory for list structure\n");
1295 		return NULL;
1296 	}
1297 
1298 	list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
1299 				     NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
1300 	if (!list->msg_buf) {
1301 		SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
1302 		free(list);
1303 		return NULL;
1304 	}
1305 
1306 	STAILQ_INIT(&list->free_msgs);
1307 
1308 	for (i = 0; i < num_messages; i++) {
1309 		msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
1310 				SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1311 		STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
1312 	}
1313 
1314 	return list;
1315 }
1316 
1317 static void
1318 nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
1319 {
1320 	if (!list) {
1321 		return;
1322 	}
1323 
1324 	spdk_free(list->msg_buf);
1325 	free(list);
1326 }
1327 
1328 static struct spdk_nvmf_transport_poll_group *
1329 nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport,
1330 			   struct spdk_nvmf_poll_group *group)
1331 {
1332 	struct spdk_nvmf_tcp_transport	*ttransport;
1333 	struct spdk_nvmf_tcp_poll_group *tgroup;
1334 
1335 	tgroup = calloc(1, sizeof(*tgroup));
1336 	if (!tgroup) {
1337 		return NULL;
1338 	}
1339 
1340 	tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
1341 	if (!tgroup->sock_group) {
1342 		goto cleanup;
1343 	}
1344 
1345 	TAILQ_INIT(&tgroup->qpairs);
1346 	TAILQ_INIT(&tgroup->await_req);
1347 
1348 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1349 
1350 	if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
1351 		SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
1352 			      "Creating control messages list\n", transport->opts.in_capsule_data_size,
1353 			      SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1354 		tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
1355 		if (!tgroup->control_msg_list) {
1356 			goto cleanup;
1357 		}
1358 	}
1359 
1360 	tgroup->accel_channel = spdk_accel_get_io_channel();
1361 	if (spdk_unlikely(!tgroup->accel_channel)) {
1362 		SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
1363 		goto cleanup;
1364 	}
1365 
1366 	TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link);
1367 	if (ttransport->next_pg == NULL) {
1368 		ttransport->next_pg = tgroup;
1369 	}
1370 
1371 	return &tgroup->group;
1372 
1373 cleanup:
1374 	nvmf_tcp_poll_group_destroy(&tgroup->group);
1375 	return NULL;
1376 }
1377 
1378 static struct spdk_nvmf_transport_poll_group *
1379 nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
1380 {
1381 	struct spdk_nvmf_tcp_transport *ttransport;
1382 	struct spdk_nvmf_tcp_poll_group **pg;
1383 	struct spdk_nvmf_tcp_qpair *tqpair;
1384 	struct spdk_sock_group *group = NULL, *hint = NULL;
1385 	int rc;
1386 
1387 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
1388 
1389 	if (TAILQ_EMPTY(&ttransport->poll_groups)) {
1390 		return NULL;
1391 	}
1392 
1393 	pg = &ttransport->next_pg;
1394 	assert(*pg != NULL);
1395 	hint = (*pg)->sock_group;
1396 
1397 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1398 	rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint);
1399 	if (rc != 0) {
1400 		return NULL;
1401 	} else if (group != NULL) {
1402 		/* Optimal poll group was found */
1403 		return spdk_sock_group_get_ctx(group);
1404 	}
1405 
1406 	/* The hint was used for optimal poll group, advance next_pg. */
1407 	*pg = TAILQ_NEXT(*pg, link);
1408 	if (*pg == NULL) {
1409 		*pg = TAILQ_FIRST(&ttransport->poll_groups);
1410 	}
1411 
1412 	return spdk_sock_group_get_ctx(hint);
1413 }
1414 
1415 static void
1416 nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
1417 {
1418 	struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup;
1419 	struct spdk_nvmf_tcp_transport *ttransport;
1420 
1421 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
1422 	spdk_sock_group_close(&tgroup->sock_group);
1423 	if (tgroup->control_msg_list) {
1424 		nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
1425 	}
1426 
1427 	if (tgroup->accel_channel) {
1428 		spdk_put_io_channel(tgroup->accel_channel);
1429 	}
1430 
1431 	ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport);
1432 
1433 	next_tgroup = TAILQ_NEXT(tgroup, link);
1434 	TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link);
1435 	if (next_tgroup == NULL) {
1436 		next_tgroup = TAILQ_FIRST(&ttransport->poll_groups);
1437 	}
1438 	if (ttransport->next_pg == tgroup) {
1439 		ttransport->next_pg = next_tgroup;
1440 	}
1441 
1442 	free(tgroup);
1443 }
1444 
1445 static void
1446 nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1447 			      enum nvme_tcp_pdu_recv_state state)
1448 {
1449 	if (tqpair->recv_state == state) {
1450 		SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
1451 			    tqpair, state);
1452 		return;
1453 	}
1454 
1455 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1456 		/* When leaving the await req state, move the qpair to the main list */
1457 		TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link);
1458 		TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link);
1459 	} else if (state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1460 		TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link);
1461 		TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link);
1462 	}
1463 
1464 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
1465 	tqpair->recv_state = state;
1466 
1467 	spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
1468 			  tqpair->recv_state);
1469 }
1470 
1471 static int
1472 nvmf_tcp_qpair_handle_timeout(void *ctx)
1473 {
1474 	struct spdk_nvmf_tcp_qpair *tqpair = ctx;
1475 
1476 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1477 
1478 	SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
1479 		    SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
1480 
1481 	nvmf_tcp_qpair_disconnect(tqpair);
1482 	return SPDK_POLLER_BUSY;
1483 }
1484 
1485 static void
1486 nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
1487 {
1488 	struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
1489 
1490 	if (!tqpair->timeout_poller) {
1491 		tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
1492 					 SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
1493 	}
1494 }
1495 
1496 static void
1497 nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
1498 			   enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
1499 {
1500 	struct nvme_tcp_pdu *rsp_pdu;
1501 	struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
1502 	uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
1503 	uint32_t copy_len;
1504 
1505 	rsp_pdu = tqpair->mgmt_pdu;
1506 
1507 	c2h_term_req = &rsp_pdu->hdr.term_req;
1508 	c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
1509 	c2h_term_req->common.hlen = c2h_term_req_hdr_len;
1510 	c2h_term_req->fes = fes;
1511 
1512 	if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1513 	    (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1514 		DSET32(&c2h_term_req->fei, error_offset);
1515 	}
1516 
1517 	copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
1518 
1519 	/* Copy the error info into the buffer */
1520 	memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
1521 	nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
1522 
1523 	/* Contain the header of the wrong received pdu */
1524 	c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
1525 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
1526 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair);
1527 }
1528 
1529 static void
1530 nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1531 				struct spdk_nvmf_tcp_qpair *tqpair,
1532 				struct nvme_tcp_pdu *pdu)
1533 {
1534 	struct spdk_nvmf_tcp_req *tcp_req;
1535 
1536 	assert(pdu->psh_valid_bytes == pdu->psh_len);
1537 	assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
1538 
1539 	tcp_req = nvmf_tcp_req_get(tqpair);
1540 	if (!tcp_req) {
1541 		/* Directly return and make the allocation retry again.  This can happen if we're
1542 		 * using asynchronous writes to send the response to the host or when releasing
1543 		 * zero-copy buffers after a response has been sent.  In both cases, the host might
1544 		 * receive the response before we've finished processing the request and is free to
1545 		 * send another one.
