xref: /spdk/lib/nvmf/tcp.c (revision 510f4c134a21b45ff3a5add9ebc6c6cf7e49aeab)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (c) Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/accel.h"
8 #include "spdk/stdinc.h"
9 #include "spdk/crc32.h"
10 #include "spdk/endian.h"
11 #include "spdk/assert.h"
12 #include "spdk/thread.h"
13 #include "spdk/nvmf_transport.h"
14 #include "spdk/string.h"
15 #include "spdk/trace.h"
16 #include "spdk/util.h"
17 #include "spdk/log.h"
18 
19 #include "spdk_internal/assert.h"
20 #include "spdk_internal/nvme_tcp.h"
21 #include "spdk_internal/sock.h"
22 
23 #include "nvmf_internal.h"
24 
25 #include "spdk_internal/trace_defs.h"
26 
27 #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
28 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
29 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
30 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
31 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
32 
33 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
34 
35 /* spdk nvmf related structure */
36 enum spdk_nvmf_tcp_req_state {
37 
38 	/* The request is not currently in use */
39 	TCP_REQUEST_STATE_FREE = 0,
40 
41 	/* Initial state when request first received */
42 	TCP_REQUEST_STATE_NEW = 1,
43 
44 	/* The request is queued until a data buffer is available. */
45 	TCP_REQUEST_STATE_NEED_BUFFER = 2,
46 
47 	/* The request is waiting for zcopy_start to finish */
48 	TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 3,
49 
50 	/* The request has received a zero-copy buffer */
51 	TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 4,
52 
53 	/* The request is currently transferring data from the host to the controller. */
54 	TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 5,
55 
56 	/* The request is waiting for the R2T send acknowledgement. */
57 	TCP_REQUEST_STATE_AWAITING_R2T_ACK = 6,
58 
59 	/* The request is ready to execute at the block device */
60 	TCP_REQUEST_STATE_READY_TO_EXECUTE = 7,
61 
62 	/* The request is currently executing at the block device */
63 	TCP_REQUEST_STATE_EXECUTING = 8,
64 
65 	/* The request is waiting for zcopy buffers to be commited */
66 	TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 9,
67 
68 	/* The request finished executing at the block device */
69 	TCP_REQUEST_STATE_EXECUTED = 10,
70 
71 	/* The request is ready to send a completion */
72 	TCP_REQUEST_STATE_READY_TO_COMPLETE = 11,
73 
74 	/* The request is currently transferring final pdus from the controller to the host. */
75 	TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 12,
76 
77 	/* The request is waiting for zcopy buffers to be released (without committing) */
78 	TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 13,
79 
80 	/* The request completed and can be marked free. */
81 	TCP_REQUEST_STATE_COMPLETED = 14,
82 
83 	/* Terminator */
84 	TCP_REQUEST_NUM_STATES,
85 };
86 
87 static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
88 	"Invalid PDU Header Field",
89 	"PDU Sequence Error",
90 	"Header Digiest Error",
91 	"Data Transfer Out of Range",
92 	"R2T Limit Exceeded",
93 	"Unsupported parameter",
94 };
95 
96 SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
97 {
98 	spdk_trace_register_owner(OWNER_NVMF_TCP, 't');
99 	spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
100 	spdk_trace_register_description("TCP_REQ_NEW",
101 					TRACE_TCP_REQUEST_STATE_NEW,
102 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1,
103 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
104 	spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
105 					TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
106 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
107 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
108 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START",
109 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START,
110 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
111 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
112 	spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL",
113 					TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED,
114 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
115 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
116 	spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
117 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
118 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
119 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
120 	spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
121 					TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
122 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
123 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
124 	spdk_trace_register_description("TCP_REQ_EXECUTING",
125 					TRACE_TCP_REQUEST_STATE_EXECUTING,
126 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
127 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
128 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT",
129 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT,
130 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
131 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
132 	spdk_trace_register_description("TCP_REQ_EXECUTED",
133 					TRACE_TCP_REQUEST_STATE_EXECUTED,
134 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
135 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
136 	spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
137 					TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
138 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
139 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
140 	spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
141 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
142 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
143 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
144 	spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS",
145 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE,
146 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
147 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
148 	spdk_trace_register_description("TCP_REQ_COMPLETED",
149 					TRACE_TCP_REQUEST_STATE_COMPLETED,
150 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
151 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
152 	spdk_trace_register_description("TCP_WRITE_START",
153 					TRACE_TCP_FLUSH_WRITEBUF_START,
154 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
155 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
156 	spdk_trace_register_description("TCP_WRITE_DONE",
157 					TRACE_TCP_FLUSH_WRITEBUF_DONE,
158 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
159 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
160 	spdk_trace_register_description("TCP_READ_DONE",
161 					TRACE_TCP_READ_FROM_SOCKET_DONE,
162 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
163 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
164 	spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
165 					TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
166 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
167 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
168 
169 	spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE,
170 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
171 					SPDK_TRACE_ARG_TYPE_INT, "");
172 	spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT,
173 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
174 					SPDK_TRACE_ARG_TYPE_INT, "");
175 	spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE,
176 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
177 					SPDK_TRACE_ARG_TYPE_INT, "state");
178 	spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT,
179 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
180 					SPDK_TRACE_ARG_TYPE_INT, "");
181 	spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY,
182 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
183 					SPDK_TRACE_ARG_TYPE_INT, "");
184 	spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ,
185 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
186 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
187 	spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE,
188 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
189 					SPDK_TRACE_ARG_TYPE_INT, "state");
190 
191 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1);
192 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0);
193 }
194 
195 struct spdk_nvmf_tcp_req  {
196 	struct spdk_nvmf_request		req;
197 	struct spdk_nvme_cpl			rsp;
198 	struct spdk_nvme_cmd			cmd;
199 
200 	/* A PDU that can be used for sending responses. This is
201 	 * not the incoming PDU! */
202 	struct nvme_tcp_pdu			*pdu;
203 
204 	/* In-capsule data buffer */
205 	uint8_t					*buf;
206 
207 	struct spdk_nvmf_tcp_req		*fused_pair;
208 
209 	/*
210 	 * The PDU for a request may be used multiple times in serial over
211 	 * the request's lifetime. For example, first to send an R2T, then
212 	 * to send a completion. To catch mistakes where the PDU is used
213 	 * twice at the same time, add a debug flag here for init/fini.
214 	 */
215 	bool					pdu_in_use;
216 	bool					has_in_capsule_data;
217 	bool					fused_failed;
218 
219 	/* transfer_tag */
220 	uint16_t				ttag;
221 
222 	enum spdk_nvmf_tcp_req_state		state;
223 
224 	/*
225 	 * h2c_offset is used when we receive the h2c_data PDU.
226 	 */
227 	uint32_t				h2c_offset;
228 
229 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		link;
230 	TAILQ_ENTRY(spdk_nvmf_tcp_req)		state_link;
231 };
232 
233 struct spdk_nvmf_tcp_qpair {
234 	struct spdk_nvmf_qpair			qpair;
235 	struct spdk_nvmf_tcp_poll_group		*group;
236 	struct spdk_sock			*sock;
237 
238 	enum nvme_tcp_pdu_recv_state		recv_state;
239 	enum nvme_tcp_qpair_state		state;
240 
241 	/* PDU being actively received */
242 	struct nvme_tcp_pdu			*pdu_in_progress;
243 
244 	struct spdk_nvmf_tcp_req		*fused_first;
245 
246 	/* Queues to track the requests in all states */
247 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_working_queue;
248 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_free_queue;
249 	SLIST_HEAD(, nvme_tcp_pdu)		tcp_pdu_free_queue;
250 
251 	/* Number of requests in each state */
252 	uint32_t				state_cntr[TCP_REQUEST_NUM_STATES];
253 
254 	uint8_t					cpda;
255 
256 	bool					host_hdgst_enable;
257 	bool					host_ddgst_enable;
258 
259 	/* This is a spare PDU used for sending special management
260 	 * operations. Primarily, this is used for the initial
261 	 * connection response and c2h termination request. */
262 	struct nvme_tcp_pdu			*mgmt_pdu;
263 
264 	/* Arrays of in-capsule buffers, requests, and pdus.
265 	 * Each array is 'resource_count' number of elements */
266 	void					*bufs;
267 	struct spdk_nvmf_tcp_req		*reqs;
268 	struct nvme_tcp_pdu			*pdus;
269 	uint32_t				resource_count;
270 	uint32_t				recv_buf_size;
271 
272 	struct spdk_nvmf_tcp_port		*port;
273 
274 	/* IP address */
275 	char					initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
276 	char					target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
277 
278 	/* IP port */
279 	uint16_t				initiator_port;
280 	uint16_t				target_port;
281 
282 	/* Timer used to destroy qpair after detecting transport error issue if initiator does
283 	 *  not close the connection.
284 	 */
285 	struct spdk_poller			*timeout_poller;
286 
287 	spdk_nvmf_transport_qpair_fini_cb	fini_cb_fn;
288 	void					*fini_cb_arg;
289 
290 	TAILQ_ENTRY(spdk_nvmf_tcp_qpair)	link;
291 };
292 
293 struct spdk_nvmf_tcp_control_msg {
294 	STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
295 };
296 
297 struct spdk_nvmf_tcp_control_msg_list {
298 	void *msg_buf;
299 	STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
300 };
301 
302 struct spdk_nvmf_tcp_poll_group {
303 	struct spdk_nvmf_transport_poll_group	group;
304 	struct spdk_sock_group			*sock_group;
305 
306 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	qpairs;
307 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	await_req;
308 
309 	struct spdk_io_channel			*accel_channel;
310 	struct spdk_nvmf_tcp_control_msg_list	*control_msg_list;
311 
312 	TAILQ_ENTRY(spdk_nvmf_tcp_poll_group)	link;
313 };
314 
315 struct spdk_nvmf_tcp_port {
316 	const struct spdk_nvme_transport_id	*trid;
317 	struct spdk_sock			*listen_sock;
318 	TAILQ_ENTRY(spdk_nvmf_tcp_port)		link;
319 };
320 
321 struct tcp_transport_opts {
322 	bool		c2h_success;
323 	uint16_t	control_msg_num;
324 	uint32_t	sock_priority;
325 };
326 
327 struct spdk_nvmf_tcp_transport {
328 	struct spdk_nvmf_transport		transport;
329 	struct tcp_transport_opts               tcp_opts;
330 
331 	struct spdk_nvmf_tcp_poll_group		*next_pg;
332 
333 	struct spdk_poller			*accept_poller;
334 
335 	TAILQ_HEAD(, spdk_nvmf_tcp_port)	ports;
336 	TAILQ_HEAD(, spdk_nvmf_tcp_poll_group)	poll_groups;
337 };
338 
339 static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
340 	{
341 		"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
342 		spdk_json_decode_bool, true
343 	},
344 	{
345 		"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
346 		spdk_json_decode_uint16, true
347 	},
348 	{
349 		"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
350 		spdk_json_decode_uint32, true
351 	},
352 };
353 
354 static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
355 				 struct spdk_nvmf_tcp_req *tcp_req);
356 static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
357 
358 static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
359 				    struct spdk_nvmf_tcp_req *tcp_req);
360 
361 static void
362 nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
363 		       enum spdk_nvmf_tcp_req_state state)
364 {
365 	struct spdk_nvmf_qpair *qpair;
366 	struct spdk_nvmf_tcp_qpair *tqpair;
367 
368 	qpair = tcp_req->req.qpair;
369 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
370 
371 	assert(tqpair->state_cntr[tcp_req->state] > 0);
372 	tqpair->state_cntr[tcp_req->state]--;
373 	tqpair->state_cntr[state]++;
374 
375 	tcp_req->state = state;
376 }
377 
378 static inline struct nvme_tcp_pdu *
379 nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
380 {
381 	assert(tcp_req->pdu_in_use == false);
382 
383 	memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
384 	tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
385 
386 	return tcp_req->pdu;
387 }
388 
389 static struct spdk_nvmf_tcp_req *
390 nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
391 {
392 	struct spdk_nvmf_tcp_req *tcp_req;
393 
394 	tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
395 	if (spdk_unlikely(!tcp_req)) {
396 		return NULL;
397 	}
398 
399 	memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
400 	tcp_req->h2c_offset = 0;
401 	tcp_req->has_in_capsule_data = false;
402 	tcp_req->req.dif_enabled = false;
403 	tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE;
404 
405 	TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
406 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
407 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
408 	return tcp_req;
409 }
410 
411 static inline void
412 nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
413 {
414 	assert(!tcp_req->pdu_in_use);
415 
416 	TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
417 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
418 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
419 }
420 
421 static void
422 nvmf_tcp_request_free(void *cb_arg)
423 {
424 	struct spdk_nvmf_tcp_transport *ttransport;
425 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
426 
427 	assert(tcp_req != NULL);
428 
429 	SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
430 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
431 				      struct spdk_nvmf_tcp_transport, transport);
432 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
433 	nvmf_tcp_req_process(ttransport, tcp_req);
434 }
435 
436 static int
437 nvmf_tcp_req_free(struct spdk_nvmf_request *req)
438 {
439 	struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
440 
441 	nvmf_tcp_request_free(tcp_req);
442 
443 	return 0;
444 }
445 
446 static void
447 nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
448 			   enum spdk_nvmf_tcp_req_state state)
449 {
450 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
451 
452 	assert(state != TCP_REQUEST_STATE_FREE);
453 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
454 		if (state == tcp_req->state) {
455 			nvmf_tcp_request_free(tcp_req);
456 		}
457 	}
458 }
459 
460 static void
461 nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
462 {
463 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
464 
465 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
466 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
467 
468 	/* Wipe the requests waiting for buffer from the global list */
469 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
470 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
471 			STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue, &tcp_req->req,
472 				      spdk_nvmf_request, buf_link);
473 		}
474 	}
475 
476 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
477 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
478 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
479 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
480 }
481 
482 static void
483 nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
484 {
485 	int i;
486 	struct spdk_nvmf_tcp_req *tcp_req;
487 
488 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
489 	for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
490 		SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
491 		TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
492 			if ((int)tcp_req->state == i) {
493 				SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
494 				SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
495 			}
496 		}
497 	}
498 }
499 
500 static void
501 _nvmf_tcp_qpair_destroy(void *_tqpair)
502 {
503 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
504 	spdk_nvmf_transport_qpair_fini_cb cb_fn = tqpair->fini_cb_fn;
505 	void *cb_arg = tqpair->fini_cb_arg;
506 	int err = 0;
507 
508 	spdk_trace_record(TRACE_TCP_QP_DESTROY, 0, 0, (uintptr_t)tqpair);
509 
510 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
511 
512 	err = spdk_sock_close(&tqpair->sock);
513 	assert(err == 0);
514 	nvmf_tcp_cleanup_all_states(tqpair);
515 
516 	if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
517 		SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
518 			    tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
519 			    tqpair->resource_count);
520 		err++;
521 	}
522 
523 	if (err > 0) {
524 		nvmf_tcp_dump_qpair_req_contents(tqpair);
525 	}
526 
527 	/* The timeout poller might still be registered here if we close the qpair before host
528 	 * terminates the connection.
