xref: /spdk/lib/nvmf/tcp.c (revision 57fd99b91e71a4baa5543e19ff83958dc99d4dac)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2018 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/accel.h"
8 #include "spdk/stdinc.h"
9 #include "spdk/crc32.h"
10 #include "spdk/endian.h"
11 #include "spdk/assert.h"
12 #include "spdk/thread.h"
13 #include "spdk/nvmf_transport.h"
14 #include "spdk/string.h"
15 #include "spdk/trace.h"
16 #include "spdk/util.h"
17 #include "spdk/log.h"
18 #include "spdk/keyring.h"
19 
20 #include "spdk_internal/assert.h"
21 #include "spdk_internal/nvme_tcp.h"
22 #include "spdk_internal/sock.h"
23 
24 #include "nvmf_internal.h"
25 
26 #include "spdk_internal/trace_defs.h"
27 
28 #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
29 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
30 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
31 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
32 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
33 
34 #define SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH 2
35 #define SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH 65535
36 #define SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH 2
37 #define SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH 4096
38 
39 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH 128
40 #define SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH 128
41 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
42 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
43 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
44 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
45 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
46 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX
47 #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
48 #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
49 
50 #define TCP_PSK_INVALID_PERMISSIONS 0177
51 
52 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
53 static bool g_tls_log = false;
54 
55 /* spdk nvmf related structure */
56 enum spdk_nvmf_tcp_req_state {
57 
58 	/* The request is not currently in use */
59 	TCP_REQUEST_STATE_FREE = 0,
60 
61 	/* Initial state when request first received */
62 	TCP_REQUEST_STATE_NEW = 1,
63 
64 	/* The request is queued until a data buffer is available. */
65 	TCP_REQUEST_STATE_NEED_BUFFER = 2,
66 
67 	/* The request is waiting for zcopy_start to finish */
68 	TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 3,
69 
70 	/* The request has received a zero-copy buffer */
71 	TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 4,
72 
73 	/* The request is currently transferring data from the host to the controller. */
74 	TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 5,
75 
76 	/* The request is waiting for the R2T send acknowledgement. */
77 	TCP_REQUEST_STATE_AWAITING_R2T_ACK = 6,
78 
79 	/* The request is ready to execute at the block device */
80 	TCP_REQUEST_STATE_READY_TO_EXECUTE = 7,
81 
82 	/* The request is currently executing at the block device */
83 	TCP_REQUEST_STATE_EXECUTING = 8,
84 
85 	/* The request is waiting for zcopy buffers to be committed */
86 	TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 9,
87 
88 	/* The request finished executing at the block device */
89 	TCP_REQUEST_STATE_EXECUTED = 10,
90 
91 	/* The request is ready to send a completion */
92 	TCP_REQUEST_STATE_READY_TO_COMPLETE = 11,
93 
94 	/* The request is currently transferring final pdus from the controller to the host. */
95 	TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 12,
96 
97 	/* The request is waiting for zcopy buffers to be released (without committing) */
98 	TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 13,
99 
100 	/* The request completed and can be marked free. */
101 	TCP_REQUEST_STATE_COMPLETED = 14,
102 
103 	/* Terminator */
104 	TCP_REQUEST_NUM_STATES,
105 };
106 
107 static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
108 	"Invalid PDU Header Field",
109 	"PDU Sequence Error",
110 	"Header Digiest Error",
111 	"Data Transfer Out of Range",
112 	"R2T Limit Exceeded",
113 	"Unsupported parameter",
114 };
115 
116 SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
117 {
118 	spdk_trace_register_owner_type(OWNER_TYPE_NVMF_TCP, 't');
119 	spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
120 	spdk_trace_register_description("TCP_REQ_NEW",
121 					TRACE_TCP_REQUEST_STATE_NEW,
122 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1,
123 					SPDK_TRACE_ARG_TYPE_INT, "qd");
124 	spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
125 					TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
126 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
127 					SPDK_TRACE_ARG_TYPE_INT, "");
128 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START",
129 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START,
130 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
131 					SPDK_TRACE_ARG_TYPE_INT, "");
132 	spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL",
133 					TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED,
134 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
135 					SPDK_TRACE_ARG_TYPE_INT, "");
136 	spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
137 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
138 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
139 					SPDK_TRACE_ARG_TYPE_INT, "");
140 	spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
141 					TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
142 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
143 					SPDK_TRACE_ARG_TYPE_INT, "");
144 	spdk_trace_register_description("TCP_REQ_EXECUTING",
145 					TRACE_TCP_REQUEST_STATE_EXECUTING,
146 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
147 					SPDK_TRACE_ARG_TYPE_INT, "");
148 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT",
149 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT,
150 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
151 					SPDK_TRACE_ARG_TYPE_INT, "");
152 	spdk_trace_register_description("TCP_REQ_EXECUTED",
153 					TRACE_TCP_REQUEST_STATE_EXECUTED,
154 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
155 					SPDK_TRACE_ARG_TYPE_INT, "");
156 	spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
157 					TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
158 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
159 					SPDK_TRACE_ARG_TYPE_INT, "");
160 	spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
161 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
162 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
163 					SPDK_TRACE_ARG_TYPE_INT, "");
164 	spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS",
165 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE,
166 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
167 					SPDK_TRACE_ARG_TYPE_INT, "");
168 	spdk_trace_register_description("TCP_REQ_COMPLETED",
169 					TRACE_TCP_REQUEST_STATE_COMPLETED,
170 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
171 					SPDK_TRACE_ARG_TYPE_INT, "qd");
172 	spdk_trace_register_description("TCP_READ_DONE",
173 					TRACE_TCP_READ_FROM_SOCKET_DONE,
174 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
175 					SPDK_TRACE_ARG_TYPE_INT, "");
176 	spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
177 					TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
178 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
179 					SPDK_TRACE_ARG_TYPE_INT, "");
180 
181 	spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE,
182 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
183 					SPDK_TRACE_ARG_TYPE_INT, "");
184 	spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT,
185 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
186 					SPDK_TRACE_ARG_TYPE_INT, "");
187 	spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE,
188 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
189 					SPDK_TRACE_ARG_TYPE_INT, "state");
190 	spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT,
191 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
192 					SPDK_TRACE_ARG_TYPE_INT, "");
193 	spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY,
194 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
195 					SPDK_TRACE_ARG_TYPE_INT, "");
196 	spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ,
197 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
198 					SPDK_TRACE_ARG_TYPE_INT, "");
199 	spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE,
200 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
201 					SPDK_TRACE_ARG_TYPE_INT, "state");
202 
203 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1);
204 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0);
205 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_QUEUE, OBJECT_NVMF_TCP_IO, 0);
206 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_PEND, OBJECT_NVMF_TCP_IO, 0);
207 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_COMPLETE, OBJECT_NVMF_TCP_IO, 0);
208 }
209 
210 struct spdk_nvmf_tcp_req  {
211 	struct spdk_nvmf_request		req;
212 	struct spdk_nvme_cpl			rsp;
213 	struct spdk_nvme_cmd			cmd;
214 
215 	/* A PDU that can be used for sending responses. This is
216 	 * not the incoming PDU! */
217 	struct nvme_tcp_pdu			*pdu;
218 
219 	/* In-capsule data buffer */
220 	uint8_t					*buf;
221 
222 	struct spdk_nvmf_tcp_req		*fused_pair;
223 
224 	/*
225 	 * The PDU for a request may be used multiple times in serial over
226 	 * the request's lifetime. For example, first to send an R2T, then
227 	 * to send a completion. To catch mistakes where the PDU is used
228 	 * twice at the same time, add a debug flag here for init/fini.
229 	 */
230 	bool					pdu_in_use;
231 	bool					has_in_capsule_data;
232 	bool					fused_failed;
233 
234 	/* transfer_tag */
235 	uint16_t				ttag;
236 
237 	enum spdk_nvmf_tcp_req_state		state;
238 
239 	/*
240 	 * h2c_offset is used when we receive the h2c_data PDU.
241 	 */
242 	uint32_t				h2c_offset;
243 
244 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		link;
245 	TAILQ_ENTRY(spdk_nvmf_tcp_req)		state_link;
246 };
247 
248 struct spdk_nvmf_tcp_qpair {
249 	struct spdk_nvmf_qpair			qpair;
250 	struct spdk_nvmf_tcp_poll_group		*group;
251 	struct spdk_sock			*sock;
252 
253 	enum nvme_tcp_pdu_recv_state		recv_state;
254 	enum nvme_tcp_qpair_state		state;
255 
256 	/* PDU being actively received */
257 	struct nvme_tcp_pdu			*pdu_in_progress;
258 
259 	struct spdk_nvmf_tcp_req		*fused_first;
260 
261 	/* Queues to track the requests in all states */
262 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_working_queue;
263 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_free_queue;
264 	SLIST_HEAD(, nvme_tcp_pdu)		tcp_pdu_free_queue;
265 	/* Number of working pdus */
266 	uint32_t				tcp_pdu_working_count;
267 
268 	/* Number of requests in each state */
269 	uint32_t				state_cntr[TCP_REQUEST_NUM_STATES];
270 
271 	uint8_t					cpda;
272 
273 	bool					host_hdgst_enable;
274 	bool					host_ddgst_enable;
275 
276 	/* This is a spare PDU used for sending special management
277 	 * operations. Primarily, this is used for the initial
278 	 * connection response and c2h termination request. */
279 	struct nvme_tcp_pdu			*mgmt_pdu;
280 
281 	/* Arrays of in-capsule buffers, requests, and pdus.
282 	 * Each array is 'resource_count' number of elements */
283 	void					*bufs;
284 	struct spdk_nvmf_tcp_req		*reqs;
285 	struct nvme_tcp_pdu			*pdus;
286 	uint32_t				resource_count;
287 	uint32_t				recv_buf_size;
288 
289 	struct spdk_nvmf_tcp_port		*port;
290 
291 	/* IP address */
292 	char					initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
293 	char					target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
294 
295 	/* IP port */
296 	uint16_t				initiator_port;
297 	uint16_t				target_port;
298 
299 	/* Wait until the host terminates the connection (e.g. after sending C2HTermReq) */
300 	bool					wait_terminate;
301 
302 	/* Timer used to destroy qpair after detecting transport error issue if initiator does
303 	 *  not close the connection.
304 	 */
305 	struct spdk_poller			*timeout_poller;
306 
307 	spdk_nvmf_transport_qpair_fini_cb	fini_cb_fn;
308 	void					*fini_cb_arg;
309 
310 	TAILQ_ENTRY(spdk_nvmf_tcp_qpair)	link;
311 };
312 
313 struct spdk_nvmf_tcp_control_msg {
314 	STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
315 };
316 
317 struct spdk_nvmf_tcp_control_msg_list {
318 	void *msg_buf;
319 	STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
320 };
321 
322 struct spdk_nvmf_tcp_poll_group {
323 	struct spdk_nvmf_transport_poll_group	group;
324 	struct spdk_sock_group			*sock_group;
325 
326 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	qpairs;
327 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	await_req;
328 
329 	struct spdk_io_channel			*accel_channel;
330 	struct spdk_nvmf_tcp_control_msg_list	*control_msg_list;
331 
332 	TAILQ_ENTRY(spdk_nvmf_tcp_poll_group)	link;
333 };
334 
335 struct spdk_nvmf_tcp_port {
336 	const struct spdk_nvme_transport_id	*trid;
337 	struct spdk_sock			*listen_sock;
338 	struct spdk_nvmf_transport		*transport;
339 	TAILQ_ENTRY(spdk_nvmf_tcp_port)		link;
340 };
341 
342 struct tcp_transport_opts {
343 	bool		c2h_success;
344 	uint16_t	control_msg_num;
345 	uint32_t	sock_priority;
346 };
347 
348 struct tcp_psk_entry {
349 	char				hostnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
350 	char				subnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
351 	char				pskid[NVMF_PSK_IDENTITY_LEN];
352 	uint8_t				psk[SPDK_TLS_PSK_MAX_LEN];
353 	struct spdk_key			*key;
354 
355 	/* Original path saved to emit SPDK configuration via "save_config". */
356 	char				psk_path[PATH_MAX];
357 	uint32_t			psk_size;
358 	enum nvme_tcp_cipher_suite	tls_cipher_suite;
359 	TAILQ_ENTRY(tcp_psk_entry)	link;
360 };
361 
362 struct spdk_nvmf_tcp_transport {
363 	struct spdk_nvmf_transport		transport;
364 	struct tcp_transport_opts               tcp_opts;
365 	uint32_t				ack_timeout;
366 
367 	struct spdk_nvmf_tcp_poll_group		*next_pg;
368 
369 	struct spdk_poller			*accept_poller;
370 	struct spdk_sock_group			*listen_sock_group;
371 
372 	TAILQ_HEAD(, spdk_nvmf_tcp_port)	ports;
373 	TAILQ_HEAD(, spdk_nvmf_tcp_poll_group)	poll_groups;
374 
375 	TAILQ_HEAD(, tcp_psk_entry)		psks;
376 };
377 
378 static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
379 	{
380 		"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
381 		spdk_json_decode_bool, true
382 	},
383 	{
384 		"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
385 		spdk_json_decode_uint16, true
386 	},
387 	{
388 		"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
389 		spdk_json_decode_uint32, true
390 	},
391 };
392 
393 static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
394 				 struct spdk_nvmf_tcp_req *tcp_req);
395 static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
396 
397 static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
398 				    struct spdk_nvmf_tcp_req *tcp_req);
399 
400 static inline void
401 nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
402 		       enum spdk_nvmf_tcp_req_state state)
403 {
404 	struct spdk_nvmf_qpair *qpair;
405 	struct spdk_nvmf_tcp_qpair *tqpair;
406 
407 	qpair = tcp_req->req.qpair;
408 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
409 
410 	assert(tqpair->state_cntr[tcp_req->state] > 0);
411 	tqpair->state_cntr[tcp_req->state]--;
412 	tqpair->state_cntr[state]++;
413 
414 	tcp_req->state = state;
415 }
416 
417 static inline struct nvme_tcp_pdu *
418 nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
419 {
420 	assert(tcp_req->pdu_in_use == false);
421 
422 	memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
423 	tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
424 
425 	return tcp_req->pdu;
426 }
427 
428 static struct spdk_nvmf_tcp_req *
429 nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
430 {
431 	struct spdk_nvmf_tcp_req *tcp_req;
432 
433 	tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
434 	if (spdk_unlikely(!tcp_req)) {
435 		return NULL;
436 	}
437 
438 	memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
439 	tcp_req->h2c_offset = 0;
440 	tcp_req->has_in_capsule_data = false;
441 	tcp_req->req.dif_enabled = false;
442 	tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE;
443 
444 	TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
445 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
446 	tqpair->qpair.queue_depth++;
447 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
448 	return tcp_req;
449 }
450 
451 static inline void
452 nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
453 {
454 	assert(!tcp_req->pdu_in_use);
455 
456 	TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
457 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
458 	tqpair->qpair.queue_depth--;
459 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
460 }
461 
462 static void
463 nvmf_tcp_request_free(void *cb_arg)
464 {
465 	struct spdk_nvmf_tcp_transport *ttransport;
466 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
467 
468 	assert(tcp_req != NULL);
469 
470 	SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
471 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
472 				      struct spdk_nvmf_tcp_transport, transport);
473 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
474 	nvmf_tcp_req_process(ttransport, tcp_req);
475 }
476 
477 static int
478 nvmf_tcp_req_free(struct spdk_nvmf_request *req)
479 {
480 	struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
481 
482 	nvmf_tcp_request_free(tcp_req);
483 
484 	return 0;
485 }
486 
487 static void
488 nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
489 			   enum spdk_nvmf_tcp_req_state state)
490 {
491 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
492 
493 	assert(state != TCP_REQUEST_STATE_FREE);
494 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
495 		if (state == tcp_req->state) {
496 			nvmf_tcp_request_free(tcp_req);
497 		}
498 	}
499 }
500 
501 static void
502 nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
503 {
504 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
505 
506 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
507 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
508 
509 	/* Wipe the requests waiting for buffer from the global list */
510 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
511 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
512 			STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue, &tcp_req->req,
513 				      spdk_nvmf_request, buf_link);
514 		}
515 	}
516 
517 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
518 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
519 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
520 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
521 }
522 
523 static void
524 nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
525 {
526 	int i;
527 	struct spdk_nvmf_tcp_req *tcp_req;
528 
529 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
530 	for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
531 		SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
532 		TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
533 			if ((int)tcp_req->state == i) {
534 				SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
535 				SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
536 			}
537 		}
538 	}
539 }
540 
541 static void
542 _nvmf_tcp_qpair_destroy(void *_tqpair)
543 {
544 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
545 	spdk_nvmf_transport_qpair_fini_cb cb_fn = tqpair->fini_cb_fn;
546 	void *cb_arg = tqpair->fini_cb_arg;
547 	int err = 0;
548 
549 	spdk_trace_record(TRACE_TCP_QP_DESTROY, tqpair->qpair.trace_id, 0, 0);
550 
551 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
552 
553 	err = spdk_sock_close(&tqpair->sock);
554 	assert(err == 0);
555 	nvmf_tcp_cleanup_all_states(tqpair);
556 
557 	if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
558 		SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
559 			    tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
560 			    tqpair->resource_count);
561 		err++;
562 	}
563 
564 	if (err > 0) {
565 		nvmf_tcp_dump_qpair_req_contents(tqpair);
566 	}
567 
568 	/* The timeout poller might still be registered here if we close the qpair before host
569 	 * terminates the connection.