1546 		 */
1547 		if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 ||
1548 		    tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) {
1549 			return;
1550 		}
1551 
1552 		/* The host sent more commands than the maximum queue depth. */
1553 		SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
1554 		nvmf_tcp_qpair_disconnect(tqpair);
1555 		return;
1556 	}
1557 
1558 	pdu->req = tcp_req;
1559 	assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
1560 	nvmf_tcp_req_process(ttransport, tcp_req);
1561 }
1562 
1563 static void
1564 nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1565 				    struct spdk_nvmf_tcp_qpair *tqpair,
1566 				    struct nvme_tcp_pdu *pdu)
1567 {
1568 	struct spdk_nvmf_tcp_req *tcp_req;
1569 	struct spdk_nvme_tcp_cmd *capsule_cmd;
1570 	uint32_t error_offset = 0;
1571 	enum spdk_nvme_tcp_term_req_fes fes;
1572 	struct spdk_nvme_cpl *rsp;
1573 
1574 	capsule_cmd = &pdu->hdr.capsule_cmd;
1575 	tcp_req = pdu->req;
1576 	assert(tcp_req != NULL);
1577 
1578 	/* Zero-copy requests don't support ICD */
1579 	assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req));
1580 
1581 	if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
1582 		SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
1583 			    SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
1584 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1585 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
1586 		goto err;
1587 	}
1588 
1589 	rsp = &tcp_req->req.rsp->nvme_cpl;
1590 	if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1591 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1592 	} else {
1593 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1594 	}
1595 
1596 	nvmf_tcp_req_process(ttransport, tcp_req);
1597 
1598 	return;
1599 err:
1600 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1601 }
1602 
1603 static void
1604 nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1605 			     struct spdk_nvmf_tcp_qpair *tqpair,
1606 			     struct nvme_tcp_pdu *pdu)
1607 {
1608 	struct spdk_nvmf_tcp_req *tcp_req;
1609 	uint32_t error_offset = 0;
1610 	enum spdk_nvme_tcp_term_req_fes fes = 0;
1611 	struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
1612 
1613 	h2c_data = &pdu->hdr.h2c_data;
1614 
1615 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
1616 		      tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
1617 
1618 	if (h2c_data->ttag > tqpair->resource_count) {
1619 		SPDK_DEBUGLOG(nvmf_tcp, "ttag %u is larger than allowed %u.\n", h2c_data->ttag,
1620 			      tqpair->resource_count);
1621 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1622 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1623 		goto err;
1624 	}
1625 
1626 	tcp_req = &tqpair->reqs[h2c_data->ttag - 1];
1627 
1628 	if (spdk_unlikely(tcp_req->state != TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER &&
1629 			  tcp_req->state != TCP_REQUEST_STATE_AWAITING_R2T_ACK)) {
1630 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, has error state in %d\n", tcp_req, tqpair,
1631 			      tcp_req->state);
1632 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1633 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1634 		goto err;
1635 	}
1636 
1637 	if (spdk_unlikely(tcp_req->req.cmd->nvme_cmd.cid != h2c_data->cccid)) {
1638 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, expected %u but %u for cccid.\n", tcp_req, tqpair,
1639 			      tcp_req->req.cmd->nvme_cmd.cid, h2c_data->cccid);
1640 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1641 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
1642 		goto err;
1643 	}
1644 
1645 	if (tcp_req->h2c_offset != h2c_data->datao) {
1646 		SPDK_DEBUGLOG(nvmf_tcp,
1647 			      "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
1648 			      tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
1649 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1650 		goto err;
1651 	}
1652 
1653 	if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
1654 		SPDK_DEBUGLOG(nvmf_tcp,
1655 			      "tcp_req(%p), tqpair=%p,  (datao=%u + datal=%u) exceeds requested length=%u\n",
1656 			      tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
1657 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1658 		goto err;
1659 	}
1660 
1661 	pdu->req = tcp_req;
1662 
1663 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
1664 		pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
1665 	}
1666 
1667 	nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
1668 				  h2c_data->datao, h2c_data->datal);
1669 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1670 	return;
1671 
1672 err:
1673 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1674 }
1675 
1676 static void
1677 nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
1678 			       struct spdk_nvmf_tcp_qpair *tqpair)
1679 {
1680 	struct nvme_tcp_pdu *rsp_pdu;
1681 	struct spdk_nvme_tcp_rsp *capsule_resp;
1682 
1683 	SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
1684 
1685 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1686 	assert(rsp_pdu != NULL);
1687 
1688 	capsule_resp = &rsp_pdu->hdr.capsule_resp;
1689 	capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
1690 	capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
1691 	capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
1692 	if (tqpair->host_hdgst_enable) {
1693 		capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1694 		capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1695 	}
1696 
1697 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req);
1698 }
1699 
1700 static void
1701 nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
1702 {
1703 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1704 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
1705 					     struct spdk_nvmf_tcp_qpair, qpair);
1706 
1707 	assert(tqpair != NULL);
1708 
1709 	if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
1710 		SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
1711 			      tcp_req->req.length);
1712 		_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
1713 		return;
1714 	}
1715 
1716 	if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
1717 		nvmf_tcp_request_free(tcp_req);
1718 	} else {
1719 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
1720 	}
1721 }
1722 
1723 static void
1724 nvmf_tcp_r2t_complete(void *cb_arg)
1725 {
1726 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1727 	struct spdk_nvmf_tcp_transport *ttransport;
1728 
1729 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
1730 				      struct spdk_nvmf_tcp_transport, transport);
1731 
1732 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
1733 
1734 	if (tcp_req->h2c_offset == tcp_req->req.length) {
1735 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1736 		nvmf_tcp_req_process(ttransport, tcp_req);
1737 	}
1738 }
1739 
1740 static void
1741 nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1742 		      struct spdk_nvmf_tcp_req *tcp_req)
1743 {
1744 	struct nvme_tcp_pdu *rsp_pdu;
1745 	struct spdk_nvme_tcp_r2t_hdr *r2t;
1746 
1747 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1748 	assert(rsp_pdu != NULL);
1749 
1750 	r2t = &rsp_pdu->hdr.r2t;
1751 	r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
1752 	r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
1753 
1754 	if (tqpair->host_hdgst_enable) {
1755 		r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1756 		r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1757 	}
1758 
1759 	r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
1760 	r2t->ttag = tcp_req->ttag;
1761 	r2t->r2to = tcp_req->h2c_offset;
1762 	r2t->r2tl = tcp_req->req.length;
1763 
1764 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
1765 
1766 	SPDK_DEBUGLOG(nvmf_tcp,
1767 		      "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
1768 		      tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
1769 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req);
1770 }
1771 
1772 static void
1773 nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1774 				 struct spdk_nvmf_tcp_qpair *tqpair,
1775 				 struct nvme_tcp_pdu *pdu)
1776 {
1777 	struct spdk_nvmf_tcp_req *tcp_req;
1778 	struct spdk_nvme_cpl *rsp;
1779 
1780 	tcp_req = pdu->req;
1781 	assert(tcp_req != NULL);
1782 
1783 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1784 
1785 	tcp_req->h2c_offset += pdu->data_len;
1786 
1787 	/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
1788 	 * acknowledged before moving on. */
1789 	if (tcp_req->h2c_offset == tcp_req->req.length &&
1790 	    tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
1791 		/* After receiving all the h2c data, we need to check whether there is
1792 		 * transient transport error */
1793 		rsp = &tcp_req->req.rsp->nvme_cpl;
1794 		if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1795 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1796 		} else {
1797 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1798 		}
1799 		nvmf_tcp_req_process(ttransport, tcp_req);
1800 	}
1801 }
1802 
1803 static void
1804 nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
1805 {
1806 	SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
1807 		    spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
1808 	if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1809 	    (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1810 		SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
1811 			      DGET32(h2c_term_req->fei));
1812 	}
1813 }
1814 
1815 static void
1816 nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1817 				 struct nvme_tcp_pdu *pdu)
1818 {
1819 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1820 	uint32_t error_offset = 0;
1821 	enum spdk_nvme_tcp_term_req_fes fes;
1822 
1823 	if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
1824 		SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
1825 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1826 		error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
1827 		goto end;
1828 	}
1829 
1830 	/* set the data buffer */
1831 	nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
1832 			      h2c_term_req->common.plen - h2c_term_req->common.hlen);
1833 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1834 	return;
1835 end:
1836 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1837 }
1838 
1839 static void
1840 nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1841 				     struct nvme_tcp_pdu *pdu)
1842 {
1843 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1844 
1845 	nvmf_tcp_h2c_term_req_dump(h2c_term_req);
1846 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
1847 }
1848 
1849 static void
1850 _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
