xref: /spdk/lib/nvmf/tcp.c (revision 2186fc0389db7611703e15b2131e64846c1e65a0)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2018 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/accel.h"
8 #include "spdk/stdinc.h"
9 #include "spdk/crc32.h"
10 #include "spdk/endian.h"
11 #include "spdk/assert.h"
12 #include "spdk/thread.h"
13 #include "spdk/nvmf_transport.h"
14 #include "spdk/string.h"
15 #include "spdk/trace.h"
16 #include "spdk/util.h"
17 #include "spdk/log.h"
18 #include "spdk/keyring.h"
19 
20 #include "spdk_internal/assert.h"
21 #include "spdk_internal/nvme_tcp.h"
22 #include "spdk_internal/sock.h"
23 
24 #include "nvmf_internal.h"
25 #include "transport.h"
26 
27 #include "spdk_internal/trace_defs.h"
28 
29 #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
30 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
31 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
32 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
33 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
34 
35 #define SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH 2
36 #define SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH 65535
37 #define SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH 2
38 #define SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH 4096
39 
40 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH 128
41 #define SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH 128
42 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
43 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
44 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
45 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
46 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
47 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX
48 #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
49 #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
50 
51 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
52 static bool g_tls_log = false;
53 
54 /* spdk nvmf related structure */
55 enum spdk_nvmf_tcp_req_state {
56 
57 	/* The request is not currently in use */
58 	TCP_REQUEST_STATE_FREE = 0,
59 
60 	/* Initial state when request first received */
61 	TCP_REQUEST_STATE_NEW = 1,
62 
63 	/* The request is queued until a data buffer is available. */
64 	TCP_REQUEST_STATE_NEED_BUFFER = 2,
65 
66 	/* The request has the data buffer available */
67 	TCP_REQUEST_STATE_HAVE_BUFFER = 3,
68 
69 	/* The request is waiting for zcopy_start to finish */
70 	TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 4,
71 
72 	/* The request has received a zero-copy buffer */
73 	TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 5,
74 
75 	/* The request is currently transferring data from the host to the controller. */
76 	TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 6,
77 
78 	/* The request is waiting for the R2T send acknowledgement. */
79 	TCP_REQUEST_STATE_AWAITING_R2T_ACK = 7,
80 
81 	/* The request is ready to execute at the block device */
82 	TCP_REQUEST_STATE_READY_TO_EXECUTE = 8,
83 
84 	/* The request is currently executing at the block device */
85 	TCP_REQUEST_STATE_EXECUTING = 9,
86 
87 	/* The request is waiting for zcopy buffers to be committed */
88 	TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 10,
89 
90 	/* The request finished executing at the block device */
91 	TCP_REQUEST_STATE_EXECUTED = 11,
92 
93 	/* The request is ready to send a completion */
94 	TCP_REQUEST_STATE_READY_TO_COMPLETE = 12,
95 
96 	/* The request is currently transferring final pdus from the controller to the host. */
97 	TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 13,
98 
99 	/* The request is waiting for zcopy buffers to be released (without committing) */
100 	TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 14,
101 
102 	/* The request completed and can be marked free. */
103 	TCP_REQUEST_STATE_COMPLETED = 15,
104 
105 	/* Terminator */
106 	TCP_REQUEST_NUM_STATES,
107 };
108 
109 static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
110 	"Invalid PDU Header Field",
111 	"PDU Sequence Error",
112 	"Header Digiest Error",
113 	"Data Transfer Out of Range",
114 	"R2T Limit Exceeded",
115 	"Unsupported parameter",
116 };
117 
118 SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
119 {
120 	spdk_trace_register_owner_type(OWNER_TYPE_NVMF_TCP, 't');
121 	spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
122 	spdk_trace_register_description("TCP_REQ_NEW",
123 					TRACE_TCP_REQUEST_STATE_NEW,
124 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1,
125 					SPDK_TRACE_ARG_TYPE_INT, "qd");
126 	spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
127 					TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
128 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
129 					SPDK_TRACE_ARG_TYPE_INT, "");
130 	spdk_trace_register_description("TCP_REQ_HAVE_BUFFER",
131 					TRACE_TCP_REQUEST_STATE_HAVE_BUFFER,
132 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
133 					SPDK_TRACE_ARG_TYPE_INT, "");
134 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START",
135 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START,
136 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
137 					SPDK_TRACE_ARG_TYPE_INT, "");
138 	spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL",
139 					TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED,
140 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
141 					SPDK_TRACE_ARG_TYPE_INT, "");
142 	spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
143 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
144 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
145 					SPDK_TRACE_ARG_TYPE_INT, "");
146 	spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
147 					TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
148 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
149 					SPDK_TRACE_ARG_TYPE_INT, "");
150 	spdk_trace_register_description("TCP_REQ_EXECUTING",
151 					TRACE_TCP_REQUEST_STATE_EXECUTING,
152 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
153 					SPDK_TRACE_ARG_TYPE_INT, "");
154 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT",
155 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT,
156 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
157 					SPDK_TRACE_ARG_TYPE_INT, "");
158 	spdk_trace_register_description("TCP_REQ_EXECUTED",
159 					TRACE_TCP_REQUEST_STATE_EXECUTED,
160 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
161 					SPDK_TRACE_ARG_TYPE_INT, "");
162 	spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
163 					TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
164 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
165 					SPDK_TRACE_ARG_TYPE_INT, "");
166 	spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
167 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
168 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
169 					SPDK_TRACE_ARG_TYPE_INT, "");
170 	spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS",
171 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE,
172 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
173 					SPDK_TRACE_ARG_TYPE_INT, "");
174 	spdk_trace_register_description("TCP_REQ_COMPLETED",
175 					TRACE_TCP_REQUEST_STATE_COMPLETED,
176 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
177 					SPDK_TRACE_ARG_TYPE_INT, "qd");
178 	spdk_trace_register_description("TCP_READ_DONE",
179 					TRACE_TCP_READ_FROM_SOCKET_DONE,
180 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
181 					SPDK_TRACE_ARG_TYPE_INT, "");
182 	spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
183 					TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
184 					OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
185 					SPDK_TRACE_ARG_TYPE_INT, "");
186 
187 	spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE,
188 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
189 					SPDK_TRACE_ARG_TYPE_INT, "");
190 	spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT,
191 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
192 					SPDK_TRACE_ARG_TYPE_INT, "");
193 	spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE,
194 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
195 					SPDK_TRACE_ARG_TYPE_INT, "state");
196 	spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT,
197 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
198 					SPDK_TRACE_ARG_TYPE_INT, "");
199 	spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY,
200 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
201 					SPDK_TRACE_ARG_TYPE_INT, "");
202 	spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ,
203 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
204 					SPDK_TRACE_ARG_TYPE_INT, "");
205 	spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE,
206 					OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0,
207 					SPDK_TRACE_ARG_TYPE_INT, "state");
208 
209 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1);
210 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0);
211 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_QUEUE, OBJECT_NVMF_TCP_IO, 0);
212 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_PEND, OBJECT_NVMF_TCP_IO, 0);
213 	spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_COMPLETE, OBJECT_NVMF_TCP_IO, 0);
214 }
215 
216 struct spdk_nvmf_tcp_req  {
217 	struct spdk_nvmf_request		req;
218 	struct spdk_nvme_cpl			rsp;
219 	struct spdk_nvme_cmd			cmd;
220 
221 	/* A PDU that can be used for sending responses. This is
222 	 * not the incoming PDU! */
223 	struct nvme_tcp_pdu			*pdu;
224 
225 	/* In-capsule data buffer */
226 	uint8_t					*buf;
227 
228 	struct spdk_nvmf_tcp_req		*fused_pair;
229 
230 	/*
231 	 * The PDU for a request may be used multiple times in serial over
232 	 * the request's lifetime. For example, first to send an R2T, then
233 	 * to send a completion. To catch mistakes where the PDU is used
234 	 * twice at the same time, add a debug flag here for init/fini.
235 	 */
236 	bool					pdu_in_use;
237 	bool					has_in_capsule_data;
238 	bool					fused_failed;
239 
240 	/* transfer_tag */
241 	uint16_t				ttag;
242 
243 	enum spdk_nvmf_tcp_req_state		state;
244 
245 	/*
246 	 * h2c_offset is used when we receive the h2c_data PDU.
247 	 */
248 	uint32_t				h2c_offset;
249 
250 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		link;
251 	TAILQ_ENTRY(spdk_nvmf_tcp_req)		state_link;
252 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		control_msg_link;
253 };
254 
255 struct spdk_nvmf_tcp_qpair {
256 	struct spdk_nvmf_qpair			qpair;
257 	struct spdk_nvmf_tcp_poll_group		*group;
258 	struct spdk_sock			*sock;
259 
260 	enum nvme_tcp_pdu_recv_state		recv_state;
261 	enum nvme_tcp_qpair_state		state;
262 
263 	/* PDU being actively received */
264 	struct nvme_tcp_pdu			*pdu_in_progress;
265 
266 	struct spdk_nvmf_tcp_req		*fused_first;
267 
268 	/* Queues to track the requests in all states */
269 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_working_queue;
270 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_free_queue;
271 	SLIST_HEAD(, nvme_tcp_pdu)		tcp_pdu_free_queue;
272 	/* Number of working pdus */
273 	uint32_t				tcp_pdu_working_count;
274 
275 	/* Number of requests in each state */
276 	uint32_t				state_cntr[TCP_REQUEST_NUM_STATES];
277 
278 	uint8_t					cpda;
279 
280 	bool					host_hdgst_enable;
281 	bool					host_ddgst_enable;
282 
283 	/* This is a spare PDU used for sending special management
284 	 * operations. Primarily, this is used for the initial
285 	 * connection response and c2h termination request. */
286 	struct nvme_tcp_pdu			*mgmt_pdu;
287 
288 	/* Arrays of in-capsule buffers, requests, and pdus.
289 	 * Each array is 'resource_count' number of elements */
290 	void					*bufs;
291 	struct spdk_nvmf_tcp_req		*reqs;
292 	struct nvme_tcp_pdu			*pdus;
293 	uint32_t				resource_count;
294 	uint32_t				recv_buf_size;
295 
296 	struct spdk_nvmf_tcp_port		*port;
297 
298 	/* IP address */
299 	char					initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
300 	char					target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
301 
302 	/* IP port */
303 	uint16_t				initiator_port;
304 	uint16_t				target_port;
305 
306 	/* Wait until the host terminates the connection (e.g. after sending C2HTermReq) */
307 	bool					wait_terminate;
308 
309 	/* Timer used to destroy qpair after detecting transport error issue if initiator does
310 	 *  not close the connection.
311 	 */
312 	struct spdk_poller			*timeout_poller;
313 
314 	spdk_nvmf_transport_qpair_fini_cb	fini_cb_fn;
315 	void					*fini_cb_arg;
316 
317 	TAILQ_ENTRY(spdk_nvmf_tcp_qpair)	link;
318 };
319 
320 struct spdk_nvmf_tcp_control_msg {
321 	STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
322 };
323 
324 struct spdk_nvmf_tcp_control_msg_list {
325 	void *msg_buf;
326 	STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
327 	STAILQ_HEAD(, spdk_nvmf_tcp_req) waiting_for_msg_reqs;
328 };
329 
330 struct spdk_nvmf_tcp_poll_group {
331 	struct spdk_nvmf_transport_poll_group	group;
332 	struct spdk_sock_group			*sock_group;
333 
334 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	qpairs;
335 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	await_req;
336 
337 	struct spdk_io_channel			*accel_channel;
338 	struct spdk_nvmf_tcp_control_msg_list	*control_msg_list;
339 
340 	TAILQ_ENTRY(spdk_nvmf_tcp_poll_group)	link;
341 };
342 
343 struct spdk_nvmf_tcp_port {
344 	const struct spdk_nvme_transport_id	*trid;
345 	struct spdk_sock			*listen_sock;
346 	struct spdk_nvmf_transport		*transport;
347 	TAILQ_ENTRY(spdk_nvmf_tcp_port)		link;
348 };
349 
350 struct tcp_transport_opts {
351 	bool		c2h_success;
352 	uint16_t	control_msg_num;
353 	uint32_t	sock_priority;
354 };
355 
356 struct tcp_psk_entry {
357 	char				hostnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
358 	char				subnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
359 	char				pskid[NVMF_PSK_IDENTITY_LEN];
360 	uint8_t				psk[SPDK_TLS_PSK_MAX_LEN];
361 	struct spdk_key			*key;
362 	uint32_t			psk_size;
363 	enum nvme_tcp_cipher_suite	tls_cipher_suite;
364 	TAILQ_ENTRY(tcp_psk_entry)	link;
365 };
366 
367 struct spdk_nvmf_tcp_transport {
368 	struct spdk_nvmf_transport		transport;
369 	struct tcp_transport_opts               tcp_opts;
370 	uint32_t				ack_timeout;
371 
372 	struct spdk_nvmf_tcp_poll_group		*next_pg;
373 
374 	struct spdk_poller			*accept_poller;
375 	struct spdk_sock_group			*listen_sock_group;
376 
377 	TAILQ_HEAD(, spdk_nvmf_tcp_port)	ports;
378 	TAILQ_HEAD(, spdk_nvmf_tcp_poll_group)	poll_groups;
379 
380 	TAILQ_HEAD(, tcp_psk_entry)		psks;
381 };
382 
383 static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
384 	{
385 		"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
386 		spdk_json_decode_bool, true
387 	},
388 	{
389 		"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
390 		spdk_json_decode_uint16, true
391 	},
392 	{
393 		"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
394 		spdk_json_decode_uint32, true
395 	},
396 };
397 
398 static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
399 				 struct spdk_nvmf_tcp_req *tcp_req);
400 static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
401 
402 static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
403 				    struct spdk_nvmf_tcp_req *tcp_req);
404 
405 static inline void
406 nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
407 		       enum spdk_nvmf_tcp_req_state state)
408 {
409 	struct spdk_nvmf_qpair *qpair;
410 	struct spdk_nvmf_tcp_qpair *tqpair;
411 
412 	qpair = tcp_req->req.qpair;
413 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
414 
415 	assert(tqpair->state_cntr[tcp_req->state] > 0);
416 	tqpair->state_cntr[tcp_req->state]--;
417 	tqpair->state_cntr[state]++;
418 
419 	tcp_req->state = state;
420 }
421 
422 static inline struct nvme_tcp_pdu *
423 nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
424 {
425 	assert(tcp_req->pdu_in_use == false);
426 
427 	memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
428 	tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
429 
430 	return tcp_req->pdu;
431 }
432 
433 static struct spdk_nvmf_tcp_req *
434 nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
435 {
436 	struct spdk_nvmf_tcp_req *tcp_req;
437 
438 	tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
439 	if (spdk_unlikely(!tcp_req)) {
440 		return NULL;
441 	}
442 
443 	memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
444 	tcp_req->h2c_offset = 0;
445 	tcp_req->has_in_capsule_data = false;
446 	tcp_req->req.dif_enabled = false;
447 	tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE;
448 
449 	TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
450 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
451 	tqpair->qpair.queue_depth++;
452 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
453 	return tcp_req;
454 }
455 
456 static inline void
457 nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
458 {
459 	assert(!tcp_req->pdu_in_use);
460 
461 	TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
462 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
463 	tqpair->qpair.queue_depth--;
464 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
465 }
466 
467 static void
468 nvmf_tcp_req_get_buffers_done(struct spdk_nvmf_request *req)
469 {
470 	struct spdk_nvmf_tcp_req *tcp_req;
471 	struct spdk_nvmf_transport *transport;
472 	struct spdk_nvmf_tcp_transport *ttransport;
473 
474 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
475 	transport = req->qpair->transport;
476 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
477 
478 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
479 	nvmf_tcp_req_process(ttransport, tcp_req);
480 }
481 
482 static void
483 nvmf_tcp_request_free(void *cb_arg)
484 {
485 	struct spdk_nvmf_tcp_transport *ttransport;
486 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
487 
488 	assert(tcp_req != NULL);
489 
490 	SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
491 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
492 				      struct spdk_nvmf_tcp_transport, transport);
493 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
494 	nvmf_tcp_req_process(ttransport, tcp_req);
495 }
496 
497 static int
498 nvmf_tcp_req_free(struct spdk_nvmf_request *req)
499 {
500 	struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
501 
502 	nvmf_tcp_request_free(tcp_req);
503 
504 	return 0;
505 }
506 
507 static void
508 nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
509 			   enum spdk_nvmf_tcp_req_state state)
510 {
511 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
512 
513 	assert(state != TCP_REQUEST_STATE_FREE);
514 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
515 		if (state == tcp_req->state) {
516 			nvmf_tcp_request_free(tcp_req);
517 		}
518 	}
519 }
520 
521 static inline void
522 nvmf_tcp_request_get_buffers_abort(struct spdk_nvmf_tcp_req *tcp_req)
523 {
524 	/* Request can wait either for the iobuf or control_msg */
525 	struct spdk_nvmf_poll_group *group = tcp_req->req.qpair->group;
526 	struct spdk_nvmf_transport *transport = tcp_req->req.qpair->transport;
527 	struct spdk_nvmf_transport_poll_group *tgroup = nvmf_get_transport_poll_group(group, transport);
528 	struct spdk_nvmf_tcp_poll_group *tcp_group = SPDK_CONTAINEROF(tgroup,
529 			struct spdk_nvmf_tcp_poll_group, group);
530 	struct spdk_nvmf_tcp_req *tmp_req, *abort_req;
531 
532 	assert(tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER);
533 
534 	STAILQ_FOREACH_SAFE(abort_req, &tcp_group->control_msg_list->waiting_for_msg_reqs, control_msg_link,
535 			    tmp_req) {
536 		if (abort_req == tcp_req) {
537 			STAILQ_REMOVE(&tcp_group->control_msg_list->waiting_for_msg_reqs, abort_req, spdk_nvmf_tcp_req,
538 				      control_msg_link);
539 			return;
540 		}
541 	}
542 
543 	if (!nvmf_request_get_buffers_abort(&tcp_req->req)) {
544 		SPDK_ERRLOG("Failed to abort tcp_req=%p\n", tcp_req);
545 		assert(0 && "Should never happen");
546 	}
547 }
548 
549 static void
550 nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
551 {
552 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
553 
554 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
555 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
556 
557 	/* Wipe the requests waiting for buffer from the waiting list */
558 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
559 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
560 			nvmf_tcp_request_get_buffers_abort(tcp_req);
561 		}
562 	}
563 
564 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
565 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
566 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
567 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
568 }
569 
570 static void
571 nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
572 {
573 	int i;
574 	struct spdk_nvmf_tcp_req *tcp_req;
575 
576 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
577 	for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
578 		SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
579 		TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
580 			if ((int)tcp_req->state == i) {
581 				SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
582 				SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
583 			}
584 		}
585 	}
586 }
587 
588 static void
589 _nvmf_tcp_qpair_destroy(void *_tqpair)
590 {
591 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
592 	spdk_nvmf_transport_qpair_fini_cb cb_fn = tqpair->fini_cb_fn;
593 	void *cb_arg = tqpair->fini_cb_arg;
594 	int err = 0;
595 
596 	spdk_trace_record(TRACE_TCP_QP_DESTROY, tqpair->qpair.trace_id, 0, 0);
597 
598 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
599 
600 	err = spdk_sock_close(&tqpair->sock);
601 	assert(err == 0);
602 	nvmf_tcp_cleanup_all_states(tqpair);
603 
604 	if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
605 		SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
606 			    tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
607 			    tqpair->resource_count);
608 		err++;
609 	}
610 
611 	if (err > 0) {
612 		nvmf_tcp_dump_qpair_req_contents(tqpair);
613 	}
614 
615 	/* The timeout poller might still be registered here if we close the qpair before host
616 	 * terminates the connection.