529 	 */
530 	spdk_poller_unregister(&tqpair->timeout_poller);
531 	spdk_dma_free(tqpair->pdus);
532 	free(tqpair->reqs);
533 	spdk_free(tqpair->bufs);
534 	free(tqpair);
535 
536 	if (cb_fn != NULL) {
537 		cb_fn(cb_arg);
538 	}
539 
540 	SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
541 }
542 
543 static void
544 nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
545 {
546 	/* Delay the destruction to make sure it isn't performed from the context of a sock
547 	 * callback.  Otherwise, spdk_sock_close() might not abort pending requests, causing their
548 	 * completions to be executed after the qpair is freed.  (Note: this fixed issue #2471.)
549 	 */
550 	spdk_thread_send_msg(spdk_get_thread(), _nvmf_tcp_qpair_destroy, tqpair);
551 }
552 
553 static void
554 nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
555 {
556 	struct spdk_nvmf_tcp_transport	*ttransport;
557 	assert(w != NULL);
558 
559 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
560 	spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
561 	spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
562 }
563 
564 static int
565 nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
566 		 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
567 {
568 	struct spdk_nvmf_tcp_transport	*ttransport;
569 
570 	assert(transport != NULL);
571 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
572 
573 	spdk_poller_unregister(&ttransport->accept_poller);
574 	free(ttransport);
575 
576 	if (cb_fn) {
577 		cb_fn(cb_arg);
578 	}
579 	return 0;
580 }
581 
582 static int nvmf_tcp_accept(void *ctx);
583 
584 static struct spdk_nvmf_transport *
585 nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
586 {
587 	struct spdk_nvmf_tcp_transport *ttransport;
588 	uint32_t sge_count;
589 	uint32_t min_shared_buffers;
590 
591 	ttransport = calloc(1, sizeof(*ttransport));
592 	if (!ttransport) {
593 		return NULL;
594 	}
595 
596 	TAILQ_INIT(&ttransport->ports);
597 	TAILQ_INIT(&ttransport->poll_groups);
598 
599 	ttransport->transport.ops = &spdk_nvmf_transport_tcp;
600 
601 	ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
602 	ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
603 	ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
604 	if (opts->transport_specific != NULL &&
605 	    spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
606 					    SPDK_COUNTOF(tcp_transport_opts_decoder),
607 					    &ttransport->tcp_opts)) {
608 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
609 		free(ttransport);
610 		return NULL;
611 	}
612 
613 	SPDK_NOTICELOG("*** TCP Transport Init ***\n");
614 
615 	SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
616 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
617 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
618 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
619 		     "  num_shared_buffers=%d, c2h_success=%d,\n"
620 		     "  dif_insert_or_strip=%d, sock_priority=%d\n"
621 		     "  abort_timeout_sec=%d, control_msg_num=%hu\n",
622 		     opts->max_queue_depth,
623 		     opts->max_io_size,
624 		     opts->max_qpairs_per_ctrlr - 1,
625 		     opts->io_unit_size,
626 		     opts->in_capsule_data_size,
627 		     opts->max_aq_depth,
628 		     opts->num_shared_buffers,
629 		     ttransport->tcp_opts.c2h_success,
630 		     opts->dif_insert_or_strip,
631 		     ttransport->tcp_opts.sock_priority,
632 		     opts->abort_timeout_sec,
633 		     ttransport->tcp_opts.control_msg_num);
634 
635 	if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
636 		SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
637 			    "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
638 			    ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
639 		free(ttransport);
640 		return NULL;
641 	}
642 
643 	if (ttransport->tcp_opts.control_msg_num == 0 &&
644 	    opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
645 		SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
646 			     SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
647 		ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
648 	}
649 
650 	/* I/O unit size cannot be larger than max I/O size */
651 	if (opts->io_unit_size > opts->max_io_size) {
652 		opts->io_unit_size = opts->max_io_size;
653 	}
654 
655 	sge_count = opts->max_io_size / opts->io_unit_size;
656 	if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
657 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
658 		free(ttransport);
659 		return NULL;
660 	}
661 
662 	min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
663 	if (min_shared_buffers > opts->num_shared_buffers) {
664 		SPDK_ERRLOG("There are not enough buffers to satisfy "
665 			    "per-poll group caches for each thread. (%" PRIu32 ") "
666 			    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
667 		SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
668 		free(ttransport);
669 		return NULL;
670 	}
671 
672 	ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport,
673 				    opts->acceptor_poll_rate);
674 	if (!ttransport->accept_poller) {
675 		free(ttransport);
676 		return NULL;
677 	}
678 
679 	return &ttransport->transport;
680 }
681 
682 static int
683 nvmf_tcp_trsvcid_to_int(const char *trsvcid)
684 {
685 	unsigned long long ull;
686 	char *end = NULL;
687 
688 	ull = strtoull(trsvcid, &end, 10);
689 	if (end == NULL || end == trsvcid || *end != '\0') {
690 		return -1;
691 	}
692 
693 	/* Valid TCP/IP port numbers are in [0, 65535] */
694 	if (ull > 65535) {
695 		return -1;
696 	}
697 
698 	return (int)ull;
699 }
700 
701 /**
702  * Canonicalize a listen address trid.
703  */
704 static int
705 nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
706 			   const struct spdk_nvme_transport_id *trid)
707 {
708 	int trsvcid_int;
709 
710 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
711 	if (trsvcid_int < 0) {
712 		return -EINVAL;
713 	}
714 
715 	memset(canon_trid, 0, sizeof(*canon_trid));
716 	spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
717 	canon_trid->adrfam = trid->adrfam;
718 	snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
719 	snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
720 
721 	return 0;
722 }
723 
724 /**
725  * Find an existing listening port.
726  */
727 static struct spdk_nvmf_tcp_port *
728 nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
729 		   const struct spdk_nvme_transport_id *trid)
730 {
731 	struct spdk_nvme_transport_id canon_trid;
732 	struct spdk_nvmf_tcp_port *port;
733 
734 	if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
735 		return NULL;
736 	}
737 
738 	TAILQ_FOREACH(port, &ttransport->ports, link) {
739 		if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
740 			return port;
741 		}
742 	}
743 
744 	return NULL;
745 }
746 
747 static int
748 nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
749 		struct spdk_nvmf_listen_opts *listen_opts)
750 {
751 	struct spdk_nvmf_tcp_transport *ttransport;
752 	struct spdk_nvmf_tcp_port *port;
753 	int trsvcid_int;
754 	uint8_t adrfam;
755 	struct spdk_sock_opts opts;
756 
757 	if (!strlen(trid->trsvcid)) {
758 		SPDK_ERRLOG("Service id is required\n");
759 		return -EINVAL;
760 	}
761 
762 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
763 
764 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
765 	if (trsvcid_int < 0) {
766 		SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
767 		return -EINVAL;
768 	}
769 
770 	port = calloc(1, sizeof(*port));
771 	if (!port) {
772 		SPDK_ERRLOG("Port allocation failed\n");
773 		return -ENOMEM;
774 	}
775 
776 	port->trid = trid;
777 	opts.opts_size = sizeof(opts);
778 	spdk_sock_get_default_opts(&opts);
779 	opts.priority = ttransport->tcp_opts.sock_priority;
780 	port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
781 			    NULL, &opts);
782 	if (port->listen_sock == NULL) {
783 		SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
784 			    trid->traddr, trsvcid_int,
785 			    spdk_strerror(errno), errno);
786 		free(port);
787 		return -errno;
788 	}
789 
790 	if (spdk_sock_is_ipv4(port->listen_sock)) {
791 		adrfam = SPDK_NVMF_ADRFAM_IPV4;
792 	} else if (spdk_sock_is_ipv6(port->listen_sock)) {
793 		adrfam = SPDK_NVMF_ADRFAM_IPV6;
794 	} else {
795 		SPDK_ERRLOG("Unhandled socket type\n");
796 		adrfam = 0;
797 	}
798 
799 	if (adrfam != trid->adrfam) {
800 		SPDK_ERRLOG("Socket address family mismatch\n");
801 		spdk_sock_close(&port->listen_sock);
802 		free(port);
803 		return -EINVAL;
804 	}
805 
806 	SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
807 		       trid->traddr, trid->trsvcid);
808 
809 	TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
810 	return 0;
811 }
812 
813 static void
814 nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
815 		     const struct spdk_nvme_transport_id *trid)
816 {
817 	struct spdk_nvmf_tcp_transport *ttransport;
818 	struct spdk_nvmf_tcp_port *port;
819 
820 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
821 
822 	SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
823 		      trid->traddr, trid->trsvcid);
824 
825 	port = nvmf_tcp_find_port(ttransport, trid);
826 	if (port) {
827 		TAILQ_REMOVE(&ttransport->ports, port, link);
828 		spdk_sock_close(&port->listen_sock);
829 		free(port);
830 	}
831 }
832 
833 static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
834 		enum nvme_tcp_pdu_recv_state state);
835 
836 static void
837 nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvme_tcp_qpair_state state)
838 {
839 	tqpair->state = state;
840 	spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
841 			  tqpair->state);
842 }
843 
844 static void
845 nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
846 {
847 	SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
848 
849 	spdk_trace_record(TRACE_TCP_QP_DISCONNECT, 0, 0, (uintptr_t)tqpair);
850 
851 	if (tqpair->state <= NVME_TCP_QPAIR_STATE_RUNNING) {
852 		nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITING);
853 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
854 		spdk_poller_unregister(&tqpair->timeout_poller);
855 
856 		/* This will end up calling nvmf_tcp_close_qpair */
857 		spdk_nvmf_qpair_disconnect(&tqpair->qpair, NULL, NULL);
858 	}
859 }
860 
861 static void
862 _mgmt_pdu_write_done(void *_tqpair, int err)
863 {
864 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
865 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
866 
867 	if (spdk_unlikely(err != 0)) {
868 		nvmf_tcp_qpair_disconnect(tqpair);
869 		return;
870 	}
871 
872 	assert(pdu->cb_fn != NULL);
873 	pdu->cb_fn(pdu->cb_arg);
874 }
875 
876 static void
877 _req_pdu_write_done(void *req, int err)
878 {
879 	struct spdk_nvmf_tcp_req *tcp_req = req;
880 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
881 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
882 
883 	assert(tcp_req->pdu_in_use);
884 	tcp_req->pdu_in_use = false;
885 
886 	/* If the request is in a completed state, we're waiting for write completion to free it */
887 	if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) {
888 		nvmf_tcp_request_free(tcp_req);
889 		return;
890 	}
891 
892 	if (spdk_unlikely(err != 0)) {
893 		nvmf_tcp_qpair_disconnect(tqpair);
894 		return;
895 	}
896 
897 	assert(pdu->cb_fn != NULL);
898 	pdu->cb_fn(pdu->cb_arg);
899 }
900 
901 static void
902 _pdu_write_done(struct nvme_tcp_pdu *pdu, int err)
903 {
904 	pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err);
905 }
906 
907 static void
908 _tcp_write_pdu(struct nvme_tcp_pdu *pdu)
909 {
910 	uint32_t mapped_length = 0;
911 	ssize_t rc;
912 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
913 
914 	pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
915 			       tqpair->host_hdgst_enable, tqpair->host_ddgst_enable,
916 			       &mapped_length);
917 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
918 	    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
919 		rc = spdk_sock_writev(tqpair->sock, pdu->iov, pdu->sock_req.iovcnt);
920 		if (rc == mapped_length) {
921 			_pdu_write_done(pdu, 0);
922 		} else {
923 			SPDK_ERRLOG("IC_RESP or TERM_REQ could not write to socket.\n");
924 			_pdu_write_done(pdu, -1);
925 		}
926 	} else {
927 		spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
928 	}
929 }
930 
931 static void
932 data_crc32_accel_done(void *cb_arg, int status)
933 {
934 	struct nvme_tcp_pdu *pdu = cb_arg;
935 
936 	if (spdk_unlikely(status)) {
937 		SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
938 		_pdu_write_done(pdu, status);
939 		return;
940 	}
941 
942 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
943 	MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
944 
945 	_tcp_write_pdu(pdu);
946 }
947 
948 static void
949 pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
950 {
951 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
952 	int rc = 0;
953 
954 	/* Data Digest */
955 	if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
956 		/* Only suport this limitated case for the first step */
957 		if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
958 				&& tqpair->group)) {
959 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
960 						       pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
961 			if (spdk_likely(rc == 0)) {
962 				return;
963 			}
964 		} else {
965 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
966 		}
967 		data_crc32_accel_done(pdu, rc);
968 	} else {
969 		_tcp_write_pdu(pdu);
970 	}
971 }
972 
973 static void
974 nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
975 			 struct nvme_tcp_pdu *pdu,
976 			 nvme_tcp_qpair_xfer_complete_cb cb_fn,
977 			 void *cb_arg)
978 {
979 	int hlen;
980 	uint32_t crc32c;
981 
982 	assert(tqpair->pdu_in_progress != pdu);
983 
984 	hlen = pdu->hdr.common.hlen;