1851 {
1852 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
1853 			struct spdk_nvmf_tcp_transport, transport);
1854 
1855 	switch (pdu->hdr.common.pdu_type) {
1856 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
1857 		nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
1858 		break;
1859 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
1860 		nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
1861 		break;
1862 
1863 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
1864 		nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
1865 		break;
1866 
1867 	default:
1868 		/* The code should not go to here */
1869 		SPDK_ERRLOG("ERROR pdu type %d\n", pdu->hdr.common.pdu_type);
1870 		break;
1871 	}
1872 	SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1873 }
1874 
1875 static void
1876 data_crc32_calc_done(void *cb_arg, int status)
1877 {
1878 	struct nvme_tcp_pdu *pdu = cb_arg;
1879 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1880 	struct spdk_nvmf_tcp_req *tcp_req;
1881 	struct spdk_nvme_cpl *rsp;
1882 
1883 	/* async crc32 calculation is failed and use direct calculation to check */
1884 	if (spdk_unlikely(status)) {
1885 		SPDK_ERRLOG("Data digest on tqpair=(%p) with pdu=%p failed to be calculated asynchronously\n",
1886 			    tqpair, pdu);
1887 		pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1888 	}
1889 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
1890 	if (!MATCH_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32)) {
1891 		SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
1892 		tcp_req = pdu->req;
1893 		assert(tcp_req != NULL);
1894 		rsp = &tcp_req->req.rsp->nvme_cpl;
1895 		rsp->status.sc = SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR;
1896 	}
1897 	_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
1898 }
1899 
1900 static void
1901 nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
1902 {
1903 	int rc = 0;
1904 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1905 	tqpair->pdu_in_progress = NULL;
1906 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
1907 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1908 	/* check data digest if need */
1909 	if (pdu->ddgst_enable) {
1910 		if (!pdu->dif_ctx && tqpair->group && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)) {
1911 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
1912 						       pdu->data_iovcnt, 0, data_crc32_calc_done, pdu);
1913 			if (spdk_likely(rc == 0)) {
1914 				return;
1915 			}
1916 		} else {
1917 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1918 		}
1919 		data_crc32_calc_done(pdu, rc);
1920 	} else {
1921 		_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
1922 	}
1923 }
1924 
1925 static void
1926 nvmf_tcp_send_icresp_complete(void *cb_arg)
1927 {
1928 	struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
1929 
1930 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_RUNNING);
1931 }
1932 
1933 static void
1934 nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
1935 		      struct spdk_nvmf_tcp_qpair *tqpair,
1936 		      struct nvme_tcp_pdu *pdu)
1937 {
1938 	struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
1939 	struct nvme_tcp_pdu *rsp_pdu;
1940 	struct spdk_nvme_tcp_ic_resp *ic_resp;
1941 	uint32_t error_offset = 0;
1942 	enum spdk_nvme_tcp_term_req_fes fes;
1943 
1944 	/* Only PFV 0 is defined currently */
1945 	if (ic_req->pfv != 0) {
1946 		SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
1947 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1948 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
1949 		goto end;
1950 	}
1951 
1952 	/* This value is 0’s based value in units of dwords should not be larger than SPDK_NVME_TCP_HPDA_MAX */
1953 	if (ic_req->hpda > SPDK_NVME_TCP_HPDA_MAX) {
1954 		SPDK_ERRLOG("ICReq HPDA out of range 0 to 31, got %u\n", ic_req->hpda);
1955 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1956 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, hpda);
1957 		goto end;
1958 	}
1959 
1960 	/* MAXR2T is 0's based */
1961 	SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
1962 
1963 	tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
1964 	if (!tqpair->host_hdgst_enable) {
1965 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1966 	}
1967 
1968 	tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
1969 	if (!tqpair->host_ddgst_enable) {
1970 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1971 	}
1972 
1973 	tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
1974 	/* Now that we know whether digests are enabled, properly size the receive buffer */
1975 	if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
1976 		SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
1977 			     tqpair,
1978 			     tqpair->recv_buf_size);
1979 		/* Not fatal. */
1980 	}
1981 
1982 	tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
1983 	SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
1984 
1985 	rsp_pdu = tqpair->mgmt_pdu;
1986 
1987 	ic_resp = &rsp_pdu->hdr.ic_resp;
1988 	ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
1989 	ic_resp->common.hlen = ic_resp->common.plen =  sizeof(*ic_resp);
1990 	ic_resp->pfv = 0;
1991 	ic_resp->cpda = tqpair->cpda;
1992 	ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
1993 	ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
1994 	ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
1995 
1996 	SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
1997 	SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
1998 
1999 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INITIALIZING);
2000 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair);
2001 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2002 	return;
2003 end:
2004 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2005 }
2006 
2007 static void
2008 nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2009 			struct spdk_nvmf_tcp_transport *ttransport)
2010 {
2011 	struct nvme_tcp_pdu *pdu;
2012 	int rc;
2013 	uint32_t crc32c, error_offset = 0;
2014 	enum spdk_nvme_tcp_term_req_fes fes;
2015 
2016 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2017 	pdu = tqpair->pdu_in_progress;
2018 
2019 	SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
2020 		      pdu->hdr.common.pdu_type);
2021 	/* check header digest if needed */
2022 	if (pdu->has_hdgst) {
2023 		SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
2024 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
2025 		rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
2026 		if (rc == 0) {
2027 			SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2028 			fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
2029 			nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2030 			return;
2031 
2032 		}
2033 	}
2034 
2035 	switch (pdu->hdr.common.pdu_type) {
2036 	case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
2037 		nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
2038 		break;
2039 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2040 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
2041 		break;
2042 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2043 		nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
2044 		break;
2045 
2046 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2047 		nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
2048 		break;
2049 
2050 	default:
2051 		SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
2052 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2053 		error_offset = 1;
2054 		nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2055 		break;
2056 	}
2057 }
2058 
2059 static void
2060 nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
2061 {
2062 	struct nvme_tcp_pdu *pdu;
2063 	uint32_t error_offset = 0;
2064 	enum spdk_nvme_tcp_term_req_fes fes;
2065 	uint8_t expected_hlen, pdo;
2066 	bool plen_error = false, pdo_error = false;
2067 
2068 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2069 	pdu = tqpair->pdu_in_progress;
2070 	assert(pdu);
2071 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
2072 		if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) {
2073 			SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
2074 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2075 			goto err;
2076 		}
2077 		expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
2078 		if (pdu->hdr.common.plen != expected_hlen) {
2079 			plen_error = true;
2080 		}
2081 	} else {
2082 		if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) {
2083 			SPDK_ERRLOG("The TCP/IP connection is not negotiated\n");
2084 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2085 			goto err;
2086 		}
2087 
2088 		switch (pdu->hdr.common.pdu_type) {
2089 		case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2090 			expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
2091 			pdo = pdu->hdr.common.pdo;
2092 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2093 				pdo_error = true;
2094 				break;
2095 			}
2096 
2097 			if (pdu->hdr.common.plen < expected_hlen) {
2098 				plen_error = true;
2099 			}
2100 			break;
2101 		case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2102 			expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
2103 			pdo = pdu->hdr.common.pdo;
2104 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2105 				pdo_error = true;
2106 				break;
2107 			}
2108 			if (pdu->hdr.common.plen < expected_hlen) {
2109 				plen_error = true;
2110 			}
2111 			break;
2112 
2113 		case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2114 			expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
2115 			if ((pdu->hdr.common.plen <= expected_hlen) ||
2116 			    (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
2117 				plen_error = true;
2118 			}
2119 			break;
2120 
2121 		default:
2122 			SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
2123 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2124 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
2125 			goto err;
2126 		}
2127 	}
2128 
2129 	if (pdu->hdr.common.hlen != expected_hlen) {
2130 		SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
2131 			    pdu->hdr.common.pdu_type,
2132 			    expected_hlen, pdu->hdr.common.hlen, tqpair);
2133 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2134 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
2135 		goto err;
2136 	} else if (pdo_error) {
2137 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2138 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
2139 	} else if (plen_error) {
2140 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2141 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2142 		goto err;
