xref: /spdk/lib/nvmf/tcp.c (revision 13ca6e52d3c7d413a244c67cfbb419e55f3293da)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation. All rights reserved.
5  *   Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
6  *   Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
7  *
8  *   Redistribution and use in source and binary forms, with or without
9  *   modification, are permitted provided that the following conditions
10  *   are met:
11  *
12  *     * Redistributions of source code must retain the above copyright
13  *       notice, this list of conditions and the following disclaimer.
14  *     * Redistributions in binary form must reproduce the above copyright
15  *       notice, this list of conditions and the following disclaimer in
16  *       the documentation and/or other materials provided with the
17  *       distribution.
18  *     * Neither the name of Intel Corporation nor the names of its
19  *       contributors may be used to endorse or promote products derived
20  *       from this software without specific prior written permission.
21  *
22  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include "spdk/accel_engine.h"
36 #include "spdk/stdinc.h"
37 #include "spdk/crc32.h"
38 #include "spdk/endian.h"
39 #include "spdk/assert.h"
40 #include "spdk/thread.h"
41 #include "spdk/nvmf_transport.h"
42 #include "spdk/string.h"
43 #include "spdk/trace.h"
44 #include "spdk/util.h"
45 #include "spdk/log.h"
46 
47 #include "spdk_internal/assert.h"
48 #include "spdk_internal/nvme_tcp.h"
49 #include "spdk_internal/sock.h"
50 
51 #include "nvmf_internal.h"
52 
53 #include "spdk_internal/trace_defs.h"
54 
55 #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16
56 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16
57 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0
58 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32
59 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true
60 
61 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp;
62 
63 /* spdk nvmf related structure */
64 enum spdk_nvmf_tcp_req_state {
65 
66 	/* The request is not currently in use */
67 	TCP_REQUEST_STATE_FREE = 0,
68 
69 	/* Initial state when request first received */
70 	TCP_REQUEST_STATE_NEW = 1,
71 
72 	/* The request is queued until a data buffer is available. */
73 	TCP_REQUEST_STATE_NEED_BUFFER = 2,
74 
75 	/* The request is waiting for zcopy_start to finish */
76 	TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 3,
77 
78 	/* The request has received a zero-copy buffer */
79 	TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 4,
80 
81 	/* The request is currently transferring data from the host to the controller. */
82 	TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 5,
83 
84 	/* The request is waiting for the R2T send acknowledgement. */
85 	TCP_REQUEST_STATE_AWAITING_R2T_ACK = 6,
86 
87 	/* The request is ready to execute at the block device */
88 	TCP_REQUEST_STATE_READY_TO_EXECUTE = 7,
89 
90 	/* The request is currently executing at the block device */
91 	TCP_REQUEST_STATE_EXECUTING = 8,
92 
93 	/* The request is waiting for zcopy buffers to be commited */
94 	TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 9,
95 
96 	/* The request finished executing at the block device */
97 	TCP_REQUEST_STATE_EXECUTED = 10,
98 
99 	/* The request is ready to send a completion */
100 	TCP_REQUEST_STATE_READY_TO_COMPLETE = 11,
101 
102 	/* The request is currently transferring final pdus from the controller to the host. */
103 	TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 12,
104 
105 	/* The request is waiting for zcopy buffers to be released (without committing) */
106 	TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 13,
107 
108 	/* The request completed and can be marked free. */
109 	TCP_REQUEST_STATE_COMPLETED = 14,
110 
111 	/* Terminator */
112 	TCP_REQUEST_NUM_STATES,
113 };
114 
115 static const char *spdk_nvmf_tcp_term_req_fes_str[] = {
116 	"Invalid PDU Header Field",
117 	"PDU Sequence Error",
118 	"Header Digiest Error",
119 	"Data Transfer Out of Range",
120 	"R2T Limit Exceeded",
121 	"Unsupported parameter",
122 };
123 
124 SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP)
125 {
126 	spdk_trace_register_owner(OWNER_NVMF_TCP, 't');
127 	spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r');
128 	spdk_trace_register_description("TCP_REQ_NEW",
129 					TRACE_TCP_REQUEST_STATE_NEW,
130 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1,
131 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
132 	spdk_trace_register_description("TCP_REQ_NEED_BUFFER",
133 					TRACE_TCP_REQUEST_STATE_NEED_BUFFER,
134 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
135 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
136 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START",
137 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START,
138 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
139 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
140 	spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL",
141 					TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED,
142 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
