xref: /spdk/lib/nvmf/tcp.c (revision 18c8b52afa69f39481ebb75711b2f30b11693f9d)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (c) Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/accel.h"
8 #include "spdk/stdinc.h"
9 #include "spdk/crc32.h"
10 #include "spdk/endian.h"
11 #include "spdk/assert.h"
12 #include "spdk/thread.h"
13 #include "spdk/nvmf_transport.h"
14 #include "spdk/string.h"
15 #include "spdk/trace.h"
16 #include "spdk/util.h"
17 #include "spdk/log.h"
18 
19 #include "spdk_internal/assert.h"
20 #include "spdk_internal/nvme_tcp.h"
21 #include "spdk_internal/sock.h"
22 
23 #include "nvmf_internal.h"
24 
25 #include "spdk_internal/trace_defs.h"
26 
27 #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
28 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
29 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
30 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
31 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
32 
33 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
34 
35 /* spdk nvmf related structure */
36 enum spdk_nvmf_tcp_req_state {
37 
38 	/* The request is not currently in use */
39 	TCP_REQUEST_STATE_FREE = 0,
40 
41 	/* Initial state when request first received */
42 	TCP_REQUEST_STATE_NEW = 1,
43 
44 	/* The request is queued until a data buffer is available. */
45 	TCP_REQUEST_STATE_NEED_BUFFER = 2,
46 
47 	/* The request is waiting for zcopy_start to finish */
48 	TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 3,
49 
50 	/* The request has received a zero-copy buffer */
51 	TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 4,
52 
53 	/* The request is currently transferring data from the host to the controller. */
54 	TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 5,
55 
56 	/* The request is waiting for the R2T send acknowledgement. */
57 	TCP_REQUEST_STATE_AWAITING_R2T_ACK = 6,
58 
59 	/* The request is ready to execute at the block device */
60 	TCP_REQUEST_STATE_READY_TO_EXECUTE = 7,
61 
62 	/* The request is currently executing at the block device */
63 	TCP_REQUEST_STATE_EXECUTING = 8,
64 
65 	/* The request is waiting for zcopy buffers to be commited */
66 	TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 9,
67 
68 	/* The request finished executing at the block device */
69 	TCP_REQUEST_STATE_EXECUTED = 10,
70 
71 	/* The request is ready to send a completion */
72 	TCP_REQUEST_STATE_READY_TO_COMPLETE = 11,
73 
74 	/* The request is currently transferring final pdus from the controller to the host. */
75 	TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 12,
76 
77 	/* The request is waiting for zcopy buffers to be released (without committing) */
78 	TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 13,
79 
80 	/* The request completed and can be marked free. */
81 	TCP_REQUEST_STATE_COMPLETED = 14,
82 
83 	/* Terminator */
84 	TCP_REQUEST_NUM_STATES,
85 };
86 
87 static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
88 	"Invalid PDU Header Field",
89 	"PDU Sequence Error",
90 	"Header Digiest Error",
91 	"Data Transfer Out of Range",
92 	"R2T Limit Exceeded",
93 	"Unsupported parameter",
94 };
95 
96 SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
97 {
98 	spdk_trace_register_owner(OWNER_NVMF_TCP, 't');
99 	spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
100 	spdk_trace_register_description("TCP_REQ_NEW",
101 					TRACE_TCP_REQUEST_STATE_NEW,
102 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1,
103 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
104 	spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
105 					TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
106 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
107 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
108 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START",
109 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START,
110 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
111 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
112 	spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL",
113 					TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED,
114 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
115 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
116 	spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
117 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
118 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
119 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
120 	spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
121 					TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
122 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
123 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
124 	spdk_trace_register_description("TCP_REQ_EXECUTING",
125 					TRACE_TCP_REQUEST_STATE_EXECUTING,
126 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
127 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
128 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT",
129 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT,
130 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
131 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
132 	spdk_trace_register_description("TCP_REQ_EXECUTED",
133 					TRACE_TCP_REQUEST_STATE_EXECUTED,
134 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
135 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
136 	spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
137 					TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
138 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
139 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
140 	spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
141 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
142 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
143 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
144 	spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS",
145 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE,
146 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
147 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
148 	spdk_trace_register_description("TCP_REQ_COMPLETED",
149 					TRACE_TCP_REQUEST_STATE_COMPLETED,
150 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
151 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
152 	spdk_trace_register_description("TCP_WRITE_START",
153 					TRACE_TCP_FLUSH_WRITEBUF_START,
154 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
155 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
156 	spdk_trace_register_description("TCP_WRITE_DONE",
157 					TRACE_TCP_FLUSH_WRITEBUF_DONE,
158 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
159 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
160 	spdk_trace_register_description("TCP_READ_DONE",
161 					TRACE_TCP_READ_FROM_SOCKET_DONE,
162 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
163 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
164 	spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
165 					TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
166 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
167 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
168 
169 	spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE,
170 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
171 					SPDK_TRACE_ARG_TYPE_INT, "");
172 	spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT,
173 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
174 					SPDK_TRACE_ARG_TYPE_INT, "");
175 	spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE,
176 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
177 					SPDK_TRACE_ARG_TYPE_INT, "state");
178 	spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT,
179 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
180 					SPDK_TRACE_ARG_TYPE_INT, "");
181 	spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY,
182 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
183 					SPDK_TRACE_ARG_TYPE_INT, "");
184 	spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ,
185 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
186 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
187 	spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE,
188 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
189 					SPDK_TRACE_ARG_TYPE_INT, "state");
190 
191 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1);
192 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0);
193 }
194 
195 struct spdk_nvmf_tcp_req  {
196 	struct spdk_nvmf_request		req;
197 	struct spdk_nvme_cpl			rsp;
198 	struct spdk_nvme_cmd			cmd;
199 
200 	/* A PDU that can be used for sending responses. This is
201 	 * not the incoming PDU! */
202 	struct nvme_tcp_pdu			*pdu;
203 
204 	/* In-capsule data buffer */
205 	uint8_t					*buf;
206 
207 	struct spdk_nvmf_tcp_req		*fused_pair;
208 
209 	/*
210 	 * The PDU for a request may be used multiple times in serial over
211 	 * the request's lifetime. For example, first to send an R2T, then
212 	 * to send a completion. To catch mistakes where the PDU is used
213 	 * twice at the same time, add a debug flag here for init/fini.
214 	 */
215 	bool					pdu_in_use;
216 	bool					has_in_capsule_data;
217 	bool					fused_failed;
218 
219 	/* transfer_tag */
220 	uint16_t				ttag;
221 
222 	enum spdk_nvmf_tcp_req_state		state;
223 
224 	/*
225 	 * h2c_offset is used when we receive the h2c_data PDU.
226 	 */
227 	uint32_t				h2c_offset;
228 
229 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		link;
230 	TAILQ_ENTRY(spdk_nvmf_tcp_req)		state_link;
231 };
232 
233 struct spdk_nvmf_tcp_qpair {
234 	struct spdk_nvmf_qpair			qpair;
235 	struct spdk_nvmf_tcp_poll_group		*group;
236 	struct spdk_sock			*sock;
237 
238 	enum nvme_tcp_pdu_recv_state		recv_state;
239 	enum nvme_tcp_qpair_state		state;
240 
241 	/* PDU being actively received */
242 	struct nvme_tcp_pdu			*pdu_in_progress;
243 
244 	struct spdk_nvmf_tcp_req		*fused_first;
245 
246 	/* Queues to track the requests in all states */
247 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_working_queue;
248 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_free_queue;
249 	SLIST_HEAD(, nvme_tcp_pdu)		tcp_pdu_free_queue;
250 
251 	/* Number of requests in each state */
252 	uint32_t				state_cntr[TCP_REQUEST_NUM_STATES];
253 
254 	uint8_t					cpda;
255 
256 	bool					host_hdgst_enable;
257 	bool					host_ddgst_enable;
258 
259 	/* This is a spare PDU used for sending special management
260 	 * operations. Primarily, this is used for the initial
261 	 * connection response and c2h termination request. */
262 	struct nvme_tcp_pdu			*mgmt_pdu;
263 
264 	/* Arrays of in-capsule buffers, requests, and pdus.
265 	 * Each array is 'resource_count' number of elements */
266 	void					*bufs;
267 	struct spdk_nvmf_tcp_req		*reqs;
268 	struct nvme_tcp_pdu			*pdus;
269 	uint32_t				resource_count;
270 	uint32_t				recv_buf_size;
271 
272 	struct spdk_nvmf_tcp_port		*port;
273 
274 	/* IP address */
275 	char					initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
276 	char					target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
277 
278 	/* IP port */
279 	uint16_t				initiator_port;
280 	uint16_t				target_port;
281 
282 	/* Timer used to destroy qpair after detecting transport error issue if initiator does
283 	 *  not close the connection.
284 	 */
285 	struct spdk_poller			*timeout_poller;
286 
287 	spdk_nvmf_transport_qpair_fini_cb	fini_cb_fn;
288 	void					*fini_cb_arg;
289 
290 	TAILQ_ENTRY(spdk_nvmf_tcp_qpair)	link;
291 };
292 
293 struct spdk_nvmf_tcp_control_msg {
294 	STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
295 };
296 
297 struct spdk_nvmf_tcp_control_msg_list {
298 	void *msg_buf;
299 	STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
300 };
301 
302 struct spdk_nvmf_tcp_poll_group {
303 	struct spdk_nvmf_transport_poll_group	group;
304 	struct spdk_sock_group			*sock_group;
305 
306 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	qpairs;
307 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	await_req;
308 
309 	struct spdk_io_channel			*accel_channel;
310 	struct spdk_nvmf_tcp_control_msg_list	*control_msg_list;
311 
312 	TAILQ_ENTRY(spdk_nvmf_tcp_poll_group)	link;
313 };
314 
315 struct spdk_nvmf_tcp_port {
316 	const struct spdk_nvme_transport_id	*trid;
317 	struct spdk_sock			*listen_sock;
318 	TAILQ_ENTRY(spdk_nvmf_tcp_port)		link;
319 };
320 
321 struct tcp_transport_opts {
322 	bool		c2h_success;
323 	uint16_t	control_msg_num;
324 	uint32_t	sock_priority;
325 };
326 
327 struct spdk_nvmf_tcp_transport {
328 	struct spdk_nvmf_transport		transport;
329 	struct tcp_transport_opts               tcp_opts;
330 
331 	struct spdk_nvmf_tcp_poll_group		*next_pg;
332 
333 	struct spdk_poller			*accept_poller;
334 
335 	TAILQ_HEAD(, spdk_nvmf_tcp_port)	ports;
336 	TAILQ_HEAD(, spdk_nvmf_tcp_poll_group)	poll_groups;
337 };
338 
339 static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
340 	{
341 		"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
342 		spdk_json_decode_bool, true
343 	},
344 	{
345 		"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
346 		spdk_json_decode_uint16, true
347 	},
348 	{
349 		"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
350 		spdk_json_decode_uint32, true
351 	},
352 };
353 
354 static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
355 				 struct spdk_nvmf_tcp_req *tcp_req);
356 static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
357 
358 static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
359 				    struct spdk_nvmf_tcp_req *tcp_req);
360 
361 static void
362 nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
363 		       enum spdk_nvmf_tcp_req_state state)
364 {
365 	struct spdk_nvmf_qpair *qpair;
366 	struct spdk_nvmf_tcp_qpair *tqpair;
367 
368 	qpair = tcp_req->req.qpair;
369 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
370 
371 	assert(tqpair->state_cntr[tcp_req->state] > 0);
372 	tqpair->state_cntr[tcp_req->state]--;
373 	tqpair->state_cntr[state]++;
374 
375 	tcp_req->state = state;
376 }
377 
378 static inline struct nvme_tcp_pdu *
379 nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
380 {
381 	assert(tcp_req->pdu_in_use == false);
382 
383 	memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
384 	tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
385 
386 	return tcp_req->pdu;
387 }
388 
389 static struct spdk_nvmf_tcp_req *
390 nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
391 {
392 	struct spdk_nvmf_tcp_req *tcp_req;
393 
394 	tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
395 	if (spdk_unlikely(!tcp_req)) {
396 		return NULL;
397 	}
398 
399 	memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
400 	tcp_req->h2c_offset = 0;
401 	tcp_req->has_in_capsule_data = false;
402 	tcp_req->req.dif_enabled = false;
403 	tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE;
404 
405 	TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
406 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
407 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
408 	return tcp_req;
409 }
410 
411 static inline void
412 nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
413 {
414 	assert(!tcp_req->pdu_in_use);
415 
416 	TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
417 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
418 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
419 }
420 
421 static void
422 nvmf_tcp_request_free(void *cb_arg)
423 {
424 	struct spdk_nvmf_tcp_transport *ttransport;
425 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
426 
427 	assert(tcp_req != NULL);
428 
429 	SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
430 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
431 				      struct spdk_nvmf_tcp_transport, transport);
432 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
433 	nvmf_tcp_req_process(ttransport, tcp_req);
434 }
435 
436 static int
437 nvmf_tcp_req_free(struct spdk_nvmf_request *req)
438 {
439 	struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
440 
441 	nvmf_tcp_request_free(tcp_req);
442 
443 	return 0;
444 }
445 
446 static void
447 nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
448 			   enum spdk_nvmf_tcp_req_state state)
449 {
450 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
451 
452 	assert(state != TCP_REQUEST_STATE_FREE);
453 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
454 		if (state == tcp_req->state) {
455 			nvmf_tcp_request_free(tcp_req);
456 		}
457 	}
458 }
459 
460 static void
461 nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
462 {
463 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
464 
465 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
466 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
467 
468 	/* Wipe the requests waiting for buffer from the global list */
469 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
470 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
471 			STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue, &tcp_req->req,
472 				      spdk_nvmf_request, buf_link);
473 		}
474 	}
475 
476 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
477 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
478 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
479 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
480 }
481 
482 static void
483 nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
484 {
485 	int i;
486 	struct spdk_nvmf_tcp_req *tcp_req;
487 
488 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
489 	for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
490 		SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
491 		TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
492 			if ((int)tcp_req->state == i) {
493 				SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
494 				SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
495 			}
496 		}
497 	}
498 }
499 
500 static void
501 _nvmf_tcp_qpair_destroy(void *_tqpair)
502 {
503 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
504 	spdk_nvmf_transport_qpair_fini_cb cb_fn = tqpair->fini_cb_fn;
505 	void *cb_arg = tqpair->fini_cb_arg;
506 	int err = 0;
507 
508 	spdk_trace_record(TRACE_TCP_QP_DESTROY, 0, 0, (uintptr_t)tqpair);
509 
510 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
511 
512 	err = spdk_sock_close(&tqpair->sock);
513 	assert(err == 0);
514 	nvmf_tcp_cleanup_all_states(tqpair);
515 
516 	if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
517 		SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
518 			    tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
519 			    tqpair->resource_count);
520 		err++;
521 	}
522 
523 	if (err > 0) {
524 		nvmf_tcp_dump_qpair_req_contents(tqpair);
525 	}
526 
527 	/* The timeout poller might still be registered here if we close the qpair before host
528 	 * terminates the connection.