2143 	} else {
2144 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2145 		nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
2146 		return;
2147 	}
2148 err:
2149 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2150 }
2151 
2152 static int
2153 nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
2154 {
2155 	int rc = 0;
2156 	struct nvme_tcp_pdu *pdu;
2157 	enum nvme_tcp_pdu_recv_state prev_state;
2158 	uint32_t data_len;
2159 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2160 			struct spdk_nvmf_tcp_transport, transport);
2161 
2162 	/* The loop here is to allow for several back-to-back state changes. */
2163 	do {
2164 		prev_state = tqpair->recv_state;
2165 		SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
2166 
2167 		pdu = tqpair->pdu_in_progress;
2168 		assert(pdu || tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2169 		switch (tqpair->recv_state) {
2170 		/* Wait for the common header  */
2171 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
2172 			if (!pdu) {
2173 				pdu = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
2174 				if (spdk_unlikely(!pdu)) {
2175 					return NVME_TCP_PDU_IN_PROGRESS;
2176 				}
2177 				SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
2178 				tqpair->pdu_in_progress = pdu;
2179 			}
2180 			memset(pdu, 0, offsetof(struct nvme_tcp_pdu, qpair));
2181 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2182 		/* FALLTHROUGH */
2183 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
2184 			if (spdk_unlikely(tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING)) {
2185 				return rc;
2186 			}
2187 
2188 			rc = nvme_tcp_read_data(tqpair->sock,
2189 						sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
2190 						(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
2191 			if (rc < 0) {
2192 				SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
2193 				return NVME_TCP_PDU_FATAL;
2194 			} else if (rc > 0) {
2195 				pdu->ch_valid_bytes += rc;
2196 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2197 			}
2198 
2199 			if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
2200 				return NVME_TCP_PDU_IN_PROGRESS;
2201 			}
2202 
2203 			/* The command header of this PDU has now been read from the socket. */
2204 			nvmf_tcp_pdu_ch_handle(tqpair);
2205 			break;
2206 		/* Wait for the pdu specific header  */
2207 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
2208 			rc = nvme_tcp_read_data(tqpair->sock,
2209 						pdu->psh_len - pdu->psh_valid_bytes,
2210 						(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
2211 			if (rc < 0) {
2212 				return NVME_TCP_PDU_FATAL;
2213 			} else if (rc > 0) {
2214 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2215 				pdu->psh_valid_bytes += rc;
2216 			}
2217 
2218 			if (pdu->psh_valid_bytes < pdu->psh_len) {
2219 				return NVME_TCP_PDU_IN_PROGRESS;
2220 			}
2221 
2222 			/* All header(ch, psh, head digist) of this PDU has now been read from the socket. */
2223 			nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
2224 			break;
2225 		/* Wait for the req slot */
2226 		case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
2227 			nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
2228 			break;
2229 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
2230 			/* check whether the data is valid, if not we just return */
2231 			if (!pdu->data_len) {
2232 				return NVME_TCP_PDU_IN_PROGRESS;
2233 			}
2234 
2235 			data_len = pdu->data_len;
2236 			/* data digest */
2237 			if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
2238 					  tqpair->host_ddgst_enable)) {
2239 				data_len += SPDK_NVME_TCP_DIGEST_LEN;
2240 				pdu->ddgst_enable = true;
2241 			}
2242 
2243 			rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
2244 			if (rc < 0) {
2245 				return NVME_TCP_PDU_FATAL;
2246 			}
2247 			pdu->rw_offset += rc;
2248 
2249 			if (pdu->rw_offset < data_len) {
2250 				return NVME_TCP_PDU_IN_PROGRESS;
2251 			}
2252 
2253 			/* Generate and insert DIF to whole data block received if DIF is enabled */
2254 			if (spdk_unlikely(pdu->dif_ctx != NULL) &&
2255 			    spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt, 0, data_len,
2256 						     pdu->dif_ctx) != 0) {
2257 				SPDK_ERRLOG("DIF generate failed\n");
2258 				return NVME_TCP_PDU_FATAL;
2259 			}
2260 
2261 			/* All of this PDU has now been read from the socket. */
2262 			nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2263 			break;
2264 		case NVME_TCP_PDU_RECV_STATE_ERROR:
2265 			if (!spdk_sock_is_connected(tqpair->sock)) {
2266 				return NVME_TCP_PDU_FATAL;
2267 			}
2268 			break;
2269 		default:
2270 			SPDK_ERRLOG("The state(%d) is invalid\n", tqpair->recv_state);
2271 			abort();
2272 			break;
2273 		}
2274 	} while (tqpair->recv_state != prev_state);
2275 
2276 	return rc;
2277 }
2278 
2279 static inline void *
2280 nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list)
2281 {
2282 	struct spdk_nvmf_tcp_control_msg *msg;
2283 
2284 	assert(list);
2285 
2286 	msg = STAILQ_FIRST(&list->free_msgs);
2287 	if (!msg) {
2288 		SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
2289 		return NULL;
2290 	}
2291 	STAILQ_REMOVE_HEAD(&list->free_msgs, link);
2292 	return msg;
2293 }
2294 
2295 static inline void
2296 nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
2297 {
2298 	struct spdk_nvmf_tcp_control_msg *msg = _msg;
2299 
2300 	assert(list);
2301 	STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
2302 }
2303 
2304 static int
2305 nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
2306 		       struct spdk_nvmf_transport *transport,
2307 		       struct spdk_nvmf_transport_poll_group *group)
2308 {
2309 	struct spdk_nvmf_request		*req = &tcp_req->req;
2310 	struct spdk_nvme_cmd			*cmd;
2311 	struct spdk_nvme_sgl_descriptor		*sgl;
2312 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2313 	enum spdk_nvme_tcp_term_req_fes		fes;
2314 	struct nvme_tcp_pdu			*pdu;
2315 	struct spdk_nvmf_tcp_qpair		*tqpair;
2316 	uint32_t				length, error_offset = 0;
2317 
2318 	cmd = &req->cmd->nvme_cmd;
2319 	sgl = &cmd->dptr.sgl1;
2320 
2321 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
2322 	    sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
2323 		/* get request length from sgl */
2324 		length = sgl->unkeyed.length;
2325 		if (spdk_unlikely(length > transport->opts.max_io_size)) {
2326 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
2327 				    length, transport->opts.max_io_size);
2328 			fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2329 			goto fatal_err;
2330 		}
2331 
2332 		/* fill request length and populate iovs */
2333 		req->length = length;
2334 
2335 		SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
2336 
2337 		if (spdk_unlikely(req->dif_enabled)) {
2338 			req->dif.orig_length = length;
2339 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2340 			req->dif.elba_length = length;
2341 		}
2342 
2343 		if (nvmf_ctrlr_use_zcopy(req)) {
2344 			SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req);
2345 			req->data_from_pool = false;
2346 			return 0;
2347 		}
2348 
2349 		if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
2350 			/* No available buffers. Queue this request up. */
2351 			SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
2352 				      tcp_req);
2353 			return 0;
2354 		}
2355 
2356 		/* backward compatible */
2357 		req->data = req->iov[0].iov_base;
2358 
2359 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
2360 			      tcp_req, req->iovcnt, req->data);
2361 
2362 		return 0;
2363 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
2364 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
2365 		uint64_t offset = sgl->address;
2366 		uint32_t max_len = transport->opts.in_capsule_data_size;
2367 
2368 		assert(tcp_req->has_in_capsule_data);
2369 		/* Capsule Cmd with In-capsule Data should get data length from pdu header */
2370 		tqpair = tcp_req->pdu->qpair;
2371 		/* receiving pdu is not same with the pdu in tcp_req */
2372 		pdu = tqpair->pdu_in_progress;
2373 		length = pdu->hdr.common.plen - pdu->psh_len - sizeof(struct spdk_nvme_tcp_common_pdu_hdr);
2374 		if (tqpair->host_ddgst_enable) {
2375 			length -= SPDK_NVME_TCP_DIGEST_LEN;
2376 		}
2377 		/* This error is not defined in NVMe/TCP spec, take this error as fatal error */
2378 		if (spdk_unlikely(length != sgl->unkeyed.length)) {
2379 			SPDK_ERRLOG("In-Capsule Data length 0x%x is not equal to SGL data length 0x%x\n",
2380 				    length, sgl->unkeyed.length);
2381 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2382 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2383 			goto fatal_err;
2384 		}
2385 
2386 		SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
2387 			      offset, length);
2388 
2389 		/* The NVMe/TCP transport does not use ICDOFF to control the in-capsule data offset. ICDOFF should be '0' */
2390 		if (spdk_unlikely(offset != 0)) {
2391 			/* Not defined fatal error in NVMe/TCP spec, handle this error as a fatal error */
2392 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " should be ZERO in NVMe/TCP\n", offset);
2393 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2394 			error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.address);
2395 			goto fatal_err;
2396 		}
2397 
2398 		if (spdk_unlikely(length > max_len)) {
2399 			/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
2400 			if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
2401 			    (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
2402 
2403 				/* Get a buffer from dedicated list */
2404 				SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
2405 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2406 				assert(tgroup->control_msg_list);
2407 				req->data = nvmf_tcp_control_msg_get(tgroup->control_msg_list);
2408 				if (!req->data) {
2409 					/* No available buffers. Queue this request up. */
2410 					SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
2411 					return 0;
2412 				}
2413 			} else {
2414 				SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
2415 					    length, max_len);
2416 				fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2417 				goto fatal_err;
2418 			}
2419 		} else {
2420 			req->data = tcp_req->buf;
2421 		}
2422 
2423 		req->length = length;
2424 		req->data_from_pool = false;
2425 
2426 		if (spdk_unlikely(req->dif_enabled)) {
2427 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2428 			req->dif.elba_length = length;
2429 		}
2430 
2431 		req->iov[0].iov_base = req->data;
2432 		req->iov[0].iov_len = length;
2433 		req->iovcnt = 1;
2434 
2435 		return 0;
2436 	}
2437 	/* If we want to handle the problem here, then we can't skip the following data segment.