143 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
144 	spdk_trace_register_description("TCP_REQ_TX_H_TO_C",
145 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
146 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
147 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
148 	spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE",
149 					TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE,
150 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
151 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
152 	spdk_trace_register_description("TCP_REQ_EXECUTING",
153 					TRACE_TCP_REQUEST_STATE_EXECUTING,
154 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
155 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
156 	spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT",
157 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT,
158 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
159 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
160 	spdk_trace_register_description("TCP_REQ_EXECUTED",
161 					TRACE_TCP_REQUEST_STATE_EXECUTED,
162 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
163 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
164 	spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE",
165 					TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE,
166 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
167 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
168 	spdk_trace_register_description("TCP_REQ_TRANSFER_C2H",
169 					TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
170 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
171 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
172 	spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS",
173 					TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE,
174 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
175 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
176 	spdk_trace_register_description("TCP_REQ_COMPLETED",
177 					TRACE_TCP_REQUEST_STATE_COMPLETED,
178 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
179 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
180 	spdk_trace_register_description("TCP_WRITE_START",
181 					TRACE_TCP_FLUSH_WRITEBUF_START,
182 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
183 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
184 	spdk_trace_register_description("TCP_WRITE_DONE",
185 					TRACE_TCP_FLUSH_WRITEBUF_DONE,
186 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
187 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
188 	spdk_trace_register_description("TCP_READ_DONE",
189 					TRACE_TCP_READ_FROM_SOCKET_DONE,
190 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
191 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
192 	spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK",
193 					TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK,
194 					OWNER_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0,
195 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
196 
197 	spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE,
198 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
199 					SPDK_TRACE_ARG_TYPE_INT, "");
200 	spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT,
201 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
202 					SPDK_TRACE_ARG_TYPE_INT, "");
203 	spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE,
204 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
205 					SPDK_TRACE_ARG_TYPE_INT, "state");
206 	spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT,
207 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
208 					SPDK_TRACE_ARG_TYPE_INT, "");
209 	spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY,
210 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
211 					SPDK_TRACE_ARG_TYPE_INT, "");
212 	spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ,
213 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
214 					SPDK_TRACE_ARG_TYPE_PTR, "qpair");
215 	spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE,
216 					OWNER_NVMF_TCP, OBJECT_NONE, 0,
217 					SPDK_TRACE_ARG_TYPE_INT, "state");
218 
219 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1);
220 	spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0);
221 }
222 
223 struct spdk_nvmf_tcp_req  {
224 	struct spdk_nvmf_request		req;
225 	struct spdk_nvme_cpl			rsp;
226 	struct spdk_nvme_cmd			cmd;
227 
228 	/* A PDU that can be used for sending responses. This is
229 	 * not the incoming PDU! */
230 	struct nvme_tcp_pdu			*pdu;
231 
232 	/* In-capsule data buffer */
233 	uint8_t					*buf;
234 
235 	struct spdk_nvmf_tcp_req		*fused_pair;
236 
237 	/*
238 	 * The PDU for a request may be used multiple times in serial over
239 	 * the request's lifetime. For example, first to send an R2T, then
240 	 * to send a completion. To catch mistakes where the PDU is used
241 	 * twice at the same time, add a debug flag here for init/fini.
242 	 */
243 	bool					pdu_in_use;
244 	bool					has_in_capsule_data;
245 	bool					fused_failed;
246 
247 	/* transfer_tag */
248 	uint16_t				ttag;
249 
250 	enum spdk_nvmf_tcp_req_state		state;
251 
252 	/*
253 	 * h2c_offset is used when we receive the h2c_data PDU.
