xref: /spdk/lib/nvmf/tcp.c (revision 28fa2c2f668e229a1b215535d2a8ea5039c28deb)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2018 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2022, 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/accel.h"
8 #include "spdk/stdinc.h"
9 #include "spdk/crc32.h"
10 #include "spdk/endian.h"
11 #include "spdk/assert.h"
12 #include "spdk/thread.h"
13 #include "spdk/nvmf_transport.h"
14 #include "spdk/string.h"
15 #include "spdk/trace.h"
16 #include "spdk/util.h"
17 #include "spdk/log.h"
18 #include "spdk/keyring.h"
19 
20 #include "spdk_internal/assert.h"
21 #include "spdk_internal/nvme_tcp.h"
22 #include "spdk_internal/sock.h"
23 
24 #include "nvmf_internal.h"
25 
26 #include "spdk_internal/trace_defs.h"
27 
28 #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
29 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
30 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
31 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
32 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
33 
34 #define SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH 2
35 #define SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH 65535
36 #define SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH 2
37 #define SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH 4096
38 
39 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH 128
40 #define SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH 128
41 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
42 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
43 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
44 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
45 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
46 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX
47 #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
48 #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
49 
50 #define TCP_PSK_INVALID_PERMISSIONS 0177
51 
52 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
53 static bool g_tls_log = false;
54 
55 /* spdk nvmf related structure */
56 enum spdk_nvmf_tcp_req_state {
57 
58 	/* The request is not currently in use */
59 	TCP_REQUEST_STATE_FREE = 0,
60 
61 	/* Initial state when request first received */
62 	TCP_REQUEST_STATE_NEW = 1,
63 
64 	/* The request is queued until a data buffer is available. */
65 	TCP_REQUEST_STATE_NEED_BUFFER = 2,
66 
67 	/* The request is waiting for zcopy_start to finish */
68 	TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 3,
69 
70 	/* The request has received a zero-copy buffer */
71 	TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 4,
72 
73 	/* The request is currently transferring data from the host to the controller. */
74 	TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 5,
75 
76 	/* The request is waiting for the R2T send acknowledgement. */
77 	TCP_REQUEST_STATE_AWAITING_R2T_ACK = 6,
78 
79 	/* The request is ready to execute at the block device */
80 	TCP_REQUEST_STATE_READY_TO_EXECUTE = 7,
81 
82 	/* The request is currently executing at the block device */
83 	TCP_REQUEST_STATE_EXECUTING = 8,
84 
85 	/* The request is waiting for zcopy buffers to be committed */
86 	TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 9,
87 
88 	/* The request finished executing at the block device */
89 	TCP_REQUEST_STATE_EXECUTED = 10,
90 
91 	/* The request is ready to send a completion */
92 	TCP_REQUEST_STATE_READY_TO_COMPLETE = 11,
93 
94 	/* The request is currently transferring final pdus from the controller to the host. */
95 	TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 12,
96 
97 	/* The request is waiting for zcopy buffers to be released (without committing) */
98 	TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 13,
99 
100 	/* The request completed and can be marked free. */
101 	TCP_REQUEST_STATE_COMPLETED = 14,
102 
103 	/* Terminator */
104 	TCP_REQUEST_NUM_STATES,
105 };
106 
107 static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
108 	"Invalid PDU Header Field",
109 	"PDU Sequence Error",
110 	"Header Digiest Error",
111 	"Data Transfer Out of Range",
112 	"R2T Limit Exceeded",
113 	"Unsupported parameter",
114 };
115 
116 SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
117 {
118 	spdk_trace_register_owner_type(OWNER_TYPE_NVMF_TCP, 't');
119 	spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
120 	spdk_trace_register_description("TCP_REQ_NEW",
121 					TRACE_TCP_REQUEST_STATE_NEW,
122 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1,
123 					SPDK_TRACE_ARG_TYPE_INT, "qd");
124 	spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
125 					TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
126 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
127 					SPDK_TRACE_ARG_TYPE_INT, "");
128 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START",
129 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START,
130 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
131 					SPDK_TRACE_ARG_TYPE_INT, "");
132 	spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL",
133 					TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED,
134 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
135 					SPDK_TRACE_ARG_TYPE_INT, "");
136 	spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
137 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
138 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
139 					SPDK_TRACE_ARG_TYPE_INT, "");
140 	spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
141 					TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
142 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
143 					SPDK_TRACE_ARG_TYPE_INT, "");
144 	spdk_trace_register_description("TCP_REQ_EXECUTING",
145 					TRACE_TCP_REQUEST_STATE_EXECUTING,
146 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
147 					SPDK_TRACE_ARG_TYPE_INT, "");
148 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT",
149 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT,
150 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
151 					SPDK_TRACE_ARG_TYPE_INT, "");
152 	spdk_trace_register_description("TCP_REQ_EXECUTED",
153 					TRACE_TCP_REQUEST_STATE_EXECUTED,
154 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
155 					SPDK_TRACE_ARG_TYPE_INT, "");
156 	spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
157 					TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
158 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
159 					SPDK_TRACE_ARG_TYPE_INT, "");
160 	spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
161 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
162 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
163 					SPDK_TRACE_ARG_TYPE_INT, "");
164 	spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS",
165 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE,
166 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
167 					SPDK_TRACE_ARG_TYPE_INT, "");
168 	spdk_trace_register_description("TCP_REQ_COMPLETED",
169 					TRACE_TCP_REQUEST_STATE_COMPLETED,
170 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
171 					SPDK_TRACE_ARG_TYPE_INT, "qd");
172 	spdk_trace_register_description("TCP_READ_DONE",
173 					TRACE_TCP_READ_FROM_SOCKET_DONE,
174 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
175 					SPDK_TRACE_ARG_TYPE_INT, "");
176 	spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
177 					TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
178 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
179 					SPDK_TRACE_ARG_TYPE_INT, "");
180 
181 	spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE,
182 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
183 					SPDK_TRACE_ARG_TYPE_INT, "");
184 	spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT,
185 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
186 					SPDK_TRACE_ARG_TYPE_INT, "");
187 	spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE,
188 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
189 					SPDK_TRACE_ARG_TYPE_INT, "state");
190 	spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT,
191 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
192 					SPDK_TRACE_ARG_TYPE_INT, "");
193 	spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY,
194 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
195 					SPDK_TRACE_ARG_TYPE_INT, "");
196 	spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ,
197 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
198 					SPDK_TRACE_ARG_TYPE_INT, "");
199 	spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE,
200 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
201 					SPDK_TRACE_ARG_TYPE_INT, "state");
202 
203 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1);
204 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0);
205 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_QUEUE, OBJECT_NVMF_TCP_IO, 0);
206 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_PEND, OBJECT_NVMF_TCP_IO, 0);
207 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_COMPLETE, OBJECT_NVMF_TCP_IO, 0);
208 }
209 
210 struct spdk_nvmf_tcp_req  {
211 	struct spdk_nvmf_request		req;
212 	struct spdk_nvme_cpl			rsp;
213 	struct spdk_nvme_cmd			cmd;
214 
215 	/* A PDU that can be used for sending responses. This is
216 	 * not the incoming PDU! */
217 	struct nvme_tcp_pdu			*pdu;
218 
219 	/* In-capsule data buffer */
220 	uint8_t					*buf;
221 
222 	struct spdk_nvmf_tcp_req		*fused_pair;
223 
224 	/*
225 	 * The PDU for a request may be used multiple times in serial over
226 	 * the request's lifetime. For example, first to send an R2T, then
227 	 * to send a completion. To catch mistakes where the PDU is used
228 	 * twice at the same time, add a debug flag here for init/fini.
229 	 */
230 	bool					pdu_in_use;
231 	bool					has_in_capsule_data;
232 	bool					fused_failed;
233 
234 	/* transfer_tag */
235 	uint16_t				ttag;
236 
237 	enum spdk_nvmf_tcp_req_state		state;
238 
239 	/*
240 	 * h2c_offset is used when we receive the h2c_data PDU.
241 	 */
242 	uint32_t				h2c_offset;
243 
244 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		link;
245 	TAILQ_ENTRY(spdk_nvmf_tcp_req)		state_link;
246 };
247 
248 struct spdk_nvmf_tcp_qpair {
249 	struct spdk_nvmf_qpair			qpair;
250 	struct spdk_nvmf_tcp_poll_group		*group;
251 	struct spdk_sock			*sock;
252 
253 	enum nvme_tcp_pdu_recv_state		recv_state;
254 	enum nvme_tcp_qpair_state		state;
255 
256 	/* PDU being actively received */
257 	struct nvme_tcp_pdu			*pdu_in_progress;
258 
259 	struct spdk_nvmf_tcp_req		*fused_first;
260 
261 	/* Queues to track the requests in all states */
262 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_working_queue;
263 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_free_queue;
264 	SLIST_HEAD(, nvme_tcp_pdu)		tcp_pdu_free_queue;
265 	/* Number of working pdus */
266 	uint32_t				tcp_pdu_working_count;
267 
268 	/* Number of requests in each state */
269 	uint32_t				state_cntr[TCP_REQUEST_NUM_STATES];
270 
271 	uint8_t					cpda;
272 
273 	bool					host_hdgst_enable;
274 	bool					host_ddgst_enable;
275 
276 	/* This is a spare PDU used for sending special management
277 	 * operations. Primarily, this is used for the initial
278 	 * connection response and c2h termination request. */
279 	struct nvme_tcp_pdu			*mgmt_pdu;
280 
281 	/* Arrays of in-capsule buffers, requests, and pdus.
282 	 * Each array is 'resource_count' number of elements */
283 	void					*bufs;
284 	struct spdk_nvmf_tcp_req		*reqs;
285 	struct nvme_tcp_pdu			*pdus;
286 	uint32_t				resource_count;
287 	uint32_t				recv_buf_size;
288 
289 	struct spdk_nvmf_tcp_port		*port;
290 
291 	/* IP address */
292 	char					initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
293 	char					target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
294 
295 	/* IP port */
296 	uint16_t				initiator_port;
297 	uint16_t				target_port;
298 
299 	/* Wait until the host terminates the connection (e.g. after sending C2HTermReq) */
300 	bool					wait_terminate;
301 
302 	/* Timer used to destroy qpair after detecting transport error issue if initiator does
303 	 *  not close the connection.
304 	 */
305 	struct spdk_poller			*timeout_poller;
306 
307 	spdk_nvmf_transport_qpair_fini_cb	fini_cb_fn;
308 	void					*fini_cb_arg;
309 
310 	TAILQ_ENTRY(spdk_nvmf_tcp_qpair)	link;
311 };
312 
313 struct spdk_nvmf_tcp_control_msg {
314 	STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
315 };
316 
317 struct spdk_nvmf_tcp_control_msg_list {
318 	void *msg_buf;
319 	STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
320 };
321 
322 struct spdk_nvmf_tcp_poll_group {
323 	struct spdk_nvmf_transport_poll_group	group;
324 	struct spdk_sock_group			*sock_group;
325 
326 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	qpairs;
327 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	await_req;
328 
329 	struct spdk_io_channel			*accel_channel;
330 	struct spdk_nvmf_tcp_control_msg_list	*control_msg_list;
331 
332 	TAILQ_ENTRY(spdk_nvmf_tcp_poll_group)	link;
333 };
334 
335 struct spdk_nvmf_tcp_port {
336 	const struct spdk_nvme_transport_id	*trid;
337 	struct spdk_sock			*listen_sock;
338 	TAILQ_ENTRY(spdk_nvmf_tcp_port)		link;
339 };
340 
341 struct tcp_transport_opts {
342 	bool		c2h_success;
343 	uint16_t	control_msg_num;
344 	uint32_t	sock_priority;
345 };
346 
347 struct tcp_psk_entry {
348 	char				hostnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
349 	char				subnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
350 	char				pskid[NVMF_PSK_IDENTITY_LEN];
351 	uint8_t				psk[SPDK_TLS_PSK_MAX_LEN];
352 	struct spdk_key			*key;
353 
354 	/* Original path saved to emit SPDK configuration via "save_config". */
355 	char				psk_path[PATH_MAX];
356 	uint32_t			psk_size;
357 	enum nvme_tcp_cipher_suite	tls_cipher_suite;
358 	TAILQ_ENTRY(tcp_psk_entry)	link;
359 };
360 
361 struct spdk_nvmf_tcp_transport {
362 	struct spdk_nvmf_transport		transport;
363 	struct tcp_transport_opts               tcp_opts;
364 	uint32_t				ack_timeout;
365 
366 	struct spdk_nvmf_tcp_poll_group		*next_pg;
367 
368 	struct spdk_poller			*accept_poller;
369 
370 	TAILQ_HEAD(, spdk_nvmf_tcp_port)	ports;
371 	TAILQ_HEAD(, spdk_nvmf_tcp_poll_group)	poll_groups;
372 
373 	TAILQ_HEAD(, tcp_psk_entry)		psks;
374 };
375 
376 static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
377 	{
378 		"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
379 		spdk_json_decode_bool, true
380 	},
381 	{
382 		"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
383 		spdk_json_decode_uint16, true
384 	},
385 	{
386 		"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
387 		spdk_json_decode_uint32, true
388 	},
389 };
390 
391 static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
392 				 struct spdk_nvmf_tcp_req *tcp_req);
393 static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
394 
395 static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
396 				    struct spdk_nvmf_tcp_req *tcp_req);
397 
398 static inline void
399 nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
400 		       enum spdk_nvmf_tcp_req_state state)
401 {
402 	struct spdk_nvmf_qpair *qpair;
403 	struct spdk_nvmf_tcp_qpair *tqpair;
404 
405 	qpair = tcp_req->req.qpair;
406 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
407 
408 	assert(tqpair->state_cntr[tcp_req->state] > 0);
409 	tqpair->state_cntr[tcp_req->state]--;
410 	tqpair->state_cntr[state]++;
411 
412 	tcp_req->state = state;
413 }
414 
415 static inline struct nvme_tcp_pdu *
416 nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
417 {
418 	assert(tcp_req->pdu_in_use == false);
419 
420 	memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
421 	tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
422 
423 	return tcp_req->pdu;
424 }
425 
426 static struct spdk_nvmf_tcp_req *
427 nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
428 {
429 	struct spdk_nvmf_tcp_req *tcp_req;
430 
431 	tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
432 	if (spdk_unlikely(!tcp_req)) {
433 		return NULL;
434 	}
435 
436 	memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
437 	tcp_req->h2c_offset = 0;
438 	tcp_req->has_in_capsule_data = false;
439 	tcp_req->req.dif_enabled = false;
440 	tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE;
441 
442 	TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
443 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
444 	tqpair->qpair.queue_depth++;
445 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
446 	return tcp_req;
447 }
448 
449 static inline void
450 nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
451 {
452 	assert(!tcp_req->pdu_in_use);
453 
454 	TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
455 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
456 	tqpair->qpair.queue_depth--;
457 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
458 }
459 
460 static void
461 nvmf_tcp_request_free(void *cb_arg)
462 {
463 	struct spdk_nvmf_tcp_transport *ttransport;
464 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
465 
466 	assert(tcp_req != NULL);
467 
468 	SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
469 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
470 				      struct spdk_nvmf_tcp_transport, transport);
471 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
472 	nvmf_tcp_req_process(ttransport, tcp_req);
473 }
474 
475 static int
476 nvmf_tcp_req_free(struct spdk_nvmf_request *req)
477 {
478 	struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
479 
480 	nvmf_tcp_request_free(tcp_req);
481 
482 	return 0;
483 }
484 
485 static void
486 nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
487 			   enum spdk_nvmf_tcp_req_state state)
488 {
489 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
490 
491 	assert(state != TCP_REQUEST_STATE_FREE);
492 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
493 		if (state == tcp_req->state) {
494 			nvmf_tcp_request_free(tcp_req);
495 		}
496 	}
497 }
498 
499 static void
500 nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
501 {
502 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
503 
504 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
505 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
506 
507 	/* Wipe the requests waiting for buffer from the global list */
508 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
509 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
510 			STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue, &tcp_req->req,
511 				      spdk_nvmf_request, buf_link);
512 		}
513 	}
514 
515 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
516 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
517 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
518 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
519 }
520 
521 static void
522 nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
523 {
524 	int i;
525 	struct spdk_nvmf_tcp_req *tcp_req;
526 
527 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
528 	for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
529 		SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
530 		TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
531 			if ((int)tcp_req->state == i) {
532 				SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
533 				SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
534 			}
535 		}
536 	}
537 }
538 
539 static void
540 _nvmf_tcp_qpair_destroy(void *_tqpair)
541 {
542 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
543 	spdk_nvmf_transport_qpair_fini_cb cb_fn = tqpair->fini_cb_fn;
544 	void *cb_arg = tqpair->fini_cb_arg;
545 	int err = 0;
546 
547 	spdk_trace_record(TRACE_TCP_QP_DESTROY, tqpair->qpair.trace_id, 0, 0);
548 
549 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
550 
551 	err = spdk_sock_close(&tqpair->sock);
552 	assert(err == 0);
553 	nvmf_tcp_cleanup_all_states(tqpair);
554 
555 	if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
556 		SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
557 			    tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
558 			    tqpair->resource_count);
559 		err++;
560 	}
561 
562 	if (err > 0) {
563 		nvmf_tcp_dump_qpair_req_contents(tqpair);
564 	}
565 
566 	/* The timeout poller might still be registered here if we close the qpair before host
567 	 * terminates the connection.
