xref: /spdk/lib/nvmf/tcp.c (revision 4a9209bf1db1fc02a00f683aeb3c2754fe8ef99b)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (c) Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/accel.h"
8 #include "spdk/stdinc.h"
9 #include "spdk/crc32.h"
10 #include "spdk/endian.h"
11 #include "spdk/assert.h"
12 #include "spdk/thread.h"
13 #include "spdk/nvmf_transport.h"
14 #include "spdk/string.h"
15 #include "spdk/trace.h"
16 #include "spdk/util.h"
17 #include "spdk/log.h"
18 
19 #include "spdk_internal/assert.h"
20 #include "spdk_internal/nvme_tcp.h"
21 #include "spdk_internal/sock.h"
22 
23 #include "nvmf_internal.h"
24 
25 #include "spdk_internal/trace_defs.h"
26 
27 #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
28 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
29 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
30 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
31 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
32 
33 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
34 
35 /* spdk nvmf related structure */
36 enum spdk_nvmf_tcp_req_state {
37 
38 	/* The request is not currently in use */
39 	TCP_REQUEST_STATE_FREE = 0,
40 
41 	/* Initial state when request first received */
42 	TCP_REQUEST_STATE_NEW = 1,
43 
44 	/* The request is queued until a data buffer is available. */
45 	TCP_REQUEST_STATE_NEED_BUFFER = 2,
46 
47 	/* The request is waiting for zcopy_start to finish */
48 	TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 3,
49 
50 	/* The request has received a zero-copy buffer */
51 	TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 4,
52 
53 	/* The request is currently transferring data from the host to the controller. */
54 	TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 5,
55 
56 	/* The request is waiting for the R2T send acknowledgement. */
57 	TCP_REQUEST_STATE_AWAITING_R2T_ACK = 6,
58 
59 	/* The request is ready to execute at the block device */
60 	TCP_REQUEST_STATE_READY_TO_EXECUTE = 7,
61 
62 	/* The request is currently executing at the block device */
63 	TCP_REQUEST_STATE_EXECUTING = 8,
64 
65 	/* The request is waiting for zcopy buffers to be commited */
66 	TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 9,
67 
68 	/* The request finished executing at the block device */
69 	TCP_REQUEST_STATE_EXECUTED = 10,
70 
71 	/* The request is ready to send a completion */
72 	TCP_REQUEST_STATE_READY_TO_COMPLETE = 11,
73 
74 	/* The request is currently transferring final pdus from the controller to the host. */
75 	TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 12,
76 
77 	/* The request is waiting for zcopy buffers to be released (without committing) */
78 	TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 13,
79 
80 	/* The request completed and can be marked free. */
81 	TCP_REQUEST_STATE_COMPLETED = 14,
82 
83 	/* Terminator */
84 	TCP_REQUEST_NUM_STATES,
85 };
86 
87 static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
88 	"Invalid PDU Header Field",
89 	"PDU Sequence Error",
90 	"Header Digiest Error",
91 	"Data Transfer Out of Range",
92 	"R2T Limit Exceeded",
93 	"Unsupported parameter",
94 };
95 
96 SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
97 {
98 	spdk_trace_register_owner(OWNER_NVMF_TCP, 't');
99 	spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
100 	spdk_trace_register_description("TCP_REQ_NEW",
101 					TRACE_TCP_REQUEST_STATE_NEW,
102 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1,
103 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
104 	spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
105 					TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
106 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
107 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
108 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START",
109 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START,
110 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
111 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
112 	spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL",
113 					TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED,
114 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
115 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
116 	spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
117 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
118 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
119 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
120 	spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
121 					TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
122 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
123 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
124 	spdk_trace_register_description("TCP_REQ_EXECUTING",
125 					TRACE_TCP_REQUEST_STATE_EXECUTING,
126 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
127 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
128 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT",
129 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT,
130 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
131 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
132 	spdk_trace_register_description("TCP_REQ_EXECUTED",
133 					TRACE_TCP_REQUEST_STATE_EXECUTED,
134 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
135 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
136 	spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
137 					TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
138 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
139 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
140 	spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
141 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
142 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
143 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
144 	spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS",
145 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE,
146 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
147 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
148 	spdk_trace_register_description("TCP_REQ_COMPLETED",
149 					TRACE_TCP_REQUEST_STATE_COMPLETED,
150 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
151 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
152 	spdk_trace_register_description("TCP_WRITE_START",
153 					TRACE_TCP_FLUSH_WRITEBUF_START,
154 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
155 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
156 	spdk_trace_register_description("TCP_WRITE_DONE",
157 					TRACE_TCP_FLUSH_WRITEBUF_DONE,
158 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
159 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
160 	spdk_trace_register_description("TCP_READ_DONE",
161 					TRACE_TCP_READ_FROM_SOCKET_DONE,
162 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
163 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
164 	spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
165 					TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
166 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
167 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
168 
169 	spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE,
170 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
171 					SPDK_TRACE_ARG_TYPE_INT, "");
172 	spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT,
173 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
174 					SPDK_TRACE_ARG_TYPE_INT, "");
175 	spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE,
176 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
177 					SPDK_TRACE_ARG_TYPE_INT, "state");
178 	spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT,
179 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
180 					SPDK_TRACE_ARG_TYPE_INT, "");
181 	spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY,
182 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
183 					SPDK_TRACE_ARG_TYPE_INT, "");
184 	spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ,
185 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
186 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
187 	spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE,
188 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
189 					SPDK_TRACE_ARG_TYPE_INT, "state");
190 
191 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1);
192 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0);
193 }
194 
195 struct spdk_nvmf_tcp_req  {
196 	struct spdk_nvmf_request		req;
197 	struct spdk_nvme_cpl			rsp;
198 	struct spdk_nvme_cmd			cmd;
199 
200 	/* A PDU that can be used for sending responses. This is
201 	 * not the incoming PDU! */
202 	struct nvme_tcp_pdu			*pdu;
203 
204 	/* In-capsule data buffer */
205 	uint8_t					*buf;
206 
207 	struct spdk_nvmf_tcp_req		*fused_pair;
208 
209 	/*
210 	 * The PDU for a request may be used multiple times in serial over
211 	 * the request's lifetime. For example, first to send an R2T, then
212 	 * to send a completion. To catch mistakes where the PDU is used
213 	 * twice at the same time, add a debug flag here for init/fini.
214 	 */
215 	bool					pdu_in_use;
216 	bool					has_in_capsule_data;
217 	bool					fused_failed;
218 
219 	/* transfer_tag */
220 	uint16_t				ttag;
221 
222 	enum spdk_nvmf_tcp_req_state		state;
223 
224 	/*
225 	 * h2c_offset is used when we receive the h2c_data PDU.
226 	 */
227 	uint32_t				h2c_offset;
228 
229 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		link;
230 	TAILQ_ENTRY(spdk_nvmf_tcp_req)		state_link;
231 };
232 
233 struct spdk_nvmf_tcp_qpair {
234 	struct spdk_nvmf_qpair			qpair;
235 	struct spdk_nvmf_tcp_poll_group		*group;
236 	struct spdk_sock			*sock;
237 
238 	enum nvme_tcp_pdu_recv_state		recv_state;
239 	enum nvme_tcp_qpair_state		state;
240 
241 	/* PDU being actively received */
242 	struct nvme_tcp_pdu			*pdu_in_progress;
243 
244 	struct spdk_nvmf_tcp_req		*fused_first;
245 
246 	/* Queues to track the requests in all states */
247 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_working_queue;
248 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_free_queue;
249 	SLIST_HEAD(, nvme_tcp_pdu)		tcp_pdu_free_queue;
250 
251 	/* Number of requests in each state */
252 	uint32_t				state_cntr[TCP_REQUEST_NUM_STATES];
253 
254 	uint8_t					cpda;
255 
256 	bool					host_hdgst_enable;
257 	bool					host_ddgst_enable;
258 
259 	/* This is a spare PDU used for sending special management
260 	 * operations. Primarily, this is used for the initial
261 	 * connection response and c2h termination request. */
262 	struct nvme_tcp_pdu			*mgmt_pdu;
263 
264 	/* Arrays of in-capsule buffers, requests, and pdus.
265 	 * Each array is 'resource_count' number of elements */
266 	void					*bufs;
267 	struct spdk_nvmf_tcp_req		*reqs;
268 	struct nvme_tcp_pdu			*pdus;
269 	uint32_t				resource_count;
270 	uint32_t				recv_buf_size;
271 
272 	struct spdk_nvmf_tcp_port		*port;
273 
274 	/* IP address */
275 	char					initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
276 	char					target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
277 
278 	/* IP port */
279 	uint16_t				initiator_port;
280 	uint16_t				target_port;
281 
282 	/* Timer used to destroy qpair after detecting transport error issue if initiator does
283 	 *  not close the connection.
284 	 */
285 	struct spdk_poller			*timeout_poller;
286 
287 	spdk_nvmf_transport_qpair_fini_cb	fini_cb_fn;
288 	void					*fini_cb_arg;
289 
290 	TAILQ_ENTRY(spdk_nvmf_tcp_qpair)	link;
291 };
292 
293 struct spdk_nvmf_tcp_control_msg {
294 	STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
295 };
296 
297 struct spdk_nvmf_tcp_control_msg_list {
298 	void *msg_buf;
299 	STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
300 };
301 
302 struct spdk_nvmf_tcp_poll_group {
303 	struct spdk_nvmf_transport_poll_group	group;
304 	struct spdk_sock_group			*sock_group;
305 
306 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	qpairs;
307 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	await_req;
308 
309 	struct spdk_io_channel			*accel_channel;
310 	struct spdk_nvmf_tcp_control_msg_list	*control_msg_list;
311 
312 	TAILQ_ENTRY(spdk_nvmf_tcp_poll_group)	link;
313 };
314 
315 struct spdk_nvmf_tcp_port {
316 	const struct spdk_nvme_transport_id	*trid;
317 	struct spdk_sock			*listen_sock;
318 	TAILQ_ENTRY(spdk_nvmf_tcp_port)		link;
319 };
320 
321 struct tcp_transport_opts {
322 	bool		c2h_success;
323 	uint16_t	control_msg_num;
324 	uint32_t	sock_priority;
325 };
326 
327 struct spdk_nvmf_tcp_transport {
328 	struct spdk_nvmf_transport		transport;
329 	struct tcp_transport_opts               tcp_opts;
330 
331 	struct spdk_nvmf_tcp_poll_group		*next_pg;
332 
333 	struct spdk_poller			*accept_poller;
334 
335 	TAILQ_HEAD(, spdk_nvmf_tcp_port)	ports;
336 	TAILQ_HEAD(, spdk_nvmf_tcp_poll_group)	poll_groups;
337 };
338 
339 static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
340 	{
341 		"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
342 		spdk_json_decode_bool, true
343 	},
344 	{
345 		"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
346 		spdk_json_decode_uint16, true
347 	},
348 	{
349 		"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
350 		spdk_json_decode_uint32, true
351 	},
352 };
353 
354 static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
355 				 struct spdk_nvmf_tcp_req *tcp_req);
356 static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
357 
358 static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
359 				    struct spdk_nvmf_tcp_req *tcp_req);
360 
361 static inline void
362 nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
363 		       enum spdk_nvmf_tcp_req_state state)
364 {
365 	struct spdk_nvmf_qpair *qpair;
366 	struct spdk_nvmf_tcp_qpair *tqpair;
367 
368 	qpair = tcp_req->req.qpair;
369 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
370 
371 	assert(tqpair->state_cntr[tcp_req->state] > 0);
372 	tqpair->state_cntr[tcp_req->state]--;
373 	tqpair->state_cntr[state]++;
374 
375 	tcp_req->state = state;
376 }
377 
378 static inline struct nvme_tcp_pdu *
379 nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
380 {
381 	assert(tcp_req->pdu_in_use == false);
382 
383 	memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
384 	tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
385 
386 	return tcp_req->pdu;
387 }
388 
389 static struct spdk_nvmf_tcp_req *
390 nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
391 {
392 	struct spdk_nvmf_tcp_req *tcp_req;
393 
394 	tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
395 	if (spdk_unlikely(!tcp_req)) {
396 		return NULL;
397 	}
398 
399 	memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
400 	tcp_req->h2c_offset = 0;
401 	tcp_req->has_in_capsule_data = false;
402 	tcp_req->req.dif_enabled = false;
403 	tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE;
404 
405 	TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
406 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
407 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
408 	return tcp_req;
409 }
410 
411 static inline void
412 nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
413 {
414 	assert(!tcp_req->pdu_in_use);
415 
416 	TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
417 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
418 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
419 }
420 
421 static void
422 nvmf_tcp_request_free(void *cb_arg)
423 {
424 	struct spdk_nvmf_tcp_transport *ttransport;
425 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
426 
427 	assert(tcp_req != NULL);
428 
429 	SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
430 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
431 				      struct spdk_nvmf_tcp_transport, transport);
432 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
433 	nvmf_tcp_req_process(ttransport, tcp_req);
434 }
435 
436 static int
437 nvmf_tcp_req_free(struct spdk_nvmf_request *req)
438 {
439 	struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
440 
441 	nvmf_tcp_request_free(tcp_req);
442 
443 	return 0;
444 }
445 
446 static void
447 nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
448 			   enum spdk_nvmf_tcp_req_state state)
449 {
450 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
451 
452 	assert(state != TCP_REQUEST_STATE_FREE);
453 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
454 		if (state == tcp_req->state) {
455 			nvmf_tcp_request_free(tcp_req);
456 		}
457 	}
458 }
459 
460 static void
461 nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
462 {
463 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
464 
465 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
466 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
467 
468 	/* Wipe the requests waiting for buffer from the global list */
469 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
470 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
471 			STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue, &tcp_req->req,
472 				      spdk_nvmf_request, buf_link);
473 		}
474 	}
475 
476 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
477 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
478 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
479 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
480 }
481 
482 static void
483 nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
484 {
485 	int i;
486 	struct spdk_nvmf_tcp_req *tcp_req;
487 
488 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
489 	for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
490 		SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
491 		TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
492 			if ((int)tcp_req->state == i) {
493 				SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
494 				SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
495 			}
496 		}
497 	}
498 }
499 
500 static void
501 _nvmf_tcp_qpair_destroy(void *_tqpair)
502 {
503 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
504 	spdk_nvmf_transport_qpair_fini_cb cb_fn = tqpair->fini_cb_fn;
505 	void *cb_arg = tqpair->fini_cb_arg;
506 	int err = 0;
507 
508 	spdk_trace_record(TRACE_TCP_QP_DESTROY, 0, 0, (uintptr_t)tqpair);
509 
510 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
511 
512 	err = spdk_sock_close(&tqpair->sock);
513 	assert(err == 0);
514 	nvmf_tcp_cleanup_all_states(tqpair);
515 
516 	if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
517 		SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
518 			    tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
519 			    tqpair->resource_count);
520 		err++;
521 	}
522 
523 	if (err > 0) {
524 		nvmf_tcp_dump_qpair_req_contents(tqpair);
525 	}
526 
527 	/* The timeout poller might still be registered here if we close the qpair before host
528 	 * terminates the connection.