529 	 */
530 	spdk_poller_unregister(&tqpair->timeout_poller);
531 	spdk_dma_free(tqpair->pdus);
532 	free(tqpair->reqs);
533 	spdk_free(tqpair->bufs);
534 	free(tqpair);
535 
536 	if (cb_fn != NULL) {
537 		cb_fn(cb_arg);
538 	}
539 
540 	SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
541 }
542 
543 static void
544 nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
545 {
546 	/* Delay the destruction to make sure it isn't performed from the context of a sock
547 	 * callback.  Otherwise, spdk_sock_close() might not abort pending requests, causing their
548 	 * completions to be executed after the qpair is freed.  (Note: this fixed issue #2471.)
549 	 */
550 	spdk_thread_send_msg(spdk_get_thread(), _nvmf_tcp_qpair_destroy, tqpair);
551 }
552 
553 static void
554 nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
555 {
556 	struct spdk_nvmf_tcp_transport	*ttransport;
557 	assert(w != NULL);
558 
559 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
560 	spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
561 	spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
562 }
563 
564 static int
565 nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
566 		 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
567 {
568 	struct spdk_nvmf_tcp_transport	*ttransport;
569 
570 	assert(transport != NULL);
571 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
572 
573 	spdk_poller_unregister(&ttransport->accept_poller);
574 	free(ttransport);
575 
576 	if (cb_fn) {
577 		cb_fn(cb_arg);
578 	}
579 	return 0;
580 }
581 
582 static int nvmf_tcp_accept(void *ctx);
583 
584 static struct spdk_nvmf_transport *
585 nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
586 {
587 	struct spdk_nvmf_tcp_transport *ttransport;
588 	uint32_t sge_count;
589 	uint32_t min_shared_buffers;
590 
591 	ttransport = calloc(1, sizeof(*ttransport));
592 	if (!ttransport) {
593 		return NULL;
594 	}
595 
596 	TAILQ_INIT(&ttransport->ports);
597 	TAILQ_INIT(&ttransport->poll_groups);
598 
599 	ttransport->transport.ops = &spdk_nvmf_transport_tcp;
600 
601 	ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
602 	ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
603 	ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
604 	if (opts->transport_specific != NULL &&
605 	    spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
606 					    SPDK_COUNTOF(tcp_transport_opts_decoder),
607 					    &ttransport->tcp_opts)) {
608 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
609 		free(ttransport);
610 		return NULL;
611 	}
612 
613 	SPDK_NOTICELOG("*** TCP Transport Init ***\n");
614 
615 	SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
616 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
617 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
618 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
619 		     "  num_shared_buffers=%d, c2h_success=%d,\n"
620 		     "  dif_insert_or_strip=%d, sock_priority=%d\n"
621 		     "  abort_timeout_sec=%d, control_msg_num=%hu\n",
622 		     opts->max_queue_depth,
623 		     opts->max_io_size,
624 		     opts->max_qpairs_per_ctrlr - 1,
625 		     opts->io_unit_size,
626 		     opts->in_capsule_data_size,
627 		     opts->max_aq_depth,
628 		     opts->num_shared_buffers,
629 		     ttransport->tcp_opts.c2h_success,
630 		     opts->dif_insert_or_strip,
631 		     ttransport->tcp_opts.sock_priority,
632 		     opts->abort_timeout_sec,
633 		     ttransport->tcp_opts.control_msg_num);
634 
635 	if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
636 		SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
637 			    "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
638 			    ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
639 		free(ttransport);
640 		return NULL;
641 	}
642 
643 	if (ttransport->tcp_opts.control_msg_num == 0 &&
644 	    opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
645 		SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
646 			     SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
647 		ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
648 	}
649 
650 	/* I/O unit size cannot be larger than max I/O size */
651 	if (opts->io_unit_size > opts->max_io_size) {
652 		opts->io_unit_size = opts->max_io_size;
653 	}
654 
655 	sge_count = opts->max_io_size / opts->io_unit_size;
656 	if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
657 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
658 		free(ttransport);
659 		return NULL;
660 	}
661 
662 	min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
663 	if (min_shared_buffers > opts->num_shared_buffers) {
664 		SPDK_ERRLOG("There are not enough buffers to satisfy "
665 			    "per-poll group caches for each thread. (%" PRIu32 ") "
666 			    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
667 		SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
668 		free(ttransport);
669 		return NULL;
670 	}
671 
672 	ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport,
673 				    opts->acceptor_poll_rate);
674 	if (!ttransport->accept_poller) {
675 		free(ttransport);
676 		return NULL;
677 	}
678 
679 	return &ttransport->transport;
680 }
681 
682 static int
683 nvmf_tcp_trsvcid_to_int(const char *trsvcid)
684 {
685 	unsigned long long ull;
686 	char *end = NULL;
687 
688 	ull = strtoull(trsvcid, &end, 10);
689 	if (end == NULL || end == trsvcid || *end != '\0') {
690 		return -1;
691 	}
692 
693 	/* Valid TCP/IP port numbers are in [0, 65535] */
694 	if (ull > 65535) {
695 		return -1;
696 	}
697 
698 	return (int)ull;
699 }
700 
701 /**
702  * Canonicalize a listen address trid.
703  */
704 static int
705 nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
706 			   const struct spdk_nvme_transport_id *trid)
707 {
708 	int trsvcid_int;
709 
710 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
711 	if (trsvcid_int < 0) {
712 		return -EINVAL;
713 	}
714 
715 	memset(canon_trid, 0, sizeof(*canon_trid));
716 	spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
717 	canon_trid->adrfam = trid->adrfam;
718 	snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
719 	snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
720 
721 	return 0;
722 }
723 
724 /**
725  * Find an existing listening port.
726  */
727 static struct spdk_nvmf_tcp_port *
728 nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
729 		   const struct spdk_nvme_transport_id *trid)
730 {
731 	struct spdk_nvme_transport_id canon_trid;
732 	struct spdk_nvmf_tcp_port *port;
733 
734 	if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
735 		return NULL;
736 	}
737 
738 	TAILQ_FOREACH(port, &ttransport->ports, link) {
739 		if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
740 			return port;
741 		}
742 	}
743 
744 	return NULL;
745 }
746 
747 static int
748 nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
749 		struct spdk_nvmf_listen_opts *listen_opts)
750 {
751 	struct spdk_nvmf_tcp_transport *ttransport;
752 	struct spdk_nvmf_tcp_port *port;
753 	int trsvcid_int;
754 	uint8_t adrfam;
755 	struct spdk_sock_opts opts;
756 
757 	if (!strlen(trid->trsvcid)) {
758 		SPDK_ERRLOG("Service id is required\n");
759 		return -EINVAL;
760 	}
761 
762 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
763 
764 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
765 	if (trsvcid_int < 0) {
766 		SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
767 		return -EINVAL;
768 	}
769 
770 	port = calloc(1, sizeof(*port));
771 	if (!port) {
772 		SPDK_ERRLOG("Port allocation failed\n");
773 		return -ENOMEM;
774 	}
775 
776 	port->trid = trid;
777 	opts.opts_size = sizeof(opts);
778 	spdk_sock_get_default_opts(&opts);
779 	opts.priority = ttransport->tcp_opts.sock_priority;
780 	/* TODO: also add impl_opts like on the initiator side */
781 	port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
782 			    NULL, &opts);
783 	if (port->listen_sock == NULL) {
784 		SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
785 			    trid->traddr, trsvcid_int,
786 			    spdk_strerror(errno), errno);
787 		free(port);
788 		return -errno;
789 	}
790 
791 	if (spdk_sock_is_ipv4(port->listen_sock)) {
792 		adrfam = SPDK_NVMF_ADRFAM_IPV4;
793 	} else if (spdk_sock_is_ipv6(port->listen_sock)) {
794 		adrfam = SPDK_NVMF_ADRFAM_IPV6;
795 	} else {
796 		SPDK_ERRLOG("Unhandled socket type\n");
797 		adrfam = 0;
798 	}
799 
800 	if (adrfam != trid->adrfam) {
801 		SPDK_ERRLOG("Socket address family mismatch\n");
802 		spdk_sock_close(&port->listen_sock);
803 		free(port);
804 		return -EINVAL;
805 	}
806 
807 	SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
808 		       trid->traddr, trid->trsvcid);
809 
810 	TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
811 	return 0;
812 }
813 
814 static void
815 nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
816 		     const struct spdk_nvme_transport_id *trid)
817 {
818 	struct spdk_nvmf_tcp_transport *ttransport;
819 	struct spdk_nvmf_tcp_port *port;
820 
821 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
822 
823 	SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
824 		      trid->traddr, trid->trsvcid);
825 
826 	port = nvmf_tcp_find_port(ttransport, trid);
827 	if (port) {
828 		TAILQ_REMOVE(&ttransport->ports, port, link);
829 		spdk_sock_close(&port->listen_sock);
830 		free(port);
831 	}
832 }
833 
834 static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
835 		enum nvme_tcp_pdu_recv_state state);
836 
837 static void
838 nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvme_tcp_qpair_state state)
839 {
840 	tqpair->state = state;
841 	spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
842 			  tqpair->state);
843 }
844 
845 static void
846 nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
847 {
848 	SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
849 
850 	spdk_trace_record(TRACE_TCP_QP_DISCONNECT, 0, 0, (uintptr_t)tqpair);
851 
852 	if (tqpair->state <= NVME_TCP_QPAIR_STATE_RUNNING) {
853 		nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITING);
854 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
855 		spdk_poller_unregister(&tqpair->timeout_poller);
856 
857 		/* This will end up calling nvmf_tcp_close_qpair */
858 		spdk_nvmf_qpair_disconnect(&tqpair->qpair, NULL, NULL);
859 	}
860 }
861 
862 static void
863 _mgmt_pdu_write_done(void *_tqpair, int err)
864 {
865 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
866 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
867 
868 	if (spdk_unlikely(err != 0)) {
869 		nvmf_tcp_qpair_disconnect(tqpair);
870 		return;
871 	}
872 
873 	assert(pdu->cb_fn != NULL);
874 	pdu->cb_fn(pdu->cb_arg);
875 }
876 
877 static void
878 _req_pdu_write_done(void *req, int err)
879 {
880 	struct spdk_nvmf_tcp_req *tcp_req = req;
881 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
882 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
883 
884 	assert(tcp_req->pdu_in_use);
885 	tcp_req->pdu_in_use = false;
886 
887 	/* If the request is in a completed state, we're waiting for write completion to free it */
888 	if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) {
889 		nvmf_tcp_request_free(tcp_req);
890 		return;
891 	}
892 
893 	if (spdk_unlikely(err != 0)) {
894 		nvmf_tcp_qpair_disconnect(tqpair);
895 		return;
896 	}
897 
898 	assert(pdu->cb_fn != NULL);
899 	pdu->cb_fn(pdu->cb_arg);
900 }
901 
902 static void
903 _pdu_write_done(struct nvme_tcp_pdu *pdu, int err)
904 {
905 	pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err);
906 }
907 
908 static void
909 _tcp_write_pdu(struct nvme_tcp_pdu *pdu)
910 {
911 	uint32_t mapped_length = 0;
912 	ssize_t rc;
913 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
914 
915 	pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
916 			       tqpair->host_hdgst_enable, tqpair->host_ddgst_enable,
917 			       &mapped_length);
918 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
919 	    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
920 		rc = spdk_sock_writev(tqpair->sock, pdu->iov, pdu->sock_req.iovcnt);
921 		if (rc == mapped_length) {
922 			_pdu_write_done(pdu, 0);
923 		} else {
924 			SPDK_ERRLOG("IC_RESP or TERM_REQ could not write to socket.\n");
925 			_pdu_write_done(pdu, -1);
926 		}
927 	} else {
928 		spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
929 	}
930 }
931 
932 static void
933 data_crc32_accel_done(void *cb_arg, int status)
934 {
935 	struct nvme_tcp_pdu *pdu = cb_arg;
936 
937 	if (spdk_unlikely(status)) {
938 		SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
939 		_pdu_write_done(pdu, status);
940 		return;
941 	}
942 
943 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
944 	MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
945 
946 	_tcp_write_pdu(pdu);
947 }
948 
949 static void
950 pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
951 {
952 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
953 	int rc = 0;
954 
955 	/* Data Digest */
956 	if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
957 		/* Only suport this limitated case for the first step */
958 		if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
959 				&& tqpair->group)) {
960 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
961 						       pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
962 			if (spdk_likely(rc == 0)) {
963 				return;
964 			}
965 		} else {
966 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
967 		}
968 		data_crc32_accel_done(pdu, rc);
969 	} else {
970 		_tcp_write_pdu(pdu);
971 	}
972 }
973 
974 static void
975 nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
976 			 struct nvme_tcp_pdu *pdu,
977 			 nvme_tcp_qpair_xfer_complete_cb cb_fn,
978 			 void *cb_arg)
979 {
980 	int hlen;
981 	uint32_t crc32c;
982 