617 	 */
618 	spdk_poller_unregister(&tqpair->timeout_poller);
619 	spdk_dma_free(tqpair->pdus);
620 	free(tqpair->reqs);
621 	spdk_free(tqpair->bufs);
622 	spdk_trace_unregister_owner(tqpair->qpair.trace_id);
623 	free(tqpair);
624 
625 	if (cb_fn != NULL) {
626 		cb_fn(cb_arg);
627 	}
628 
629 	SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
630 }
631 
632 static void
633 nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
634 {
635 	/* Delay the destruction to make sure it isn't performed from the context of a sock
636 	 * callback.  Otherwise, spdk_sock_close() might not abort pending requests, causing their
637 	 * completions to be executed after the qpair is freed.  (Note: this fixed issue #2471.)
638 	 */
639 	spdk_thread_send_msg(spdk_get_thread(), _nvmf_tcp_qpair_destroy, tqpair);
640 }
641 
642 static void
643 nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
644 {
645 	struct spdk_nvmf_tcp_transport	*ttransport;
646 	assert(w != NULL);
647 
648 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
649 	spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
650 	spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
651 }
652 
653 static void
654 nvmf_tcp_free_psk_entry(struct tcp_psk_entry *entry)
655 {
656 	if (entry == NULL) {
657 		return;
658 	}
659 
660 	spdk_memset_s(entry->psk, sizeof(entry->psk), 0, sizeof(entry->psk));
661 	spdk_keyring_put_key(entry->key);
662 	free(entry);
663 }
664 
665 static int
666 nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
667 		 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
668 {
669 	struct spdk_nvmf_tcp_transport	*ttransport;
670 	struct tcp_psk_entry *entry, *tmp;
671 
672 	assert(transport != NULL);
673 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
674 
675 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
676 		TAILQ_REMOVE(&ttransport->psks, entry, link);
677 		nvmf_tcp_free_psk_entry(entry);
678 	}
679 
680 	spdk_poller_unregister(&ttransport->accept_poller);
681 	spdk_sock_group_unregister_interrupt(ttransport->listen_sock_group);
682 	spdk_sock_group_close(&ttransport->listen_sock_group);
683 	free(ttransport);
684 
685 	if (cb_fn) {
686 		cb_fn(cb_arg);
687 	}
688 	return 0;
689 }
690 
691 static int nvmf_tcp_accept(void *ctx);
692 
693 static void nvmf_tcp_accept_cb(void *ctx, struct spdk_sock_group *group, struct spdk_sock *sock);
694 
695 static struct spdk_nvmf_transport *
696 nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
697 {
698 	struct spdk_nvmf_tcp_transport *ttransport;
699 	uint32_t sge_count;
700 	uint32_t min_shared_buffers;
701 	int rc;
702 	uint64_t period;
703 
704 	ttransport = calloc(1, sizeof(*ttransport));
705 	if (!ttransport) {
706 		return NULL;
707 	}
708 
709 	TAILQ_INIT(&ttransport->ports);
710 	TAILQ_INIT(&ttransport->poll_groups);
711 	TAILQ_INIT(&ttransport->psks);
712 
713 	ttransport->transport.ops = &spdk_nvmf_transport_tcp;
714 
715 	ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
716 	ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
717 	ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
718 	if (opts->transport_specific != NULL &&
719 	    spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
720 					    SPDK_COUNTOF(tcp_transport_opts_decoder),
721 					    &ttransport->tcp_opts)) {
722 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
723 		free(ttransport);
724 		return NULL;
725 	}
726 
727 	SPDK_NOTICELOG("*** TCP Transport Init ***\n");
728 
729 	SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
730 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
731 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
732 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
733 		     "  num_shared_buffers=%d, c2h_success=%d,\n"
734 		     "  dif_insert_or_strip=%d, sock_priority=%d\n"
735 		     "  abort_timeout_sec=%d, control_msg_num=%hu\n"
736 		     "  ack_timeout=%d\n",
737 		     opts->max_queue_depth,
738 		     opts->max_io_size,
739 		     opts->max_qpairs_per_ctrlr - 1,
740 		     opts->io_unit_size,
741 		     opts->in_capsule_data_size,
742 		     opts->max_aq_depth,
743 		     opts->num_shared_buffers,
744 		     ttransport->tcp_opts.c2h_success,
745 		     opts->dif_insert_or_strip,
746 		     ttransport->tcp_opts.sock_priority,
747 		     opts->abort_timeout_sec,
748 		     ttransport->tcp_opts.control_msg_num,
749 		     opts->ack_timeout);
750 
751 	if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
752 		SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
753 			    "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
754 			    ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
755 		free(ttransport);
756 		return NULL;
757 	}
758 
759 	if (ttransport->tcp_opts.control_msg_num == 0 &&
760 	    opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
761 		SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
762 			     SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
763 		ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
764 	}
765 
766 	/* I/O unit size cannot be larger than max I/O size */
767 	if (opts->io_unit_size > opts->max_io_size) {
768 		SPDK_WARNLOG("TCP param io_unit_size %u can't be larger than max_io_size %u. Using max_io_size as io_unit_size\n",
769 			     opts->io_unit_size, opts->max_io_size);
770 		opts->io_unit_size = opts->max_io_size;
771 	}
772 
773 	/* In capsule data size cannot be larger than max I/O size */
774 	if (opts->in_capsule_data_size > opts->max_io_size) {
775 		SPDK_WARNLOG("TCP param ICD size %u can't be larger than max_io_size %u. Using max_io_size as ICD size\n",
776 			     opts->io_unit_size, opts->max_io_size);
777 		opts->in_capsule_data_size = opts->max_io_size;
778 	}
779 
780 	/* max IO queue depth cannot be smaller than 2 or larger than 65535.
781 	 * We will not check SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, because max_queue_depth is 16bits and always not larger than 64k. */
782 	if (opts->max_queue_depth < SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH) {
783 		SPDK_WARNLOG("TCP param max_queue_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
784 			     opts->max_queue_depth, SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH,
785 			     SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH);
786 		opts->max_queue_depth = SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
787 	}
788 
789 	/* max admin queue depth cannot be smaller than 2 or larger than 4096 */
790 	if (opts->max_aq_depth < SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH ||
791 	    opts->max_aq_depth > SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH) {
792 		SPDK_WARNLOG("TCP param max_aq_depth %u can't be smaller than %u or larger than %u. Using default value %u\n",
793 			     opts->max_aq_depth, SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH,
794 			     SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH);
795 		opts->max_aq_depth = SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
796 	}
797 
798 	sge_count = opts->max_io_size / opts->io_unit_size;
799 	if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
800 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
801 		free(ttransport);
802 		return NULL;
803 	}
804 
805 	/* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */
806 	if (opts->buf_cache_size < UINT32_MAX) {
807 		min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
808 		if (min_shared_buffers > opts->num_shared_buffers) {
809 			SPDK_ERRLOG("There are not enough buffers to satisfy "
810 				    "per-poll group caches for each thread. (%" PRIu32 ") "
811 				    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
812 			SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
813 			free(ttransport);
814 			return NULL;
815 		}
816 	}
817 
818 	period = spdk_interrupt_mode_is_enabled() ? 0 : opts->acceptor_poll_rate;
819 	ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport, period);
820 	if (!ttransport->accept_poller) {
821 		free(ttransport);
822 		return NULL;
823 	}
824 
825 	spdk_poller_register_interrupt(ttransport->accept_poller, NULL, NULL);
826 
827 	ttransport->listen_sock_group = spdk_sock_group_create(NULL);
828 	if (ttransport->listen_sock_group == NULL) {
829 		SPDK_ERRLOG("Failed to create socket group for listen sockets\n");
830 		spdk_poller_unregister(&ttransport->accept_poller);
831 		free(ttransport);
832 		return NULL;
833 	}
834 
835 	if (spdk_interrupt_mode_is_enabled()) {
836 		rc = SPDK_SOCK_GROUP_REGISTER_INTERRUPT(ttransport->listen_sock_group,
837 							SPDK_INTERRUPT_EVENT_IN | SPDK_INTERRUPT_EVENT_OUT, nvmf_tcp_accept, &ttransport->transport);
838 		if (rc != 0) {
839 			SPDK_ERRLOG("Failed to register interrupt for listen socker sock group\n");
840 			spdk_sock_group_close(&ttransport->listen_sock_group);
841 			spdk_poller_unregister(&ttransport->accept_poller);
842 			free(ttransport);
843 			return NULL;
844 		}
845 	}
846 
847 	return &ttransport->transport;
848 }
849 
850 static int
851 nvmf_tcp_trsvcid_to_int(const char *trsvcid)
852 {
853 	unsigned long long ull;
854 	char *end = NULL;
855 
856 	ull = strtoull(trsvcid, &end, 10);
857 	if (end == NULL || end == trsvcid || *end != '\0') {
858 		return -1;
859 	}
860 
861 	/* Valid TCP/IP port numbers are in [1, 65535] */
862 	if (ull == 0 || ull > 65535) {
863 		return -1;
864 	}
865 
866 	return (int)ull;
867 }
868 
869 /**
870  * Canonicalize a listen address trid.
871  */
872 static int
873 nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
874 			   const struct spdk_nvme_transport_id *trid)
875 {
876 	int trsvcid_int;
877 
878 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
879 	if (trsvcid_int < 0) {
880 		return -EINVAL;
881 	}
882 
883 	memset(canon_trid, 0, sizeof(*canon_trid));
884 	spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
885 	canon_trid->adrfam = trid->adrfam;
886 	snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
887 	snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
888 
889 	return 0;
890 }
891 
892 /**
893  * Find an existing listening port.