985 	pdu->cb_fn = cb_fn;
986 	pdu->cb_arg = cb_arg;
987 
988 	pdu->iov[0].iov_base = &pdu->hdr.raw;
989 	pdu->iov[0].iov_len = hlen;
990 
991 	/* Header Digest */
992 	if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) {
993 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
994 		MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
995 	}
996 
997 	/* Data Digest */
998 	pdu_data_crc32_compute(pdu);
999 }
1000 
1001 static void
1002 nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1003 			      nvme_tcp_qpair_xfer_complete_cb cb_fn,
1004 			      void *cb_arg)
1005 {
1006 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1007 
1008 	pdu->sock_req.cb_fn = _mgmt_pdu_write_done;
1009 	pdu->sock_req.cb_arg = tqpair;
1010 
1011 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1012 }
1013 
1014 static void
1015 nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1016 			     struct spdk_nvmf_tcp_req *tcp_req,
1017 			     nvme_tcp_qpair_xfer_complete_cb cb_fn,
1018 			     void *cb_arg)
1019 {
1020 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1021 
1022 	pdu->sock_req.cb_fn = _req_pdu_write_done;
1023 	pdu->sock_req.cb_arg = tcp_req;
1024 
1025 	assert(!tcp_req->pdu_in_use);
1026 	tcp_req->pdu_in_use = true;
1027 
1028 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1029 }
1030 
1031 static int
1032 nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
1033 {
1034 	uint32_t i;
1035 	struct spdk_nvmf_transport_opts *opts;
1036 	uint32_t in_capsule_data_size;
1037 
1038 	opts = &tqpair->qpair.transport->opts;
1039 
1040 	in_capsule_data_size = opts->in_capsule_data_size;
1041 	if (opts->dif_insert_or_strip) {
1042 		in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
1043 	}
1044 
1045 	tqpair->resource_count = opts->max_queue_depth;
1046 
1047 	tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
1048 	if (!tqpair->reqs) {
1049 		SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
1050 		return -1;
1051 	}
1052 
1053 	if (in_capsule_data_size) {
1054 		tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
1055 					    NULL, SPDK_ENV_LCORE_ID_ANY,
1056 					    SPDK_MALLOC_DMA);
1057 		if (!tqpair->bufs) {
1058 			SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
1059 			return -1;
1060 		}
1061 	}
1062 	/* prepare memory space for receiving pdus and tcp_req */
1063 	/* Add additional 1 member, which will be used for mgmt_pdu owned by the tqpair */
1064 	tqpair->pdus = spdk_dma_zmalloc((2 * tqpair->resource_count + 1) * sizeof(*tqpair->pdus), 0x1000,
1065 					NULL);
1066 	if (!tqpair->pdus) {
1067 		SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
1068 		return -1;
1069 	}
1070 
1071 	for (i = 0; i < tqpair->resource_count; i++) {
1072 		struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
1073 
1074 		tcp_req->ttag = i + 1;
1075 		tcp_req->req.qpair = &tqpair->qpair;
1076 
1077 		tcp_req->pdu = &tqpair->pdus[i];
1078 		tcp_req->pdu->qpair = tqpair;
1079 
1080 		/* Set up memory to receive commands */
1081 		if (tqpair->bufs) {
1082 			tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
1083 		}
1084 
1085 		/* Set the cmdn and rsp */
1086 		tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
1087 		tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
1088 
1089 		tcp_req->req.stripped_data = NULL;
1090 
1091 		/* Initialize request state to FREE */
1092 		tcp_req->state = TCP_REQUEST_STATE_FREE;
1093 		TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
1094 		tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
1095 	}
1096 
1097 	for (; i < 2 * tqpair->resource_count; i++) {
1098 		struct nvme_tcp_pdu *pdu = &tqpair->pdus[i];
1099 
1100 		pdu->qpair = tqpair;
1101 		SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1102 	}
1103 
1104 	tqpair->mgmt_pdu = &tqpair->pdus[i];
1105 	tqpair->mgmt_pdu->qpair = tqpair;
1106 	tqpair->pdu_in_progress = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
1107 	SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
1108 
1109 	tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
1110 				 SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1111 
1112 	return 0;
1113 }
1114 
1115 static int
1116 nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
1117 {
1118 	struct spdk_nvmf_tcp_qpair *tqpair;
1119 
1120 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1121 
1122 	SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
1123 
1124 	spdk_trace_record(TRACE_TCP_QP_CREATE, 0, 0, (uintptr_t)tqpair);
1125 
1126 	/* Initialise request state queues of the qpair */
1127 	TAILQ_INIT(&tqpair->tcp_req_free_queue);
1128 	TAILQ_INIT(&tqpair->tcp_req_working_queue);
1129 	SLIST_INIT(&tqpair->tcp_pdu_free_queue);
1130 
1131 	tqpair->host_hdgst_enable = true;
1132 	tqpair->host_ddgst_enable = true;
1133 
1134 	return 0;
1135 }
1136 
1137 static int
1138 nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
1139 {
1140 	int rc;
1141 
1142 	spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, 0, 0, (uintptr_t)tqpair);
1143 
1144 	/* set low water mark */
1145 	rc = spdk_sock_set_recvlowat(tqpair->sock, 1);
1146 	if (rc != 0) {
1147 		SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
1148 		return rc;
1149 	}
1150 
1151 	return 0;
1152 }
1153 
1154 static void
1155 nvmf_tcp_handle_connect(struct spdk_nvmf_transport *transport,
1156 			struct spdk_nvmf_tcp_port *port,
1157 			struct spdk_sock *sock)
1158 {
1159 	struct spdk_nvmf_tcp_qpair *tqpair;
1160 	int rc;
1161 
1162 	SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
1163 		      port->trid->traddr, port->trid->trsvcid);
1164 
1165 	tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
1166 	if (tqpair == NULL) {
1167 		SPDK_ERRLOG("Could not allocate new connection.\n");
1168 		spdk_sock_close(&sock);
1169 		return;
1170 	}
1171 
1172 	tqpair->sock = sock;
1173 	tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
1174 	tqpair->port = port;
1175 	tqpair->qpair.transport = transport;
1176 
1177 	rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
1178 			       sizeof(tqpair->target_addr), &tqpair->target_port,
1179 			       tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
1180 			       &tqpair->initiator_port);
1181 	if (rc < 0) {
1182 		SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
1183 		nvmf_tcp_qpair_destroy(tqpair);
1184 		return;
1185 	}
1186 
1187 	spdk_nvmf_tgt_new_qpair(transport->tgt, &tqpair->qpair);
1188 }
1189 
1190 static uint32_t
1191 nvmf_tcp_port_accept(struct spdk_nvmf_transport *transport, struct spdk_nvmf_tcp_port *port)
1192 {
1193 	struct spdk_sock *sock;
1194 	uint32_t count = 0;
1195 	int i;
1196 
1197 	for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
1198 		sock = spdk_sock_accept(port->listen_sock);
1199 		if (sock == NULL) {
1200 			break;
1201 		}
1202 		count++;
1203 		nvmf_tcp_handle_connect(transport, port, sock);
1204 	}
1205 
1206 	return count;
1207 }
1208 
1209 static int
1210 nvmf_tcp_accept(void *ctx)
1211 {
1212 	struct spdk_nvmf_transport *transport = ctx;
1213 	struct spdk_nvmf_tcp_transport *ttransport;
1214 	struct spdk_nvmf_tcp_port *port;
1215 	uint32_t count = 0;
1216 
1217 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1218 
1219 	TAILQ_FOREACH(port, &ttransport->ports, link) {
1220 		count += nvmf_tcp_port_accept(transport, port);
1221 	}
1222 
1223 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1224 }
1225 
1226 static void
1227 nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
1228 		  struct spdk_nvme_transport_id *trid,
1229 		  struct spdk_nvmf_discovery_log_page_entry *entry)
1230 {
1231 	entry->trtype = SPDK_NVMF_TRTYPE_TCP;
1232 	entry->adrfam = trid->adrfam;
1233 	entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
1234 
1235 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
1236 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
1237 
1238 	entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
1239 }
1240 
1241 static struct spdk_nvmf_tcp_control_msg_list *
1242 nvmf_tcp_control_msg_list_create(uint16_t num_messages)
1243 {
1244 	struct spdk_nvmf_tcp_control_msg_list *list;
1245 	struct spdk_nvmf_tcp_control_msg *msg;
1246 	uint16_t i;
1247 
1248 	list = calloc(1, sizeof(*list));
1249 	if (!list) {
1250 		SPDK_ERRLOG("Failed to allocate memory for list structure\n");
1251 		return NULL;
1252 	}
1253 
1254 	list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
1255 				     NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
1256 	if (!list->msg_buf) {
1257 		SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
1258 		free(list);
1259 		return NULL;
1260 	}
1261 
1262 	STAILQ_INIT(&list->free_msgs);
1263 
1264 	for (i = 0; i < num_messages; i++) {
1265 		msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
1266 				SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1267 		STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
1268 	}
1269 
1270 	return list;
1271 }
1272 
1273 static void
1274 nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
1275 {
1276 	if (!list) {
1277 		return;
1278 	}
1279 
1280 	spdk_free(list->msg_buf);
1281 	free(list);
1282 }
1283 
1284 static struct spdk_nvmf_transport_poll_group *
1285 nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport,
1286 			   struct spdk_nvmf_poll_group *group)
1287 {
1288 	struct spdk_nvmf_tcp_transport	*ttransport;
1289 	struct spdk_nvmf_tcp_poll_group *tgroup;
1290 
1291 	tgroup = calloc(1, sizeof(*tgroup));
1292 	if (!tgroup) {
1293 		return NULL;
1294 	}
1295 
1296 	tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
1297 	if (!tgroup->sock_group) {
1298 		goto cleanup;
1299 	}
1300 
1301 	TAILQ_INIT(&tgroup->qpairs);
1302 	TAILQ_INIT(&tgroup->await_req);
1303 
1304 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1305 
1306 	if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
1307 		SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
1308 			      "Creating control messages list\n", transport->opts.in_capsule_data_size,
1309 			      SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1310 		tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
1311 		if (!tgroup->control_msg_list) {
1312 			goto cleanup;
1313 		}
1314 	}
1315 
1316 	tgroup->accel_channel = spdk_accel_engine_get_io_channel();
1317 	if (spdk_unlikely(!tgroup->accel_channel)) {
1318 		SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
1319 		goto cleanup;
1320 	}
1321 
1322 	TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link);
1323 	if (ttransport->next_pg == NULL) {
1324 		ttransport->next_pg = tgroup;
1325 	}
1326 
1327 	return &tgroup->group;
1328 
1329 cleanup:
1330 	nvmf_tcp_poll_group_destroy(&tgroup->group);
1331 	return NULL;
1332 }
1333 
1334 static struct spdk_nvmf_transport_poll_group *
1335 nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
1336 {
1337 	struct spdk_nvmf_tcp_transport *ttransport;
1338 	struct spdk_nvmf_tcp_poll_group **pg;
1339 	struct spdk_nvmf_tcp_qpair *tqpair;
1340 	struct spdk_sock_group *group = NULL, *hint = NULL;
1341 	int rc;
1342 
1343 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
1344 
1345 	if (TAILQ_EMPTY(&ttransport->poll_groups)) {
1346 		return NULL;
1347 	}
1348 
1349 	pg = &ttransport->next_pg;
1350 	assert(*pg != NULL);
1351 	hint = (*pg)->sock_group;
1352 
1353 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1354 	rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint);
1355 	if (rc != 0) {
1356 		return NULL;
1357 	} else if (group != NULL) {
1358 		/* Optimal poll group was found */
1359 		return spdk_sock_group_get_ctx(group);
1360 	}
1361 
1362 	/* The hint was used for optimal poll group, advance next_pg. */
1363 	*pg = TAILQ_NEXT(*pg, link);
1364 	if (*pg == NULL) {
1365 		*pg = TAILQ_FIRST(&ttransport->poll_groups);
1366 	}
1367 
1368 	return spdk_sock_group_get_ctx(hint);
1369 }
1370 
1371 static void
1372 nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
1373 {
1374 	struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup;
1375 	struct spdk_nvmf_tcp_transport *ttransport;
1376 
1377 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
1378 	spdk_sock_group_close(&tgroup->sock_group);
1379 	if (tgroup->control_msg_list) {
1380 		nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
1381 	}
1382 
1383 	if (tgroup->accel_channel) {
1384 		spdk_put_io_channel(tgroup->accel_channel);
1385 	}
1386 
1387 	ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport);
1388 
1389 	next_tgroup = TAILQ_NEXT(tgroup, link);
1390 	TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link);
1391 	if (next_tgroup == NULL) {
1392 		next_tgroup = TAILQ_FIRST(&ttransport->poll_groups);
1393 	}
1394 	if (ttransport->next_pg == tgroup) {
1395 		ttransport->next_pg = next_tgroup;
1396 	}
1397 
1398 	free(tgroup);
1399 }
1400 
1401 static void
1402 nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1403 			      enum nvme_tcp_pdu_recv_state state)
1404 {
1405 	if (tqpair->recv_state == state) {
1406 		SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
1407 			    tqpair, state);
1408 		return;
1409 	}
1410 
1411 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1412 		/* When leaving the await req state, move the qpair to the main list */
1413 		TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link);
1414 		TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link);
1415 	} else if (state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1416 		TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link);
1417 		TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link);
1418 	}
1419 
1420 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
1421 	tqpair->recv_state = state;
1422 
1423 	spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
1424 			  tqpair->recv_state);
1425 }
1426 
1427 static int