983 	assert(tqpair->pdu_in_progress != pdu);
984 
985 	hlen = pdu->hdr.common.hlen;
986 	pdu->cb_fn = cb_fn;
987 	pdu->cb_arg = cb_arg;
988 
989 	pdu->iov[0].iov_base = &pdu->hdr.raw;
990 	pdu->iov[0].iov_len = hlen;
991 
992 	/* Header Digest */
993 	if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) {
994 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
995 		MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
996 	}
997 
998 	/* Data Digest */
999 	pdu_data_crc32_compute(pdu);
1000 }
1001 
1002 static void
1003 nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1004 			      nvme_tcp_qpair_xfer_complete_cb cb_fn,
1005 			      void *cb_arg)
1006 {
1007 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1008 
1009 	pdu->sock_req.cb_fn = _mgmt_pdu_write_done;
1010 	pdu->sock_req.cb_arg = tqpair;
1011 
1012 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1013 }
1014 
1015 static void
1016 nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1017 			     struct spdk_nvmf_tcp_req *tcp_req,
1018 			     nvme_tcp_qpair_xfer_complete_cb cb_fn,
1019 			     void *cb_arg)
1020 {
1021 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1022 
1023 	pdu->sock_req.cb_fn = _req_pdu_write_done;
1024 	pdu->sock_req.cb_arg = tcp_req;
1025 
1026 	assert(!tcp_req->pdu_in_use);
1027 	tcp_req->pdu_in_use = true;
1028 
1029 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1030 }
1031 
1032 static int
1033 nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
1034 {
1035 	uint32_t i;
1036 	struct spdk_nvmf_transport_opts *opts;
1037 	uint32_t in_capsule_data_size;
1038 
1039 	opts = &tqpair->qpair.transport->opts;
1040 
1041 	in_capsule_data_size = opts->in_capsule_data_size;
1042 	if (opts->dif_insert_or_strip) {
1043 		in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
1044 	}
1045 
1046 	tqpair->resource_count = opts->max_queue_depth;
1047 
1048 	tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
1049 	if (!tqpair->reqs) {
1050 		SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
1051 		return -1;
1052 	}
1053 
1054 	if (in_capsule_data_size) {
1055 		tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
1056 					    NULL, SPDK_ENV_LCORE_ID_ANY,
1057 					    SPDK_MALLOC_DMA);
1058 		if (!tqpair->bufs) {
1059 			SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
1060 			return -1;
1061 		}
1062 	}
1063 	/* prepare memory space for receiving pdus and tcp_req */
1064 	/* Add additional 1 member, which will be used for mgmt_pdu owned by the tqpair */
1065 	tqpair->pdus = spdk_dma_zmalloc((2 * tqpair->resource_count + 1) * sizeof(*tqpair->pdus), 0x1000,
1066 					NULL);
1067 	if (!tqpair->pdus) {
1068 		SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
1069 		return -1;
1070 	}
1071 
1072 	for (i = 0; i < tqpair->resource_count; i++) {
1073 		struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
1074 
1075 		tcp_req->ttag = i + 1;
1076 		tcp_req->req.qpair = &tqpair->qpair;
1077 
1078 		tcp_req->pdu = &tqpair->pdus[i];
1079 		tcp_req->pdu->qpair = tqpair;
1080 
1081 		/* Set up memory to receive commands */
1082 		if (tqpair->bufs) {
1083 			tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
1084 		}
1085 
1086 		/* Set the cmdn and rsp */
1087 		tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
1088 		tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
1089 
1090 		tcp_req->req.stripped_data = NULL;
1091 
1092 		/* Initialize request state to FREE */
1093 		tcp_req->state = TCP_REQUEST_STATE_FREE;
1094 		TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
1095 		tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
1096 	}
1097 
1098 	for (; i < 2 * tqpair->resource_count; i++) {
1099 		struct nvme_tcp_pdu *pdu = &tqpair->pdus[i];
1100 
1101 		pdu->qpair = tqpair;
1102 		SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1103 	}
1104 
1105 	tqpair->mgmt_pdu = &tqpair->pdus[i];
1106 	tqpair->mgmt_pdu->qpair = tqpair;
1107 	tqpair->pdu_in_progress = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
1108 	SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
1109 
1110 	tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
1111 				 SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1112 
1113 	return 0;
1114 }
1115 
1116 static int
1117 nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
1118 {
1119 	struct spdk_nvmf_tcp_qpair *tqpair;
1120 
1121 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1122 
1123 	SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
1124 
1125 	spdk_trace_record(TRACE_TCP_QP_CREATE, 0, 0, (uintptr_t)tqpair);
1126 
1127 	/* Initialise request state queues of the qpair */
1128 	TAILQ_INIT(&tqpair->tcp_req_free_queue);
1129 	TAILQ_INIT(&tqpair->tcp_req_working_queue);
1130 	SLIST_INIT(&tqpair->tcp_pdu_free_queue);
1131 
1132 	tqpair->host_hdgst_enable = true;
1133 	tqpair->host_ddgst_enable = true;
1134 
1135 	return 0;
1136 }
1137 
1138 static int
1139 nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
1140 {
1141 	int rc;
1142 
1143 	spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, 0, 0, (uintptr_t)tqpair);
1144 
1145 	/* set low water mark */
1146 	rc = spdk_sock_set_recvlowat(tqpair->sock, 1);
1147 	if (rc != 0) {
1148 		SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
1149 		return rc;
1150 	}
1151 
1152 	return 0;
1153 }
1154 
1155 static void
1156 nvmf_tcp_handle_connect(struct spdk_nvmf_transport *transport,
1157 			struct spdk_nvmf_tcp_port *port,
1158 			struct spdk_sock *sock)
1159 {
1160 	struct spdk_nvmf_tcp_qpair *tqpair;
1161 	int rc;
1162 
1163 	SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
1164 		      port->trid->traddr, port->trid->trsvcid);
1165 
1166 	tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
1167 	if (tqpair == NULL) {
1168 		SPDK_ERRLOG("Could not allocate new connection.\n");
1169 		spdk_sock_close(&sock);
1170 		return;
1171 	}
1172 
1173 	tqpair->sock = sock;
1174 	tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
1175 	tqpair->port = port;
1176 	tqpair->qpair.transport = transport;
1177 
1178 	rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
1179 			       sizeof(tqpair->target_addr), &tqpair->target_port,
1180 			       tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
1181 			       &tqpair->initiator_port);
1182 	if (rc < 0) {
1183 		SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
1184 		nvmf_tcp_qpair_destroy(tqpair);
1185 		return;
1186 	}
1187 
1188 	spdk_nvmf_tgt_new_qpair(transport->tgt, &tqpair->qpair);
1189 }
1190 
1191 static uint32_t
1192 nvmf_tcp_port_accept(struct spdk_nvmf_transport *transport, struct spdk_nvmf_tcp_port *port)
1193 {
1194 	struct spdk_sock *sock;
1195 	uint32_t count = 0;
1196 	int i;
1197 
1198 	for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
1199 		sock = spdk_sock_accept(port->listen_sock);
1200 		if (sock == NULL) {
1201 			break;
1202 		}
1203 		count++;
1204 		nvmf_tcp_handle_connect(transport, port, sock);
1205 	}
1206 
1207 	return count;
1208 }
1209 
1210 static int
1211 nvmf_tcp_accept(void *ctx)
1212 {
1213 	struct spdk_nvmf_transport *transport = ctx;
1214 	struct spdk_nvmf_tcp_transport *ttransport;
1215 	struct spdk_nvmf_tcp_port *port;
1216 	uint32_t count = 0;
1217 
1218 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1219 
1220 	TAILQ_FOREACH(port, &ttransport->ports, link) {
1221 		count += nvmf_tcp_port_accept(transport, port);
1222 	}
1223 
1224 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1225 }
1226 
1227 static void
1228 nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
1229 		  struct spdk_nvme_transport_id *trid,
1230 		  struct spdk_nvmf_discovery_log_page_entry *entry)
1231 {
1232 	entry->trtype = SPDK_NVMF_TRTYPE_TCP;
1233 	entry->adrfam = trid->adrfam;
1234 	entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
1235 
1236 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
1237 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
1238 
1239 	entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
1240 }
1241 
1242 static struct spdk_nvmf_tcp_control_msg_list *
1243 nvmf_tcp_control_msg_list_create(uint16_t num_messages)
1244 {
1245 	struct spdk_nvmf_tcp_control_msg_list *list;
1246 	struct spdk_nvmf_tcp_control_msg *msg;
1247 	uint16_t i;
1248 
1249 	list = calloc(1, sizeof(*list));
1250 	if (!list) {
1251 		SPDK_ERRLOG("Failed to allocate memory for list structure\n");
1252 		return NULL;
1253 	}
1254 
1255 	list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
1256 				     NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
1257 	if (!list->msg_buf) {
1258 		SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
1259 		free(list);
1260 		return NULL;
1261 	}
1262 
1263 	STAILQ_INIT(&list->free_msgs);
1264 
1265 	for (i = 0; i < num_messages; i++) {
1266 		msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
1267 				SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1268 		STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
1269 	}
1270 
1271 	return list;
1272 }
1273 
1274 static void
1275 nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
1276 {
1277 	if (!list) {
1278 		return;
1279 	}
1280 
1281 	spdk_free(list->msg_buf);
1282 	free(list);
1283 }
1284 
1285 static struct spdk_nvmf_transport_poll_group *
1286 nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport,
1287 			   struct spdk_nvmf_poll_group *group)
1288 {
1289 	struct spdk_nvmf_tcp_transport	*ttransport;
1290 	struct spdk_nvmf_tcp_poll_group *tgroup;
1291 
1292 	tgroup = calloc(1, sizeof(*tgroup));
1293 	if (!tgroup) {
1294 		return NULL;
1295 	}
1296 
1297 	tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
1298 	if (!tgroup->sock_group) {
1299 		goto cleanup;
1300 	}
1301 
1302 	TAILQ_INIT(&tgroup->qpairs);
1303 	TAILQ_INIT(&tgroup->await_req);
1304 
1305 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1306 
1307 	if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
1308 		SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
1309 			      "Creating control messages list\n", transport->opts.in_capsule_data_size,
1310 			      SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1311 		tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
1312 		if (!tgroup->control_msg_list) {
1313 			goto cleanup;
1314 		}
1315 	}
1316 
1317 	tgroup->accel_channel = spdk_accel_get_io_channel();
1318 	if (spdk_unlikely(!tgroup->accel_channel)) {
1319 		SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
1320 		goto cleanup;
1321 	}
1322 
1323 	TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link);
1324 	if (ttransport->next_pg == NULL) {
1325 		ttransport->next_pg = tgroup;
1326 	}
1327 
1328 	return &tgroup->group;
1329 
1330 cleanup:
1331 	nvmf_tcp_poll_group_destroy(&tgroup->group);
1332 	return NULL;
1333 }
1334 
1335 static struct spdk_nvmf_transport_poll_group *
1336 nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
1337 {
1338 	struct spdk_nvmf_tcp_transport *ttransport;
1339 	struct spdk_nvmf_tcp_poll_group **pg;
1340 	struct spdk_nvmf_tcp_qpair *tqpair;
1341 	struct spdk_sock_group *group = NULL, *hint = NULL;
1342 	int rc;
1343 
1344 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
1345 
1346 	if (TAILQ_EMPTY(&ttransport->poll_groups)) {
1347 		return NULL;
1348 	}
1349 
1350 	pg = &ttransport->next_pg;
1351 	assert(*pg != NULL);
1352 	hint = (*pg)->sock_group;
1353 
1354 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1355 	rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint);
1356 	if (rc != 0) {
1357 		return NULL;
1358 	} else if (group != NULL) {
1359 		/* Optimal poll group was found */
1360 		return spdk_sock_group_get_ctx(group);
1361 	}
1362 
1363 	/* The hint was used for optimal poll group, advance next_pg. */
1364 	*pg = TAILQ_NEXT(*pg, link);
1365 	if (*pg == NULL) {
1366 		*pg = TAILQ_FIRST(&ttransport->poll_groups);
1367 	}
1368 
1369 	return spdk_sock_group_get_ctx(hint);
1370 }
1371 
1372 static void
1373 nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
1374 {
1375 	struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup;
1376 	struct spdk_nvmf_tcp_transport *ttransport;
1377 
1378 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
1379 	spdk_sock_group_close(&tgroup->sock_group);
1380 	if (tgroup->control_msg_list) {
1381 		nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
1382 	}
1383 
1384 	if (tgroup->accel_channel) {
1385 		spdk_put_io_channel(tgroup->accel_channel);
1386 	}
1387 
1388 	ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport);
1389 
1390 	next_tgroup = TAILQ_NEXT(tgroup, link);
1391 	TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link);
1392 	if (next_tgroup == NULL) {
1393 		next_tgroup = TAILQ_FIRST(&ttransport->poll_groups);
1394 	}
1395 	if (ttransport->next_pg == tgroup) {
1396 		ttransport->next_pg = next_tgroup;
1397 	}
1398 
1399 	free(tgroup);
1400 }
1401 
1402 static void
1403 nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1404 			      enum nvme_tcp_pdu_recv_state state)
1405 {
1406 	if (tqpair->recv_state == state) {
1407 		SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
1408 			    tqpair, state);
1409 		return;
1410 	}
1411 
1412 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1413 		/* When leaving the await req state, move the qpair to the main list */
1414 		TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link);
1415 		TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link);
1416 	} else if (state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1417 		TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link);
1418 		TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link);
1419 	}
1420 
1421 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
1422 	tqpair->recv_state = state;
1423 
1424 	spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