568 	 */
569 	spdk_poller_unregister(&tqpair->timeout_poller);
570 	spdk_dma_free(tqpair->pdus);
571 	free(tqpair->reqs);
572 	spdk_free(tqpair->bufs);
573 	spdk_trace_unregister_owner(tqpair->qpair.trace_id);
574 	free(tqpair);
575 
576 	if (cb_fn != NULL) {
577 		cb_fn(cb_arg);
578 	}
579 
580 	SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
581 }
582 
583 static void
584 nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
585 {
586 	/* Delay the destruction to make sure it isn't performed from the context of a sock
587 	 * callback.  Otherwise, spdk_sock_close() might not abort pending requests, causing their
588 	 * completions to be executed after the qpair is freed.  (Note: this fixed issue #2471.)
589 	 */
590 	spdk_thread_send_msg(spdk_get_thread(), _nvmf_tcp_qpair_destroy, tqpair);
591 }
592 
593 static void
594 nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
595 {
596 	struct spdk_nvmf_tcp_transport	*ttransport;
597 	assert(w != NULL);
598 
599 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
600 	spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
601 	spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
602 }
603 
604 static void
605 nvmf_tcp_free_psk_entry(struct tcp_psk_entry *entry)
606 {
607 	if (entry == NULL) {
608 		return;
609 	}
610 
611 	spdk_memset_s(entry->psk, sizeof(entry->psk), 0, sizeof(entry->psk));
612 	spdk_keyring_put_key(entry->key);
613 	free(entry);
614 }
615 
616 static int
617 nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
618 		 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
619 {
620 	struct spdk_nvmf_tcp_transport	*ttransport;
621 	struct tcp_psk_entry *entry, *tmp;
622 
623 	assert(transport != NULL);
624 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
625 
626 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
627 		TAILQ_REMOVE(&ttransport->psks, entry, link);
628 		nvmf_tcp_free_psk_entry(entry);
629 	}
630 
631 	spdk_poller_unregister(&ttransport->accept_poller);
632 	free(ttransport);
633 
634 	if (cb_fn) {
635 		cb_fn(cb_arg);
636 	}
637 	return 0;
638 }
639 
640 static int nvmf_tcp_accept(void *ctx);
641 
642 static struct spdk_nvmf_transport *
643 nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
644 {
645 	struct spdk_nvmf_tcp_transport *ttransport;
646 	uint32_t sge_count;
647 	uint32_t min_shared_buffers;
648 
649 	ttransport = calloc(1, sizeof(*ttransport));
650 	if (!ttransport) {
651 		return NULL;
652 	}
653 
654 	TAILQ_INIT(&ttransport->ports);
655 	TAILQ_INIT(&ttransport->poll_groups);
656 	TAILQ_INIT(&ttransport->psks);
657 
658 	ttransport->transport.ops = &spdk_nvmf_transport_tcp;
659 
660 	ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
661 	ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
662 	ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
663 	if (opts->transport_specific != NULL &&
664 	    spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
665 					    SPDK_COUNTOF(tcp_transport_opts_decoder),
666 					    &ttransport->tcp_opts)) {
667 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
668 		free(ttransport);
669 		return NULL;
670 	}
671 
672 	SPDK_NOTICELOG("*** TCP Transport Init ***\n");
673 
674 	SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
675 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
676 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
677 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
678 		     "  num_shared_buffers=%d, c2h_success=%d,\n"
679 		     "  dif_insert_or_strip=%d, sock_priority=%d\n"
680 		     "  abort_timeout_sec=%d, control_msg_num=%hu\n"
681 		     "  ack_timeout=%d\n",
682 		     opts->max_queue_depth,
683 		     opts->max_io_size,
684 		     opts->max_qpairs_per_ctrlr - 1,
685 		     opts->io_unit_size,
686 		     opts->in_capsule_data_size,
687 		     opts->max_aq_depth,
688 		     opts->num_shared_buffers,
689 		     ttransport->tcp_opts.c2h_success,
690 		     opts->dif_insert_or_strip,
691 		     ttransport->tcp_opts.sock_priority,
692 		     opts->abort_timeout_sec,
693 		     ttransport->tcp_opts.control_msg_num,
694 		     opts->ack_timeout);
695 
696 	if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
697 		SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
698 			    "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
699 			    ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
700 		free(ttransport);
701 		return NULL;
702 	}
703 
704 	if (ttransport->tcp_opts.control_msg_num == 0 &&
705 	    opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
706 		SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
707 			     SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
708 		ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
709 	}
710 
711 	/* I/O unit size cannot be larger than max I/O size */
712 	if (opts->io_unit_size > opts->max_io_size) {
713 		SPDK_WARNLOG("TCP param io_unit_size %u can't be larger than max_io_size %u. Using max_io_size as io_unit_size\n",
714 			     opts->io_unit_size, opts->max_io_size);
715 		opts->io_unit_size = opts->max_io_size;
716 	}
717 
718 	/* In capsule data size cannot be larger than max I/O size */
719 	if (opts->in_capsule_data_size > opts->max_io_size) {
720 		SPDK_WARNLOG("TCP param ICD size %u can't be larger than max_io_size %u. Using max_io_size as ICD size\n",
721 			     opts->io_unit_size, opts->max_io_size);
722 		opts->in_capsule_data_size = opts->max_io_size;
723 	}
724 
725 	/* max IO queue depth cannot be smaller than 2 or larger than 65535.
726 	 * We will not check SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, because max_queue_depth is 16bits and always not larger than 64k. */
727 	if (opts->max_queue_depth < SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH) {
728 		SPDK_WARNLOG("TCP param max_queue_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
729 			     opts->max_queue_depth, SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH,
730 			     SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH);
731 		opts->max_queue_depth = SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
732 	}
733 
734 	/* max admin queue depth cannot be smaller than 2 or larger than 4096 */
735 	if (opts->max_aq_depth < SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH ||
736 	    opts->max_aq_depth > SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH) {
737 		SPDK_WARNLOG("TCP param max_aq_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
738 			     opts->max_aq_depth, SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH,
739 			     SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH);
740 		opts->max_aq_depth = SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
741 	}
742 
743 	sge_count = opts->max_io_size / opts->io_unit_size;
744 	if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
745 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
746 		free(ttransport);
747 		return NULL;
748 	}
749 
750 	/* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */
751 	if (opts->buf_cache_size < UINT32_MAX) {
752 		min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
753 		if (min_shared_buffers > opts->num_shared_buffers) {
754 			SPDK_ERRLOG("There are not enough buffers to satisfy "
755 				    "per-poll group caches for each thread. (%" PRIu32 ") "
756 				    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
757 			SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
758 			free(ttransport);
759 			return NULL;
760 		}
761 	}
762 
763 	ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport,
764 				    opts->acceptor_poll_rate);
765 	if (!ttransport->accept_poller) {
766 		free(ttransport);
767 		return NULL;
768 	}
769 
770 	return &ttransport->transport;
771 }
772 
773 static int
774 nvmf_tcp_trsvcid_to_int(const char *trsvcid)
775 {
776 	unsigned long long ull;
777 	char *end = NULL;
778 
779 	ull = strtoull(trsvcid, &end, 10);
780 	if (end == NULL || end == trsvcid || *end != '\0') {
781 		return -1;
782 	}
783 
784 	/* Valid TCP/IP port numbers are in [1, 65535] */
785 	if (ull == 0 || ull > 65535) {
786 		return -1;
787 	}
788 
789 	return (int)ull;
790 }
791 
792 /**
793  * Canonicalize a listen address trid.
794  */
795 static int
796 nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
797 			   const struct spdk_nvme_transport_id *trid)
798 {
799 	int trsvcid_int;
800 
801 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
802 	if (trsvcid_int < 0) {
803 		return -EINVAL;
804 	}
805 
806 	memset(canon_trid, 0, sizeof(*canon_trid));
807 	spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
808 	canon_trid->adrfam = trid->adrfam;
809 	snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
810 	snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
811 
812 	return 0;
813 }
814 
815 /**
816  * Find an existing listening port.
817  */
818 static struct spdk_nvmf_tcp_port *
819 nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
820 		   const struct spdk_nvme_transport_id *trid)
821 {
822 	struct spdk_nvme_transport_id canon_trid;
823 	struct spdk_nvmf_tcp_port *port;
824 
825 	if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
826 		return NULL;
827 	}
828 
829 	TAILQ_FOREACH(port, &ttransport->ports, link) {
830 		if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
831 			return port;
832 		}
833 	}
834 
835 	return NULL;
836 }
837 
838 static int
839 tcp_sock_get_key(uint8_t *out, int out_len, const char **cipher, const char *pskid,
840 		 void *get_key_ctx)
841 {
842 	struct tcp_psk_entry *entry;
843 	struct spdk_nvmf_tcp_transport *ttransport = get_key_ctx;
844 	size_t psk_len;
845 	int rc;
846 
847 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
848 		if (strcmp(pskid, entry->pskid) != 0) {
849 			continue;
850 		}
851 
852 		psk_len = entry->psk_size;
853 		if ((size_t)out_len < psk_len) {
854 			SPDK_ERRLOG("Out buffer of size: %" PRIu32 " cannot fit PSK of len: %lu\n",
855 				    out_len, psk_len);
856 			return -ENOBUFS;
857 		}
858 
859 		/* Convert PSK to the TLS PSK format. */
860 		rc = nvme_tcp_derive_tls_psk(entry->psk, psk_len, pskid, out, out_len,
861 					     entry->tls_cipher_suite);
862 		if (rc < 0) {
863 			SPDK_ERRLOG("Could not generate TLS PSK\n");
864 		}
865 
866 		switch (entry->tls_cipher_suite) {
867 		case NVME_TCP_CIPHER_AES_128_GCM_SHA256:
868 			*cipher = "TLS_AES_128_GCM_SHA256";
869 			break;
870 		case NVME_TCP_CIPHER_AES_256_GCM_SHA384:
871 			*cipher = "TLS_AES_256_GCM_SHA384";
872 			break;
873 		default:
874 			*cipher = NULL;
875 			return -ENOTSUP;
876 		}
877 
878 		return rc;
879 	}
880 
881 	SPDK_ERRLOG("Could not find PSK for identity: %s\n", pskid);
882 
883 	return -EINVAL;
884 }
885 
886 static int
887 nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
888 		struct spdk_nvmf_listen_opts *listen_opts)
889 {
890 	struct spdk_nvmf_tcp_transport *ttransport;
891 	struct spdk_nvmf_tcp_port *port;
892 	int trsvcid_int;
893 	uint8_t adrfam;
894 	const char *sock_impl_name;
895 	struct spdk_sock_impl_opts impl_opts;
896 	size_t impl_opts_size = sizeof(impl_opts);
897 	struct spdk_sock_opts opts;
898 
899 	if (!strlen(trid->trsvcid)) {
900 		SPDK_ERRLOG("Service id is required\n");
901 		return -EINVAL;
902 	}
903 
904 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
905 
906 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
907 	if (trsvcid_int < 0) {
908 		SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
909 		return -EINVAL;
910 	}
911 
912 	port = calloc(1, sizeof(*port));
913 	if (!port) {
914 		SPDK_ERRLOG("Port allocation failed\n");
915 		return -ENOMEM;
916 	}
917 
918 	port->trid = trid;
919 
920 	sock_impl_name = NULL;
921 
922 	opts.opts_size = sizeof(opts);
923 	spdk_sock_get_default_opts(&opts);
924 	opts.priority = ttransport->tcp_opts.sock_priority;
925 	opts.ack_timeout = transport->opts.ack_timeout;
926 	if (listen_opts->secure_channel) {
927 		if (!g_tls_log) {
928 			SPDK_NOTICELOG("TLS support is considered experimental\n");
929 			g_tls_log = true;
930 		}
931 		sock_impl_name = "ssl";
932 		spdk_sock_impl_get_opts(sock_impl_name, &impl_opts, &impl_opts_size);
933 		impl_opts.tls_version = SPDK_TLS_VERSION_1_3;
934 		impl_opts.get_key = tcp_sock_get_key;
935 		impl_opts.get_key_ctx = ttransport;
936 		impl_opts.tls_cipher_suites = "TLS_AES_256_GCM_SHA384:TLS_AES_128_GCM_SHA256";
937 		opts.impl_opts = &impl_opts;
938 		opts.impl_opts_size = sizeof(impl_opts);
939 	}
940 
941 	port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
942 			    sock_impl_name, &opts);
943 	if (port->listen_sock == NULL) {
944 		SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
945 			    trid->traddr, trsvcid_int,
946 			    spdk_strerror(errno), errno);
947 		free(port);
948 		return -errno;
949 	}
950 
951 	if (spdk_sock_is_ipv4(port->listen_sock)) {
952 		adrfam = SPDK_NVMF_ADRFAM_IPV4;
953 	} else if (spdk_sock_is_ipv6(port->listen_sock)) {
954 		adrfam = SPDK_NVMF_ADRFAM_IPV6;
955 	} else {
956 		SPDK_ERRLOG("Unhandled socket type\n");
957 		adrfam = 0;
958 	}
959 
960 	if (adrfam != trid->adrfam) {
961 		SPDK_ERRLOG("Socket address family mismatch\n");
962 		spdk_sock_close(&port->listen_sock);
963 		free(port);
964 		return -EINVAL;
965 	}
966 
967 	SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
968 		       trid->traddr, trid->trsvcid);
969 
970 	TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
971 	return 0;
972 }
973 
974 static void
975 nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
976 		     const struct spdk_nvme_transport_id *trid)
977 {
978 	struct spdk_nvmf_tcp_transport *ttransport;
979 	struct spdk_nvmf_tcp_port *port;
980 
981 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
982 
983 	SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
984 		      trid->traddr, trid->trsvcid);
985 
986 	port = nvmf_tcp_find_port(ttransport, trid);
987 	if (port) {
988 		TAILQ_REMOVE(&ttransport->ports, port, link);
989 		spdk_sock_close(&port->listen_sock);
990 		free(port);
991 	}
992 }
993 
994 static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
995 		enum nvme_tcp_pdu_recv_state state);
996 
997 static void
998 nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvme_tcp_qpair_state state)
999 {
1000 	tqpair->state = state;
1001 	spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0,
1002 			  (uint64_t)tqpair->state);
1003 }
1004 
1005 static void
1006 nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
1007 {
1008 	SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
1009 
1010 	spdk_trace_record(TRACE_TCP_QP_DISCONNECT, tqpair->qpair.trace_id, 0, 0);
1011 
1012 	if (tqpair->state <= NVME_TCP_QPAIR_STATE_RUNNING) {
1013 		nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITING);
1014 		assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1015 		spdk_poller_unregister(&tqpair->timeout_poller);
1016 
1017 		/* This will end up calling nvmf_tcp_close_qpair */
1018 		spdk_nvmf_qpair_disconnect(&tqpair->qpair);
1019 	}
1020 }
1021 
1022 static void
1023 _mgmt_pdu_write_done(void *_tqpair, int err)
1024 {
1025 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
1026 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1027 
1028 	if (spdk_unlikely(err != 0)) {
1029 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1030 		return;
1031 	}
1032 
1033 	assert(pdu->cb_fn != NULL);
1034 	pdu->cb_fn(pdu->cb_arg);
1035 }
1036 
1037 static void
1038 _req_pdu_write_done(void *req, int err)
1039 {
1040 	struct spdk_nvmf_tcp_req *tcp_req = req;
1041 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1042 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1043 
1044 	assert(tcp_req->pdu_in_use);
1045 	tcp_req->pdu_in_use = false;
1046 
1047 	/* If the request is in a completed state, we're waiting for write completion to free it */
1048 	if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) {
1049 		nvmf_tcp_request_free(tcp_req);
1050 		return;
1051 	}
1052 
1053 	if (spdk_unlikely(err != 0)) {
1054 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1055 		return;
1056 	}
1057 
1058 	assert(pdu->cb_fn != NULL);
1059 	pdu->cb_fn(pdu->cb_arg);
1060 }
1061 
1062 static void
1063 _pdu_write_done(struct nvme_tcp_pdu *pdu, int err)
1064 {
1065 	pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err);
1066 }
1067 
1068 static void
1069 _tcp_write_pdu(struct nvme_tcp_pdu *pdu)
1070 {
1071 	int rc;
1072 	uint32_t mapped_length;
1073 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1074 
1075 	pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
1076 			       tqpair->host_hdgst_enable, tqpair->host_ddgst_enable, &mapped_length);
1077 	spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
1078 
1079 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
1080 	    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
1081 		/* Try to force the send immediately. */
1082 		rc = spdk_sock_flush(tqpair->sock);
1083 		if (rc > 0 && (uint32_t)rc == mapped_length) {
1084 			_pdu_write_done(pdu, 0);
1085 		} else {
1086 			SPDK_ERRLOG("Could not write %s to socket: rc=%d, errno=%d\n",
1087 				    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ?