529 	 */
530 	spdk_poller_unregister(&tqpair->timeout_poller);
531 	spdk_dma_free(tqpair->pdus);
532 	free(tqpair->reqs);
533 	spdk_free(tqpair->bufs);
534 	free(tqpair);
535 
536 	if (cb_fn != NULL) {
537 		cb_fn(cb_arg);
538 	}
539 
540 	SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
541 }
542 
543 static void
544 nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
545 {
546 	/* Delay the destruction to make sure it isn't performed from the context of a sock
547 	 * callback.  Otherwise, spdk_sock_close() might not abort pending requests, causing their
548 	 * completions to be executed after the qpair is freed.  (Note: this fixed issue #2471.)
549 	 */
550 	spdk_thread_send_msg(spdk_get_thread(), _nvmf_tcp_qpair_destroy, tqpair);
551 }
552 
553 static void
554 nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
555 {
556 	struct spdk_nvmf_tcp_transport	*ttransport;
557 	assert(w != NULL);
558 
559 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
560 	spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
561 	spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
562 }
563 
564 static int
565 nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
566 		 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
567 {
568 	struct spdk_nvmf_tcp_transport	*ttransport;
569 
570 	assert(transport != NULL);
571 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
572 
573 	spdk_poller_unregister(&ttransport->accept_poller);
574 	free(ttransport);
575 
576 	if (cb_fn) {
577 		cb_fn(cb_arg);
578 	}
579 	return 0;
580 }
581 
582 static int nvmf_tcp_accept(void *ctx);
583 
584 static struct spdk_nvmf_transport *
585 nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
586 {
587 	struct spdk_nvmf_tcp_transport *ttransport;
588 	uint32_t sge_count;
589 	uint32_t min_shared_buffers;
590 
591 	ttransport = calloc(1, sizeof(*ttransport));
592 	if (!ttransport) {
593 		return NULL;
594 	}
595 
596 	TAILQ_INIT(&ttransport->ports);
597 	TAILQ_INIT(&ttransport->poll_groups);
598 
599 	ttransport->transport.ops = &spdk_nvmf_transport_tcp;
600 
601 	ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
602 	ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
603 	ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
604 	if (opts->transport_specific != NULL &&
605 	    spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
606 					    SPDK_COUNTOF(tcp_transport_opts_decoder),
607 					    &ttransport->tcp_opts)) {
608 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
609 		free(ttransport);
610 		return NULL;
611 	}
612 
613 	SPDK_NOTICELOG("*** TCP Transport Init ***\n");
614 
615 	SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
616 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
617 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
618 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
619 		     "  num_shared_buffers=%d, c2h_success=%d,\n"
620 		     "  dif_insert_or_strip=%d, sock_priority=%d\n"
621 		     "  abort_timeout_sec=%d, control_msg_num=%hu\n",
622 		     opts->max_queue_depth,
623 		     opts->max_io_size,
624 		     opts->max_qpairs_per_ctrlr - 1,
625 		     opts->io_unit_size,
626 		     opts->in_capsule_data_size,
627 		     opts->max_aq_depth,
628 		     opts->num_shared_buffers,
629 		     ttransport->tcp_opts.c2h_success,
630 		     opts->dif_insert_or_strip,
631 		     ttransport->tcp_opts.sock_priority,
632 		     opts->abort_timeout_sec,
633 		     ttransport->tcp_opts.control_msg_num);
634 
635 	if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
636 		SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
637 			    "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
638 			    ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
639 		free(ttransport);
640 		return NULL;
641 	}
642 
643 	if (ttransport->tcp_opts.control_msg_num == 0 &&
644 	    opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
645 		SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
646 			     SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
647 		ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
648 	}
649 
650 	/* I/O unit size cannot be larger than max I/O size */
651 	if (opts->io_unit_size > opts->max_io_size) {
652 		opts->io_unit_size = opts->max_io_size;
653 	}
654 
655 	sge_count = opts->max_io_size / opts->io_unit_size;
656 	if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
657 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
658 		free(ttransport);
659 		return NULL;
660 	}
661 
662 	min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
663 	if (min_shared_buffers > opts->num_shared_buffers) {
664 		SPDK_ERRLOG("There are not enough buffers to satisfy "
665 			    "per-poll group caches for each thread. (%" PRIu32 ") "
666 			    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
667 		SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
668 		free(ttransport);
669 		return NULL;
670 	}
671 
672 	ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport,
673 				    opts->acceptor_poll_rate);
674 	if (!ttransport->accept_poller) {
675 		free(ttransport);
676 		return NULL;
677 	}
678 
679 	return &ttransport->transport;
680 }
681 
682 static int
683 nvmf_tcp_trsvcid_to_int(const char *trsvcid)
684 {
685 	unsigned long long ull;
686 	char *end = NULL;
687 
688 	ull = strtoull(trsvcid, &end, 10);
689 	if (end == NULL || end == trsvcid || *end != '\0') {
690 		return -1;
691 	}
692 
693 	/* Valid TCP/IP port numbers are in [0, 65535] */
694 	if (ull > 65535) {
695 		return -1;
696 	}
697 
698 	return (int)ull;
699 }
700 
701 /**
702  * Canonicalize a listen address trid.
703  */
704 static int
705 nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
706 			   const struct spdk_nvme_transport_id *trid)
707 {
708 	int trsvcid_int;
709 
710 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
711 	if (trsvcid_int < 0) {
712 		return -EINVAL;
713 	}
714 
715 	memset(canon_trid, 0, sizeof(*canon_trid));
716 	spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
717 	canon_trid->adrfam = trid->adrfam;
718 	snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
719 	snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
720 
721 	return 0;
722 }
723 
724 /**
725  * Find an existing listening port.
726  */
727 static struct spdk_nvmf_tcp_port *
728 nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
729 		   const struct spdk_nvme_transport_id *trid)
730 {
731 	struct spdk_nvme_transport_id canon_trid;
732 	struct spdk_nvmf_tcp_port *port;
733 
734 	if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
735 		return NULL;
736 	}
737 
738 	TAILQ_FOREACH(port, &ttransport->ports, link) {
739 		if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
740 			return port;
741 		}
742 	}
743 
744 	return NULL;
745 }
746 
747 static int
748 nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
749 		struct spdk_nvmf_listen_opts *listen_opts)
750 {
751 	struct spdk_nvmf_tcp_transport *ttransport;
752 	struct spdk_nvmf_tcp_port *port;
753 	int trsvcid_int;
754 	uint8_t adrfam;
755 	struct spdk_sock_opts opts;
756 
757 	if (!strlen(trid->trsvcid)) {
758 		SPDK_ERRLOG("Service id is required\n");
759 		return -EINVAL;
760 	}
761 
762 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
763 
764 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
765 	if (trsvcid_int < 0) {
766 		SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
767 		return -EINVAL;
768 	}
769 
770 	port = calloc(1, sizeof(*port));
771 	if (!port) {
772 		SPDK_ERRLOG("Port allocation failed\n");
773 		return -ENOMEM;
774 	}
775 
776 	port->trid = trid;
777 	opts.opts_size = sizeof(opts);
778 	spdk_sock_get_default_opts(&opts);
779 	opts.priority = ttransport->tcp_opts.sock_priority;
780 	/* TODO: also add impl_opts like on the initiator side */
781 	port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
782 			    NULL, &opts);
783 	if (port->listen_sock == NULL) {
784 		SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
785 			    trid->traddr, trsvcid_int,
786 			    spdk_strerror(errno), errno);
787 		free(port);
788 		return -errno;
789 	}
790 
791 	if (spdk_sock_is_ipv4(port->listen_sock)) {
792 		adrfam = SPDK_NVMF_ADRFAM_IPV4;
793 	} else if (spdk_sock_is_ipv6(port->listen_sock)) {
794 		adrfam = SPDK_NVMF_ADRFAM_IPV6;
795 	} else {
796 		SPDK_ERRLOG("Unhandled socket type\n");
797 		adrfam = 0;
798 	}
799 
800 	if (adrfam != trid->adrfam) {
801 		SPDK_ERRLOG("Socket address family mismatch\n");
802 		spdk_sock_close(&port->listen_sock);
803 		free(port);
804 		return -EINVAL;
805 	}
806 
807 	SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
808 		       trid->traddr, trid->trsvcid);
809 
810 	TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
811 	return 0;
812 }
813 
814 static void
815 nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
816 		     const struct spdk_nvme_transport_id *trid)
817 {
818 	struct spdk_nvmf_tcp_transport *ttransport;
819 	struct spdk_nvmf_tcp_port *port;
820 
821 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
822 
823 	SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
824 		      trid->traddr, trid->trsvcid);
825 
826 	port = nvmf_tcp_find_port(ttransport, trid);
827 	if (port) {
828 		TAILQ_REMOVE(&ttransport->ports, port, link);
829 		spdk_sock_close(&port->listen_sock);
830 		free(port);
831 	}
832 }
833 
834 static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
835 		enum nvme_tcp_pdu_recv_state state);
836 
837 static void
838 nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvme_tcp_qpair_state state)
839 {
840 	tqpair->state = state;
841 	spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
842 			  tqpair->state);
843 }
844 
845 static void
846 nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
847 {
848 	SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
849 
850 	spdk_trace_record(TRACE_TCP_QP_DISCONNECT, 0, 0, (uintptr_t)tqpair);
851 
852 	if (tqpair->state <= NVME_TCP_QPAIR_STATE_RUNNING) {
853 		nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITING);
854 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
855 		spdk_poller_unregister(&tqpair->timeout_poller);
856 
857 		/* This will end up calling nvmf_tcp_close_qpair */
858 		spdk_nvmf_qpair_disconnect(&tqpair->qpair, NULL, NULL);
859 	}
860 }
861 
862 static void
863 _mgmt_pdu_write_done(void *_tqpair, int err)
864 {
865 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
866 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
867 
868 	if (spdk_unlikely(err != 0)) {
869 		nvmf_tcp_qpair_disconnect(tqpair);
870 		return;
871 	}
872 
873 	assert(pdu->cb_fn != NULL);
874 	pdu->cb_fn(pdu->cb_arg);
875 }
876 
877 static void
878 _req_pdu_write_done(void *req, int err)
879 {
880 	struct spdk_nvmf_tcp_req *tcp_req = req;
881 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
882 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
883 
884 	assert(tcp_req->pdu_in_use);
885 	tcp_req->pdu_in_use = false;
886 
887 	/* If the request is in a completed state, we're waiting for write completion to free it */
888 	if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) {
889 		nvmf_tcp_request_free(tcp_req);
890 		return;
891 	}
892 
893 	if (spdk_unlikely(err != 0)) {
894 		nvmf_tcp_qpair_disconnect(tqpair);
895 		return;
896 	}
897 
898 	assert(pdu->cb_fn != NULL);
899 	pdu->cb_fn(pdu->cb_arg);
900 }
901 
902 static void
903 _pdu_write_done(struct nvme_tcp_pdu *pdu, int err)
904 {
905 	pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err);
906 }
907 
908 static void
909 _tcp_write_pdu(struct nvme_tcp_pdu *pdu)
910 {
911 	uint32_t mapped_length = 0;
912 	ssize_t rc;
913 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
914 
915 	pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
916 			       tqpair->host_hdgst_enable, tqpair->host_ddgst_enable,
917 			       &mapped_length);
918 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
919 	    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
920 		rc = spdk_sock_writev(tqpair->sock, pdu->iov, pdu->sock_req.iovcnt);
921 		if (rc == mapped_length) {
922 			_pdu_write_done(pdu, 0);
923 		} else {
924 			SPDK_ERRLOG("IC_RESP or TERM_REQ could not write to socket.\n");
925 			_pdu_write_done(pdu, -1);
926 		}
927 	} else {
928 		spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
929 	}
930 }
931 
932 static void
933 data_crc32_accel_done(void *cb_arg, int status)
934 {
935 	struct nvme_tcp_pdu *pdu = cb_arg;
936 
937 	if (spdk_unlikely(status)) {
938 		SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
939 		_pdu_write_done(pdu, status);
940 		return;
941 	}
942 
943 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
944 	MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
945 
946 	_tcp_write_pdu(pdu);
947 }
948 
949 static void
950 pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
951 {
952 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
953 	int rc = 0;
954 
955 	/* Data Digest */
956 	if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
957 		/* Only suport this limitated case for the first step */
958 		if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
959 				&& tqpair->group)) {
960 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
961 						       pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
962 			if (spdk_likely(rc == 0)) {
963 				return;
964 			}
965 		} else {
966 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
967 		}
968 		data_crc32_accel_done(pdu, rc);
969 	} else {
970 		_tcp_write_pdu(pdu);
971 	}
972 }
973 
974 static void
975 nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
976 			 struct nvme_tcp_pdu *pdu,
977 			 nvme_tcp_qpair_xfer_complete_cb cb_fn,