894  */
895 static struct spdk_nvmf_tcp_port *
896 nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
897 		   const struct spdk_nvme_transport_id *trid)
898 {
899 	struct spdk_nvme_transport_id canon_trid;
900 	struct spdk_nvmf_tcp_port *port;
901 
902 	if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
903 		return NULL;
904 	}
905 
906 	TAILQ_FOREACH(port, &ttransport->ports, link) {
907 		if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
908 			return port;
909 		}
910 	}
911 
912 	return NULL;
913 }
914 
915 static int
916 tcp_sock_get_key(uint8_t *out, int out_len, const char **cipher, const char *pskid,
917 		 void *get_key_ctx)
918 {
919 	struct tcp_psk_entry *entry;
920 	struct spdk_nvmf_tcp_transport *ttransport = get_key_ctx;
921 	size_t psk_len;
922 	int rc;
923 
924 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
925 		if (strcmp(pskid, entry->pskid) != 0) {
926 			continue;
927 		}
928 
929 		psk_len = entry->psk_size;
930 		if ((size_t)out_len < psk_len) {
931 			SPDK_ERRLOG("Out buffer of size: %" PRIu32 " cannot fit PSK of len: %lu\n",
932 				    out_len, psk_len);
933 			return -ENOBUFS;
934 		}
935 
936 		/* Convert PSK to the TLS PSK format. */
937 		rc = nvme_tcp_derive_tls_psk(entry->psk, psk_len, pskid, out, out_len,
938 					     entry->tls_cipher_suite);
939 		if (rc < 0) {
940 			SPDK_ERRLOG("Could not generate TLS PSK\n");
941 		}
942 
943 		switch (entry->tls_cipher_suite) {
944 		case NVME_TCP_CIPHER_AES_128_GCM_SHA256:
945 			*cipher = "TLS_AES_128_GCM_SHA256";
946 			break;
947 		case NVME_TCP_CIPHER_AES_256_GCM_SHA384:
948 			*cipher = "TLS_AES_256_GCM_SHA384";
949 			break;
950 		default:
951 			*cipher = NULL;
952 			return -ENOTSUP;
953 		}
954 
955 		return rc;
956 	}
957 
958 	SPDK_ERRLOG("Could not find PSK for identity: %s\n", pskid);
959 
960 	return -EINVAL;
961 }
962 
963 static int
964 nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
965 		struct spdk_nvmf_listen_opts *listen_opts)
966 {
967 	struct spdk_nvmf_tcp_transport *ttransport;
968 	struct spdk_nvmf_tcp_port *port;
969 	int trsvcid_int;
970 	uint8_t adrfam;
971 	const char *sock_impl_name;
972 	struct spdk_sock_impl_opts impl_opts;
973 	size_t impl_opts_size = sizeof(impl_opts);
974 	struct spdk_sock_opts opts;
975 	int rc;
976 
977 	if (!strlen(trid->trsvcid)) {
978 		SPDK_ERRLOG("Service id is required\n");
979 		return -EINVAL;
980 	}
981 
982 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
983 
984 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
985 	if (trsvcid_int < 0) {
986 		SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
987 		return -EINVAL;
988 	}
989 
990 	port = calloc(1, sizeof(*port));
991 	if (!port) {
992 		SPDK_ERRLOG("Port allocation failed\n");
993 		return -ENOMEM;
994 	}
995 
996 	port->trid = trid;
997 
998 	sock_impl_name = NULL;
999 
1000 	opts.opts_size = sizeof(opts);
1001 	spdk_sock_get_default_opts(&opts);
1002 	opts.priority = ttransport->tcp_opts.sock_priority;
1003 	opts.ack_timeout = transport->opts.ack_timeout;
1004 	if (listen_opts->secure_channel) {
1005 		if (listen_opts->sock_impl &&
1006 		    strncmp("ssl", listen_opts->sock_impl, strlen(listen_opts->sock_impl))) {
1007 			SPDK_ERRLOG("Enabling secure_channel while specifying a sock_impl different from 'ssl' is unsupported");
1008 			free(port);
1009 			return -EINVAL;
1010 		}
1011 		listen_opts->sock_impl = "ssl";
1012 	}
1013 
1014 	if (listen_opts->sock_impl) {
1015 		sock_impl_name = listen_opts->sock_impl;
1016 		spdk_sock_impl_get_opts(sock_impl_name, &impl_opts, &impl_opts_size);
1017 
1018 		if (!strncmp("ssl", sock_impl_name, strlen(sock_impl_name))) {
1019 			if (!g_tls_log) {
1020 				SPDK_NOTICELOG("TLS support is considered experimental\n");
1021 				g_tls_log = true;
1022 			}
1023 			impl_opts.tls_version = SPDK_TLS_VERSION_1_3;
1024 			impl_opts.get_key = tcp_sock_get_key;
1025 			impl_opts.get_key_ctx = ttransport;
1026 			impl_opts.tls_cipher_suites = "TLS_AES_256_GCM_SHA384:TLS_AES_128_GCM_SHA256";
1027 		}
1028 
1029 		opts.impl_opts = &impl_opts;
1030 		opts.impl_opts_size = sizeof(impl_opts);
1031 	}
1032 
1033 	port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
1034 			    sock_impl_name, &opts);
1035 	if (port->listen_sock == NULL) {
1036 		SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
1037 			    trid->traddr, trsvcid_int,
1038 			    spdk_strerror(errno), errno);
1039 		free(port);
1040 		return -errno;
1041 	}
1042 
1043 	if (spdk_sock_is_ipv4(port->listen_sock)) {
1044 		adrfam = SPDK_NVMF_ADRFAM_IPV4;
1045 	} else if (spdk_sock_is_ipv6(port->listen_sock)) {
1046 		adrfam = SPDK_NVMF_ADRFAM_IPV6;
1047 	} else {
1048 		SPDK_ERRLOG("Unhandled socket type\n");
1049 		adrfam = 0;
1050 	}
1051 
1052 	if (adrfam != trid->adrfam) {
1053 		SPDK_ERRLOG("Socket address family mismatch\n");
1054 		spdk_sock_close(&port->listen_sock);
1055 		free(port);
1056 		return -EINVAL;
1057 	}
1058 
1059 	rc = spdk_sock_group_add_sock(ttransport->listen_sock_group, port->listen_sock, nvmf_tcp_accept_cb,
1060 				      port);
1061 	if (rc < 0) {
1062 		SPDK_ERRLOG("Failed to add socket to the listen socket group\n");
1063 		spdk_sock_close(&port->listen_sock);
1064 		free(port);
1065 		return -errno;
1066 	}
1067 
1068 	port->transport = transport;
1069 
1070 	SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
1071 		       trid->traddr, trid->trsvcid);
1072 
1073 	TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
1074 	return 0;
1075 }
1076 
1077 static void
1078 nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
1079 		     const struct spdk_nvme_transport_id *trid)
1080 {
1081 	struct spdk_nvmf_tcp_transport *ttransport;
1082 	struct spdk_nvmf_tcp_port *port;
1083 
1084 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1085 
1086 	SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
1087 		      trid->traddr, trid->trsvcid);
1088 
1089 	port = nvmf_tcp_find_port(ttransport, trid);
1090 	if (port) {
1091 		spdk_sock_group_remove_sock(ttransport->listen_sock_group, port->listen_sock);
1092 		TAILQ_REMOVE(&ttransport->ports, port, link);
1093 		spdk_sock_close(&port->listen_sock);
1094 		free(port);
1095 	}
1096 }
1097 
1098 static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1099 		enum nvme_tcp_pdu_recv_state state);
1100 
1101 static void
1102 nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvme_tcp_qpair_state state)
1103 {
1104 	tqpair->state = state;
1105 	spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0,
1106 			  (uint64_t)tqpair->state);
1107 }
1108 
1109 static void
1110 nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
1111 {
1112 	SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
1113 
1114 	spdk_trace_record(TRACE_TCP_QP_DISCONNECT, tqpair->qpair.trace_id, 0, 0);
1115 
1116 	if (tqpair->state <= NVME_TCP_QPAIR_STATE_RUNNING) {
1117 		nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITING);
1118 		assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1119 		spdk_poller_unregister(&tqpair->timeout_poller);
1120 
1121 		/* This will end up calling nvmf_tcp_close_qpair */
1122 		spdk_nvmf_qpair_disconnect(&tqpair->qpair);
1123 	}
1124 }
1125 
1126 static void
1127 _mgmt_pdu_write_done(void *_tqpair, int err)
1128 {
1129 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
1130 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1131 
1132 	if (spdk_unlikely(err != 0)) {
1133 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1134 		return;
1135 	}
1136 
1137 	assert(pdu->cb_fn != NULL);
1138 	pdu->cb_fn(pdu->cb_arg);
1139 }
1140 
1141 static void
1142 _req_pdu_write_done(void *req, int err)
1143 {
1144 	struct spdk_nvmf_tcp_req *tcp_req = req;
1145 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1146 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1147 
1148 	assert(tcp_req->pdu_in_use);
1149 	tcp_req->pdu_in_use = false;
1150 
1151 	/* If the request is in a completed state, we're waiting for write completion to free it */
1152 	if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) {
1153 		nvmf_tcp_request_free(tcp_req);
1154 		return;
1155 	}
1156 
1157 	if (spdk_unlikely(err != 0)) {
1158 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1159 		return;
1160 	}
1161 
1162 	assert(pdu->cb_fn != NULL);
1163 	pdu->cb_fn(pdu->cb_arg);
1164 }
1165 
1166 static void
1167 _pdu_write_done(struct nvme_tcp_pdu *pdu, int err)
1168 {
1169 	pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err);
1170 }
1171 
1172 static void
1173 _tcp_write_pdu(struct nvme_tcp_pdu *pdu)
1174 {
1175 	int rc;
1176 	uint32_t mapped_length;
1177 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1178 
1179 	pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
1180 			       tqpair->host_hdgst_enable, tqpair->host_ddgst_enable, &mapped_length);
1181 	spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
1182 
1183 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
1184 	    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
1185 		/* Try to force the send immediately. */
1186 		rc = spdk_sock_flush(tqpair->sock);
1187 		if (rc > 0 && (uint32_t)rc == mapped_length) {
1188 			_pdu_write_done(pdu, 0);
1189 		} else {
1190 			SPDK_ERRLOG("Could not write %s to socket: rc=%d, errno=%d\n",
1191 				    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ?
1192 				    "IC_RESP" : "TERM_REQ", rc, errno);
1193 			_pdu_write_done(pdu, rc >= 0 ? -EAGAIN : -errno);
1194 		}
1195 	}
1196 }
1197 
1198 static void
1199 data_crc32_accel_done(void *cb_arg, int status)
1200 {
1201 	struct nvme_tcp_pdu *pdu = cb_arg;
1202 
1203 	if (spdk_unlikely(status)) {
1204 		SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
1205 		_pdu_write_done(pdu, status);
1206 		return;
1207 	}
1208 
1209 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
1210 	MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
1211 
1212 	_tcp_write_pdu(pdu);
1213 }
1214 
1215 static void
1216 pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
1217 {
1218 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1219 	int rc = 0;
1220 
1221 	/* Data Digest */
1222 	if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
1223 		/* Only support this limitated case for the first step */
1224 		if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
1225 				&& tqpair->group)) {
1226 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
1227 						       pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
1228 			if (spdk_likely(rc == 0)) {
1229 				return;
1230 			}
1231 		} else {
1232 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1233 		}
1234 		data_crc32_accel_done(pdu, rc);
1235 	} else {
1236 		_tcp_write_pdu(pdu);
1237 	}
1238 }
1239 
1240 static void
1241 nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1242 			 struct nvme_tcp_pdu *pdu,
1243 			 nvme_tcp_qpair_xfer_complete_cb cb_fn,
1244 			 void *cb_arg)
1245 {
1246 	int hlen;
1247 	uint32_t crc32c;
1248 
1249 	assert(tqpair->pdu_in_progress != pdu);
1250 
1251 	hlen = pdu->hdr.common.hlen;
1252 	pdu->cb_fn = cb_fn;
1253 	pdu->cb_arg = cb_arg;
1254 
1255 	pdu->iov[0].iov_base = &pdu->hdr.raw;
1256 	pdu->iov[0].iov_len = hlen;
1257 
1258 	/* Header Digest */
1259 	if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) {
1260 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1261 		MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
1262 	}
1263 
1264 	/* Data Digest */
1265 	pdu_data_crc32_compute(pdu);
1266 }
1267 
1268 static void
1269 nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1270 			      nvme_tcp_qpair_xfer_complete_cb cb_fn,
1271 			      void *cb_arg)
1272 {
1273 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1274 
1275 	pdu->sock_req.cb_fn = _mgmt_pdu_write_done;
1276 	pdu->sock_req.cb_arg = tqpair;
1277 
1278 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1279 }
1280 
1281 static void
1282 nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1283 			     struct spdk_nvmf_tcp_req *tcp_req,
1284 			     nvme_tcp_qpair_xfer_complete_cb cb_fn,
1285 			     void *cb_arg)
1286 {
1287 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1288 
1289 	pdu->sock_req.cb_fn = _req_pdu_write_done;
1290 	pdu->sock_req.cb_arg = tcp_req;
1291 
1292 	assert(!tcp_req->pdu_in_use);
1293 	tcp_req->pdu_in_use = true;
1294 
1295 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1296 }
1297 
1298 static int
1299 nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
1300 {
1301 	uint32_t i;
1302 	struct spdk_nvmf_transport_opts *opts;
1303 	uint32_t in_capsule_data_size;
1304 
1305 	opts = &tqpair->qpair.transport->opts;
1306 
1307 	in_capsule_data_size = opts->in_capsule_data_size;
1308 	if (opts->dif_insert_or_strip) {
1309 		in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
1310 	}
1311 
1312 	tqpair->resource_count = opts->max_queue_depth;
1313 
1314 	tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
1315 	if (!tqpair->reqs) {
1316 		SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
1317 		return -1;
1318 	}
1319 
1320 	if (in_capsule_data_size) {
1321 		tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
1322 					    NULL, SPDK_ENV_LCORE_ID_ANY,
1323 					    SPDK_MALLOC_DMA);
1324 		if (!tqpair->bufs) {
1325 			SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
1326 			return -1;
1327 		}
1328 	}
1329 	/* prepare memory space for receiving pdus and tcp_req */
1330 	/* Add additional 1 member, which will be used for mgmt_pdu owned by the tqpair */
1331 	tqpair->pdus = spdk_dma_zmalloc((2 * tqpair->resource_count + 1) * sizeof(*tqpair->pdus), 0x1000,
1332 					NULL);
1333 	if (!tqpair->pdus) {
1334 		SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
1335 		return -1;
1336 	}
1337 
1338 	for (i = 0; i < tqpair->resource_count; i++) {
1339 		struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
1340 
1341 		tcp_req->ttag = i + 1;
1342 		tcp_req->req.qpair = &tqpair->qpair;
1343 
1344 		tcp_req->pdu = &tqpair->pdus[i];
1345 		tcp_req->pdu->qpair = tqpair;
1346 
1347 		/* Set up memory to receive commands */
1348 		if (tqpair->bufs) {
1349 			tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
1350 		}
1351 
1352 		/* Set the cmdn and rsp */
1353 		tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
1354 		tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
1355 
1356 		tcp_req->req.stripped_data = NULL;
1357 
1358 		/* Initialize request state to FREE */
1359 		tcp_req->state = TCP_REQUEST_STATE_FREE;
1360 		TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
1361 		tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
1362 	}
1363 
1364 	for (; i < 2 * tqpair->resource_count; i++) {
1365 		struct nvme_tcp_pdu *pdu = &tqpair->pdus[i];
1366 
1367 		pdu->qpair = tqpair;
1368 		SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1369 	}
1370 
1371 	tqpair->mgmt_pdu = &tqpair->pdus[i];
1372 	tqpair->mgmt_pdu->qpair = tqpair;
1373 	tqpair->pdu_in_progress = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
1374 	SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
1375 	tqpair->tcp_pdu_working_count = 1;
1376 
1377 	tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
1378 				 SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1379 