570 	 */
571 	spdk_poller_unregister(&tqpair->timeout_poller);
572 	spdk_dma_free(tqpair->pdus);
573 	free(tqpair->reqs);
574 	spdk_free(tqpair->bufs);
575 	spdk_trace_unregister_owner(tqpair->qpair.trace_id);
576 	free(tqpair);
577 
578 	if (cb_fn != NULL) {
579 		cb_fn(cb_arg);
580 	}
581 
582 	SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
583 }
584 
585 static void
586 nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
587 {
588 	/* Delay the destruction to make sure it isn't performed from the context of a sock
589 	 * callback.  Otherwise, spdk_sock_close() might not abort pending requests, causing their
590 	 * completions to be executed after the qpair is freed.  (Note: this fixed issue #2471.)
591 	 */
592 	spdk_thread_send_msg(spdk_get_thread(), _nvmf_tcp_qpair_destroy, tqpair);
593 }
594 
595 static void
596 nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
597 {
598 	struct spdk_nvmf_tcp_transport	*ttransport;
599 	assert(w != NULL);
600 
601 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
602 	spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
603 	spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
604 }
605 
606 static void
607 nvmf_tcp_free_psk_entry(struct tcp_psk_entry *entry)
608 {
609 	if (entry == NULL) {
610 		return;
611 	}
612 
613 	spdk_memset_s(entry->psk, sizeof(entry->psk), 0, sizeof(entry->psk));
614 	spdk_keyring_put_key(entry->key);
615 	free(entry);
616 }
617 
618 static int
619 nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
620 		 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
621 {
622 	struct spdk_nvmf_tcp_transport	*ttransport;
623 	struct tcp_psk_entry *entry, *tmp;
624 
625 	assert(transport != NULL);
626 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
627 
628 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
629 		TAILQ_REMOVE(&ttransport->psks, entry, link);
630 		nvmf_tcp_free_psk_entry(entry);
631 	}
632 
633 	spdk_poller_unregister(&ttransport->accept_poller);
634 	spdk_sock_group_close(&ttransport->listen_sock_group);
635 	free(ttransport);
636 
637 	if (cb_fn) {
638 		cb_fn(cb_arg);
639 	}
640 	return 0;
641 }
642 
643 static int nvmf_tcp_accept(void *ctx);
644 
645 static void nvmf_tcp_accept_cb(void *ctx, struct spdk_sock_group *group, struct spdk_sock *sock);
646 
647 static struct spdk_nvmf_transport *
648 nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
649 {
650 	struct spdk_nvmf_tcp_transport *ttransport;
651 	uint32_t sge_count;
652 	uint32_t min_shared_buffers;
653 
654 	ttransport = calloc(1, sizeof(*ttransport));
655 	if (!ttransport) {
656 		return NULL;
657 	}
658 
659 	TAILQ_INIT(&ttransport->ports);
660 	TAILQ_INIT(&ttransport->poll_groups);
661 	TAILQ_INIT(&ttransport->psks);
662 
663 	ttransport->transport.ops = &spdk_nvmf_transport_tcp;
664 
665 	ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
666 	ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
667 	ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
668 	if (opts->transport_specific != NULL &&
669 	    spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
670 					    SPDK_COUNTOF(tcp_transport_opts_decoder),
671 					    &ttransport->tcp_opts)) {
672 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
673 		free(ttransport);
674 		return NULL;
675 	}
676 
677 	SPDK_NOTICELOG("*** TCP Transport Init ***\n");
678 
679 	SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
680 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
681 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
682 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
683 		     "  num_shared_buffers=%d, c2h_success=%d,\n"
684 		     "  dif_insert_or_strip=%d, sock_priority=%d\n"
685 		     "  abort_timeout_sec=%d, control_msg_num=%hu\n"
686 		     "  ack_timeout=%d\n",
687 		     opts->max_queue_depth,
688 		     opts->max_io_size,
689 		     opts->max_qpairs_per_ctrlr - 1,
690 		     opts->io_unit_size,
691 		     opts->in_capsule_data_size,
692 		     opts->max_aq_depth,
693 		     opts->num_shared_buffers,
694 		     ttransport->tcp_opts.c2h_success,
695 		     opts->dif_insert_or_strip,
696 		     ttransport->tcp_opts.sock_priority,
697 		     opts->abort_timeout_sec,
698 		     ttransport->tcp_opts.control_msg_num,
699 		     opts->ack_timeout);
700 
701 	if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
702 		SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
703 			    "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
704 			    ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
705 		free(ttransport);
706 		return NULL;
707 	}
708 
709 	if (ttransport->tcp_opts.control_msg_num == 0 &&
710 	    opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
711 		SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
712 			     SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
713 		ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
714 	}
715 
716 	/* I/O unit size cannot be larger than max I/O size */
717 	if (opts->io_unit_size > opts->max_io_size) {
718 		SPDK_WARNLOG("TCP param io_unit_size %u can't be larger than max_io_size %u. Using max_io_size as io_unit_size\n",
719 			     opts->io_unit_size, opts->max_io_size);
720 		opts->io_unit_size = opts->max_io_size;
721 	}
722 
723 	/* In capsule data size cannot be larger than max I/O size */
724 	if (opts->in_capsule_data_size > opts->max_io_size) {
725 		SPDK_WARNLOG("TCP param ICD size %u can't be larger than max_io_size %u. Using max_io_size as ICD size\n",
726 			     opts->io_unit_size, opts->max_io_size);
727 		opts->in_capsule_data_size = opts->max_io_size;
728 	}
729 
730 	/* max IO queue depth cannot be smaller than 2 or larger than 65535.
731 	 * We will not check SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, because max_queue_depth is 16bits and always not larger than 64k. */
732 	if (opts->max_queue_depth < SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH) {
733 		SPDK_WARNLOG("TCP param max_queue_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
734 			     opts->max_queue_depth, SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH,
735 			     SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH);
736 		opts->max_queue_depth = SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
737 	}
738 
739 	/* max admin queue depth cannot be smaller than 2 or larger than 4096 */
740 	if (opts->max_aq_depth < SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH ||
741 	    opts->max_aq_depth > SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH) {
742 		SPDK_WARNLOG("TCP param max_aq_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
743 			     opts->max_aq_depth, SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH,
744 			     SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH);
745 		opts->max_aq_depth = SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
746 	}
747 
748 	sge_count = opts->max_io_size / opts->io_unit_size;
749 	if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
750 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
751 		free(ttransport);
752 		return NULL;
753 	}
754 
755 	/* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */
756 	if (opts->buf_cache_size < UINT32_MAX) {
757 		min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
758 		if (min_shared_buffers > opts->num_shared_buffers) {
759 			SPDK_ERRLOG("There are not enough buffers to satisfy "
760 				    "per-poll group caches for each thread. (%" PRIu32 ") "
761 				    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
762 			SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
763 			free(ttransport);
764 			return NULL;
765 		}
766 	}
767 
768 	ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport,
769 				    opts->acceptor_poll_rate);
770 	if (!ttransport->accept_poller) {
771 		free(ttransport);
772 		return NULL;
773 	}
774 
775 	ttransport->listen_sock_group = spdk_sock_group_create(NULL);
776 	if (ttransport->listen_sock_group == NULL) {
777 		SPDK_ERRLOG("Failed to create socket group for listen sockets\n");
778 		spdk_poller_unregister(&ttransport->accept_poller);
779 		free(ttransport);
780 		return NULL;
781 	}
782 
783 	return &ttransport->transport;
784 }
785 
786 static int
787 nvmf_tcp_trsvcid_to_int(const char *trsvcid)
788 {
789 	unsigned long long ull;
790 	char *end = NULL;
791 
792 	ull = strtoull(trsvcid, &end, 10);
793 	if (end == NULL || end == trsvcid || *end != '\0') {
794 		return -1;
795 	}
796 
797 	/* Valid TCP/IP port numbers are in [1, 65535] */
798 	if (ull == 0 || ull > 65535) {
799 		return -1;
800 	}
801 
802 	return (int)ull;
803 }
804 
805 /**
806  * Canonicalize a listen address trid.
807  */
808 static int
809 nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
810 			   const struct spdk_nvme_transport_id *trid)
811 {
812 	int trsvcid_int;
813 
814 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
815 	if (trsvcid_int < 0) {
816 		return -EINVAL;
817 	}
818 
819 	memset(canon_trid, 0, sizeof(*canon_trid));
820 	spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
821 	canon_trid->adrfam = trid->adrfam;
822 	snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
823 	snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
824 
825 	return 0;
826 }
827 
828 /**
829  * Find an existing listening port.
830  */
831 static struct spdk_nvmf_tcp_port *
832 nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
833 		   const struct spdk_nvme_transport_id *trid)
834 {
835 	struct spdk_nvme_transport_id canon_trid;
836 	struct spdk_nvmf_tcp_port *port;
837 
838 	if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
839 		return NULL;
840 	}
841 
842 	TAILQ_FOREACH(port, &ttransport->ports, link) {
843 		if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
844 			return port;
845 		}
846 	}
847 
848 	return NULL;
849 }
850 
851 static int
852 tcp_sock_get_key(uint8_t *out, int out_len, const char **cipher, const char *pskid,
853 		 void *get_key_ctx)
854 {
855 	struct tcp_psk_entry *entry;
856 	struct spdk_nvmf_tcp_transport *ttransport = get_key_ctx;
857 	size_t psk_len;
858 	int rc;
859 
860 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
861 		if (strcmp(pskid, entry->pskid) != 0) {
862 			continue;
863 		}
864 
865 		psk_len = entry->psk_size;
866 		if ((size_t)out_len < psk_len) {
867 			SPDK_ERRLOG("Out buffer of size: %" PRIu32 " cannot fit PSK of len: %lu\n",
868 				    out_len, psk_len);
869 			return -ENOBUFS;
870 		}
871 
872 		/* Convert PSK to the TLS PSK format. */
873 		rc = nvme_tcp_derive_tls_psk(entry->psk, psk_len, pskid, out, out_len,
874 					     entry->tls_cipher_suite);
875 		if (rc < 0) {
876 			SPDK_ERRLOG("Could not generate TLS PSK\n");
877 		}
878 
879 		switch (entry->tls_cipher_suite) {
880 		case NVME_TCP_CIPHER_AES_128_GCM_SHA256:
881 			*cipher = "TLS_AES_128_GCM_SHA256";
882 			break;
883 		case NVME_TCP_CIPHER_AES_256_GCM_SHA384:
884 			*cipher = "TLS_AES_256_GCM_SHA384";
885 			break;
886 		default:
887 			*cipher = NULL;
888 			return -ENOTSUP;
889 		}
890 
891 		return rc;
892 	}
893 
894 	SPDK_ERRLOG("Could not find PSK for identity: %s\n", pskid);
895 
896 	return -EINVAL;
897 }
898 
899 static int
900 nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
901 		struct spdk_nvmf_listen_opts *listen_opts)
902 {
903 	struct spdk_nvmf_tcp_transport *ttransport;
904 	struct spdk_nvmf_tcp_port *port;
905 	int trsvcid_int;
906 	uint8_t adrfam;
907 	const char *sock_impl_name;
908 	struct spdk_sock_impl_opts impl_opts;
909 	size_t impl_opts_size = sizeof(impl_opts);
910 	struct spdk_sock_opts opts;
911 	int rc;
912 
913 	if (!strlen(trid->trsvcid)) {
914 		SPDK_ERRLOG("Service id is required\n");
915 		return -EINVAL;
916 	}
917 
918 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
919 
920 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
921 	if (trsvcid_int < 0) {
922 		SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
923 		return -EINVAL;
924 	}
925 
926 	port = calloc(1, sizeof(*port));
927 	if (!port) {
928 		SPDK_ERRLOG("Port allocation failed\n");
929 		return -ENOMEM;
930 	}
931 
932 	port->trid = trid;
933 
934 	sock_impl_name = NULL;
935 
936 	opts.opts_size = sizeof(opts);
937 	spdk_sock_get_default_opts(&opts);
938 	opts.priority = ttransport->tcp_opts.sock_priority;
939 	opts.ack_timeout = transport->opts.ack_timeout;
940 	if (listen_opts->secure_channel) {
941 		if (listen_opts->sock_impl &&
942 		    strncmp("ssl", listen_opts->sock_impl, strlen(listen_opts->sock_impl))) {
943 			SPDK_ERRLOG("Enabling secure_channel while specifying a sock_impl different from 'ssl' is unsupported");
944 			free(port);
945 			return -EINVAL;
946 		}
947 		listen_opts->sock_impl = "ssl";
948 	}
949 
950 	if (listen_opts->sock_impl) {
951 		sock_impl_name = listen_opts->sock_impl;
952 		spdk_sock_impl_get_opts(sock_impl_name, &impl_opts, &impl_opts_size);
953 
954 		if (!strncmp("ssl", sock_impl_name, strlen(sock_impl_name))) {
955 			if (!g_tls_log) {
956 				SPDK_NOTICELOG("TLS support is considered experimental\n");
957 				g_tls_log = true;
958 			}
959 			impl_opts.tls_version = SPDK_TLS_VERSION_1_3;
960 			impl_opts.get_key = tcp_sock_get_key;
961 			impl_opts.get_key_ctx = ttransport;
962 			impl_opts.tls_cipher_suites = "TLS_AES_256_GCM_SHA384:TLS_AES_128_GCM_SHA256";
963 		}
964 
965 		opts.impl_opts = &impl_opts;
966 		opts.impl_opts_size = sizeof(impl_opts);
967 	}
968 
969 	port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
970 			    sock_impl_name, &opts);
971 	if (port->listen_sock == NULL) {
972 		SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
973 			    trid->traddr, trsvcid_int,
974 			    spdk_strerror(errno), errno);
975 		free(port);
976 		return -errno;
977 	}
978 
979 	if (spdk_sock_is_ipv4(port->listen_sock)) {
980 		adrfam = SPDK_NVMF_ADRFAM_IPV4;
981 	} else if (spdk_sock_is_ipv6(port->listen_sock)) {
982 		adrfam = SPDK_NVMF_ADRFAM_IPV6;
983 	} else {
984 		SPDK_ERRLOG("Unhandled socket type\n");
985 		adrfam = 0;
986 	}
987 
988 	if (adrfam != trid->adrfam) {
989 		SPDK_ERRLOG("Socket address family mismatch\n");
990 		spdk_sock_close(&port->listen_sock);
991 		free(port);
992 		return -EINVAL;
993 	}
994 
995 	rc = spdk_sock_group_add_sock(ttransport->listen_sock_group, port->listen_sock, nvmf_tcp_accept_cb,
996 				      port);
997 	if (rc < 0) {
998 		SPDK_ERRLOG("Failed to add socket to the listen socket group\n");
999 		spdk_sock_close(&port->listen_sock);
1000 		free(port);
1001 		return -errno;
1002 	}
1003 
1004 	port->transport = transport;
1005 
1006 	SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
1007 		       trid->traddr, trid->trsvcid);
1008 
1009 	TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
1010 	return 0;
1011 }
1012 
1013 static void
1014 nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
1015 		     const struct spdk_nvme_transport_id *trid)
1016 {
1017 	struct spdk_nvmf_tcp_transport *ttransport;
1018 	struct spdk_nvmf_tcp_port *port;
1019 
1020 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1021 
1022 	SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
1023 		      trid->traddr, trid->trsvcid);
1024 
1025 	port = nvmf_tcp_find_port(ttransport, trid);
1026 	if (port) {
1027 		spdk_sock_group_remove_sock(ttransport->listen_sock_group, port->listen_sock);
1028 		TAILQ_REMOVE(&ttransport->ports, port, link);
1029 		spdk_sock_close(&port->listen_sock);
1030 		free(port);
1031 	}
1032 }
1033 
1034 static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1035 		enum nvme_tcp_pdu_recv_state state);
1036 
1037 static void
1038 nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvme_tcp_qpair_state state)
1039 {
1040 	tqpair->state = state;
1041 	spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0,
1042 			  (uint64_t)tqpair->state);
1043 }
1044 
1045 static void
1046 nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
1047 {
1048 	SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
1049 
1050 	spdk_trace_record(TRACE_TCP_QP_DISCONNECT, tqpair->qpair.trace_id, 0, 0);
1051 
1052 	if (tqpair->state <= NVME_TCP_QPAIR_STATE_RUNNING) {
1053 		nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITING);
1054 		assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1055 		spdk_poller_unregister(&tqpair->timeout_poller);
1056 
1057 		/* This will end up calling nvmf_tcp_close_qpair */
1058 		spdk_nvmf_qpair_disconnect(&tqpair->qpair);
1059 	}
1060 }
1061 
1062 static void
1063 _mgmt_pdu_write_done(void *_tqpair, int err)
1064 {
1065 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
1066 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1067 
1068 	if (spdk_unlikely(err != 0)) {
1069 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1070 		return;
1071 	}
1072 
1073 	assert(pdu->cb_fn != NULL);
1074 	pdu->cb_fn(pdu->cb_arg);
1075 }
1076 
1077 static void
1078 _req_pdu_write_done(void *req, int err)
1079 {
1080 	struct spdk_nvmf_tcp_req *tcp_req = req;
1081 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1082 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1083 
1084 	assert(tcp_req->pdu_in_use);
1085 	tcp_req->pdu_in_use = false;
1086 
1087 	/* If the request is in a completed state, we're waiting for write completion to free it */
1088 	if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) {
1089 		nvmf_tcp_request_free(tcp_req);
1090 		return;
1091 	}
1092 
1093 	if (spdk_unlikely(err != 0)) {
1094 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1095 		return;
1096 	}
1097 
1098 	assert(pdu->cb_fn != NULL);
1099 	pdu->cb_fn(pdu->cb_arg);
1100 }
1101 
1102 static void
1103 _pdu_write_done(struct nvme_tcp_pdu *pdu, int err)
1104 {
1105 	pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err);
1106 }
1107 