254 	 */
255 	uint32_t				h2c_offset;
256 
257 	STAILQ_ENTRY(spdk_nvmf_tcp_req)		link;
258 	TAILQ_ENTRY(spdk_nvmf_tcp_req)		state_link;
259 };
260 
261 struct spdk_nvmf_tcp_qpair {
262 	struct spdk_nvmf_qpair			qpair;
263 	struct spdk_nvmf_tcp_poll_group		*group;
264 	struct spdk_sock			*sock;
265 
266 	enum nvme_tcp_pdu_recv_state		recv_state;
267 	enum nvme_tcp_qpair_state		state;
268 
269 	/* PDU being actively received */
270 	struct nvme_tcp_pdu			*pdu_in_progress;
271 
272 	struct spdk_nvmf_tcp_req		*fused_first;
273 
274 	/* Queues to track the requests in all states */
275 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_working_queue;
276 	TAILQ_HEAD(, spdk_nvmf_tcp_req)		tcp_req_free_queue;
277 
278 	/* Number of requests in each state */
279 	uint32_t				state_cntr[TCP_REQUEST_NUM_STATES];
280 
281 	uint8_t					cpda;
282 
283 	bool					host_hdgst_enable;
284 	bool					host_ddgst_enable;
285 
286 	/* This is a spare PDU used for sending special management
287 	 * operations. Primarily, this is used for the initial
288 	 * connection response and c2h termination request. */
289 	struct nvme_tcp_pdu			*mgmt_pdu;
290 
291 	/* Arrays of in-capsule buffers, requests, and pdus.
292 	 * Each array is 'resource_count' number of elements */
293 	void					*bufs;
294 	struct spdk_nvmf_tcp_req		*reqs;
295 	struct nvme_tcp_pdu			*pdus;
296 	uint32_t				resource_count;
297 	uint32_t				recv_buf_size;
298 
299 	struct spdk_nvmf_tcp_port		*port;
300 
301 	/* IP address */
302 	char					initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN];
303 	char					target_addr[SPDK_NVMF_TRADDR_MAX_LEN];
304 
305 	/* IP port */
306 	uint16_t				initiator_port;
307 	uint16_t				target_port;
308 
309 	/* Timer used to destroy qpair after detecting transport error issue if initiator does
310 	 *  not close the connection.
311 	 */
312 	struct spdk_poller			*timeout_poller;
313 
314 
315 	TAILQ_ENTRY(spdk_nvmf_tcp_qpair)	link;
316 };
317 
318 struct spdk_nvmf_tcp_control_msg {
319 	STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link;
320 };
321 
322 struct spdk_nvmf_tcp_control_msg_list {
323 	void *msg_buf;
324 	STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs;
325 };
326 
327 struct spdk_nvmf_tcp_poll_group {
328 	struct spdk_nvmf_transport_poll_group	group;
329 	struct spdk_sock_group			*sock_group;
330 
331 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	qpairs;
332 	TAILQ_HEAD(, spdk_nvmf_tcp_qpair)	await_req;
333 
334 	struct spdk_io_channel			*accel_channel;
335 	struct spdk_nvmf_tcp_control_msg_list	*control_msg_list;
336 
337 	TAILQ_ENTRY(spdk_nvmf_tcp_poll_group)	link;
338 };
339 
340 struct spdk_nvmf_tcp_port {
341 	const struct spdk_nvme_transport_id	*trid;
342 	struct spdk_sock			*listen_sock;
343 	TAILQ_ENTRY(spdk_nvmf_tcp_port)		link;
344 };
345 
346 struct tcp_transport_opts {
347 	bool		c2h_success;
348 	uint16_t	control_msg_num;
349 	uint32_t	sock_priority;
350 };
351 
352 struct spdk_nvmf_tcp_transport {
353 	struct spdk_nvmf_transport		transport;
354 	struct tcp_transport_opts               tcp_opts;
355 
356 	struct spdk_nvmf_tcp_poll_group		*next_pg;
357 
358 	struct spdk_poller			*accept_poller;
359 	pthread_mutex_t				lock;
360 
361 	TAILQ_HEAD(, spdk_nvmf_tcp_port)	ports;
362 	TAILQ_HEAD(, spdk_nvmf_tcp_poll_group)	poll_groups;
363 };
364 
365 static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = {
366 	{
367 		"c2h_success", offsetof(struct tcp_transport_opts, c2h_success),
368 		spdk_json_decode_bool, true
369 	},
370 	{
371 		"control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num),
372 		spdk_json_decode_uint16, true
373 	},
374 	{
375 		"sock_priority", offsetof(struct tcp_transport_opts, sock_priority),
376 		spdk_json_decode_uint32, true
377 	},
378 };
379 
380 static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
381 				 struct spdk_nvmf_tcp_req *tcp_req);
382 static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
383 
384 static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
385 				    struct spdk_nvmf_tcp_req *tcp_req);
386 
387 static void
388 nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req,
389 		       enum spdk_nvmf_tcp_req_state state)
390 {
391 	struct spdk_nvmf_qpair *qpair;
392 	struct spdk_nvmf_tcp_qpair *tqpair;
393 
394 	qpair = tcp_req->req.qpair;
395 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
396 
397 	assert(tqpair->state_cntr[tcp_req->state] > 0);
398 	tqpair->state_cntr[tcp_req->state]--;
399 	tqpair->state_cntr[state]++;
400 
401 	tcp_req->state = state;
402 }
403 
404 static inline struct nvme_tcp_pdu *
405 nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req)
406 {
407 	assert(tcp_req->pdu_in_use == false);
408 
409 	memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu));
410 	tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