1380 	return 0;
1381 }
1382 
1383 static int
1384 nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
1385 {
1386 	struct spdk_nvmf_tcp_qpair *tqpair;
1387 
1388 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1389 
1390 	SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
1391 
1392 	spdk_trace_record(TRACE_TCP_QP_CREATE, tqpair->qpair.trace_id, 0, 0);
1393 
1394 	/* Initialise request state queues of the qpair */
1395 	TAILQ_INIT(&tqpair->tcp_req_free_queue);
1396 	TAILQ_INIT(&tqpair->tcp_req_working_queue);
1397 	SLIST_INIT(&tqpair->tcp_pdu_free_queue);
1398 	tqpair->qpair.queue_depth = 0;
1399 
1400 	tqpair->host_hdgst_enable = true;
1401 	tqpair->host_ddgst_enable = true;
1402 
1403 	return 0;
1404 }
1405 
1406 static int
1407 nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
1408 {
1409 	char saddr[32], caddr[32];
1410 	uint16_t sport, cport;
1411 	char owner[256];
1412 	int rc;
1413 
1414 	rc = spdk_sock_getaddr(tqpair->sock, saddr, sizeof(saddr), &sport,
1415 			       caddr, sizeof(caddr), &cport);
1416 	if (rc != 0) {
1417 		SPDK_ERRLOG("spdk_sock_getaddr() failed\n");
1418 		return rc;
1419 	}
1420 	snprintf(owner, sizeof(owner), "%s:%d", caddr, cport);
1421 	tqpair->qpair.trace_id = spdk_trace_register_owner(OWNER_TYPE_NVMF_TCP, owner);
1422 	spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, tqpair->qpair.trace_id, 0, 0);
1423 
1424 	/* set low water mark */
1425 	rc = spdk_sock_set_recvlowat(tqpair->sock, 1);
1426 	if (rc != 0) {
1427 		SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
1428 		return rc;
1429 	}
1430 
1431 	return 0;
1432 }
1433 
1434 static void
1435 nvmf_tcp_handle_connect(struct spdk_nvmf_tcp_port *port, struct spdk_sock *sock)
1436 {
1437 	struct spdk_nvmf_tcp_qpair *tqpair;
1438 	int rc;
1439 
1440 	SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
1441 		      port->trid->traddr, port->trid->trsvcid);
1442 
1443 	tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
1444 	if (tqpair == NULL) {
1445 		SPDK_ERRLOG("Could not allocate new connection.\n");
1446 		spdk_sock_close(&sock);
1447 		return;
1448 	}
1449 
1450 	tqpair->sock = sock;
1451 	tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
1452 	tqpair->port = port;
1453 	tqpair->qpair.transport = port->transport;
1454 	tqpair->qpair.numa.id_valid = 1;
1455 	tqpair->qpair.numa.id = spdk_sock_get_numa_id(sock);
1456 
1457 	rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
1458 			       sizeof(tqpair->target_addr), &tqpair->target_port,
1459 			       tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
1460 			       &tqpair->initiator_port);
1461 	if (rc < 0) {
1462 		SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
1463 		nvmf_tcp_qpair_destroy(tqpair);
1464 		return;
1465 	}
1466 
1467 	spdk_nvmf_tgt_new_qpair(port->transport->tgt, &tqpair->qpair);
1468 }
1469 
1470 static uint32_t
1471 nvmf_tcp_port_accept(struct spdk_nvmf_tcp_port *port)
1472 {
1473 	struct spdk_sock *sock;
1474 	uint32_t count = 0;
1475 	int i;
1476 
1477 	for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
1478 		sock = spdk_sock_accept(port->listen_sock);
1479 		if (sock == NULL) {
1480 			break;
1481 		}
1482 		count++;
1483 		nvmf_tcp_handle_connect(port, sock);
1484 	}
1485 
1486 	return count;
1487 }
1488 
1489 static int
1490 nvmf_tcp_accept(void *ctx)
1491 {
1492 	struct spdk_nvmf_transport *transport = ctx;
1493 	struct spdk_nvmf_tcp_transport *ttransport;
1494 	int count;
1495 
1496 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1497 
1498 	count = spdk_sock_group_poll(ttransport->listen_sock_group);
1499 	if (count < 0) {
1500 		SPDK_ERRLOG("Fail in TCP listen socket group poll\n");
1501 	}
1502 
1503 	return count != 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1504 }
1505 
1506 static void
1507 nvmf_tcp_accept_cb(void *ctx, struct spdk_sock_group *group, struct spdk_sock *sock)
1508 {
1509 	struct spdk_nvmf_tcp_port *port = ctx;
1510 
1511 	nvmf_tcp_port_accept(port);
1512 }
1513 
1514 static void
1515 nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
1516 		  struct spdk_nvme_transport_id *trid,
1517 		  struct spdk_nvmf_discovery_log_page_entry *entry)
1518 {
1519 	struct spdk_nvmf_tcp_port *port;
1520 	struct spdk_nvmf_tcp_transport *ttransport;
1521 
1522 	entry->trtype = SPDK_NVMF_TRTYPE_TCP;
1523 	entry->adrfam = trid->adrfam;
1524 
1525 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
1526 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
1527 
1528 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1529 	port = nvmf_tcp_find_port(ttransport, trid);
1530 
1531 	assert(port != NULL);
1532 
1533 	if (strcmp(spdk_sock_get_impl_name(port->listen_sock), "ssl") == 0) {
1534 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_REQUIRED;
1535 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_TLS_1_3;
1536 	} else {
1537 		entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
1538 		entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
1539 	}
1540 }
1541 
1542 static struct spdk_nvmf_tcp_control_msg_list *
1543 nvmf_tcp_control_msg_list_create(uint16_t num_messages)
1544 {
1545 	struct spdk_nvmf_tcp_control_msg_list *list;
1546 	struct spdk_nvmf_tcp_control_msg *msg;
1547 	uint16_t i;
1548 
1549 	list = calloc(1, sizeof(*list));
1550 	if (!list) {
1551 		SPDK_ERRLOG("Failed to allocate memory for list structure\n");
1552 		return NULL;
1553 	}
1554 
1555 	list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
1556 				     NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
1557 	if (!list->msg_buf) {
1558 		SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
1559 		free(list);
1560 		return NULL;
1561 	}
1562 
1563 	STAILQ_INIT(&list->free_msgs);
1564 	STAILQ_INIT(&list->waiting_for_msg_reqs);
1565 
1566 	for (i = 0; i < num_messages; i++) {
1567 		msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
1568 				SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1569 		STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
1570 	}
1571 
1572 	return list;
1573 }
1574 
1575 static void
1576 nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
1577 {
1578 	if (!list) {
1579 		return;
1580 	}
1581 
1582 	spdk_free(list->msg_buf);
1583 	free(list);
1584 }
1585 
1586 static int nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group);
1587 
1588 static int
1589 nvmf_tcp_poll_group_intr(void *ctx)
1590 {
1591 	struct spdk_nvmf_transport_poll_group *group = ctx;
1592 	int ret = 0;
1593 
1594 	ret = nvmf_tcp_poll_group_poll(group);
1595 
1596 	return ret != 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1597 }
1598 
1599 static struct spdk_nvmf_transport_poll_group *
1600 nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport,
1601 			   struct spdk_nvmf_poll_group *group)
1602 {
1603 	struct spdk_nvmf_tcp_transport	*ttransport;
1604 	struct spdk_nvmf_tcp_poll_group *tgroup;
1605 	int rc;
1606 
1607 	tgroup = calloc(1, sizeof(*tgroup));
1608 	if (!tgroup) {
1609 		return NULL;
1610 	}
1611 
1612 	tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
1613 	if (!tgroup->sock_group) {
1614 		goto cleanup;
1615 	}
1616 
1617 	TAILQ_INIT(&tgroup->qpairs);
1618 	TAILQ_INIT(&tgroup->await_req);
1619 
1620 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1621 
1622 	if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
1623 		SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
1624 			      "Creating control messages list\n", transport->opts.in_capsule_data_size,
1625 			      SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1626 		tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
1627 		if (!tgroup->control_msg_list) {
1628 			goto cleanup;
1629 		}
1630 	}
1631 
1632 	tgroup->accel_channel = spdk_accel_get_io_channel();
1633 	if (spdk_unlikely(!tgroup->accel_channel)) {
1634 		SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
1635 		goto cleanup;
1636 	}
1637 
1638 	TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link);
1639 	if (ttransport->next_pg == NULL) {
1640 		ttransport->next_pg = tgroup;
1641 	}
1642 
1643 	if (spdk_interrupt_mode_is_enabled()) {
1644 		rc = SPDK_SOCK_GROUP_REGISTER_INTERRUPT(tgroup->sock_group,
1645 							SPDK_INTERRUPT_EVENT_IN | SPDK_INTERRUPT_EVENT_OUT, nvmf_tcp_poll_group_intr, &tgroup->group);
1646 		if (rc != 0) {
1647 			SPDK_ERRLOG("Failed to register interrupt for sock group\n");
1648 			goto cleanup;
1649 		}
1650 	}
1651 
1652 	return &tgroup->group;
1653 
1654 cleanup:
1655 	nvmf_tcp_poll_group_destroy(&tgroup->group);
1656 	return NULL;
1657 }
1658 
1659 static struct spdk_nvmf_transport_poll_group *
1660 nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
1661 {
1662 	struct spdk_nvmf_tcp_transport *ttransport;
1663 	struct spdk_nvmf_tcp_poll_group **pg;
1664 	struct spdk_nvmf_tcp_qpair *tqpair;
1665 	struct spdk_sock_group *group = NULL, *hint = NULL;
1666 	int rc;
1667 
1668 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
1669 
1670 	if (TAILQ_EMPTY(&ttransport->poll_groups)) {
1671 		return NULL;
1672 	}
1673 
1674 	pg = &ttransport->next_pg;
1675 	assert(*pg != NULL);
1676 	hint = (*pg)->sock_group;
1677 
1678 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1679 	rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint);
1680 	if (rc != 0) {
1681 		return NULL;
1682 	} else if (group != NULL) {
1683 		/* Optimal poll group was found */
1684 		return spdk_sock_group_get_ctx(group);
1685 	}
1686 
1687 	/* The hint was used for optimal poll group, advance next_pg. */
1688 	*pg = TAILQ_NEXT(*pg, link);
1689 	if (*pg == NULL) {
1690 		*pg = TAILQ_FIRST(&ttransport->poll_groups);
1691 	}
1692 
1693 	return spdk_sock_group_get_ctx(hint);
1694 }
1695 
1696 static void
1697 nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
1698 {
1699 	struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup;
1700 	struct spdk_nvmf_tcp_transport *ttransport;
1701 
1702 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
1703 	spdk_sock_group_unregister_interrupt(tgroup->sock_group);
1704 	spdk_sock_group_close(&tgroup->sock_group);
1705 	if (tgroup->control_msg_list) {
1706 		nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
1707 	}
1708 
1709 	if (tgroup->accel_channel) {
1710 		spdk_put_io_channel(tgroup->accel_channel);
1711 	}
1712 
1713 	if (tgroup->group.transport == NULL) {
1714 		/* Transport can be NULL when nvmf_tcp_poll_group_create()
1715 		 * calls this function directly in a failure path. */
1716 		free(tgroup);
1717 		return;
1718 	}
1719 
1720 	ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport);
1721 
1722 	next_tgroup = TAILQ_NEXT(tgroup, link);
1723 	TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link);
1724 	if (next_tgroup == NULL) {
1725 		next_tgroup = TAILQ_FIRST(&ttransport->poll_groups);
1726 	}
1727 	if (ttransport->next_pg == tgroup) {
1728 		ttransport->next_pg = next_tgroup;
1729 	}
1730 
1731 	free(tgroup);
1732 }
1733 
1734 static void
1735 nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1736 			      enum nvme_tcp_pdu_recv_state state)
1737 {
1738 	if (tqpair->recv_state == state) {
1739 		SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
1740 			    tqpair, state);
1741 		return;
1742 	}
1743 
1744 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_QUIESCING)) {
1745 		if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH && tqpair->pdu_in_progress) {
1746 			SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, tqpair->pdu_in_progress, slist);
1747 			tqpair->tcp_pdu_working_count--;
1748 		}
1749 	}
1750 
1751 	if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_ERROR)) {
1752 		assert(tqpair->tcp_pdu_working_count == 0);
1753 	}
1754 
1755 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1756 		/* When leaving the await req state, move the qpair to the main list */
1757 		TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link);
1758 		TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link);
1759 	} else if (state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1760 		TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link);
1761 		TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link);
1762 	}
1763 
1764 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
1765 	tqpair->recv_state = state;
1766 
1767 	spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0,
1768 			  (uint64_t)tqpair->recv_state);
1769 }
1770 
1771 static int
1772 nvmf_tcp_qpair_handle_timeout(void *ctx)
1773 {
1774 	struct spdk_nvmf_tcp_qpair *tqpair = ctx;
1775 
1776 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1777 
1778 	SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
1779 		    SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
1780 
1781 	nvmf_tcp_qpair_disconnect(tqpair);
1782 	return SPDK_POLLER_BUSY;
1783 }
1784 
1785 static void
1786 nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
1787 {
1788 	struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
1789 
1790 	if (!tqpair->timeout_poller) {
1791 		tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
1792 					 SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
1793 	}
1794 }
1795 
1796 static void
1797 nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
1798 			   enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
1799 {
1800 	struct nvme_tcp_pdu *rsp_pdu;
1801 	struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
1802 	uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
1803 	uint32_t copy_len;
1804 
1805 	rsp_pdu = tqpair->mgmt_pdu;
1806 
1807 	c2h_term_req = &rsp_pdu->hdr.term_req;
1808 	c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
1809 	c2h_term_req->common.hlen = c2h_term_req_hdr_len;
1810 	c2h_term_req->fes = fes;
1811 
1812 	if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1813 	    (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1814 		DSET32(&c2h_term_req->fei, error_offset);
1815 	}
1816 
1817 	copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
1818 
1819 	/* Copy the error info into the buffer */
1820 	memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
1821 	nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
1822 
1823 	/* Contain the header of the wrong received pdu */
1824 	c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
1825 	tqpair->wait_terminate = true;
1826 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1827 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair);
1828 }
1829 
1830 static void
1831 nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1832 				struct spdk_nvmf_tcp_qpair *tqpair,
1833 				struct nvme_tcp_pdu *pdu)
1834 {
1835 	struct spdk_nvmf_tcp_req *tcp_req;
1836 
1837 	assert(pdu->psh_valid_bytes == pdu->psh_len);
1838 	assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
1839 
1840 	tcp_req = nvmf_tcp_req_get(tqpair);
1841 	if (!tcp_req) {
1842 		/* Directly return and make the allocation retry again.  This can happen if we're
1843 		 * using asynchronous writes to send the response to the host or when releasing
1844 		 * zero-copy buffers after a response has been sent.  In both cases, the host might
1845 		 * receive the response before we've finished processing the request and is free to
1846 		 * send another one.