1425 			  tqpair->recv_state);
1426 }
1427 
1428 static int
1429 nvmf_tcp_qpair_handle_timeout(void *ctx)
1430 {
1431 	struct spdk_nvmf_tcp_qpair *tqpair = ctx;
1432 
1433 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1434 
1435 	SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
1436 		    SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
1437 
1438 	nvmf_tcp_qpair_disconnect(tqpair);
1439 	return SPDK_POLLER_BUSY;
1440 }
1441 
1442 static void
1443 nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
1444 {
1445 	struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
1446 
1447 	if (!tqpair->timeout_poller) {
1448 		tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
1449 					 SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
1450 	}
1451 }
1452 
1453 static void
1454 nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
1455 			   enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
1456 {
1457 	struct nvme_tcp_pdu *rsp_pdu;
1458 	struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
1459 	uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
1460 	uint32_t copy_len;
1461 
1462 	rsp_pdu = tqpair->mgmt_pdu;
1463 
1464 	c2h_term_req = &rsp_pdu->hdr.term_req;
1465 	c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
1466 	c2h_term_req->common.hlen = c2h_term_req_hdr_len;
1467 
1468 	if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1469 	    (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1470 		DSET32(&c2h_term_req->fei, error_offset);
1471 	}
1472 
1473 	copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
1474 
1475 	/* Copy the error info into the buffer */
1476 	memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
1477 	nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
1478 
1479 	/* Contain the header of the wrong received pdu */
1480 	c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
1481 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
1482 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair);
1483 }
1484 
1485 static void
1486 nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1487 				struct spdk_nvmf_tcp_qpair *tqpair,
1488 				struct nvme_tcp_pdu *pdu)
1489 {
1490 	struct spdk_nvmf_tcp_req *tcp_req;
1491 
1492 	assert(pdu->psh_valid_bytes == pdu->psh_len);
1493 	assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
1494 
1495 	tcp_req = nvmf_tcp_req_get(tqpair);
1496 	if (!tcp_req) {
1497 		/* Directly return and make the allocation retry again.  This can happen if we're
1498 		 * using asynchronous writes to send the response to the host or when releasing
1499 		 * zero-copy buffers after a response has been sent.  In both cases, the host might
1500 		 * receive the response before we've finished processing the request and is free to
1501 		 * send another one.
1502 		 */
1503 		if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 ||
1504 		    tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) {
1505 			return;
1506 		}
1507 
1508 		/* The host sent more commands than the maximum queue depth. */
1509 		SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
1510 		nvmf_tcp_qpair_disconnect(tqpair);
1511 		return;
1512 	}
1513 
1514 	pdu->req = tcp_req;
1515 	assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
1516 	nvmf_tcp_req_process(ttransport, tcp_req);
1517 }
1518 
1519 static void
1520 nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1521 				    struct spdk_nvmf_tcp_qpair *tqpair,
1522 				    struct nvme_tcp_pdu *pdu)
1523 {
1524 	struct spdk_nvmf_tcp_req *tcp_req;
1525 	struct spdk_nvme_tcp_cmd *capsule_cmd;
1526 	uint32_t error_offset = 0;
1527 	enum spdk_nvme_tcp_term_req_fes fes;
1528 	struct spdk_nvme_cpl *rsp;
1529 
1530 	capsule_cmd = &pdu->hdr.capsule_cmd;
1531 	tcp_req = pdu->req;
1532 	assert(tcp_req != NULL);
1533 
1534 	/* Zero-copy requests don't support ICD */
1535 	assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req));
1536 
1537 	if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
1538 		SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
1539 			    SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
1540 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1541 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
1542 		goto err;
1543 	}
1544 
1545 	rsp = &tcp_req->req.rsp->nvme_cpl;
1546 	if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1547 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1548 	} else {
1549 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1550 	}
1551 
1552 	nvmf_tcp_req_process(ttransport, tcp_req);
1553 
1554 	return;
1555 err:
1556 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1557 }
1558 
1559 static void
1560 nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1561 			     struct spdk_nvmf_tcp_qpair *tqpair,
1562 			     struct nvme_tcp_pdu *pdu)
1563 {
1564 	struct spdk_nvmf_tcp_req *tcp_req;
1565 	uint32_t error_offset = 0;
1566 	enum spdk_nvme_tcp_term_req_fes fes = 0;
1567 	struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
1568 
1569 	h2c_data = &pdu->hdr.h2c_data;
1570 
1571 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
1572 		      tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
1573 
1574 	if (h2c_data->ttag > tqpair->resource_count) {
1575 		SPDK_DEBUGLOG(nvmf_tcp, "ttag %u is larger than allowed %u.\n", h2c_data->ttag,
1576 			      tqpair->resource_count);
1577 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1578 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1579 		goto err;
1580 	}
1581 
1582 	tcp_req = &tqpair->reqs[h2c_data->ttag - 1];
1583 
1584 	if (spdk_unlikely(tcp_req->state != TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER &&
1585 			  tcp_req->state != TCP_REQUEST_STATE_AWAITING_R2T_ACK)) {
1586 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, has error state in %d\n", tcp_req, tqpair,
1587 			      tcp_req->state);
1588 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1589 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1590 		goto err;
1591 	}
1592 
1593 	if (spdk_unlikely(tcp_req->req.cmd->nvme_cmd.cid != h2c_data->cccid)) {
1594 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, expected %u but %u for cccid.\n", tcp_req, tqpair,
1595 			      tcp_req->req.cmd->nvme_cmd.cid, h2c_data->cccid);
1596 		fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
1597 		error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
1598 		goto err;
1599 	}
1600 
1601 	if (tcp_req->h2c_offset != h2c_data->datao) {
1602 		SPDK_DEBUGLOG(nvmf_tcp,
1603 			      "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
1604 			      tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
1605 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1606 		goto err;
1607 	}
1608 
1609 	if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
1610 		SPDK_DEBUGLOG(nvmf_tcp,
1611 			      "tcp_req(%p), tqpair=%p,  (datao=%u + datal=%u) exceeds requested length=%u\n",
1612 			      tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
1613 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1614 		goto err;
1615 	}
1616 
1617 	pdu->req = tcp_req;
1618 
1619 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
1620 		pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
1621 	}
1622 
1623 	nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
1624 				  h2c_data->datao, h2c_data->datal);
1625 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1626 	return;
1627 
1628 err:
1629 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1630 }
1631 
1632 static void
1633 nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
1634 			       struct spdk_nvmf_tcp_qpair *tqpair)
1635 {
1636 	struct nvme_tcp_pdu *rsp_pdu;
1637 	struct spdk_nvme_tcp_rsp *capsule_resp;
1638 
1639 	SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
1640 
1641 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1642 	assert(rsp_pdu != NULL);
1643 
1644 	capsule_resp = &rsp_pdu->hdr.capsule_resp;
1645 	capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
1646 	capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
1647 	capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
1648 	if (tqpair->host_hdgst_enable) {
1649 		capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1650 		capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1651 	}
1652 
1653 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req);
1654 }
1655 
1656 static void
1657 nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
1658 {
1659 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1660 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
1661 					     struct spdk_nvmf_tcp_qpair, qpair);
1662 
1663 	assert(tqpair != NULL);
1664 
1665 	if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
1666 		SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
1667 			      tcp_req->req.length);
1668 		_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
1669 		return;
1670 	}
1671 
1672 	if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
1673 		nvmf_tcp_request_free(tcp_req);
1674 	} else {
1675 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
1676 	}
1677 }
1678 
1679 static void
1680 nvmf_tcp_r2t_complete(void *cb_arg)
1681 {
1682 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1683 	struct spdk_nvmf_tcp_transport *ttransport;
1684 
1685 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
1686 				      struct spdk_nvmf_tcp_transport, transport);
1687 
1688 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
1689 
1690 	if (tcp_req->h2c_offset == tcp_req->req.length) {
1691 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1692 		nvmf_tcp_req_process(ttransport, tcp_req);
1693 	}
1694 }
1695 
1696 static void
1697 nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1698 		      struct spdk_nvmf_tcp_req *tcp_req)
1699 {
1700 	struct nvme_tcp_pdu *rsp_pdu;
1701 	struct spdk_nvme_tcp_r2t_hdr *r2t;
1702 
1703 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1704 	assert(rsp_pdu != NULL);
1705 
1706 	r2t = &rsp_pdu->hdr.r2t;
1707 	r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
1708 	r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
1709 
1710 	if (tqpair->host_hdgst_enable) {
1711 		r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1712 		r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1713 	}
1714 
1715 	r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
1716 	r2t->ttag = tcp_req->ttag;
1717 	r2t->r2to = tcp_req->h2c_offset;
1718 	r2t->r2tl = tcp_req->req.length;
1719 
1720 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
1721 
1722 	SPDK_DEBUGLOG(nvmf_tcp,
1723 		      "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
1724 		      tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
1725 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req);
1726 }
1727 
1728 static void
1729 nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1730 				 struct spdk_nvmf_tcp_qpair *tqpair,
1731 				 struct nvme_tcp_pdu *pdu)
1732 {
1733 	struct spdk_nvmf_tcp_req *tcp_req;
1734 	struct spdk_nvme_cpl *rsp;
1735 
1736 	tcp_req = pdu->req;
1737 	assert(tcp_req != NULL);
1738 
1739 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1740 
1741 	tcp_req->h2c_offset += pdu->data_len;
1742 
1743 	/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
1744 	 * acknowledged before moving on. */
1745 	if (tcp_req->h2c_offset == tcp_req->req.length &&
1746 	    tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
1747 		/* After receiving all the h2c data, we need to check whether there is
1748 		 * transient transport error */
1749 		rsp = &tcp_req->req.rsp->nvme_cpl;
1750 		if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1751 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1752 		} else {
1753 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1754 		}
1755 		nvmf_tcp_req_process(ttransport, tcp_req);
1756 	}
1757 }
1758 
1759 static void
1760 nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
1761 {
1762 	SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
1763 		    spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
1764 	if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1765 	    (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1766 		SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
1767 			      DGET32(h2c_term_req->fei));
1768 	}
1769 }
1770 
1771 static void
1772 nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1773 				 struct nvme_tcp_pdu *pdu)
1774 {
1775 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1776 	uint32_t error_offset = 0;
1777 	enum spdk_nvme_tcp_term_req_fes fes;
1778 
1779 	if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
1780 		SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
1781 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1782 		error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
1783 		goto end;
1784 	}
1785 
1786 	/* set the data buffer */
1787 	nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
1788 			      h2c_term_req->common.plen - h2c_term_req->common.hlen);
1789 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1790 	return;
1791 end:
1792 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1793 }
1794 
1795 static void
1796 nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1797 				     struct nvme_tcp_pdu *pdu)
1798 {
1799 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1800 
1801 	nvmf_tcp_h2c_term_req_dump(h2c_term_req);
1802 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
1803 }
1804 
1805 static void
1806 _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
1807 {
1808 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
1809 			struct spdk_nvmf_tcp_transport, transport);
1810 
1811 	switch (pdu->hdr.common.pdu_type) {