411 
412 	return tcp_req->pdu;
413 }
414 
415 static struct spdk_nvmf_tcp_req *
416 nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair)
417 {
418 	struct spdk_nvmf_tcp_req *tcp_req;
419 
420 	tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue);
421 	if (!tcp_req) {
422 		return NULL;
423 	}
424 
425 	memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp));
426 	tcp_req->h2c_offset = 0;
427 	tcp_req->has_in_capsule_data = false;
428 	tcp_req->req.dif_enabled = false;
429 	tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE;
430 
431 	TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link);
432 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link);
433 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW);
434 	return tcp_req;
435 }
436 
437 static inline void
438 nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req)
439 {
440 	assert(!tcp_req->pdu_in_use);
441 
442 	TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link);
443 	TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
444 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE);
445 }
446 
447 static void
448 nvmf_tcp_request_free(void *cb_arg)
449 {
450 	struct spdk_nvmf_tcp_transport *ttransport;
451 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
452 
453 	assert(tcp_req != NULL);
454 
455 	SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req);
456 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
457 				      struct spdk_nvmf_tcp_transport, transport);
458 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
459 	nvmf_tcp_req_process(ttransport, tcp_req);
460 }
461 
462 static int
463 nvmf_tcp_req_free(struct spdk_nvmf_request *req)
464 {
465 	struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
466 
467 	nvmf_tcp_request_free(tcp_req);
468 
469 	return 0;
470 }
471 
472 static void
473 nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair,
474 			   enum spdk_nvmf_tcp_req_state state)
475 {
476 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
477 
478 	assert(state != TCP_REQUEST_STATE_FREE);
479 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
480 		if (state == tcp_req->state) {
481 			nvmf_tcp_request_free(tcp_req);
482 		}
483 	}
484 }
485 
486 static void
487 nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair)
488 {
489 	struct spdk_nvmf_tcp_req *tcp_req, *req_tmp;
490 
491 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
492 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW);
493 
494 	/* Wipe the requests waiting for buffer from the global list */
495 	TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) {
496 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
497 			STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue, &tcp_req->req,
498 				      spdk_nvmf_request, buf_link);
499 		}
500 	}
501 
502 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER);
503 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING);
504 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
505 	nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
506 }
507 
508 static void
509 nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair)
510 {
511 	int i;
512 	struct spdk_nvmf_tcp_req *tcp_req;
513 
514 	SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid);
515 	for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) {
516 		SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]);
517 		TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
518 			if ((int)tcp_req->state == i) {
519 				SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool);
520 				SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode);
521 			}
522 		}
523 	}
524 }
525 
526 static void
527 nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair)
528 {
529 	int err = 0;
530 
531 	spdk_trace_record(TRACE_TCP_QP_DESTROY, 0, 0, (uintptr_t)tqpair);
532 
533 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
534 
535 	err = spdk_sock_close(&tqpair->sock);
536 	assert(err == 0);
537 	nvmf_tcp_cleanup_all_states(tqpair);
538 
539 	if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) {
540 		SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair,
541 			    tqpair->state_cntr[TCP_REQUEST_STATE_FREE],
542 			    tqpair->resource_count);
543 		err++;
544 	}
545 
546 	if (err > 0) {
547 		nvmf_tcp_dump_qpair_req_contents(tqpair);
548 	}
549 
550 	spdk_dma_free(tqpair->pdus);
551 	free(tqpair->reqs);
552 	spdk_free(tqpair->bufs);
553 	free(tqpair);
554 	SPDK_DEBUGLOG(nvmf_tcp, "Leave\n");
555 }
556 
557 static void
558 nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w)
559 {
560 	struct spdk_nvmf_tcp_transport	*ttransport;
561 	assert(w != NULL);
562 
563 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
564 	spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success);