1847 		 */
1848 		if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 ||
1849 		    tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) {
1850 			return;
1851 		}
1852 
1853 		/* The host sent more commands than the maximum queue depth. */
1854 		SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
1855 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
1856 		return;
1857 	}
1858 
1859 	pdu->req = tcp_req;
1860 	assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
1861 	nvmf_tcp_req_process(ttransport, tcp_req);
1862 }
1863 
1864 static void
1865 nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1866 				    struct spdk_nvmf_tcp_qpair *tqpair,
1867 				    struct nvme_tcp_pdu *pdu)
1868 {
1869 	struct spdk_nvmf_tcp_req *tcp_req;
1870 	struct spdk_nvme_tcp_cmd *capsule_cmd;
1871 	uint32_t error_offset = 0;
1872 	enum spdk_nvme_tcp_term_req_fes fes;
1873 	struct spdk_nvme_cpl *rsp;
1874 
1875 	capsule_cmd = &pdu->hdr.capsule_cmd;
1876 	tcp_req = pdu->req;
1877 	assert(tcp_req != NULL);
1878 
1879 	/* Zero-copy requests don't support ICD */
1880 	assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req));
1881 
1882 	if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
1883 		SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
1884 			    SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
1885 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1886 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
1887 		goto err;
1888 	}
1889 
1890 	rsp = &tcp_req->req.rsp->nvme_cpl;
1891 	if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1892 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1893 	} else {
1894 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1895 	}
1896 
1897 	nvmf_tcp_req_process(ttransport, tcp_req);
1898 
1899 	return;
1900 err:
1901 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1902 }
1903 
1904 static void
1905 nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1906 			     struct spdk_nvmf_tcp_qpair *tqpair,
1907 			     struct nvme_tcp_pdu *pdu)
1908 {
1909 	struct spdk_nvmf_tcp_req *tcp_req;
1910 	uint32_t error_offset = 0;
1911 	enum spdk_nvme_tcp_term_req_fes fes = 0;
1912 	struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
1913 
1914 	h2c_data = &pdu->hdr.h2c_data;
1915 
1916 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
1917 		      tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
1918 
1919 	if (h2c_data->ttag > tqpair->resource_count) {
1920 		SPDK_DEBUGLOG(nvmf_tcp, "ttag %u is larger than allowed %u.\n", h2c_data->ttag,
1921 			      tqpair->resource_count);
1922 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1923 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1924 		goto err;
1925 	}
1926 
1927 	tcp_req = &tqpair->reqs[h2c_data->ttag - 1];
1928 
1929 	if (spdk_unlikely(tcp_req->state != TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER &&
1930 			  tcp_req->state != TCP_REQUEST_STATE_AWAITING_R2T_ACK)) {
1931 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, has error state in %d\n", tcp_req, tqpair,
1932 			      tcp_req->state);
1933 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1934 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1935 		goto err;
1936 	}
1937 
1938 	if (spdk_unlikely(tcp_req->req.cmd->nvme_cmd.cid != h2c_data->cccid)) {
1939 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, expected %u but %u for cccid.\n", tcp_req, tqpair,
1940 			      tcp_req->req.cmd->nvme_cmd.cid, h2c_data->cccid);
1941 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1942 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
1943 		goto err;
1944 	}
1945 
1946 	if (tcp_req->h2c_offset != h2c_data->datao) {
1947 		SPDK_DEBUGLOG(nvmf_tcp,
1948 			      "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
1949 			      tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
1950 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1951 		goto err;
1952 	}
1953 
1954 	if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
1955 		SPDK_DEBUGLOG(nvmf_tcp,
1956 			      "tcp_req(%p), tqpair=%p,  (datao=%u + datal=%u) exceeds requested length=%u\n",
1957 			      tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
1958 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1959 		goto err;
1960 	}
1961 
1962 	pdu->req = tcp_req;
1963 
1964 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
1965 		pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
1966 	}
1967 
1968 	nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
1969 				  h2c_data->datao, h2c_data->datal);
1970 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1971 	return;
1972 
1973 err:
1974 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1975 }
1976 
1977 static void
1978 nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
1979 			       struct spdk_nvmf_tcp_qpair *tqpair)
1980 {
1981 	struct nvme_tcp_pdu *rsp_pdu;
1982 	struct spdk_nvme_tcp_rsp *capsule_resp;
1983 
1984 	SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
1985 
1986 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1987 	assert(rsp_pdu != NULL);
1988 
1989 	capsule_resp = &rsp_pdu->hdr.capsule_resp;
1990 	capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
1991 	capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
1992 	capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
1993 	if (tqpair->host_hdgst_enable) {
1994 		capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1995 		capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1996 	}
1997 
1998 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req);
1999 }
2000 
2001 static void
2002 nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
2003 {
2004 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
2005 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
2006 					     struct spdk_nvmf_tcp_qpair, qpair);
2007 
2008 	assert(tqpair != NULL);
2009 
2010 	if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
2011 		SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
2012 			      tcp_req->req.length);
2013 		_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2014 		return;
2015 	}
2016 
2017 	if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
2018 		nvmf_tcp_request_free(tcp_req);
2019 	} else {
2020 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2021 	}
2022 }
2023 
2024 static void
2025 nvmf_tcp_r2t_complete(void *cb_arg)
2026 {
2027 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
2028 	struct spdk_nvmf_tcp_transport *ttransport;
2029 
2030 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
2031 				      struct spdk_nvmf_tcp_transport, transport);
2032 
2033 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
2034 
2035 	if (tcp_req->h2c_offset == tcp_req->req.length) {
2036 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2037 		nvmf_tcp_req_process(ttransport, tcp_req);
2038 	}
2039 }
2040 
2041 static void
2042 nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
2043 		      struct spdk_nvmf_tcp_req *tcp_req)
2044 {
2045 	struct nvme_tcp_pdu *rsp_pdu;
2046 	struct spdk_nvme_tcp_r2t_hdr *r2t;
2047 
2048 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
2049 	assert(rsp_pdu != NULL);
2050 
2051 	r2t = &rsp_pdu->hdr.r2t;
2052 	r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
2053 	r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
2054 
2055 	if (tqpair->host_hdgst_enable) {
2056 		r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2057 		r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
2058 	}
2059 
2060 	r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2061 	r2t->ttag = tcp_req->ttag;
2062 	r2t->r2to = tcp_req->h2c_offset;
2063 	r2t->r2tl = tcp_req->req.length;
2064 
2065 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
2066 
2067 	SPDK_DEBUGLOG(nvmf_tcp,
2068 		      "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
2069 		      tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
2070 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req);
2071 }
2072 
2073 static void
2074 nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
2075 				 struct spdk_nvmf_tcp_qpair *tqpair,
2076 				 struct nvme_tcp_pdu *pdu)
2077 {
2078 	struct spdk_nvmf_tcp_req *tcp_req;
2079 	struct spdk_nvme_cpl *rsp;
2080 
2081 	tcp_req = pdu->req;
2082 	assert(tcp_req != NULL);
2083 
2084 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2085 
2086 	tcp_req->h2c_offset += pdu->data_len;
2087 
2088 	/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
2089 	 * acknowledged before moving on. */
2090 	if (tcp_req->h2c_offset == tcp_req->req.length &&
2091 	    tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
2092 		/* After receiving all the h2c data, we need to check whether there is
2093 		 * transient transport error */
2094 		rsp = &tcp_req->req.rsp->nvme_cpl;
2095 		if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
2096 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2097 		} else {
2098 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2099 		}
2100 		nvmf_tcp_req_process(ttransport, tcp_req);
2101 	}
2102 }
2103 
2104 static void
2105 nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
2106 {
2107 	SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
2108 		    spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
2109 	if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
2110 	    (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
2111 		SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
2112 			      DGET32(h2c_term_req->fei));
2113 	}
2114 }
2115 
2116 static void
2117 nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2118 				 struct nvme_tcp_pdu *pdu)
2119 {
2120 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
2121 	uint32_t error_offset = 0;
2122 	enum spdk_nvme_tcp_term_req_fes fes;
2123 
2124 	if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
2125 		SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
2126 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2127 		error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
2128 		goto end;
2129 	}
2130 
2131 	/* set the data buffer */
2132 	nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
2133 			      h2c_term_req->common.plen - h2c_term_req->common.hlen);
2134 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2135 	return;
2136 end:
2137 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2138 }
2139 
2140 static void
2141 nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2142 				     struct nvme_tcp_pdu *pdu)
2143 {
2144 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
2145 
2146 	nvmf_tcp_h2c_term_req_dump(h2c_term_req);
2147 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2148 }
2149 
2150 static void
2151 _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2152 {
2153 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2154 			struct spdk_nvmf_tcp_transport, transport);
2155 
2156 	switch (pdu->hdr.common.pdu_type) {
2157 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2158 		nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
2159 		break;
2160 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2161 		nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
2162 		break;
2163 
2164 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2165 		nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
2166 		break;
2167 
2168 	default:
2169 		/* The code should not go to here */
2170 		SPDK_ERRLOG("ERROR pdu type %d\n", pdu->hdr.common.pdu_type);
2171 		break;
2172 	}
2173 	SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
2174 	tqpair->tcp_pdu_working_count--;
2175 }
2176 
2177 static inline void
2178 nvmf_tcp_req_set_cpl(struct spdk_nvmf_tcp_req *treq, int sct, int sc)
2179 {
2180 	treq->req.rsp->nvme_cpl.status.sct = sct;
2181 	treq->req.rsp->nvme_cpl.status.sc = sc;
2182 	treq->req.rsp->nvme_cpl.cid = treq->req.cmd->nvme_cmd.cid;
2183 }
2184 
2185 static void
2186 data_crc32_calc_done(void *cb_arg, int status)
2187 {
2188 	struct nvme_tcp_pdu *pdu = cb_arg;
2189 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
2190 
2191 	/* async crc32 calculation is failed and use direct calculation to check */
2192 	if (spdk_unlikely(status)) {
2193 		SPDK_ERRLOG("Data digest on tqpair=(%p) with pdu=%p failed to be calculated asynchronously\n",
2194 			    tqpair, pdu);
2195 		pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2196 	}
2197 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
2198 	if (!MATCH_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32)) {
2199 		SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2200 		assert(pdu->req != NULL);
2201 		nvmf_tcp_req_set_cpl(pdu->req, SPDK_NVME_SCT_GENERIC,
2202 				     SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR);
2203 	}
2204 	_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2205 }
2206 
2207 static void
2208 nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
2209 {
2210 	int rc = 0;
2211 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2212 	tqpair->pdu_in_progress = NULL;
2213 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2214 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2215 	/* check data digest if need */
2216 	if (pdu->ddgst_enable) {
2217 		if (tqpair->qpair.qid != 0 && !pdu->dif_ctx && tqpair->group &&
2218 		    (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)) {
2219 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
2220 						       pdu->data_iovcnt, 0, data_crc32_calc_done, pdu);
2221 			if (spdk_likely(rc == 0)) {
2222 				return;
2223 			}
2224 		} else {
2225 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
2226 		}
2227 		data_crc32_calc_done(pdu, rc);
2228 	} else {
2229 		_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2230 	}
2231 }
2232 
2233 static void
2234 nvmf_tcp_send_icresp_complete(void *cb_arg)
2235 {
2236 	struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
2237 
2238 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_RUNNING);
2239 }
2240 
2241 static void
2242 nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
2243 		      struct spdk_nvmf_tcp_qpair *tqpair,
2244 		      struct nvme_tcp_pdu *pdu)
2245 {
2246 	struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
2247 	struct nvme_tcp_pdu *rsp_pdu;
2248 	struct spdk_nvme_tcp_ic_resp *ic_resp;
2249 	uint32_t error_offset = 0;
2250 	enum spdk_nvme_tcp_term_req_fes fes;
2251 
2252 	/* Only PFV 0 is defined currently */
2253 	if (ic_req->pfv != 0) {
2254 		SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
2255 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2256 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
2257 		goto end;
2258 	}
2259 
2260 	/* This value is 0’s based value in units of dwords should not be larger than SPDK_NVME_TCP_HPDA_MAX */
2261 	if (ic_req->hpda > SPDK_NVME_TCP_HPDA_MAX) {
2262 		SPDK_ERRLOG("ICReq HPDA out of range 0 to 31, got %u\n", ic_req->hpda);
2263 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2264 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, hpda);
2265 		goto end;
2266 	}
2267 
2268 	/* MAXR2T is 0's based */
2269 	SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
2270 
2271 	tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
2272 	if (!tqpair->host_hdgst_enable) {
2273 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2274 	}
2275 
2276 	tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
2277 	if (!tqpair->host_ddgst_enable) {
2278 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
2279 	}
2280 
2281 	tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
2282 	/* Now that we know whether digests are enabled, properly size the receive buffer */
2283 	if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
2284 		SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
2285 			     tqpair,
2286 			     tqpair->recv_buf_size);
2287 		/* Not fatal. */
2288 	}
2289 
2290 	tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
2291 	SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
2292 
2293 	rsp_pdu = tqpair->mgmt_pdu;
2294 
2295 	ic_resp = &rsp_pdu->hdr.ic_resp;
2296 	ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
2297 	ic_resp->common.hlen = ic_resp->common.plen =  sizeof(*ic_resp);
2298 	ic_resp->pfv = 0;
2299 	ic_resp->cpda = tqpair->cpda;
2300 	ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
2301 	ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
2302 	ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
2303 
2304 	SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
2305 	SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
2306 
2307 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INITIALIZING);
2308 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair);
2309 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2310 	return;
2311 end:
2312 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2313 }
2314 
2315 static void
2316 nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
2317 			struct spdk_nvmf_tcp_transport *ttransport)
2318 {
2319 	struct nvme_tcp_pdu *pdu;
2320 	int rc;
2321 	uint32_t crc32c, error_offset = 0;
2322 	enum spdk_nvme_tcp_term_req_fes fes;
2323 
2324 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2325 	pdu = tqpair->pdu_in_progress;
2326 
2327 	SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
2328 		      pdu->hdr.common.pdu_type);
2329 	/* check header digest if needed */
2330 	if (pdu->has_hdgst) {
2331 		SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
2332 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
2333 		rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
2334 		if (rc == 0) {
2335 			SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2336 			fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
2337 			nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2338 			return;
2339 
2340 		}
2341 	}
2342 
2343 	switch (pdu->hdr.common.pdu_type) {
2344 	case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
2345 		nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
2346 		break;
2347 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2348 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
2349 		break;
2350 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2351 		nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
2352 		break;
2353 
2354 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2355 		nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
2356 		break;
2357 
2358 	default:
2359 		SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
2360 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2361 		error_offset = 1;
2362 		nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2363 		break;
2364 	}
2365 }
2366 
2367 static void
2368 nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
2369 {
2370 	struct nvme_tcp_pdu *pdu;
2371 	uint32_t error_offset = 0;
2372 	enum spdk_nvme_tcp_term_req_fes fes;
2373 	uint8_t expected_hlen, pdo;
2374 	bool plen_error = false, pdo_error = false;
2375 
2376 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2377 	pdu = tqpair->pdu_in_progress;
2378 	assert(pdu);
2379 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
2380 		if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) {
2381 			SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
2382 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2383 			goto err;
2384 		}
2385 		expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
2386 		if (pdu->hdr.common.plen != expected_hlen) {
2387 			plen_error = true;
2388 		}
2389 	} else {
2390 		if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) {
2391 			SPDK_ERRLOG("The TCP/IP connection is not negotiated\n");
2392 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2393 			goto err;
2394 		}
2395 
2396 		switch (pdu->hdr.common.pdu_type) {
2397 		case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2398 			expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
2399 			pdo = pdu->hdr.common.pdo;
2400 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2401 				pdo_error = true;
2402 				break;
2403 			}
2404 
2405 			if (pdu->hdr.common.plen < expected_hlen) {
2406 				plen_error = true;
2407 			}
2408 			break;
2409 		case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2410 			expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
2411 			pdo = pdu->hdr.common.pdo;
2412 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2413 				pdo_error = true;
2414 				break;
2415 			}
2416 			if (pdu->hdr.common.plen < expected_hlen) {
2417 				plen_error = true;
2418 			}
2419 			break;
2420 
2421 		case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2422 			expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
2423 			if ((pdu->hdr.common.plen <= expected_hlen) ||
2424 			    (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
2425 				plen_error = true;
2426 			}
2427 			break;
2428 
2429 		default:
2430 			SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
2431 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2432 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
2433 			goto err;
2434 		}
2435 	}
2436 
2437 	if (pdu->hdr.common.hlen != expected_hlen) {
2438 		SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