1812 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
1813 		nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
1814 		break;
1815 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
1816 		nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
1817 		break;
1818 
1819 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
1820 		nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
1821 		break;
1822 
1823 	default:
1824 		/* The code should not go to here */
1825 		SPDK_ERRLOG("ERROR pdu type %d\n", pdu->hdr.common.pdu_type);
1826 		break;
1827 	}
1828 	SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist);
1829 }
1830 
1831 static void
1832 data_crc32_calc_done(void *cb_arg, int status)
1833 {
1834 	struct nvme_tcp_pdu *pdu = cb_arg;
1835 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
1836 	struct spdk_nvmf_tcp_req *tcp_req;
1837 	struct spdk_nvme_cpl *rsp;
1838 
1839 	/* async crc32 calculation is failed and use direct calculation to check */
1840 	if (spdk_unlikely(status)) {
1841 		SPDK_ERRLOG("Data digest on tqpair=(%p) with pdu=%p failed to be calculated asynchronously\n",
1842 			    tqpair, pdu);
1843 		pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1844 	}
1845 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
1846 	if (!MATCH_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32)) {
1847 		SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
1848 		tcp_req = pdu->req;
1849 		assert(tcp_req != NULL);
1850 		rsp = &tcp_req->req.rsp->nvme_cpl;
1851 		rsp->status.sc = SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR;
1852 	}
1853 	_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
1854 }
1855 
1856 static void
1857 nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
1858 {
1859 	int rc = 0;
1860 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1861 	tqpair->pdu_in_progress = NULL;
1862 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
1863 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1864 	/* check data digest if need */
1865 	if (pdu->ddgst_enable) {
1866 		if (!pdu->dif_ctx && tqpair->group && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)) {
1867 			rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov,
1868 						       pdu->data_iovcnt, 0, data_crc32_calc_done, pdu);
1869 			if (spdk_likely(rc == 0)) {
1870 				return;
1871 			}
1872 		} else {
1873 			pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu);
1874 		}
1875 		data_crc32_calc_done(pdu, rc);
1876 	} else {
1877 		_nvmf_tcp_pdu_payload_handle(tqpair, pdu);
1878 	}
1879 }
1880 
1881 static void
1882 nvmf_tcp_send_icresp_complete(void *cb_arg)
1883 {
1884 	struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
1885 
1886 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_RUNNING);
1887 }
1888 
1889 static void
1890 nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
1891 		      struct spdk_nvmf_tcp_qpair *tqpair,
1892 		      struct nvme_tcp_pdu *pdu)
1893 {
1894 	struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
1895 	struct nvme_tcp_pdu *rsp_pdu;
1896 	struct spdk_nvme_tcp_ic_resp *ic_resp;
1897 	uint32_t error_offset = 0;
1898 	enum spdk_nvme_tcp_term_req_fes fes;
1899 
1900 	/* Only PFV 0 is defined currently */
1901 	if (ic_req->pfv != 0) {
1902 		SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
1903 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1904 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
1905 		goto end;
1906 	}
1907 
1908 	/* MAXR2T is 0's based */
1909 	SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
1910 
1911 	tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
1912 	if (!tqpair->host_hdgst_enable) {
1913 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1914 	}
1915 
1916 	tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
1917 	if (!tqpair->host_ddgst_enable) {
1918 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1919 	}
1920 
1921 	tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
1922 	/* Now that we know whether digests are enabled, properly size the receive buffer */
1923 	if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
1924 		SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
1925 			     tqpair,
1926 			     tqpair->recv_buf_size);
1927 		/* Not fatal. */
1928 	}
1929 
1930 	tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
1931 	SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
1932 
1933 	rsp_pdu = tqpair->mgmt_pdu;
1934 
1935 	ic_resp = &rsp_pdu->hdr.ic_resp;
1936 	ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
1937 	ic_resp->common.hlen = ic_resp->common.plen =  sizeof(*ic_resp);
1938 	ic_resp->pfv = 0;
1939 	ic_resp->cpda = tqpair->cpda;
1940 	ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
1941 	ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
1942 	ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
1943 
1944 	SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
1945 	SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
1946 
1947 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INITIALIZING);
1948 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair);
1949 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
1950 	return;
1951 end:
1952 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1953 }
1954 
1955 static void
1956 nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1957 			struct spdk_nvmf_tcp_transport *ttransport)
1958 {
1959 	struct nvme_tcp_pdu *pdu;
1960 	int rc;
1961 	uint32_t crc32c, error_offset = 0;
1962 	enum spdk_nvme_tcp_term_req_fes fes;
1963 
1964 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
1965 	pdu = tqpair->pdu_in_progress;
1966 
1967 	SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
1968 		      pdu->hdr.common.pdu_type);
1969 	/* check header digest if needed */
1970 	if (pdu->has_hdgst) {
1971 		SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
1972 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1973 		rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
1974 		if (rc == 0) {
1975 			SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
1976 			fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
1977 			nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1978 			return;
1979 
1980 		}
1981 	}
1982 
1983 	switch (pdu->hdr.common.pdu_type) {
1984 	case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
1985 		nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
1986 		break;
1987 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
1988 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
1989 		break;
1990 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
1991 		nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
1992 		break;
1993 
1994 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
1995 		nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
1996 		break;
1997 
1998 	default:
1999 		SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
2000 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2001 		error_offset = 1;
2002 		nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2003 		break;
2004 	}
2005 }
2006 
2007 static void
2008 nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
2009 {
2010 	struct nvme_tcp_pdu *pdu;
2011 	uint32_t error_offset = 0;
2012 	enum spdk_nvme_tcp_term_req_fes fes;
2013 	uint8_t expected_hlen, pdo;
2014 	bool plen_error = false, pdo_error = false;
2015 
2016 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2017 	pdu = tqpair->pdu_in_progress;
2018 	assert(pdu);
2019 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
2020 		if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) {
2021 			SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
2022 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2023 			goto err;
2024 		}
2025 		expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
2026 		if (pdu->hdr.common.plen != expected_hlen) {
2027 			plen_error = true;
2028 		}
2029 	} else {
2030 		if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) {
2031 			SPDK_ERRLOG("The TCP/IP connection is not negotiated\n");
2032 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2033 			goto err;
2034 		}
2035 
2036 		switch (pdu->hdr.common.pdu_type) {
2037 		case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2038 			expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
2039 			pdo = pdu->hdr.common.pdo;
2040 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2041 				pdo_error = true;
2042 				break;
2043 			}
2044 
2045 			if (pdu->hdr.common.plen < expected_hlen) {
2046 				plen_error = true;
2047 			}
2048 			break;
2049 		case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2050 			expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
2051 			pdo = pdu->hdr.common.pdo;
2052 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2053 				pdo_error = true;
2054 				break;
2055 			}
2056 			if (pdu->hdr.common.plen < expected_hlen) {
2057 				plen_error = true;
2058 			}
2059 			break;
2060 
2061 		case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2062 			expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
2063 			if ((pdu->hdr.common.plen <= expected_hlen) ||
2064 			    (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
2065 				plen_error = true;
2066 			}
2067 			break;
2068 
2069 		default:
2070 			SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
2071 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2072 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
2073 			goto err;
2074 		}
2075 	}
2076 
2077 	if (pdu->hdr.common.hlen != expected_hlen) {
2078 		SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
2079 			    pdu->hdr.common.pdu_type,
2080 			    expected_hlen, pdu->hdr.common.hlen, tqpair);
2081 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2082 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
2083 		goto err;
2084 	} else if (pdo_error) {
2085 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2086 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
2087 	} else if (plen_error) {
2088 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2089 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2090 		goto err;
2091 	} else {
2092 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2093 		nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
2094 		return;
2095 	}
2096 err:
2097 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2098 }
2099 
2100 static int
2101 nvmf_tcp_pdu_payload_insert_dif(struct nvme_tcp_pdu *pdu, uint32_t read_offset,
2102 				int read_len)
2103 {
2104 	int rc;
2105 
2106 	rc = spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt,
2107 				      read_offset, read_len, pdu->dif_ctx);
2108 	if (rc != 0) {
2109 		SPDK_ERRLOG("DIF generate failed\n");
2110 	}
2111 
2112 	return rc;
2113 }
2114 
2115 static int
2116 nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
2117 {
2118 	int rc = 0;
2119 	struct nvme_tcp_pdu *pdu;
2120 	enum nvme_tcp_pdu_recv_state prev_state;
2121 	uint32_t data_len;
2122 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2123 			struct spdk_nvmf_tcp_transport, transport);
2124 
2125 	/* The loop here is to allow for several back-to-back state changes. */
2126 	do {
2127 		prev_state = tqpair->recv_state;
2128 		SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
2129 
2130 		pdu = tqpair->pdu_in_progress;
2131 		assert(pdu || tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2132 		switch (tqpair->recv_state) {
2133 		/* Wait for the common header  */
2134 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
2135 			if (!pdu) {
2136 				pdu = SLIST_FIRST(&tqpair->tcp_pdu_free_queue);
2137 				if (spdk_unlikely(!pdu)) {
2138 					return NVME_TCP_PDU_IN_PROGRESS;
2139 				}
2140 				SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist);
2141 				tqpair->pdu_in_progress = pdu;
2142 			}
2143 			memset(pdu, 0, offsetof(struct nvme_tcp_pdu, qpair));
2144 			nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2145 		/* FALLTHROUGH */
2146 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
2147 			if (spdk_unlikely(tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING)) {
2148 				return rc;
2149 			}
2150 
2151 			rc = nvme_tcp_read_data(tqpair->sock,
2152 						sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
2153 						(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
2154 			if (rc < 0) {
2155 				SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
2156 				return NVME_TCP_PDU_FATAL;
2157 			} else if (rc > 0) {
2158 				pdu->ch_valid_bytes += rc;
2159 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2160 			}
2161 
2162 			if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
2163 				return NVME_TCP_PDU_IN_PROGRESS;
2164 			}
2165 
2166 			/* The command header of this PDU has now been read from the socket. */
2167 			nvmf_tcp_pdu_ch_handle(tqpair);
2168 			break;
2169 		/* Wait for the pdu specific header  */
2170 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
2171 			rc = nvme_tcp_read_data(tqpair->sock,
2172 						pdu->psh_len - pdu->psh_valid_bytes,
2173 						(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
2174 			if (rc < 0) {
2175 				return NVME_TCP_PDU_FATAL;
2176 			} else if (rc > 0) {
2177 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2178 				pdu->psh_valid_bytes += rc;
2179 			}
2180 
2181 			if (pdu->psh_valid_bytes < pdu->psh_len) {
2182 				return NVME_TCP_PDU_IN_PROGRESS;
2183 			}
2184 
2185 			/* All header(ch, psh, head digist) of this PDU has now been read from the socket. */
2186 			nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
2187 			break;
2188 		/* Wait for the req slot */
2189 		case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
2190 			nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
2191 			break;