1108 static void
1109 _tcp_write_pdu(struct nvme_tcp_pdu *pdu)
1110 {
1111 	int rc;
1112 	uint32_t mapped_length;
1113 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1114 
1115 	pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
1116 			       tqpair->host_hdgst_enable, tqpair->host_ddgst_enable, &mapped_length);
1117 	spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
1118 
1119 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
1120 	    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
1121 		/* Try to force the send immediately. */
1122 		rc = spdk_sock_flush(tqpair->sock);
1123 		if (rc > 0 && (uint32_t)rc == mapped_length) {
1124 			_pdu_write_done(pdu, 0);
1125 		} else {
1126 			SPDK_ERRLOG("Could not write %s to socket: rc=%d, errno=%d\n",
1127 				    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ?
1128 				    "IC_RESP" : "TERM_REQ", rc, errno);
1129 			_pdu_write_done(pdu, rc >= 0 ? -EAGAIN : -errno);
1130 		}
1131 	}
1132 }
1133 
1134 static void
1135 data_crc32_accel_done(void *cb_arg, int status)
1136 {
1137 	struct nvme_tcp_pdu *pdu = cb_arg;
1138 
1139 	if (spdk_unlikely(status)) {
1140 		SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
1141 		_pdu_write_done(pdu, status);
1142 		return;
1143 	}
1144 
1145 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
1146 	MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
1147 
1148 	_tcp_write_pdu(pdu);
1149 }
1150 
1151 static void
1152 pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
1153 {
1154 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1155 	int rc = 0;
1156 
1157 	/* Data Digest */
1158 	if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
1159 		/* Only support this limitated case for the first step */
1160 		if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
1161 				&& tqpair->group)) {
1162 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
1163 						       pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
1164 			if (spdk_likely(rc == 0)) {
1165 				return;
1166 			}
1167 		} else {
1168 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1169 		}
1170 		data_crc32_accel_done(pdu, rc);
1171 	} else {
1172 		_tcp_write_pdu(pdu);
1173 	}
1174 }
1175 
1176 static void
1177 nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1178 			 struct nvme_tcp_pdu *pdu,
1179 			 nvme_tcp_qpair_xfer_complete_cb cb_fn,
1180 			 void *cb_arg)
1181 {
1182 	int hlen;
1183 	uint32_t crc32c;
1184 
1185 	assert(tqpair->pdu_in_progress != pdu);
1186 
1187 	hlen = pdu->hdr.common.hlen;
1188 	pdu->cb_fn = cb_fn;
1189 	pdu->cb_arg = cb_arg;
1190 
1191 	pdu->iov[0].iov_base = &pdu->hdr.raw;
1192 	pdu->iov[0].iov_len = hlen;
1193 
1194 	/* Header Digest */
1195 	if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) {
1196 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1197 		MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
1198 	}
1199 
1200 	/* Data Digest */
1201 	pdu_data_crc32_compute(pdu);
1202 }
1203 
1204 static void
1205 nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1206 			      nvme_tcp_qpair_xfer_complete_cb cb_fn,
1207 			      void *cb_arg)
1208 {
1209 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1210 
1211 	pdu->sock_req.cb_fn = _mgmt_pdu_write_done;
1212 	pdu->sock_req.cb_arg = tqpair;
1213 
1214 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1215 }
1216 
1217 static void
1218 nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1219 			     struct spdk_nvmf_tcp_req *tcp_req,
1220 			     nvme_tcp_qpair_xfer_complete_cb cb_fn,
1221 			     void *cb_arg)
1222 {
1223 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1224 
1225 	pdu->sock_req.cb_fn = _req_pdu_write_done;
1226 	pdu->sock_req.cb_arg = tcp_req;
1227 
1228 	assert(!tcp_req->pdu_in_use);
1229 	tcp_req->pdu_in_use = true;
1230 
1231 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1232 }
1233 
1234 static int
1235 nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
1236 {
1237 	uint32_t i;
1238 	struct spdk_nvmf_transport_opts *opts;
1239 	uint32_t in_capsule_data_size;
1240 
1241 	opts = &tqpair->qpair.transport->opts;
1242 
1243 	in_capsule_data_size = opts->in_capsule_data_size;
1244 	if (opts->dif_insert_or_strip) {
1245 		in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
1246 	}
1247 
1248 	tqpair->resource_count = opts->max_queue_depth;
1249 
1250 	tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
1251 	if (!tqpair->reqs) {
1252 		SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
1253 		return -1;
1254 	}
1255 
1256 	if (in_capsule_data_size) {
1257 		tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
1258 					    NULL, SPDK_ENV_LCORE_ID_ANY,
1259 					    SPDK_MALLOC_DMA);
1260 		if (!tqpair->bufs) {
1261 			SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
1262 			return -1;
1263 		}
1264 	}
1265 	/* prepare memory space for receiving pdus and tcp_req */
1266 	/* Add additional 1 member, which will be used for mgmt_pdu owned by the tqpair */
1267 	tqpair->pdus = spdk_dma_zmalloc((2 * tqpair->resource_count + 1) * sizeof(*tqpair->pdus), 0x1000,
1268 					NULL);
1269 	if (!tqpair->pdus) {
1270 		SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
1271 		return -1;
1272 	}
1273 
1274 	for (i = 0; i < tqpair->resource_count; i++) {
1275 		struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
1276 
1277 		tcp_req->ttag = i + 1;
1278 		tcp_req->req.qpair = &tqpair->qpair;
1279 
1280 		tcp_req->pdu = &tqpair->pdus[i];
1281 		tcp_req->pdu->qpair = tqpair;
1282 
1283 		/* Set up memory to receive commands */
1284 		if (tqpair->bufs) {
1285 			tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
1286 		}
1287 
1288 		/* Set the cmdn and rsp */
1289 		tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
1290 		tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
1291 
1292 		tcp_req->req.stripped_data = NULL;
1293 
1294 		/* Initialize request state to FREE */
1295 		tcp_req->state = TCP_REQUEST_STATE_FREE;
1296 		TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
1297 		tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
1298 	}
1299 
1300 	for (; i < 2 * tqpair->resource_count; i++) {
1301 		struct nvme_tcp_pdu *pdu = &tqpair->pdus[i];
1302 
1303 		pdu->qpair = tqpair;
1304 		SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1305 	}
1306 
1307 	tqpair->mgmt_pdu = &tqpair->pdus[i];
1308 	tqpair->mgmt_pdu->qpair = tqpair;
1309 	tqpair->pdu_in_progress = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
1310 	SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
1311 	tqpair->tcp_pdu_working_count = 1;
1312 
1313 	tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
1314 				 SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1315 
1316 	return 0;
1317 }
1318 
1319 static int
1320 nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
1321 {
1322 	struct spdk_nvmf_tcp_qpair *tqpair;
1323 
1324 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1325 
1326 	SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
1327 
1328 	spdk_trace_record(TRACE_TCP_QP_CREATE, tqpair->qpair.trace_id, 0, 0);
1329 
1330 	/* Initialise request state queues of the qpair */
1331 	TAILQ_INIT(&tqpair->tcp_req_free_queue);
1332 	TAILQ_INIT(&tqpair->tcp_req_working_queue);
1333 	SLIST_INIT(&tqpair->tcp_pdu_free_queue);
1334 	tqpair->qpair.queue_depth = 0;
1335 
1336 	tqpair->host_hdgst_enable = true;
1337 	tqpair->host_ddgst_enable = true;
1338 
1339 	return 0;
1340 }
1341 
1342 static int
1343 nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
1344 {
1345 	char saddr[32], caddr[32];
1346 	uint16_t sport, cport;
1347 	char owner[256];
1348 	int rc;
1349 
1350 	rc = spdk_sock_getaddr(tqpair->sock, saddr, sizeof(saddr), &sport,
1351 			       caddr, sizeof(caddr), &cport);
1352 	if (rc != 0) {
1353 		SPDK_ERRLOG("spdk_sock_getaddr() failed\n");
1354 		return rc;
1355 	}
1356 	snprintf(owner, sizeof(owner), "%s:%d", caddr, cport);
1357 	tqpair->qpair.trace_id = spdk_trace_register_owner(OWNER_TYPE_NVMF_TCP, owner);
1358 	spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, tqpair->qpair.trace_id, 0, 0);
1359 
1360 	/* set low water mark */
1361 	rc = spdk_sock_set_recvlowat(tqpair->sock, 1);
1362 	if (rc != 0) {
1363 		SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
1364 		return rc;
1365 	}
1366 
1367 	return 0;
1368 }
1369 
1370 static void
1371 nvmf_tcp_handle_connect(struct spdk_nvmf_tcp_port *port, struct spdk_sock *sock)
1372 {
1373 	struct spdk_nvmf_tcp_qpair *tqpair;
1374 	int rc;
1375 
1376 	SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
1377 		      port->trid->traddr, port->trid->trsvcid);
1378 
1379 	tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
1380 	if (tqpair == NULL) {
1381 		SPDK_ERRLOG("Could not allocate new connection.\n");
1382 		spdk_sock_close(&sock);
1383 		return;
1384 	}
1385 
1386 	tqpair->sock = sock;
1387 	tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
1388 	tqpair->port = port;
1389 	tqpair->qpair.transport = port->transport;
1390 
1391 	rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
1392 			       sizeof(tqpair->target_addr), &tqpair->target_port,
1393 			       tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
1394 			       &tqpair->initiator_port);
1395 	if (rc < 0) {
1396 		SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
1397 		nvmf_tcp_qpair_destroy(tqpair);
1398 		return;
1399 	}
1400 
1401 	spdk_nvmf_tgt_new_qpair(port->transport->tgt, &tqpair->qpair);
1402 }
1403 
1404 static uint32_t
1405 nvmf_tcp_port_accept(struct spdk_nvmf_tcp_port *port)
1406 {
1407 	struct spdk_sock *sock;
1408 	uint32_t count = 0;
1409 	int i;
1410 
1411 	for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
1412 		sock = spdk_sock_accept(port->listen_sock);
1413 		if (sock == NULL) {
1414 			break;
1415 		}
1416 		count++;
1417 		nvmf_tcp_handle_connect(port, sock);
1418 	}
1419 
1420 	return count;
1421 }
1422 
1423 static int
1424 nvmf_tcp_accept(void *ctx)
1425 {
1426 	struct spdk_nvmf_transport *transport = ctx;
1427 	struct spdk_nvmf_tcp_transport *ttransport;
1428 	int count;
1429 
1430 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1431 
1432 	count = spdk_sock_group_poll(ttransport->listen_sock_group);
1433 	if (count < 0) {
1434 		SPDK_ERRLOG("Fail in TCP listen socket group poll\n");
1435 	}
1436 
1437 	return count != 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1438 }
1439 
1440 static void
1441 nvmf_tcp_accept_cb(void *ctx, struct spdk_sock_group *group, struct spdk_sock *sock)
1442 {
1443 	struct spdk_nvmf_tcp_port *port = ctx;
1444 
1445 	nvmf_tcp_port_accept(port);
1446 }
1447 
1448 static void
1449 nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
1450 		  struct spdk_nvme_transport_id *trid,
1451 		  struct spdk_nvmf_discovery_log_page_entry *entry)
1452 {
1453 	struct spdk_nvmf_tcp_port *port;
1454 	struct spdk_nvmf_tcp_transport *ttransport;
1455 
1456 	entry->trtype = SPDK_NVMF_TRTYPE_TCP;
1457 	entry->adrfam = trid->adrfam;
1458 
1459 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
1460 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
1461 
1462 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1463 	port = nvmf_tcp_find_port(ttransport, trid);
1464 
1465 	assert(port != NULL);
1466 
1467 	if (strcmp(spdk_sock_get_impl_name(port->listen_sock), "ssl") == 0) {
1468 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_REQUIRED;
1469 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_TLS_1_3;
1470 	} else {
1471 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
1472 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
1473 	}
1474 }
1475 
1476 static struct spdk_nvmf_tcp_control_msg_list *
1477 nvmf_tcp_control_msg_list_create(uint16_t num_messages)
1478 {
1479 	struct spdk_nvmf_tcp_control_msg_list *list;
1480 	struct spdk_nvmf_tcp_control_msg *msg;
1481 	uint16_t i;
1482 
1483 	list = calloc(1, sizeof(*list));
1484 	if (!list) {
1485 		SPDK_ERRLOG("Failed to allocate memory for list structure\n");
1486 		return NULL;
1487 	}
1488 
1489 	list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
1490 				     NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
1491 	if (!list->msg_buf) {
1492 		SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
1493 		free(list);
1494 		return NULL;
1495 	}
1496 
1497 	STAILQ_INIT(&list->free_msgs);
1498 
1499 	for (i = 0; i < num_messages; i++) {
1500 		msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
1501 				SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1502 		STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
1503 	}
1504 
1505 	return list;
1506 }
1507 
1508 static void
1509 nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
1510 {
1511 	if (!list) {
1512 		return;
1513 	}
1514 
1515 	spdk_free(list->msg_buf);
1516 	free(list);
1517 }
1518 
1519 static struct spdk_nvmf_transport_poll_group *
1520 nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport,
1521 			   struct spdk_nvmf_poll_group *group)
1522 {
1523 	struct spdk_nvmf_tcp_transport	*ttransport;
1524 	struct spdk_nvmf_tcp_poll_group *tgroup;
1525 
1526 	if (spdk_interrupt_mode_is_enabled()) {
1527 		SPDK_ERRLOG("TCP transport does not support interrupt mode\n");
1528 		return NULL;
1529 	}
1530 
1531 	tgroup = calloc(1, sizeof(*tgroup));
1532 	if (!tgroup) {
1533 		return NULL;
1534 	}
1535 
1536 	tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
1537 	if (!tgroup->sock_group) {
1538 		goto cleanup;
1539 	}
1540 
1541 	TAILQ_INIT(&tgroup->qpairs);
1542 	TAILQ_INIT(&tgroup->await_req);
1543 
1544 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1545 
1546 	if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
1547 		SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
1548 			      "Creating control messages list\n", transport->opts.in_capsule_data_size,
1549 			      SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1550 		tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
1551 		if (!tgroup->control_msg_list) {
1552 			goto cleanup;
1553 		}
1554 	}
1555 
1556 	tgroup->accel_channel = spdk_accel_get_io_channel();
1557 	if (spdk_unlikely(!tgroup->accel_channel)) {
1558 		SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
1559 		goto cleanup;
1560 	}
1561 
1562 	TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link);
1563 	if (ttransport->next_pg == NULL) {
1564 		ttransport->next_pg = tgroup;
1565 	}
1566 
1567 	return &tgroup->group;
1568 
1569 cleanup:
1570 	nvmf_tcp_poll_group_destroy(&tgroup->group);
1571 	return NULL;
1572 }
1573 
1574 static struct spdk_nvmf_transport_poll_group *
1575 nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
1576 {
1577 	struct spdk_nvmf_tcp_transport *ttransport;
1578 	struct spdk_nvmf_tcp_poll_group **pg;
1579 	struct spdk_nvmf_tcp_qpair *tqpair;
1580 	struct spdk_sock_group *group = NULL, *hint = NULL;
1581 	int rc;
1582 
1583 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
1584 
1585 	if (TAILQ_EMPTY(&ttransport->poll_groups)) {
1586 		return NULL;
1587 	}
1588 
1589 	pg = &ttransport->next_pg;
1590 	assert(*pg != NULL);
1591 	hint = (*pg)->sock_group;
1592 
1593 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1594 	rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint);
1595 	if (rc != 0) {
1596 		return NULL;
1597 	} else if (group != NULL) {
1598 		/* Optimal poll group was found */
1599 		return spdk_sock_group_get_ctx(group);
1600 	}
1601 
1602 	/* The hint was used for optimal poll group, advance next_pg. */
1603 	*pg = TAILQ_NEXT(*pg, link);
1604 	if (*pg == NULL) {
1605 		*pg = TAILQ_FIRST(&ttransport->poll_groups);
1606 	}
1607 
1608 	return spdk_sock_group_get_ctx(hint);
1609 }
1610 
1611 static void
1612 nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
1613 {
1614 	struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup;
1615 	struct spdk_nvmf_tcp_transport *ttransport;
1616 
1617 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
1618 	spdk_sock_group_close(&tgroup->sock_group);
1619 	if (tgroup->control_msg_list) {
1620 		nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
1621 	}
1622 
1623 	if (tgroup->accel_channel) {
1624 		spdk_put_io_channel(tgroup->accel_channel);
1625 	}
1626 
1627 	if (tgroup->group.transport == NULL) {
1628 		/* Transport can be NULL when nvmf_tcp_poll_group_create()
1629 		 * calls this function directly in a failure path. */
1630 		free(tgroup);
1631 		return;
1632 	}
1633 
1634 	ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport);
1635 
1636 	next_tgroup = TAILQ_NEXT(tgroup, link);
1637 	TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link);
1638 	if (next_tgroup == NULL) {
1639 		next_tgroup = TAILQ_FIRST(&ttransport->poll_groups);
1640 	}
1641 	if (ttransport->next_pg == tgroup) {
1642 		ttransport->next_pg = next_tgroup;
1643 	}
1644 
1645 	free(tgroup);
1646 }
1647 
1648 static void
1649 nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1650 			      enum nvme_tcp_pdu_recv_state state)
1651 {
1652 	if (tqpair->recv_state == state) {
1653 		SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
1654 			    tqpair, state);
1655 		return;
1656 	}
1657 
1658 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_QUIESCING)) {
1659 		if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH && tqpair->pdu_in_progress) {
1660 			SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, tqpair->pdu_in_progress, slist);
1661 			tqpair->tcp_pdu_working_count--;
1662 		}
1663 	}
1664 
1665 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_ERROR)) {
1666 		assert(tqpair->tcp_pdu_working_count == 0);
1667 	}
1668 
1669 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1670 		/* When leaving the await req state, move the qpair to the main list */