2439 			    pdu->hdr.common.pdu_type,
2440 			    expected_hlen, pdu->hdr.common.hlen, tqpair);
2441 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2442 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
2443 		goto err;
2444 	} else if (pdo_error) {
2445 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2446 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
2447 	} else if (plen_error) {
2448 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2449 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2450 		goto err;
2451 	} else {
2452 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2453 		nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
2454 		return;
2455 	}
2456 err:
2457 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2458 }
2459 
2460 static int
2461 nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
2462 {
2463 	int rc = 0;
2464 	struct nvme_tcp_pdu *pdu;
2465 	enum nvme_tcp_pdu_recv_state prev_state;
2466 	uint32_t data_len;
2467 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2468 			struct spdk_nvmf_tcp_transport, transport);
2469 
2470 	/* The loop here is to allow for several back-to-back state changes. */
2471 	do {
2472 		prev_state = tqpair->recv_state;
2473 		SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
2474 
2475 		pdu = tqpair->pdu_in_progress;
2476 		assert(pdu != NULL ||
2477 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY ||
2478 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_QUIESCING ||
2479 		       tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
2480 
2481 		switch (tqpair->recv_state) {
2482 		/* Wait for the common header  */
2483 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
2484 			if (!pdu) {
2485 				pdu = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
2486 				if (spdk_unlikely(!pdu)) {
2487 					return NVME_TCP_PDU_IN_PROGRESS;
2488 				}
2489 				SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
2490 				tqpair->pdu_in_progress = pdu;
2491 				tqpair->tcp_pdu_working_count++;
2492 			}
2493 			memset(pdu, 0, offsetof(struct nvme_tcp_pdu, qpair));
2494 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2495 		/* FALLTHROUGH */
2496 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
2497 			if (spdk_unlikely(tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING)) {
2498 				return rc;
2499 			}
2500 
2501 			rc = nvme_tcp_read_data(tqpair->sock,
2502 						sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
2503 						(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
2504 			if (rc < 0) {
2505 				SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
2506 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2507 				break;
2508 			} else if (rc > 0) {
2509 				pdu->ch_valid_bytes += rc;
2510 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0);
2511 			}
2512 
2513 			if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
2514 				return NVME_TCP_PDU_IN_PROGRESS;
2515 			}
2516 
2517 			/* The command header of this PDU has now been read from the socket. */
2518 			nvmf_tcp_pdu_ch_handle(tqpair);
2519 			break;
2520 		/* Wait for the pdu specific header  */
2521 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
2522 			rc = nvme_tcp_read_data(tqpair->sock,
2523 						pdu->psh_len - pdu->psh_valid_bytes,
2524 						(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
2525 			if (rc < 0) {
2526 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2527 				break;
2528 			} else if (rc > 0) {
2529 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0);
2530 				pdu->psh_valid_bytes += rc;
2531 			}
2532 
2533 			if (pdu->psh_valid_bytes < pdu->psh_len) {
2534 				return NVME_TCP_PDU_IN_PROGRESS;
2535 			}
2536 
2537 			/* All header(ch, psh, head digits) of this PDU has now been read from the socket. */
2538 			nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
2539 			break;
2540 		/* Wait for the req slot */
2541 		case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
2542 			nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
2543 			break;
2544 		/* Wait for the request processing loop to acquire a buffer for the PDU */
2545 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_BUF:
2546 			break;
2547 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
2548 			/* check whether the data is valid, if not we just return */
2549 			if (!pdu->data_len) {
2550 				return NVME_TCP_PDU_IN_PROGRESS;
2551 			}
2552 
2553 			data_len = pdu->data_len;
2554 			/* data digest */
2555 			if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
2556 					  tqpair->host_ddgst_enable)) {
2557 				data_len += SPDK_NVME_TCP_DIGEST_LEN;
2558 				pdu->ddgst_enable = true;
2559 			}
2560 
2561 			rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
2562 			if (rc < 0) {
2563 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2564 				break;
2565 			}
2566 			pdu->rw_offset += rc;
2567 
2568 			if (pdu->rw_offset < data_len) {
2569 				return NVME_TCP_PDU_IN_PROGRESS;
2570 			}
2571 
2572 			/* Generate and insert DIF to whole data block received if DIF is enabled */
2573 			if (spdk_unlikely(pdu->dif_ctx != NULL) &&
2574 			    spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt, 0, data_len,
2575 						     pdu->dif_ctx) != 0) {
2576 				SPDK_ERRLOG("DIF generate failed\n");
2577 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
2578 				break;
2579 			}
2580 
2581 			/* All of this PDU has now been read from the socket. */
2582 			nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2583 			break;
2584 		case NVME_TCP_PDU_RECV_STATE_QUIESCING:
2585 			if (tqpair->tcp_pdu_working_count != 0) {
2586 				return NVME_TCP_PDU_IN_PROGRESS;
2587 			}
2588 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
2589 			break;
2590 		case NVME_TCP_PDU_RECV_STATE_ERROR:
2591 			if (spdk_sock_is_connected(tqpair->sock) && tqpair->wait_terminate) {
2592 				return NVME_TCP_PDU_IN_PROGRESS;
2593 			}
2594 			return NVME_TCP_PDU_FATAL;
2595 		default:
2596 			SPDK_ERRLOG("The state(%d) is invalid\n", tqpair->recv_state);
2597 			abort();
2598 			break;
2599 		}
2600 	} while (tqpair->recv_state != prev_state);
2601 
2602 	return rc;
2603 }
2604 
2605 static inline void *
2606 nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list,
2607 			 struct spdk_nvmf_tcp_req *tcp_req)
2608 {
2609 	struct spdk_nvmf_tcp_control_msg *msg;
2610 
2611 	assert(list);
2612 
2613 	msg = STAILQ_FIRST(&list->free_msgs);
2614 	if (!msg) {
2615 		SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
2616 		STAILQ_INSERT_TAIL(&list->waiting_for_msg_reqs, tcp_req, control_msg_link);
2617 		return NULL;
2618 	}
2619 	STAILQ_REMOVE_HEAD(&list->free_msgs, link);
2620 	return msg;
2621 }
2622 
2623 static inline void
2624 nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
2625 {
2626 	struct spdk_nvmf_tcp_control_msg *msg = _msg;
2627 	struct spdk_nvmf_tcp_req *tcp_req;
2628 	struct spdk_nvmf_tcp_transport *ttransport;
2629 
2630 	assert(list);
2631 	STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
2632 	if (!STAILQ_EMPTY(&list->waiting_for_msg_reqs)) {
2633 		tcp_req = STAILQ_FIRST(&list->waiting_for_msg_reqs);
2634 		STAILQ_REMOVE_HEAD(&list->waiting_for_msg_reqs, control_msg_link);
2635 		ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
2636 					      struct spdk_nvmf_tcp_transport, transport);
2637 		nvmf_tcp_req_process(ttransport, tcp_req);
2638 	}
2639 }
2640 
2641 static void
2642 nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
2643 		       struct spdk_nvmf_transport *transport,
2644 		       struct spdk_nvmf_transport_poll_group *group)
2645 {
2646 	struct spdk_nvmf_request		*req = &tcp_req->req;
2647 	struct spdk_nvme_cmd			*cmd;
2648 	struct spdk_nvme_sgl_descriptor		*sgl;
2649 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2650 	enum spdk_nvme_tcp_term_req_fes		fes;
2651 	struct nvme_tcp_pdu			*pdu;
2652 	struct spdk_nvmf_tcp_qpair		*tqpair;
2653 	uint32_t				length, error_offset = 0;
2654 
2655 	cmd = &req->cmd->nvme_cmd;
2656 	sgl = &cmd->dptr.sgl1;
2657 
2658 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
2659 	    sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
2660 		/* get request length from sgl */
2661 		length = sgl->unkeyed.length;
2662 		if (spdk_unlikely(length > transport->opts.max_io_size)) {
2663 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
2664 				    length, transport->opts.max_io_size);
2665 			fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2666 			goto fatal_err;
2667 		}
2668 
2669 		/* fill request length and populate iovs */
2670 		req->length = length;
2671 
2672 		SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
2673 
2674 		if (spdk_unlikely(req->dif_enabled)) {
2675 			req->dif.orig_length = length;
2676 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2677 			req->dif.elba_length = length;
2678 		}
2679 
2680 		if (nvmf_ctrlr_use_zcopy(req)) {
2681 			SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req);
2682 			req->data_from_pool = false;
2683 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
2684 			return;
2685 		}
2686 
2687 		if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
2688 			/* No available buffers. Queue this request up. */
2689 			SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
2690 				      tcp_req);
2691 			return;
2692 		}
2693 
2694 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
2695 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
2696 			      tcp_req, req->iovcnt, req->iov[0].iov_base);
2697 
2698 		return;
2699 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
2700 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
2701 		uint64_t offset = sgl->address;
2702 		uint32_t max_len = transport->opts.in_capsule_data_size;
2703 
2704 		assert(tcp_req->has_in_capsule_data);
2705 		/* Capsule Cmd with In-capsule Data should get data length from pdu header */
2706 		tqpair = tcp_req->pdu->qpair;
2707 		/* receiving pdu is not same with the pdu in tcp_req */
2708 		pdu = tqpair->pdu_in_progress;
2709 		length = pdu->hdr.common.plen - pdu->psh_len - sizeof(struct spdk_nvme_tcp_common_pdu_hdr);
2710 		if (tqpair->host_ddgst_enable) {
2711 			length -= SPDK_NVME_TCP_DIGEST_LEN;
2712 		}
2713 		/* This error is not defined in NVMe/TCP spec, take this error as fatal error */
2714 		if (spdk_unlikely(length != sgl->unkeyed.length)) {
2715 			SPDK_ERRLOG("In-Capsule Data length 0x%x is not equal to SGL data length 0x%x\n",
2716 				    length, sgl->unkeyed.length);
2717 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2718 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2719 			goto fatal_err;
2720 		}
2721 
2722 		SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
2723 			      offset, length);
2724 
2725 		/* The NVMe/TCP transport does not use ICDOFF to control the in-capsule data offset. ICDOFF should be '0' */
2726 		if (spdk_unlikely(offset != 0)) {
2727 			/* Not defined fatal error in NVMe/TCP spec, handle this error as a fatal error */
2728 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " should be ZERO in NVMe/TCP\n", offset);
2729 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2730 			error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.address);
2731 			goto fatal_err;
2732 		}
2733 
2734 		if (spdk_unlikely(length > max_len)) {
2735 			/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
2736 			if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
2737 			    (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
2738 
2739 				/* Get a buffer from dedicated list */
2740 				SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
2741 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2742 				assert(tgroup->control_msg_list);
2743 				req->iov[0].iov_base = nvmf_tcp_control_msg_get(tgroup->control_msg_list, tcp_req);
2744 				if (!req->iov[0].iov_base) {
2745 					/* No available buffers. Queue this request up. */
2746 					SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
2747 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_BUF);
2748 					return;
2749 				}
2750 			} else {
2751 				SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
2752 					    length, max_len);
2753 				fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED;
2754 				goto fatal_err;
2755 			}
2756 		} else {
2757 			req->iov[0].iov_base = tcp_req->buf;
2758 		}
2759 
2760 		req->length = length;
2761 		req->data_from_pool = false;
2762 
2763 		if (spdk_unlikely(req->dif_enabled)) {
2764 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2765 			req->dif.elba_length = length;
2766 		}
2767 
2768 		req->iov[0].iov_len = length;
2769 		req->iovcnt = 1;
2770 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER);
2771 
2772 		return;
2773 	}
2774 	/* If we want to handle the problem here, then we can't skip the following data segment.
2775 	 * Because this function runs before reading data part, now handle all errors as fatal errors. */
2776 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2777 		    sgl->generic.type, sgl->generic.subtype);
2778 	fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
2779 	error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.generic);
2780 fatal_err:
2781 	nvmf_tcp_send_c2h_term_req(tcp_req->pdu->qpair, tcp_req->pdu, fes, error_offset);
2782 }
2783 
2784 static inline enum spdk_nvme_media_error_status_code
2785 nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
2786 	enum spdk_nvme_media_error_status_code result;
2787 
2788 	switch (err_type)
2789 	{
2790 	case SPDK_DIF_REFTAG_ERROR:
2791 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
2792 		break;
2793 	case SPDK_DIF_APPTAG_ERROR:
2794 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
2795 		break;
2796 	case SPDK_DIF_GUARD_ERROR:
2797 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
2798 		break;
2799 	default:
2800 		SPDK_UNREACHABLE();
2801 		break;
2802 	}
2803 
2804 	return result;
2805 }
2806 
2807 static void
2808 _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2809 			struct spdk_nvmf_tcp_req *tcp_req)
2810 {
2811 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
2812 				tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
2813 	struct nvme_tcp_pdu *rsp_pdu;
2814 	struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
2815 	uint32_t plen, pdo, alignment;
2816 	int rc;
2817 
2818 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2819 
2820 	rsp_pdu = tcp_req->pdu;
2821 	assert(rsp_pdu != NULL);
2822 
2823 	c2h_data = &rsp_pdu->hdr.c2h_data;
2824 	c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
2825 	plen = c2h_data->common.hlen = sizeof(*c2h_data);
2826 
2827 	if (tqpair->host_hdgst_enable) {
2828 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2829 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2830 	}
2831 
2832 	/* set the psh */
2833 	c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2834 	c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
2835 	c2h_data->datao = tcp_req->pdu->rw_offset;
2836 
2837 	/* set the padding */
2838 	rsp_pdu->padding_len = 0;
2839 	pdo = plen;
2840 	if (tqpair->cpda) {
2841 		alignment = (tqpair->cpda + 1) << 2;
2842 		if (plen % alignment != 0) {
2843 			pdo = (plen + alignment) / alignment * alignment;
2844 			rsp_pdu->padding_len = pdo - plen;
2845 			plen = pdo;
2846 		}
2847 	}
2848 
2849 	c2h_data->common.pdo = pdo;
2850 	plen += c2h_data->datal;
2851 	if (tqpair->host_ddgst_enable) {
2852 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
2853 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2854 	}
2855 
2856 	c2h_data->common.plen = plen;
2857 
2858 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2859 		rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2860 	}
2861 
2862 	nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2863 				  c2h_data->datao, c2h_data->datal);
2864 
2865 
2866 	c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
2867 	/* Need to send the capsule response if response is not all 0 */
2868 	if (ttransport->tcp_opts.c2h_success &&
2869 	    tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
2870 		c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
2871 	}
2872 
2873 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2874 		struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
2875 		struct spdk_dif_error err_blk = {};
2876 		uint32_t mapped_length = 0;
2877 		uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
2878 		uint32_t ddgst_len = 0;
2879 
2880 		if (tqpair->host_ddgst_enable) {
2881 			/* Data digest consumes additional iov entry */
2882 			available_iovs--;
2883 			/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
2884 			ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
2885 			c2h_data->common.plen -= ddgst_len;
2886 		}
2887 		/* Temp call to estimate if data can be described by limited number of iovs.
2888 		 * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
2889 		nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
2890 				    false, &mapped_length);
2891 
2892 		if (mapped_length != c2h_data->common.plen) {
2893 			c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
2894 			SPDK_DEBUGLOG(nvmf_tcp,
2895 				      "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
2896 				      c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
2897 			c2h_data->common.plen = mapped_length;
2898 
2899 			/* Rebuild pdu->data_iov since data length is changed */
2900 			nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
2901 						  c2h_data->datal);
2902 
2903 			c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
2904 						    SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
2905 		}
2906 
2907 		c2h_data->common.plen += ddgst_len;
2908 
2909 		assert(rsp_pdu->rw_offset <= tcp_req->req.length);
2910 
2911 		rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
2912 					    0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
2913 		if (rc != 0) {
2914 			SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
2915 				    err_blk.err_type, err_blk.err_offset);
2916 			rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2917 			rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
2918 			nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2919 			return;
2920 		}
2921 	}
2922 
2923 	rsp_pdu->rw_offset += c2h_data->datal;
2924 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
2925 }
2926 
2927 static void
2928 nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2929 		       struct spdk_nvmf_tcp_req *tcp_req)
2930 {
2931 	nvmf_tcp_req_pdu_init(tcp_req);
2932 	_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2933 }
2934 
2935 static int
2936 request_transfer_out(struct spdk_nvmf_request *req)
2937 {
2938 	struct spdk_nvmf_tcp_req	*tcp_req;
2939 	struct spdk_nvmf_qpair		*qpair;
2940 	struct spdk_nvmf_tcp_qpair	*tqpair;
2941 	struct spdk_nvme_cpl		*rsp;
2942 
2943 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2944 
2945 	qpair = req->qpair;
2946 	rsp = &req->rsp->nvme_cpl;
2947 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
2948 
2949 	/* Advance our sq_head pointer */
2950 	if (qpair->sq_head == qpair->sq_head_max) {
2951 		qpair->sq_head = 0;
2952 	} else {
2953 		qpair->sq_head++;
2954 	}
2955 	rsp->sqhd = qpair->sq_head;
2956 
2957 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2958 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
2959 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2960 		nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2961 	} else {
2962 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2963 	}
2964 
2965 	return 0;
2966 }
2967 
2968 static void
2969 nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport,
2970 			      struct spdk_nvmf_tcp_qpair *tqpair,
2971 			      struct spdk_nvmf_tcp_req *tcp_req)
2972 {
2973 	enum spdk_nvme_cmd_fuse last, next;
2974 
2975 	last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2976 	next = tcp_req->cmd.fuse;
2977 
2978 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2979 
2980 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2981 		return;
2982 	}
2983 
2984 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2985 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2986 			/* This is a valid pair of fused commands.  Point them at each other
2987 			 * so they can be submitted consecutively once ready to be executed.
2988 			 */
2989 			tqpair->fused_first->fused_pair = tcp_req;
2990 			tcp_req->fused_pair = tqpair->fused_first;
2991 			tqpair->fused_first = NULL;
2992 			return;
2993 		} else {
2994 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2995 			tqpair->fused_first->fused_failed = true;
2996 
2997 			/*
2998 			 * If the last req is in READY_TO_EXECUTE state, then call
2999 			 * nvmf_tcp_req_process(), otherwise nothing else will kick it.
3000 			 */
3001 			if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3002 				nvmf_tcp_req_process(ttransport, tqpair->fused_first);
3003 			}
3004 
3005 			tqpair->fused_first = NULL;
3006 		}
3007 	}
3008 
3009 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
3010 		/* Set tqpair->fused_first here so that we know to check that the next request
3011 		 * is a SECOND (and to fail this one if it isn't).