978 			 void *cb_arg)
979 {
980 	int hlen;
981 	uint32_t crc32c;
982 
983 	assert(tqpair->pdu_in_progress != pdu);
984 
985 	hlen = pdu->hdr.common.hlen;
986 	pdu->cb_fn = cb_fn;
987 	pdu->cb_arg = cb_arg;
988 
989 	pdu->iov[0].iov_base = &pdu->hdr.raw;
990 	pdu->iov[0].iov_len = hlen;
991 
992 	/* Header Digest */
993 	if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) {
994 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
995 		MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
996 	}
997 
998 	/* Data Digest */
999 	pdu_data_crc32_compute(pdu);
1000 }
1001 
1002 static void
1003 nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1004 			      nvme_tcp_qpair_xfer_complete_cb cb_fn,
1005 			      void *cb_arg)
1006 {
1007 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1008 
1009 	pdu->sock_req.cb_fn = _mgmt_pdu_write_done;
1010 	pdu->sock_req.cb_arg = tqpair;
1011 
1012 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1013 }
1014 
1015 static void
1016 nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1017 			     struct spdk_nvmf_tcp_req *tcp_req,
1018 			     nvme_tcp_qpair_xfer_complete_cb cb_fn,
1019 			     void *cb_arg)
1020 {
1021 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1022 
1023 	pdu->sock_req.cb_fn = _req_pdu_write_done;
1024 	pdu->sock_req.cb_arg = tcp_req;
1025 
1026 	assert(!tcp_req->pdu_in_use);
1027 	tcp_req->pdu_in_use = true;
1028 
1029 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1030 }
1031 
1032 static int
1033 nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
1034 {
1035 	uint32_t i;
1036 	struct spdk_nvmf_transport_opts *opts;
1037 	uint32_t in_capsule_data_size;
1038 
1039 	opts = &tqpair->qpair.transport->opts;
1040 
1041 	in_capsule_data_size = opts->in_capsule_data_size;
1042 	if (opts->dif_insert_or_strip) {
1043 		in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
1044 	}
1045 
1046 	tqpair->resource_count = opts->max_queue_depth;
1047 
1048 	tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
1049 	if (!tqpair->reqs) {
1050 		SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
1051 		return -1;
1052 	}
1053 
1054 	if (in_capsule_data_size) {
1055 		tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
1056 					    NULL, SPDK_ENV_LCORE_ID_ANY,
1057 					    SPDK_MALLOC_DMA);
1058 		if (!tqpair->bufs) {
1059 			SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
1060 			return -1;
1061 		}
1062 	}
1063 	/* prepare memory space for receiving pdus and tcp_req */
1064 	/* Add additional 1 member, which will be used for mgmt_pdu owned by the tqpair */
1065 	tqpair->pdus = spdk_dma_zmalloc((2 * tqpair->resource_count + 1) * sizeof(*tqpair->pdus), 0x1000,
1066 					NULL);
1067 	if (!tqpair->pdus) {
1068 		SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
1069 		return -1;
1070 	}
1071 
1072 	for (i = 0; i < tqpair->resource_count; i++) {
1073 		struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
1074 
1075 		tcp_req->ttag = i + 1;
1076 		tcp_req->req.qpair = &tqpair->qpair;
1077 
1078 		tcp_req->pdu = &tqpair->pdus[i];
1079 		tcp_req->pdu->qpair = tqpair;
1080 
1081 		/* Set up memory to receive commands */
1082 		if (tqpair->bufs) {
1083 			tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
1084 		}
1085 
1086 		/* Set the cmdn and rsp */
1087 		tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
1088 		tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
1089 
1090 		tcp_req->req.stripped_data = NULL;
1091 
1092 		/* Initialize request state to FREE */
1093 		tcp_req->state = TCP_REQUEST_STATE_FREE;
1094 		TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
1095 		tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
1096 	}
1097 
1098 	for (; i < 2 * tqpair->resource_count; i++) {
1099 		struct nvme_tcp_pdu *pdu = &tqpair->pdus[i];
1100 
1101 		pdu->qpair = tqpair;
1102 		SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1103 	}
1104 
1105 	tqpair->mgmt_pdu = &tqpair->pdus[i];
1106 	tqpair->mgmt_pdu->qpair = tqpair;
1107 	tqpair->pdu_in_progress = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
1108 	SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
1109 
1110 	tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
1111 				 SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1112 
1113 	return 0;
1114 }
1115 
1116 static int
1117 nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
1118 {
1119 	struct spdk_nvmf_tcp_qpair *tqpair;
1120 
1121 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1122 
1123 	SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
1124 
1125 	spdk_trace_record(TRACE_TCP_QP_CREATE, 0, 0, (uintptr_t)tqpair);
1126 
1127 	/* Initialise request state queues of the qpair */
1128 	TAILQ_INIT(&tqpair->tcp_req_free_queue);
1129 	TAILQ_INIT(&tqpair->tcp_req_working_queue);
1130 	SLIST_INIT(&tqpair->tcp_pdu_free_queue);
1131 
1132 	tqpair->host_hdgst_enable = true;
1133 	tqpair->host_ddgst_enable = true;
1134 
1135 	return 0;
1136 }
1137 
1138 static int
1139 nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
1140 {
1141 	int rc;
1142 
1143 	spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, 0, 0, (uintptr_t)tqpair);
1144 
1145 	/* set low water mark */
1146 	rc = spdk_sock_set_recvlowat(tqpair->sock, 1);
1147 	if (rc != 0) {
1148 		SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
1149 		return rc;
1150 	}
1151 
1152 	return 0;
1153 }
1154 
1155 static void
1156 nvmf_tcp_handle_connect(struct spdk_nvmf_transport *transport,
1157 			struct spdk_nvmf_tcp_port *port,
1158 			struct spdk_sock *sock)
1159 {
1160 	struct spdk_nvmf_tcp_qpair *tqpair;
1161 	int rc;
1162 
1163 	SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
1164 		      port->trid->traddr, port->trid->trsvcid);
1165 
1166 	tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
1167 	if (tqpair == NULL) {
1168 		SPDK_ERRLOG("Could not allocate new connection.\n");
1169 		spdk_sock_close(&sock);
1170 		return;
1171 	}
1172 
1173 	tqpair->sock = sock;
1174 	tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
1175 	tqpair->port = port;
1176 	tqpair->qpair.transport = transport;
1177 
1178 	rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
1179 			       sizeof(tqpair->target_addr), &tqpair->target_port,
1180 			       tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
1181 			       &tqpair->initiator_port);
1182 	if (rc < 0) {
1183 		SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
1184 		nvmf_tcp_qpair_destroy(tqpair);
1185 		return;
1186 	}
1187 
1188 	spdk_nvmf_tgt_new_qpair(transport->tgt, &tqpair->qpair);
1189 }
1190 
1191 static uint32_t
1192 nvmf_tcp_port_accept(struct spdk_nvmf_transport *transport, struct spdk_nvmf_tcp_port *port)
1193 {
1194 	struct spdk_sock *sock;
1195 	uint32_t count = 0;
1196 	int i;
1197 
1198 	for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
1199 		sock = spdk_sock_accept(port->listen_sock);
1200 		if (sock == NULL) {
1201 			break;
1202 		}
1203 		count++;
1204 		nvmf_tcp_handle_connect(transport, port, sock);
1205 	}
1206 
1207 	return count;
1208 }
1209 
1210 static int
1211 nvmf_tcp_accept(void *ctx)
1212 {
1213 	struct spdk_nvmf_transport *transport = ctx;
1214 	struct spdk_nvmf_tcp_transport *ttransport;
1215 	struct spdk_nvmf_tcp_port *port;
1216 	uint32_t count = 0;
1217 
1218 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1219 
1220 	TAILQ_FOREACH(port, &ttransport->ports, link) {
1221 		count += nvmf_tcp_port_accept(transport, port);
1222 	}
1223 
1224 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1225 }
1226 
1227 static void
1228 nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
1229 		  struct spdk_nvme_transport_id *trid,
1230 		  struct spdk_nvmf_discovery_log_page_entry *entry)
1231 {
1232 	entry->trtype = SPDK_NVMF_TRTYPE_TCP;
1233 	entry->adrfam = trid->adrfam;
1234 	entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
1235 
1236 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
1237 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
1238 
1239 	entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
1240 }
1241 
1242 static struct spdk_nvmf_tcp_control_msg_list *
1243 nvmf_tcp_control_msg_list_create(uint16_t num_messages)
1244 {
1245 	struct spdk_nvmf_tcp_control_msg_list *list;
1246 	struct spdk_nvmf_tcp_control_msg *msg;
1247 	uint16_t i;
1248 
1249 	list = calloc(1, sizeof(*list));
1250 	if (!list) {
1251 		SPDK_ERRLOG("Failed to allocate memory for list structure\n");
1252 		return NULL;
1253 	}
1254 
1255 	list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
1256 				     NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
1257 	if (!list->msg_buf) {
1258 		SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
1259 		free(list);
1260 		return NULL;
1261 	}
1262 
1263 	STAILQ_INIT(&list->free_msgs);
1264 
1265 	for (i = 0; i < num_messages; i++) {
1266 		msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
1267 				SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1268 		STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
1269 	}
1270 
1271 	return list;
1272 }
1273 
1274 static void
1275 nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
1276 {
1277 	if (!list) {
1278 		return;
1279 	}
1280 
1281 	spdk_free(list->msg_buf);
1282 	free(list);
1283 }
1284 
1285 static struct spdk_nvmf_transport_poll_group *
1286 nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport,
1287 			   struct spdk_nvmf_poll_group *group)
1288 {
1289 	struct spdk_nvmf_tcp_transport	*ttransport;
1290 	struct spdk_nvmf_tcp_poll_group *tgroup;
1291 
1292 	tgroup = calloc(1, sizeof(*tgroup));
1293 	if (!tgroup) {
1294 		return NULL;
1295 	}
1296 
1297 	tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
1298 	if (!tgroup->sock_group) {
1299 		goto cleanup;
1300 	}
1301 
1302 	TAILQ_INIT(&tgroup->qpairs);
1303 	TAILQ_INIT(&tgroup->await_req);
1304 
1305 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1306 
1307 	if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
1308 		SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
1309 			      "Creating control messages list\n", transport->opts.in_capsule_data_size,
1310 			      SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1311 		tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
1312 		if (!tgroup->control_msg_list) {
1313 			goto cleanup;
1314 		}
1315 	}
1316 
1317 	tgroup->accel_channel = spdk_accel_get_io_channel();
1318 	if (spdk_unlikely(!tgroup->accel_channel)) {
1319 		SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
1320 		goto cleanup;
1321 	}
1322 
1323 	TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link);
1324 	if (ttransport->next_pg == NULL) {
1325 		ttransport->next_pg = tgroup;
1326 	}
1327 
1328 	return &tgroup->group;
1329 
1330 cleanup:
1331 	nvmf_tcp_poll_group_destroy(&tgroup->group);
1332 	return NULL;
1333 }
1334 
1335 static struct spdk_nvmf_transport_poll_group *
1336 nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
1337 {
1338 	struct spdk_nvmf_tcp_transport *ttransport;
1339 	struct spdk_nvmf_tcp_poll_group **pg;
1340 	struct spdk_nvmf_tcp_qpair *tqpair;
1341 	struct spdk_sock_group *group = NULL, *hint = NULL;
1342 	int rc;
1343 
1344 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
1345 
1346 	if (TAILQ_EMPTY(&ttransport->poll_groups)) {
1347 		return NULL;
1348 	}
1349 
1350 	pg = &ttransport->next_pg;
1351 	assert(*pg != NULL);
1352 	hint = (*pg)->sock_group;
1353 
1354 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1355 	rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint);
1356 	if (rc != 0) {
1357 		return NULL;
1358 	} else if (group != NULL) {
1359 		/* Optimal poll group was found */
1360 		return spdk_sock_group_get_ctx(group);
1361 	}
1362 
1363 	/* The hint was used for optimal poll group, advance next_pg. */
1364 	*pg = TAILQ_NEXT(*pg, link);
1365 	if (*pg == NULL) {
1366 		*pg = TAILQ_FIRST(&ttransport->poll_groups);
1367 	}
1368 
1369 	return spdk_sock_group_get_ctx(hint);
1370 }
1371 
1372 static void
1373 nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
1374 {
1375 	struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup;
1376 	struct spdk_nvmf_tcp_transport *ttransport;
1377 
1378 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
1379 	spdk_sock_group_close(&tgroup->sock_group);
1380 	if (tgroup->control_msg_list) {
1381 		nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
1382 	}
1383 
1384 	if (tgroup->accel_channel) {
1385 		spdk_put_io_channel(tgroup->accel_channel);
1386 	}
1387 
1388 	ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport);
1389 
1390 	next_tgroup = TAILQ_NEXT(tgroup, link);
1391 	TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link);
1392 	if (next_tgroup == NULL) {
1393 		next_tgroup = TAILQ_FIRST(&ttransport->poll_groups);
1394 	}
1395 	if (ttransport->next_pg == tgroup) {
1396 		ttransport->next_pg = next_tgroup;
1397 	}
1398 
1399 	free(tgroup);
1400 }
1401 
1402 static void
1403 nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1404 			      enum nvme_tcp_pdu_recv_state state)
1405 {
1406 	if (tqpair->recv_state == state) {
1407 		SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
1408 			    tqpair, state);
1409 		return;
1410 	}
1411 
1412 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1413 		/* When leaving the await req state, move the qpair to the main list */
1414 		TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link);
1415 		TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link);
1416 	} else if (state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1417 		TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link);
1418 		TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link);
1419 	}
1420 