1671 		TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link);
1672 		TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link);
1673 	} else if (state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1674 		TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link);
1675 		TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link);
1676 	}
1677 
1678 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
1679 	tqpair->recv_state = state;
1680 
1681 	spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0,
1682 			  (uint64_t)tqpair->recv_state);
1683 }
1684 
1685 static int
1686 nvmf_tcp_qpair_handle_timeout(void *ctx)
1687 {
1688 	struct spdk_nvmf_tcp_qpair *tqpair = ctx;
1689 
1690 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1691 
1692 	SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
1693 		    SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
1694 
1695 	nvmf_tcp_qpair_disconnect(tqpair);
1696 	return SPDK_POLLER_BUSY;
1697 }
1698 
1699 static void
1700 nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
1701 {
1702 	struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
1703 
1704 	if (!tqpair->timeout_poller) {
1705 		tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
1706 					 SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
1707 	}
1708 }
1709 
1710 static void
1711 nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
1712 			   enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
1713 {
1714 	struct nvme_tcp_pdu *rsp_pdu;
1715 	struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
1716 	uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
1717 	uint32_t copy_len;
1718 
1719 	rsp_pdu = tqpair->mgmt_pdu;
1720 
1721 	c2h_term_req = &rsp_pdu->hdr.term_req;
1722 	c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
1723 	c2h_term_req->common.hlen = c2h_term_req_hdr_len;
1724 	c2h_term_req->fes = fes;
1725 
1726 	if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1727 	    (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1728 		DSET32(&c2h_term_req->fei, error_offset);
1729 	}
1730 
1731 	copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
1732 
1733 	/* Copy the error info into the buffer */
1734 	memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
1735 	nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
1736 
1737 	/* Contain the header of the wrong received pdu */
1738 	c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
1739 	tqpair->wait_terminate = true;
1740 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1741 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair);
1742 }
1743 
1744 static void
1745 nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1746 				struct spdk_nvmf_tcp_qpair *tqpair,
1747 				struct nvme_tcp_pdu *pdu)
1748 {
1749 	struct spdk_nvmf_tcp_req *tcp_req;
1750 
1751 	assert(pdu->psh_valid_bytes == pdu->psh_len);
1752 	assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
1753 
1754 	tcp_req = nvmf_tcp_req_get(tqpair);
1755 	if (!tcp_req) {
1756 		/* Directly return and make the allocation retry again.  This can happen if we're
1757 		 * using asynchronous writes to send the response to the host or when releasing
1758 		 * zero-copy buffers after a response has been sent.  In both cases, the host might
1759 		 * receive the response before we've finished processing the request and is free to
1760 		 * send another one.
1761 		 */
1762 		if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 ||
1763 		    tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) {
1764 			return;
1765 		}
1766 
1767 		/* The host sent more commands than the maximum queue depth. */
1768 		SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
1769 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1770 		return;
1771 	}
1772 
1773 	pdu->req = tcp_req;
1774 	assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
1775 	nvmf_tcp_req_process(ttransport, tcp_req);
1776 }
1777 
1778 static void
1779 nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1780 				    struct spdk_nvmf_tcp_qpair *tqpair,
1781 				    struct nvme_tcp_pdu *pdu)
1782 {
1783 	struct spdk_nvmf_tcp_req *tcp_req;
1784 	struct spdk_nvme_tcp_cmd *capsule_cmd;
1785 	uint32_t error_offset = 0;
1786 	enum spdk_nvme_tcp_term_req_fes fes;
1787 	struct spdk_nvme_cpl *rsp;
1788 
1789 	capsule_cmd = &pdu->hdr.capsule_cmd;
1790 	tcp_req = pdu->req;
1791 	assert(tcp_req != NULL);
1792 
1793 	/* Zero-copy requests don't support ICD */
1794 	assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req));
1795 
1796 	if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
1797 		SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
1798 			    SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
1799 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1800 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
1801 		goto err;
1802 	}
1803 
1804 	rsp = &tcp_req->req.rsp->nvme_cpl;
1805 	if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1806 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1807 	} else {
1808 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1809 	}
1810 
1811 	nvmf_tcp_req_process(ttransport, tcp_req);
1812 
1813 	return;
1814 err:
1815 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1816 }
1817 
1818 static void
1819 nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1820 			     struct spdk_nvmf_tcp_qpair *tqpair,
1821 			     struct nvme_tcp_pdu *pdu)
1822 {
1823 	struct spdk_nvmf_tcp_req *tcp_req;
1824 	uint32_t error_offset = 0;
1825 	enum spdk_nvme_tcp_term_req_fes fes = 0;
1826 	struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
1827 
1828 	h2c_data = &pdu->hdr.h2c_data;
1829 
1830 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
1831 		      tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
1832 
1833 	if (h2c_data->ttag > tqpair->resource_count) {
1834 		SPDK_DEBUGLOG(nvmf_tcp, "ttag %u is larger than allowed %u.\n", h2c_data->ttag,
1835 			      tqpair->resource_count);
1836 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1837 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1838 		goto err;
1839 	}
1840 
1841 	tcp_req = &tqpair->reqs[h2c_data->ttag - 1];
1842 
1843 	if (spdk_unlikely(tcp_req->state != TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER &&
1844 			  tcp_req->state != TCP_REQUEST_STATE_AWAITING_R2T_ACK)) {
1845 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, has error state in %d\n", tcp_req, tqpair,
1846 			      tcp_req->state);
1847 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1848 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1849 		goto err;
1850 	}
1851 
1852 	if (spdk_unlikely(tcp_req->req.cmd->nvme_cmd.cid != h2c_data->cccid)) {
1853 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, expected %u but %u for cccid.\n", tcp_req, tqpair,
1854 			      tcp_req->req.cmd->nvme_cmd.cid, h2c_data->cccid);
1855 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1856 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
1857 		goto err;
1858 	}
1859 
1860 	if (tcp_req->h2c_offset != h2c_data->datao) {
1861 		SPDK_DEBUGLOG(nvmf_tcp,
1862 			      "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
1863 			      tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
1864 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1865 		goto err;
1866 	}
1867 
1868 	if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
1869 		SPDK_DEBUGLOG(nvmf_tcp,
1870 			      "tcp_req(%p), tqpair=%p,  (datao=%u + datal=%u) exceeds requested length=%u\n",
1871 			      tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
1872 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1873 		goto err;
1874 	}
1875 
1876 	pdu->req = tcp_req;
1877 
1878 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
1879 		pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
1880 	}
1881 
1882 	nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
1883 				  h2c_data->datao, h2c_data->datal);
1884 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1885 	return;
1886 
1887 err:
1888 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1889 }
1890 
1891 static void
1892 nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
1893 			       struct spdk_nvmf_tcp_qpair *tqpair)
1894 {
1895 	struct nvme_tcp_pdu *rsp_pdu;
1896 	struct spdk_nvme_tcp_rsp *capsule_resp;
1897 
1898 	SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
1899 
1900 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1901 	assert(rsp_pdu != NULL);
1902 
1903 	capsule_resp = &rsp_pdu->hdr.capsule_resp;
1904 	capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
1905 	capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
1906 	capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
1907 	if (tqpair->host_hdgst_enable) {
1908 		capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1909 		capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1910 	}
1911 
1912 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req);
1913 }
1914 
1915 static void
1916 nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
1917 {
1918 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1919 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
1920 					     struct spdk_nvmf_tcp_qpair, qpair);
1921 
1922 	assert(tqpair != NULL);
1923 
1924 	if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
1925 		SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
1926 			      tcp_req->req.length);
1927 		_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
1928 		return;
1929 	}
1930 
1931 	if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
1932 		nvmf_tcp_request_free(tcp_req);
1933 	} else {
1934 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
1935 	}
1936 }
1937 
1938 static void
1939 nvmf_tcp_r2t_complete(void *cb_arg)
1940 {
1941 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1942 	struct spdk_nvmf_tcp_transport *ttransport;
1943 
1944 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
1945 				      struct spdk_nvmf_tcp_transport, transport);
1946 
1947 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
1948 
1949 	if (tcp_req->h2c_offset == tcp_req->req.length) {
1950 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1951 		nvmf_tcp_req_process(ttransport, tcp_req);
1952 	}
1953 }
1954 
1955 static void
1956 nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1957 		      struct spdk_nvmf_tcp_req *tcp_req)
1958 {
1959 	struct nvme_tcp_pdu *rsp_pdu;
1960 	struct spdk_nvme_tcp_r2t_hdr *r2t;
1961 
1962 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1963 	assert(rsp_pdu != NULL);
1964 
1965 	r2t = &rsp_pdu->hdr.r2t;
1966 	r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
1967 	r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
1968 
1969 	if (tqpair->host_hdgst_enable) {
1970 		r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1971 		r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1972 	}
1973 
1974 	r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
1975 	r2t->ttag = tcp_req->ttag;
1976 	r2t->r2to = tcp_req->h2c_offset;
1977 	r2t->r2tl = tcp_req->req.length;
1978 
1979 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
1980 
1981 	SPDK_DEBUGLOG(nvmf_tcp,
1982 		      "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
1983 		      tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
1984 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req);
1985 }
1986 
1987 static void
1988 nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1989 				 struct spdk_nvmf_tcp_qpair *tqpair,
1990 				 struct nvme_tcp_pdu *pdu)
1991 {
1992 	struct spdk_nvmf_tcp_req *tcp_req;
1993 	struct spdk_nvme_cpl *rsp;
1994 
1995 	tcp_req = pdu->req;
1996 	assert(tcp_req != NULL);
1997 
1998 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1999 
2000 	tcp_req->h2c_offset += pdu->data_len;
2001 
2002 	/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
2003 	 * acknowledged before moving on. */
2004 	if (tcp_req->h2c_offset == tcp_req->req.length &&
2005 	    tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
2006 		/* After receiving all the h2c data, we need to check whether there is
2007 		 * transient transport error */
2008 		rsp = &tcp_req->req.rsp->nvme_cpl;
2009 		if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
2010 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2011 		} else {
2012 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2013 		}
2014 		nvmf_tcp_req_process(ttransport, tcp_req);
2015 	}
2016 }
2017 
2018 static void
2019 nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
2020 {
2021 	SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
2022 		    spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
2023 	if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
2024 	    (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
2025 		SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
2026 			      DGET32(h2c_term_req->fei));
2027 	}
2028 }
2029 
2030 static void
2031 nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2032 				 struct nvme_tcp_pdu *pdu)
2033 {
2034 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
2035 	uint32_t error_offset = 0;
2036 	enum spdk_nvme_tcp_term_req_fes fes;
2037 
2038 	if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
2039 		SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
2040 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2041 		error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
2042 		goto end;
2043 	}
2044 
2045 	/* set the data buffer */
2046 	nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
2047 			      h2c_term_req->common.plen - h2c_term_req->common.hlen);
2048 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2049 	return;
2050 end:
2051 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2052 }
2053 
2054 static void
2055 nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2056 				     struct nvme_tcp_pdu *pdu)
2057 {
2058 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
2059 
2060 	nvmf_tcp_h2c_term_req_dump(h2c_term_req);
2061 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2062 }
2063 
2064 static void
2065 _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2066 {
2067 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2068 			struct spdk_nvmf_tcp_transport, transport);
2069 
2070 	switch (pdu->hdr.common.pdu_type) {
2071 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2072 		nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
2073 		break;
2074 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2075 		nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
2076 		break;
2077 
2078 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2079 		nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
2080 		break;
2081 
2082 	default:
2083 		/* The code should not go to here */
2084 		SPDK_ERRLOG("ERROR pdu type %d\n", pdu->hdr.common.pdu_type);
2085 		break;
2086 	}
2087 	SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
2088 	tqpair->tcp_pdu_working_count--;
2089 }
2090 
2091 static inline void
2092 nvmf_tcp_req_set_cpl(struct spdk_nvmf_tcp_req *treq, int sct, int sc)
2093 {
2094 	treq->req.rsp->nvme_cpl.status.sct = sct;
2095 	treq->req.rsp->nvme_cpl.status.sc = sc;
2096 	treq->req.rsp->nvme_cpl.cid = treq->req.cmd->nvme_cmd.cid;
2097 }
2098 
2099 static void
2100 data_crc32_calc_done(void *cb_arg, int status)
2101 {
2102 	struct nvme_tcp_pdu *pdu = cb_arg;
2103 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
2104 
2105 	/* async crc32 calculation is failed and use direct calculation to check */
2106 	if (spdk_unlikely(status)) {
2107 		SPDK_ERRLOG("Data digest on tqpair=(%p) with pdu=%p failed to be calculated asynchronously\n",
2108 			    tqpair, pdu);
2109 		pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2110 	}
2111 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
2112 	if (!MATCH_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32)) {
2113 		SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2114 		assert(pdu->req != NULL);
2115 		nvmf_tcp_req_set_cpl(pdu->req, SPDK_NVME_SCT_GENERIC,
2116 				     SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR);
2117 	}
2118 	_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2119 }
2120 
2121 static void
2122 nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2123 {
2124 	int rc = 0;
2125 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2126 	tqpair->pdu_in_progress = NULL;
2127 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2128 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2129 	/* check data digest if need */
2130 	if (pdu->ddgst_enable) {
2131 		if (tqpair->qpair.qid != 0 && !pdu->dif_ctx && tqpair->group &&
2132 		    (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)) {
2133 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
2134 						       pdu->data_iovcnt, 0, data_crc32_calc_done, pdu);
2135 			if (spdk_likely(rc == 0)) {
2136 				return;
2137 			}
2138 		} else {
2139 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2140 		}
2141 		data_crc32_calc_done(pdu, rc);
2142 	} else {
2143 		_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2144 	}
2145 }
2146 
2147 static void
2148 nvmf_tcp_send_icresp_complete(void *cb_arg)
2149 {
2150 	struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
2151 
2152 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_RUNNING);
2153 }
2154 
2155 static void
2156 nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
2157 		      struct spdk_nvmf_tcp_qpair *tqpair,
2158 		      struct nvme_tcp_pdu *pdu)
2159 {
2160 	struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
2161 	struct nvme_tcp_pdu *rsp_pdu;
2162 	struct spdk_nvme_tcp_ic_resp *ic_resp;