3012 		 */
3013 		tqpair->fused_first = tcp_req;
3014 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
3015 		/* Mark this req failed since it is a SECOND and the last one was not a FIRST. */
3016 		tcp_req->fused_failed = true;
3017 	}
3018 }
3019 
3020 static bool
3021 nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
3022 		     struct spdk_nvmf_tcp_req *tcp_req)
3023 {
3024 	struct spdk_nvmf_tcp_qpair		*tqpair;
3025 	uint32_t				plen;
3026 	struct nvme_tcp_pdu			*pdu;
3027 	enum spdk_nvmf_tcp_req_state		prev_state;
3028 	bool					progress = false;
3029 	struct spdk_nvmf_transport		*transport = &ttransport->transport;
3030 	struct spdk_nvmf_transport_poll_group	*group;
3031 	struct spdk_nvmf_tcp_poll_group		*tgroup;
3032 
3033 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
3034 	group = &tqpair->group->group;
3035 	assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
3036 
3037 	/* If the qpair is not active, we need to abort the outstanding requests. */
3038 	if (!spdk_nvmf_qpair_is_active(&tqpair->qpair)) {
3039 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
3040 			nvmf_tcp_request_get_buffers_abort(tcp_req);
3041 		}
3042 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3043 	}
3044 
3045 	/* The loop here is to allow for several back-to-back state changes. */
3046 	do {
3047 		prev_state = tcp_req->state;
3048 
3049 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
3050 			      tqpair);
3051 
3052 		switch (tcp_req->state) {
3053 		case TCP_REQUEST_STATE_FREE:
3054 			/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
3055 			 * to escape this state. */
3056 			break;
3057 		case TCP_REQUEST_STATE_NEW:
3058 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req,
3059 					  tqpair->qpair.queue_depth);
3060 
3061 			/* copy the cmd from the receive pdu */
3062 			tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
3063 
3064 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
3065 				tcp_req->req.dif_enabled = true;
3066 				tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
3067 			}
3068 
3069 			nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req);
3070 
3071 			/* The next state transition depends on the data transfer needs of this request. */
3072 			tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
3073 
3074 			if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
3075 				nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_INVALID_OPCODE);
3076 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
3077 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3078 				SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
3079 				break;
3080 			}
3081 
3082 			/* If no data to transfer, ready to execute. */
3083 			if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
3084 				/* Reset the tqpair receiving pdu state */
3085 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
3086 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
3087 				break;
3088 			}
3089 
3090 			pdu = tqpair->pdu_in_progress;
3091 			plen = pdu->hdr.common.hlen;
3092 			if (tqpair->host_hdgst_enable) {
3093 				plen += SPDK_NVME_TCP_DIGEST_LEN;
3094 			}
3095 			if (pdu->hdr.common.plen != plen) {
3096 				tcp_req->has_in_capsule_data = true;
3097 			} else {
3098 				/* Data is transmitted by C2H PDUs */
3099 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
3100 			}
3101 
3102 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
3103 			break;
3104 		case TCP_REQUEST_STATE_NEED_BUFFER:
3105 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.trace_id, 0,
3106 					  (uintptr_t)tcp_req);
3107 
3108 			assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
3109 
3110 			/* Try to get a data buffer */
3111 			nvmf_tcp_req_parse_sgl(tcp_req, transport, group);
3112 			break;
3113 		case TCP_REQUEST_STATE_HAVE_BUFFER:
3114 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_HAVE_BUFFER, tqpair->qpair.trace_id, 0,
3115 					  (uintptr_t)tcp_req);
3116 			/* Get a zcopy buffer if the request can be serviced through zcopy */
3117 			if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
3118 				if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3119 					assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
3120 					tcp_req->req.length = tcp_req->req.dif.elba_length;
3121 				}
3122 
3123 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START);
3124 				spdk_nvmf_request_zcopy_start(&tcp_req->req);
3125 				break;
3126 			}
3127 
3128 			assert(tcp_req->req.iovcnt > 0);
3129 
3130 			/* If data is transferring from host to controller, we need to do a transfer from the host. */
3131 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
3132 				if (tcp_req->req.data_from_pool) {
3133 					SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
3134 					nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
3135 				} else {
3136 					struct nvme_tcp_pdu *pdu;
3137 
3138 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
3139 
3140 					pdu = tqpair->pdu_in_progress;
3141 					SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
3142 						      tqpair);
3143 					/* No need to send r2t, contained in the capsuled data */
3144 					nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
3145 								  0, tcp_req->req.length);
3146 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
3147 				}
3148 				break;
3149 			}
3150 
3151 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
3152 			break;
3153 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3154 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.trace_id, 0,
3155 					  (uintptr_t)tcp_req);
3156 			/* Some external code must kick a request into  TCP_REQUEST_STATE_ZCOPY_START_COMPLETED
3157 			 * to escape this state. */
3158 			break;
3159 		case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
3160 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.trace_id, 0,
3161 					  (uintptr_t)tcp_req);
3162 			if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) {
3163 				SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n",
3164 					      tcp_req, tqpair);
3165 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3166 				break;
3167 			}
3168 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
3169 				SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
3170 				nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
3171 			} else {
3172 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3173 			}
3174 			break;
3175 		case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3176 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.trace_id, 0,
3177 					  (uintptr_t)tcp_req);
3178 			/* The R2T completion or the h2c data incoming will kick it out of this state. */
3179 			break;
3180 		case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3181 
3182 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.trace_id,
3183 					  0, (uintptr_t)tcp_req);
3184 			/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
3185 			 * to escape this state. */
3186 			break;
3187 		case TCP_REQUEST_STATE_READY_TO_EXECUTE:
3188 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.trace_id, 0,
3189 					  (uintptr_t)tcp_req);
3190 
3191 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3192 				assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
3193 				tcp_req->req.length = tcp_req->req.dif.elba_length;
3194 			}
3195 
3196 			if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
3197 				if (tcp_req->fused_failed) {
3198 					/* This request failed FUSED semantics.  Fail it immediately, without
3199 					 * even sending it to the target layer.
3200 					 */
3201 					nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_MISSING_FUSED);
3202 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3203 					break;
3204 				}
3205 
3206 				if (tcp_req->fused_pair == NULL ||
3207 				    tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3208 					/* This request is ready to execute, but either we don't know yet if it's
3209 					 * valid - i.e. this is a FIRST but we haven't received the next request yet),
3210 					 * or the other request of this fused pair isn't ready to execute. So
3211 					 * break here and this request will get processed later either when the
3212 					 * other request is ready or we find that this request isn't valid.
3213 					 */
3214 					break;
3215 				}
3216 			}
3217 
3218 			if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
3219 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
3220 				/* If we get to this point, and this request is a fused command, we know that
3221 				 * it is part of a valid sequence (FIRST followed by a SECOND) and that both
3222 				 * requests are READY_TO_EXECUTE.  So call spdk_nvmf_request_exec() both on this
3223 				 * request, and the other request of the fused pair, in the correct order.
3224 				 * Also clear the ->fused_pair pointers on both requests, since after this point
3225 				 * we no longer need to maintain the relationship between these two requests.
3226 				 */
3227 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
3228 					assert(tcp_req->fused_pair != NULL);
3229 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3230 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3231 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3232 					tcp_req->fused_pair->fused_pair = NULL;
3233 					tcp_req->fused_pair = NULL;
3234 				}
3235 				spdk_nvmf_request_exec(&tcp_req->req);
3236 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
3237 					assert(tcp_req->fused_pair != NULL);
3238 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
3239 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
3240 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
3241 					tcp_req->fused_pair->fused_pair = NULL;
3242 					tcp_req->fused_pair = NULL;
3243 				}
3244 			} else {
3245 				/* For zero-copy, only requests with data coming from host to the
3246 				 * controller can end up here. */
3247 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
3248 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT);
3249 				spdk_nvmf_request_zcopy_end(&tcp_req->req, true);
3250 			}
3251 
3252 			break;
3253 		case TCP_REQUEST_STATE_EXECUTING:
3254 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
3255 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3256 			 * to escape this state. */
3257 			break;
3258 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3259 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.trace_id, 0,
3260 					  (uintptr_t)tcp_req);
3261 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
3262 			 * to escape this state. */
3263 			break;
3264 		case TCP_REQUEST_STATE_EXECUTED:
3265 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req);
3266 
3267 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
3268 				tcp_req->req.length = tcp_req->req.dif.orig_length;
3269 			}
3270 
3271 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3272 			break;
3273 		case TCP_REQUEST_STATE_READY_TO_COMPLETE:
3274 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.trace_id, 0,
3275 					  (uintptr_t)tcp_req);
3276 			if (request_transfer_out(&tcp_req->req) != 0) {
3277 				assert(0); /* No good way to handle this currently */
3278 			}
3279 			break;
3280 		case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
3281 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.trace_id,
3282 					  0, (uintptr_t)tcp_req);
3283 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3284 			 * to escape this state. */
3285 			break;
3286 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3287 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.trace_id, 0,
3288 					  (uintptr_t)tcp_req);
3289 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
3290 			 * to escape this state. */
3291 			break;
3292 		case TCP_REQUEST_STATE_COMPLETED:
3293 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req,
3294 					  tqpair->qpair.queue_depth);
3295 			/* If there's an outstanding PDU sent to the host, the request is completed
3296 			 * due to the qpair being disconnected.  We must delay the completion until
3297 			 * that write is done to avoid freeing the request twice. */
3298 			if (spdk_unlikely(tcp_req->pdu_in_use)) {
3299 				SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding "
3300 					      "write on req=%p\n", tcp_req);
3301 				/* This can only happen for zcopy requests */
3302 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3303 				assert(!spdk_nvmf_qpair_is_active(&tqpair->qpair));
3304 				break;
3305 			}
3306 
3307 			if (tcp_req->req.data_from_pool) {
3308 				spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
3309 			} else if (spdk_unlikely(tcp_req->has_in_capsule_data &&
3310 						 (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
3311 						  tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
3312 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3313 				assert(tgroup->control_msg_list);
3314 				SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
3315 				nvmf_tcp_control_msg_put(tgroup->control_msg_list,
3316 							 tcp_req->req.iov[0].iov_base);
3317 			} else if (tcp_req->req.zcopy_bdev_io != NULL) {
3318 				/* If the request has an unreleased zcopy bdev_io, it's either a
3319 				 * read, a failed write, or the qpair is being disconnected */
3320 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
3321 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
3322 				       spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) ||
3323 				       !spdk_nvmf_qpair_is_active(&tqpair->qpair));
3324 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE);
3325 				spdk_nvmf_request_zcopy_end(&tcp_req->req, false);
3326 				break;
3327 			}
3328 			tcp_req->req.length = 0;
3329 			tcp_req->req.iovcnt = 0;
3330 			tcp_req->fused_failed = false;
3331 			if (tcp_req->fused_pair) {
3332 				/* This req was part of a valid fused pair, but failed before it got to
3333 				 * READ_TO_EXECUTE state.  This means we need to fail the other request
3334 				 * in the pair, because it is no longer part of a valid pair.  If the pair
3335 				 * already reached READY_TO_EXECUTE state, we need to kick it.
3336 				 */
3337 				tcp_req->fused_pair->fused_failed = true;
3338 				if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3339 					nvmf_tcp_req_process(ttransport, tcp_req->fused_pair);
3340 				}
3341 				tcp_req->fused_pair = NULL;
3342 			}
3343 
3344 			nvmf_tcp_req_put(tqpair, tcp_req);
3345 			break;
3346 		case TCP_REQUEST_NUM_STATES:
3347 		default:
3348 			assert(0);
3349 			break;
3350 		}
3351 
3352 		if (tcp_req->state != prev_state) {
3353 			progress = true;
3354 		}
3355 	} while (tcp_req->state != prev_state);
3356 
3357 	return progress;
3358 }
3359 
3360 static void
3361 tcp_sock_cb(void *arg)
3362 {
3363 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
3364 	int rc;
3365 
3366 	assert(tqpair != NULL);
3367 	rc = nvmf_tcp_sock_process(tqpair);
3368 
3369 	/* If there was a new socket error, disconnect */
3370 	if (rc < 0) {
3371 		nvmf_tcp_qpair_disconnect(tqpair);
3372 	}
3373 }
3374 
3375 static void
3376 nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
3377 {
3378 	tcp_sock_cb(arg);
3379 }
3380 
3381 static int
3382 nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3383 			struct spdk_nvmf_qpair *qpair)
3384 {
3385 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3386 	struct spdk_nvmf_tcp_qpair	*tqpair;
3387 	int				rc;
3388 
3389 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3390 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3391 
3392 	rc =  nvmf_tcp_qpair_sock_init(tqpair);
3393 	if (rc != 0) {
3394 		SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
3395 		return -1;
3396 	}
3397 
3398 	rc = nvmf_tcp_qpair_init(&tqpair->qpair);
3399 	if (rc < 0) {
3400 		SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
3401 		return -1;
3402 	}
3403 
3404 	rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
3405 	if (rc < 0) {
3406 		SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
3407 		return -1;
3408 	}
3409 
3410 	rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
3411 				      nvmf_tcp_sock_cb, tqpair);
3412 	if (rc != 0) {
3413 		SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
3414 			    spdk_strerror(errno), errno);
3415 		return -1;
3416 	}
3417 
3418 	tqpair->group = tgroup;
3419 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INVALID);
3420 	TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
3421 
3422 	return 0;
3423 }
3424 
3425 static int
3426 nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3427 			   struct spdk_nvmf_qpair *qpair)
3428 {
3429 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3430 	struct spdk_nvmf_tcp_qpair		*tqpair;
3431 	int				rc;
3432 
3433 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3434 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3435 
3436 	assert(tqpair->group == tgroup);
3437 
3438 	SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
3439 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
3440 		/* Change the state to move the qpair from the await_req list to the main list
3441 		 * and prevent adding it again later by nvmf_tcp_qpair_set_recv_state() */
3442 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING);
3443 	}
3444 	TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
3445 
3446 	/* Try to force out any pending writes */
3447 	spdk_sock_flush(tqpair->sock);
3448 
3449 	rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
3450 	if (rc != 0) {
3451 		SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
3452 			    spdk_strerror(errno), errno);
3453 	}
3454 
3455 	return rc;
3456 }
3457 
3458 static int
3459 nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
3460 {
3461 	struct spdk_nvmf_tcp_transport *ttransport;
3462 	struct spdk_nvmf_tcp_req *tcp_req;
3463 	struct spdk_nvmf_tcp_qpair *tqpair;
3464 
3465 	ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3466 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3467 	tqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_tcp_qpair, qpair);
3468 
3469 	switch (tcp_req->state) {
3470 	case TCP_REQUEST_STATE_EXECUTING:
3471 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3472 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3473 		break;
3474 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3475 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED);
3476 		break;
3477 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3478 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3479 		/* In the interrupt mode it's possible that all responses are already written out over
3480 		 * the socket but zero-copy buffers are still not released. In that case there won't be
3481 		 * any event to trigger further socket processing. Send msg to a thread to avoid deadlock.