1088 				    "IC_RESP" : "TERM_REQ", rc, errno);
1089 			_pdu_write_done(pdu, rc >= 0 ? -EAGAIN : -errno);
1090 		}
1091 	}
1092 }
1093 
1094 static void
1095 data_crc32_accel_done(void *cb_arg, int status)
1096 {
1097 	struct nvme_tcp_pdu *pdu = cb_arg;
1098 
1099 	if (spdk_unlikely(status)) {
1100 		SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
1101 		_pdu_write_done(pdu, status);
1102 		return;
1103 	}
1104 
1105 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
1106 	MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
1107 
1108 	_tcp_write_pdu(pdu);
1109 }
1110 
1111 static void
1112 pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
1113 {
1114 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1115 	int rc = 0;
1116 
1117 	/* Data Digest */
1118 	if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
1119 		/* Only support this limitated case for the first step */
1120 		if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
1121 				&& tqpair->group)) {
1122 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
1123 						       pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
1124 			if (spdk_likely(rc == 0)) {
1125 				return;
1126 			}
1127 		} else {
1128 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1129 		}
1130 		data_crc32_accel_done(pdu, rc);
1131 	} else {
1132 		_tcp_write_pdu(pdu);
1133 	}
1134 }
1135 
1136 static void
1137 nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1138 			 struct nvme_tcp_pdu *pdu,
1139 			 nvme_tcp_qpair_xfer_complete_cb cb_fn,
1140 			 void *cb_arg)
1141 {
1142 	int hlen;
1143 	uint32_t crc32c;
1144 
1145 	assert(tqpair->pdu_in_progress != pdu);
1146 
1147 	hlen = pdu->hdr.common.hlen;
1148 	pdu->cb_fn = cb_fn;
1149 	pdu->cb_arg = cb_arg;
1150 
1151 	pdu->iov[0].iov_base = &pdu->hdr.raw;
1152 	pdu->iov[0].iov_len = hlen;
1153 
1154 	/* Header Digest */
1155 	if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) {
1156 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1157 		MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
1158 	}
1159 
1160 	/* Data Digest */
1161 	pdu_data_crc32_compute(pdu);
1162 }
1163 
1164 static void
1165 nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1166 			      nvme_tcp_qpair_xfer_complete_cb cb_fn,
1167 			      void *cb_arg)
1168 {
1169 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1170 
1171 	pdu->sock_req.cb_fn = _mgmt_pdu_write_done;
1172 	pdu->sock_req.cb_arg = tqpair;
1173 
1174 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1175 }
1176 
1177 static void
1178 nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1179 			     struct spdk_nvmf_tcp_req *tcp_req,
1180 			     nvme_tcp_qpair_xfer_complete_cb cb_fn,
1181 			     void *cb_arg)
1182 {
1183 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1184 
1185 	pdu->sock_req.cb_fn = _req_pdu_write_done;
1186 	pdu->sock_req.cb_arg = tcp_req;
1187 
1188 	assert(!tcp_req->pdu_in_use);
1189 	tcp_req->pdu_in_use = true;
1190 
1191 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1192 }
1193 
1194 static int
1195 nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
1196 {
1197 	uint32_t i;
1198 	struct spdk_nvmf_transport_opts *opts;
1199 	uint32_t in_capsule_data_size;
1200 
1201 	opts = &tqpair->qpair.transport->opts;
1202 
1203 	in_capsule_data_size = opts->in_capsule_data_size;
1204 	if (opts->dif_insert_or_strip) {
1205 		in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
1206 	}
1207 
1208 	tqpair->resource_count = opts->max_queue_depth;
1209 
1210 	tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
1211 	if (!tqpair->reqs) {
1212 		SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
1213 		return -1;
1214 	}
1215 
1216 	if (in_capsule_data_size) {
1217 		tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
1218 					    NULL, SPDK_ENV_LCORE_ID_ANY,
1219 					    SPDK_MALLOC_DMA);
1220 		if (!tqpair->bufs) {
1221 			SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
1222 			return -1;
1223 		}
1224 	}
1225 	/* prepare memory space for receiving pdus and tcp_req */
1226 	/* Add additional 1 member, which will be used for mgmt_pdu owned by the tqpair */
1227 	tqpair->pdus = spdk_dma_zmalloc((2 * tqpair->resource_count + 1) * sizeof(*tqpair->pdus), 0x1000,
1228 					NULL);
1229 	if (!tqpair->pdus) {
1230 		SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
1231 		return -1;
1232 	}
1233 
1234 	for (i = 0; i < tqpair->resource_count; i++) {
1235 		struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
1236 
1237 		tcp_req->ttag = i + 1;
1238 		tcp_req->req.qpair = &tqpair->qpair;
1239 
1240 		tcp_req->pdu = &tqpair->pdus[i];
1241 		tcp_req->pdu->qpair = tqpair;
1242 
1243 		/* Set up memory to receive commands */
1244 		if (tqpair->bufs) {
1245 			tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
1246 		}
1247 
1248 		/* Set the cmdn and rsp */
1249 		tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
1250 		tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
1251 
1252 		tcp_req->req.stripped_data = NULL;
1253 
1254 		/* Initialize request state to FREE */
1255 		tcp_req->state = TCP_REQUEST_STATE_FREE;
1256 		TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
1257 		tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
1258 	}
1259 
1260 	for (; i < 2 * tqpair->resource_count; i++) {
1261 		struct nvme_tcp_pdu *pdu = &tqpair->pdus[i];
1262 
1263 		pdu->qpair = tqpair;
1264 		SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1265 	}
1266 
1267 	tqpair->mgmt_pdu = &tqpair->pdus[i];
1268 	tqpair->mgmt_pdu->qpair = tqpair;
1269 	tqpair->pdu_in_progress = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
1270 	SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
1271 	tqpair->tcp_pdu_working_count = 1;
1272 
1273 	tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
1274 				 SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1275 
1276 	return 0;
1277 }
1278 
1279 static int
1280 nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
1281 {
1282 	struct spdk_nvmf_tcp_qpair *tqpair;
1283 
1284 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1285 
1286 	SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
1287 
1288 	spdk_trace_record(TRACE_TCP_QP_CREATE, tqpair->qpair.trace_id, 0, 0);
1289 
1290 	/* Initialise request state queues of the qpair */
1291 	TAILQ_INIT(&tqpair->tcp_req_free_queue);
1292 	TAILQ_INIT(&tqpair->tcp_req_working_queue);
1293 	SLIST_INIT(&tqpair->tcp_pdu_free_queue);
1294 	tqpair->qpair.queue_depth = 0;
1295 
1296 	tqpair->host_hdgst_enable = true;
1297 	tqpair->host_ddgst_enable = true;
1298 
1299 	return 0;
1300 }
1301 
1302 static int
1303 nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
1304 {
1305 	char saddr[32], caddr[32];
1306 	uint16_t sport, cport;
1307 	char owner[256];
1308 	int rc;
1309 
1310 	spdk_sock_getaddr(tqpair->sock, saddr, sizeof(saddr), &sport,
1311 			  caddr, sizeof(caddr), &cport);
1312 	snprintf(owner, sizeof(owner), "%s:%d", caddr, cport);
1313 	tqpair->qpair.trace_id = spdk_trace_register_owner(OWNER_TYPE_NVMF_TCP, owner);
1314 	spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, tqpair->qpair.trace_id, 0, 0);
1315 
1316 	/* set low water mark */
1317 	rc = spdk_sock_set_recvlowat(tqpair->sock, 1);
1318 	if (rc != 0) {
1319 		SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
1320 		return rc;
1321 	}
1322 
1323 	return 0;
1324 }
1325 
1326 static void
1327 nvmf_tcp_handle_connect(struct spdk_nvmf_transport *transport,
1328 			struct spdk_nvmf_tcp_port *port,
1329 			struct spdk_sock *sock)
1330 {
1331 	struct spdk_nvmf_tcp_qpair *tqpair;
1332 	int rc;
1333 
1334 	SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
1335 		      port->trid->traddr, port->trid->trsvcid);
1336 
1337 	tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
1338 	if (tqpair == NULL) {
1339 		SPDK_ERRLOG("Could not allocate new connection.\n");
1340 		spdk_sock_close(&sock);
1341 		return;
1342 	}
1343 
1344 	tqpair->sock = sock;
1345 	tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
1346 	tqpair->port = port;
1347 	tqpair->qpair.transport = transport;
1348 
1349 	rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
1350 			       sizeof(tqpair->target_addr), &tqpair->target_port,
1351 			       tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
1352 			       &tqpair->initiator_port);
1353 	if (rc < 0) {
1354 		SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
1355 		nvmf_tcp_qpair_destroy(tqpair);
1356 		return;
1357 	}
1358 
1359 	spdk_nvmf_tgt_new_qpair(transport->tgt, &tqpair->qpair);
1360 }
1361 
1362 static uint32_t
1363 nvmf_tcp_port_accept(struct spdk_nvmf_transport *transport, struct spdk_nvmf_tcp_port *port)
1364 {
1365 	struct spdk_sock *sock;
1366 	uint32_t count = 0;
1367 	int i;
1368 
1369 	for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
1370 		sock = spdk_sock_accept(port->listen_sock);
1371 		if (sock == NULL) {
1372 			break;
1373 		}
1374 		count++;
1375 		nvmf_tcp_handle_connect(transport, port, sock);
1376 	}
1377 
1378 	return count;
1379 }
1380 
1381 static int
1382 nvmf_tcp_accept(void *ctx)
1383 {
1384 	struct spdk_nvmf_transport *transport = ctx;
1385 	struct spdk_nvmf_tcp_transport *ttransport;
1386 	struct spdk_nvmf_tcp_port *port;
1387 	uint32_t count = 0;
1388 
1389 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1390 
1391 	TAILQ_FOREACH(port, &ttransport->ports, link) {
1392 		count += nvmf_tcp_port_accept(transport, port);
1393 	}
1394 
1395 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1396 }
1397 
1398 static void
1399 nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
1400 		  struct spdk_nvme_transport_id *trid,
1401 		  struct spdk_nvmf_discovery_log_page_entry *entry)
1402 {
1403 	struct spdk_nvmf_tcp_port *port;
1404 	struct spdk_nvmf_tcp_transport *ttransport;
1405 
1406 	entry->trtype = SPDK_NVMF_TRTYPE_TCP;
1407 	entry->adrfam = trid->adrfam;
1408 
1409 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
1410 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
1411 
1412 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1413 	port = nvmf_tcp_find_port(ttransport, trid);
1414 
1415 	assert(port != NULL);
1416 
1417 	if (strcmp(spdk_sock_get_impl_name(port->listen_sock), "ssl") == 0) {
1418 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_REQUIRED;
1419 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_TLS_1_3;
1420 	} else {
1421 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
1422 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
1423 	}
1424 }
1425 
1426 static struct spdk_nvmf_tcp_control_msg_list *
1427 nvmf_tcp_control_msg_list_create(uint16_t num_messages)
1428 {
1429 	struct spdk_nvmf_tcp_control_msg_list *list;
1430 	struct spdk_nvmf_tcp_control_msg *msg;
1431 	uint16_t i;
1432 
1433 	list = calloc(1, sizeof(*list));
1434 	if (!list) {
1435 		SPDK_ERRLOG("Failed to allocate memory for list structure\n");
1436 		return NULL;
1437 	}
1438 
1439 	list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
1440 				     NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
1441 	if (!list->msg_buf) {
1442 		SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
1443 		free(list);
1444 		return NULL;
1445 	}
1446 
1447 	STAILQ_INIT(&list->free_msgs);
1448 
1449 	for (i = 0; i < num_messages; i++) {
1450 		msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
1451 				SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1452 		STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
1453 	}
1454 
1455 	return list;
1456 }
1457 
1458 static void
1459 nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
1460 {
1461 	if (!list) {
1462 		return;
1463 	}
1464 
1465 	spdk_free(list->msg_buf);
1466 	free(list);
1467 }
1468 
1469 static struct spdk_nvmf_transport_poll_group *
1470 nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport,
1471 			   struct spdk_nvmf_poll_group *group)
1472 {
1473 	struct spdk_nvmf_tcp_transport	*ttransport;
1474 	struct spdk_nvmf_tcp_poll_group *tgroup;
1475 
1476 	tgroup = calloc(1, sizeof(*tgroup));
1477 	if (!tgroup) {
1478 		return NULL;
1479 	}
1480 
1481 	tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
1482 	if (!tgroup->sock_group) {
1483 		goto cleanup;
1484 	}
1485 
1486 	TAILQ_INIT(&tgroup->qpairs);
1487 	TAILQ_INIT(&tgroup->await_req);
1488 
1489 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1490 
1491 	if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
1492 		SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
1493 			      "Creating control messages list\n", transport->opts.in_capsule_data_size,
1494 			      SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1495 		tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
1496 		if (!tgroup->control_msg_list) {
1497 			goto cleanup;
1498 		}
1499 	}
1500 
1501 	tgroup->accel_channel = spdk_accel_get_io_channel();
1502 	if (spdk_unlikely(!tgroup->accel_channel)) {
1503 		SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
1504 		goto cleanup;
1505 	}
1506 
1507 	TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link);
1508 	if (ttransport->next_pg == NULL) {
1509 		ttransport->next_pg = tgroup;
1510 	}
1511 
1512 	return &tgroup->group;
1513 
1514 cleanup:
1515 	nvmf_tcp_poll_group_destroy(&tgroup->group);
1516 	return NULL;
1517 }
1518 
1519 static struct spdk_nvmf_transport_poll_group *
1520 nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
1521 {
1522 	struct spdk_nvmf_tcp_transport *ttransport;
1523 	struct spdk_nvmf_tcp_poll_group **pg;
1524 	struct spdk_nvmf_tcp_qpair *tqpair;
1525 	struct spdk_sock_group *group = NULL, *hint = NULL;
1526 	int rc;
1527 
1528 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
1529 
1530 	if (TAILQ_EMPTY(&ttransport->poll_groups)) {
1531 		return NULL;
1532 	}
1533 
1534 	pg = &ttransport->next_pg;
1535 	assert(*pg != NULL);
1536 	hint = (*pg)->sock_group;
1537 
1538 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1539 	rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint);
1540 	if (rc != 0) {
1541 		return NULL;
1542 	} else if (group != NULL) {
1543 		/* Optimal poll group was found */
1544 		return spdk_sock_group_get_ctx(group);
1545 	}
1546 
1547 	/* The hint was used for optimal poll group, advance next_pg. */
1548 	*pg = TAILQ_NEXT(*pg, link);
1549 	if (*pg == NULL) {
1550 		*pg = TAILQ_FIRST(&ttransport->poll_groups);
1551 	}
1552 
1553 	return spdk_sock_group_get_ctx(hint);
1554 }
1555 
1556 static void
1557 nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
1558 {
1559 	struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup;
1560 	struct spdk_nvmf_tcp_transport *ttransport;
1561 
1562 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
1563 	spdk_sock_group_close(&tgroup->sock_group);
1564 	if (tgroup->control_msg_list) {
1565 		nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
1566 	}
1567 
1568 	if (tgroup->accel_channel) {
1569 		spdk_put_io_channel(tgroup->accel_channel);
1570 	}
1571 
1572 	if (tgroup->group.transport == NULL) {
1573 		/* Transport can be NULL when nvmf_tcp_poll_group_create()
1574 		 * calls this function directly in a failure path. */
1575 		free(tgroup);
1576 		return;
1577 	}
1578 
1579 	ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport);
1580 
1581 	next_tgroup = TAILQ_NEXT(tgroup, link);
1582 	TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link);
1583 	if (next_tgroup == NULL) {
1584 		next_tgroup = TAILQ_FIRST(&ttransport->poll_groups);
1585 	}
1586 	if (ttransport->next_pg == tgroup) {
1587 		ttransport->next_pg = next_tgroup;
1588 	}
1589 
1590 	free(tgroup);
1591 }
1592 
1593 static void
1594 nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1595 			      enum nvme_tcp_pdu_recv_state state)
1596 {
1597 	if (tqpair->recv_state == state) {
1598 		SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
1599 			    tqpair, state);
1600 		return;
1601 	}
1602 
1603 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_QUIESCING)) {
1604 		if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH && tqpair->pdu_in_progress) {
1605 			SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, tqpair->pdu_in_progress, slist);
1606 			tqpair->tcp_pdu_working_count--;
1607 		}
1608 	}
1609 
1610 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_ERROR)) {
1611 		assert(tqpair->tcp_pdu_working_count == 0);
1612 	}
1613 
1614 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1615 		/* When leaving the await req state, move the qpair to the main list */
1616 		TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link);
1617 		TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link);
1618 	} else if (state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1619 		TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link);
1620 		TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link);
1621 	}
1622 
1623 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
1624 	tqpair->recv_state = state;
1625 
1626 	spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0,
1627 			  (uint64_t)tqpair->recv_state);
1628 }
1629 
1630 static int
1631 nvmf_tcp_qpair_handle_timeout(void *ctx)
1632 {
1633 	struct spdk_nvmf_tcp_qpair *tqpair = ctx;
1634 
1635 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1636 
1637 	SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
1638 		    SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
1639 
1640 	nvmf_tcp_qpair_disconnect(tqpair);
1641 	return SPDK_POLLER_BUSY;
1642 }
1643 
1644 static void
1645 nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
1646 {
1647 	struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
1648 
1649 	if (!tqpair->timeout_poller) {