1421 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
1422 	tqpair->recv_state = state;
1423 
1424 	spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
1425 			  tqpair->recv_state);
1426 }
1427 
1428 static int
1429 nvmf_tcp_qpair_handle_timeout(void *ctx)
1430 {
1431 	struct spdk_nvmf_tcp_qpair *tqpair = ctx;
1432 
1433 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1434 
1435 	SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
1436 		    SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
1437 
1438 	nvmf_tcp_qpair_disconnect(tqpair);
1439 	return SPDK_POLLER_BUSY;
1440 }
1441 
1442 static void
1443 nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
1444 {
1445 	struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
1446 
1447 	if (!tqpair->timeout_poller) {
1448 		tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
1449 					 SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
1450 	}
1451 }
1452 
1453 static void
1454 nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
1455 			   enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
1456 {
1457 	struct nvme_tcp_pdu *rsp_pdu;
1458 	struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
1459 	uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
1460 	uint32_t copy_len;
1461 
1462 	rsp_pdu = tqpair->mgmt_pdu;
1463 
1464 	c2h_term_req = &rsp_pdu->hdr.term_req;
1465 	c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
1466 	c2h_term_req->common.hlen = c2h_term_req_hdr_len;
1467 	c2h_term_req->fes = fes;
1468 
1469 	if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1470 	    (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1471 		DSET32(&c2h_term_req->fei, error_offset);
1472 	}
1473 
1474 	copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
1475 
1476 	/* Copy the error info into the buffer */
1477 	memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
1478 	nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
1479 
1480 	/* Contain the header of the wrong received pdu */
1481 	c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
1482 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
1483 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair);
1484 }
1485 
1486 static void
1487 nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1488 				struct spdk_nvmf_tcp_qpair *tqpair,
1489 				struct nvme_tcp_pdu *pdu)
1490 {
1491 	struct spdk_nvmf_tcp_req *tcp_req;
1492 
1493 	assert(pdu->psh_valid_bytes == pdu->psh_len);
1494 	assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
1495 
1496 	tcp_req = nvmf_tcp_req_get(tqpair);
1497 	if (!tcp_req) {
1498 		/* Directly return and make the allocation retry again.  This can happen if we're
1499 		 * using asynchronous writes to send the response to the host or when releasing
1500 		 * zero-copy buffers after a response has been sent.  In both cases, the host might
1501 		 * receive the response before we've finished processing the request and is free to
1502 		 * send another one.
1503 		 */
1504 		if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 ||
1505 		    tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) {
1506 			return;
1507 		}
1508 
1509 		/* The host sent more commands than the maximum queue depth. */
1510 		SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
1511 		nvmf_tcp_qpair_disconnect(tqpair);
1512 		return;
1513 	}
1514 
1515 	pdu->req = tcp_req;
1516 	assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
1517 	nvmf_tcp_req_process(ttransport, tcp_req);
1518 }
1519 
1520 static void
1521 nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1522 				    struct spdk_nvmf_tcp_qpair *tqpair,
1523 				    struct nvme_tcp_pdu *pdu)
1524 {
1525 	struct spdk_nvmf_tcp_req *tcp_req;
1526 	struct spdk_nvme_tcp_cmd *capsule_cmd;
1527 	uint32_t error_offset = 0;
1528 	enum spdk_nvme_tcp_term_req_fes fes;
1529 	struct spdk_nvme_cpl *rsp;
1530 
1531 	capsule_cmd = &pdu->hdr.capsule_cmd;
1532 	tcp_req = pdu->req;
1533 	assert(tcp_req != NULL);
1534 
1535 	/* Zero-copy requests don't support ICD */
1536 	assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req));
1537 
1538 	if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
1539 		SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
1540 			    SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
1541 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1542 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
1543 		goto err;
1544 	}
1545 
1546 	rsp = &tcp_req->req.rsp->nvme_cpl;
1547 	if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1548 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1549 	} else {
1550 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1551 	}
1552 
1553 	nvmf_tcp_req_process(ttransport, tcp_req);
1554 
1555 	return;
1556 err:
1557 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1558 }
1559 
1560 static void
1561 nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1562 			     struct spdk_nvmf_tcp_qpair *tqpair,
1563 			     struct nvme_tcp_pdu *pdu)
1564 {
1565 	struct spdk_nvmf_tcp_req *tcp_req;
1566 	uint32_t error_offset = 0;
1567 	enum spdk_nvme_tcp_term_req_fes fes = 0;
1568 	struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
1569 
1570 	h2c_data = &pdu->hdr.h2c_data;
1571 
1572 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
1573 		      tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
1574 
1575 	if (h2c_data->ttag > tqpair->resource_count) {
1576 		SPDK_DEBUGLOG(nvmf_tcp, "ttag %u is larger than allowed %u.\n", h2c_data->ttag,
1577 			      tqpair->resource_count);
1578 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1579 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1580 		goto err;
1581 	}
1582 
1583 	tcp_req = &tqpair->reqs[h2c_data->ttag - 1];
1584 
1585 	if (spdk_unlikely(tcp_req->state != TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER &&
1586 			  tcp_req->state != TCP_REQUEST_STATE_AWAITING_R2T_ACK)) {
1587 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, has error state in %d\n", tcp_req, tqpair,
1588 			      tcp_req->state);
1589 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1590 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1591 		goto err;
1592 	}
1593 
1594 	if (spdk_unlikely(tcp_req->req.cmd->nvme_cmd.cid != h2c_data->cccid)) {
1595 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, expected %u but %u for cccid.\n", tcp_req, tqpair,
1596 			      tcp_req->req.cmd->nvme_cmd.cid, h2c_data->cccid);
1597 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1598 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
1599 		goto err;
1600 	}
1601 
1602 	if (tcp_req->h2c_offset != h2c_data->datao) {
1603 		SPDK_DEBUGLOG(nvmf_tcp,
1604 			      "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
1605 			      tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
1606 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1607 		goto err;
1608 	}
1609 
1610 	if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
1611 		SPDK_DEBUGLOG(nvmf_tcp,
1612 			      "tcp_req(%p), tqpair=%p,  (datao=%u + datal=%u) exceeds requested length=%u\n",
1613 			      tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
1614 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1615 		goto err;
1616 	}
1617 
1618 	pdu->req = tcp_req;
1619 
1620 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
1621 		pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
1622 	}
1623 
1624 	nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
1625 				  h2c_data->datao, h2c_data->datal);
1626 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1627 	return;
1628 
1629 err:
1630 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1631 }
1632 
1633 static void
1634 nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
1635 			       struct spdk_nvmf_tcp_qpair *tqpair)
1636 {
1637 	struct nvme_tcp_pdu *rsp_pdu;
1638 	struct spdk_nvme_tcp_rsp *capsule_resp;
1639 
1640 	SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
1641 
1642 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1643 	assert(rsp_pdu != NULL);
1644 
1645 	capsule_resp = &rsp_pdu->hdr.capsule_resp;
1646 	capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
1647 	capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
1648 	capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
1649 	if (tqpair->host_hdgst_enable) {
1650 		capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1651 		capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1652 	}
1653 
1654 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req);
1655 }
1656 
1657 static void
1658 nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
1659 {
1660 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1661 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
1662 					     struct spdk_nvmf_tcp_qpair, qpair);
1663 
1664 	assert(tqpair != NULL);
1665 
1666 	if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
1667 		SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
1668 			      tcp_req->req.length);
1669 		_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
1670 		return;
1671 	}
1672 
1673 	if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
1674 		nvmf_tcp_request_free(tcp_req);
1675 	} else {
1676 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
1677 	}
1678 }
1679 
1680 static void
1681 nvmf_tcp_r2t_complete(void *cb_arg)
1682 {
1683 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1684 	struct spdk_nvmf_tcp_transport *ttransport;
1685 
1686 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
1687 				      struct spdk_nvmf_tcp_transport, transport);
1688 
1689 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
1690 
1691 	if (tcp_req->h2c_offset == tcp_req->req.length) {
1692 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1693 		nvmf_tcp_req_process(ttransport, tcp_req);
1694 	}
1695 }
1696 
1697 static void
1698 nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1699 		      struct spdk_nvmf_tcp_req *tcp_req)
1700 {
1701 	struct nvme_tcp_pdu *rsp_pdu;
1702 	struct spdk_nvme_tcp_r2t_hdr *r2t;
1703 
1704 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1705 	assert(rsp_pdu != NULL);
1706 
1707 	r2t = &rsp_pdu->hdr.r2t;
1708 	r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
1709 	r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
1710 
1711 	if (tqpair->host_hdgst_enable) {
1712 		r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1713 		r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1714 	}
1715 
1716 	r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
1717 	r2t->ttag = tcp_req->ttag;
1718 	r2t->r2to = tcp_req->h2c_offset;
1719 	r2t->r2tl = tcp_req->req.length;
1720 
1721 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
1722 
1723 	SPDK_DEBUGLOG(nvmf_tcp,
1724 		      "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
1725 		      tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
1726 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req);
1727 }
1728 
1729 static void
1730 nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1731 				 struct spdk_nvmf_tcp_qpair *tqpair,
1732 				 struct nvme_tcp_pdu *pdu)
1733 {
1734 	struct spdk_nvmf_tcp_req *tcp_req;
1735 	struct spdk_nvme_cpl *rsp;
1736 
1737 	tcp_req = pdu->req;
1738 	assert(tcp_req != NULL);
1739 
1740 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1741 
1742 	tcp_req->h2c_offset += pdu->data_len;
1743 
1744 	/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
1745 	 * acknowledged before moving on. */
1746 	if (tcp_req->h2c_offset == tcp_req->req.length &&
1747 	    tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
1748 		/* After receiving all the h2c data, we need to check whether there is
1749 		 * transient transport error */
1750 		rsp = &tcp_req->req.rsp->nvme_cpl;
1751 		if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1752 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1753 		} else {
1754 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1755 		}
1756 		nvmf_tcp_req_process(ttransport, tcp_req);
1757 	}
1758 }
1759 
1760 static void
1761 nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
1762 {
1763 	SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
1764 		    spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
1765 	if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1766 	    (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1767 		SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
1768 			      DGET32(h2c_term_req->fei));
1769 	}
1770 }
1771 
1772 static void
1773 nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1774 				 struct nvme_tcp_pdu *pdu)
1775 {
1776 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1777 	uint32_t error_offset = 0;
1778 	enum spdk_nvme_tcp_term_req_fes fes;
1779 
1780 	if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
1781 		SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
1782 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1783 		error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
1784 		goto end;
1785 	}
1786 
1787 	/* set the data buffer */
1788 	nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
1789 			      h2c_term_req->common.plen - h2c_term_req->common.hlen);
1790 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1791 	return;
1792 end:
1793 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1794 }
1795 
1796 static void
1797 nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1798 				     struct nvme_tcp_pdu *pdu)
1799 {
1800 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1801 
1802 	nvmf_tcp_h2c_term_req_dump(h2c_term_req);
1803 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
1804 }
1805 
1806 static void
1807 _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