2192 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
2193 			/* check whether the data is valid, if not we just return */
2194 			if (!pdu->data_len) {
2195 				return NVME_TCP_PDU_IN_PROGRESS;
2196 			}
2197 
2198 			data_len = pdu->data_len;
2199 			/* data digest */
2200 			if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
2201 					  tqpair->host_ddgst_enable)) {
2202 				data_len += SPDK_NVME_TCP_DIGEST_LEN;
2203 				pdu->ddgst_enable = true;
2204 			}
2205 
2206 			rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
2207 			if (rc < 0) {
2208 				return NVME_TCP_PDU_FATAL;
2209 			}
2210 			pdu->rw_offset += rc;
2211 
2212 			if (spdk_unlikely(pdu->dif_ctx != NULL)) {
2213 				rc = nvmf_tcp_pdu_payload_insert_dif(pdu, pdu->rw_offset - rc, rc);
2214 				if (rc != 0) {
2215 					return NVME_TCP_PDU_FATAL;
2216 				}
2217 			}
2218 
2219 			if (pdu->rw_offset < data_len) {
2220 				return NVME_TCP_PDU_IN_PROGRESS;
2221 			}
2222 
2223 			/* All of this PDU has now been read from the socket. */
2224 			nvmf_tcp_pdu_payload_handle(tqpair, pdu);
2225 			break;
2226 		case NVME_TCP_PDU_RECV_STATE_ERROR:
2227 			if (!spdk_sock_is_connected(tqpair->sock)) {
2228 				return NVME_TCP_PDU_FATAL;
2229 			}
2230 			break;
2231 		default:
2232 			SPDK_ERRLOG("The state(%d) is invalid\n", tqpair->recv_state);
2233 			abort();
2234 			break;
2235 		}
2236 	} while (tqpair->recv_state != prev_state);
2237 
2238 	return rc;
2239 }
2240 
2241 static inline void *
2242 nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list)
2243 {
2244 	struct spdk_nvmf_tcp_control_msg *msg;
2245 
2246 	assert(list);
2247 
2248 	msg = STAILQ_FIRST(&list->free_msgs);
2249 	if (!msg) {
2250 		SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
2251 		return NULL;
2252 	}
2253 	STAILQ_REMOVE_HEAD(&list->free_msgs, link);
2254 	return msg;
2255 }
2256 
2257 static inline void
2258 nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
2259 {
2260 	struct spdk_nvmf_tcp_control_msg *msg = _msg;
2261 
2262 	assert(list);
2263 	STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
2264 }
2265 
2266 static int
2267 nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
2268 		       struct spdk_nvmf_transport *transport,
2269 		       struct spdk_nvmf_transport_poll_group *group)
2270 {
2271 	struct spdk_nvmf_request		*req = &tcp_req->req;
2272 	struct spdk_nvme_cmd			*cmd;
2273 	struct spdk_nvme_cpl			*rsp;
2274 	struct spdk_nvme_sgl_descriptor		*sgl;
2275 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2276 	uint32_t				length;
2277 
2278 	cmd = &req->cmd->nvme_cmd;
2279 	rsp = &req->rsp->nvme_cpl;
2280 	sgl = &cmd->dptr.sgl1;
2281 
2282 	length = sgl->unkeyed.length;
2283 
2284 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
2285 	    sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
2286 		if (length > transport->opts.max_io_size) {
2287 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
2288 				    length, transport->opts.max_io_size);
2289 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
2290 			return -1;
2291 		}
2292 
2293 		/* fill request length and populate iovs */
2294 		req->length = length;
2295 
2296 		SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
2297 
2298 		if (spdk_unlikely(req->dif_enabled)) {
2299 			req->dif.orig_length = length;
2300 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2301 			req->dif.elba_length = length;
2302 		}
2303 
2304 		if (nvmf_ctrlr_use_zcopy(req)) {
2305 			SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req);
2306 			req->data_from_pool = false;
2307 			return 0;
2308 		}
2309 
2310 		if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
2311 			/* No available buffers. Queue this request up. */
2312 			SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
2313 				      tcp_req);
2314 			return 0;
2315 		}
2316 
2317 		/* backward compatible */
2318 		req->data = req->iov[0].iov_base;
2319 
2320 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
2321 			      tcp_req, req->iovcnt, req->data);
2322 
2323 		return 0;
2324 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
2325 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
2326 		uint64_t offset = sgl->address;
2327 		uint32_t max_len = transport->opts.in_capsule_data_size;
2328 		assert(tcp_req->has_in_capsule_data);
2329 
2330 		SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
2331 			      offset, length);
2332 
2333 		if (offset > max_len) {
2334 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
2335 				    offset, max_len);
2336 			rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
2337 			return -1;
2338 		}
2339 		max_len -= (uint32_t)offset;
2340 
2341 		if (spdk_unlikely(length > max_len)) {
2342 			/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
2343 			if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
2344 			    (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
2345 
2346 				/* Get a buffer from dedicated list */
2347 				SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
2348 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2349 				assert(tgroup->control_msg_list);
2350 				req->data = nvmf_tcp_control_msg_get(tgroup->control_msg_list);
2351 				if (!req->data) {
2352 					/* No available buffers. Queue this request up. */
2353 					SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
2354 					return 0;
2355 				}
2356 			} else {
2357 				SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
2358 					    length, max_len);
2359 				rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
2360 				return -1;
2361 			}
2362 		} else {
2363 			req->data = tcp_req->buf;
2364 		}
2365 
2366 		req->length = length;
2367 		req->data_from_pool = false;
2368 
2369 		if (spdk_unlikely(req->dif_enabled)) {
2370 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2371 			req->dif.elba_length = length;
2372 		}
2373 
2374 		req->iov[0].iov_base = req->data;
2375 		req->iov[0].iov_len = length;
2376 		req->iovcnt = 1;
2377 
2378 		return 0;
2379 	}
2380 
2381 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2382 		    sgl->generic.type, sgl->generic.subtype);
2383 	rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
2384 	return -1;
2385 }
2386 
2387 static inline enum spdk_nvme_media_error_status_code
2388 nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
2389 	enum spdk_nvme_media_error_status_code result;
2390 
2391 	switch (err_type)
2392 	{
2393 	case SPDK_DIF_REFTAG_ERROR:
2394 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
2395 		break;
2396 	case SPDK_DIF_APPTAG_ERROR:
2397 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
2398 		break;
2399 	case SPDK_DIF_GUARD_ERROR:
2400 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
2401 		break;
2402 	default:
2403 		SPDK_UNREACHABLE();
2404 		break;
2405 	}
2406 
2407 	return result;
2408 }
2409 
2410 static void
2411 _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2412 			struct spdk_nvmf_tcp_req *tcp_req)
2413 {
2414 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
2415 				tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
2416 	struct nvme_tcp_pdu *rsp_pdu;
2417 	struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
2418 	uint32_t plen, pdo, alignment;
2419 	int rc;
2420 
2421 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2422 
2423 	rsp_pdu = tcp_req->pdu;
2424 	assert(rsp_pdu != NULL);
2425 
2426 	c2h_data = &rsp_pdu->hdr.c2h_data;
2427 	c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
2428 	plen = c2h_data->common.hlen = sizeof(*c2h_data);
2429 
2430 	if (tqpair->host_hdgst_enable) {
2431 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2432 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2433 	}
2434 
2435 	/* set the psh */
2436 	c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2437 	c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
2438 	c2h_data->datao = tcp_req->pdu->rw_offset;
2439 
2440 	/* set the padding */
2441 	rsp_pdu->padding_len = 0;
2442 	pdo = plen;
2443 	if (tqpair->cpda) {
2444 		alignment = (tqpair->cpda + 1) << 2;
2445 		if (plen % alignment != 0) {
2446 			pdo = (plen + alignment) / alignment * alignment;
2447 			rsp_pdu->padding_len = pdo - plen;
2448 			plen = pdo;
2449 		}
2450 	}
2451 
2452 	c2h_data->common.pdo = pdo;
2453 	plen += c2h_data->datal;
2454 	if (tqpair->host_ddgst_enable) {
2455 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
2456 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2457 	}
2458 
2459 	c2h_data->common.plen = plen;
2460 
2461 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2462 		rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2463 	}
2464 
2465 	nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2466 				  c2h_data->datao, c2h_data->datal);
2467 
2468 
2469 	c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
2470 	/* Need to send the capsule response if response is not all 0 */
2471 	if (ttransport->tcp_opts.c2h_success &&
2472 	    tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
2473 		c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
2474 	}
2475 
2476 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2477 		struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
2478 		struct spdk_dif_error err_blk = {};
2479 		uint32_t mapped_length = 0;
2480 		uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
2481 		uint32_t ddgst_len = 0;
2482 
2483 		if (tqpair->host_ddgst_enable) {
2484 			/* Data digest consumes additional iov entry */
2485 			available_iovs--;
2486 			/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
2487 			ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
2488 			c2h_data->common.plen -= ddgst_len;
2489 		}
2490 		/* Temp call to estimate if data can be described by limited number of iovs.
2491 		 * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
2492 		nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
2493 				    false, &mapped_length);
2494 
2495 		if (mapped_length != c2h_data->common.plen) {
2496 			c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
2497 			SPDK_DEBUGLOG(nvmf_tcp,
2498 				      "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
2499 				      c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
2500 			c2h_data->common.plen = mapped_length;
2501 
2502 			/* Rebuild pdu->data_iov since data length is changed */
2503 			nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
2504 						  c2h_data->datal);
2505 
2506 			c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
2507 						    SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
2508 		}
2509 
2510 		c2h_data->common.plen += ddgst_len;
2511 
2512 		assert(rsp_pdu->rw_offset <= tcp_req->req.length);
2513 
2514 		rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
2515 					    0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
2516 		if (rc != 0) {
2517 			SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
2518 				    err_blk.err_type, err_blk.err_offset);
2519 			rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2520 			rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
2521 			nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2522 			return;
2523 		}
2524 	}
2525 
2526 	rsp_pdu->rw_offset += c2h_data->datal;
2527 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
2528 }
2529 
2530 static void
2531 nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2532 		       struct spdk_nvmf_tcp_req *tcp_req)
2533 {
2534 	nvmf_tcp_req_pdu_init(tcp_req);
2535 	_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2536 }
2537 
2538 static int
2539 request_transfer_out(struct spdk_nvmf_request *req)
2540 {
2541 	struct spdk_nvmf_tcp_req	*tcp_req;
2542 	struct spdk_nvmf_qpair		*qpair;
2543 	struct spdk_nvmf_tcp_qpair	*tqpair;
2544 	struct spdk_nvme_cpl		*rsp;
2545 
2546 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2547 
2548 	qpair = req->qpair;
2549 	rsp = &req->rsp->nvme_cpl;
2550 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
2551 
2552 	/* Advance our sq_head pointer */
2553 	if (qpair->sq_head == qpair->sq_head_max) {
2554 		qpair->sq_head = 0;
2555 	} else {
2556 		qpair->sq_head++;
2557 	}
2558 	rsp->sqhd = qpair->sq_head;
2559 
2560 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2561 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
2562 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2563 		nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2564 	} else {
2565 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2566 	}
2567 
2568 	return 0;
2569 }
2570 
2571 static void
2572 nvmf_tcp_set_in_capsule_data(struct spdk_nvmf_tcp_qpair *tqpair,
2573 			     struct spdk_nvmf_tcp_req *tcp_req)
2574 {
2575 	struct nvme_tcp_pdu *pdu;
2576 	uint32_t plen = 0;
2577 
2578 	pdu = tqpair->pdu_in_progress;
2579 	plen = pdu->hdr.common.hlen;
2580 
2581 	if (tqpair->host_hdgst_enable) {
2582 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2583 	}
2584 
2585 	if (pdu->hdr.common.plen != plen) {
2586 		tcp_req->has_in_capsule_data = true;
2587 	}
2588 }
2589 
2590 static void
2591 nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport,
2592 			      struct spdk_nvmf_tcp_qpair *tqpair,
2593 			      struct spdk_nvmf_tcp_req *tcp_req)
2594 {
2595 	enum spdk_nvme_cmd_fuse last, next;
2596 
2597 	last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2598 	next = tcp_req->cmd.fuse;
2599 
2600 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2601 
2602 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2603 		return;
2604 	}
2605 
2606 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2607 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2608 			/* This is a valid pair of fused commands.  Point them at each other
2609 			 * so they can be submitted consecutively once ready to be executed.