1650 		tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
1651 					 SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
1652 	}
1653 }
1654 
1655 static void
1656 nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
1657 			   enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
1658 {
1659 	struct nvme_tcp_pdu *rsp_pdu;
1660 	struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
1661 	uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
1662 	uint32_t copy_len;
1663 
1664 	rsp_pdu = tqpair->mgmt_pdu;
1665 
1666 	c2h_term_req = &rsp_pdu->hdr.term_req;
1667 	c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
1668 	c2h_term_req->common.hlen = c2h_term_req_hdr_len;
1669 	c2h_term_req->fes = fes;
1670 
1671 	if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1672 	    (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1673 		DSET32(&c2h_term_req->fei, error_offset);
1674 	}
1675 
1676 	copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
1677 
1678 	/* Copy the error info into the buffer */
1679 	memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
1680 	nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
1681 
1682 	/* Contain the header of the wrong received pdu */
1683 	c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
1684 	tqpair->wait_terminate = true;
1685 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1686 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair);
1687 }
1688 
1689 static void
1690 nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1691 				struct spdk_nvmf_tcp_qpair *tqpair,
1692 				struct nvme_tcp_pdu *pdu)
1693 {
1694 	struct spdk_nvmf_tcp_req *tcp_req;
1695 
1696 	assert(pdu->psh_valid_bytes == pdu->psh_len);
1697 	assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
1698 
1699 	tcp_req = nvmf_tcp_req_get(tqpair);
1700 	if (!tcp_req) {
1701 		/* Directly return and make the allocation retry again.  This can happen if we're
1702 		 * using asynchronous writes to send the response to the host or when releasing
1703 		 * zero-copy buffers after a response has been sent.  In both cases, the host might
1704 		 * receive the response before we've finished processing the request and is free to
1705 		 * send another one.
1706 		 */
1707 		if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 ||
1708 		    tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) {
1709 			return;
1710 		}
1711 
1712 		/* The host sent more commands than the maximum queue depth. */
1713 		SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
1714 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1715 		return;
1716 	}
1717 
1718 	pdu->req = tcp_req;
1719 	assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
1720 	nvmf_tcp_req_process(ttransport, tcp_req);
1721 }
1722 
1723 static void
1724 nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1725 				    struct spdk_nvmf_tcp_qpair *tqpair,
1726 				    struct nvme_tcp_pdu *pdu)
1727 {
1728 	struct spdk_nvmf_tcp_req *tcp_req;
1729 	struct spdk_nvme_tcp_cmd *capsule_cmd;
1730 	uint32_t error_offset = 0;
1731 	enum spdk_nvme_tcp_term_req_fes fes;
1732 	struct spdk_nvme_cpl *rsp;
1733 
1734 	capsule_cmd = &pdu->hdr.capsule_cmd;
1735 	tcp_req = pdu->req;
1736 	assert(tcp_req != NULL);
1737 
1738 	/* Zero-copy requests don't support ICD */
1739 	assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req));
1740 
1741 	if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
1742 		SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
1743 			    SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
1744 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1745 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
1746 		goto err;
1747 	}
1748 
1749 	rsp = &tcp_req->req.rsp->nvme_cpl;
1750 	if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1751 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1752 	} else {
1753 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1754 	}
1755 
1756 	nvmf_tcp_req_process(ttransport, tcp_req);
1757 
1758 	return;
1759 err:
1760 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1761 }
1762 
1763 static void
1764 nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1765 			     struct spdk_nvmf_tcp_qpair *tqpair,
1766 			     struct nvme_tcp_pdu *pdu)
1767 {
1768 	struct spdk_nvmf_tcp_req *tcp_req;
1769 	uint32_t error_offset = 0;
1770 	enum spdk_nvme_tcp_term_req_fes fes = 0;
1771 	struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
1772 
1773 	h2c_data = &pdu->hdr.h2c_data;
1774 
1775 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
1776 		      tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
1777 
1778 	if (h2c_data->ttag > tqpair->resource_count) {
1779 		SPDK_DEBUGLOG(nvmf_tcp, "ttag %u is larger than allowed %u.\n", h2c_data->ttag,
1780 			      tqpair->resource_count);
1781 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1782 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1783 		goto err;
1784 	}
1785 
1786 	tcp_req = &tqpair->reqs[h2c_data->ttag - 1];
1787 
1788 	if (spdk_unlikely(tcp_req->state != TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER &&
1789 			  tcp_req->state != TCP_REQUEST_STATE_AWAITING_R2T_ACK)) {
1790 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, has error state in %d\n", tcp_req, tqpair,
1791 			      tcp_req->state);
1792 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1793 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1794 		goto err;
1795 	}
1796 
1797 	if (spdk_unlikely(tcp_req->req.cmd->nvme_cmd.cid != h2c_data->cccid)) {
1798 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, expected %u but %u for cccid.\n", tcp_req, tqpair,
1799 			      tcp_req->req.cmd->nvme_cmd.cid, h2c_data->cccid);
1800 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1801 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
1802 		goto err;
1803 	}
1804 
1805 	if (tcp_req->h2c_offset != h2c_data->datao) {
1806 		SPDK_DEBUGLOG(nvmf_tcp,
1807 			      "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
1808 			      tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
1809 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1810 		goto err;
1811 	}
1812 
1813 	if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
1814 		SPDK_DEBUGLOG(nvmf_tcp,
1815 			      "tcp_req(%p), tqpair=%p,  (datao=%u + datal=%u) exceeds requested length=%u\n",
1816 			      tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
1817 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1818 		goto err;
1819 	}
1820 
1821 	pdu->req = tcp_req;
1822 
1823 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
1824 		pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
1825 	}
1826 
1827 	nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
1828 				  h2c_data->datao, h2c_data->datal);
1829 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1830 	return;
1831 
1832 err:
1833 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1834 }
1835 
1836 static void
1837 nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
1838 			       struct spdk_nvmf_tcp_qpair *tqpair)
1839 {
1840 	struct nvme_tcp_pdu *rsp_pdu;
1841 	struct spdk_nvme_tcp_rsp *capsule_resp;
1842 
1843 	SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
1844 
1845 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1846 	assert(rsp_pdu != NULL);
1847 
1848 	capsule_resp = &rsp_pdu->hdr.capsule_resp;
1849 	capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
1850 	capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
1851 	capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
1852 	if (tqpair->host_hdgst_enable) {
1853 		capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1854 		capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1855 	}
1856 
1857 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req);
1858 }
1859 
1860 static void
1861 nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
1862 {
1863 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1864 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
1865 					     struct spdk_nvmf_tcp_qpair, qpair);
1866 
1867 	assert(tqpair != NULL);
1868 
1869 	if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
1870 		SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
1871 			      tcp_req->req.length);
1872 		_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
1873 		return;
1874 	}
1875 
1876 	if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
1877 		nvmf_tcp_request_free(tcp_req);
1878 	} else {
1879 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
1880 	}
1881 }
1882 
1883 static void
1884 nvmf_tcp_r2t_complete(void *cb_arg)
1885 {
1886 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1887 	struct spdk_nvmf_tcp_transport *ttransport;
1888 
1889 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
1890 				      struct spdk_nvmf_tcp_transport, transport);
1891 
1892 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
1893 
1894 	if (tcp_req->h2c_offset == tcp_req->req.length) {
1895 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1896 		nvmf_tcp_req_process(ttransport, tcp_req);
1897 	}
1898 }
1899 
1900 static void
1901 nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1902 		      struct spdk_nvmf_tcp_req *tcp_req)
1903 {
1904 	struct nvme_tcp_pdu *rsp_pdu;
1905 	struct spdk_nvme_tcp_r2t_hdr *r2t;
1906 
1907 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1908 	assert(rsp_pdu != NULL);
1909 
1910 	r2t = &rsp_pdu->hdr.r2t;
1911 	r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
1912 	r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
1913 
1914 	if (tqpair->host_hdgst_enable) {
1915 		r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1916 		r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1917 	}
1918 
1919 	r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
1920 	r2t->ttag = tcp_req->ttag;
1921 	r2t->r2to = tcp_req->h2c_offset;
1922 	r2t->r2tl = tcp_req->req.length;
1923 
1924 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
1925 
1926 	SPDK_DEBUGLOG(nvmf_tcp,
1927 		      "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
1928 		      tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
1929 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req);
1930 }
1931 
1932 static void
1933 nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1934 				 struct spdk_nvmf_tcp_qpair *tqpair,
1935 				 struct nvme_tcp_pdu *pdu)
1936 {
1937 	struct spdk_nvmf_tcp_req *tcp_req;
1938 	struct spdk_nvme_cpl *rsp;
1939 
1940 	tcp_req = pdu->req;
1941 	assert(tcp_req != NULL);
1942 
1943 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1944 
1945 	tcp_req->h2c_offset += pdu->data_len;
1946 
1947 	/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
1948 	 * acknowledged before moving on. */
1949 	if (tcp_req->h2c_offset == tcp_req->req.length &&
1950 	    tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
1951 		/* After receiving all the h2c data, we need to check whether there is
1952 		 * transient transport error */
1953 		rsp = &tcp_req->req.rsp->nvme_cpl;
1954 		if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1955 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1956 		} else {
1957 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1958 		}
1959 		nvmf_tcp_req_process(ttransport, tcp_req);
1960 	}
1961 }
1962 
1963 static void
1964 nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
1965 {
1966 	SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
1967 		    spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
1968 	if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1969 	    (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1970 		SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
1971 			      DGET32(h2c_term_req->fei));
1972 	}
1973 }
1974 
1975 static void
1976 nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1977 				 struct nvme_tcp_pdu *pdu)
1978 {
1979 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1980 	uint32_t error_offset = 0;
1981 	enum spdk_nvme_tcp_term_req_fes fes;
1982 
1983 	if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
1984 		SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
1985 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1986 		error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
1987 		goto end;
1988 	}
1989 
1990 	/* set the data buffer */
1991 	nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
1992 			      h2c_term_req->common.plen - h2c_term_req->common.hlen);
1993 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1994 	return;
1995 end:
1996 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1997 }
1998 
1999 static void
2000 nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2001 				     struct nvme_tcp_pdu *pdu)
2002 {
2003 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
2004 
2005 	nvmf_tcp_h2c_term_req_dump(h2c_term_req);
2006 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2007 }
2008 
2009 static void
2010 _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2011 {
2012 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2013 			struct spdk_nvmf_tcp_transport, transport);
2014 
2015 	switch (pdu->hdr.common.pdu_type) {
2016 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2017 		nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
2018 		break;
2019 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2020 		nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
2021 		break;
2022 
2023 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2024 		nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
2025 		break;
2026 
2027 	default:
2028 		/* The code should not go to here */
2029 		SPDK_ERRLOG("ERROR pdu type %d\n", pdu->hdr.common.pdu_type);
2030 		break;
2031 	}
2032 	SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
2033 	tqpair->tcp_pdu_working_count--;
2034 }
2035 
2036 static inline void
2037 nvmf_tcp_req_set_cpl(struct spdk_nvmf_tcp_req *treq, int sct, int sc)
2038 {
2039 	treq->req.rsp->nvme_cpl.status.sct = sct;
2040 	treq->req.rsp->nvme_cpl.status.sc = sc;
2041 	treq->req.rsp->nvme_cpl.cid = treq->req.cmd->nvme_cmd.cid;
2042 }
2043 
2044 static void
2045 data_crc32_calc_done(void *cb_arg, int status)
2046 {
2047 	struct nvme_tcp_pdu *pdu = cb_arg;
2048 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
2049 
2050 	/* async crc32 calculation is failed and use direct calculation to check */
2051 	if (spdk_unlikely(status)) {
2052 		SPDK_ERRLOG("Data digest on tqpair=(%p) with pdu=%p failed to be calculated asynchronously\n",
2053 			    tqpair, pdu);
2054 		pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2055 	}
2056 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
2057 	if (!MATCH_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32)) {
2058 		SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2059 		assert(pdu->req != NULL);
2060 		nvmf_tcp_req_set_cpl(pdu->req, SPDK_NVME_SCT_GENERIC,
2061 				     SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR);
2062 	}
2063 	_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2064 }
2065 
2066 static void
2067 nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2068 {
2069 	int rc = 0;
2070 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2071 	tqpair->pdu_in_progress = NULL;
2072 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2073 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2074 	/* check data digest if need */
2075 	if (pdu->ddgst_enable) {
2076 		if (tqpair->qpair.qid != 0 && !pdu->dif_ctx && tqpair->group &&
2077 		    (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)) {
2078 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
2079 						       pdu->data_iovcnt, 0, data_crc32_calc_done, pdu);
2080 			if (spdk_likely(rc == 0)) {
2081 				return;
2082 			}
2083 		} else {
2084 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2085 		}
2086 		data_crc32_calc_done(pdu, rc);
2087 	} else {
2088 		_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2089 	}
2090 }
2091 
2092 static void
2093 nvmf_tcp_send_icresp_complete(void *cb_arg)
2094 {
2095 	struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
2096 
2097 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_RUNNING);
2098 }
2099 
2100 static void
2101 nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
2102 		      struct spdk_nvmf_tcp_qpair *tqpair,
2103 		      struct nvme_tcp_pdu *pdu)
2104 {
2105 	struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
2106 	struct nvme_tcp_pdu *rsp_pdu;
2107 	struct spdk_nvme_tcp_ic_resp *ic_resp;
2108 	uint32_t error_offset = 0;
2109 	enum spdk_nvme_tcp_term_req_fes fes;
2110 
2111 	/* Only PFV 0 is defined currently */
2112 	if (ic_req->pfv != 0) {
2113 		SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
2114 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2115 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
2116 		goto end;
2117 	}
2118 
2119 	/* This value is 0’s based value in units of dwords should not be larger than SPDK_NVME_TCP_HPDA_MAX */
2120 	if (ic_req->hpda > SPDK_NVME_TCP_HPDA_MAX) {
2121 		SPDK_ERRLOG("ICReq HPDA out of range 0 to 31, got %u\n", ic_req->hpda);
2122 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2123 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, hpda);
2124 		goto end;
2125 	}
2126 
2127 	/* MAXR2T is 0's based */
2128 	SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
2129 
2130 	tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
2131 	if (!tqpair->host_hdgst_enable) {
2132 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2133 	}
2134 
2135 	tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
2136 	if (!tqpair->host_ddgst_enable) {