1428 nvmf_tcp_qpair_handle_timeout(void *ctx)
1429 {
1430 	struct spdk_nvmf_tcp_qpair *tqpair = ctx;
1431 
1432 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1433 
1434 	SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
1435 		    SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
1436 
1437 	nvmf_tcp_qpair_disconnect(tqpair);
1438 	return SPDK_POLLER_BUSY;
1439 }
1440 
1441 static void
1442 nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
1443 {
1444 	struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
1445 
1446 	if (!tqpair->timeout_poller) {
1447 		tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
1448 					 SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
1449 	}
1450 }
1451 
1452 static void
1453 nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
1454 			   enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
1455 {
1456 	struct nvme_tcp_pdu *rsp_pdu;
1457 	struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
1458 	uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
1459 	uint32_t copy_len;
1460 
1461 	rsp_pdu = tqpair->mgmt_pdu;
1462 
1463 	c2h_term_req = &rsp_pdu->hdr.term_req;
1464 	c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
1465 	c2h_term_req->common.hlen = c2h_term_req_hdr_len;
1466 
1467 	if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1468 	    (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1469 		DSET32(&c2h_term_req->fei, error_offset);
1470 	}
1471 
1472 	copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
1473 
1474 	/* Copy the error info into the buffer */
1475 	memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
1476 	nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
1477 
1478 	/* Contain the header of the wrong received pdu */
1479 	c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
1480 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
1481 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair);
1482 }
1483 
1484 static void
1485 nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1486 				struct spdk_nvmf_tcp_qpair *tqpair,
1487 				struct nvme_tcp_pdu *pdu)
1488 {
1489 	struct spdk_nvmf_tcp_req *tcp_req;
1490 
1491 	assert(pdu->psh_valid_bytes == pdu->psh_len);
1492 	assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
1493 
1494 	tcp_req = nvmf_tcp_req_get(tqpair);
1495 	if (!tcp_req) {
1496 		/* Directly return and make the allocation retry again.  This can happen if we're
1497 		 * using asynchronous writes to send the response to the host or when releasing
1498 		 * zero-copy buffers after a response has been sent.  In both cases, the host might
1499 		 * receive the response before we've finished processing the request and is free to
1500 		 * send another one.
1501 		 */
1502 		if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 ||
1503 		    tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) {
1504 			return;
1505 		}
1506 
1507 		/* The host sent more commands than the maximum queue depth. */
1508 		SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
1509 		nvmf_tcp_qpair_disconnect(tqpair);
1510 		return;
1511 	}
1512 
1513 	pdu->req = tcp_req;
1514 	assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
1515 	nvmf_tcp_req_process(ttransport, tcp_req);
1516 }
1517 
1518 static void
1519 nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1520 				    struct spdk_nvmf_tcp_qpair *tqpair,
1521 				    struct nvme_tcp_pdu *pdu)
1522 {
1523 	struct spdk_nvmf_tcp_req *tcp_req;
1524 	struct spdk_nvme_tcp_cmd *capsule_cmd;
1525 	uint32_t error_offset = 0;
1526 	enum spdk_nvme_tcp_term_req_fes fes;
1527 	struct spdk_nvme_cpl *rsp;
1528 
1529 	capsule_cmd = &pdu->hdr.capsule_cmd;
1530 	tcp_req = pdu->req;
1531 	assert(tcp_req != NULL);
1532 
1533 	/* Zero-copy requests don't support ICD */
1534 	assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req));
1535 
1536 	if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
1537 		SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
1538 			    SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
1539 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1540 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
1541 		goto err;
1542 	}
1543 
1544 	rsp = &tcp_req->req.rsp->nvme_cpl;
1545 	if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1546 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1547 	} else {
1548 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1549 	}
1550 
1551 	nvmf_tcp_req_process(ttransport, tcp_req);
1552 
1553 	return;
1554 err:
1555 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1556 }
1557 
1558 static void
1559 nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1560 			     struct spdk_nvmf_tcp_qpair *tqpair,
1561 			     struct nvme_tcp_pdu *pdu)
1562 {
1563 	struct spdk_nvmf_tcp_req *tcp_req;
1564 	uint32_t error_offset = 0;
1565 	enum spdk_nvme_tcp_term_req_fes fes = 0;
1566 	struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
1567 
1568 	h2c_data = &pdu->hdr.h2c_data;
1569 
1570 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
1571 		      tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
1572 
1573 	if (h2c_data->ttag > tqpair->resource_count) {
1574 		SPDK_DEBUGLOG(nvmf_tcp, "ttag %u is larger than allowed %u.\n", h2c_data->ttag,
1575 			      tqpair->resource_count);
1576 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1577 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1578 		goto err;
1579 	}
1580 
1581 	tcp_req = &tqpair->reqs[h2c_data->ttag - 1];
1582 
1583 	if (spdk_unlikely(tcp_req->state != TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER &&
1584 			  tcp_req->state != TCP_REQUEST_STATE_AWAITING_R2T_ACK)) {
1585 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, has error state in %d\n", tcp_req, tqpair,
1586 			      tcp_req->state);
1587 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1588 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1589 		goto err;
1590 	}
1591 
1592 	if (spdk_unlikely(tcp_req->req.cmd->nvme_cmd.cid != h2c_data->cccid)) {
1593 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, expected %u but %u for cccid.\n", tcp_req, tqpair,
1594 			      tcp_req->req.cmd->nvme_cmd.cid, h2c_data->cccid);
1595 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1596 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
1597 		goto err;
1598 	}
1599 
1600 	if (tcp_req->h2c_offset != h2c_data->datao) {
1601 		SPDK_DEBUGLOG(nvmf_tcp,
1602 			      "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
1603 			      tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
1604 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1605 		goto err;
1606 	}
1607 
1608 	if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
1609 		SPDK_DEBUGLOG(nvmf_tcp,
1610 			      "tcp_req(%p), tqpair=%p,  (datao=%u + datal=%u) exceeds requested length=%u\n",
1611 			      tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
1612 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1613 		goto err;
1614 	}
1615 
1616 	pdu->req = tcp_req;
1617 
1618 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
1619 		pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
1620 	}
1621 
1622 	nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
1623 				  h2c_data->datao, h2c_data->datal);
1624 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1625 	return;
1626 
1627 err:
1628 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1629 }
1630 
1631 static void
1632 nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
1633 			       struct spdk_nvmf_tcp_qpair *tqpair)
1634 {
1635 	struct nvme_tcp_pdu *rsp_pdu;
1636 	struct spdk_nvme_tcp_rsp *capsule_resp;
1637 
1638 	SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
1639 
1640 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1641 	assert(rsp_pdu != NULL);
1642 
1643 	capsule_resp = &rsp_pdu->hdr.capsule_resp;
1644 	capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
1645 	capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
1646 	capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
1647 	if (tqpair->host_hdgst_enable) {
1648 		capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1649 		capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1650 	}
1651 
1652 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req);
1653 }
1654 
1655 static void
1656 nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
1657 {
1658 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1659 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
1660 					     struct spdk_nvmf_tcp_qpair, qpair);
1661 
1662 	assert(tqpair != NULL);
1663 
1664 	if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
1665 		SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
1666 			      tcp_req->req.length);
1667 		_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
1668 		return;
1669 	}
1670 
1671 	if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
1672 		nvmf_tcp_request_free(tcp_req);
1673 	} else {
1674 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
1675 	}
1676 }
1677 
1678 static void
1679 nvmf_tcp_r2t_complete(void *cb_arg)
1680 {
1681 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1682 	struct spdk_nvmf_tcp_transport *ttransport;
1683 
1684 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
1685 				      struct spdk_nvmf_tcp_transport, transport);
1686 
1687 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
1688 
1689 	if (tcp_req->h2c_offset == tcp_req->req.length) {
1690 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1691 		nvmf_tcp_req_process(ttransport, tcp_req);
1692 	}
1693 }
1694 
1695 static void
1696 nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1697 		      struct spdk_nvmf_tcp_req *tcp_req)
1698 {
1699 	struct nvme_tcp_pdu *rsp_pdu;
1700 	struct spdk_nvme_tcp_r2t_hdr *r2t;
1701 
1702 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1703 	assert(rsp_pdu != NULL);
1704 
1705 	r2t = &rsp_pdu->hdr.r2t;
1706 	r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
1707 	r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
1708 
1709 	if (tqpair->host_hdgst_enable) {
1710 		r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1711 		r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1712 	}
1713 
1714 	r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
1715 	r2t->ttag = tcp_req->ttag;
1716 	r2t->r2to = tcp_req->h2c_offset;
1717 	r2t->r2tl = tcp_req->req.length;
1718 
1719 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
1720 
1721 	SPDK_DEBUGLOG(nvmf_tcp,
1722 		      "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
1723 		      tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
1724 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req);
1725 }
1726 
1727 static void
1728 nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1729 				 struct spdk_nvmf_tcp_qpair *tqpair,
1730 				 struct nvme_tcp_pdu *pdu)
1731 {
1732 	struct spdk_nvmf_tcp_req *tcp_req;
1733 	struct spdk_nvme_cpl *rsp;
1734 
1735 	tcp_req = pdu->req;
1736 	assert(tcp_req != NULL);
1737 
1738 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1739 
1740 	tcp_req->h2c_offset += pdu->data_len;
1741 
1742 	/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
1743 	 * acknowledged before moving on. */
1744 	if (tcp_req->h2c_offset == tcp_req->req.length &&
1745 	    tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
1746 		/* After receiving all the h2c data, we need to check whether there is
1747 		 * transient transport error */
1748 		rsp = &tcp_req->req.rsp->nvme_cpl;
1749 		if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1750 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1751 		} else {
1752 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1753 		}
1754 		nvmf_tcp_req_process(ttransport, tcp_req);
1755 	}
1756 }
1757 
1758 static void
1759 nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
1760 {
1761 	SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
1762 		    spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
1763 	if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1764 	    (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1765 		SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
1766 			      DGET32(h2c_term_req->fei));
1767 	}
1768 }
1769 
1770 static void
1771 nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1772 				 struct nvme_tcp_pdu *pdu)
1773 {
1774 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1775 	uint32_t error_offset = 0;
1776 	enum spdk_nvme_tcp_term_req_fes fes;
1777 
1778 	if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
1779 		SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
1780 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1781 		error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
1782 		goto end;
1783 	}
1784 
1785 	/* set the data buffer */
1786 	nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
1787 			      h2c_term_req->common.plen - h2c_term_req->common.hlen);
1788 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1789 	return;
1790 end:
1791 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1792 }
1793 
1794 static void
1795 nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1796 				     struct nvme_tcp_pdu *pdu)
1797 {
1798 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1799 
1800 	nvmf_tcp_h2c_term_req_dump(h2c_term_req);
1801 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
1802 }
1803 
1804 static void
1805 _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
1806 {
1807 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
1808 			struct spdk_nvmf_tcp_transport, transport);
1809 
1810 	switch (pdu->hdr.common.pdu_type) {
1811 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
1812 		nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