565 	spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority);
566 }
567 
568 static int
569 nvmf_tcp_destroy(struct spdk_nvmf_transport *transport,
570 		 spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
571 {
572 	struct spdk_nvmf_tcp_transport	*ttransport;
573 
574 	assert(transport != NULL);
575 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
576 
577 	spdk_poller_unregister(&ttransport->accept_poller);
578 	pthread_mutex_destroy(&ttransport->lock);
579 	free(ttransport);
580 
581 	if (cb_fn) {
582 		cb_fn(cb_arg);
583 	}
584 	return 0;
585 }
586 
587 static int
588 nvmf_tcp_accept(void *ctx);
589 
590 static struct spdk_nvmf_transport *
591 nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts)
592 {
593 	struct spdk_nvmf_tcp_transport *ttransport;
594 	uint32_t sge_count;
595 	uint32_t min_shared_buffers;
596 
597 	ttransport = calloc(1, sizeof(*ttransport));
598 	if (!ttransport) {
599 		return NULL;
600 	}
601 
602 	TAILQ_INIT(&ttransport->ports);
603 	TAILQ_INIT(&ttransport->poll_groups);
604 
605 	ttransport->transport.ops = &spdk_nvmf_transport_tcp;
606 
607 	ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION;
608 	ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY;
609 	ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
610 	if (opts->transport_specific != NULL &&
611 	    spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder,
612 					    SPDK_COUNTOF(tcp_transport_opts_decoder),
613 					    &ttransport->tcp_opts)) {
614 		SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
615 		free(ttransport);
616 		return NULL;
617 	}
618 
619 	SPDK_NOTICELOG("*** TCP Transport Init ***\n");
620 
621 	SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n"
622 		     "  Transport opts:  max_ioq_depth=%d, max_io_size=%d,\n"
623 		     "  max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
624 		     "  in_capsule_data_size=%d, max_aq_depth=%d\n"
625 		     "  num_shared_buffers=%d, c2h_success=%d,\n"
626 		     "  dif_insert_or_strip=%d, sock_priority=%d\n"
627 		     "  abort_timeout_sec=%d, control_msg_num=%hu\n",
628 		     opts->max_queue_depth,
629 		     opts->max_io_size,
630 		     opts->max_qpairs_per_ctrlr - 1,
631 		     opts->io_unit_size,
632 		     opts->in_capsule_data_size,
633 		     opts->max_aq_depth,
634 		     opts->num_shared_buffers,
635 		     ttransport->tcp_opts.c2h_success,
636 		     opts->dif_insert_or_strip,
637 		     ttransport->tcp_opts.sock_priority,
638 		     opts->abort_timeout_sec,
639 		     ttransport->tcp_opts.control_msg_num);
640 
641 	if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) {
642 		SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n"
643 			    "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n",
644 			    ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY);
645 		free(ttransport);
646 		return NULL;
647 	}
648 
649 	if (ttransport->tcp_opts.control_msg_num == 0 &&
650 	    opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
651 		SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n",
652 			     SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM);
653 		ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM;
654 	}
655 
656 	/* I/O unit size cannot be larger than max I/O size */
657 	if (opts->io_unit_size > opts->max_io_size) {
658 		opts->io_unit_size = opts->max_io_size;
659 	}
660 
661 	sge_count = opts->max_io_size / opts->io_unit_size;
662 	if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) {
663 		SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
664 		free(ttransport);
665 		return NULL;
666 	}
667 
668 	min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size;
669 	if (min_shared_buffers > opts->num_shared_buffers) {
670 		SPDK_ERRLOG("There are not enough buffers to satisfy "
671 			    "per-poll group caches for each thread. (%" PRIu32 ") "
672 			    "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
673 		SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
674 		free(ttransport);
675 		return NULL;
676 	}
677 
678 	pthread_mutex_init(&ttransport->lock, NULL);
679 
680 	ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport,
681 				    opts->acceptor_poll_rate);
682 	if (!ttransport->accept_poller) {
683 		pthread_mutex_destroy(&ttransport->lock);
684 		free(ttransport);
685 		return NULL;
686 	}
687 
688 	return &ttransport->transport;
689 }
690 
691 static int
692 nvmf_tcp_trsvcid_to_int(const char *trsvcid)
693 {
694 	unsigned long long ull;
695 	char *end = NULL;
696 
697 	ull = strtoull(trsvcid, &end, 10);
698 	if (end == NULL || end == trsvcid || *end != '\0') {
699 		return -1;
700 	}
701 
702 	/* Valid TCP/IP port numbers are in [0, 65535] */
703 	if (ull > 65535) {
704 		return -1;
705 	}
706 
707 	return (int)ull;
708 }
709 
710 /**
711  * Canonicalize a listen address trid.