2438 	 * Because this function runs before reading data part, now handle all errors as fatal errors. */
2439 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2440 		    sgl->generic.type, sgl->generic.subtype);
2441 	fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2442 	error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.generic);
2443 fatal_err:
2444 	nvmf_tcp_send_c2h_term_req(tcp_req->pdu->qpair, tcp_req->pdu, fes, error_offset);
2445 	return -1;
2446 }
2447 
2448 static inline enum spdk_nvme_media_error_status_code
2449 nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
2450 	enum spdk_nvme_media_error_status_code result;
2451 
2452 	switch (err_type)
2453 	{
2454 	case SPDK_DIF_REFTAG_ERROR:
2455 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
2456 		break;
2457 	case SPDK_DIF_APPTAG_ERROR:
2458 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
2459 		break;
2460 	case SPDK_DIF_GUARD_ERROR:
2461 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
2462 		break;
2463 	default:
2464 		SPDK_UNREACHABLE();
2465 		break;
2466 	}
2467 
2468 	return result;
2469 }
2470 
2471 static void
2472 _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2473 			struct spdk_nvmf_tcp_req *tcp_req)
2474 {
2475 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
2476 				tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
2477 	struct nvme_tcp_pdu *rsp_pdu;
2478 	struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
2479 	uint32_t plen, pdo, alignment;
2480 	int rc;
2481 
2482 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2483 
2484 	rsp_pdu = tcp_req->pdu;
2485 	assert(rsp_pdu != NULL);
2486 
2487 	c2h_data = &rsp_pdu->hdr.c2h_data;
2488 	c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
2489 	plen = c2h_data->common.hlen = sizeof(*c2h_data);
2490 
2491 	if (tqpair->host_hdgst_enable) {
2492 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2493 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2494 	}
2495 
2496 	/* set the psh */
2497 	c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2498 	c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
2499 	c2h_data->datao = tcp_req->pdu->rw_offset;
2500 
2501 	/* set the padding */
2502 	rsp_pdu->padding_len = 0;
2503 	pdo = plen;
2504 	if (tqpair->cpda) {
2505 		alignment = (tqpair->cpda + 1) << 2;
2506 		if (plen % alignment != 0) {
2507 			pdo = (plen + alignment) / alignment * alignment;
2508 			rsp_pdu->padding_len = pdo - plen;
2509 			plen = pdo;
2510 		}
2511 	}
2512 
2513 	c2h_data->common.pdo = pdo;
2514 	plen += c2h_data->datal;
2515 	if (tqpair->host_ddgst_enable) {
2516 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
2517 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2518 	}
2519 
2520 	c2h_data->common.plen = plen;
2521 
2522 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2523 		rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2524 	}
2525 
2526 	nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2527 				  c2h_data->datao, c2h_data->datal);
2528 
2529 
2530 	c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
2531 	/* Need to send the capsule response if response is not all 0 */
2532 	if (ttransport->tcp_opts.c2h_success &&
2533 	    tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
2534 		c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
2535 	}
2536 
2537 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2538 		struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
2539 		struct spdk_dif_error err_blk = {};
2540 		uint32_t mapped_length = 0;
2541 		uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
2542 		uint32_t ddgst_len = 0;
2543 
2544 		if (tqpair->host_ddgst_enable) {
2545 			/* Data digest consumes additional iov entry */
2546 			available_iovs--;
2547 			/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
2548 			ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
2549 			c2h_data->common.plen -= ddgst_len;
2550 		}
2551 		/* Temp call to estimate if data can be described by limited number of iovs.
2552 		 * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
2553 		nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
2554 				    false, &mapped_length);
2555 
2556 		if (mapped_length != c2h_data->common.plen) {
2557 			c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
2558 			SPDK_DEBUGLOG(nvmf_tcp,
2559 				      "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
2560 				      c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
2561 			c2h_data->common.plen = mapped_length;
2562 
2563 			/* Rebuild pdu->data_iov since data length is changed */
2564 			nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
2565 						  c2h_data->datal);
2566 
2567 			c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
2568 						    SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
2569 		}
2570 
2571 		c2h_data->common.plen += ddgst_len;
2572 
2573 		assert(rsp_pdu->rw_offset <= tcp_req->req.length);
2574 
2575 		rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
2576 					    0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
2577 		if (rc != 0) {
2578 			SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
2579 				    err_blk.err_type, err_blk.err_offset);
2580 			rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2581 			rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
2582 			nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2583 			return;
2584 		}
2585 	}
2586 
2587 	rsp_pdu->rw_offset += c2h_data->datal;
2588 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
2589 }
2590 
2591 static void
2592 nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2593 		       struct spdk_nvmf_tcp_req *tcp_req)
2594 {
2595 	nvmf_tcp_req_pdu_init(tcp_req);
2596 	_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2597 }
2598 
2599 static int
2600 request_transfer_out(struct spdk_nvmf_request *req)
2601 {
2602 	struct spdk_nvmf_tcp_req	*tcp_req;
2603 	struct spdk_nvmf_qpair		*qpair;
2604 	struct spdk_nvmf_tcp_qpair	*tqpair;
2605 	struct spdk_nvme_cpl		*rsp;
2606 
2607 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2608 
2609 	qpair = req->qpair;
2610 	rsp = &req->rsp->nvme_cpl;
2611 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
2612 
2613 	/* Advance our sq_head pointer */
2614 	if (qpair->sq_head == qpair->sq_head_max) {
2615 		qpair->sq_head = 0;
2616 	} else {
2617 		qpair->sq_head++;
2618 	}
2619 	rsp->sqhd = qpair->sq_head;
2620 
2621 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2622 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
2623 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2624 		nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2625 	} else {
2626 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2627 	}
2628 
2629 	return 0;
2630 }
2631 
2632 static void
2633 nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport,
2634 			      struct spdk_nvmf_tcp_qpair *tqpair,
2635 			      struct spdk_nvmf_tcp_req *tcp_req)
2636 {
2637 	enum spdk_nvme_cmd_fuse last, next;
2638 
2639 	last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2640 	next = tcp_req->cmd.fuse;
2641 
2642 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2643 
2644 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2645 		return;
2646 	}
2647 
2648 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2649 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2650 			/* This is a valid pair of fused commands.  Point them at each other
2651 			 * so they can be submitted consecutively once ready to be executed.