1813 		break;
1814 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
1815 		nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
1816 		break;
1817 
1818 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
1819 		nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
1820 		break;
1821 
1822 	default:
1823 		/* The code should not go to here */
1824 		SPDK_ERRLOG("ERROR pdu type %d\n", pdu->hdr.common.pdu_type);
1825 		break;
1826 	}
1827 	SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1828 }
1829 
1830 static void
1831 data_crc32_calc_done(void *cb_arg, int status)
1832 {
1833 	struct nvme_tcp_pdu *pdu = cb_arg;
1834 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1835 	struct spdk_nvmf_tcp_req *tcp_req;
1836 	struct spdk_nvme_cpl *rsp;
1837 
1838 	/* async crc32 calculation is failed and use direct calculation to check */
1839 	if (spdk_unlikely(status)) {
1840 		SPDK_ERRLOG("Data digest on tqpair=(%p) with pdu=%p failed to be calculated asynchronously\n",
1841 			    tqpair, pdu);
1842 		pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1843 	}
1844 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
1845 	if (!MATCH_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32)) {
1846 		SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
1847 		tcp_req = pdu->req;
1848 		assert(tcp_req != NULL);
1849 		rsp = &tcp_req->req.rsp->nvme_cpl;
1850 		rsp->status.sc = SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR;
1851 	}
1852 	_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
1853 }
1854 
1855 static void
1856 nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
1857 {
1858 	int rc = 0;
1859 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1860 	tqpair->pdu_in_progress = NULL;
1861 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
1862 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1863 	/* check data digest if need */
1864 	if (pdu->ddgst_enable) {
1865 		if (!pdu->dif_ctx && tqpair->group && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)) {
1866 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
1867 						       pdu->data_iovcnt, 0, data_crc32_calc_done, pdu);
1868 			if (spdk_likely(rc == 0)) {
1869 				return;
1870 			}
1871 		} else {
1872 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1873 		}
1874 		data_crc32_calc_done(pdu, rc);
1875 	} else {
1876 		_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
1877 	}
1878 }
1879 
1880 static void
1881 nvmf_tcp_send_icresp_complete(void *cb_arg)
1882 {
1883 	struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
1884 
1885 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_RUNNING);
1886 }
1887 
1888 static void
1889 nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
1890 		      struct spdk_nvmf_tcp_qpair *tqpair,
1891 		      struct nvme_tcp_pdu *pdu)
1892 {
1893 	struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
1894 	struct nvme_tcp_pdu *rsp_pdu;
1895 	struct spdk_nvme_tcp_ic_resp *ic_resp;
1896 	uint32_t error_offset = 0;
1897 	enum spdk_nvme_tcp_term_req_fes fes;
1898 
1899 	/* Only PFV 0 is defined currently */
1900 	if (ic_req->pfv != 0) {
1901 		SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
1902 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1903 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
1904 		goto end;
1905 	}
1906 
1907 	/* MAXR2T is 0's based */
1908 	SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
1909 
1910 	tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
1911 	if (!tqpair->host_hdgst_enable) {
1912 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1913 	}
1914 
1915 	tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
1916 	if (!tqpair->host_ddgst_enable) {
1917 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1918 	}
1919 
1920 	tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
1921 	/* Now that we know whether digests are enabled, properly size the receive buffer */
1922 	if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
1923 		SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
1924 			     tqpair,
1925 			     tqpair->recv_buf_size);
1926 		/* Not fatal. */
1927 	}
1928 
1929 	tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
1930 	SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
1931 
1932 	rsp_pdu = tqpair->mgmt_pdu;
1933 
1934 	ic_resp = &rsp_pdu->hdr.ic_resp;
1935 	ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
1936 	ic_resp->common.hlen = ic_resp->common.plen =  sizeof(*ic_resp);
1937 	ic_resp->pfv = 0;
1938 	ic_resp->cpda = tqpair->cpda;
1939 	ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
1940 	ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
1941 	ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
1942 
1943 	SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
1944 	SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
1945 
1946 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INITIALIZING);
1947 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair);
1948 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
1949 	return;
1950 end:
1951 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1952 }
1953 
1954 static void
1955 nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1956 			struct spdk_nvmf_tcp_transport *ttransport)
1957 {
1958 	struct nvme_tcp_pdu *pdu;
1959 	int rc;
1960 	uint32_t crc32c, error_offset = 0;
1961 	enum spdk_nvme_tcp_term_req_fes fes;
1962 
1963 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
1964 	pdu = tqpair->pdu_in_progress;
1965 
1966 	SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
1967 		      pdu->hdr.common.pdu_type);
1968 	/* check header digest if needed */
1969 	if (pdu->has_hdgst) {
1970 		SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
1971 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1972 		rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
1973 		if (rc == 0) {
1974 			SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
1975 			fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
1976 			nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1977 			return;
1978 
1979 		}
1980 	}
1981 
1982 	switch (pdu->hdr.common.pdu_type) {
1983 	case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
1984 		nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
1985 		break;
1986 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
1987 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
1988 		break;
1989 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
1990 		nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
1991 		break;
1992 
1993 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
1994 		nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
1995 		break;
1996 
1997 	default:
1998 		SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
1999 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2000 		error_offset = 1;
2001 		nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2002 		break;
2003 	}
2004 }
2005 
2006 static void
2007 nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
2008 {
2009 	struct nvme_tcp_pdu *pdu;
2010 	uint32_t error_offset = 0;
2011 	enum spdk_nvme_tcp_term_req_fes fes;
2012 	uint8_t expected_hlen, pdo;
2013 	bool plen_error = false, pdo_error = false;
2014 
2015 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2016 	pdu = tqpair->pdu_in_progress;
2017 	assert(pdu);
2018 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
2019 		if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) {
2020 			SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
2021 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2022 			goto err;
2023 		}
2024 		expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
2025 		if (pdu->hdr.common.plen != expected_hlen) {
2026 			plen_error = true;
2027 		}
2028 	} else {
2029 		if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) {
2030 			SPDK_ERRLOG("The TCP/IP connection is not negotiated\n");
2031 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2032 			goto err;
2033 		}
2034 
2035 		switch (pdu->hdr.common.pdu_type) {
2036 		case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2037 			expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
2038 			pdo = pdu->hdr.common.pdo;
2039 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2040 				pdo_error = true;
2041 				break;
2042 			}
2043 
2044 			if (pdu->hdr.common.plen < expected_hlen) {
2045 				plen_error = true;
2046 			}
2047 			break;
2048 		case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2049 			expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
2050 			pdo = pdu->hdr.common.pdo;
2051 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2052 				pdo_error = true;
2053 				break;
2054 			}
2055 			if (pdu->hdr.common.plen < expected_hlen) {
2056 				plen_error = true;
2057 			}
2058 			break;
2059 
2060 		case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2061 			expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
2062 			if ((pdu->hdr.common.plen <= expected_hlen) ||
2063 			    (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
2064 				plen_error = true;
2065 			}
2066 			break;
2067 
2068 		default:
2069 			SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
2070 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2071 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
2072 			goto err;
2073 		}
2074 	}
2075 
2076 	if (pdu->hdr.common.hlen != expected_hlen) {
2077 		SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
2078 			    pdu->hdr.common.pdu_type,
2079 			    expected_hlen, pdu->hdr.common.hlen, tqpair);
2080 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2081 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
2082 		goto err;
2083 	} else if (pdo_error) {
2084 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2085 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
2086 	} else if (plen_error) {
2087 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2088 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2089 		goto err;
2090 	} else {
2091 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2092 		nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
2093 		return;
2094 	}
2095 err:
2096 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2097 }
2098 
2099 static int
2100 nvmf_tcp_pdu_payload_insert_dif(struct nvme_tcp_pdu *pdu, uint32_t read_offset,
2101 				int read_len)
2102 {
2103 	int rc;
2104 
2105 	rc = spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt,
2106 				      read_offset, read_len, pdu->dif_ctx);
2107 	if (rc != 0) {
2108 		SPDK_ERRLOG("DIF generate failed\n");
2109 	}
2110 
2111 	return rc;
2112 }
2113 
2114 static int
2115 nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
2116 {
2117 	int rc = 0;
2118 	struct nvme_tcp_pdu *pdu;
2119 	enum nvme_tcp_pdu_recv_state prev_state;
2120 	uint32_t data_len;
2121 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2122 			struct spdk_nvmf_tcp_transport, transport);
2123 
2124 	/* The loop here is to allow for several back-to-back state changes. */
2125 	do {
2126 		prev_state = tqpair->recv_state;
2127 		SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
2128 
2129 		pdu = tqpair->pdu_in_progress;
2130 		assert(pdu || tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2131 		switch (tqpair->recv_state) {
2132 		/* Wait for the common header  */
2133 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
2134 			if (!pdu) {
2135 				pdu = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
2136 				if (spdk_unlikely(!pdu)) {
2137 					return NVME_TCP_PDU_IN_PROGRESS;
2138 				}
2139 				SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
2140 				tqpair->pdu_in_progress = pdu;
2141 			}
2142 			memset(pdu, 0, offsetof(struct nvme_tcp_pdu, qpair));
2143 		/* FALLTHROUGH */
2144 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
2145 			if (spdk_unlikely(tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING)) {
2146 				return rc;
2147 			}
2148 
2149 			rc = nvme_tcp_read_data(tqpair->sock,
2150 						sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
2151 						(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
2152 			if (rc < 0) {
2153 				SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
2154 				return NVME_TCP_PDU_FATAL;
2155 			} else if (rc > 0) {
2156 				pdu->ch_valid_bytes += rc;
2157 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2158 				if (spdk_likely(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY)) {
2159 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2160 				}
2161 			}
2162 
2163 			if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
2164 				return NVME_TCP_PDU_IN_PROGRESS;
2165 			}
2166 
2167 			/* The command header of this PDU has now been read from the socket. */
2168 			nvmf_tcp_pdu_ch_handle(tqpair);
2169 			break;
2170 		/* Wait for the pdu specific header  */
2171 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
2172 			rc = nvme_tcp_read_data(tqpair->sock,
2173 						pdu->psh_len - pdu->psh_valid_bytes,
2174 						(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
2175 			if (rc < 0) {
2176 				return NVME_TCP_PDU_FATAL;
2177 			} else if (rc > 0) {
2178 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2179 				pdu->psh_valid_bytes += rc;
2180 			}
2181 
2182 			if (pdu->psh_valid_bytes < pdu->psh_len) {
2183 				return NVME_TCP_PDU_IN_PROGRESS;
2184 			}
2185 
2186 			/* All header(ch, psh, head digist) of this PDU has now been read from the socket. */
2187 			nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
2188 			break;
2189 		/* Wait for the req slot */
2190 		case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
2191 			nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
2192 			break;