712  */
713 static int
714 nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid,
715 			   const struct spdk_nvme_transport_id *trid)
716 {
717 	int trsvcid_int;
718 
719 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
720 	if (trsvcid_int < 0) {
721 		return -EINVAL;
722 	}
723 
724 	memset(canon_trid, 0, sizeof(*canon_trid));
725 	spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP);
726 	canon_trid->adrfam = trid->adrfam;
727 	snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr);
728 	snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int);
729 
730 	return 0;
731 }
732 
733 /**
734  * Find an existing listening port.
735  *
736  * Caller must hold ttransport->lock.
737  */
738 static struct spdk_nvmf_tcp_port *
739 nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport,
740 		   const struct spdk_nvme_transport_id *trid)
741 {
742 	struct spdk_nvme_transport_id canon_trid;
743 	struct spdk_nvmf_tcp_port *port;
744 
745 	if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) {
746 		return NULL;
747 	}
748 
749 	TAILQ_FOREACH(port, &ttransport->ports, link) {
750 		if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) {
751 			return port;
752 		}
753 	}
754 
755 	return NULL;
756 }
757 
758 static int
759 nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid,
760 		struct spdk_nvmf_listen_opts *listen_opts)
761 {
762 	struct spdk_nvmf_tcp_transport *ttransport;
763 	struct spdk_nvmf_tcp_port *port;
764 	int trsvcid_int;
765 	uint8_t adrfam;
766 	struct spdk_sock_opts opts;
767 
768 	if (!strlen(trid->trsvcid)) {
769 		SPDK_ERRLOG("Service id is required\n");
770 		return -EINVAL;
771 	}
772 
773 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
774 
775 	trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid);
776 	if (trsvcid_int < 0) {
777 		SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid);
778 		return -EINVAL;
779 	}
780 
781 	pthread_mutex_lock(&ttransport->lock);
782 	port = calloc(1, sizeof(*port));
783 	if (!port) {
784 		SPDK_ERRLOG("Port allocation failed\n");
785 		pthread_mutex_unlock(&ttransport->lock);
786 		return -ENOMEM;
787 	}
788 
789 	port->trid = trid;
790 	opts.opts_size = sizeof(opts);
791 	spdk_sock_get_default_opts(&opts);
792 	opts.priority = ttransport->tcp_opts.sock_priority;
793 	port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int,
794 			    NULL, &opts);
795 	if (port->listen_sock == NULL) {
796 		SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n",
797 			    trid->traddr, trsvcid_int,
798 			    spdk_strerror(errno), errno);
799 		free(port);
800 		pthread_mutex_unlock(&ttransport->lock);
801 		return -errno;
802 	}
803 
804 	if (spdk_sock_is_ipv4(port->listen_sock)) {
805 		adrfam = SPDK_NVMF_ADRFAM_IPV4;
806 	} else if (spdk_sock_is_ipv6(port->listen_sock)) {
807 		adrfam = SPDK_NVMF_ADRFAM_IPV6;
808 	} else {
809 		SPDK_ERRLOG("Unhandled socket type\n");
810 		adrfam = 0;
811 	}
812 
813 	if (adrfam != trid->adrfam) {
814 		SPDK_ERRLOG("Socket address family mismatch\n");
815 		spdk_sock_close(&port->listen_sock);
816 		free(port);
817 		pthread_mutex_unlock(&ttransport->lock);
818 		return -EINVAL;
819 	}
820 
821 	SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n",
822 		       trid->traddr, trid->trsvcid);
823 
824 	TAILQ_INSERT_TAIL(&ttransport->ports, port, link);
825 	pthread_mutex_unlock(&ttransport->lock);
826 	return 0;
827 }
828 
829 static void
830 nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport,
831 		     const struct spdk_nvme_transport_id *trid)
832 {
833 	struct spdk_nvmf_tcp_transport *ttransport;
834 	struct spdk_nvmf_tcp_port *port;
835 
836 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
837 
838 	SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n",
839 		      trid->traddr, trid->trsvcid);
840 
841 	pthread_mutex_lock(&ttransport->lock);
842 	port = nvmf_tcp_find_port(ttransport, trid);
843 	if (port) {
844 		TAILQ_REMOVE(&ttransport->ports, port, link);
845 		spdk_sock_close(&port->listen_sock);
846 		free(port);
847 	}
848 