2652 			 */
2653 			tqpair->fused_first->fused_pair = tcp_req;
2654 			tcp_req->fused_pair = tqpair->fused_first;
2655 			tqpair->fused_first = NULL;
2656 			return;
2657 		} else {
2658 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2659 			tqpair->fused_first->fused_failed = true;
2660 
2661 			/*
2662 			 * If the last req is in READY_TO_EXECUTE state, then call
2663 			 * nvmf_tcp_req_process(), otherwise nothing else will kick it.
2664 			 */
2665 			if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2666 				nvmf_tcp_req_process(ttransport, tqpair->fused_first);
2667 			}
2668 
2669 			tqpair->fused_first = NULL;
2670 		}
2671 	}
2672 
2673 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2674 		/* Set tqpair->fused_first here so that we know to check that the next request
2675 		 * is a SECOND (and to fail this one if it isn't).
2676 		 */
2677 		tqpair->fused_first = tcp_req;
2678 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2679 		/* Mark this req failed since it is a SECOND and the last one was not a FIRST. */
2680 		tcp_req->fused_failed = true;
2681 	}
2682 }
2683 
2684 static bool
2685 nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
2686 		     struct spdk_nvmf_tcp_req *tcp_req)
2687 {
2688 	struct spdk_nvmf_tcp_qpair		*tqpair;
2689 	uint32_t				plen;
2690 	struct nvme_tcp_pdu			*pdu;
2691 	enum spdk_nvmf_tcp_req_state		prev_state;
2692 	bool					progress = false;
2693 	struct spdk_nvmf_transport		*transport = &ttransport->transport;
2694 	struct spdk_nvmf_transport_poll_group	*group;
2695 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2696 
2697 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2698 	group = &tqpair->group->group;
2699 	assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
2700 
2701 	/* If the qpair is not active, we need to abort the outstanding requests. */
2702 	if (tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2703 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
2704 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2705 		}
2706 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
2707 	}
2708 
2709 	/* The loop here is to allow for several back-to-back state changes. */
2710 	do {
2711 		prev_state = tcp_req->state;
2712 
2713 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
2714 			      tqpair);
2715 
2716 		switch (tcp_req->state) {
2717 		case TCP_REQUEST_STATE_FREE:
2718 			/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
2719 			 * to escape this state. */
2720 			break;
2721 		case TCP_REQUEST_STATE_NEW:
2722 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.qid, 0, (uintptr_t)tcp_req, tqpair);
2723 
2724 			/* copy the cmd from the receive pdu */
2725 			tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
2726 
2727 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
2728 				tcp_req->req.dif_enabled = true;
2729 				tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
2730 			}
2731 
2732 			nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req);
2733 
2734 			/* The next state transition depends on the data transfer needs of this request. */
2735 			tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
2736 
2737 			if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2738 				tcp_req->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2739 				tcp_req->req.rsp->nvme_cpl.status.sc  = SPDK_NVME_SC_INVALID_OPCODE;
2740 				tcp_req->req.rsp->nvme_cpl.cid = tcp_req->req.cmd->nvme_cmd.cid;
2741 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2742 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2743 				SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
2744 				break;
2745 			}
2746 
2747 			/* If no data to transfer, ready to execute. */
2748 			if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
2749 				/* Reset the tqpair receiving pdu state */
2750 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2751 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2752 				break;
2753 			}
2754 
2755 			pdu = tqpair->pdu_in_progress;
2756 			plen = pdu->hdr.common.hlen;
2757 			if (tqpair->host_hdgst_enable) {
2758 				plen += SPDK_NVME_TCP_DIGEST_LEN;
2759 			}
2760 			if (pdu->hdr.common.plen != plen) {
2761 				tcp_req->has_in_capsule_data = true;
2762 			} else {
2763 				/* Data is transmitted by C2H PDUs */
2764 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2765 			}
2766 
2767 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
2768 			STAILQ_INSERT_TAIL(&group->pending_buf_queue, &tcp_req->req, buf_link);
2769 			break;
2770 		case TCP_REQUEST_STATE_NEED_BUFFER:
2771 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2772 					  tqpair);
2773 
2774 			assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
2775 
2776 			if (!tcp_req->has_in_capsule_data && (&tcp_req->req != STAILQ_FIRST(&group->pending_buf_queue))) {
2777 				SPDK_DEBUGLOG(nvmf_tcp,
2778 					      "Not the first element to wait for the buf for tcp_req(%p) on tqpair=%p\n",
2779 					      tcp_req, tqpair);
2780 				/* This request needs to wait in line to obtain a buffer */
2781 				break;
2782 			}
2783 
2784 			/* Try to get a data buffer */
2785 			if (nvmf_tcp_req_parse_sgl(tcp_req, transport, group) < 0) {
2786 				break;
2787 			}
2788 
2789 			/* Get a zcopy buffer if the request can be serviced through zcopy */
2790 			if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2791 				if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2792 					assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2793 					tcp_req->req.length = tcp_req->req.dif.elba_length;
2794 				}
2795 
2796 				STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2797 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START);
2798 				spdk_nvmf_request_zcopy_start(&tcp_req->req);
2799 				break;
2800 			}
2801 
2802 			if (!tcp_req->req.data) {
2803 				SPDK_DEBUGLOG(nvmf_tcp, "No buffer allocated for tcp_req(%p) on tqpair(%p\n)",
2804 					      tcp_req, tqpair);
2805 				/* No buffers available. */
2806 				break;
2807 			}
2808 
2809 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2810 
2811 			/* If data is transferring from host to controller, we need to do a transfer from the host. */
2812 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2813 				if (tcp_req->req.data_from_pool) {
2814 					SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2815 					nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2816 				} else {
2817 					struct nvme_tcp_pdu *pdu;
2818 
2819 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
2820 
2821 					pdu = tqpair->pdu_in_progress;
2822 					SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
2823 						      tqpair);
2824 					/* No need to send r2t, contained in the capsuled data */
2825 					nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2826 								  0, tcp_req->req.length);
2827 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2828 				}
2829 				break;
2830 			}
2831 
2832 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2833 			break;
2834 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
2835 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.qid, 0,
2836 					  (uintptr_t)tcp_req, tqpair);
2837 			/* Some external code must kick a request into  TCP_REQUEST_STATE_ZCOPY_START_COMPLETED
2838 			 * to escape this state. */
2839 			break;
2840 		case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
2841 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.qid, 0,
2842 					  (uintptr_t)tcp_req, tqpair);
2843 			if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) {
2844 				SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n",
2845 					      tcp_req, tqpair);
2846 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2847 				break;
2848 			}
2849 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2850 				SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2851 				nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2852 			} else {
2853 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
2854 			}
2855 			break;
2856 		case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
2857 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2858 					  tqpair);
2859 			/* The R2T completion or the h2c data incoming will kick it out of this state. */
2860 			break;
2861 		case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
2862 
2863 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.qid, 0,
2864 					  (uintptr_t)tcp_req, tqpair);
2865 			/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
2866 			 * to escape this state. */
2867 			break;
2868 		case TCP_REQUEST_STATE_READY_TO_EXECUTE:
2869 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.qid, 0,
2870 					  (uintptr_t)tcp_req, tqpair);
2871 
2872 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2873 				assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2874 				tcp_req->req.length = tcp_req->req.dif.elba_length;
2875 			}
2876 
2877 			if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
2878 				if (tcp_req->fused_failed) {
2879 					/* This request failed FUSED semantics.  Fail it immediately, without
2880 					 * even sending it to the target layer.
2881 					 */
2882 					tcp_req->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2883 					tcp_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED;
2884 					tcp_req->req.rsp->nvme_cpl.cid = tcp_req->req.cmd->nvme_cmd.cid;
2885 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2886 					break;
2887 				}
2888 
2889 				if (tcp_req->fused_pair == NULL ||
2890 				    tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2891 					/* This request is ready to execute, but either we don't know yet if it's
2892 					 * valid - i.e. this is a FIRST but we haven't received the next request yet),
2893 					 * or the other request of this fused pair isn't ready to execute. So
2894 					 * break here and this request will get processed later either when the
2895 					 * other request is ready or we find that this request isn't valid.