2163 	uint32_t error_offset = 0;
2164 	enum spdk_nvme_tcp_term_req_fes fes;
2165 
2166 	/* Only PFV 0 is defined currently */
2167 	if (ic_req->pfv != 0) {
2168 		SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
2169 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2170 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
2171 		goto end;
2172 	}
2173 
2174 	/* This value is 0’s based value in units of dwords should not be larger than SPDK_NVME_TCP_HPDA_MAX */
2175 	if (ic_req->hpda > SPDK_NVME_TCP_HPDA_MAX) {
2176 		SPDK_ERRLOG("ICReq HPDA out of range 0 to 31, got %u\n", ic_req->hpda);
2177 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2178 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, hpda);
2179 		goto end;
2180 	}
2181 
2182 	/* MAXR2T is 0's based */
2183 	SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
2184 
2185 	tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
2186 	if (!tqpair->host_hdgst_enable) {
2187 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2188 	}
2189 
2190 	tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
2191 	if (!tqpair->host_ddgst_enable) {
2192 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2193 	}
2194 
2195 	tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
2196 	/* Now that we know whether digests are enabled, properly size the receive buffer */
2197 	if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
2198 		SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
2199 			     tqpair,
2200 			     tqpair->recv_buf_size);
2201 		/* Not fatal. */
2202 	}
2203 
2204 	tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
2205 	SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
2206 
2207 	rsp_pdu = tqpair->mgmt_pdu;
2208 
2209 	ic_resp = &rsp_pdu->hdr.ic_resp;
2210 	ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
2211 	ic_resp->common.hlen = ic_resp->common.plen =  sizeof(*ic_resp);
2212 	ic_resp->pfv = 0;
2213 	ic_resp->cpda = tqpair->cpda;
2214 	ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
2215 	ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
2216 	ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
2217 
2218 	SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
2219 	SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
2220 
2221 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INITIALIZING);
2222 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair);
2223 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2224 	return;
2225 end:
2226 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2227 }
2228 
2229 static void
2230 nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2231 			struct spdk_nvmf_tcp_transport *ttransport)
2232 {
2233 	struct nvme_tcp_pdu *pdu;
2234 	int rc;
2235 	uint32_t crc32c, error_offset = 0;
2236 	enum spdk_nvme_tcp_term_req_fes fes;
2237 
2238 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2239 	pdu = tqpair->pdu_in_progress;
2240 
2241 	SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
2242 		      pdu->hdr.common.pdu_type);
2243 	/* check header digest if needed */
2244 	if (pdu->has_hdgst) {
2245 		SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
2246 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
2247 		rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
2248 		if (rc == 0) {
2249 			SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2250 			fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
2251 			nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2252 			return;
2253 
2254 		}
2255 	}
2256 
2257 	switch (pdu->hdr.common.pdu_type) {
2258 	case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
2259 		nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
2260 		break;
2261 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2262 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
2263 		break;
2264 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2265 		nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
2266 		break;
2267 
2268 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2269 		nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
2270 		break;
2271 
2272 	default:
2273 		SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
2274 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2275 		error_offset = 1;
2276 		nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2277 		break;
2278 	}
2279 }
2280 
2281 static void
2282 nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
2283 {
2284 	struct nvme_tcp_pdu *pdu;
2285 	uint32_t error_offset = 0;
2286 	enum spdk_nvme_tcp_term_req_fes fes;
2287 	uint8_t expected_hlen, pdo;
2288 	bool plen_error = false, pdo_error = false;
2289 
2290 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2291 	pdu = tqpair->pdu_in_progress;
2292 	assert(pdu);
2293 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
2294 		if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) {
2295 			SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
2296 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2297 			goto err;
2298 		}
2299 		expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
2300 		if (pdu->hdr.common.plen != expected_hlen) {
2301 			plen_error = true;
2302 		}
2303 	} else {
2304 		if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) {
2305 			SPDK_ERRLOG("The TCP/IP connection is not negotiated\n");
2306 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2307 			goto err;
2308 		}
2309 
2310 		switch (pdu->hdr.common.pdu_type) {
2311 		case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2312 			expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
2313 			pdo = pdu->hdr.common.pdo;
2314 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2315 				pdo_error = true;
2316 				break;
2317 			}
2318 
2319 			if (pdu->hdr.common.plen < expected_hlen) {
2320 				plen_error = true;
2321 			}
2322 			break;
2323 		case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2324 			expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
2325 			pdo = pdu->hdr.common.pdo;
2326 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2327 				pdo_error = true;
2328 				break;
2329 			}
2330 			if (pdu->hdr.common.plen < expected_hlen) {
2331 				plen_error = true;
2332 			}
2333 			break;
2334 
2335 		case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2336 			expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
2337 			if ((pdu->hdr.common.plen <= expected_hlen) ||
2338 			    (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
2339 				plen_error = true;
2340 			}
2341 			break;
2342 
2343 		default:
2344 			SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
2345 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2346 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
2347 			goto err;
2348 		}
2349 	}
2350 
2351 	if (pdu->hdr.common.hlen != expected_hlen) {
2352 		SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
2353 			    pdu->hdr.common.pdu_type,
2354 			    expected_hlen, pdu->hdr.common.hlen, tqpair);
2355 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2356 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
2357 		goto err;
2358 	} else if (pdo_error) {
2359 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2360 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
2361 	} else if (plen_error) {
2362 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2363 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2364 		goto err;
2365 	} else {
2366 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2367 		nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
2368 		return;
2369 	}
2370 err:
2371 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2372 }
2373 
2374 static int
2375 nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
2376 {
2377 	int rc = 0;
2378 	struct nvme_tcp_pdu *pdu;
2379 	enum nvme_tcp_pdu_recv_state prev_state;
2380 	uint32_t data_len;
2381 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2382 			struct spdk_nvmf_tcp_transport, transport);
2383 
2384 	/* The loop here is to allow for several back-to-back state changes. */
2385 	do {
2386 		prev_state = tqpair->recv_state;
2387 		SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
2388 
2389 		pdu = tqpair->pdu_in_progress;
2390 		assert(pdu != NULL ||
2391 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY ||
2392 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_QUIESCING ||
2393 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
2394 
2395 		switch (tqpair->recv_state) {
2396 		/* Wait for the common header  */
2397 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
2398 			if (!pdu) {
2399 				pdu = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
2400 				if (spdk_unlikely(!pdu)) {
2401 					return NVME_TCP_PDU_IN_PROGRESS;
2402 				}
2403 				SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
2404 				tqpair->pdu_in_progress = pdu;
2405 				tqpair->tcp_pdu_working_count++;
2406 			}
2407 			memset(pdu, 0, offsetof(struct nvme_tcp_pdu, qpair));
2408 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2409 		/* FALLTHROUGH */
2410 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
2411 			if (spdk_unlikely(tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING)) {
2412 				return rc;
2413 			}
2414 
2415 			rc = nvme_tcp_read_data(tqpair->sock,
2416 						sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
2417 						(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
2418 			if (rc < 0) {
2419 				SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
2420 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2421 				break;
2422 			} else if (rc > 0) {
2423 				pdu->ch_valid_bytes += rc;
2424 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0);
2425 			}
2426 
2427 			if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
2428 				return NVME_TCP_PDU_IN_PROGRESS;
2429 			}
2430 
2431 			/* The command header of this PDU has now been read from the socket. */
2432 			nvmf_tcp_pdu_ch_handle(tqpair);
2433 			break;
2434 		/* Wait for the pdu specific header  */
2435 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
2436 			rc = nvme_tcp_read_data(tqpair->sock,
2437 						pdu->psh_len - pdu->psh_valid_bytes,
2438 						(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
2439 			if (rc < 0) {
2440 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2441 				break;
2442 			} else if (rc > 0) {
2443 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0);
2444 				pdu->psh_valid_bytes += rc;
2445 			}
2446 
2447 			if (pdu->psh_valid_bytes < pdu->psh_len) {
2448 				return NVME_TCP_PDU_IN_PROGRESS;
2449 			}
2450 
2451 			/* All header(ch, psh, head digits) of this PDU has now been read from the socket. */
2452 			nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
2453 			break;
2454 		/* Wait for the req slot */
2455 		case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
2456 			nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
2457 			break;
2458 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
2459 			/* check whether the data is valid, if not we just return */
2460 			if (!pdu->data_len) {
2461 				return NVME_TCP_PDU_IN_PROGRESS;
2462 			}
2463 
2464 			data_len = pdu->data_len;
2465 			/* data digest */
2466 			if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
2467 					  tqpair->host_ddgst_enable)) {
2468 				data_len += SPDK_NVME_TCP_DIGEST_LEN;
2469 				pdu->ddgst_enable = true;
2470 			}
2471 
2472 			rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
2473 			if (rc < 0) {
2474 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2475 				break;
2476 			}
2477 			pdu->rw_offset += rc;
2478 
2479 			if (pdu->rw_offset < data_len) {
2480 				return NVME_TCP_PDU_IN_PROGRESS;
2481 			}
2482 
2483 			/* Generate and insert DIF to whole data block received if DIF is enabled */
2484 			if (spdk_unlikely(pdu->dif_ctx != NULL) &&
2485 			    spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt, 0, data_len,
2486 						     pdu->dif_ctx) != 0) {
2487 				SPDK_ERRLOG("DIF generate failed\n");
2488 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2489 				break;
2490 			}
2491 
2492 			/* All of this PDU has now been read from the socket. */
2493 			nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2494 			break;
2495 		case NVME_TCP_PDU_RECV_STATE_QUIESCING:
2496 			if (tqpair->tcp_pdu_working_count != 0) {
2497 				return NVME_TCP_PDU_IN_PROGRESS;
2498 			}
2499 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
2500 			break;
2501 		case NVME_TCP_PDU_RECV_STATE_ERROR:
2502 			if (spdk_sock_is_connected(tqpair->sock) && tqpair->wait_terminate) {
2503 				return NVME_TCP_PDU_IN_PROGRESS;
2504 			}
2505 			return NVME_TCP_PDU_FATAL;
2506 		default:
2507 			SPDK_ERRLOG("The state(%d) is invalid\n", tqpair->recv_state);
2508 			abort();
2509 			break;
2510 		}
2511 	} while (tqpair->recv_state != prev_state);
2512 
2513 	return rc;
2514 }
2515 
2516 static inline void *
2517 nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list)
2518 {
2519 	struct spdk_nvmf_tcp_control_msg *msg;
2520 
2521 	assert(list);
2522 
2523 	msg = STAILQ_FIRST(&list->free_msgs);
2524 	if (!msg) {
2525 		SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
2526 		return NULL;
2527 	}
2528 	STAILQ_REMOVE_HEAD(&list->free_msgs, link);
2529 	return msg;
2530 }
2531 
2532 static inline void
2533 nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
2534 {
2535 	struct spdk_nvmf_tcp_control_msg *msg = _msg;
2536 
2537 	assert(list);
2538 	STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
2539 }
2540 
2541 static int
2542 nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
2543 		       struct spdk_nvmf_transport *transport,
2544 		       struct spdk_nvmf_transport_poll_group *group)
2545 {
2546 	struct spdk_nvmf_request		*req = &tcp_req->req;
2547 	struct spdk_nvme_cmd			*cmd;
2548 	struct spdk_nvme_sgl_descriptor		*sgl;
2549 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2550 	enum spdk_nvme_tcp_term_req_fes		fes;
2551 	struct nvme_tcp_pdu			*pdu;
2552 	struct spdk_nvmf_tcp_qpair		*tqpair;
2553 	uint32_t				length, error_offset = 0;
2554 
2555 	cmd = &req->cmd->nvme_cmd;
2556 	sgl = &cmd->dptr.sgl1;
2557 
2558 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
2559 	    sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
2560 		/* get request length from sgl */
2561 		length = sgl->unkeyed.length;
2562 		if (spdk_unlikely(length > transport->opts.max_io_size)) {
2563 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
2564 				    length, transport->opts.max_io_size);
2565 			fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2566 			goto fatal_err;
2567 		}
2568 
2569 		/* fill request length and populate iovs */
2570 		req->length = length;
2571 
2572 		SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
2573 
2574 		if (spdk_unlikely(req->dif_enabled)) {
2575 			req->dif.orig_length = length;
2576 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2577 			req->dif.elba_length = length;
2578 		}
2579 
2580 		if (nvmf_ctrlr_use_zcopy(req)) {
2581 			SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req);
2582 			req->data_from_pool = false;
2583 			return 0;
2584 		}
2585 
2586 		if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
2587 			/* No available buffers. Queue this request up. */
2588 			SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
2589 				      tcp_req);
2590 			return 0;
2591 		}
2592 
2593 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
2594 			      tcp_req, req->iovcnt, req->iov[0].iov_base);
2595 
2596 		return 0;
2597 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
2598 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
2599 		uint64_t offset = sgl->address;
2600 		uint32_t max_len = transport->opts.in_capsule_data_size;
2601 
2602 		assert(tcp_req->has_in_capsule_data);
2603 		/* Capsule Cmd with In-capsule Data should get data length from pdu header */
2604 		tqpair = tcp_req->pdu->qpair;
2605 		/* receiving pdu is not same with the pdu in tcp_req */
2606 		pdu = tqpair->pdu_in_progress;
2607 		length = pdu->hdr.common.plen - pdu->psh_len - sizeof(struct spdk_nvme_tcp_common_pdu_hdr);
2608 		if (tqpair->host_ddgst_enable) {
2609 			length -= SPDK_NVME_TCP_DIGEST_LEN;
2610 		}
2611 		/* This error is not defined in NVMe/TCP spec, take this error as fatal error */
2612 		if (spdk_unlikely(length != sgl->unkeyed.length)) {
2613 			SPDK_ERRLOG("In-Capsule Data length 0x%x is not equal to SGL data length 0x%x\n",
2614 				    length, sgl->unkeyed.length);
2615 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2616 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2617 			goto fatal_err;
2618 		}
2619 
2620 		SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
2621 			      offset, length);
2622 
2623 		/* The NVMe/TCP transport does not use ICDOFF to control the in-capsule data offset. ICDOFF should be '0' */
2624 		if (spdk_unlikely(offset != 0)) {
2625 			/* Not defined fatal error in NVMe/TCP spec, handle this error as a fatal error */
2626 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " should be ZERO in NVMe/TCP\n", offset);
2627 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2628 			error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.address);
2629 			goto fatal_err;
2630 		}
2631 
2632 		if (spdk_unlikely(length > max_len)) {
2633 			/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
2634 			if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
2635 			    (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
2636 
2637 				/* Get a buffer from dedicated list */
2638 				SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