1808 {
1809 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
1810 			struct spdk_nvmf_tcp_transport, transport);
1811 
1812 	switch (pdu->hdr.common.pdu_type) {
1813 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
1814 		nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
1815 		break;
1816 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
1817 		nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
1818 		break;
1819 
1820 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
1821 		nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
1822 		break;
1823 
1824 	default:
1825 		/* The code should not go to here */
1826 		SPDK_ERRLOG("ERROR pdu type %d\n", pdu->hdr.common.pdu_type);
1827 		break;
1828 	}
1829 	SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1830 }
1831 
1832 static void
1833 data_crc32_calc_done(void *cb_arg, int status)
1834 {
1835 	struct nvme_tcp_pdu *pdu = cb_arg;
1836 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1837 	struct spdk_nvmf_tcp_req *tcp_req;
1838 	struct spdk_nvme_cpl *rsp;
1839 
1840 	/* async crc32 calculation is failed and use direct calculation to check */
1841 	if (spdk_unlikely(status)) {
1842 		SPDK_ERRLOG("Data digest on tqpair=(%p) with pdu=%p failed to be calculated asynchronously\n",
1843 			    tqpair, pdu);
1844 		pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1845 	}
1846 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
1847 	if (!MATCH_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32)) {
1848 		SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
1849 		tcp_req = pdu->req;
1850 		assert(tcp_req != NULL);
1851 		rsp = &tcp_req->req.rsp->nvme_cpl;
1852 		rsp->status.sc = SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR;
1853 	}
1854 	_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
1855 }
1856 
1857 static void
1858 nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
1859 {
1860 	int rc = 0;
1861 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1862 	tqpair->pdu_in_progress = NULL;
1863 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
1864 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1865 	/* check data digest if need */
1866 	if (pdu->ddgst_enable) {
1867 		if (!pdu->dif_ctx && tqpair->group && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)) {
1868 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
1869 						       pdu->data_iovcnt, 0, data_crc32_calc_done, pdu);
1870 			if (spdk_likely(rc == 0)) {
1871 				return;
1872 			}
1873 		} else {
1874 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1875 		}
1876 		data_crc32_calc_done(pdu, rc);
1877 	} else {
1878 		_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
1879 	}
1880 }
1881 
1882 static void
1883 nvmf_tcp_send_icresp_complete(void *cb_arg)
1884 {
1885 	struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
1886 
1887 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_RUNNING);
1888 }
1889 
1890 static void
1891 nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
1892 		      struct spdk_nvmf_tcp_qpair *tqpair,
1893 		      struct nvme_tcp_pdu *pdu)
1894 {
1895 	struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
1896 	struct nvme_tcp_pdu *rsp_pdu;
1897 	struct spdk_nvme_tcp_ic_resp *ic_resp;
1898 	uint32_t error_offset = 0;
1899 	enum spdk_nvme_tcp_term_req_fes fes;
1900 
1901 	/* Only PFV 0 is defined currently */
1902 	if (ic_req->pfv != 0) {
1903 		SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
1904 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1905 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
1906 		goto end;
1907 	}
1908 
1909 	/* This value is 0’s based value in units of dwords should not be larger than SPDK_NVME_TCP_HPDA_MAX */
1910 	if (ic_req->hpda > SPDK_NVME_TCP_HPDA_MAX) {
1911 		SPDK_ERRLOG("ICReq HPDA out of range 0 to 31, got %u\n", ic_req->hpda);
1912 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1913 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, hpda);
1914 		goto end;
1915 	}
1916 
1917 	/* MAXR2T is 0's based */
1918 	SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
1919 
1920 	tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
1921 	if (!tqpair->host_hdgst_enable) {
1922 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1923 	}
1924 
1925 	tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
1926 	if (!tqpair->host_ddgst_enable) {
1927 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1928 	}
1929 
1930 	tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
1931 	/* Now that we know whether digests are enabled, properly size the receive buffer */
1932 	if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
1933 		SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
1934 			     tqpair,
1935 			     tqpair->recv_buf_size);
1936 		/* Not fatal. */
1937 	}
1938 
1939 	tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
1940 	SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
1941 
1942 	rsp_pdu = tqpair->mgmt_pdu;
1943 
1944 	ic_resp = &rsp_pdu->hdr.ic_resp;
1945 	ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
1946 	ic_resp->common.hlen = ic_resp->common.plen =  sizeof(*ic_resp);
1947 	ic_resp->pfv = 0;
1948 	ic_resp->cpda = tqpair->cpda;
1949 	ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
1950 	ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
1951 	ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
1952 
1953 	SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
1954 	SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
1955 
1956 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INITIALIZING);
1957 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair);
1958 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
1959 	return;
1960 end:
1961 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1962 }
1963 
1964 static void
1965 nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1966 			struct spdk_nvmf_tcp_transport *ttransport)
1967 {
1968 	struct nvme_tcp_pdu *pdu;
1969 	int rc;
1970 	uint32_t crc32c, error_offset = 0;
1971 	enum spdk_nvme_tcp_term_req_fes fes;
1972 
1973 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
1974 	pdu = tqpair->pdu_in_progress;
1975 
1976 	SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
1977 		      pdu->hdr.common.pdu_type);
1978 	/* check header digest if needed */
1979 	if (pdu->has_hdgst) {
1980 		SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
1981 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1982 		rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
1983 		if (rc == 0) {
1984 			SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
1985 			fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
1986 			nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1987 			return;
1988 
1989 		}
1990 	}
1991 
1992 	switch (pdu->hdr.common.pdu_type) {
1993 	case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
1994 		nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
1995 		break;
1996 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
1997 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
1998 		break;
1999 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2000 		nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
2001 		break;
2002 
2003 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2004 		nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
2005 		break;
2006 
2007 	default:
2008 		SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
2009 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2010 		error_offset = 1;
2011 		nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2012 		break;
2013 	}
2014 }
2015 
2016 static void
2017 nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
2018 {
2019 	struct nvme_tcp_pdu *pdu;
2020 	uint32_t error_offset = 0;
2021 	enum spdk_nvme_tcp_term_req_fes fes;
2022 	uint8_t expected_hlen, pdo;
2023 	bool plen_error = false, pdo_error = false;
2024 
2025 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2026 	pdu = tqpair->pdu_in_progress;
2027 	assert(pdu);
2028 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
2029 		if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) {
2030 			SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
2031 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2032 			goto err;
2033 		}
2034 		expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
2035 		if (pdu->hdr.common.plen != expected_hlen) {
2036 			plen_error = true;
2037 		}
2038 	} else {
2039 		if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) {
2040 			SPDK_ERRLOG("The TCP/IP connection is not negotiated\n");
2041 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2042 			goto err;
2043 		}
2044 
2045 		switch (pdu->hdr.common.pdu_type) {
2046 		case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2047 			expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
2048 			pdo = pdu->hdr.common.pdo;
2049 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2050 				pdo_error = true;
2051 				break;
2052 			}
2053 
2054 			if (pdu->hdr.common.plen < expected_hlen) {
2055 				plen_error = true;
2056 			}
2057 			break;
2058 		case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2059 			expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
2060 			pdo = pdu->hdr.common.pdo;
2061 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2062 				pdo_error = true;
2063 				break;
2064 			}
2065 			if (pdu->hdr.common.plen < expected_hlen) {
2066 				plen_error = true;
2067 			}
2068 			break;
2069 
2070 		case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2071 			expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
2072 			if ((pdu->hdr.common.plen <= expected_hlen) ||
2073 			    (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
2074 				plen_error = true;
2075 			}
2076 			break;
2077 
2078 		default:
2079 			SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
2080 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2081 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
2082 			goto err;
2083 		}
2084 	}
2085 
2086 	if (pdu->hdr.common.hlen != expected_hlen) {
2087 		SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
2088 			    pdu->hdr.common.pdu_type,
2089 			    expected_hlen, pdu->hdr.common.hlen, tqpair);
2090 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2091 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
2092 		goto err;
2093 	} else if (pdo_error) {
2094 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2095 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
2096 	} else if (plen_error) {
2097 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2098 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2099 		goto err;
2100 	} else {
2101 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2102 		nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
2103 		return;
2104 	}
2105 err:
2106 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2107 }
2108 
2109 static int
2110 nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
2111 {
2112 	int rc = 0;
2113 	struct nvme_tcp_pdu *pdu;
2114 	enum nvme_tcp_pdu_recv_state prev_state;
2115 	uint32_t data_len;
2116 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2117 			struct spdk_nvmf_tcp_transport, transport);
2118 
2119 	/* The loop here is to allow for several back-to-back state changes. */
2120 	do {
2121 		prev_state = tqpair->recv_state;
2122 		SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
2123 
2124 		pdu = tqpair->pdu_in_progress;
2125 		assert(pdu || tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2126 		switch (tqpair->recv_state) {
2127 		/* Wait for the common header  */
2128 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
2129 			if (!pdu) {
2130 				pdu = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
2131 				if (spdk_unlikely(!pdu)) {
2132 					return NVME_TCP_PDU_IN_PROGRESS;
2133 				}
2134 				SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
2135 				tqpair->pdu_in_progress = pdu;
2136 			}
2137 			memset(pdu, 0, offsetof(struct nvme_tcp_pdu, qpair));
2138 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2139 		/* FALLTHROUGH */
2140 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
2141 			if (spdk_unlikely(tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING)) {
2142 				return rc;
2143 			}
2144 
2145 			rc = nvme_tcp_read_data(tqpair->sock,
2146 						sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
2147 						(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
2148 			if (rc < 0) {
2149 				SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
2150 				return NVME_TCP_PDU_FATAL;
2151 			} else if (rc > 0) {
2152 				pdu->ch_valid_bytes += rc;
2153 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2154 			}
2155 
2156 			if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
2157 				return NVME_TCP_PDU_IN_PROGRESS;
2158 			}
2159 
2160 			/* The command header of this PDU has now been read from the socket. */
2161 			nvmf_tcp_pdu_ch_handle(tqpair);
2162 			break;
2163 		/* Wait for the pdu specific header  */
2164 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
2165 			rc = nvme_tcp_read_data(tqpair->sock,
2166 						pdu->psh_len - pdu->psh_valid_bytes,
2167 						(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
2168 			if (rc < 0) {
2169 				return NVME_TCP_PDU_FATAL;
2170 			} else if (rc > 0) {
2171 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2172 				pdu->psh_valid_bytes += rc;
2173 			}
2174 
2175 			if (pdu->psh_valid_bytes < pdu->psh_len) {
2176 				return NVME_TCP_PDU_IN_PROGRESS;
2177 			}
2178 
2179 			/* All header(ch, psh, head digist) of this PDU has now been read from the socket. */