2137 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2138 	}
2139 
2140 	tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
2141 	/* Now that we know whether digests are enabled, properly size the receive buffer */
2142 	if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
2143 		SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
2144 			     tqpair,
2145 			     tqpair->recv_buf_size);
2146 		/* Not fatal. */
2147 	}
2148 
2149 	tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
2150 	SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
2151 
2152 	rsp_pdu = tqpair->mgmt_pdu;
2153 
2154 	ic_resp = &rsp_pdu->hdr.ic_resp;
2155 	ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
2156 	ic_resp->common.hlen = ic_resp->common.plen =  sizeof(*ic_resp);
2157 	ic_resp->pfv = 0;
2158 	ic_resp->cpda = tqpair->cpda;
2159 	ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
2160 	ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
2161 	ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
2162 
2163 	SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
2164 	SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
2165 
2166 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INITIALIZING);
2167 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair);
2168 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2169 	return;
2170 end:
2171 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2172 }
2173 
2174 static void
2175 nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2176 			struct spdk_nvmf_tcp_transport *ttransport)
2177 {
2178 	struct nvme_tcp_pdu *pdu;
2179 	int rc;
2180 	uint32_t crc32c, error_offset = 0;
2181 	enum spdk_nvme_tcp_term_req_fes fes;
2182 
2183 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2184 	pdu = tqpair->pdu_in_progress;
2185 
2186 	SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
2187 		      pdu->hdr.common.pdu_type);
2188 	/* check header digest if needed */
2189 	if (pdu->has_hdgst) {
2190 		SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
2191 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
2192 		rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
2193 		if (rc == 0) {
2194 			SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2195 			fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
2196 			nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2197 			return;
2198 
2199 		}
2200 	}
2201 
2202 	switch (pdu->hdr.common.pdu_type) {
2203 	case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
2204 		nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
2205 		break;
2206 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2207 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
2208 		break;
2209 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2210 		nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
2211 		break;
2212 
2213 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2214 		nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
2215 		break;
2216 
2217 	default:
2218 		SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
2219 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2220 		error_offset = 1;
2221 		nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2222 		break;
2223 	}
2224 }
2225 
2226 static void
2227 nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
2228 {
2229 	struct nvme_tcp_pdu *pdu;
2230 	uint32_t error_offset = 0;
2231 	enum spdk_nvme_tcp_term_req_fes fes;
2232 	uint8_t expected_hlen, pdo;
2233 	bool plen_error = false, pdo_error = false;
2234 
2235 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2236 	pdu = tqpair->pdu_in_progress;
2237 	assert(pdu);
2238 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
2239 		if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) {
2240 			SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
2241 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2242 			goto err;
2243 		}
2244 		expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
2245 		if (pdu->hdr.common.plen != expected_hlen) {
2246 			plen_error = true;
2247 		}
2248 	} else {
2249 		if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) {
2250 			SPDK_ERRLOG("The TCP/IP connection is not negotiated\n");
2251 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2252 			goto err;
2253 		}
2254 
2255 		switch (pdu->hdr.common.pdu_type) {
2256 		case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2257 			expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
2258 			pdo = pdu->hdr.common.pdo;
2259 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2260 				pdo_error = true;
2261 				break;
2262 			}
2263 
2264 			if (pdu->hdr.common.plen < expected_hlen) {
2265 				plen_error = true;
2266 			}
2267 			break;
2268 		case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2269 			expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
2270 			pdo = pdu->hdr.common.pdo;
2271 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2272 				pdo_error = true;
2273 				break;
2274 			}
2275 			if (pdu->hdr.common.plen < expected_hlen) {
2276 				plen_error = true;
2277 			}
2278 			break;
2279 
2280 		case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2281 			expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
2282 			if ((pdu->hdr.common.plen <= expected_hlen) ||
2283 			    (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
2284 				plen_error = true;
2285 			}
2286 			break;
2287 
2288 		default:
2289 			SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
2290 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2291 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
2292 			goto err;
2293 		}
2294 	}
2295 
2296 	if (pdu->hdr.common.hlen != expected_hlen) {
2297 		SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
2298 			    pdu->hdr.common.pdu_type,
2299 			    expected_hlen, pdu->hdr.common.hlen, tqpair);
2300 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2301 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
2302 		goto err;
2303 	} else if (pdo_error) {
2304 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2305 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
2306 	} else if (plen_error) {
2307 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2308 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2309 		goto err;
2310 	} else {
2311 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2312 		nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
2313 		return;
2314 	}
2315 err:
2316 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2317 }
2318 
2319 static int
2320 nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
2321 {
2322 	int rc = 0;
2323 	struct nvme_tcp_pdu *pdu;
2324 	enum nvme_tcp_pdu_recv_state prev_state;
2325 	uint32_t data_len;
2326 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2327 			struct spdk_nvmf_tcp_transport, transport);
2328 
2329 	/* The loop here is to allow for several back-to-back state changes. */
2330 	do {
2331 		prev_state = tqpair->recv_state;
2332 		SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
2333 
2334 		pdu = tqpair->pdu_in_progress;
2335 		assert(pdu != NULL ||
2336 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY ||
2337 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_QUIESCING ||
2338 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
2339 
2340 		switch (tqpair->recv_state) {
2341 		/* Wait for the common header  */
2342 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
2343 			if (!pdu) {
2344 				pdu = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
2345 				if (spdk_unlikely(!pdu)) {
2346 					return NVME_TCP_PDU_IN_PROGRESS;
2347 				}
2348 				SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
2349 				tqpair->pdu_in_progress = pdu;
2350 				tqpair->tcp_pdu_working_count++;
2351 			}
2352 			memset(pdu, 0, offsetof(struct nvme_tcp_pdu, qpair));
2353 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2354 		/* FALLTHROUGH */
2355 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
2356 			if (spdk_unlikely(tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING)) {
2357 				return rc;
2358 			}
2359 
2360 			rc = nvme_tcp_read_data(tqpair->sock,
2361 						sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
2362 						(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
2363 			if (rc < 0) {
2364 				SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
2365 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2366 				break;
2367 			} else if (rc > 0) {
2368 				pdu->ch_valid_bytes += rc;
2369 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0);
2370 			}
2371 
2372 			if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
2373 				return NVME_TCP_PDU_IN_PROGRESS;
2374 			}
2375 
2376 			/* The command header of this PDU has now been read from the socket. */
2377 			nvmf_tcp_pdu_ch_handle(tqpair);
2378 			break;
2379 		/* Wait for the pdu specific header  */
2380 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
2381 			rc = nvme_tcp_read_data(tqpair->sock,
2382 						pdu->psh_len - pdu->psh_valid_bytes,
2383 						(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
2384 			if (rc < 0) {
2385 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2386 				break;
2387 			} else if (rc > 0) {
2388 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0);
2389 				pdu->psh_valid_bytes += rc;
2390 			}
2391 
2392 			if (pdu->psh_valid_bytes < pdu->psh_len) {
2393 				return NVME_TCP_PDU_IN_PROGRESS;
2394 			}
2395 
2396 			/* All header(ch, psh, head digist) of this PDU has now been read from the socket. */
2397 			nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
2398 			break;
2399 		/* Wait for the req slot */
2400 		case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
2401 			nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
2402 			break;
2403 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
2404 			/* check whether the data is valid, if not we just return */
2405 			if (!pdu->data_len) {
2406 				return NVME_TCP_PDU_IN_PROGRESS;
2407 			}
2408 
2409 			data_len = pdu->data_len;
2410 			/* data digest */
2411 			if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
2412 					  tqpair->host_ddgst_enable)) {
2413 				data_len += SPDK_NVME_TCP_DIGEST_LEN;
2414 				pdu->ddgst_enable = true;
2415 			}
2416 
2417 			rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
2418 			if (rc < 0) {
2419 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2420 				break;
2421 			}
2422 			pdu->rw_offset += rc;
2423 
2424 			if (pdu->rw_offset < data_len) {
2425 				return NVME_TCP_PDU_IN_PROGRESS;
2426 			}
2427 
2428 			/* Generate and insert DIF to whole data block received if DIF is enabled */
2429 			if (spdk_unlikely(pdu->dif_ctx != NULL) &&
2430 			    spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt, 0, data_len,
2431 						     pdu->dif_ctx) != 0) {
2432 				SPDK_ERRLOG("DIF generate failed\n");
2433 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2434 				break;
2435 			}
2436 
2437 			/* All of this PDU has now been read from the socket. */
2438 			nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2439 			break;
2440 		case NVME_TCP_PDU_RECV_STATE_QUIESCING:
2441 			if (tqpair->tcp_pdu_working_count != 0) {
2442 				return NVME_TCP_PDU_IN_PROGRESS;
2443 			}
2444 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
2445 			break;
2446 		case NVME_TCP_PDU_RECV_STATE_ERROR:
2447 			if (spdk_sock_is_connected(tqpair->sock) && tqpair->wait_terminate) {
2448 				return NVME_TCP_PDU_IN_PROGRESS;
2449 			}
2450 			return NVME_TCP_PDU_FATAL;
2451 		default:
2452 			SPDK_ERRLOG("The state(%d) is invalid\n", tqpair->recv_state);
2453 			abort();
2454 			break;
2455 		}
2456 	} while (tqpair->recv_state != prev_state);
2457 
2458 	return rc;
2459 }
2460 
2461 static inline void *
2462 nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list)
2463 {
2464 	struct spdk_nvmf_tcp_control_msg *msg;
2465 
2466 	assert(list);
2467 
2468 	msg = STAILQ_FIRST(&list->free_msgs);
2469 	if (!msg) {
2470 		SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
2471 		return NULL;
2472 	}
2473 	STAILQ_REMOVE_HEAD(&list->free_msgs, link);
2474 	return msg;
2475 }
2476 
2477 static inline void
2478 nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
2479 {
2480 	struct spdk_nvmf_tcp_control_msg *msg = _msg;
2481 
2482 	assert(list);
2483 	STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
2484 }
2485 
2486 static int
2487 nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
2488 		       struct spdk_nvmf_transport *transport,
2489 		       struct spdk_nvmf_transport_poll_group *group)
2490 {
2491 	struct spdk_nvmf_request		*req = &tcp_req->req;
2492 	struct spdk_nvme_cmd			*cmd;
2493 	struct spdk_nvme_sgl_descriptor		*sgl;
2494 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2495 	enum spdk_nvme_tcp_term_req_fes		fes;
2496 	struct nvme_tcp_pdu			*pdu;
2497 	struct spdk_nvmf_tcp_qpair		*tqpair;
2498 	uint32_t				length, error_offset = 0;
2499 
2500 	cmd = &req->cmd->nvme_cmd;
2501 	sgl = &cmd->dptr.sgl1;
2502 
2503 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
2504 	    sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
2505 		/* get request length from sgl */
2506 		length = sgl->unkeyed.length;
2507 		if (spdk_unlikely(length > transport->opts.max_io_size)) {
2508 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
2509 				    length, transport->opts.max_io_size);
2510 			fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2511 			goto fatal_err;
2512 		}
2513 
2514 		/* fill request length and populate iovs */
2515 		req->length = length;
2516 
2517 		SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
2518 
2519 		if (spdk_unlikely(req->dif_enabled)) {
2520 			req->dif.orig_length = length;
2521 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2522 			req->dif.elba_length = length;
2523 		}
2524 
2525 		if (nvmf_ctrlr_use_zcopy(req)) {
2526 			SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req);
2527 			req->data_from_pool = false;
2528 			return 0;
2529 		}
2530 
2531 		if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
2532 			/* No available buffers. Queue this request up. */
2533 			SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
2534 				      tcp_req);
2535 			return 0;
2536 		}
2537 
2538 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
2539 			      tcp_req, req->iovcnt, req->iov[0].iov_base);
2540 
2541 		return 0;
2542 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
2543 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
2544 		uint64_t offset = sgl->address;
2545 		uint32_t max_len = transport->opts.in_capsule_data_size;
2546 
2547 		assert(tcp_req->has_in_capsule_data);
2548 		/* Capsule Cmd with In-capsule Data should get data length from pdu header */
2549 		tqpair = tcp_req->pdu->qpair;
2550 		/* receiving pdu is not same with the pdu in tcp_req */
2551 		pdu = tqpair->pdu_in_progress;
2552 		length = pdu->hdr.common.plen - pdu->psh_len - sizeof(struct spdk_nvme_tcp_common_pdu_hdr);
2553 		if (tqpair->host_ddgst_enable) {
2554 			length -= SPDK_NVME_TCP_DIGEST_LEN;
2555 		}
2556 		/* This error is not defined in NVMe/TCP spec, take this error as fatal error */
2557 		if (spdk_unlikely(length != sgl->unkeyed.length)) {
2558 			SPDK_ERRLOG("In-Capsule Data length 0x%x is not equal to SGL data length 0x%x\n",
2559 				    length, sgl->unkeyed.length);
2560 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2561 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2562 			goto fatal_err;
2563 		}
2564 
2565 		SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
2566 			      offset, length);
2567 
2568 		/* The NVMe/TCP transport does not use ICDOFF to control the in-capsule data offset. ICDOFF should be '0' */
2569 		if (spdk_unlikely(offset != 0)) {
2570 			/* Not defined fatal error in NVMe/TCP spec, handle this error as a fatal error */
2571 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " should be ZERO in NVMe/TCP\n", offset);
2572 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2573 			error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.address);
2574 			goto fatal_err;
2575 		}
2576 
2577 		if (spdk_unlikely(length > max_len)) {
2578 			/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
2579 			if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
2580 			    (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
2581 
2582 				/* Get a buffer from dedicated list */
2583 				SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
2584 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2585 				assert(tgroup->control_msg_list);
2586 				req->iov[0].iov_base = nvmf_tcp_control_msg_get(tgroup->control_msg_list);
2587 				if (!req->iov[0].iov_base) {
2588 					/* No available buffers. Queue this request up. */
2589 					SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
2590 					return 0;
2591 				}
2592 			} else {
2593 				SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
2594 					    length, max_len);
2595 				fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2596 				goto fatal_err;
2597 			}
2598 		} else {
2599 			req->iov[0].iov_base = tcp_req->buf;
2600 		}
2601 
2602 		req->length = length;
2603 		req->data_from_pool = false;
2604 
2605 		if (spdk_unlikely(req->dif_enabled)) {
2606 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2607 			req->dif.elba_length = length;
2608 		}
2609 
2610 		req->iov[0].iov_len = length;
2611 		req->iovcnt = 1;
2612 
2613 		return 0;
2614 	}
2615 	/* If we want to handle the problem here, then we can't skip the following data segment.