2639 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2640 				assert(tgroup->control_msg_list);
2641 				req->iov[0].iov_base = nvmf_tcp_control_msg_get(tgroup->control_msg_list);
2642 				if (!req->iov[0].iov_base) {
2643 					/* No available buffers. Queue this request up. */
2644 					SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
2645 					return 0;
2646 				}
2647 			} else {
2648 				SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
2649 					    length, max_len);
2650 				fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2651 				goto fatal_err;
2652 			}
2653 		} else {
2654 			req->iov[0].iov_base = tcp_req->buf;
2655 		}
2656 
2657 		req->length = length;
2658 		req->data_from_pool = false;
2659 
2660 		if (spdk_unlikely(req->dif_enabled)) {
2661 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2662 			req->dif.elba_length = length;
2663 		}
2664 
2665 		req->iov[0].iov_len = length;
2666 		req->iovcnt = 1;
2667 
2668 		return 0;
2669 	}
2670 	/* If we want to handle the problem here, then we can't skip the following data segment.
2671 	 * Because this function runs before reading data part, now handle all errors as fatal errors. */
2672 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2673 		    sgl->generic.type, sgl->generic.subtype);
2674 	fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2675 	error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.generic);
2676 fatal_err:
2677 	nvmf_tcp_send_c2h_term_req(tcp_req->pdu->qpair, tcp_req->pdu, fes, error_offset);
2678 	return -1;
2679 }
2680 
2681 static inline enum spdk_nvme_media_error_status_code
2682 nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
2683 	enum spdk_nvme_media_error_status_code result;
2684 
2685 	switch (err_type)
2686 	{
2687 	case SPDK_DIF_REFTAG_ERROR:
2688 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
2689 		break;
2690 	case SPDK_DIF_APPTAG_ERROR:
2691 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
2692 		break;
2693 	case SPDK_DIF_GUARD_ERROR:
2694 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
2695 		break;
2696 	default:
2697 		SPDK_UNREACHABLE();
2698 		break;
2699 	}
2700 
2701 	return result;
2702 }
2703 
2704 static void
2705 _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2706 			struct spdk_nvmf_tcp_req *tcp_req)
2707 {
2708 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
2709 				tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
2710 	struct nvme_tcp_pdu *rsp_pdu;
2711 	struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
2712 	uint32_t plen, pdo, alignment;
2713 	int rc;
2714 
2715 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2716 
2717 	rsp_pdu = tcp_req->pdu;
2718 	assert(rsp_pdu != NULL);
2719 
2720 	c2h_data = &rsp_pdu->hdr.c2h_data;
2721 	c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
2722 	plen = c2h_data->common.hlen = sizeof(*c2h_data);
2723 
2724 	if (tqpair->host_hdgst_enable) {
2725 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2726 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2727 	}
2728 
2729 	/* set the psh */
2730 	c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2731 	c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
2732 	c2h_data->datao = tcp_req->pdu->rw_offset;
2733 
2734 	/* set the padding */
2735 	rsp_pdu->padding_len = 0;
2736 	pdo = plen;
2737 	if (tqpair->cpda) {
2738 		alignment = (tqpair->cpda + 1) << 2;
2739 		if (plen % alignment != 0) {
2740 			pdo = (plen + alignment) / alignment * alignment;
2741 			rsp_pdu->padding_len = pdo - plen;
2742 			plen = pdo;
2743 		}
2744 	}
2745 
2746 	c2h_data->common.pdo = pdo;
2747 	plen += c2h_data->datal;
2748 	if (tqpair->host_ddgst_enable) {
2749 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
2750 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2751 	}
2752 
2753 	c2h_data->common.plen = plen;
2754 
2755 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2756 		rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2757 	}
2758 
2759 	nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2760 				  c2h_data->datao, c2h_data->datal);
2761 
2762 
2763 	c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
2764 	/* Need to send the capsule response if response is not all 0 */
2765 	if (ttransport->tcp_opts.c2h_success &&
2766 	    tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
2767 		c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
2768 	}
2769 
2770 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2771 		struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
2772 		struct spdk_dif_error err_blk = {};
2773 		uint32_t mapped_length = 0;
2774 		uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
2775 		uint32_t ddgst_len = 0;
2776 
2777 		if (tqpair->host_ddgst_enable) {
2778 			/* Data digest consumes additional iov entry */
2779 			available_iovs--;
2780 			/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
2781 			ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
2782 			c2h_data->common.plen -= ddgst_len;
2783 		}
2784 		/* Temp call to estimate if data can be described by limited number of iovs.
2785 		 * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
2786 		nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
2787 				    false, &mapped_length);
2788 
2789 		if (mapped_length != c2h_data->common.plen) {
2790 			c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
2791 			SPDK_DEBUGLOG(nvmf_tcp,
2792 				      "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
2793 				      c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
2794 			c2h_data->common.plen = mapped_length;
2795 
2796 			/* Rebuild pdu->data_iov since data length is changed */
2797 			nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
2798 						  c2h_data->datal);
2799 
2800 			c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
2801 						    SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
2802 		}
2803 
2804 		c2h_data->common.plen += ddgst_len;
2805 
2806 		assert(rsp_pdu->rw_offset <= tcp_req->req.length);
2807 
2808 		rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
2809 					    0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
2810 		if (rc != 0) {
2811 			SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
2812 				    err_blk.err_type, err_blk.err_offset);
2813 			rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2814 			rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
2815 			nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2816 			return;
2817 		}
2818 	}
2819 
2820 	rsp_pdu->rw_offset += c2h_data->datal;
2821 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
2822 }
2823 
2824 static void
2825 nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2826 		       struct spdk_nvmf_tcp_req *tcp_req)
2827 {
2828 	nvmf_tcp_req_pdu_init(tcp_req);
2829 	_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2830 }
2831 
2832 static int
2833 request_transfer_out(struct spdk_nvmf_request *req)
2834 {
2835 	struct spdk_nvmf_tcp_req	*tcp_req;
2836 	struct spdk_nvmf_qpair		*qpair;
2837 	struct spdk_nvmf_tcp_qpair	*tqpair;
2838 	struct spdk_nvme_cpl		*rsp;
2839 
2840 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2841 
2842 	qpair = req->qpair;
2843 	rsp = &req->rsp->nvme_cpl;
2844 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
2845 
2846 	/* Advance our sq_head pointer */
2847 	if (qpair->sq_head == qpair->sq_head_max) {
2848 		qpair->sq_head = 0;
2849 	} else {
2850 		qpair->sq_head++;
2851 	}
2852 	rsp->sqhd = qpair->sq_head;
2853 
2854 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2855 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
2856 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2857 		nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2858 	} else {
2859 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2860 	}
2861 
2862 	return 0;
2863 }
2864 
2865 static void
2866 nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport,
2867 			      struct spdk_nvmf_tcp_qpair *tqpair,
2868 			      struct spdk_nvmf_tcp_req *tcp_req)
2869 {
2870 	enum spdk_nvme_cmd_fuse last, next;
2871 
2872 	last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2873 	next = tcp_req->cmd.fuse;
2874 
2875 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2876 
2877 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2878 		return;
2879 	}
2880 
2881 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2882 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2883 			/* This is a valid pair of fused commands.  Point them at each other
2884 			 * so they can be submitted consecutively once ready to be executed.
2885 			 */
2886 			tqpair->fused_first->fused_pair = tcp_req;
2887 			tcp_req->fused_pair = tqpair->fused_first;
2888 			tqpair->fused_first = NULL;
2889 			return;
2890 		} else {
2891 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2892 			tqpair->fused_first->fused_failed = true;
2893 
2894 			/*
2895 			 * If the last req is in READY_TO_EXECUTE state, then call
2896 			 * nvmf_tcp_req_process(), otherwise nothing else will kick it.
2897 			 */
2898 			if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2899 				nvmf_tcp_req_process(ttransport, tqpair->fused_first);
2900 			}
2901 
2902 			tqpair->fused_first = NULL;
2903 		}
2904 	}
2905 
2906 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2907 		/* Set tqpair->fused_first here so that we know to check that the next request
2908 		 * is a SECOND (and to fail this one if it isn't).
2909 		 */
2910 		tqpair->fused_first = tcp_req;
2911 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2912 		/* Mark this req failed since it is a SECOND and the last one was not a FIRST. */
2913 		tcp_req->fused_failed = true;
2914 	}
2915 }
2916 
2917 static bool
2918 nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
2919 		     struct spdk_nvmf_tcp_req *tcp_req)
2920 {
2921 	struct spdk_nvmf_tcp_qpair		*tqpair;
2922 	uint32_t				plen;
2923 	struct nvme_tcp_pdu			*pdu;
2924 	enum spdk_nvmf_tcp_req_state		prev_state;
2925 	bool					progress = false;
2926 	struct spdk_nvmf_transport		*transport = &ttransport->transport;
2927 	struct spdk_nvmf_transport_poll_group	*group;
2928 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2929 
2930 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2931 	group = &tqpair->group->group;
2932 	assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
2933 
2934 	/* If the qpair is not active, we need to abort the outstanding requests. */
2935 	if (!spdk_nvmf_qpair_is_active(&tqpair->qpair)) {
2936 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
2937 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2938 		}
2939 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
2940 	}
2941 
2942 	/* The loop here is to allow for several back-to-back state changes. */
2943 	do {
2944 		prev_state = tcp_req->state;
2945 
2946 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
2947 			      tqpair);
2948 
2949 		switch (tcp_req->state) {
2950 		case TCP_REQUEST_STATE_FREE:
2951 			/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
2952 			 * to escape this state. */
2953 			break;
2954 		case TCP_REQUEST_STATE_NEW:
2955 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req,
2956 					  tqpair->qpair.queue_depth);
2957 
2958 			/* copy the cmd from the receive pdu */
2959 			tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
2960 
2961 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
2962 				tcp_req->req.dif_enabled = true;
2963 				tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
2964 			}
2965 
2966 			nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req);
2967 
2968 			/* The next state transition depends on the data transfer needs of this request. */
2969 			tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
2970 
2971 			if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2972 				nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_INVALID_OPCODE);
2973 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2974 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2975 				SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
2976 				break;
2977 			}
2978 
2979 			/* If no data to transfer, ready to execute. */
2980 			if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
2981 				/* Reset the tqpair receiving pdu state */
2982 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2983 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2984 				break;
2985 			}
2986 
2987 			pdu = tqpair->pdu_in_progress;
2988 			plen = pdu->hdr.common.hlen;
2989 			if (tqpair->host_hdgst_enable) {
2990 				plen += SPDK_NVME_TCP_DIGEST_LEN;
2991 			}
2992 			if (pdu->hdr.common.plen != plen) {
2993 				tcp_req->has_in_capsule_data = true;
2994 			} else {
2995 				/* Data is transmitted by C2H PDUs */
2996 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2997 			}
2998 
2999 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
3000 			STAILQ_INSERT_TAIL(&group->pending_buf_queue, &tcp_req->req, buf_link);
3001 			break;
3002 		case TCP_REQUEST_STATE_NEED_BUFFER:
3003 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.trace_id, 0,
3004 					  (uintptr_t)tcp_req);
3005 
3006 			assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
3007 
3008 			if (!tcp_req->has_in_capsule_data && (&tcp_req->req != STAILQ_FIRST(&group->pending_buf_queue))) {
3009 				SPDK_DEBUGLOG(nvmf_tcp,
3010 					      "Not the first element to wait for the buf for tcp_req(%p) on tqpair=%p\n",
3011 					      tcp_req, tqpair);
3012 				/* This request needs to wait in line to obtain a buffer */
3013 				break;
3014 			}
3015 
3016 			/* Try to get a data buffer */
3017 			if (nvmf_tcp_req_parse_sgl(tcp_req, transport, group) < 0) {
3018 				break;
3019 			}
3020 
3021 			/* Get a zcopy buffer if the request can be serviced through zcopy */
3022 			if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
3023 				if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3024 					assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
3025 					tcp_req->req.length = tcp_req->req.dif.elba_length;
3026 				}
3027 
3028 				STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
3029 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START);
3030 				spdk_nvmf_request_zcopy_start(&tcp_req->req);
3031 				break;
3032 			}
3033 
3034 			if (tcp_req->req.iovcnt < 1) {
3035 				SPDK_DEBUGLOG(nvmf_tcp, "No buffer allocated for tcp_req(%p) on tqpair(%p\n)",
3036 					      tcp_req, tqpair);
3037 				/* No buffers available. */
3038 				break;
3039 			}
3040 
3041 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
3042 
3043 			/* If data is transferring from host to controller, we need to do a transfer from the host. */
3044 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
3045 				if (tcp_req->req.data_from_pool) {
3046 					SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
3047 					nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
3048 				} else {
3049 					struct nvme_tcp_pdu *pdu;
3050 
3051 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
3052 
3053 					pdu = tqpair->pdu_in_progress;
3054 					SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
3055 						      tqpair);
3056 					/* No need to send r2t, contained in the capsuled data */
3057 					nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
3058 								  0, tcp_req->req.length);
3059 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
3060 				}
3061 				break;
3062 			}
3063 
3064 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
3065 			break;
3066 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3067 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.trace_id, 0,
3068 					  (uintptr_t)tcp_req);
3069 			/* Some external code must kick a request into  TCP_REQUEST_STATE_ZCOPY_START_COMPLETED
3070 			 * to escape this state. */
3071 			break;
3072 		case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
3073 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.trace_id, 0,
3074 					  (uintptr_t)tcp_req);
3075 			if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) {
3076 				SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n",
3077 					      tcp_req, tqpair);
3078 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3079 				break;
3080 			}
3081 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
3082 				SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
3083 				nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
3084 			} else {
3085 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3086 			}
3087 			break;
3088 		case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3089 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.trace_id, 0,
3090 					  (uintptr_t)tcp_req);
3091 			/* The R2T completion or the h2c data incoming will kick it out of this state. */
3092 			break;
3093 		case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3094 
3095 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.trace_id,
3096 					  0, (uintptr_t)tcp_req);
3097 			/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
3098 			 * to escape this state. */
3099 			break;
3100 		case TCP_REQUEST_STATE_READY_TO_EXECUTE:
3101 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.trace_id, 0,
3102 					  (uintptr_t)tcp_req);
3103 
3104 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3105 				assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
3106 				tcp_req->req.length = tcp_req->req.dif.elba_length;
3107 			}
3108 
3109 			if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
3110 				if (tcp_req->fused_failed) {
3111 					/* This request failed FUSED semantics.  Fail it immediately, without
3112 					 * even sending it to the target layer.