2180 			nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
2181 			break;
2182 		/* Wait for the req slot */
2183 		case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
2184 			nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
2185 			break;
2186 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
2187 			/* check whether the data is valid, if not we just return */
2188 			if (!pdu->data_len) {
2189 				return NVME_TCP_PDU_IN_PROGRESS;
2190 			}
2191 
2192 			data_len = pdu->data_len;
2193 			/* data digest */
2194 			if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
2195 					  tqpair->host_ddgst_enable)) {
2196 				data_len += SPDK_NVME_TCP_DIGEST_LEN;
2197 				pdu->ddgst_enable = true;
2198 			}
2199 
2200 			rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
2201 			if (rc < 0) {
2202 				return NVME_TCP_PDU_FATAL;
2203 			}
2204 			pdu->rw_offset += rc;
2205 
2206 			if (pdu->rw_offset < data_len) {
2207 				return NVME_TCP_PDU_IN_PROGRESS;
2208 			}
2209 
2210 			/* Generate and insert DIF to whole data block received if DIF is enabled */
2211 			if (spdk_unlikely(pdu->dif_ctx != NULL) &&
2212 			    spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt, 0, data_len,
2213 						     pdu->dif_ctx) != 0) {
2214 				SPDK_ERRLOG("DIF generate failed\n");
2215 				return NVME_TCP_PDU_FATAL;
2216 			}
2217 
2218 			/* All of this PDU has now been read from the socket. */
2219 			nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2220 			break;
2221 		case NVME_TCP_PDU_RECV_STATE_ERROR:
2222 			if (!spdk_sock_is_connected(tqpair->sock)) {
2223 				return NVME_TCP_PDU_FATAL;
2224 			}
2225 			break;
2226 		default:
2227 			SPDK_ERRLOG("The state(%d) is invalid\n", tqpair->recv_state);
2228 			abort();
2229 			break;
2230 		}
2231 	} while (tqpair->recv_state != prev_state);
2232 
2233 	return rc;
2234 }
2235 
2236 static inline void *
2237 nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list)
2238 {
2239 	struct spdk_nvmf_tcp_control_msg *msg;
2240 
2241 	assert(list);
2242 
2243 	msg = STAILQ_FIRST(&list->free_msgs);
2244 	if (!msg) {
2245 		SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
2246 		return NULL;
2247 	}
2248 	STAILQ_REMOVE_HEAD(&list->free_msgs, link);
2249 	return msg;
2250 }
2251 
2252 static inline void
2253 nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
2254 {
2255 	struct spdk_nvmf_tcp_control_msg *msg = _msg;
2256 
2257 	assert(list);
2258 	STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
2259 }
2260 
2261 static int
2262 nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
2263 		       struct spdk_nvmf_transport *transport,
2264 		       struct spdk_nvmf_transport_poll_group *group)
2265 {
2266 	struct spdk_nvmf_request		*req = &tcp_req->req;
2267 	struct spdk_nvme_cmd			*cmd;
2268 	struct spdk_nvme_cpl			*rsp;
2269 	struct spdk_nvme_sgl_descriptor		*sgl;
2270 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2271 	uint32_t				length;
2272 
2273 	cmd = &req->cmd->nvme_cmd;
2274 	rsp = &req->rsp->nvme_cpl;
2275 	sgl = &cmd->dptr.sgl1;
2276 
2277 	length = sgl->unkeyed.length;
2278 
2279 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
2280 	    sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
2281 		if (length > transport->opts.max_io_size) {
2282 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
2283 				    length, transport->opts.max_io_size);
2284 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
2285 			return -1;
2286 		}
2287 
2288 		/* fill request length and populate iovs */
2289 		req->length = length;
2290 
2291 		SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
2292 
2293 		if (spdk_unlikely(req->dif_enabled)) {
2294 			req->dif.orig_length = length;
2295 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2296 			req->dif.elba_length = length;
2297 		}
2298 
2299 		if (nvmf_ctrlr_use_zcopy(req)) {
2300 			SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req);
2301 			req->data_from_pool = false;
2302 			return 0;
2303 		}
2304 
2305 		if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
2306 			/* No available buffers. Queue this request up. */
2307 			SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
2308 				      tcp_req);
2309 			return 0;
2310 		}
2311 
2312 		/* backward compatible */
2313 		req->data = req->iov[0].iov_base;
2314 
2315 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
2316 			      tcp_req, req->iovcnt, req->data);
2317 
2318 		return 0;
2319 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
2320 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
2321 		uint64_t offset = sgl->address;
2322 		uint32_t max_len = transport->opts.in_capsule_data_size;
2323 		assert(tcp_req->has_in_capsule_data);
2324 
2325 		SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
2326 			      offset, length);
2327 
2328 		if (offset > max_len) {
2329 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
2330 				    offset, max_len);
2331 			rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
2332 			return -1;
2333 		}
2334 		max_len -= (uint32_t)offset;
2335 
2336 		if (spdk_unlikely(length > max_len)) {
2337 			/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
2338 			if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
2339 			    (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
2340 
2341 				/* Get a buffer from dedicated list */
2342 				SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
2343 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2344 				assert(tgroup->control_msg_list);
2345 				req->data = nvmf_tcp_control_msg_get(tgroup->control_msg_list);
2346 				if (!req->data) {
2347 					/* No available buffers. Queue this request up. */
2348 					SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
2349 					return 0;
2350 				}
2351 			} else {
2352 				SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
2353 					    length, max_len);
2354 				rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
2355 				return -1;
2356 			}
2357 		} else {
2358 			req->data = tcp_req->buf;
2359 		}
2360 
2361 		req->length = length;
2362 		req->data_from_pool = false;
2363 
2364 		if (spdk_unlikely(req->dif_enabled)) {
2365 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2366 			req->dif.elba_length = length;
2367 		}
2368 
2369 		req->iov[0].iov_base = req->data;
2370 		req->iov[0].iov_len = length;
2371 		req->iovcnt = 1;
2372 
2373 		return 0;
2374 	}
2375 
2376 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2377 		    sgl->generic.type, sgl->generic.subtype);
2378 	rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
2379 	return -1;
2380 }
2381 
2382 static inline enum spdk_nvme_media_error_status_code
2383 nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
2384 	enum spdk_nvme_media_error_status_code result;
2385 
2386 	switch (err_type)
2387 	{
2388 	case SPDK_DIF_REFTAG_ERROR:
2389 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
2390 		break;
2391 	case SPDK_DIF_APPTAG_ERROR:
2392 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
2393 		break;
2394 	case SPDK_DIF_GUARD_ERROR:
2395 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
2396 		break;
2397 	default:
2398 		SPDK_UNREACHABLE();
2399 		break;
2400 	}
2401 
2402 	return result;
2403 }
2404 
2405 static void
2406 _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2407 			struct spdk_nvmf_tcp_req *tcp_req)
2408 {
2409 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
2410 				tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
2411 	struct nvme_tcp_pdu *rsp_pdu;
2412 	struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
2413 	uint32_t plen, pdo, alignment;
2414 	int rc;
2415 
2416 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2417 
2418 	rsp_pdu = tcp_req->pdu;
2419 	assert(rsp_pdu != NULL);
2420 
2421 	c2h_data = &rsp_pdu->hdr.c2h_data;
2422 	c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
2423 	plen = c2h_data->common.hlen = sizeof(*c2h_data);
2424 
2425 	if (tqpair->host_hdgst_enable) {
2426 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2427 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2428 	}
2429 
2430 	/* set the psh */
2431 	c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2432 	c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
2433 	c2h_data->datao = tcp_req->pdu->rw_offset;
2434 
2435 	/* set the padding */
2436 	rsp_pdu->padding_len = 0;
2437 	pdo = plen;
2438 	if (tqpair->cpda) {
2439 		alignment = (tqpair->cpda + 1) << 2;
2440 		if (plen % alignment != 0) {
2441 			pdo = (plen + alignment) / alignment * alignment;
2442 			rsp_pdu->padding_len = pdo - plen;
2443 			plen = pdo;
2444 		}
2445 	}
2446 
2447 	c2h_data->common.pdo = pdo;
2448 	plen += c2h_data->datal;
2449 	if (tqpair->host_ddgst_enable) {
2450 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
2451 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2452 	}
2453 
2454 	c2h_data->common.plen = plen;
2455 
2456 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2457 		rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2458 	}
2459 
2460 	nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2461 				  c2h_data->datao, c2h_data->datal);
2462 
2463 
2464 	c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
2465 	/* Need to send the capsule response if response is not all 0 */
2466 	if (ttransport->tcp_opts.c2h_success &&
2467 	    tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
2468 		c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
2469 	}
2470 
2471 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2472 		struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
2473 		struct spdk_dif_error err_blk = {};
2474 		uint32_t mapped_length = 0;
2475 		uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
2476 		uint32_t ddgst_len = 0;
2477 
2478 		if (tqpair->host_ddgst_enable) {
2479 			/* Data digest consumes additional iov entry */
2480 			available_iovs--;
2481 			/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
2482 			ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
2483 			c2h_data->common.plen -= ddgst_len;
2484 		}
2485 		/* Temp call to estimate if data can be described by limited number of iovs.
2486 		 * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
2487 		nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
2488 				    false, &mapped_length);
2489 
2490 		if (mapped_length != c2h_data->common.plen) {
2491 			c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
2492 			SPDK_DEBUGLOG(nvmf_tcp,
2493 				      "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
2494 				      c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
2495 			c2h_data->common.plen = mapped_length;
2496 
2497 			/* Rebuild pdu->data_iov since data length is changed */
2498 			nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
2499 						  c2h_data->datal);
2500 
2501 			c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
2502 						    SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
2503 		}
2504 
2505 		c2h_data->common.plen += ddgst_len;
2506 
2507 		assert(rsp_pdu->rw_offset <= tcp_req->req.length);
2508 
2509 		rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
2510 					    0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
2511 		if (rc != 0) {
2512 			SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
2513 				    err_blk.err_type, err_blk.err_offset);
2514 			rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2515 			rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
2516 			nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2517 			return;
2518 		}
2519 	}
2520 
2521 	rsp_pdu->rw_offset += c2h_data->datal;
2522 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
2523 }
2524 
2525 static void
2526 nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2527 		       struct spdk_nvmf_tcp_req *tcp_req)
2528 {
2529 	nvmf_tcp_req_pdu_init(tcp_req);
2530 	_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2531 }
2532 
2533 static int
2534 request_transfer_out(struct spdk_nvmf_request *req)
2535 {
2536 	struct spdk_nvmf_tcp_req	*tcp_req;
2537 	struct spdk_nvmf_qpair		*qpair;
2538 	struct spdk_nvmf_tcp_qpair	*tqpair;
2539 	struct spdk_nvme_cpl		*rsp;
2540 
2541 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2542 
2543 	qpair = req->qpair;
2544 	rsp = &req->rsp->nvme_cpl;
2545 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
2546 
2547 	/* Advance our sq_head pointer */
2548 	if (qpair->sq_head == qpair->sq_head_max) {
2549 		qpair->sq_head = 0;
2550 	} else {
2551 		qpair->sq_head++;
2552 	}
2553 	rsp->sqhd = qpair->sq_head;
2554 
2555 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2556 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
2557 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2558 		nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2559 	} else {
2560 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2561 	}
2562 
2563 	return 0;
2564 }
2565 
2566 static void
2567 nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport,
2568 			      struct spdk_nvmf_tcp_qpair *tqpair,
2569 			      struct spdk_nvmf_tcp_req *tcp_req)
2570 {
2571 	enum spdk_nvme_cmd_fuse last, next;
2572 
2573 	last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2574 	next = tcp_req->cmd.fuse;
2575 
2576 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2577 
2578 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2579 		return;
2580 	}
2581 
2582 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2583 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2584 			/* This is a valid pair of fused commands.  Point them at each other
2585 			 * so they can be submitted consecutively once ready to be executed.