3482 		 */
3483 		if (spdk_unlikely(spdk_interrupt_mode_is_enabled() &&
3484 				  tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ &&
3485 				  spdk_nvmf_qpair_is_active(&tqpair->qpair))) {
3486 			spdk_thread_send_msg(spdk_get_thread(), tcp_sock_cb, tqpair);
3487 		}
3488 		break;
3489 	default:
3490 		SPDK_ERRLOG("Unexpected request state %d (cntlid:%d, qid:%d)\n",
3491 			    tcp_req->state, req->qpair->ctrlr->cntlid, req->qpair->qid);
3492 		assert(0 && "Unexpected request state");
3493 		break;
3494 	}
3495 
3496 	nvmf_tcp_req_process(ttransport, tcp_req);
3497 
3498 	return 0;
3499 }
3500 
3501 static void
3502 nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
3503 		     spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3504 {
3505 	struct spdk_nvmf_tcp_qpair *tqpair;
3506 
3507 	SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
3508 
3509 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3510 
3511 	assert(tqpair->fini_cb_fn == NULL);
3512 	tqpair->fini_cb_fn = cb_fn;
3513 	tqpair->fini_cb_arg = cb_arg;
3514 
3515 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITED);
3516 	nvmf_tcp_qpair_destroy(tqpair);
3517 }
3518 
3519 static int
3520 nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3521 {
3522 	struct spdk_nvmf_tcp_poll_group *tgroup;
3523 	int num_events, rc = 0, rc2;
3524 	struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp;
3525 
3526 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3527 
3528 	if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) {
3529 		return 0;
3530 	}
3531 
3532 	num_events = spdk_sock_group_poll(tgroup->sock_group);
3533 	if (spdk_unlikely(num_events < 0)) {
3534 		SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
3535 	}
3536 
3537 	TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) {
3538 		rc2 = nvmf_tcp_sock_process(tqpair);
3539 
3540 		/* If there was a new socket error, disconnect */
3541 		if (spdk_unlikely(rc2 < 0)) {
3542 			nvmf_tcp_qpair_disconnect(tqpair);
3543 			if (rc == 0) {
3544 				rc = rc2;
3545 			}
3546 		}
3547 	}
3548 
3549 	return rc == 0 ? num_events : rc;
3550 }
3551 
3552 static int
3553 nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
3554 			struct spdk_nvme_transport_id *trid, bool peer)
3555 {
3556 	struct spdk_nvmf_tcp_qpair     *tqpair;
3557 	uint16_t			port;
3558 
3559 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3560 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
3561 
3562 	if (peer) {
3563 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
3564 		port = tqpair->initiator_port;
3565 	} else {
3566 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
3567 		port = tqpair->target_port;
3568 	}
3569 
3570 	if (spdk_sock_is_ipv4(tqpair->sock)) {
3571 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3572 	} else if (spdk_sock_is_ipv6(tqpair->sock)) {
3573 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3574 	} else {
3575 		return -1;
3576 	}
3577 
3578 	snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
3579 	return 0;
3580 }
3581 
3582 static int
3583 nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3584 			      struct spdk_nvme_transport_id *trid)
3585 {
3586 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3587 }
3588 
3589 static int
3590 nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3591 			     struct spdk_nvme_transport_id *trid)
3592 {
3593 	return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
3594 }
3595 
3596 static int
3597 nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3598 			       struct spdk_nvme_transport_id *trid)
3599 {
3600 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3601 }
3602 
3603 static void
3604 nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
3605 			      struct spdk_nvmf_tcp_req *tcp_req_to_abort)
3606 {
3607 	nvmf_tcp_req_set_cpl(tcp_req_to_abort, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_BY_REQUEST);
3608 	nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3609 
3610 	req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
3611 }
3612 
3613 static int
3614 _nvmf_tcp_qpair_abort_request(void *ctx)
3615 {
3616 	struct spdk_nvmf_request *req = ctx;
3617 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
3618 			struct spdk_nvmf_tcp_req, req);
3619 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
3620 					     struct spdk_nvmf_tcp_qpair, qpair);
3621 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
3622 			struct spdk_nvmf_tcp_transport, transport);
3623 	int rc;
3624 
3625 	spdk_poller_unregister(&req->poller);
3626 
3627 	switch (tcp_req_to_abort->state) {
3628 	case TCP_REQUEST_STATE_EXECUTING:
3629 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3630 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3631 		rc = nvmf_ctrlr_abort_request(req);
3632 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
3633 			return SPDK_POLLER_BUSY;
3634 		}
3635 		break;
3636 
3637 	case TCP_REQUEST_STATE_NEED_BUFFER:
3638 		nvmf_tcp_request_get_buffers_abort(tcp_req_to_abort);
3639 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3640 		nvmf_tcp_req_process(ttransport, tcp_req_to_abort);
3641 		break;
3642 
3643 	case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3644 	case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3645 		if (spdk_get_ticks() < req->timeout_tsc) {
3646 			req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
3647 			return SPDK_POLLER_BUSY;
3648 		}
3649 		break;
3650 
3651 	default:
3652 		/* Requests in other states are either un-abortable (e.g.
3653 		 * TRANSFERRING_CONTROLLER_TO_HOST) or should never end up here, as they're
3654 		 * immediately transitioned to other states in nvmf_tcp_req_process() (e.g.
3655 		 * READY_TO_EXECUTE).  But it is fine to end up here, as we'll simply complete the
3656 		 * abort request with the bit0 of dword0 set (command not aborted).
3657 		 */
3658 		break;
3659 	}
3660 
3661 	spdk_nvmf_request_complete(req);
3662 	return SPDK_POLLER_BUSY;
3663 }
3664 
3665 static void
3666 nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
3667 			     struct spdk_nvmf_request *req)
3668 {
3669 	struct spdk_nvmf_tcp_qpair *tqpair;
3670 	struct spdk_nvmf_tcp_transport *ttransport;
3671 	struct spdk_nvmf_transport *transport;
3672 	uint16_t cid;
3673 	uint32_t i;
3674 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
3675 
3676 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3677 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3678 	transport = &ttransport->transport;
3679 
3680 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
3681 
3682 	for (i = 0; i < tqpair->resource_count; i++) {
3683 		if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
3684 		    tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
3685 			tcp_req_to_abort = &tqpair->reqs[i];
3686 			break;
3687 		}
3688 	}
3689 
3690 	spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, tqpair->qpair.trace_id, 0, (uintptr_t)req);
3691 
3692 	if (tcp_req_to_abort == NULL) {
3693 		spdk_nvmf_request_complete(req);
3694 		return;
3695 	}
3696 
3697 	req->req_to_abort = &tcp_req_to_abort->req;
3698 	req->timeout_tsc = spdk_get_ticks() +
3699 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
3700 	req->poller = NULL;
3701 
3702 	_nvmf_tcp_qpair_abort_request(req);
3703 }
3704 
3705 struct tcp_subsystem_add_host_opts {
3706 	char *psk;
3707 };
3708 
3709 static const struct spdk_json_object_decoder tcp_subsystem_add_host_opts_decoder[] = {
3710 	{"psk", offsetof(struct tcp_subsystem_add_host_opts, psk), spdk_json_decode_string, true},
3711 };
3712 
3713 static int
3714 nvmf_tcp_subsystem_add_host(struct spdk_nvmf_transport *transport,
3715 			    const struct spdk_nvmf_subsystem *subsystem,
3716 			    const char *hostnqn,
3717 			    const struct spdk_json_val *transport_specific)
3718 {
3719 	struct tcp_subsystem_add_host_opts opts;
3720 	struct spdk_nvmf_tcp_transport *ttransport;
3721 	struct tcp_psk_entry *tmp, *entry = NULL;
3722 	uint8_t psk_configured[SPDK_TLS_PSK_MAX_LEN] = {};
3723 	char psk_interchange[SPDK_TLS_PSK_MAX_LEN + 1] = {};
3724 	uint8_t tls_cipher_suite;
3725 	int rc = 0;
3726 	uint8_t psk_retained_hash;
3727 	uint64_t psk_configured_size;
3728 
3729 	if (transport_specific == NULL) {
3730 		return 0;
3731 	}
3732 
3733 	assert(transport != NULL);
3734 	assert(subsystem != NULL);
3735 
3736 	memset(&opts, 0, sizeof(opts));
3737 
3738 	/* Decode PSK (either name of a key or file path) */
3739 	if (spdk_json_decode_object_relaxed(transport_specific, tcp_subsystem_add_host_opts_decoder,
3740 					    SPDK_COUNTOF(tcp_subsystem_add_host_opts_decoder), &opts)) {
3741 		SPDK_ERRLOG("spdk_json_decode_object failed\n");
3742 		return -EINVAL;
3743 	}
3744 
3745 	if (opts.psk == NULL) {
3746 		return 0;
3747 	}
3748 
3749 	entry = calloc(1, sizeof(struct tcp_psk_entry));
3750 	if (entry == NULL) {
3751 		SPDK_ERRLOG("Unable to allocate memory for PSK entry!\n");
3752 		rc = -ENOMEM;
3753 		goto end;
3754 	}
3755 
3756 	entry->key = spdk_keyring_get_key(opts.psk);
3757 	if (entry->key == NULL) {
3758 		SPDK_ERRLOG("Key '%s' does not exist\n", opts.psk);
3759 		rc = -EINVAL;
3760 		goto end;
3761 	}
3762 
3763 	rc = spdk_key_get_key(entry->key, psk_interchange, SPDK_TLS_PSK_MAX_LEN);
3764 	if (rc < 0) {
3765 		SPDK_ERRLOG("Failed to retrieve PSK '%s'\n", opts.psk);
3766 		rc = -EINVAL;
3767 		goto end;
3768 	}
3769 
3770 	/* Parse PSK interchange to get length of base64 encoded data.
3771 	 * This is then used to decide which cipher suite should be used
3772 	 * to generate PSK identity and TLS PSK later on. */
3773 	rc = nvme_tcp_parse_interchange_psk(psk_interchange, psk_configured, sizeof(psk_configured),
3774 					    &psk_configured_size, &psk_retained_hash);
3775 	if (rc < 0) {
3776 		SPDK_ERRLOG("Failed to parse PSK interchange!\n");
3777 		goto end;
3778 	}
3779 
3780 	/* The Base64 string encodes the configured PSK (32 or 48 bytes binary).
3781 	 * This check also ensures that psk_configured_size is smaller than
3782 	 * psk_retained buffer size. */
3783 	if (psk_configured_size == SHA256_DIGEST_LENGTH) {
3784 		tls_cipher_suite = NVME_TCP_CIPHER_AES_128_GCM_SHA256;
3785 	} else if (psk_configured_size == SHA384_DIGEST_LENGTH) {
3786 		tls_cipher_suite = NVME_TCP_CIPHER_AES_256_GCM_SHA384;
3787 	} else {
3788 		SPDK_ERRLOG("Unrecognized cipher suite!\n");
3789 		rc = -EINVAL;
3790 		goto end;
3791 	}
3792 
3793 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3794 	/* Generate PSK identity. */
3795 	rc = nvme_tcp_generate_psk_identity(entry->pskid, sizeof(entry->pskid), hostnqn,
3796 					    subsystem->subnqn, tls_cipher_suite);
3797 	if (rc) {
3798 		rc = -EINVAL;
3799 		goto end;
3800 	}
3801 	/* Check if PSK identity entry already exists. */
3802 	TAILQ_FOREACH(tmp, &ttransport->psks, link) {
3803 		if (strncmp(tmp->pskid, entry->pskid, NVMF_PSK_IDENTITY_LEN) == 0) {
3804 			SPDK_ERRLOG("Given PSK identity: %s entry already exists!\n", entry->pskid);
3805 			rc = -EEXIST;
3806 			goto end;
3807 		}
3808 	}
3809 
3810 	if (snprintf(entry->hostnqn, sizeof(entry->hostnqn), "%s", hostnqn) < 0) {
3811 		SPDK_ERRLOG("Could not write hostnqn string!\n");
3812 		rc = -EINVAL;
3813 		goto end;
3814 	}
3815 	if (snprintf(entry->subnqn, sizeof(entry->subnqn), "%s", subsystem->subnqn) < 0) {
3816 		SPDK_ERRLOG("Could not write subnqn string!\n");
3817 		rc = -EINVAL;
3818 		goto end;
3819 	}
3820 
3821 	entry->tls_cipher_suite = tls_cipher_suite;
3822 
3823 	/* No hash indicates that Configured PSK must be used as Retained PSK. */
3824 	if (psk_retained_hash == NVME_TCP_HASH_ALGORITHM_NONE) {
3825 		/* Psk configured is either 32 or 48 bytes long. */
3826 		memcpy(entry->psk, psk_configured, psk_configured_size);
3827 		entry->psk_size = psk_configured_size;
3828 	} else {
3829 		/* Derive retained PSK. */
3830 		rc = nvme_tcp_derive_retained_psk(psk_configured, psk_configured_size, hostnqn, entry->psk,
3831 						  SPDK_TLS_PSK_MAX_LEN, psk_retained_hash);
3832 		if (rc < 0) {
3833 			SPDK_ERRLOG("Unable to derive retained PSK!\n");
3834 			goto end;
3835 		}
3836 		entry->psk_size = rc;
3837 	}
3838 
3839 	TAILQ_INSERT_TAIL(&ttransport->psks, entry, link);
3840 	rc = 0;
3841 
3842 end:
3843 	spdk_memset_s(psk_configured, sizeof(psk_configured), 0, sizeof(psk_configured));
3844 	spdk_memset_s(psk_interchange, sizeof(psk_interchange), 0, sizeof(psk_interchange));
3845 
3846 	free(opts.psk);
3847 	if (rc != 0) {
3848 		nvmf_tcp_free_psk_entry(entry);
3849 	}
3850 
3851 	return rc;
3852 }
3853 
3854 static void
3855 nvmf_tcp_subsystem_remove_host(struct spdk_nvmf_transport *transport,
3856 			       const struct spdk_nvmf_subsystem *subsystem,
3857 			       const char *hostnqn)
3858 {
3859 	struct spdk_nvmf_tcp_transport *ttransport;
3860 	struct tcp_psk_entry *entry, *tmp;
3861 
3862 	assert(transport != NULL);
3863 	assert(subsystem != NULL);
3864 
3865 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3866 	TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) {
3867 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3868 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3869 			TAILQ_REMOVE(&ttransport->psks, entry, link);
3870 			nvmf_tcp_free_psk_entry(entry);
3871 			break;
3872 		}
3873 	}
3874 }
3875 
3876 static void
3877 nvmf_tcp_subsystem_dump_host(struct spdk_nvmf_transport *transport,
3878 			     const struct spdk_nvmf_subsystem *subsystem, const char *hostnqn,
3879 			     struct spdk_json_write_ctx *w)
3880 {
3881 	struct spdk_nvmf_tcp_transport *ttransport;
3882 	struct tcp_psk_entry *entry;
3883 
3884 	assert(transport != NULL);
3885 	assert(subsystem != NULL);
3886 
3887 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
3888 	TAILQ_FOREACH(entry, &ttransport->psks, link) {
3889 		if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 &&
3890 		    (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) {
3891 			spdk_json_write_named_string(w, "psk",  spdk_key_get_name(entry->key));
3892 			break;
3893 		}
3894 	}
3895 }
3896 
3897 static void
3898 nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
3899 {
3900 	opts->max_queue_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH;
3901 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
3902 	opts->in_capsule_data_size =	SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
3903 	opts->max_io_size =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
3904 	opts->io_unit_size =		SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
3905 	opts->max_aq_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH;
3906 	opts->num_shared_buffers =	SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
3907 	opts->buf_cache_size =		SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
3908 	opts->dif_insert_or_strip =	SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
3909 	opts->abort_timeout_sec =	SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
3910 	opts->transport_specific =      NULL;
3911 }
3912 
3913 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
3914 	.name = "TCP",
3915 	.type = SPDK_NVME_TRANSPORT_TCP,
3916 	.opts_init = nvmf_tcp_opts_init,
3917 	.create = nvmf_tcp_create,
3918 	.dump_opts = nvmf_tcp_dump_opts,
3919 	.destroy = nvmf_tcp_destroy,
3920 
3921 	.listen = nvmf_tcp_listen,
3922 	.stop_listen = nvmf_tcp_stop_listen,
3923 
3924 	.listener_discover = nvmf_tcp_discover,
3925 
3926 	.poll_group_create = nvmf_tcp_poll_group_create,
3927 	.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
3928 	.poll_group_destroy = nvmf_tcp_poll_group_destroy,
3929 	.poll_group_add = nvmf_tcp_poll_group_add,
3930 	.poll_group_remove = nvmf_tcp_poll_group_remove,
3931 	.poll_group_poll = nvmf_tcp_poll_group_poll,
3932 
3933 	.req_free = nvmf_tcp_req_free,
3934 	.req_complete = nvmf_tcp_req_complete,
3935 	.req_get_buffers_done = nvmf_tcp_req_get_buffers_done,
3936 
3937 	.qpair_fini = nvmf_tcp_close_qpair,
3938 	.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
3939 	.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
3940 	.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
3941 	.qpair_abort_request = nvmf_tcp_qpair_abort_request,
3942 	.subsystem_add_host = nvmf_tcp_subsystem_add_host,
3943 	.subsystem_remove_host = nvmf_tcp_subsystem_remove_host,
3944 	.subsystem_dump_host = nvmf_tcp_subsystem_dump_host,
3945 };
3946 
3947 SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
3948 SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)
3949