3113 					 */
3114 					nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_MISSING_FUSED);
3115 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3116 					break;
3117 				}
3118 
3119 				if (tcp_req->fused_pair == NULL ||
3120 				    tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3121 					/* This request is ready to execute, but either we don't know yet if it's
3122 					 * valid - i.e. this is a FIRST but we haven't received the next request yet),
3123 					 * or the other request of this fused pair isn't ready to execute. So
3124 					 * break here and this request will get processed later either when the
3125 					 * other request is ready or we find that this request isn't valid.
3126 					 */
3127 					break;
3128 				}
3129 			}
3130 
3131 			if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
3132 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
3133 				/* If we get to this point, and this request is a fused command, we know that
3134 				 * it is part of a valid sequence (FIRST followed by a SECOND) and that both
3135 				 * requests are READY_TO_EXECUTE.  So call spdk_nvmf_request_exec() both on this
3136 				 * request, and the other request of the fused pair, in the correct order.
3137 				 * Also clear the ->fused_pair pointers on both requests, since after this point
3138 				 * we no longer need to maintain the relationship between these two requests.
3139 				 */
3140 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
3141 					assert(tcp_req->fused_pair != NULL);
3142 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3143 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3144 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3145 					tcp_req->fused_pair->fused_pair = NULL;
3146 					tcp_req->fused_pair = NULL;
3147 				}
3148 				spdk_nvmf_request_exec(&tcp_req->req);
3149 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
3150 					assert(tcp_req->fused_pair != NULL);
3151 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3152 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3153 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3154 					tcp_req->fused_pair->fused_pair = NULL;
3155 					tcp_req->fused_pair = NULL;
3156 				}
3157 			} else {
3158 				/* For zero-copy, only requests with data coming from host to the
3159 				 * controller can end up here. */
3160 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
3161 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT);
3162 				spdk_nvmf_request_zcopy_end(&tcp_req->req, true);
3163 			}
3164 
3165 			break;
3166 		case TCP_REQUEST_STATE_EXECUTING:
3167 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
3168 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3169 			 * to escape this state. */
3170 			break;
3171 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3172 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.trace_id, 0,
3173 					  (uintptr_t)tcp_req);
3174 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3175 			 * to escape this state. */
3176 			break;
3177 		case TCP_REQUEST_STATE_EXECUTED:
3178 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
3179 
3180 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3181 				tcp_req->req.length = tcp_req->req.dif.orig_length;
3182 			}
3183 
3184 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3185 			break;
3186 		case TCP_REQUEST_STATE_READY_TO_COMPLETE:
3187 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.trace_id, 0,
3188 					  (uintptr_t)tcp_req);
3189 			if (request_transfer_out(&tcp_req->req) != 0) {
3190 				assert(0); /* No good way to handle this currently */
3191 			}
3192 			break;
3193 		case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
3194 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.trace_id,
3195 					  0, (uintptr_t)tcp_req);
3196 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3197 			 * to escape this state. */
3198 			break;
3199 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3200 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.trace_id, 0,
3201 					  (uintptr_t)tcp_req);
3202 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3203 			 * to escape this state. */
3204 			break;
3205 		case TCP_REQUEST_STATE_COMPLETED:
3206 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req,
3207 					  tqpair->qpair.queue_depth);
3208 			/* If there's an outstanding PDU sent to the host, the request is completed
3209 			 * due to the qpair being disconnected.  We must delay the completion until
3210 			 * that write is done to avoid freeing the request twice. */
3211 			if (spdk_unlikely(tcp_req->pdu_in_use)) {
3212 				SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding "
3213 					      "write on req=%p\n", tcp_req);
3214 				/* This can only happen for zcopy requests */
3215 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3216 				assert(!spdk_nvmf_qpair_is_active(&tqpair->qpair));
3217 				break;
3218 			}
3219 
3220 			if (tcp_req->req.data_from_pool) {
3221 				spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
3222 			} else if (spdk_unlikely(tcp_req->has_in_capsule_data &&
3223 						 (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
3224 						  tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
3225 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3226 				assert(tgroup->control_msg_list);
3227 				SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
3228 				nvmf_tcp_control_msg_put(tgroup->control_msg_list,
3229 							 tcp_req->req.iov[0].iov_base);
3230 			} else if (tcp_req->req.zcopy_bdev_io != NULL) {
3231 				/* If the request has an unreleased zcopy bdev_io, it's either a
3232 				 * read, a failed write, or the qpair is being disconnected */
3233 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3234 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
3235 				       spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) ||
3236 				       !spdk_nvmf_qpair_is_active(&tqpair->qpair));
3237 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE);
3238 				spdk_nvmf_request_zcopy_end(&tcp_req->req, false);
3239 				break;
3240 			}
3241 			tcp_req->req.length = 0;
3242 			tcp_req->req.iovcnt = 0;
3243 			tcp_req->fused_failed = false;
3244 			if (tcp_req->fused_pair) {
3245 				/* This req was part of a valid fused pair, but failed before it got to
3246 				 * READ_TO_EXECUTE state.  This means we need to fail the other request
3247 				 * in the pair, because it is no longer part of a valid pair.  If the pair
3248 				 * already reached READY_TO_EXECUTE state, we need to kick it.
3249 				 */
3250 				tcp_req->fused_pair->fused_failed = true;
3251 				if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3252 					nvmf_tcp_req_process(ttransport, tcp_req->fused_pair);
3253 				}
3254 				tcp_req->fused_pair = NULL;
3255 			}
3256 
3257 			nvmf_tcp_req_put(tqpair, tcp_req);
3258 			break;
3259 		case TCP_REQUEST_NUM_STATES:
3260 		default:
3261 			assert(0);
3262 			break;
3263 		}
3264 
3265 		if (tcp_req->state != prev_state) {
3266 			progress = true;
3267 		}
3268 	} while (tcp_req->state != prev_state);
3269 
3270 	return progress;
3271 }
3272 
3273 static void
3274 nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
3275 {
3276 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
3277 	int rc;
3278 
3279 	assert(tqpair != NULL);
3280 	rc = nvmf_tcp_sock_process(tqpair);
3281 
3282 	/* If there was a new socket error, disconnect */
3283 	if (rc < 0) {
3284 		nvmf_tcp_qpair_disconnect(tqpair);
3285 	}
3286 }
3287 
3288 static int
3289 nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3290 			struct spdk_nvmf_qpair *qpair)
3291 {
3292 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3293 	struct spdk_nvmf_tcp_qpair	*tqpair;
3294 	int				rc;
3295 
3296 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3297 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3298 
3299 	rc =  nvmf_tcp_qpair_sock_init(tqpair);
3300 	if (rc != 0) {
3301 		SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
3302 		return -1;
3303 	}
3304 
3305 	rc = nvmf_tcp_qpair_init(&tqpair->qpair);
3306 	if (rc < 0) {
3307 		SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
3308 		return -1;
3309 	}
3310 
3311 	rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
3312 	if (rc < 0) {
3313 		SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
3314 		return -1;
3315 	}
3316 
3317 	rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
3318 				      nvmf_tcp_sock_cb, tqpair);
3319 	if (rc != 0) {
3320 		SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
3321 			    spdk_strerror(errno), errno);
3322 		return -1;
3323 	}
3324 
3325 	tqpair->group = tgroup;
3326 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INVALID);
3327 	TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
3328 
3329 	return 0;
3330 }
3331 
3332 static int
3333 nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3334 			   struct spdk_nvmf_qpair *qpair)
3335 {
3336 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3337 	struct spdk_nvmf_tcp_qpair		*tqpair;
3338 	int				rc;
3339 
3340 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3341 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3342 
3343 	assert(tqpair->group == tgroup);
3344 
3345 	SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
3346 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
3347 		/* Change the state to move the qpair from the await_req list to the main list
3348 		 * and prevent adding it again later by nvmf_tcp_qpair_set_recv_state() */
3349 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
3350 	}
3351 	TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
3352 
3353 	/* Try to force out any pending writes */
3354 	spdk_sock_flush(tqpair->sock);
3355 
3356 	rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
3357 	if (rc != 0) {
3358 		SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
3359 			    spdk_strerror(errno), errno);
3360 	}
3361 
3362 	return rc;
3363 }
3364 
3365 static int
3366 nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
3367 {
3368 	struct spdk_nvmf_tcp_transport *ttransport;
3369 	struct spdk_nvmf_tcp_req *tcp_req;
3370 
3371 	ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3372 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3373 
3374 	switch (tcp_req->state) {
3375 	case TCP_REQUEST_STATE_EXECUTING:
3376 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3377 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3378 		break;
3379 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3380 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED);
3381 		break;
3382 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3383 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3384 		break;
3385 	default:
3386 		SPDK_ERRLOG("Unexpected request state %d (cntlid:%d, qid:%d)\n",
3387 			    tcp_req->state, req->qpair->ctrlr->cntlid, req->qpair->qid);
3388 		assert(0 && "Unexpected request state");
3389 		break;
3390 	}
3391 
3392 	nvmf_tcp_req_process(ttransport, tcp_req);
3393 
3394 	return 0;
3395 }
3396 
3397 static void
3398 nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
3399 		     spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3400 {
3401 	struct spdk_nvmf_tcp_qpair *tqpair;
3402 
3403 	SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
3404 
3405 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3406 
3407 	assert(tqpair->fini_cb_fn == NULL);
3408 	tqpair->fini_cb_fn = cb_fn;
3409 	tqpair->fini_cb_arg = cb_arg;
3410 
3411 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITED);
3412 	nvmf_tcp_qpair_destroy(tqpair);
3413 }
3414 
3415 static int
3416 nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3417 {
3418 	struct spdk_nvmf_tcp_poll_group *tgroup;
3419 	int num_events, rc = 0, rc2;
3420 	struct spdk_nvmf_request *req, *req_tmp;
3421 	struct spdk_nvmf_tcp_req *tcp_req;
3422 	struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp;
3423 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(group->transport,
3424 			struct spdk_nvmf_tcp_transport, transport);
3425 
3426 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3427 
3428 	if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) {
3429 		return 0;
3430 	}
3431 
3432 	STAILQ_FOREACH_SAFE(req, &group->pending_buf_queue, buf_link, req_tmp) {
3433 		tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3434 		if (nvmf_tcp_req_process(ttransport, tcp_req) == false) {
3435 			break;
3436 		}
3437 	}
3438 
3439 	num_events = spdk_sock_group_poll(tgroup->sock_group);
3440 	if (spdk_unlikely(num_events < 0)) {
3441 		SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
3442 	}
3443 
3444 	TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) {
3445 		rc2 = nvmf_tcp_sock_process(tqpair);
3446 
3447 		/* If there was a new socket error, disconnect */
3448 		if (spdk_unlikely(rc2 < 0)) {
3449 			nvmf_tcp_qpair_disconnect(tqpair);
3450 			if (rc == 0) {
3451 				rc = rc2;
3452 			}
3453 		}
3454 	}
3455 
3456 	return rc == 0 ? num_events : rc;
3457 }
3458 
3459 static int
3460 nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
3461 			struct spdk_nvme_transport_id *trid, bool peer)
3462 {
3463 	struct spdk_nvmf_tcp_qpair     *tqpair;
3464 	uint16_t			port;
3465 
3466 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3467 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
3468 
3469 	if (peer) {
3470 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
3471 		port = tqpair->initiator_port;
3472 	} else {
3473 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
3474 		port = tqpair->target_port;
3475 	}
3476 
3477 	if (spdk_sock_is_ipv4(tqpair->sock)) {
3478 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3479 	} else if (spdk_sock_is_ipv6(tqpair->sock)) {
3480 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3481 	} else {
3482 		return -1;
3483 	}
3484 
3485 	snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
3486 	return 0;
3487 }
3488 
3489 static int
3490 nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3491 			      struct spdk_nvme_transport_id *trid)
3492 {
3493 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3494 }
3495 
3496 static int
3497 nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3498 			     struct spdk_nvme_transport_id *trid)
3499 {
3500 	return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
3501 }
3502 
3503 static int
3504 nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3505 			       struct spdk_nvme_transport_id *trid)
3506 {
3507 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3508 }
3509 
3510 static void
3511 nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
3512 			      struct spdk_nvmf_tcp_req *tcp_req_to_abort)
3513 {
3514 	nvmf_tcp_req_set_cpl(tcp_req_to_abort, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_BY_REQUEST);
3515 	nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3516 
3517 	req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
3518 }
3519 
3520 static int
3521 _nvmf_tcp_qpair_abort_request(void *ctx)
3522 {
3523 	struct spdk_nvmf_request *req = ctx;
3524 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
3525 			struct spdk_nvmf_tcp_req, req);
3526 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
3527 					     struct spdk_nvmf_tcp_qpair, qpair);
3528 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
3529 			struct spdk_nvmf_tcp_transport, transport);
3530 	int rc;
3531 
3532 	spdk_poller_unregister(&req->poller);
3533 
3534 	switch (tcp_req_to_abort->state) {
3535 	case TCP_REQUEST_STATE_EXECUTING:
3536 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3537 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3538 		rc = nvmf_ctrlr_abort_request(req);
3539 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
3540 			return SPDK_POLLER_BUSY;
3541 		}
3542 		break;
3543 
3544 	case TCP_REQUEST_STATE_NEED_BUFFER:
3545 		STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue,
3546 			      &tcp_req_to_abort->req, spdk_nvmf_request, buf_link);
3547 
3548 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3549 		nvmf_tcp_req_process(ttransport, tcp_req_to_abort);
3550 		break;
3551 
3552 	case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3553 	case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3554 		if (spdk_get_ticks() < req->timeout_tsc) {
3555 			req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
3556 			return SPDK_POLLER_BUSY;
3557 		}
3558 		break;
3559 
3560 	default:
3561 		/* Requests in other states are either un-abortable (e.g.