2896 					 */
2897 					break;
2898 				}
2899 			}
2900 
2901 			if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2902 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
2903 				/* If we get to this point, and this request is a fused command, we know that
2904 				 * it is part of a valid sequence (FIRST followed by a SECOND) and that both
2905 				 * requests are READY_TO_EXECUTE.  So call spdk_nvmf_request_exec() both on this
2906 				 * request, and the other request of the fused pair, in the correct order.
2907 				 * Also clear the ->fused_pair pointers on both requests, since after this point
2908 				 * we no longer need to maintain the relationship between these two requests.
2909 				 */
2910 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
2911 					assert(tcp_req->fused_pair != NULL);
2912 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
2913 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
2914 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
2915 					tcp_req->fused_pair->fused_pair = NULL;
2916 					tcp_req->fused_pair = NULL;
2917 				}
2918 				spdk_nvmf_request_exec(&tcp_req->req);
2919 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
2920 					assert(tcp_req->fused_pair != NULL);
2921 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
2922 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
2923 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
2924 					tcp_req->fused_pair->fused_pair = NULL;
2925 					tcp_req->fused_pair = NULL;
2926 				}
2927 			} else {
2928 				/* For zero-copy, only requests with data coming from host to the
2929 				 * controller can end up here. */
2930 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
2931 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT);
2932 				spdk_nvmf_request_zcopy_end(&tcp_req->req, true);
2933 			}
2934 
2935 			break;
2936 		case TCP_REQUEST_STATE_EXECUTING:
2937 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2938 					  tqpair);
2939 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
2940 			 * to escape this state. */
2941 			break;
2942 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
2943 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.qid, 0,
2944 					  (uintptr_t)tcp_req, tqpair);
2945 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
2946 			 * to escape this state. */
2947 			break;
2948 		case TCP_REQUEST_STATE_EXECUTED:
2949 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2950 					  tqpair);
2951 
2952 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2953 				tcp_req->req.length = tcp_req->req.dif.orig_length;
2954 			}
2955 
2956 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2957 			break;
2958 		case TCP_REQUEST_STATE_READY_TO_COMPLETE:
2959 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.qid, 0,
2960 					  (uintptr_t)tcp_req, tqpair);
2961 			if (request_transfer_out(&tcp_req->req) != 0) {
2962 				assert(0); /* No good way to handle this currently */
2963 			}
2964 			break;
2965 		case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
2966 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.qid, 0,
2967 					  (uintptr_t)tcp_req, tqpair);
2968 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
2969 			 * to escape this state. */
2970 			break;
2971 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
2972 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.qid, 0,
2973 					  (uintptr_t)tcp_req, tqpair);
2974 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
2975 			 * to escape this state. */
2976 			break;
2977 		case TCP_REQUEST_STATE_COMPLETED:
2978 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2979 					  tqpair);
2980 			/* If there's an outstanding PDU sent to the host, the request is completed
2981 			 * due to the qpair being disconnected.  We must delay the completion until
2982 			 * that write is done to avoid freeing the request twice. */
2983 			if (spdk_unlikely(tcp_req->pdu_in_use)) {
2984 				SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding "
2985 					      "write on req=%p\n", tcp_req);
2986 				/* This can only happen for zcopy requests */
2987 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
2988 				assert(tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
2989 				break;
2990 			}
2991 
2992 			if (tcp_req->req.data_from_pool) {
2993 				spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
2994 			} else if (spdk_unlikely(tcp_req->has_in_capsule_data &&
2995 						 (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
2996 						  tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
2997 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2998 				assert(tgroup->control_msg_list);
2999 				SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
3000 				nvmf_tcp_control_msg_put(tgroup->control_msg_list, tcp_req->req.data);
3001 			} else if (tcp_req->req.zcopy_bdev_io != NULL) {
3002 				/* If the request has an unreleased zcopy bdev_io, it's either a
3003 				 * read, a failed write, or the qpair is being disconnected */
3004 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3005 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
3006 				       spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) ||
3007 				       tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
3008 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE);
3009 				spdk_nvmf_request_zcopy_end(&tcp_req->req, false);
3010 				break;
3011 			}
3012 			tcp_req->req.length = 0;
3013 			tcp_req->req.iovcnt = 0;
3014 			tcp_req->req.data = NULL;
3015 			tcp_req->fused_failed = false;
3016 			if (tcp_req->fused_pair) {
3017 				/* This req was part of a valid fused pair, but failed before it got to
3018 				 * READ_TO_EXECUTE state.  This means we need to fail the other request
3019 				 * in the pair, because it is no longer part of a valid pair.  If the pair
3020 				 * already reached READY_TO_EXECUTE state, we need to kick it.
3021 				 */
3022 				tcp_req->fused_pair->fused_failed = true;
3023 				if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3024 					nvmf_tcp_req_process(ttransport, tcp_req->fused_pair);
3025 				}
3026 				tcp_req->fused_pair = NULL;
3027 			}
3028 
3029 			nvmf_tcp_req_put(tqpair, tcp_req);
3030 			break;
3031 		case TCP_REQUEST_NUM_STATES:
3032 		default:
3033 			assert(0);
3034 			break;
3035 		}
3036 
3037 		if (tcp_req->state != prev_state) {
3038 			progress = true;
3039 		}
3040 	} while (tcp_req->state != prev_state);
3041 
3042 	return progress;
3043 }
3044 
3045 static void
3046 nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
3047 {
3048 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
3049 	int rc;
3050 
3051 	assert(tqpair != NULL);
3052 	rc = nvmf_tcp_sock_process(tqpair);
3053 
3054 	/* If there was a new socket error, disconnect */
3055 	if (rc < 0) {
3056 		nvmf_tcp_qpair_disconnect(tqpair);
3057 	}
3058 }
3059 
3060 static int
3061 nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3062 			struct spdk_nvmf_qpair *qpair)
3063 {
3064 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3065 	struct spdk_nvmf_tcp_qpair	*tqpair;
3066 	int				rc;
3067 
3068 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3069 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3070 
3071 	rc =  nvmf_tcp_qpair_sock_init(tqpair);
3072 	if (rc != 0) {
3073 		SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
3074 		return -1;
3075 	}
3076 
3077 	rc = nvmf_tcp_qpair_init(&tqpair->qpair);
3078 	if (rc < 0) {
3079 		SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
3080 		return -1;
3081 	}
3082 
3083 	rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
3084 	if (rc < 0) {
3085 		SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
3086 		return -1;
3087 	}
3088 
3089 	rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
3090 				      nvmf_tcp_sock_cb, tqpair);
3091 	if (rc != 0) {
3092 		SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
3093 			    spdk_strerror(errno), errno);
3094 		return -1;
3095 	}
3096 
3097 	tqpair->group = tgroup;
3098 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INVALID);
3099 	TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
3100 
3101 	return 0;
3102 }
3103 
3104 static int
3105 nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3106 			   struct spdk_nvmf_qpair *qpair)
3107 {
3108 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3109 	struct spdk_nvmf_tcp_qpair		*tqpair;
3110 	int				rc;
3111 
3112 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3113 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3114 
3115 	assert(tqpair->group == tgroup);
3116 
3117 	SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
3118 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
3119 		TAILQ_REMOVE(&tgroup->await_req, tqpair, link);
3120 	} else {
3121 		TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
3122 	}
3123 
3124 	rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
3125 	if (rc != 0) {
3126 		SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
3127 			    spdk_strerror(errno), errno);
3128 	}
3129 
3130 	return rc;
3131 }
3132 
3133 static int
3134 nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
3135 {
3136 	struct spdk_nvmf_tcp_transport *ttransport;
3137 	struct spdk_nvmf_tcp_req *tcp_req;
3138 
3139 	ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3140 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3141 
3142 	switch (tcp_req->state) {
3143 	case TCP_REQUEST_STATE_EXECUTING:
3144 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3145 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3146 		break;
3147 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3148 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED);
3149 		break;
3150 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3151 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3152 		break;
3153 	default:
3154 		assert(0 && "Unexpected request state");
3155 		break;
3156 	}
3157 
3158 	nvmf_tcp_req_process(ttransport, tcp_req);
3159 
3160 	return 0;
3161 }
3162 
3163 static void
3164 nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
3165 		     spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3166 {
3167 	struct spdk_nvmf_tcp_qpair *tqpair;
3168 
3169 	SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
3170 
3171 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3172 
3173 	assert(tqpair->fini_cb_fn == NULL);
3174 	tqpair->fini_cb_fn = cb_fn;
3175 	tqpair->fini_cb_arg = cb_arg;
3176 
3177 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITED);
3178 	nvmf_tcp_qpair_destroy(tqpair);
3179 }
3180 
3181 static int
3182 nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3183 {
3184 	struct spdk_nvmf_tcp_poll_group *tgroup;
3185 	int rc;
3186 	struct spdk_nvmf_request *req, *req_tmp;
3187 	struct spdk_nvmf_tcp_req *tcp_req;
3188 	struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp;
3189 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(group->transport,
3190 			struct spdk_nvmf_tcp_transport, transport);
3191 
3192 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3193 
3194 	if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) {
3195 		return 0;
3196 	}
3197 
3198 	STAILQ_FOREACH_SAFE(req, &group->pending_buf_queue, buf_link, req_tmp) {
3199 		tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3200 		if (nvmf_tcp_req_process(ttransport, tcp_req) == false) {
3201 			break;
3202 		}
3203 	}
3204 
3205 	rc = spdk_sock_group_poll(tgroup->sock_group);
3206 	if (rc < 0) {
3207 		SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
3208 	}
3209 
3210 	TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) {
3211 		nvmf_tcp_sock_process(tqpair);
3212 	}
3213 
3214 	return rc;
3215 }
3216 
3217 static int
3218 nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
3219 			struct spdk_nvme_transport_id *trid, bool peer)
3220 {
3221 	struct spdk_nvmf_tcp_qpair     *tqpair;
3222 	uint16_t			port;
3223 
3224 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3225 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
3226 
3227 	if (peer) {
3228 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
3229 		port = tqpair->initiator_port;
3230 	} else {
3231 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
3232 		port = tqpair->target_port;
3233 	}
3234 
3235 	if (spdk_sock_is_ipv4(tqpair->sock)) {
3236 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3237 	} else if (spdk_sock_is_ipv6(tqpair->sock)) {
3238 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3239 	} else {
3240 		return -1;
3241 	}
3242 
3243 	snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
3244 	return 0;
3245 }
3246 
3247 static int
3248 nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3249 			      struct spdk_nvme_transport_id *trid)
3250 {
3251 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3252 }
3253 
3254 static int
3255 nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3256 			     struct spdk_nvme_transport_id *trid)
3257 {
3258 	return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
3259 }
3260 
3261 static int
3262 nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3263 			       struct spdk_nvme_transport_id *trid)
3264 {
3265 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3266 }
3267 
3268 static void
3269 nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
3270 			      struct spdk_nvmf_tcp_req *tcp_req_to_abort)
3271 {
3272 	tcp_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
3273 	tcp_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
3274 	tcp_req_to_abort->req.rsp->nvme_cpl.cid = tcp_req_to_abort->req.cmd->nvme_cmd.cid;
3275 
3276 	nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3277 
3278 	req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
3279 }
3280 
3281 static int
3282 _nvmf_tcp_qpair_abort_request(void *ctx)
3283 {
3284 	struct spdk_nvmf_request *req = ctx;
3285 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
3286 			struct spdk_nvmf_tcp_req, req);
3287 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
3288 					     struct spdk_nvmf_tcp_qpair, qpair);
3289 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
3290 			struct spdk_nvmf_tcp_transport, transport);
3291 	int rc;
3292 
3293 	spdk_poller_unregister(&req->poller);
3294 
3295 	switch (tcp_req_to_abort->state) {
3296 	case TCP_REQUEST_STATE_EXECUTING:
3297 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3298 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3299 		rc = nvmf_ctrlr_abort_request(req);
3300 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
3301 			return SPDK_POLLER_BUSY;
3302 		}
3303 		break;
3304 
3305 	case TCP_REQUEST_STATE_NEED_BUFFER:
3306 		STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue,
3307 			      &tcp_req_to_abort->req, spdk_nvmf_request, buf_link);
3308 
3309 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3310 		nvmf_tcp_req_process(ttransport, tcp_req_to_abort);
3311 		break;
3312 
3313 	case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3314 	case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
3315 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3316 		break;
3317 
3318 	case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3319 		if (spdk_get_ticks() < req->timeout_tsc) {
3320 			req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
3321 			return SPDK_POLLER_BUSY;
3322 		}
3323 		break;
3324 
3325 	default:
3326 		break;
3327 	}
3328 
3329 	spdk_nvmf_request_complete(req);
3330 	return SPDK_POLLER_BUSY;
3331 }
3332 
3333 static void
3334 nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
3335 			     struct spdk_nvmf_request *req)
3336 {
3337 	struct spdk_nvmf_tcp_qpair *tqpair;
3338 	struct spdk_nvmf_tcp_transport *ttransport;
3339 	struct spdk_nvmf_transport *transport;
3340 	uint16_t cid;
3341 	uint32_t i;
3342 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
3343 
3344 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3345 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3346 	transport = &ttransport->transport;
3347 
3348 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
3349 
3350 	for (i = 0; i < tqpair->resource_count; i++) {
3351 		if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
3352 		    tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
3353 			tcp_req_to_abort = &tqpair->reqs[i];
3354 			break;
3355 		}
3356 	}
3357 
3358 	spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, qpair->qid, 0, (uintptr_t)req, tqpair);
3359 
3360 	if (tcp_req_to_abort == NULL) {
3361 		spdk_nvmf_request_complete(req);
3362 		return;
3363 	}
3364 
3365 	req->req_to_abort = &tcp_req_to_abort->req;
3366 	req->timeout_tsc = spdk_get_ticks() +
3367 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
3368 	req->poller = NULL;
3369 
3370 	_nvmf_tcp_qpair_abort_request(req);
3371 }
3372 
3373 static void
3374 nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
3375 {
3376 	opts->max_queue_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
3377 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
3378 	opts->in_capsule_data_size =	SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
3379 	opts->max_io_size =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
3380 	opts->io_unit_size =		SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
3381 	opts->max_aq_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
3382 	opts->num_shared_buffers =	SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
3383 	opts->buf_cache_size =		SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
3384 	opts->dif_insert_or_strip =	SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
3385 	opts->abort_timeout_sec =	SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
3386 	opts->transport_specific =      NULL;
3387 }
3388 
3389 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
3390 	.name = "TCP",
3391 	.type = SPDK_NVME_TRANSPORT_TCP,
3392 	.opts_init = nvmf_tcp_opts_init,
3393 	.create = nvmf_tcp_create,
3394 	.dump_opts = nvmf_tcp_dump_opts,
3395 	.destroy = nvmf_tcp_destroy,
3396 
3397 	.listen = nvmf_tcp_listen,
3398 	.stop_listen = nvmf_tcp_stop_listen,
3399 
3400 	.listener_discover = nvmf_tcp_discover,
3401 
3402 	.poll_group_create = nvmf_tcp_poll_group_create,
3403 	.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
3404 	.poll_group_destroy = nvmf_tcp_poll_group_destroy,
3405 	.poll_group_add = nvmf_tcp_poll_group_add,
3406 	.poll_group_remove = nvmf_tcp_poll_group_remove,
3407 	.poll_group_poll = nvmf_tcp_poll_group_poll,
3408 
3409 	.req_free = nvmf_tcp_req_free,
3410 	.req_complete = nvmf_tcp_req_complete,
3411 
3412 	.qpair_fini = nvmf_tcp_close_qpair,
3413 	.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
3414 	.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
3415 	.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
3416 	.qpair_abort_request = nvmf_tcp_qpair_abort_request,
3417 };
3418 
3419 SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
3420 SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)
3421