2610 			 */
2611 			tqpair->fused_first->fused_pair = tcp_req;
2612 			tcp_req->fused_pair = tqpair->fused_first;
2613 			tqpair->fused_first = NULL;
2614 			return;
2615 		} else {
2616 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2617 			tqpair->fused_first->fused_failed = true;
2618 
2619 			/*
2620 			 * If the last req is in READY_TO_EXECUTE state, then call
2621 			 * nvmf_tcp_req_process(), otherwise nothing else will kick it.
2622 			 */
2623 			if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2624 				nvmf_tcp_req_process(ttransport, tqpair->fused_first);
2625 			}
2626 
2627 			tqpair->fused_first = NULL;
2628 		}
2629 	}
2630 
2631 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2632 		/* Set tqpair->fused_first here so that we know to check that the next request
2633 		 * is a SECOND (and to fail this one if it isn't).
2634 		 */
2635 		tqpair->fused_first = tcp_req;
2636 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2637 		/* Mark this req failed since it is a SECOND and the last one was not a FIRST. */
2638 		tcp_req->fused_failed = true;
2639 	}
2640 }
2641 
2642 static bool
2643 nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
2644 		     struct spdk_nvmf_tcp_req *tcp_req)
2645 {
2646 	struct spdk_nvmf_tcp_qpair		*tqpair;
2647 	int					rc;
2648 	enum spdk_nvmf_tcp_req_state		prev_state;
2649 	bool					progress = false;
2650 	struct spdk_nvmf_transport		*transport = &ttransport->transport;
2651 	struct spdk_nvmf_transport_poll_group	*group;
2652 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2653 
2654 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2655 	group = &tqpair->group->group;
2656 	assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
2657 
2658 	/* If the qpair is not active, we need to abort the outstanding requests. */
2659 	if (tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2660 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
2661 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2662 		}
2663 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
2664 	}
2665 
2666 	/* The loop here is to allow for several back-to-back state changes. */
2667 	do {
2668 		prev_state = tcp_req->state;
2669 
2670 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
2671 			      tqpair);
2672 
2673 		switch (tcp_req->state) {
2674 		case TCP_REQUEST_STATE_FREE:
2675 			/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
2676 			 * to escape this state. */
2677 			break;
2678 		case TCP_REQUEST_STATE_NEW:
2679 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.qid, 0, (uintptr_t)tcp_req, tqpair);
2680 
2681 			/* copy the cmd from the receive pdu */
2682 			tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
2683 
2684 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
2685 				tcp_req->req.dif_enabled = true;
2686 				tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
2687 			}
2688 
2689 			nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req);
2690 
2691 			/* The next state transition depends on the data transfer needs of this request. */
2692 			tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
2693 
2694 			if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2695 				tcp_req->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2696 				tcp_req->req.rsp->nvme_cpl.status.sc  = SPDK_NVME_SC_INVALID_OPCODE;
2697 				tcp_req->req.rsp->nvme_cpl.cid = tcp_req->req.cmd->nvme_cmd.cid;
2698 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2699 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2700 				SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
2701 				break;
2702 			}
2703 
2704 			/* If no data to transfer, ready to execute. */
2705 			if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
2706 				/* Reset the tqpair receiving pdu state */
2707 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2708 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2709 				break;
2710 			}
2711 
2712 			nvmf_tcp_set_in_capsule_data(tqpair, tcp_req);
2713 
2714 			if (!tcp_req->has_in_capsule_data) {
2715 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2716 			}
2717 
2718 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
2719 			STAILQ_INSERT_TAIL(&group->pending_buf_queue, &tcp_req->req, buf_link);
2720 			break;
2721 		case TCP_REQUEST_STATE_NEED_BUFFER:
2722 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2723 					  tqpair);
2724 
2725 			assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
2726 
2727 			if (!tcp_req->has_in_capsule_data && (&tcp_req->req != STAILQ_FIRST(&group->pending_buf_queue))) {
2728 				SPDK_DEBUGLOG(nvmf_tcp,
2729 					      "Not the first element to wait for the buf for tcp_req(%p) on tqpair=%p\n",
2730 					      tcp_req, tqpair);
2731 				/* This request needs to wait in line to obtain a buffer */
2732 				break;
2733 			}
2734 
2735 			/* Try to get a data buffer */
2736 			rc = nvmf_tcp_req_parse_sgl(tcp_req, transport, group);
2737 			if (rc < 0) {
2738 				STAILQ_REMOVE_HEAD(&group->pending_buf_queue, buf_link);
2739 				/* Reset the tqpair receiving pdu state */
2740 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
2741 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2742 				tcp_req->req.rsp->nvme_cpl.cid = tcp_req->req.cmd->nvme_cmd.cid;
2743 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2744 				break;
2745 			}
2746 
2747 			/* Get a zcopy buffer if the request can be serviced through zcopy */
2748 			if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2749 				if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2750 					assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2751 					tcp_req->req.length = tcp_req->req.dif.elba_length;
2752 				}
2753 
2754 				STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2755 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START);
2756 				spdk_nvmf_request_zcopy_start(&tcp_req->req);
2757 				break;
2758 			}
2759 
2760 			if (!tcp_req->req.data) {
2761 				SPDK_DEBUGLOG(nvmf_tcp, "No buffer allocated for tcp_req(%p) on tqpair(%p\n)",
2762 					      tcp_req, tqpair);
2763 				/* No buffers available. */
2764 				break;
2765 			}
2766 
2767 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2768 
2769 			/* If data is transferring from host to controller, we need to do a transfer from the host. */
2770 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2771 				if (tcp_req->req.data_from_pool) {
2772 					SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2773 					nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2774 				} else {
2775 					struct nvme_tcp_pdu *pdu;
2776 
2777 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
2778 
2779 					pdu = tqpair->pdu_in_progress;
2780 					SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
2781 						      tqpair);
2782 					/* No need to send r2t, contained in the capsuled data */
2783 					nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2784 								  0, tcp_req->req.length);
2785 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2786 				}
2787 				break;
2788 			}
2789 
2790 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2791 			break;
2792 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
2793 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.qid, 0,
2794 					  (uintptr_t)tcp_req, tqpair);
2795 			/* Some external code must kick a request into  TCP_REQUEST_STATE_ZCOPY_START_COMPLETED
2796 			 * to escape this state. */
2797 			break;
2798 		case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
2799 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.qid, 0,
2800 					  (uintptr_t)tcp_req, tqpair);
2801 			if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) {
2802 				SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n",
2803 					      tcp_req, tqpair);
2804 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2805 				break;
2806 			}
2807 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2808 				SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2809 				nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2810 			} else {
2811 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
2812 			}
2813 			break;
2814 		case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
2815 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2816 					  tqpair);
2817 			/* The R2T completion or the h2c data incoming will kick it out of this state. */
2818 			break;
2819 		case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
2820 
2821 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.qid, 0,
2822 					  (uintptr_t)tcp_req, tqpair);
2823 			/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
2824 			 * to escape this state. */
2825 			break;
2826 		case TCP_REQUEST_STATE_READY_TO_EXECUTE:
2827 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.qid, 0,
2828 					  (uintptr_t)tcp_req, tqpair);
2829 
2830 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2831 				assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2832 				tcp_req->req.length = tcp_req->req.dif.elba_length;
2833 			}
2834 
2835 			if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
2836 				if (tcp_req->fused_failed) {
2837 					/* This request failed FUSED semantics.  Fail it immediately, without
2838 					 * even sending it to the target layer.
2839 					 */
2840 					tcp_req->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2841 					tcp_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED;
2842 					tcp_req->req.rsp->nvme_cpl.cid = tcp_req->req.cmd->nvme_cmd.cid;
2843 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2844 					break;
2845 				}
2846 
2847 				if (tcp_req->fused_pair == NULL ||
2848 				    tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2849 					/* This request is ready to execute, but either we don't know yet if it's
2850 					 * valid - i.e. this is a FIRST but we haven't received the next request yet),
2851 					 * or the other request of this fused pair isn't ready to execute. So
2852 					 * break here and this request will get processed later either when the
2853 					 * other request is ready or we find that this request isn't valid.
2854 					 */
2855 					break;
2856 				}
2857 			}
2858 
2859 			if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2860 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
2861 				/* If we get to this point, and this request is a fused command, we know that
2862 				 * it is part of a valid sequence (FIRST followed by a SECOND) and that both
2863 				 * requests are READY_TO_EXECUTE.  So call spdk_nvmf_request_exec() both on this
2864 				 * request, and the other request of the fused pair, in the correct order.
2865 				 * Also clear the ->fused_pair pointers on both requests, since after this point
2866 				 * we no longer need to maintain the relationship between these two requests.
2867 				 */
2868 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
2869 					assert(tcp_req->fused_pair != NULL);
2870 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
2871 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
2872 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
2873 					tcp_req->fused_pair->fused_pair = NULL;
2874 					tcp_req->fused_pair = NULL;
2875 				}
2876 				spdk_nvmf_request_exec(&tcp_req->req);
2877 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
2878 					assert(tcp_req->fused_pair != NULL);
2879 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
2880 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
2881 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
2882 					tcp_req->fused_pair->fused_pair = NULL;
2883 					tcp_req->fused_pair = NULL;
2884 				}
2885 			} else {
2886 				/* For zero-copy, only requests with data coming from host to the
2887 				 * controller can end up here. */
2888 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
2889 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT);
2890 				spdk_nvmf_request_zcopy_end(&tcp_req->req, true);
2891 			}
2892 
2893 			break;
2894 		case TCP_REQUEST_STATE_EXECUTING:
2895 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2896 					  tqpair);
2897 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
2898 			 * to escape this state. */
2899 			break;
2900 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
2901 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.qid, 0,
2902 					  (uintptr_t)tcp_req, tqpair);
2903 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
2904 			 * to escape this state. */
2905 			break;
2906 		case TCP_REQUEST_STATE_EXECUTED:
2907 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2908 					  tqpair);
2909 
2910 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2911 				tcp_req->req.length = tcp_req->req.dif.orig_length;
2912 			}
2913 
2914 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2915 			break;
2916 		case TCP_REQUEST_STATE_READY_TO_COMPLETE:
2917 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.qid, 0,
2918 					  (uintptr_t)tcp_req, tqpair);
2919 			rc = request_transfer_out(&tcp_req->req);
2920 			assert(rc == 0); /* No good way to handle this currently */
2921 			break;
2922 		case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
2923 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.qid, 0,
2924 					  (uintptr_t)tcp_req, tqpair);
2925 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
2926 			 * to escape this state. */
2927 			break;
2928 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
2929 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.qid, 0,
2930 					  (uintptr_t)tcp_req, tqpair);
2931 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
2932 			 * to escape this state. */
2933 			break;
2934 		case TCP_REQUEST_STATE_COMPLETED:
2935 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2936 					  tqpair);
2937 			/* If there's an outstanding PDU sent to the host, the request is completed
2938 			 * due to the qpair being disconnected.  We must delay the completion until
2939 			 * that write is done to avoid freeing the request twice. */
2940 			if (spdk_unlikely(tcp_req->pdu_in_use)) {
2941 				SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding "
2942 					      "write on req=%p\n", tcp_req);
2943 				/* This can only happen for zcopy requests */
2944 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
2945 				assert(tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
2946 				break;
2947 			}
2948 
2949 			if (tcp_req->req.data_from_pool) {
2950 				spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
2951 			} else if (spdk_unlikely(tcp_req->has_in_capsule_data &&
2952 						 (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
2953 						  tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
2954 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2955 				assert(tgroup->control_msg_list);
2956 				SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
2957 				nvmf_tcp_control_msg_put(tgroup->control_msg_list, tcp_req->req.data);
2958 			} else if (tcp_req->req.zcopy_bdev_io != NULL) {
2959 				/* If the request has an unreleased zcopy bdev_io, it's either a
2960 				 * read, a failed write, or the qpair is being disconnected */
2961 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
2962 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
2963 				       spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) ||
2964 				       tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
2965 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE);
2966 				spdk_nvmf_request_zcopy_end(&tcp_req->req, false);
2967 				break;
2968 			}
2969 			tcp_req->req.length = 0;
2970 			tcp_req->req.iovcnt = 0;
2971 			tcp_req->req.data = NULL;
2972 			tcp_req->fused_failed = false;
2973 			if (tcp_req->fused_pair) {
2974 				/* This req was part of a valid fused pair, but failed before it got to
2975 				 * READ_TO_EXECUTE state.  This means we need to fail the other request
2976 				 * in the pair, because it is no longer part of a valid pair.  If the pair
2977 				 * already reached READY_TO_EXECUTE state, we need to kick it.