2586 			 */
2587 			tqpair->fused_first->fused_pair = tcp_req;
2588 			tcp_req->fused_pair = tqpair->fused_first;
2589 			tqpair->fused_first = NULL;
2590 			return;
2591 		} else {
2592 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2593 			tqpair->fused_first->fused_failed = true;
2594 
2595 			/*
2596 			 * If the last req is in READY_TO_EXECUTE state, then call
2597 			 * nvmf_tcp_req_process(), otherwise nothing else will kick it.
2598 			 */
2599 			if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2600 				nvmf_tcp_req_process(ttransport, tqpair->fused_first);
2601 			}
2602 
2603 			tqpair->fused_first = NULL;
2604 		}
2605 	}
2606 
2607 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2608 		/* Set tqpair->fused_first here so that we know to check that the next request
2609 		 * is a SECOND (and to fail this one if it isn't).
2610 		 */
2611 		tqpair->fused_first = tcp_req;
2612 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2613 		/* Mark this req failed since it is a SECOND and the last one was not a FIRST. */
2614 		tcp_req->fused_failed = true;
2615 	}
2616 }
2617 
2618 static bool
2619 nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
2620 		     struct spdk_nvmf_tcp_req *tcp_req)
2621 {
2622 	struct spdk_nvmf_tcp_qpair		*tqpair;
2623 	int					rc;
2624 	uint32_t				plen;
2625 	struct nvme_tcp_pdu			*pdu;
2626 	enum spdk_nvmf_tcp_req_state		prev_state;
2627 	bool					progress = false;
2628 	struct spdk_nvmf_transport		*transport = &ttransport->transport;
2629 	struct spdk_nvmf_transport_poll_group	*group;
2630 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2631 
2632 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2633 	group = &tqpair->group->group;
2634 	assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
2635 
2636 	/* If the qpair is not active, we need to abort the outstanding requests. */
2637 	if (tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2638 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
2639 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2640 		}
2641 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
2642 	}
2643 
2644 	/* The loop here is to allow for several back-to-back state changes. */
2645 	do {
2646 		prev_state = tcp_req->state;
2647 
2648 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
2649 			      tqpair);
2650 
2651 		switch (tcp_req->state) {
2652 		case TCP_REQUEST_STATE_FREE:
2653 			/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
2654 			 * to escape this state. */
2655 			break;
2656 		case TCP_REQUEST_STATE_NEW:
2657 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.qid, 0, (uintptr_t)tcp_req, tqpair);
2658 
2659 			/* copy the cmd from the receive pdu */
2660 			tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
2661 
2662 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
2663 				tcp_req->req.dif_enabled = true;
2664 				tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
2665 			}
2666 
2667 			nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req);
2668 
2669 			/* The next state transition depends on the data transfer needs of this request. */
2670 			tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
2671 
2672 			if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2673 				tcp_req->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2674 				tcp_req->req.rsp->nvme_cpl.status.sc  = SPDK_NVME_SC_INVALID_OPCODE;
2675 				tcp_req->req.rsp->nvme_cpl.cid = tcp_req->req.cmd->nvme_cmd.cid;
2676 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2677 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2678 				SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
2679 				break;
2680 			}
2681 
2682 			/* If no data to transfer, ready to execute. */
2683 			if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
2684 				/* Reset the tqpair receiving pdu state */
2685 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2686 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2687 				break;
2688 			}
2689 
2690 			pdu = tqpair->pdu_in_progress;
2691 			plen = pdu->hdr.common.hlen;
2692 			if (tqpair->host_hdgst_enable) {
2693 				plen += SPDK_NVME_TCP_DIGEST_LEN;
2694 			}
2695 			if (pdu->hdr.common.plen != plen) {
2696 				tcp_req->has_in_capsule_data = true;
2697 			} else {
2698 				/* Data is transmitted by C2H PDUs */
2699 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2700 			}
2701 
2702 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
2703 			STAILQ_INSERT_TAIL(&group->pending_buf_queue, &tcp_req->req, buf_link);
2704 			break;
2705 		case TCP_REQUEST_STATE_NEED_BUFFER:
2706 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2707 					  tqpair);
2708 
2709 			assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
2710 
2711 			if (!tcp_req->has_in_capsule_data && (&tcp_req->req != STAILQ_FIRST(&group->pending_buf_queue))) {
2712 				SPDK_DEBUGLOG(nvmf_tcp,
2713 					      "Not the first element to wait for the buf for tcp_req(%p) on tqpair=%p\n",
2714 					      tcp_req, tqpair);
2715 				/* This request needs to wait in line to obtain a buffer */
2716 				break;
2717 			}
2718 
2719 			/* Try to get a data buffer */
2720 			rc = nvmf_tcp_req_parse_sgl(tcp_req, transport, group);
2721 			if (rc < 0) {
2722 				STAILQ_REMOVE_HEAD(&group->pending_buf_queue, buf_link);
2723 				/* Reset the tqpair receiving pdu state */
2724 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
2725 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2726 				tcp_req->req.rsp->nvme_cpl.cid = tcp_req->req.cmd->nvme_cmd.cid;
2727 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2728 				break;
2729 			}
2730 
2731 			/* Get a zcopy buffer if the request can be serviced through zcopy */
2732 			if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2733 				if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2734 					assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2735 					tcp_req->req.length = tcp_req->req.dif.elba_length;
2736 				}
2737 
2738 				STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2739 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START);
2740 				spdk_nvmf_request_zcopy_start(&tcp_req->req);
2741 				break;
2742 			}
2743 
2744 			if (!tcp_req->req.data) {
2745 				SPDK_DEBUGLOG(nvmf_tcp, "No buffer allocated for tcp_req(%p) on tqpair(%p\n)",
2746 					      tcp_req, tqpair);
2747 				/* No buffers available. */
2748 				break;
2749 			}
2750 
2751 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2752 
2753 			/* If data is transferring from host to controller, we need to do a transfer from the host. */
2754 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2755 				if (tcp_req->req.data_from_pool) {
2756 					SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2757 					nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2758 				} else {
2759 					struct nvme_tcp_pdu *pdu;
2760 
2761 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
2762 
2763 					pdu = tqpair->pdu_in_progress;
2764 					SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
2765 						      tqpair);
2766 					/* No need to send r2t, contained in the capsuled data */
2767 					nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2768 								  0, tcp_req->req.length);
2769 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2770 				}
2771 				break;
2772 			}
2773 
2774 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2775 			break;
2776 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
2777 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.qid, 0,
2778 					  (uintptr_t)tcp_req, tqpair);
2779 			/* Some external code must kick a request into  TCP_REQUEST_STATE_ZCOPY_START_COMPLETED
2780 			 * to escape this state. */
2781 			break;
2782 		case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
2783 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.qid, 0,
2784 					  (uintptr_t)tcp_req, tqpair);
2785 			if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) {
2786 				SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n",
2787 					      tcp_req, tqpair);
2788 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2789 				break;
2790 			}
2791 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2792 				SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2793 				nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2794 			} else {
2795 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
2796 			}
2797 			break;
2798 		case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
2799 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2800 					  tqpair);
2801 			/* The R2T completion or the h2c data incoming will kick it out of this state. */
2802 			break;
2803 		case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
2804 
2805 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.qid, 0,
2806 					  (uintptr_t)tcp_req, tqpair);
2807 			/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
2808 			 * to escape this state. */
2809 			break;
2810 		case TCP_REQUEST_STATE_READY_TO_EXECUTE:
2811 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.qid, 0,
2812 					  (uintptr_t)tcp_req, tqpair);
2813 
2814 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2815 				assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2816 				tcp_req->req.length = tcp_req->req.dif.elba_length;
2817 			}
2818 
2819 			if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
2820 				if (tcp_req->fused_failed) {
2821 					/* This request failed FUSED semantics.  Fail it immediately, without
2822 					 * even sending it to the target layer.
2823 					 */
2824 					tcp_req->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2825 					tcp_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED;
2826 					tcp_req->req.rsp->nvme_cpl.cid = tcp_req->req.cmd->nvme_cmd.cid;
2827 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2828 					break;
2829 				}
2830 
2831 				if (tcp_req->fused_pair == NULL ||
2832 				    tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2833 					/* This request is ready to execute, but either we don't know yet if it's
2834 					 * valid - i.e. this is a FIRST but we haven't received the next request yet),
2835 					 * or the other request of this fused pair isn't ready to execute. So
2836 					 * break here and this request will get processed later either when the
2837 					 * other request is ready or we find that this request isn't valid.
2838 					 */
2839 					break;
2840 				}
2841 			}
2842 
2843 			if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2844 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
2845 				/* If we get to this point, and this request is a fused command, we know that
2846 				 * it is part of a valid sequence (FIRST followed by a SECOND) and that both
2847 				 * requests are READY_TO_EXECUTE.  So call spdk_nvmf_request_exec() both on this
2848 				 * request, and the other request of the fused pair, in the correct order.
2849 				 * Also clear the ->fused_pair pointers on both requests, since after this point
2850 				 * we no longer need to maintain the relationship between these two requests.
2851 				 */
2852 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
2853 					assert(tcp_req->fused_pair != NULL);
2854 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
2855 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
2856 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
2857 					tcp_req->fused_pair->fused_pair = NULL;
2858 					tcp_req->fused_pair = NULL;
2859 				}
2860 				spdk_nvmf_request_exec(&tcp_req->req);
2861 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
2862 					assert(tcp_req->fused_pair != NULL);
2863 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
2864 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
2865 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
2866 					tcp_req->fused_pair->fused_pair = NULL;
2867 					tcp_req->fused_pair = NULL;
2868 				}
2869 			} else {
2870 				/* For zero-copy, only requests with data coming from host to the
2871 				 * controller can end up here. */
2872 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
2873 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT);
2874 				spdk_nvmf_request_zcopy_end(&tcp_req->req, true);
2875 			}
2876 
2877 			break;
2878 		case TCP_REQUEST_STATE_EXECUTING:
2879 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2880 					  tqpair);
2881 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
2882 			 * to escape this state. */
2883 			break;
2884 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
2885 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.qid, 0,
2886 					  (uintptr_t)tcp_req, tqpair);
2887 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
2888 			 * to escape this state. */
2889 			break;
2890 		case TCP_REQUEST_STATE_EXECUTED:
2891 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2892 					  tqpair);
2893 
2894 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2895 				tcp_req->req.length = tcp_req->req.dif.orig_length;
2896 			}
2897 
2898 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2899 			break;
2900 		case TCP_REQUEST_STATE_READY_TO_COMPLETE:
2901 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.qid, 0,
2902 					  (uintptr_t)tcp_req, tqpair);
2903 			rc = request_transfer_out(&tcp_req->req);
2904 			assert(rc == 0); /* No good way to handle this currently */
2905 			break;
2906 		case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
2907 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.qid, 0,
2908 					  (uintptr_t)tcp_req, tqpair);
2909 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
2910 			 * to escape this state. */
2911 			break;
2912 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
2913 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.qid, 0,
2914 					  (uintptr_t)tcp_req, tqpair);
2915 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
2916 			 * to escape this state. */
2917 			break;
2918 		case TCP_REQUEST_STATE_COMPLETED:
2919 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2920 					  tqpair);
2921 			/* If there's an outstanding PDU sent to the host, the request is completed
2922 			 * due to the qpair being disconnected.  We must delay the completion until
2923 			 * that write is done to avoid freeing the request twice. */
2924 			if (spdk_unlikely(tcp_req->pdu_in_use)) {
2925 				SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding "
2926 					      "write on req=%p\n", tcp_req);
2927 				/* This can only happen for zcopy requests */
2928 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
2929 				assert(tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
2930 				break;
2931 			}
2932 
2933 			if (tcp_req->req.data_from_pool) {
2934 				spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
2935 			} else if (spdk_unlikely(tcp_req->has_in_capsule_data &&
2936 						 (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
2937 						  tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
2938 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2939 				assert(tgroup->control_msg_list);
2940 				SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
2941 				nvmf_tcp_control_msg_put(tgroup->control_msg_list, tcp_req->req.data);
2942 			} else if (tcp_req->req.zcopy_bdev_io != NULL) {
2943 				/* If the request has an unreleased zcopy bdev_io, it's either a
2944 				 * read, a failed write, or the qpair is being disconnected */
2945 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
2946 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
2947 				       spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) ||
2948 				       tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
2949 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE);
2950 				spdk_nvmf_request_zcopy_end(&tcp_req->req, false);
2951 				break;
2952 			}
2953 			tcp_req->req.length = 0;
2954 			tcp_req->req.iovcnt = 0;
2955 			tcp_req->req.data = NULL;
2956 			tcp_req->fused_failed = false;
2957 			if (tcp_req->fused_pair) {
2958 				/* This req was part of a valid fused pair, but failed before it got to
2959 				 * READ_TO_EXECUTE state.  This means we need to fail the other request
2960 				 * in the pair, because it is no longer part of a valid pair.  If the pair
2961 				 * already reached READY_TO_EXECUTE state, we need to kick it.