2616 	 * Because this function runs before reading data part, now handle all errors as fatal errors. */
2617 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2618 		    sgl->generic.type, sgl->generic.subtype);
2619 	fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2620 	error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.generic);
2621 fatal_err:
2622 	nvmf_tcp_send_c2h_term_req(tcp_req->pdu->qpair, tcp_req->pdu, fes, error_offset);
2623 	return -1;
2624 }
2625 
2626 static inline enum spdk_nvme_media_error_status_code
2627 nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
2628 	enum spdk_nvme_media_error_status_code result;
2629 
2630 	switch (err_type)
2631 	{
2632 	case SPDK_DIF_REFTAG_ERROR:
2633 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
2634 		break;
2635 	case SPDK_DIF_APPTAG_ERROR:
2636 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
2637 		break;
2638 	case SPDK_DIF_GUARD_ERROR:
2639 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
2640 		break;
2641 	default:
2642 		SPDK_UNREACHABLE();
2643 		break;
2644 	}
2645 
2646 	return result;
2647 }
2648 
2649 static void
2650 _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2651 			struct spdk_nvmf_tcp_req *tcp_req)
2652 {
2653 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
2654 				tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
2655 	struct nvme_tcp_pdu *rsp_pdu;
2656 	struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
2657 	uint32_t plen, pdo, alignment;
2658 	int rc;
2659 
2660 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2661 
2662 	rsp_pdu = tcp_req->pdu;
2663 	assert(rsp_pdu != NULL);
2664 
2665 	c2h_data = &rsp_pdu->hdr.c2h_data;
2666 	c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
2667 	plen = c2h_data->common.hlen = sizeof(*c2h_data);
2668 
2669 	if (tqpair->host_hdgst_enable) {
2670 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2671 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2672 	}
2673 
2674 	/* set the psh */
2675 	c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2676 	c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
2677 	c2h_data->datao = tcp_req->pdu->rw_offset;
2678 
2679 	/* set the padding */
2680 	rsp_pdu->padding_len = 0;
2681 	pdo = plen;
2682 	if (tqpair->cpda) {
2683 		alignment = (tqpair->cpda + 1) << 2;
2684 		if (plen % alignment != 0) {
2685 			pdo = (plen + alignment) / alignment * alignment;
2686 			rsp_pdu->padding_len = pdo - plen;
2687 			plen = pdo;
2688 		}
2689 	}
2690 
2691 	c2h_data->common.pdo = pdo;
2692 	plen += c2h_data->datal;
2693 	if (tqpair->host_ddgst_enable) {
2694 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
2695 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2696 	}
2697 
2698 	c2h_data->common.plen = plen;
2699 
2700 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2701 		rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2702 	}
2703 
2704 	nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2705 				  c2h_data->datao, c2h_data->datal);
2706 
2707 
2708 	c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
2709 	/* Need to send the capsule response if response is not all 0 */
2710 	if (ttransport->tcp_opts.c2h_success &&
2711 	    tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
2712 		c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
2713 	}
2714 
2715 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2716 		struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
2717 		struct spdk_dif_error err_blk = {};
2718 		uint32_t mapped_length = 0;
2719 		uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
2720 		uint32_t ddgst_len = 0;
2721 
2722 		if (tqpair->host_ddgst_enable) {
2723 			/* Data digest consumes additional iov entry */
2724 			available_iovs--;
2725 			/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
2726 			ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
2727 			c2h_data->common.plen -= ddgst_len;
2728 		}
2729 		/* Temp call to estimate if data can be described by limited number of iovs.
2730 		 * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
2731 		nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
2732 				    false, &mapped_length);
2733 
2734 		if (mapped_length != c2h_data->common.plen) {
2735 			c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
2736 			SPDK_DEBUGLOG(nvmf_tcp,
2737 				      "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
2738 				      c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
2739 			c2h_data->common.plen = mapped_length;
2740 
2741 			/* Rebuild pdu->data_iov since data length is changed */
2742 			nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
2743 						  c2h_data->datal);
2744 
2745 			c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
2746 						    SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
2747 		}
2748 
2749 		c2h_data->common.plen += ddgst_len;
2750 
2751 		assert(rsp_pdu->rw_offset <= tcp_req->req.length);
2752 
2753 		rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
2754 					    0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
2755 		if (rc != 0) {
2756 			SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
2757 				    err_blk.err_type, err_blk.err_offset);
2758 			rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2759 			rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
2760 			nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2761 			return;
2762 		}
2763 	}
2764 
2765 	rsp_pdu->rw_offset += c2h_data->datal;
2766 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
2767 }
2768 
2769 static void
2770 nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2771 		       struct spdk_nvmf_tcp_req *tcp_req)
2772 {
2773 	nvmf_tcp_req_pdu_init(tcp_req);
2774 	_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2775 }
2776 
2777 static int
2778 request_transfer_out(struct spdk_nvmf_request *req)
2779 {
2780 	struct spdk_nvmf_tcp_req	*tcp_req;
2781 	struct spdk_nvmf_qpair		*qpair;
2782 	struct spdk_nvmf_tcp_qpair	*tqpair;
2783 	struct spdk_nvme_cpl		*rsp;
2784 
2785 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2786 
2787 	qpair = req->qpair;
2788 	rsp = &req->rsp->nvme_cpl;
2789 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
2790 
2791 	/* Advance our sq_head pointer */
2792 	if (qpair->sq_head == qpair->sq_head_max) {
2793 		qpair->sq_head = 0;
2794 	} else {
2795 		qpair->sq_head++;
2796 	}
2797 	rsp->sqhd = qpair->sq_head;
2798 
2799 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2800 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
2801 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2802 		nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2803 	} else {
2804 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2805 	}
2806 
2807 	return 0;
2808 }
2809 
2810 static void
2811 nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport,
2812 			      struct spdk_nvmf_tcp_qpair *tqpair,
2813 			      struct spdk_nvmf_tcp_req *tcp_req)
2814 {
2815 	enum spdk_nvme_cmd_fuse last, next;
2816 
2817 	last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2818 	next = tcp_req->cmd.fuse;
2819 
2820 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2821 
2822 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2823 		return;
2824 	}
2825 
2826 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2827 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2828 			/* This is a valid pair of fused commands.  Point them at each other
2829 			 * so they can be submitted consecutively once ready to be executed.
2830 			 */
2831 			tqpair->fused_first->fused_pair = tcp_req;
2832 			tcp_req->fused_pair = tqpair->fused_first;
2833 			tqpair->fused_first = NULL;
2834 			return;
2835 		} else {
2836 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2837 			tqpair->fused_first->fused_failed = true;
2838 
2839 			/*
2840 			 * If the last req is in READY_TO_EXECUTE state, then call
2841 			 * nvmf_tcp_req_process(), otherwise nothing else will kick it.
2842 			 */
2843 			if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2844 				nvmf_tcp_req_process(ttransport, tqpair->fused_first);
2845 			}
2846 
2847 			tqpair->fused_first = NULL;
2848 		}
2849 	}
2850 
2851 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2852 		/* Set tqpair->fused_first here so that we know to check that the next request
2853 		 * is a SECOND (and to fail this one if it isn't).
2854 		 */
2855 		tqpair->fused_first = tcp_req;
2856 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2857 		/* Mark this req failed since it is a SECOND and the last one was not a FIRST. */
2858 		tcp_req->fused_failed = true;
2859 	}
2860 }
2861 
2862 static bool
2863 nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
2864 		     struct spdk_nvmf_tcp_req *tcp_req)
2865 {
2866 	struct spdk_nvmf_tcp_qpair		*tqpair;
2867 	uint32_t				plen;
2868 	struct nvme_tcp_pdu			*pdu;
2869 	enum spdk_nvmf_tcp_req_state		prev_state;
2870 	bool					progress = false;
2871 	struct spdk_nvmf_transport		*transport = &ttransport->transport;
2872 	struct spdk_nvmf_transport_poll_group	*group;
2873 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2874 
2875 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2876 	group = &tqpair->group->group;
2877 	assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
2878 
2879 	/* If the qpair is not active, we need to abort the outstanding requests. */
2880 	if (!spdk_nvmf_qpair_is_active(&tqpair->qpair)) {
2881 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
2882 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2883 		}
2884 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
2885 	}
2886 
2887 	/* The loop here is to allow for several back-to-back state changes. */
2888 	do {
2889 		prev_state = tcp_req->state;
2890 
2891 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
2892 			      tqpair);
2893 
2894 		switch (tcp_req->state) {
2895 		case TCP_REQUEST_STATE_FREE:
2896 			/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
2897 			 * to escape this state. */
2898 			break;
2899 		case TCP_REQUEST_STATE_NEW:
2900 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req,
2901 					  tqpair->qpair.queue_depth);
2902 
2903 			/* copy the cmd from the receive pdu */
2904 			tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
2905 
2906 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
2907 				tcp_req->req.dif_enabled = true;
2908 				tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
2909 			}
2910 
2911 			nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req);
2912 
2913 			/* The next state transition depends on the data transfer needs of this request. */
2914 			tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
2915 
2916 			if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2917 				nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_INVALID_OPCODE);
2918 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2919 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2920 				SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
2921 				break;
2922 			}
2923 
2924 			/* If no data to transfer, ready to execute. */
2925 			if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
2926 				/* Reset the tqpair receiving pdu state */
2927 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2928 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2929 				break;
2930 			}
2931 
2932 			pdu = tqpair->pdu_in_progress;
2933 			plen = pdu->hdr.common.hlen;
2934 			if (tqpair->host_hdgst_enable) {
2935 				plen += SPDK_NVME_TCP_DIGEST_LEN;
2936 			}
2937 			if (pdu->hdr.common.plen != plen) {
2938 				tcp_req->has_in_capsule_data = true;
2939 			} else {
2940 				/* Data is transmitted by C2H PDUs */
2941 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2942 			}
2943 
2944 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
2945 			STAILQ_INSERT_TAIL(&group->pending_buf_queue, &tcp_req->req, buf_link);
2946 			break;
2947 		case TCP_REQUEST_STATE_NEED_BUFFER:
2948 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.trace_id, 0,
2949 					  (uintptr_t)tcp_req);
2950 
2951 			assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
2952 
2953 			if (!tcp_req->has_in_capsule_data && (&tcp_req->req != STAILQ_FIRST(&group->pending_buf_queue))) {
2954 				SPDK_DEBUGLOG(nvmf_tcp,
2955 					      "Not the first element to wait for the buf for tcp_req(%p) on tqpair=%p\n",
2956 					      tcp_req, tqpair);
2957 				/* This request needs to wait in line to obtain a buffer */
2958 				break;
2959 			}
2960 
2961 			/* Try to get a data buffer */
2962 			if (nvmf_tcp_req_parse_sgl(tcp_req, transport, group) < 0) {
2963 				break;
2964 			}
2965 
2966 			/* Get a zcopy buffer if the request can be serviced through zcopy */
2967 			if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2968 				if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2969 					assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2970 					tcp_req->req.length = tcp_req->req.dif.elba_length;
2971 				}
2972 
2973 				STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2974 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START);
2975 				spdk_nvmf_request_zcopy_start(&tcp_req->req);
2976 				break;
2977 			}
2978 
2979 			if (tcp_req->req.iovcnt < 1) {
2980 				SPDK_DEBUGLOG(nvmf_tcp, "No buffer allocated for tcp_req(%p) on tqpair(%p\n)",
2981 					      tcp_req, tqpair);
2982 				/* No buffers available. */
2983 				break;
2984 			}
2985 
2986 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2987 
2988 			/* If data is transferring from host to controller, we need to do a transfer from the host. */
2989 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2990 				if (tcp_req->req.data_from_pool) {
2991 					SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2992 					nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2993 				} else {
2994 					struct nvme_tcp_pdu *pdu;
2995 
2996 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
2997 
2998 					pdu = tqpair->pdu_in_progress;
2999 					SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
3000 						      tqpair);
3001 					/* No need to send r2t, contained in the capsuled data */
3002 					nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
3003 								  0, tcp_req->req.length);
3004 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
3005 				}
3006 				break;
3007 			}
3008 
3009 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
3010 			break;
3011 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3012 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.trace_id, 0,
3013 					  (uintptr_t)tcp_req);
3014 			/* Some external code must kick a request into  TCP_REQUEST_STATE_ZCOPY_START_COMPLETED
3015 			 * to escape this state. */
3016 			break;
3017 		case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
3018 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.trace_id, 0,
3019 					  (uintptr_t)tcp_req);
3020 			if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) {
3021 				SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n",
3022 					      tcp_req, tqpair);
3023 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3024 				break;
3025 			}
3026 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
3027 				SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
3028 				nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
3029 			} else {
3030 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3031 			}
3032 			break;
3033 		case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3034 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.trace_id, 0,
3035 					  (uintptr_t)tcp_req);
3036 			/* The R2T completion or the h2c data incoming will kick it out of this state. */
3037 			break;
3038 		case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3039 
3040 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.trace_id,
3041 					  0, (uintptr_t)tcp_req);
3042 			/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
3043 			 * to escape this state. */
3044 			break;
3045 		case TCP_REQUEST_STATE_READY_TO_EXECUTE:
3046 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.trace_id, 0,
3047 					  (uintptr_t)tcp_req);
3048 
3049 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3050 				assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
3051 				tcp_req->req.length = tcp_req->req.dif.elba_length;
3052 			}
3053 
3054 			if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
3055 				if (tcp_req->fused_failed) {
3056 					/* This request failed FUSED semantics.  Fail it immediately, without
3057 					 * even sending it to the target layer.