2193 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
2194 			/* check whether the data is valid, if not we just return */
2195 			if (!pdu->data_len) {
2196 				return NVME_TCP_PDU_IN_PROGRESS;
2197 			}
2198 
2199 			data_len = pdu->data_len;
2200 			/* data digest */
2201 			if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
2202 					  tqpair->host_ddgst_enable)) {
2203 				data_len += SPDK_NVME_TCP_DIGEST_LEN;
2204 				pdu->ddgst_enable = true;
2205 			}
2206 
2207 			rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
2208 			if (rc < 0) {
2209 				return NVME_TCP_PDU_FATAL;
2210 			}
2211 			pdu->rw_offset += rc;
2212 
2213 			if (spdk_unlikely(pdu->dif_ctx != NULL)) {
2214 				rc = nvmf_tcp_pdu_payload_insert_dif(pdu, pdu->rw_offset - rc, rc);
2215 				if (rc != 0) {
2216 					return NVME_TCP_PDU_FATAL;
2217 				}
2218 			}
2219 
2220 			if (pdu->rw_offset < data_len) {
2221 				return NVME_TCP_PDU_IN_PROGRESS;
2222 			}
2223 
2224 			/* All of this PDU has now been read from the socket. */
2225 			nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2226 			break;
2227 		case NVME_TCP_PDU_RECV_STATE_ERROR:
2228 			if (!spdk_sock_is_connected(tqpair->sock)) {
2229 				return NVME_TCP_PDU_FATAL;
2230 			}
2231 			break;
2232 		default:
2233 			SPDK_ERRLOG("The state(%d) is invalid\n", tqpair->recv_state);
2234 			abort();
2235 			break;
2236 		}
2237 	} while (tqpair->recv_state != prev_state);
2238 
2239 	return rc;
2240 }
2241 
2242 static inline void *
2243 nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list)
2244 {
2245 	struct spdk_nvmf_tcp_control_msg *msg;
2246 
2247 	assert(list);
2248 
2249 	msg = STAILQ_FIRST(&list->free_msgs);
2250 	if (!msg) {
2251 		SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
2252 		return NULL;
2253 	}
2254 	STAILQ_REMOVE_HEAD(&list->free_msgs, link);
2255 	return msg;
2256 }
2257 
2258 static inline void
2259 nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
2260 {
2261 	struct spdk_nvmf_tcp_control_msg *msg = _msg;
2262 
2263 	assert(list);
2264 	STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
2265 }
2266 
2267 static int
2268 nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
2269 		       struct spdk_nvmf_transport *transport,
2270 		       struct spdk_nvmf_transport_poll_group *group)
2271 {
2272 	struct spdk_nvmf_request		*req = &tcp_req->req;
2273 	struct spdk_nvme_cmd			*cmd;
2274 	struct spdk_nvme_cpl			*rsp;
2275 	struct spdk_nvme_sgl_descriptor		*sgl;
2276 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2277 	uint32_t				length;
2278 
2279 	cmd = &req->cmd->nvme_cmd;
2280 	rsp = &req->rsp->nvme_cpl;
2281 	sgl = &cmd->dptr.sgl1;
2282 
2283 	length = sgl->unkeyed.length;
2284 
2285 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
2286 	    sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
2287 		if (length > transport->opts.max_io_size) {
2288 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
2289 				    length, transport->opts.max_io_size);
2290 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
2291 			return -1;
2292 		}
2293 
2294 		/* fill request length and populate iovs */
2295 		req->length = length;
2296 
2297 		SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
2298 
2299 		if (spdk_unlikely(req->dif_enabled)) {
2300 			req->dif.orig_length = length;
2301 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2302 			req->dif.elba_length = length;
2303 		}
2304 
2305 		if (nvmf_ctrlr_use_zcopy(req)) {
2306 			SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req);
2307 			req->data_from_pool = false;
2308 			return 0;
2309 		}
2310 
2311 		if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
2312 			/* No available buffers. Queue this request up. */
2313 			SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
2314 				      tcp_req);
2315 			return 0;
2316 		}
2317 
2318 		/* backward compatible */
2319 		req->data = req->iov[0].iov_base;
2320 
2321 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
2322 			      tcp_req, req->iovcnt, req->data);
2323 
2324 		return 0;
2325 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
2326 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
2327 		uint64_t offset = sgl->address;
2328 		uint32_t max_len = transport->opts.in_capsule_data_size;
2329 		assert(tcp_req->has_in_capsule_data);
2330 
2331 		SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
2332 			      offset, length);
2333 
2334 		if (offset > max_len) {
2335 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
2336 				    offset, max_len);
2337 			rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
2338 			return -1;
2339 		}
2340 		max_len -= (uint32_t)offset;
2341 
2342 		if (spdk_unlikely(length > max_len)) {
2343 			/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
2344 			if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
2345 			    (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
2346 
2347 				/* Get a buffer from dedicated list */
2348 				SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
2349 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2350 				assert(tgroup->control_msg_list);
2351 				req->data = nvmf_tcp_control_msg_get(tgroup->control_msg_list);
2352 				if (!req->data) {
2353 					/* No available buffers. Queue this request up. */
2354 					SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
2355 					return 0;
2356 				}
2357 			} else {
2358 				SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
2359 					    length, max_len);
2360 				rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
2361 				return -1;
2362 			}
2363 		} else {
2364 			req->data = tcp_req->buf;
2365 		}
2366 
2367 		req->length = length;
2368 		req->data_from_pool = false;
2369 
2370 		if (spdk_unlikely(req->dif_enabled)) {
2371 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2372 			req->dif.elba_length = length;
2373 		}
2374 
2375 		req->iov[0].iov_base = req->data;
2376 		req->iov[0].iov_len = length;
2377 		req->iovcnt = 1;
2378 
2379 		return 0;
2380 	}
2381 
2382 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2383 		    sgl->generic.type, sgl->generic.subtype);
2384 	rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
2385 	return -1;
2386 }
2387 
2388 static inline enum spdk_nvme_media_error_status_code
2389 nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
2390 	enum spdk_nvme_media_error_status_code result;
2391 
2392 	switch (err_type)
2393 	{
2394 	case SPDK_DIF_REFTAG_ERROR:
2395 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
2396 		break;
2397 	case SPDK_DIF_APPTAG_ERROR:
2398 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
2399 		break;
2400 	case SPDK_DIF_GUARD_ERROR:
2401 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
2402 		break;
2403 	default:
2404 		SPDK_UNREACHABLE();
2405 		break;
2406 	}
2407 
2408 	return result;
2409 }
2410 
2411 static void
2412 _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2413 			struct spdk_nvmf_tcp_req *tcp_req)
2414 {
2415 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
2416 				tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
2417 	struct nvme_tcp_pdu *rsp_pdu;
2418 	struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
2419 	uint32_t plen, pdo, alignment;
2420 	int rc;
2421 
2422 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2423 
2424 	rsp_pdu = tcp_req->pdu;
2425 	assert(rsp_pdu != NULL);
2426 
2427 	c2h_data = &rsp_pdu->hdr.c2h_data;
2428 	c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
2429 	plen = c2h_data->common.hlen = sizeof(*c2h_data);
2430 
2431 	if (tqpair->host_hdgst_enable) {
2432 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2433 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2434 	}
2435 
2436 	/* set the psh */
2437 	c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2438 	c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
2439 	c2h_data->datao = tcp_req->pdu->rw_offset;
2440 
2441 	/* set the padding */
2442 	rsp_pdu->padding_len = 0;
2443 	pdo = plen;
2444 	if (tqpair->cpda) {
2445 		alignment = (tqpair->cpda + 1) << 2;
2446 		if (plen % alignment != 0) {
2447 			pdo = (plen + alignment) / alignment * alignment;
2448 			rsp_pdu->padding_len = pdo - plen;
2449 			plen = pdo;
2450 		}
2451 	}
2452 
2453 	c2h_data->common.pdo = pdo;
2454 	plen += c2h_data->datal;
2455 	if (tqpair->host_ddgst_enable) {
2456 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
2457 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2458 	}
2459 
2460 	c2h_data->common.plen = plen;
2461 
2462 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2463 		rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2464 	}
2465 
2466 	nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2467 				  c2h_data->datao, c2h_data->datal);
2468 
2469 
2470 	c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
2471 	/* Need to send the capsule response if response is not all 0 */
2472 	if (ttransport->tcp_opts.c2h_success &&
2473 	    tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
2474 		c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
2475 	}
2476 
2477 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2478 		struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
2479 		struct spdk_dif_error err_blk = {};
2480 		uint32_t mapped_length = 0;
2481 		uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
2482 		uint32_t ddgst_len = 0;
2483 
2484 		if (tqpair->host_ddgst_enable) {
2485 			/* Data digest consumes additional iov entry */
2486 			available_iovs--;
2487 			/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
2488 			ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
2489 			c2h_data->common.plen -= ddgst_len;
2490 		}
2491 		/* Temp call to estimate if data can be described by limited number of iovs.
2492 		 * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
2493 		nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
2494 				    false, &mapped_length);
2495 
2496 		if (mapped_length != c2h_data->common.plen) {
2497 			c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
2498 			SPDK_DEBUGLOG(nvmf_tcp,
2499 				      "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
2500 				      c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
2501 			c2h_data->common.plen = mapped_length;
2502 
2503 			/* Rebuild pdu->data_iov since data length is changed */
2504 			nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
2505 						  c2h_data->datal);
2506 
2507 			c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
2508 						    SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
2509 		}
2510 
2511 		c2h_data->common.plen += ddgst_len;
2512 
2513 		assert(rsp_pdu->rw_offset <= tcp_req->req.length);
2514 
2515 		rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
2516 					    0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
2517 		if (rc != 0) {
2518 			SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
2519 				    err_blk.err_type, err_blk.err_offset);
2520 			rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2521 			rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
2522 			nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2523 			return;
2524 		}
2525 	}
2526 
2527 	rsp_pdu->rw_offset += c2h_data->datal;
2528 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
2529 }
2530 
2531 static void
2532 nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2533 		       struct spdk_nvmf_tcp_req *tcp_req)
2534 {
2535 	nvmf_tcp_req_pdu_init(tcp_req);
2536 	_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2537 }
2538 
2539 static int
2540 request_transfer_out(struct spdk_nvmf_request *req)
2541 {
2542 	struct spdk_nvmf_tcp_req	*tcp_req;
2543 	struct spdk_nvmf_qpair		*qpair;
2544 	struct spdk_nvmf_tcp_qpair	*tqpair;
2545 	struct spdk_nvme_cpl		*rsp;
2546 
2547 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2548 
2549 	qpair = req->qpair;
2550 	rsp = &req->rsp->nvme_cpl;
2551 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
2552 
2553 	/* Advance our sq_head pointer */
2554 	if (qpair->sq_head == qpair->sq_head_max) {
2555 		qpair->sq_head = 0;
2556 	} else {
2557 		qpair->sq_head++;
2558 	}
2559 	rsp->sqhd = qpair->sq_head;
2560 
2561 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2562 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
2563 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2564 		nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2565 	} else {
2566 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2567 	}
2568 
2569 	return 0;
2570 }
2571 
2572 static void
2573 nvmf_tcp_set_in_capsule_data(struct spdk_nvmf_tcp_qpair *tqpair,
2574 			     struct spdk_nvmf_tcp_req *tcp_req)
2575 {
2576 	struct nvme_tcp_pdu *pdu;
2577 	uint32_t plen = 0;
2578 
2579 	pdu = tqpair->pdu_in_progress;
2580 	plen = pdu->hdr.common.hlen;
2581 
2582 	if (tqpair->host_hdgst_enable) {
2583 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2584 	}
2585 
2586 	if (pdu->hdr.common.plen != plen) {
2587 		tcp_req->has_in_capsule_data = true;
2588 	}
2589 }
2590 
2591 static void
2592 nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport,
2593 			      struct spdk_nvmf_tcp_qpair *tqpair,
2594 			      struct spdk_nvmf_tcp_req *tcp_req)
2595 {
2596 	enum spdk_nvme_cmd_fuse last, next;
2597 
2598 	last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2599 	next = tcp_req->cmd.fuse;
2600 
2601 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2602 
2603 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2604 		return;
2605 	}
2606 
2607 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2608 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2609 			/* This is a valid pair of fused commands.  Point them at each other
2610 			 * so they can be submitted consecutively once ready to be executed.