2978 				 */
2979 				tcp_req->fused_pair->fused_failed = true;
2980 				if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2981 					nvmf_tcp_req_process(ttransport, tcp_req->fused_pair);
2982 				}
2983 				tcp_req->fused_pair = NULL;
2984 			}
2985 
2986 			nvmf_tcp_req_put(tqpair, tcp_req);
2987 			break;
2988 		case TCP_REQUEST_NUM_STATES:
2989 		default:
2990 			assert(0);
2991 			break;
2992 		}
2993 
2994 		if (tcp_req->state != prev_state) {
2995 			progress = true;
2996 		}
2997 	} while (tcp_req->state != prev_state);
2998 
2999 	return progress;
3000 }
3001 
3002 static void
3003 nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
3004 {
3005 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
3006 	int rc;
3007 
3008 	assert(tqpair != NULL);
3009 	rc = nvmf_tcp_sock_process(tqpair);
3010 
3011 	/* If there was a new socket error, disconnect */
3012 	if (rc < 0) {
3013 		nvmf_tcp_qpair_disconnect(tqpair);
3014 	}
3015 }
3016 
3017 static int
3018 nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3019 			struct spdk_nvmf_qpair *qpair)
3020 {
3021 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3022 	struct spdk_nvmf_tcp_qpair	*tqpair;
3023 	int				rc;
3024 
3025 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3026 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3027 
3028 	rc =  nvmf_tcp_qpair_sock_init(tqpair);
3029 	if (rc != 0) {
3030 		SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
3031 		return -1;
3032 	}
3033 
3034 	rc = nvmf_tcp_qpair_init(&tqpair->qpair);
3035 	if (rc < 0) {
3036 		SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
3037 		return -1;
3038 	}
3039 
3040 	rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
3041 	if (rc < 0) {
3042 		SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
3043 		return -1;
3044 	}
3045 
3046 	rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
3047 				      nvmf_tcp_sock_cb, tqpair);
3048 	if (rc != 0) {
3049 		SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
3050 			    spdk_strerror(errno), errno);
3051 		return -1;
3052 	}
3053 
3054 	tqpair->group = tgroup;
3055 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INVALID);
3056 	TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
3057 
3058 	return 0;
3059 }
3060 
3061 static int
3062 nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3063 			   struct spdk_nvmf_qpair *qpair)
3064 {
3065 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3066 	struct spdk_nvmf_tcp_qpair		*tqpair;
3067 	int				rc;
3068 
3069 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3070 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3071 
3072 	assert(tqpair->group == tgroup);
3073 
3074 	SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
3075 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
3076 		TAILQ_REMOVE(&tgroup->await_req, tqpair, link);
3077 	} else {
3078 		TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
3079 	}
3080 
3081 	rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
3082 	if (rc != 0) {
3083 		SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
3084 			    spdk_strerror(errno), errno);
3085 	}
3086 
3087 	return rc;
3088 }
3089 
3090 static int
3091 nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
3092 {
3093 	struct spdk_nvmf_tcp_transport *ttransport;
3094 	struct spdk_nvmf_tcp_req *tcp_req;
3095 
3096 	ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3097 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3098 
3099 	switch (tcp_req->state) {
3100 	case TCP_REQUEST_STATE_EXECUTING:
3101 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3102 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3103 		break;
3104 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3105 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED);
3106 		break;
3107 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3108 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3109 		break;
3110 	default:
3111 		assert(0 && "Unexpected request state");
3112 		break;
3113 	}
3114 
3115 	nvmf_tcp_req_process(ttransport, tcp_req);
3116 
3117 	return 0;
3118 }
3119 
3120 static void
3121 nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
3122 		     spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3123 {
3124 	struct spdk_nvmf_tcp_qpair *tqpair;
3125 
3126 	SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
3127 
3128 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3129 
3130 	assert(tqpair->fini_cb_fn == NULL);
3131 	tqpair->fini_cb_fn = cb_fn;
3132 	tqpair->fini_cb_arg = cb_arg;
3133 
3134 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITED);
3135 	nvmf_tcp_qpair_destroy(tqpair);
3136 }
3137 
3138 static int
3139 nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3140 {
3141 	struct spdk_nvmf_tcp_poll_group *tgroup;
3142 	int rc;
3143 	struct spdk_nvmf_request *req, *req_tmp;
3144 	struct spdk_nvmf_tcp_req *tcp_req;
3145 	struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp;
3146 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(group->transport,
3147 			struct spdk_nvmf_tcp_transport, transport);
3148 
3149 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3150 
3151 	if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) {
3152 		return 0;
3153 	}
3154 
3155 	STAILQ_FOREACH_SAFE(req, &group->pending_buf_queue, buf_link, req_tmp) {
3156 		tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3157 		if (nvmf_tcp_req_process(ttransport, tcp_req) == false) {
3158 			break;
3159 		}
3160 	}
3161 
3162 	rc = spdk_sock_group_poll(tgroup->sock_group);
3163 	if (rc < 0) {
3164 		SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
3165 	}
3166 
3167 	TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) {
3168 		nvmf_tcp_sock_process(tqpair);
3169 	}
3170 
3171 	return rc;
3172 }
3173 
3174 static int
3175 nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
3176 			struct spdk_nvme_transport_id *trid, bool peer)
3177 {
3178 	struct spdk_nvmf_tcp_qpair     *tqpair;
3179 	uint16_t			port;
3180 
3181 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3182 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
3183 
3184 	if (peer) {
3185 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
3186 		port = tqpair->initiator_port;
3187 	} else {
3188 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
3189 		port = tqpair->target_port;
3190 	}
3191 
3192 	if (spdk_sock_is_ipv4(tqpair->sock)) {
3193 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3194 	} else if (spdk_sock_is_ipv6(tqpair->sock)) {
3195 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3196 	} else {
3197 		return -1;
3198 	}
3199 
3200 	snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
3201 	return 0;
3202 }
3203 
3204 static int
3205 nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3206 			      struct spdk_nvme_transport_id *trid)
3207 {
3208 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3209 }
3210 
3211 static int
3212 nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3213 			     struct spdk_nvme_transport_id *trid)
3214 {
3215 	return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
3216 }
3217 
3218 static int
3219 nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3220 			       struct spdk_nvme_transport_id *trid)
3221 {
3222 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3223 }
3224 
3225 static void
3226 nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
3227 			      struct spdk_nvmf_tcp_req *tcp_req_to_abort)
3228 {
3229 	tcp_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
3230 	tcp_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
3231 	tcp_req_to_abort->req.rsp->nvme_cpl.cid = tcp_req_to_abort->req.cmd->nvme_cmd.cid;
3232 
3233 	nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3234 
3235 	req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
3236 }
3237 
3238 static int
3239 _nvmf_tcp_qpair_abort_request(void *ctx)
3240 {
3241 	struct spdk_nvmf_request *req = ctx;
3242 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
3243 			struct spdk_nvmf_tcp_req, req);
3244 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
3245 					     struct spdk_nvmf_tcp_qpair, qpair);
3246 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
3247 			struct spdk_nvmf_tcp_transport, transport);
3248 	int rc;
3249 
3250 	spdk_poller_unregister(&req->poller);
3251 
3252 	switch (tcp_req_to_abort->state) {
3253 	case TCP_REQUEST_STATE_EXECUTING:
3254 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3255 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3256 		rc = nvmf_ctrlr_abort_request(req);
3257 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
3258 			return SPDK_POLLER_BUSY;
3259 		}
3260 		break;
3261 
3262 	case TCP_REQUEST_STATE_NEED_BUFFER:
3263 		STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue,
3264 			      &tcp_req_to_abort->req, spdk_nvmf_request, buf_link);
3265 
3266 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3267 		nvmf_tcp_req_process(ttransport, tcp_req_to_abort);
3268 		break;
3269 
3270 	case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3271 	case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
3272 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3273 		break;
3274 
3275 	case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3276 		if (spdk_get_ticks() < req->timeout_tsc) {
3277 			req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
3278 			return SPDK_POLLER_BUSY;
3279 		}
3280 		break;
3281 
3282 	default:
3283 		break;
3284 	}
3285 
3286 	spdk_nvmf_request_complete(req);
3287 	return SPDK_POLLER_BUSY;
3288 }
3289 
3290 static void
3291 nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
3292 			     struct spdk_nvmf_request *req)
3293 {
3294 	struct spdk_nvmf_tcp_qpair *tqpair;
3295 	struct spdk_nvmf_tcp_transport *ttransport;
3296 	struct spdk_nvmf_transport *transport;
3297 	uint16_t cid;
3298 	uint32_t i;
3299 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
3300 
3301 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3302 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3303 	transport = &ttransport->transport;
3304 
3305 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
3306 
3307 	for (i = 0; i < tqpair->resource_count; i++) {
3308 		if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
3309 		    tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
3310 			tcp_req_to_abort = &tqpair->reqs[i];
3311 			break;
3312 		}
3313 	}
3314 
3315 	spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, qpair->qid, 0, (uintptr_t)req, tqpair);
3316 
3317 	if (tcp_req_to_abort == NULL) {
3318 		spdk_nvmf_request_complete(req);
3319 		return;
3320 	}
3321 
3322 	req->req_to_abort = &tcp_req_to_abort->req;
3323 	req->timeout_tsc = spdk_get_ticks() +
3324 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
3325 	req->poller = NULL;
3326 
3327 	_nvmf_tcp_qpair_abort_request(req);
3328 }
3329 
3330 #define SPDK_NVMF_TCP_DEFAULT_MAX_QUEUE_DEPTH 128
3331 #define SPDK_NVMF_TCP_DEFAULT_AQ_DEPTH 128
3332 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
3333 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
3334 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
3335 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
3336 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
3337 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE 32
3338 #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
3339 #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
3340 
3341 static void
3342 nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
3343 {
3344 	opts->max_queue_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_QUEUE_DEPTH;
3345 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
3346 	opts->in_capsule_data_size =	SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
3347 	opts->max_io_size =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
3348 	opts->io_unit_size =		SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
3349 	opts->max_aq_depth =		SPDK_NVMF_TCP_DEFAULT_AQ_DEPTH;
3350 	opts->num_shared_buffers =	SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
3351 	opts->buf_cache_size =		SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
3352 	opts->dif_insert_or_strip =	SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
3353 	opts->abort_timeout_sec =	SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
3354 	opts->transport_specific =      NULL;
3355 }
3356 
3357 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
3358 	.name = "TCP",
3359 	.type = SPDK_NVME_TRANSPORT_TCP,
3360 	.opts_init = nvmf_tcp_opts_init,
3361 	.create = nvmf_tcp_create,
3362 	.dump_opts = nvmf_tcp_dump_opts,
3363 	.destroy = nvmf_tcp_destroy,
3364 
3365 	.listen = nvmf_tcp_listen,
3366 	.stop_listen = nvmf_tcp_stop_listen,
3367 
3368 	.listener_discover = nvmf_tcp_discover,
3369 
3370 	.poll_group_create = nvmf_tcp_poll_group_create,
3371 	.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
3372 	.poll_group_destroy = nvmf_tcp_poll_group_destroy,
3373 	.poll_group_add = nvmf_tcp_poll_group_add,
3374 	.poll_group_remove = nvmf_tcp_poll_group_remove,
3375 	.poll_group_poll = nvmf_tcp_poll_group_poll,
3376 
3377 	.req_free = nvmf_tcp_req_free,
3378 	.req_complete = nvmf_tcp_req_complete,
3379 
3380 	.qpair_fini = nvmf_tcp_close_qpair,
3381 	.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
3382 	.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
3383 	.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
3384 	.qpair_abort_request = nvmf_tcp_qpair_abort_request,
3385 };
3386 
3387 SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
3388 SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)
3389