3058 					 */
3059 					nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_MISSING_FUSED);
3060 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3061 					break;
3062 				}
3063 
3064 				if (tcp_req->fused_pair == NULL ||
3065 				    tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3066 					/* This request is ready to execute, but either we don't know yet if it's
3067 					 * valid - i.e. this is a FIRST but we haven't received the next request yet),
3068 					 * or the other request of this fused pair isn't ready to execute. So
3069 					 * break here and this request will get processed later either when the
3070 					 * other request is ready or we find that this request isn't valid.
3071 					 */
3072 					break;
3073 				}
3074 			}
3075 
3076 			if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
3077 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
3078 				/* If we get to this point, and this request is a fused command, we know that
3079 				 * it is part of a valid sequence (FIRST followed by a SECOND) and that both
3080 				 * requests are READY_TO_EXECUTE.  So call spdk_nvmf_request_exec() both on this
3081 				 * request, and the other request of the fused pair, in the correct order.
3082 				 * Also clear the ->fused_pair pointers on both requests, since after this point
3083 				 * we no longer need to maintain the relationship between these two requests.
3084 				 */
3085 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
3086 					assert(tcp_req->fused_pair != NULL);
3087 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3088 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3089 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3090 					tcp_req->fused_pair->fused_pair = NULL;
3091 					tcp_req->fused_pair = NULL;
3092 				}
3093 				spdk_nvmf_request_exec(&tcp_req->req);
3094 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
3095 					assert(tcp_req->fused_pair != NULL);
3096 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3097 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3098 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3099 					tcp_req->fused_pair->fused_pair = NULL;
3100 					tcp_req->fused_pair = NULL;
3101 				}
3102 			} else {
3103 				/* For zero-copy, only requests with data coming from host to the
3104 				 * controller can end up here. */
3105 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
3106 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT);
3107 				spdk_nvmf_request_zcopy_end(&tcp_req->req, true);
3108 			}
3109 
3110 			break;
3111 		case TCP_REQUEST_STATE_EXECUTING:
3112 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
3113 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3114 			 * to escape this state. */
3115 			break;
3116 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3117 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.trace_id, 0,
3118 					  (uintptr_t)tcp_req);
3119 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3120 			 * to escape this state. */
3121 			break;
3122 		case TCP_REQUEST_STATE_EXECUTED:
3123 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
3124 
3125 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3126 				tcp_req->req.length = tcp_req->req.dif.orig_length;
3127 			}
3128 
3129 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3130 			break;
3131 		case TCP_REQUEST_STATE_READY_TO_COMPLETE:
3132 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.trace_id, 0,
3133 					  (uintptr_t)tcp_req);
3134 			if (request_transfer_out(&tcp_req->req) != 0) {
3135 				assert(0); /* No good way to handle this currently */
3136 			}
3137 			break;
3138 		case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
3139 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.trace_id,
3140 					  0, (uintptr_t)tcp_req);
3141 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3142 			 * to escape this state. */
3143 			break;
3144 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3145 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.trace_id, 0,
3146 					  (uintptr_t)tcp_req);
3147 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3148 			 * to escape this state. */
3149 			break;
3150 		case TCP_REQUEST_STATE_COMPLETED:
3151 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req,
3152 					  tqpair->qpair.queue_depth);
3153 			/* If there's an outstanding PDU sent to the host, the request is completed
3154 			 * due to the qpair being disconnected.  We must delay the completion until
3155 			 * that write is done to avoid freeing the request twice. */
3156 			if (spdk_unlikely(tcp_req->pdu_in_use)) {
3157 				SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding "
3158 					      "write on req=%p\n", tcp_req);
3159 				/* This can only happen for zcopy requests */
3160 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3161 				assert(!spdk_nvmf_qpair_is_active(&tqpair->qpair));
3162 				break;
3163 			}
3164 
3165 			if (tcp_req->req.data_from_pool) {
3166 				spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
3167 			} else if (spdk_unlikely(tcp_req->has_in_capsule_data &&
3168 						 (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
3169 						  tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
3170 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3171 				assert(tgroup->control_msg_list);
3172 				SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
3173 				nvmf_tcp_control_msg_put(tgroup->control_msg_list,
3174 							 tcp_req->req.iov[0].iov_base);
3175 			} else if (tcp_req->req.zcopy_bdev_io != NULL) {
3176 				/* If the request has an unreleased zcopy bdev_io, it's either a
3177 				 * read, a failed write, or the qpair is being disconnected */
3178 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3179 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
3180 				       spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) ||
3181 				       !spdk_nvmf_qpair_is_active(&tqpair->qpair));
3182 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE);
3183 				spdk_nvmf_request_zcopy_end(&tcp_req->req, false);
3184 				break;
3185 			}
3186 			tcp_req->req.length = 0;
3187 			tcp_req->req.iovcnt = 0;
3188 			tcp_req->fused_failed = false;
3189 			if (tcp_req->fused_pair) {
3190 				/* This req was part of a valid fused pair, but failed before it got to
3191 				 * READ_TO_EXECUTE state.  This means we need to fail the other request
3192 				 * in the pair, because it is no longer part of a valid pair.  If the pair
3193 				 * already reached READY_TO_EXECUTE state, we need to kick it.
3194 				 */
3195 				tcp_req->fused_pair->fused_failed = true;
3196 				if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3197 					nvmf_tcp_req_process(ttransport, tcp_req->fused_pair);
3198 				}
3199 				tcp_req->fused_pair = NULL;
3200 			}
3201 
3202 			nvmf_tcp_req_put(tqpair, tcp_req);
3203 			break;
3204 		case TCP_REQUEST_NUM_STATES:
3205 		default:
3206 			assert(0);
3207 			break;
3208 		}
3209 
3210 		if (tcp_req->state != prev_state) {
3211 			progress = true;
3212 		}
3213 	} while (tcp_req->state != prev_state);
3214 
3215 	return progress;
3216 }
3217 
3218 static void
3219 nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
3220 {
3221 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
3222 	int rc;
3223 
3224 	assert(tqpair != NULL);
3225 	rc = nvmf_tcp_sock_process(tqpair);
3226 
3227 	/* If there was a new socket error, disconnect */
3228 	if (rc < 0) {
3229 		nvmf_tcp_qpair_disconnect(tqpair);
3230 	}
3231 }
3232 
3233 static int
3234 nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3235 			struct spdk_nvmf_qpair *qpair)
3236 {
3237 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3238 	struct spdk_nvmf_tcp_qpair	*tqpair;
3239 	int				rc;
3240 
3241 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3242 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3243 
3244 	rc =  nvmf_tcp_qpair_sock_init(tqpair);
3245 	if (rc != 0) {
3246 		SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
3247 		return -1;
3248 	}
3249 
3250 	rc = nvmf_tcp_qpair_init(&tqpair->qpair);
3251 	if (rc < 0) {
3252 		SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
3253 		return -1;
3254 	}
3255 
3256 	rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
3257 	if (rc < 0) {
3258 		SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
3259 		return -1;
3260 	}
3261 
3262 	rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
3263 				      nvmf_tcp_sock_cb, tqpair);
3264 	if (rc != 0) {
3265 		SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
3266 			    spdk_strerror(errno), errno);
3267 		return -1;
3268 	}
3269 
3270 	tqpair->group = tgroup;
3271 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INVALID);
3272 	TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
3273 
3274 	return 0;
3275 }
3276 
3277 static int
3278 nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3279 			   struct spdk_nvmf_qpair *qpair)
3280 {
3281 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3282 	struct spdk_nvmf_tcp_qpair		*tqpair;
3283 	int				rc;
3284 
3285 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3286 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3287 
3288 	assert(tqpair->group == tgroup);
3289 
3290 	SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
3291 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
3292 		/* Change the state to move the qpair from the await_req list to the main list
3293 		 * and prevent adding it again later by nvmf_tcp_qpair_set_recv_state() */
3294 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
3295 	}
3296 	TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
3297 
3298 	/* Try to force out any pending writes */
3299 	spdk_sock_flush(tqpair->sock);
3300 
3301 	rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
3302 	if (rc != 0) {
3303 		SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
3304 			    spdk_strerror(errno), errno);
3305 	}
3306 
3307 	return rc;
3308 }
3309 
3310 static int
3311 nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
3312 {
3313 	struct spdk_nvmf_tcp_transport *ttransport;
3314 	struct spdk_nvmf_tcp_req *tcp_req;
3315 
3316 	ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3317 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3318 
3319 	switch (tcp_req->state) {
3320 	case TCP_REQUEST_STATE_EXECUTING:
3321 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3322 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3323 		break;
3324 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3325 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED);
3326 		break;
3327 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3328 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3329 		break;
3330 	default:
3331 		assert(0 && "Unexpected request state");
3332 		break;
3333 	}
3334 
3335 	nvmf_tcp_req_process(ttransport, tcp_req);
3336 
3337 	return 0;
3338 }
3339 
3340 static void
3341 nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
3342 		     spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3343 {
3344 	struct spdk_nvmf_tcp_qpair *tqpair;
3345 
3346 	SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
3347 
3348 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3349 
3350 	assert(tqpair->fini_cb_fn == NULL);
3351 	tqpair->fini_cb_fn = cb_fn;
3352 	tqpair->fini_cb_arg = cb_arg;
3353 
3354 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITED);
3355 	nvmf_tcp_qpair_destroy(tqpair);
3356 }
3357 
3358 static int
3359 nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3360 {
3361 	struct spdk_nvmf_tcp_poll_group *tgroup;
3362 	int rc;
3363 	struct spdk_nvmf_request *req, *req_tmp;
3364 	struct spdk_nvmf_tcp_req *tcp_req;
3365 	struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp;
3366 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(group->transport,
3367 			struct spdk_nvmf_tcp_transport, transport);
3368 
3369 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3370 
3371 	if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) {
3372 		return 0;
3373 	}
3374 
3375 	STAILQ_FOREACH_SAFE(req, &group->pending_buf_queue, buf_link, req_tmp) {
3376 		tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3377 		if (nvmf_tcp_req_process(ttransport, tcp_req) == false) {
3378 			break;
3379 		}
3380 	}
3381 
3382 	rc = spdk_sock_group_poll(tgroup->sock_group);
3383 	if (rc < 0) {
3384 		SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
3385 	}
3386 
3387 	TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) {
3388 		rc = nvmf_tcp_sock_process(tqpair);
3389 
3390 		/* If there was a new socket error, disconnect */
3391 		if (rc < 0) {
3392 			nvmf_tcp_qpair_disconnect(tqpair);
3393 		}
3394 	}
3395 
3396 	return rc;
3397 }
3398 
3399 static int
3400 nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
3401 			struct spdk_nvme_transport_id *trid, bool peer)
3402 {
3403 	struct spdk_nvmf_tcp_qpair     *tqpair;
3404 	uint16_t			port;
3405 
3406 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3407 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
3408 
3409 	if (peer) {
3410 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
3411 		port = tqpair->initiator_port;
3412 	} else {
3413 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
3414 		port = tqpair->target_port;
3415 	}
3416 
3417 	if (spdk_sock_is_ipv4(tqpair->sock)) {
3418 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3419 	} else if (spdk_sock_is_ipv6(tqpair->sock)) {
3420 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3421 	} else {
3422 		return -1;
3423 	}
3424 
3425 	snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
3426 	return 0;
3427 }
3428 
3429 static int
3430 nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3431 			      struct spdk_nvme_transport_id *trid)
3432 {
3433 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3434 }
3435 
3436 static int
3437 nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3438 			     struct spdk_nvme_transport_id *trid)
3439 {
3440 	return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
3441 }
3442 
3443 static int
3444 nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3445 			       struct spdk_nvme_transport_id *trid)
3446 {
3447 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3448 }
3449 
3450 static void
3451 nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
3452 			      struct spdk_nvmf_tcp_req *tcp_req_to_abort)
3453 {
3454 	nvmf_tcp_req_set_cpl(tcp_req_to_abort, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_BY_REQUEST);
3455 	nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3456 
3457 	req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
3458 }
3459 
3460 static int
3461 _nvmf_tcp_qpair_abort_request(void *ctx)
3462 {
3463 	struct spdk_nvmf_request *req = ctx;
3464 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
3465 			struct spdk_nvmf_tcp_req, req);
3466 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
3467 					     struct spdk_nvmf_tcp_qpair, qpair);
3468 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
3469 			struct spdk_nvmf_tcp_transport, transport);
3470 	int rc;
3471 
3472 	spdk_poller_unregister(&req->poller);
3473 
3474 	switch (tcp_req_to_abort->state) {
3475 	case TCP_REQUEST_STATE_EXECUTING:
3476 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3477 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3478 		rc = nvmf_ctrlr_abort_request(req);
3479 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
3480 			return SPDK_POLLER_BUSY;
3481 		}
3482 		break;
3483 
3484 	case TCP_REQUEST_STATE_NEED_BUFFER:
3485 		STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue,
3486 			      &tcp_req_to_abort->req, spdk_nvmf_request, buf_link);
3487 
3488 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3489 		nvmf_tcp_req_process(ttransport, tcp_req_to_abort);
3490 		break;
3491 
3492 	case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3493 	case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3494 		if (spdk_get_ticks() < req->timeout_tsc) {
3495 			req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
3496 			return SPDK_POLLER_BUSY;
3497 		}
3498 		break;
3499 
3500 	default:
3501 		/* Requests in other states are either un-abortable (e.g.