2611 			 */
2612 			tqpair->fused_first->fused_pair = tcp_req;
2613 			tcp_req->fused_pair = tqpair->fused_first;
2614 			tqpair->fused_first = NULL;
2615 			return;
2616 		} else {
2617 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2618 			tqpair->fused_first->fused_failed = true;
2619 
2620 			/*
2621 			 * If the last req is in READY_TO_EXECUTE state, then call
2622 			 * nvmf_tcp_req_process(), otherwise nothing else will kick it.
2623 			 */
2624 			if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2625 				nvmf_tcp_req_process(ttransport, tqpair->fused_first);
2626 			}
2627 
2628 			tqpair->fused_first = NULL;
2629 		}
2630 	}
2631 
2632 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2633 		/* Set tqpair->fused_first here so that we know to check that the next request
2634 		 * is a SECOND (and to fail this one if it isn't).
2635 		 */
2636 		tqpair->fused_first = tcp_req;
2637 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2638 		/* Mark this req failed since it is a SECOND and the last one was not a FIRST. */
2639 		tcp_req->fused_failed = true;
2640 	}
2641 }
2642 
2643 static bool
2644 nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
2645 		     struct spdk_nvmf_tcp_req *tcp_req)
2646 {
2647 	struct spdk_nvmf_tcp_qpair		*tqpair;
2648 	int					rc;
2649 	enum spdk_nvmf_tcp_req_state		prev_state;
2650 	bool					progress = false;
2651 	struct spdk_nvmf_transport		*transport = &ttransport->transport;
2652 	struct spdk_nvmf_transport_poll_group	*group;
2653 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2654 
2655 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2656 	group = &tqpair->group->group;
2657 	assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
2658 
2659 	/* If the qpair is not active, we need to abort the outstanding requests. */
2660 	if (tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2661 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
2662 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2663 		}
2664 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
2665 	}
2666 
2667 	/* The loop here is to allow for several back-to-back state changes. */
2668 	do {
2669 		prev_state = tcp_req->state;
2670 
2671 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
2672 			      tqpair);
2673 
2674 		switch (tcp_req->state) {
2675 		case TCP_REQUEST_STATE_FREE:
2676 			/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
2677 			 * to escape this state. */
2678 			break;
2679 		case TCP_REQUEST_STATE_NEW:
2680 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.qid, 0, (uintptr_t)tcp_req, tqpair);
2681 
2682 			/* copy the cmd from the receive pdu */
2683 			tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
2684 
2685 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
2686 				tcp_req->req.dif_enabled = true;
2687 				tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
2688 			}
2689 
2690 			nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req);
2691 
2692 			/* The next state transition depends on the data transfer needs of this request. */
2693 			tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
2694 
2695 			if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2696 				tcp_req->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2697 				tcp_req->req.rsp->nvme_cpl.status.sc  = SPDK_NVME_SC_INVALID_OPCODE;
2698 				tcp_req->req.rsp->nvme_cpl.cid = tcp_req->req.cmd->nvme_cmd.cid;
2699 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2700 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2701 				SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
2702 				break;
2703 			}
2704 
2705 			/* If no data to transfer, ready to execute. */
2706 			if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
2707 				/* Reset the tqpair receiving pdu state */
2708 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2709 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2710 				break;
2711 			}
2712 
2713 			nvmf_tcp_set_in_capsule_data(tqpair, tcp_req);
2714 
2715 			if (!tcp_req->has_in_capsule_data) {
2716 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2717 			}
2718 
2719 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
2720 			STAILQ_INSERT_TAIL(&group->pending_buf_queue, &tcp_req->req, buf_link);
2721 			break;
2722 		case TCP_REQUEST_STATE_NEED_BUFFER:
2723 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2724 					  tqpair);
2725 
2726 			assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
2727 
2728 			if (!tcp_req->has_in_capsule_data && (&tcp_req->req != STAILQ_FIRST(&group->pending_buf_queue))) {
2729 				SPDK_DEBUGLOG(nvmf_tcp,
2730 					      "Not the first element to wait for the buf for tcp_req(%p) on tqpair=%p\n",
2731 					      tcp_req, tqpair);
2732 				/* This request needs to wait in line to obtain a buffer */
2733 				break;
2734 			}
2735 
2736 			/* Try to get a data buffer */
2737 			rc = nvmf_tcp_req_parse_sgl(tcp_req, transport, group);
2738 			if (rc < 0) {
2739 				STAILQ_REMOVE_HEAD(&group->pending_buf_queue, buf_link);
2740 				/* Reset the tqpair receiving pdu state */
2741 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
2742 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2743 				tcp_req->req.rsp->nvme_cpl.cid = tcp_req->req.cmd->nvme_cmd.cid;
2744 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2745 				break;
2746 			}
2747 
2748 			/* Get a zcopy buffer if the request can be serviced through zcopy */
2749 			if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2750 				if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2751 					assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2752 					tcp_req->req.length = tcp_req->req.dif.elba_length;
2753 				}
2754 
2755 				STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2756 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START);
2757 				spdk_nvmf_request_zcopy_start(&tcp_req->req);
2758 				break;
2759 			}
2760 
2761 			if (!tcp_req->req.data) {
2762 				SPDK_DEBUGLOG(nvmf_tcp, "No buffer allocated for tcp_req(%p) on tqpair(%p\n)",
2763 					      tcp_req, tqpair);
2764 				/* No buffers available. */
2765 				break;
2766 			}
2767 
2768 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2769 
2770 			/* If data is transferring from host to controller, we need to do a transfer from the host. */
2771 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2772 				if (tcp_req->req.data_from_pool) {
2773 					SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2774 					nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2775 				} else {
2776 					struct nvme_tcp_pdu *pdu;
2777 
2778 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
2779 
2780 					pdu = tqpair->pdu_in_progress;
2781 					SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
2782 						      tqpair);
2783 					/* No need to send r2t, contained in the capsuled data */
2784 					nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2785 								  0, tcp_req->req.length);
2786 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2787 				}
2788 				break;
2789 			}
2790 
2791 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2792 			break;
2793 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
2794 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.qid, 0,
2795 					  (uintptr_t)tcp_req, tqpair);
2796 			/* Some external code must kick a request into  TCP_REQUEST_STATE_ZCOPY_START_COMPLETED
2797 			 * to escape this state. */
2798 			break;
2799 		case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
2800 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.qid, 0,
2801 					  (uintptr_t)tcp_req, tqpair);
2802 			if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) {
2803 				SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n",
2804 					      tcp_req, tqpair);
2805 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2806 				break;
2807 			}
2808 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2809 				SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2810 				nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2811 			} else {
2812 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
2813 			}
2814 			break;
2815 		case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
2816 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2817 					  tqpair);
2818 			/* The R2T completion or the h2c data incoming will kick it out of this state. */
2819 			break;
2820 		case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
2821 
2822 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.qid, 0,
2823 					  (uintptr_t)tcp_req, tqpair);
2824 			/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
2825 			 * to escape this state. */
2826 			break;
2827 		case TCP_REQUEST_STATE_READY_TO_EXECUTE:
2828 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.qid, 0,
2829 					  (uintptr_t)tcp_req, tqpair);
2830 
2831 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2832 				assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2833 				tcp_req->req.length = tcp_req->req.dif.elba_length;
2834 			}
2835 
2836 			if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
2837 				if (tcp_req->fused_failed) {
2838 					/* This request failed FUSED semantics.  Fail it immediately, without
2839 					 * even sending it to the target layer.
2840 					 */
2841 					tcp_req->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2842 					tcp_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED;
2843 					tcp_req->req.rsp->nvme_cpl.cid = tcp_req->req.cmd->nvme_cmd.cid;
2844 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2845 					break;
2846 				}
2847 
2848 				if (tcp_req->fused_pair == NULL ||
2849 				    tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2850 					/* This request is ready to execute, but either we don't know yet if it's
2851 					 * valid - i.e. this is a FIRST but we haven't received the next request yet),
2852 					 * or the other request of this fused pair isn't ready to execute. So
2853 					 * break here and this request will get processed later either when the
2854 					 * other request is ready or we find that this request isn't valid.
2855 					 */
2856 					break;
2857 				}
2858 			}
2859 
2860 			if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2861 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
2862 				/* If we get to this point, and this request is a fused command, we know that
2863 				 * it is part of a valid sequence (FIRST followed by a SECOND) and that both
2864 				 * requests are READY_TO_EXECUTE.  So call spdk_nvmf_request_exec() both on this
2865 				 * request, and the other request of the fused pair, in the correct order.
2866 				 * Also clear the ->fused_pair pointers on both requests, since after this point
2867 				 * we no longer need to maintain the relationship between these two requests.
2868 				 */
2869 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
2870 					assert(tcp_req->fused_pair != NULL);
2871 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
2872 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
2873 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
2874 					tcp_req->fused_pair->fused_pair = NULL;
2875 					tcp_req->fused_pair = NULL;
2876 				}
2877 				spdk_nvmf_request_exec(&tcp_req->req);
2878 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
2879 					assert(tcp_req->fused_pair != NULL);
2880 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
2881 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
2882 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
2883 					tcp_req->fused_pair->fused_pair = NULL;
2884 					tcp_req->fused_pair = NULL;
2885 				}
2886 			} else {
2887 				/* For zero-copy, only requests with data coming from host to the
2888 				 * controller can end up here. */
2889 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
2890 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT);
2891 				spdk_nvmf_request_zcopy_end(&tcp_req->req, true);
2892 			}
2893 
2894 			break;
2895 		case TCP_REQUEST_STATE_EXECUTING:
2896 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2897 					  tqpair);
2898 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
2899 			 * to escape this state. */
2900 			break;
2901 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
2902 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.qid, 0,
2903 					  (uintptr_t)tcp_req, tqpair);
2904 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
2905 			 * to escape this state. */
2906 			break;
2907 		case TCP_REQUEST_STATE_EXECUTED:
2908 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2909 					  tqpair);
2910 
2911 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2912 				tcp_req->req.length = tcp_req->req.dif.orig_length;
2913 			}
2914 
2915 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2916 			break;
2917 		case TCP_REQUEST_STATE_READY_TO_COMPLETE:
2918 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.qid, 0,
2919 					  (uintptr_t)tcp_req, tqpair);
2920 			rc = request_transfer_out(&tcp_req->req);
2921 			assert(rc == 0); /* No good way to handle this currently */
2922 			break;
2923 		case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
2924 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.qid, 0,
2925 					  (uintptr_t)tcp_req, tqpair);
2926 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
2927 			 * to escape this state. */
2928 			break;
2929 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
2930 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.qid, 0,
2931 					  (uintptr_t)tcp_req, tqpair);
2932 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
2933 			 * to escape this state. */
2934 			break;
2935 		case TCP_REQUEST_STATE_COMPLETED:
2936 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2937 					  tqpair);
2938 			/* If there's an outstanding PDU sent to the host, the request is completed
2939 			 * due to the qpair being disconnected.  We must delay the completion until
2940 			 * that write is done to avoid freeing the request twice. */
2941 			if (spdk_unlikely(tcp_req->pdu_in_use)) {
2942 				SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding "
2943 					      "write on req=%p\n", tcp_req);
2944 				/* This can only happen for zcopy requests */
2945 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
2946 				assert(tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
2947 				break;
2948 			}
2949 
2950 			if (tcp_req->req.data_from_pool) {
2951 				spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
2952 			} else if (spdk_unlikely(tcp_req->has_in_capsule_data &&
2953 						 (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
2954 						  tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
2955 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2956 				assert(tgroup->control_msg_list);
2957 				SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
2958 				nvmf_tcp_control_msg_put(tgroup->control_msg_list, tcp_req->req.data);
2959 			} else if (tcp_req->req.zcopy_bdev_io != NULL) {
2960 				/* If the request has an unreleased zcopy bdev_io, it's either a
2961 				 * read, a failed write, or the qpair is being disconnected */
2962 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
2963 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
2964 				       spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) ||
2965 				       tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
2966 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE);
2967 				spdk_nvmf_request_zcopy_end(&tcp_req->req, false);
2968 				break;
2969 			}
2970 			tcp_req->req.length = 0;
2971 			tcp_req->req.iovcnt = 0;
2972 			tcp_req->req.data = NULL;
2973 			tcp_req->fused_failed = false;
2974 			if (tcp_req->fused_pair) {
2975 				/* This req was part of a valid fused pair, but failed before it got to
2976 				 * READ_TO_EXECUTE state.  This means we need to fail the other request
2977 				 * in the pair, because it is no longer part of a valid pair.  If the pair
2978 				 * already reached READY_TO_EXECUTE state, we need to kick it.