2962 				 */
2963 				tcp_req->fused_pair->fused_failed = true;
2964 				if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2965 					nvmf_tcp_req_process(ttransport, tcp_req->fused_pair);
2966 				}
2967 				tcp_req->fused_pair = NULL;
2968 			}
2969 
2970 			nvmf_tcp_req_put(tqpair, tcp_req);
2971 			break;
2972 		case TCP_REQUEST_NUM_STATES:
2973 		default:
2974 			assert(0);
2975 			break;
2976 		}
2977 
2978 		if (tcp_req->state != prev_state) {
2979 			progress = true;
2980 		}
2981 	} while (tcp_req->state != prev_state);
2982 
2983 	return progress;
2984 }
2985 
2986 static void
2987 nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
2988 {
2989 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
2990 	int rc;
2991 
2992 	assert(tqpair != NULL);
2993 	rc = nvmf_tcp_sock_process(tqpair);
2994 
2995 	/* If there was a new socket error, disconnect */
2996 	if (rc < 0) {
2997 		nvmf_tcp_qpair_disconnect(tqpair);
2998 	}
2999 }
3000 
3001 static int
3002 nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3003 			struct spdk_nvmf_qpair *qpair)
3004 {
3005 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3006 	struct spdk_nvmf_tcp_qpair	*tqpair;
3007 	int				rc;
3008 
3009 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3010 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3011 
3012 	rc =  nvmf_tcp_qpair_sock_init(tqpair);
3013 	if (rc != 0) {
3014 		SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
3015 		return -1;
3016 	}
3017 
3018 	rc = nvmf_tcp_qpair_init(&tqpair->qpair);
3019 	if (rc < 0) {
3020 		SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
3021 		return -1;
3022 	}
3023 
3024 	rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
3025 	if (rc < 0) {
3026 		SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
3027 		return -1;
3028 	}
3029 
3030 	rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
3031 				      nvmf_tcp_sock_cb, tqpair);
3032 	if (rc != 0) {
3033 		SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
3034 			    spdk_strerror(errno), errno);
3035 		return -1;
3036 	}
3037 
3038 	tqpair->group = tgroup;
3039 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INVALID);
3040 	TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
3041 
3042 	return 0;
3043 }
3044 
3045 static int
3046 nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3047 			   struct spdk_nvmf_qpair *qpair)
3048 {
3049 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3050 	struct spdk_nvmf_tcp_qpair		*tqpair;
3051 	int				rc;
3052 
3053 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3054 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3055 
3056 	assert(tqpair->group == tgroup);
3057 
3058 	SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
3059 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
3060 		TAILQ_REMOVE(&tgroup->await_req, tqpair, link);
3061 	} else {
3062 		TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
3063 	}
3064 
3065 	rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
3066 	if (rc != 0) {
3067 		SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
3068 			    spdk_strerror(errno), errno);
3069 	}
3070 
3071 	return rc;
3072 }
3073 
3074 static int
3075 nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
3076 {
3077 	struct spdk_nvmf_tcp_transport *ttransport;
3078 	struct spdk_nvmf_tcp_req *tcp_req;
3079 
3080 	ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3081 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3082 
3083 	switch (tcp_req->state) {
3084 	case TCP_REQUEST_STATE_EXECUTING:
3085 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3086 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3087 		break;
3088 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3089 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED);
3090 		break;
3091 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3092 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3093 		break;
3094 	default:
3095 		assert(0 && "Unexpected request state");
3096 		break;
3097 	}
3098 
3099 	nvmf_tcp_req_process(ttransport, tcp_req);
3100 
3101 	return 0;
3102 }
3103 
3104 static void
3105 nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
3106 		     spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3107 {
3108 	struct spdk_nvmf_tcp_qpair *tqpair;
3109 
3110 	SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
3111 
3112 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3113 
3114 	assert(tqpair->fini_cb_fn == NULL);
3115 	tqpair->fini_cb_fn = cb_fn;
3116 	tqpair->fini_cb_arg = cb_arg;
3117 
3118 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITED);
3119 	nvmf_tcp_qpair_destroy(tqpair);
3120 }
3121 
3122 static int
3123 nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3124 {
3125 	struct spdk_nvmf_tcp_poll_group *tgroup;
3126 	int rc;
3127 	struct spdk_nvmf_request *req, *req_tmp;
3128 	struct spdk_nvmf_tcp_req *tcp_req;
3129 	struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp;
3130 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(group->transport,
3131 			struct spdk_nvmf_tcp_transport, transport);
3132 
3133 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3134 
3135 	if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) {
3136 		return 0;
3137 	}
3138 
3139 	STAILQ_FOREACH_SAFE(req, &group->pending_buf_queue, buf_link, req_tmp) {
3140 		tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3141 		if (nvmf_tcp_req_process(ttransport, tcp_req) == false) {
3142 			break;
3143 		}
3144 	}
3145 
3146 	rc = spdk_sock_group_poll(tgroup->sock_group);
3147 	if (rc < 0) {
3148 		SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
3149 	}
3150 
3151 	TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) {
3152 		nvmf_tcp_sock_process(tqpair);
3153 	}
3154 
3155 	return rc;
3156 }
3157 
3158 static int
3159 nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
3160 			struct spdk_nvme_transport_id *trid, bool peer)
3161 {
3162 	struct spdk_nvmf_tcp_qpair     *tqpair;
3163 	uint16_t			port;
3164 
3165 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3166 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
3167 
3168 	if (peer) {
3169 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
3170 		port = tqpair->initiator_port;
3171 	} else {
3172 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
3173 		port = tqpair->target_port;
3174 	}
3175 
3176 	if (spdk_sock_is_ipv4(tqpair->sock)) {
3177 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3178 	} else if (spdk_sock_is_ipv6(tqpair->sock)) {
3179 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3180 	} else {
3181 		return -1;
3182 	}
3183 
3184 	snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
3185 	return 0;
3186 }
3187 
3188 static int
3189 nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3190 			      struct spdk_nvme_transport_id *trid)
3191 {
3192 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3193 }
3194 
3195 static int
3196 nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3197 			     struct spdk_nvme_transport_id *trid)
3198 {
3199 	return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
3200 }
3201 
3202 static int
3203 nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3204 			       struct spdk_nvme_transport_id *trid)
3205 {
3206 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3207 }
3208 
3209 static void
3210 nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
3211 			      struct spdk_nvmf_tcp_req *tcp_req_to_abort)
3212 {
3213 	tcp_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
3214 	tcp_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
3215 	tcp_req_to_abort->req.rsp->nvme_cpl.cid = tcp_req_to_abort->req.cmd->nvme_cmd.cid;
3216 
3217 	nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3218 
3219 	req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
3220 }
3221 
3222 static int
3223 _nvmf_tcp_qpair_abort_request(void *ctx)
3224 {
3225 	struct spdk_nvmf_request *req = ctx;
3226 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
3227 			struct spdk_nvmf_tcp_req, req);
3228 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
3229 					     struct spdk_nvmf_tcp_qpair, qpair);
3230 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
3231 			struct spdk_nvmf_tcp_transport, transport);
3232 	int rc;
3233 
3234 	spdk_poller_unregister(&req->poller);
3235 
3236 	switch (tcp_req_to_abort->state) {
3237 	case TCP_REQUEST_STATE_EXECUTING:
3238 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3239 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3240 		rc = nvmf_ctrlr_abort_request(req);
3241 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
3242 			return SPDK_POLLER_BUSY;
3243 		}
3244 		break;
3245 
3246 	case TCP_REQUEST_STATE_NEED_BUFFER:
3247 		STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue,
3248 			      &tcp_req_to_abort->req, spdk_nvmf_request, buf_link);
3249 
3250 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3251 		nvmf_tcp_req_process(ttransport, tcp_req_to_abort);
3252 		break;
3253 
3254 	case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3255 	case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
3256 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3257 		break;
3258 
3259 	case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3260 		if (spdk_get_ticks() < req->timeout_tsc) {
3261 			req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
3262 			return SPDK_POLLER_BUSY;
3263 		}
3264 		break;
3265 
3266 	default:
3267 		break;
3268 	}
3269 
3270 	spdk_nvmf_request_complete(req);
3271 	return SPDK_POLLER_BUSY;
3272 }
3273 
3274 static void
3275 nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
3276 			     struct spdk_nvmf_request *req)
3277 {
3278 	struct spdk_nvmf_tcp_qpair *tqpair;
3279 	struct spdk_nvmf_tcp_transport *ttransport;
3280 	struct spdk_nvmf_transport *transport;
3281 	uint16_t cid;
3282 	uint32_t i;
3283 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
3284 
3285 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3286 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3287 	transport = &ttransport->transport;
3288 
3289 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
3290 
3291 	for (i = 0; i < tqpair->resource_count; i++) {
3292 		if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
3293 		    tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
3294 			tcp_req_to_abort = &tqpair->reqs[i];
3295 			break;
3296 		}
3297 	}
3298 
3299 	spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, qpair->qid, 0, (uintptr_t)req, tqpair);
3300 
3301 	if (tcp_req_to_abort == NULL) {
3302 		spdk_nvmf_request_complete(req);
3303 		return;
3304 	}
3305 
3306 	req->req_to_abort = &tcp_req_to_abort->req;
3307 	req->timeout_tsc = spdk_get_ticks() +
3308 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
3309 	req->poller = NULL;
3310 
3311 	_nvmf_tcp_qpair_abort_request(req);
3312 }
3313 
3314 #define SPDK_NVMF_TCP_DEFAULT_MAX_QUEUE_DEPTH 128
3315 #define SPDK_NVMF_TCP_DEFAULT_AQ_DEPTH 128
3316 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
3317 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
3318 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
3319 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
3320 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
3321 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE 32
3322 #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
3323 #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
3324 
3325 static void
3326 nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
3327 {
3328 	opts->max_queue_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_QUEUE_DEPTH;
3329 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
3330 	opts->in_capsule_data_size =	SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
3331 	opts->max_io_size =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
3332 	opts->io_unit_size =		SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
3333 	opts->max_aq_depth =		SPDK_NVMF_TCP_DEFAULT_AQ_DEPTH;
3334 	opts->num_shared_buffers =	SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
3335 	opts->buf_cache_size =		SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
3336 	opts->dif_insert_or_strip =	SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
3337 	opts->abort_timeout_sec =	SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
3338 	opts->transport_specific =      NULL;
3339 }
3340 
3341 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
3342 	.name = "TCP",
3343 	.type = SPDK_NVME_TRANSPORT_TCP,
3344 	.opts_init = nvmf_tcp_opts_init,
3345 	.create = nvmf_tcp_create,
3346 	.dump_opts = nvmf_tcp_dump_opts,
3347 	.destroy = nvmf_tcp_destroy,
3348 
3349 	.listen = nvmf_tcp_listen,
3350 	.stop_listen = nvmf_tcp_stop_listen,
3351 
3352 	.listener_discover = nvmf_tcp_discover,
3353 
3354 	.poll_group_create = nvmf_tcp_poll_group_create,
3355 	.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
3356 	.poll_group_destroy = nvmf_tcp_poll_group_destroy,
3357 	.poll_group_add = nvmf_tcp_poll_group_add,
3358 	.poll_group_remove = nvmf_tcp_poll_group_remove,
3359 	.poll_group_poll = nvmf_tcp_poll_group_poll,
3360 
3361 	.req_free = nvmf_tcp_req_free,
3362 	.req_complete = nvmf_tcp_req_complete,
3363 
3364 	.qpair_fini = nvmf_tcp_close_qpair,
3365 	.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
3366 	.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
3367 	.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
3368 	.qpair_abort_request = nvmf_tcp_qpair_abort_request,
3369 };
3370 
3371 SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
3372 SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)
3373