3502 		 * TRANSFERRING_CONTROLLER_TO_HOST) or should never end up here, as they're
3503 		 * immediately transitioned to other states in nvmf_tcp_req_process() (e.g.
3504 		 * READY_TO_EXECUTE).  But it is fine to end up here, as we'll simply complete the
3505 		 * abort request with the bit0 of dword0 set (command not aborted).
3506 		 */
3507 		break;
3508 	}
3509 
3510 	spdk_nvmf_request_complete(req);
3511 	return SPDK_POLLER_BUSY;
3512 }
3513 
3514 static void
3515 nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
3516 			     struct spdk_nvmf_request *req)
3517 {
3518 	struct spdk_nvmf_tcp_qpair *tqpair;
3519 	struct spdk_nvmf_tcp_transport *ttransport;
3520 	struct spdk_nvmf_transport *transport;
3521 	uint16_t cid;
3522 	uint32_t i;
3523 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
3524 
3525 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3526 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3527 	transport = &ttransport->transport;
3528 
3529 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
3530 
3531 	for (i = 0; i < tqpair->resource_count; i++) {
3532 		if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
3533 		    tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
3534 			tcp_req_to_abort = &tqpair->reqs[i];
3535 			break;
3536 		}
3537 	}
3538 
3539 	spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, tqpair->qpair.trace_id, 0, (uintptr_t)req);
3540 
3541 	if (tcp_req_to_abort == NULL) {
3542 		spdk_nvmf_request_complete(req);
3543 		return;
3544 	}
3545 
3546 	req->req_to_abort = &tcp_req_to_abort->req;
3547 	req->timeout_tsc = spdk_get_ticks() +
3548 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
3549 	req->poller = NULL;
3550 
3551 	_nvmf_tcp_qpair_abort_request(req);
3552 }
3553 
3554 struct tcp_subsystem_add_host_opts {
3555 	char *psk;
3556 };
3557 
3558 static const struct spdk_json_object_decoder tcp_subsystem_add_host_opts_decoder[] = {
3559 	{"psk", offsetof(struct tcp_subsystem_add_host_opts, psk), spdk_json_decode_string, true},
3560 };
3561 
3562 static int
3563 tcp_load_psk(const char *fname, char *buf, size_t bufsz)
3564 {
3565 	FILE *psk_file;
3566 	struct stat statbuf;
3567 	int rc;
3568 
3569 	if (stat(fname, &statbuf) != 0) {
3570 		SPDK_ERRLOG("Could not read permissions for PSK file\n");
3571 		return -EACCES;
3572 	}
3573 
3574 	if ((statbuf.st_mode & TCP_PSK_INVALID_PERMISSIONS) != 0) {
3575 		SPDK_ERRLOG("Incorrect permissions for PSK file\n");
3576 		return -EPERM;
3577 	}
3578 	if ((size_t)statbuf.st_size > bufsz) {
3579 		SPDK_ERRLOG("Invalid PSK: too long\n");
3580 		return -EINVAL;
3581 	}
3582 	psk_file = fopen(fname, "r");
3583 	if (psk_file == NULL) {
3584 		SPDK_ERRLOG("Could not open PSK file\n");
3585 		return -EINVAL;
3586 	}
3587 
3588 	rc = fread(buf, 1, statbuf.st_size, psk_file);
3589 	if (rc != statbuf.st_size) {
3590 		SPDK_ERRLOG("Failed to read PSK\n");
3591 		fclose(psk_file);
3592 		return -EINVAL;
3593 	}
3594 
3595 	fclose(psk_file);
3596 	return 0;
3597 }
3598 
3599 SPDK_LOG_DEPRECATION_REGISTER(nvmf_tcp_psk_path, "PSK path", "v24.09", 0);
3600 
3601 static int
3602 nvmf_tcp_subsystem_add_host(struct spdk_nvmf_transport *transport,
3603 			    const struct spdk_nvmf_subsystem *subsystem,
3604 			    const char *hostnqn,
3605 			    const struct spdk_json_val *transport_specific)
3606 {
3607 	struct tcp_subsystem_add_host_opts opts;
3608 	struct spdk_nvmf_tcp_transport *ttransport;
3609 	struct tcp_psk_entry *tmp, *entry = NULL;
3610 	uint8_t psk_configured[SPDK_TLS_PSK_MAX_LEN] = {};
3611 	char psk_interchange[SPDK_TLS_PSK_MAX_LEN + 1] = {};
3612 	uint8_t tls_cipher_suite;
3613 	int rc = 0;
3614 	uint8_t psk_retained_hash;
3615 	uint64_t psk_configured_size;
3616 
3617 	if (transport_specific == NULL) {
3618 		return 0;
3619 	}
3620 
3621 	assert(transport != NULL);
3622 	assert(subsystem != NULL);
3623 
3624 	memset(&opts, 0, sizeof(opts));
3625 
3626 	/* Decode PSK (either name of a key or file path) */
3627 	if (spdk_json_decode_object_relaxed(transport_specific, tcp_subsystem_add_host_opts_decoder,
3628 					    SPDK_COUNTOF(tcp_subsystem_add_host_opts_decoder), &opts)) {
3629 		SPDK_ERRLOG("spdk_json_decode_object failed\n");
3630 		return -EINVAL;
3631 	}
3632 
3633 	if (opts.psk == NULL) {
3634 		return 0;
3635 	}
3636 
3637 	entry = calloc(1, sizeof(struct tcp_psk_entry));
3638 	if (entry == NULL) {
3639 		SPDK_ERRLOG("Unable to allocate memory for PSK entry!\n");
3640 		rc = -ENOMEM;
3641 		goto end;
3642 	}
3643 
3644 	entry->key = spdk_keyring_get_key(opts.psk);
3645 	if (entry->key != NULL) {
3646 		rc = spdk_key_get_key(entry->key, psk_interchange, SPDK_TLS_PSK_MAX_LEN);
3647 		if (rc < 0) {
3648 			SPDK_ERRLOG("Failed to retreive PSK '%s'\n", opts.psk);
3649 			rc = -EINVAL;
3650 			goto end;
3651 		}
3652 	} else {
3653 		if (strlen(opts.psk) >= sizeof(entry->psk)) {
3654 			SPDK_ERRLOG("PSK path too long\n");
3655 			rc = -EINVAL;
3656 			goto end;
3657 		}
3658 
3659 		rc = tcp_load_psk(opts.psk, psk_interchange, SPDK_TLS_PSK_MAX_LEN);
3660 		if (rc) {
3661 			SPDK_ERRLOG("Could not retrieve PSK from file\n");
3662 			goto end;
3663 		}
3664 
3665 		SPDK_LOG_DEPRECATED(nvmf_tcp_psk_path);
3666 	}
3667 
3668 	/* Parse PSK interchange to get length of base64 encoded data.
3669 	 * This is then used to decide which cipher suite should be used
3670 	 * to generate PSK identity and TLS PSK later on. */
3671 	rc = nvme_tcp_parse_interchange_psk(psk_interchange, psk_configured, sizeof(psk_configured),
3672 					    &psk_configured_size, &psk_retained_hash);
3673 	if (rc < 0) {
3674 		SPDK_ERRLOG("Failed to parse PSK interchange!\n");
3675 		goto end;
3676 	}
3677 
3678 	/* The Base64 string encodes the configured PSK (32 or 48 bytes binary).
3679 	 * This check also ensures that psk_configured_size is smaller than
3680 	 * psk_retained buffer size. */
3681 	if (psk_configured_size == SHA256_DIGEST_LENGTH) {
3682 		tls_cipher_suite = NVME_TCP_CIPHER_AES_128_GCM_SHA256;
3683 	} else if (psk_configured_size == SHA384_DIGEST_LENGTH) {
3684 		tls_cipher_suite = NVME_TCP_CIPHER_AES_256_GCM_SHA384;
3685 	} else {
3686 		SPDK_ERRLOG("Unrecognized cipher suite!\n");
3687 		rc = -EINVAL;
3688 		goto end;
3689 	}
3690 
3691 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3692 	/* Generate PSK identity. */
3693 	rc = nvme_tcp_generate_psk_identity(entry->pskid, sizeof(entry->pskid), hostnqn,
3694 					    subsystem->subnqn, tls_cipher_suite);
3695 	if (rc) {
3696 		rc = -EINVAL;
3697 		goto end;
3698 	}
3699 	/* Check if PSK identity entry already exists. */
3700 	TAILQ_FOREACH(tmp, &ttransport->psks, link) {
3701 		if (strncmp(tmp->pskid, entry->pskid, NVMF_PSK_IDENTITY_LEN) == 0) {
3702 			SPDK_ERRLOG("Given PSK identity: %s entry already exists!\n", entry->pskid);
3703 			rc = -EEXIST;
3704 			goto end;
3705 		}
3706 	}
3707 
3708 	if (snprintf(entry->hostnqn, sizeof(entry->hostnqn), "%s", hostnqn) < 0) {
3709 		SPDK_ERRLOG("Could not write hostnqn string!\n");
3710 		rc = -EINVAL;
3711 		goto end;
3712 	}
3713 	if (snprintf(entry->subnqn, sizeof(entry->subnqn), "%s", subsystem->subnqn) < 0) {
3714 		SPDK_ERRLOG("Could not write subnqn string!\n");
3715 		rc = -EINVAL;
3716 		goto end;
3717 	}
3718 
3719 	entry->tls_cipher_suite = tls_cipher_suite;
3720 
3721 	/* No hash indicates that Configured PSK must be used as Retained PSK. */
3722 	if (psk_retained_hash == NVME_TCP_HASH_ALGORITHM_NONE) {
3723 		/* Psk configured is either 32 or 48 bytes long. */
3724 		memcpy(entry->psk, psk_configured, psk_configured_size);
3725 		entry->psk_size = psk_configured_size;
3726 	} else {
3727 		/* Derive retained PSK. */
3728 		rc = nvme_tcp_derive_retained_psk(psk_configured, psk_configured_size, hostnqn, entry->psk,
3729 						  SPDK_TLS_PSK_MAX_LEN, psk_retained_hash);
3730 		if (rc < 0) {
3731 			SPDK_ERRLOG("Unable to derive retained PSK!\n");
3732 			goto end;
3733 		}
3734 		entry->psk_size = rc;
3735 	}
3736 
3737 	if (entry->key == NULL) {
3738 		rc = snprintf(entry->psk_path, sizeof(entry->psk_path), "%s", opts.psk);
3739 		if (rc < 0 || (size_t)rc >= sizeof(entry->psk_path)) {
3740 			SPDK_ERRLOG("Could not save PSK path!\n");
3741 			rc = -ENAMETOOLONG;
3742 			goto end;
3743 		}
3744 	}
3745 
3746 	TAILQ_INSERT_TAIL(&ttransport->psks, entry, link);
3747 	rc = 0;
3748 
3749 end:
3750 	spdk_memset_s(psk_configured, sizeof(psk_configured), 0, sizeof(psk_configured));
3751 	spdk_memset_s(psk_interchange, sizeof(psk_interchange), 0, sizeof(psk_interchange));
3752 
3753 	free(opts.psk);
3754 	if (rc != 0) {
3755 		nvmf_tcp_free_psk_entry(entry);
3756 	}
3757 
3758 	return rc;
3759 }
3760 
3761 static void
3762 nvmf_tcp_subsystem_remove_host(struct spdk_nvmf_transport *transport,
3763 			       const struct spdk_nvmf_subsystem *subsystem,
3764 			       const char *hostnqn)
3765 {
3766 	struct spdk_nvmf_tcp_transport *ttransport;
3767 	struct tcp_psk_entry *entry, *tmp;
3768 
3769 	assert(transport != NULL);
3770 	assert(subsystem != NULL);
3771 
3772 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3773 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
3774 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3775 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3776 			TAILQ_REMOVE(&ttransport->psks, entry, link);
3777 			nvmf_tcp_free_psk_entry(entry);
3778 			break;
3779 		}
3780 	}
3781 }
3782 
3783 static void
3784 nvmf_tcp_subsystem_dump_host(struct spdk_nvmf_transport *transport,
3785 			     const struct spdk_nvmf_subsystem *subsystem, const char *hostnqn,
3786 			     struct spdk_json_write_ctx *w)
3787 {
3788 	struct spdk_nvmf_tcp_transport *ttransport;
3789 	struct tcp_psk_entry *entry;
3790 
3791 	assert(transport != NULL);
3792 	assert(subsystem != NULL);
3793 
3794 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3795 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
3796 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3797 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3798 			spdk_json_write_named_string(w, "psk", entry->key ?
3799 						     spdk_key_get_name(entry->key) : entry->psk_path);
3800 			break;
3801 		}
3802 	}
3803 }
3804 
3805 static void
3806 nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
3807 {
3808 	opts->max_queue_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
3809 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
3810 	opts->in_capsule_data_size =	SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
3811 	opts->max_io_size =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
3812 	opts->io_unit_size =		SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
3813 	opts->max_aq_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
3814 	opts->num_shared_buffers =	SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
3815 	opts->buf_cache_size =		SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
3816 	opts->dif_insert_or_strip =	SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
3817 	opts->abort_timeout_sec =	SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
3818 	opts->transport_specific =      NULL;
3819 }
3820 
3821 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
3822 	.name = "TCP",
3823 	.type = SPDK_NVME_TRANSPORT_TCP,
3824 	.opts_init = nvmf_tcp_opts_init,
3825 	.create = nvmf_tcp_create,
3826 	.dump_opts = nvmf_tcp_dump_opts,
3827 	.destroy = nvmf_tcp_destroy,
3828 
3829 	.listen = nvmf_tcp_listen,
3830 	.stop_listen = nvmf_tcp_stop_listen,
3831 
3832 	.listener_discover = nvmf_tcp_discover,
3833 
3834 	.poll_group_create = nvmf_tcp_poll_group_create,
3835 	.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
3836 	.poll_group_destroy = nvmf_tcp_poll_group_destroy,
3837 	.poll_group_add = nvmf_tcp_poll_group_add,
3838 	.poll_group_remove = nvmf_tcp_poll_group_remove,
3839 	.poll_group_poll = nvmf_tcp_poll_group_poll,
3840 
3841 	.req_free = nvmf_tcp_req_free,
3842 	.req_complete = nvmf_tcp_req_complete,
3843 
3844 	.qpair_fini = nvmf_tcp_close_qpair,
3845 	.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
3846 	.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
3847 	.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
3848 	.qpair_abort_request = nvmf_tcp_qpair_abort_request,
3849 	.subsystem_add_host = nvmf_tcp_subsystem_add_host,
3850 	.subsystem_remove_host = nvmf_tcp_subsystem_remove_host,
3851 	.subsystem_dump_host = nvmf_tcp_subsystem_dump_host,
3852 };
3853 
3854 SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
3855 SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)
3856