2979 				 */
2980 				tcp_req->fused_pair->fused_failed = true;
2981 				if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2982 					nvmf_tcp_req_process(ttransport, tcp_req->fused_pair);
2983 				}
2984 				tcp_req->fused_pair = NULL;
2985 			}
2986 
2987 			nvmf_tcp_req_put(tqpair, tcp_req);
2988 			break;
2989 		case TCP_REQUEST_NUM_STATES:
2990 		default:
2991 			assert(0);
2992 			break;
2993 		}
2994 
2995 		if (tcp_req->state != prev_state) {
2996 			progress = true;
2997 		}
2998 	} while (tcp_req->state != prev_state);
2999 
3000 	return progress;
3001 }
3002 
3003 static void
3004 nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
3005 {
3006 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
3007 	int rc;
3008 
3009 	assert(tqpair != NULL);
3010 	rc = nvmf_tcp_sock_process(tqpair);
3011 
3012 	/* If there was a new socket error, disconnect */
3013 	if (rc < 0) {
3014 		nvmf_tcp_qpair_disconnect(tqpair);
3015 	}
3016 }
3017 
3018 static int
3019 nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3020 			struct spdk_nvmf_qpair *qpair)
3021 {
3022 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3023 	struct spdk_nvmf_tcp_qpair	*tqpair;
3024 	int				rc;
3025 
3026 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3027 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3028 
3029 	rc =  nvmf_tcp_qpair_sock_init(tqpair);
3030 	if (rc != 0) {
3031 		SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
3032 		return -1;
3033 	}
3034 
3035 	rc = nvmf_tcp_qpair_init(&tqpair->qpair);
3036 	if (rc < 0) {
3037 		SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
3038 		return -1;
3039 	}
3040 
3041 	rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
3042 	if (rc < 0) {
3043 		SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
3044 		return -1;
3045 	}
3046 
3047 	rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
3048 				      nvmf_tcp_sock_cb, tqpair);
3049 	if (rc != 0) {
3050 		SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
3051 			    spdk_strerror(errno), errno);
3052 		return -1;
3053 	}
3054 
3055 	tqpair->group = tgroup;
3056 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INVALID);
3057 	TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
3058 
3059 	return 0;
3060 }
3061 
3062 static int
3063 nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3064 			   struct spdk_nvmf_qpair *qpair)
3065 {
3066 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3067 	struct spdk_nvmf_tcp_qpair		*tqpair;
3068 	int				rc;
3069 
3070 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3071 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3072 
3073 	assert(tqpair->group == tgroup);
3074 
3075 	SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
3076 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
3077 		TAILQ_REMOVE(&tgroup->await_req, tqpair, link);
3078 	} else {
3079 		TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
3080 	}
3081 
3082 	rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
3083 	if (rc != 0) {
3084 		SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
3085 			    spdk_strerror(errno), errno);
3086 	}
3087 
3088 	return rc;
3089 }
3090 
3091 static int
3092 nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
3093 {
3094 	struct spdk_nvmf_tcp_transport *ttransport;
3095 	struct spdk_nvmf_tcp_req *tcp_req;
3096 
3097 	ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3098 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3099 
3100 	switch (tcp_req->state) {
3101 	case TCP_REQUEST_STATE_EXECUTING:
3102 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3103 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3104 		break;
3105 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3106 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED);
3107 		break;
3108 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3109 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3110 		break;
3111 	default:
3112 		assert(0 && "Unexpected request state");
3113 		break;
3114 	}
3115 
3116 	nvmf_tcp_req_process(ttransport, tcp_req);
3117 
3118 	return 0;
3119 }
3120 
3121 static void
3122 nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
3123 		     spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3124 {
3125 	struct spdk_nvmf_tcp_qpair *tqpair;
3126 
3127 	SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
3128 
3129 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3130 
3131 	assert(tqpair->fini_cb_fn == NULL);
3132 	tqpair->fini_cb_fn = cb_fn;
3133 	tqpair->fini_cb_arg = cb_arg;
3134 
3135 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITED);
3136 	nvmf_tcp_qpair_destroy(tqpair);
3137 }
3138 
3139 static int
3140 nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3141 {
3142 	struct spdk_nvmf_tcp_poll_group *tgroup;
3143 	int rc;
3144 	struct spdk_nvmf_request *req, *req_tmp;
3145 	struct spdk_nvmf_tcp_req *tcp_req;
3146 	struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp;
3147 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(group->transport,
3148 			struct spdk_nvmf_tcp_transport, transport);
3149 
3150 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3151 
3152 	if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) {
3153 		return 0;
3154 	}
3155 
3156 	STAILQ_FOREACH_SAFE(req, &group->pending_buf_queue, buf_link, req_tmp) {
3157 		tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3158 		if (nvmf_tcp_req_process(ttransport, tcp_req) == false) {
3159 			break;
3160 		}
3161 	}
3162 
3163 	rc = spdk_sock_group_poll(tgroup->sock_group);
3164 	if (rc < 0) {
3165 		SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
3166 	}
3167 
3168 	TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) {
3169 		nvmf_tcp_sock_process(tqpair);
3170 	}
3171 
3172 	return rc;
3173 }
3174 
3175 static int
3176 nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
3177 			struct spdk_nvme_transport_id *trid, bool peer)
3178 {
3179 	struct spdk_nvmf_tcp_qpair     *tqpair;
3180 	uint16_t			port;
3181 
3182 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3183 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
3184 
3185 	if (peer) {
3186 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
3187 		port = tqpair->initiator_port;
3188 	} else {
3189 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
3190 		port = tqpair->target_port;
3191 	}
3192 
3193 	if (spdk_sock_is_ipv4(tqpair->sock)) {
3194 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3195 	} else if (spdk_sock_is_ipv6(tqpair->sock)) {
3196 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3197 	} else {
3198 		return -1;
3199 	}
3200 
3201 	snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
3202 	return 0;
3203 }
3204 
3205 static int
3206 nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3207 			      struct spdk_nvme_transport_id *trid)
3208 {
3209 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3210 }
3211 
3212 static int
3213 nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3214 			     struct spdk_nvme_transport_id *trid)
3215 {
3216 	return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
3217 }
3218 
3219 static int
3220 nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3221 			       struct spdk_nvme_transport_id *trid)
3222 {
3223 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3224 }
3225 
3226 static void
3227 nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
3228 			      struct spdk_nvmf_tcp_req *tcp_req_to_abort)
3229 {
3230 	tcp_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
3231 	tcp_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
3232 	tcp_req_to_abort->req.rsp->nvme_cpl.cid = tcp_req_to_abort->req.cmd->nvme_cmd.cid;
3233 
3234 	nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3235 
3236 	req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
3237 }
3238 
3239 static int
3240 _nvmf_tcp_qpair_abort_request(void *ctx)
3241 {
3242 	struct spdk_nvmf_request *req = ctx;
3243 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
3244 			struct spdk_nvmf_tcp_req, req);
3245 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
3246 					     struct spdk_nvmf_tcp_qpair, qpair);
3247 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
3248 			struct spdk_nvmf_tcp_transport, transport);
3249 	int rc;
3250 
3251 	spdk_poller_unregister(&req->poller);
3252 
3253 	switch (tcp_req_to_abort->state) {
3254 	case TCP_REQUEST_STATE_EXECUTING:
3255 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3256 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3257 		rc = nvmf_ctrlr_abort_request(req);
3258 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
3259 			return SPDK_POLLER_BUSY;
3260 		}
3261 		break;
3262 
3263 	case TCP_REQUEST_STATE_NEED_BUFFER:
3264 		STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue,
3265 			      &tcp_req_to_abort->req, spdk_nvmf_request, buf_link);
3266 
3267 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3268 		nvmf_tcp_req_process(ttransport, tcp_req_to_abort);
3269 		break;
3270 
3271 	case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3272 	case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
3273 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3274 		break;
3275 
3276 	case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3277 		if (spdk_get_ticks() < req->timeout_tsc) {
3278 			req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
3279 			return SPDK_POLLER_BUSY;
3280 		}
3281 		break;
3282 
3283 	default:
3284 		break;
3285 	}
3286 
3287 	spdk_nvmf_request_complete(req);
3288 	return SPDK_POLLER_BUSY;
3289 }
3290 
3291 static void
3292 nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
3293 			     struct spdk_nvmf_request *req)
3294 {
3295 	struct spdk_nvmf_tcp_qpair *tqpair;
3296 	struct spdk_nvmf_tcp_transport *ttransport;
3297 	struct spdk_nvmf_transport *transport;
3298 	uint16_t cid;
3299 	uint32_t i;
3300 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
3301 
3302 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3303 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3304 	transport = &ttransport->transport;
3305 
3306 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
3307 
3308 	for (i = 0; i < tqpair->resource_count; i++) {
3309 		if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
3310 		    tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
3311 			tcp_req_to_abort = &tqpair->reqs[i];
3312 			break;
3313 		}
3314 	}
3315 
3316 	spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, qpair->qid, 0, (uintptr_t)req, tqpair);
3317 
3318 	if (tcp_req_to_abort == NULL) {
3319 		spdk_nvmf_request_complete(req);
3320 		return;
3321 	}
3322 
3323 	req->req_to_abort = &tcp_req_to_abort->req;
3324 	req->timeout_tsc = spdk_get_ticks() +
3325 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
3326 	req->poller = NULL;
3327 
3328 	_nvmf_tcp_qpair_abort_request(req);
3329 }
3330 
3331 #define SPDK_NVMF_TCP_DEFAULT_MAX_QUEUE_DEPTH 128
3332 #define SPDK_NVMF_TCP_DEFAULT_AQ_DEPTH 128
3333 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
3334 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
3335 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
3336 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
3337 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
3338 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE 32
3339 #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
3340 #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
3341 
3342 static void
3343 nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
3344 {
3345 	opts->max_queue_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_QUEUE_DEPTH;
3346 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
3347 	opts->in_capsule_data_size =	SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
3348 	opts->max_io_size =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
3349 	opts->io_unit_size =		SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
3350 	opts->max_aq_depth =		SPDK_NVMF_TCP_DEFAULT_AQ_DEPTH;
3351 	opts->num_shared_buffers =	SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
3352 	opts->buf_cache_size =		SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
3353 	opts->dif_insert_or_strip =	SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
3354 	opts->abort_timeout_sec =	SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
3355 	opts->transport_specific =      NULL;
3356 }
3357 
3358 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
3359 	.name = "TCP",
3360 	.type = SPDK_NVME_TRANSPORT_TCP,
3361 	.opts_init = nvmf_tcp_opts_init,
3362 	.create = nvmf_tcp_create,
3363 	.dump_opts = nvmf_tcp_dump_opts,
3364 	.destroy = nvmf_tcp_destroy,
3365 
3366 	.listen = nvmf_tcp_listen,
3367 	.stop_listen = nvmf_tcp_stop_listen,
3368 
3369 	.listener_discover = nvmf_tcp_discover,
3370 
3371 	.poll_group_create = nvmf_tcp_poll_group_create,
3372 	.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
3373 	.poll_group_destroy = nvmf_tcp_poll_group_destroy,
3374 	.poll_group_add = nvmf_tcp_poll_group_add,
3375 	.poll_group_remove = nvmf_tcp_poll_group_remove,
3376 	.poll_group_poll = nvmf_tcp_poll_group_poll,
3377 
3378 	.req_free = nvmf_tcp_req_free,
3379 	.req_complete = nvmf_tcp_req_complete,
3380 
3381 	.qpair_fini = nvmf_tcp_close_qpair,
3382 	.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
3383 	.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
3384 	.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
3385 	.qpair_abort_request = nvmf_tcp_qpair_abort_request,
3386 };
3387 
3388 SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
3389 SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)
3390