3562 		 * TRANSFERRING_CONTROLLER_TO_HOST) or should never end up here, as they're
3563 		 * immediately transitioned to other states in nvmf_tcp_req_process() (e.g.
3564 		 * READY_TO_EXECUTE).  But it is fine to end up here, as we'll simply complete the
3565 		 * abort request with the bit0 of dword0 set (command not aborted).
3566 		 */
3567 		break;
3568 	}
3569 
3570 	spdk_nvmf_request_complete(req);
3571 	return SPDK_POLLER_BUSY;
3572 }
3573 
3574 static void
3575 nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
3576 			     struct spdk_nvmf_request *req)
3577 {
3578 	struct spdk_nvmf_tcp_qpair *tqpair;
3579 	struct spdk_nvmf_tcp_transport *ttransport;
3580 	struct spdk_nvmf_transport *transport;
3581 	uint16_t cid;
3582 	uint32_t i;
3583 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
3584 
3585 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3586 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3587 	transport = &ttransport->transport;
3588 
3589 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
3590 
3591 	for (i = 0; i < tqpair->resource_count; i++) {
3592 		if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
3593 		    tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
3594 			tcp_req_to_abort = &tqpair->reqs[i];
3595 			break;
3596 		}
3597 	}
3598 
3599 	spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, tqpair->qpair.trace_id, 0, (uintptr_t)req);
3600 
3601 	if (tcp_req_to_abort == NULL) {
3602 		spdk_nvmf_request_complete(req);
3603 		return;
3604 	}
3605 
3606 	req->req_to_abort = &tcp_req_to_abort->req;
3607 	req->timeout_tsc = spdk_get_ticks() +
3608 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
3609 	req->poller = NULL;
3610 
3611 	_nvmf_tcp_qpair_abort_request(req);
3612 }
3613 
3614 struct tcp_subsystem_add_host_opts {
3615 	char *psk;
3616 };
3617 
3618 static const struct spdk_json_object_decoder tcp_subsystem_add_host_opts_decoder[] = {
3619 	{"psk", offsetof(struct tcp_subsystem_add_host_opts, psk), spdk_json_decode_string, true},
3620 };
3621 
3622 static int
3623 tcp_load_psk(const char *fname, char *buf, size_t bufsz)
3624 {
3625 	FILE *psk_file;
3626 	struct stat statbuf;
3627 	int rc;
3628 
3629 	if (stat(fname, &statbuf) != 0) {
3630 		SPDK_ERRLOG("Could not read permissions for PSK file\n");
3631 		return -EACCES;
3632 	}
3633 
3634 	if ((statbuf.st_mode & TCP_PSK_INVALID_PERMISSIONS) != 0) {
3635 		SPDK_ERRLOG("Incorrect permissions for PSK file\n");
3636 		return -EPERM;
3637 	}
3638 	if ((size_t)statbuf.st_size > bufsz) {
3639 		SPDK_ERRLOG("Invalid PSK: too long\n");
3640 		return -EINVAL;
3641 	}
3642 	psk_file = fopen(fname, "r");
3643 	if (psk_file == NULL) {
3644 		SPDK_ERRLOG("Could not open PSK file\n");
3645 		return -EINVAL;
3646 	}
3647 
3648 	rc = fread(buf, 1, statbuf.st_size, psk_file);
3649 	if (rc != statbuf.st_size) {
3650 		SPDK_ERRLOG("Failed to read PSK\n");
3651 		fclose(psk_file);
3652 		return -EINVAL;
3653 	}
3654 
3655 	fclose(psk_file);
3656 	return 0;
3657 }
3658 
3659 SPDK_LOG_DEPRECATION_REGISTER(nvmf_tcp_psk_path, "PSK path", "v24.09", 0);
3660 
3661 static int
3662 nvmf_tcp_subsystem_add_host(struct spdk_nvmf_transport *transport,
3663 			    const struct spdk_nvmf_subsystem *subsystem,
3664 			    const char *hostnqn,
3665 			    const struct spdk_json_val *transport_specific)
3666 {
3667 	struct tcp_subsystem_add_host_opts opts;
3668 	struct spdk_nvmf_tcp_transport *ttransport;
3669 	struct tcp_psk_entry *tmp, *entry = NULL;
3670 	uint8_t psk_configured[SPDK_TLS_PSK_MAX_LEN] = {};
3671 	char psk_interchange[SPDK_TLS_PSK_MAX_LEN + 1] = {};
3672 	uint8_t tls_cipher_suite;
3673 	int rc = 0;
3674 	uint8_t psk_retained_hash;
3675 	uint64_t psk_configured_size;
3676 
3677 	if (transport_specific == NULL) {
3678 		return 0;
3679 	}
3680 
3681 	assert(transport != NULL);
3682 	assert(subsystem != NULL);
3683 
3684 	memset(&opts, 0, sizeof(opts));
3685 
3686 	/* Decode PSK (either name of a key or file path) */
3687 	if (spdk_json_decode_object_relaxed(transport_specific, tcp_subsystem_add_host_opts_decoder,
3688 					    SPDK_COUNTOF(tcp_subsystem_add_host_opts_decoder), &opts)) {
3689 		SPDK_ERRLOG("spdk_json_decode_object failed\n");
3690 		return -EINVAL;
3691 	}
3692 
3693 	if (opts.psk == NULL) {
3694 		return 0;
3695 	}
3696 
3697 	entry = calloc(1, sizeof(struct tcp_psk_entry));
3698 	if (entry == NULL) {
3699 		SPDK_ERRLOG("Unable to allocate memory for PSK entry!\n");
3700 		rc = -ENOMEM;
3701 		goto end;
3702 	}
3703 
3704 	entry->key = spdk_keyring_get_key(opts.psk);
3705 	if (entry->key != NULL) {
3706 		rc = spdk_key_get_key(entry->key, psk_interchange, SPDK_TLS_PSK_MAX_LEN);
3707 		if (rc < 0) {
3708 			SPDK_ERRLOG("Failed to retrieve PSK '%s'\n", opts.psk);
3709 			rc = -EINVAL;
3710 			goto end;
3711 		}
3712 	} else {
3713 		if (strlen(opts.psk) >= sizeof(entry->psk)) {
3714 			SPDK_ERRLOG("PSK path too long\n");
3715 			rc = -EINVAL;
3716 			goto end;
3717 		}
3718 
3719 		rc = tcp_load_psk(opts.psk, psk_interchange, SPDK_TLS_PSK_MAX_LEN);
3720 		if (rc) {
3721 			SPDK_ERRLOG("Could not retrieve PSK from file\n");
3722 			goto end;
3723 		}
3724 
3725 		SPDK_LOG_DEPRECATED(nvmf_tcp_psk_path);
3726 	}
3727 
3728 	/* Parse PSK interchange to get length of base64 encoded data.
3729 	 * This is then used to decide which cipher suite should be used
3730 	 * to generate PSK identity and TLS PSK later on. */
3731 	rc = nvme_tcp_parse_interchange_psk(psk_interchange, psk_configured, sizeof(psk_configured),
3732 					    &psk_configured_size, &psk_retained_hash);
3733 	if (rc < 0) {
3734 		SPDK_ERRLOG("Failed to parse PSK interchange!\n");
3735 		goto end;
3736 	}
3737 
3738 	/* The Base64 string encodes the configured PSK (32 or 48 bytes binary).
3739 	 * This check also ensures that psk_configured_size is smaller than
3740 	 * psk_retained buffer size. */
3741 	if (psk_configured_size == SHA256_DIGEST_LENGTH) {
3742 		tls_cipher_suite = NVME_TCP_CIPHER_AES_128_GCM_SHA256;
3743 	} else if (psk_configured_size == SHA384_DIGEST_LENGTH) {
3744 		tls_cipher_suite = NVME_TCP_CIPHER_AES_256_GCM_SHA384;
3745 	} else {
3746 		SPDK_ERRLOG("Unrecognized cipher suite!\n");
3747 		rc = -EINVAL;
3748 		goto end;
3749 	}
3750 
3751 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3752 	/* Generate PSK identity. */
3753 	rc = nvme_tcp_generate_psk_identity(entry->pskid, sizeof(entry->pskid), hostnqn,
3754 					    subsystem->subnqn, tls_cipher_suite);
3755 	if (rc) {
3756 		rc = -EINVAL;
3757 		goto end;
3758 	}
3759 	/* Check if PSK identity entry already exists. */
3760 	TAILQ_FOREACH(tmp, &ttransport->psks, link) {
3761 		if (strncmp(tmp->pskid, entry->pskid, NVMF_PSK_IDENTITY_LEN) == 0) {
3762 			SPDK_ERRLOG("Given PSK identity: %s entry already exists!\n", entry->pskid);
3763 			rc = -EEXIST;
3764 			goto end;
3765 		}
3766 	}
3767 
3768 	if (snprintf(entry->hostnqn, sizeof(entry->hostnqn), "%s", hostnqn) < 0) {
3769 		SPDK_ERRLOG("Could not write hostnqn string!\n");
3770 		rc = -EINVAL;
3771 		goto end;
3772 	}
3773 	if (snprintf(entry->subnqn, sizeof(entry->subnqn), "%s", subsystem->subnqn) < 0) {
3774 		SPDK_ERRLOG("Could not write subnqn string!\n");
3775 		rc = -EINVAL;
3776 		goto end;
3777 	}
3778 
3779 	entry->tls_cipher_suite = tls_cipher_suite;
3780 
3781 	/* No hash indicates that Configured PSK must be used as Retained PSK. */
3782 	if (psk_retained_hash == NVME_TCP_HASH_ALGORITHM_NONE) {
3783 		/* Psk configured is either 32 or 48 bytes long. */
3784 		memcpy(entry->psk, psk_configured, psk_configured_size);
3785 		entry->psk_size = psk_configured_size;
3786 	} else {
3787 		/* Derive retained PSK. */
3788 		rc = nvme_tcp_derive_retained_psk(psk_configured, psk_configured_size, hostnqn, entry->psk,
3789 						  SPDK_TLS_PSK_MAX_LEN, psk_retained_hash);
3790 		if (rc < 0) {
3791 			SPDK_ERRLOG("Unable to derive retained PSK!\n");
3792 			goto end;
3793 		}
3794 		entry->psk_size = rc;
3795 	}
3796 
3797 	if (entry->key == NULL) {
3798 		rc = snprintf(entry->psk_path, sizeof(entry->psk_path), "%s", opts.psk);
3799 		if (rc < 0 || (size_t)rc >= sizeof(entry->psk_path)) {
3800 			SPDK_ERRLOG("Could not save PSK path!\n");
3801 			rc = -ENAMETOOLONG;
3802 			goto end;
3803 		}
3804 	}
3805 
3806 	TAILQ_INSERT_TAIL(&ttransport->psks, entry, link);
3807 	rc = 0;
3808 
3809 end:
3810 	spdk_memset_s(psk_configured, sizeof(psk_configured), 0, sizeof(psk_configured));
3811 	spdk_memset_s(psk_interchange, sizeof(psk_interchange), 0, sizeof(psk_interchange));
3812 
3813 	free(opts.psk);
3814 	if (rc != 0) {
3815 		nvmf_tcp_free_psk_entry(entry);
3816 	}
3817 
3818 	return rc;
3819 }
3820 
3821 static void
3822 nvmf_tcp_subsystem_remove_host(struct spdk_nvmf_transport *transport,
3823 			       const struct spdk_nvmf_subsystem *subsystem,
3824 			       const char *hostnqn)
3825 {
3826 	struct spdk_nvmf_tcp_transport *ttransport;
3827 	struct tcp_psk_entry *entry, *tmp;
3828 
3829 	assert(transport != NULL);
3830 	assert(subsystem != NULL);
3831 
3832 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3833 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
3834 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3835 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3836 			TAILQ_REMOVE(&ttransport->psks, entry, link);
3837 			nvmf_tcp_free_psk_entry(entry);
3838 			break;
3839 		}
3840 	}
3841 }
3842 
3843 static void
3844 nvmf_tcp_subsystem_dump_host(struct spdk_nvmf_transport *transport,
3845 			     const struct spdk_nvmf_subsystem *subsystem, const char *hostnqn,
3846 			     struct spdk_json_write_ctx *w)
3847 {
3848 	struct spdk_nvmf_tcp_transport *ttransport;
3849 	struct tcp_psk_entry *entry;
3850 
3851 	assert(transport != NULL);
3852 	assert(subsystem != NULL);
3853 
3854 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3855 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
3856 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3857 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3858 			spdk_json_write_named_string(w, "psk", entry->key ?
3859 						     spdk_key_get_name(entry->key) : entry->psk_path);
3860 			break;
3861 		}
3862 	}
3863 }
3864 
3865 static void
3866 nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
3867 {
3868 	opts->max_queue_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
3869 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
3870 	opts->in_capsule_data_size =	SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
3871 	opts->max_io_size =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
3872 	opts->io_unit_size =		SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
3873 	opts->max_aq_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
3874 	opts->num_shared_buffers =	SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
3875 	opts->buf_cache_size =		SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
3876 	opts->dif_insert_or_strip =	SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
3877 	opts->abort_timeout_sec =	SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
3878 	opts->transport_specific =      NULL;
3879 }
3880 
3881 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
3882 	.name = "TCP",
3883 	.type = SPDK_NVME_TRANSPORT_TCP,
3884 	.opts_init = nvmf_tcp_opts_init,
3885 	.create = nvmf_tcp_create,
3886 	.dump_opts = nvmf_tcp_dump_opts,
3887 	.destroy = nvmf_tcp_destroy,
3888 
3889 	.listen = nvmf_tcp_listen,
3890 	.stop_listen = nvmf_tcp_stop_listen,
3891 
3892 	.listener_discover = nvmf_tcp_discover,
3893 
3894 	.poll_group_create = nvmf_tcp_poll_group_create,
3895 	.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
3896 	.poll_group_destroy = nvmf_tcp_poll_group_destroy,
3897 	.poll_group_add = nvmf_tcp_poll_group_add,
3898 	.poll_group_remove = nvmf_tcp_poll_group_remove,
3899 	.poll_group_poll = nvmf_tcp_poll_group_poll,
3900 
3901 	.req_free = nvmf_tcp_req_free,
3902 	.req_complete = nvmf_tcp_req_complete,
3903 
3904 	.qpair_fini = nvmf_tcp_close_qpair,
3905 	.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
3906 	.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
3907 	.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
3908 	.qpair_abort_request = nvmf_tcp_qpair_abort_request,
3909 	.subsystem_add_host = nvmf_tcp_subsystem_add_host,
3910 	.subsystem_remove_host = nvmf_tcp_subsystem_remove_host,
3911 	.subsystem_dump_host = nvmf_tcp_subsystem_dump_host,
3912 };
3913 
3914 SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
3915 SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)
3916