849 	pthread_mutex_unlock(&ttransport->lock);
850 }
851 
852 static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
853 		enum nvme_tcp_pdu_recv_state state);
854 
855 static void
856 nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvme_tcp_qpair_state state)
857 {
858 	tqpair->state = state;
859 	spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
860 			  tqpair->state);
861 }
862 
863 static void
864 nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair)
865 {
866 	SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair);
867 
868 	spdk_trace_record(TRACE_TCP_QP_DISCONNECT, 0, 0, (uintptr_t)tqpair);
869 
870 	if (tqpair->state <= NVME_TCP_QPAIR_STATE_RUNNING) {
871 		nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITING);
872 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
873 		spdk_poller_unregister(&tqpair->timeout_poller);
874 
875 		/* This will end up calling nvmf_tcp_close_qpair */
876 		spdk_nvmf_qpair_disconnect(&tqpair->qpair, NULL, NULL);
877 	}
878 }
879 
880 static void
881 _mgmt_pdu_write_done(void *_tqpair, int err)
882 {
883 	struct spdk_nvmf_tcp_qpair *tqpair = _tqpair;
884 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
885 
886 	if (spdk_unlikely(err != 0)) {
887 		nvmf_tcp_qpair_disconnect(tqpair);
888 		return;
889 	}
890 
891 	assert(pdu->cb_fn != NULL);
892 	pdu->cb_fn(pdu->cb_arg);
893 }
894 
895 static void
896 _req_pdu_write_done(void *req, int err)
897 {
898 	struct spdk_nvmf_tcp_req *tcp_req = req;
899 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
900 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
901 
902 	assert(tcp_req->pdu_in_use);
903 	tcp_req->pdu_in_use = false;
904 
905 	/* If the request is in a completed state, we're waiting for write completion to free it */
906 	if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) {
907 		nvmf_tcp_request_free(tcp_req);
908 		return;
909 	}
910 
911 	if (spdk_unlikely(err != 0)) {
912 		nvmf_tcp_qpair_disconnect(tqpair);
913 		return;
914 	}
915 
916 	assert(pdu->cb_fn != NULL);
917 	pdu->cb_fn(pdu->cb_arg);
918 }
919 
920 static void
921 _pdu_write_done(struct nvme_tcp_pdu *pdu, int err)
922 {
923 	pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err);
924 }
925 
926 static void
927 _tcp_write_pdu(struct nvme_tcp_pdu *pdu)
928 {
929 	uint32_t mapped_length = 0;
930 	ssize_t rc;
931 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
932 
933 	pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu,
934 			       tqpair->host_hdgst_enable, tqpair->host_ddgst_enable,
935 			       &mapped_length);
936 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ||
937 	    pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) {
938 		rc = spdk_sock_writev(tqpair->sock, pdu->iov, pdu->sock_req.iovcnt);
939 		if (rc == mapped_length) {
940 			_pdu_write_done(pdu, 0);
941 		} else {
942 			SPDK_ERRLOG("IC_RESP or TERM_REQ could not write to socket.\n");
943 			_pdu_write_done(pdu, -1);
944 		}
945 	} else {
946 		spdk_sock_writev_async(tqpair->sock, &pdu->sock_req);
947 	}
948 }
949 
950 static void
951 data_crc32_accel_done(void *cb_arg, int status)
952 {
953 	struct nvme_tcp_pdu *pdu = cb_arg;
954 
955 	if (spdk_unlikely(status)) {
956 		SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu);
957 		_pdu_write_done(pdu, status);
958 		return;
959 	}
960 
961 	pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR;
962 	MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32);
963 
964 	_tcp_write_pdu(pdu);
965 }
966 
967 static void
968 pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu)
969 {
970 	struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair;
971 	uint32_t crc32c;
972 
973 	/* Data Digest */
974 	if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) {
975 		/* Only suport this limitated case for the first step */
976 		if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)
977 				&& tqpair->group)) {
978 			spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32,
979 						  pdu->data_iov, pdu->data_iovcnt, 0, data_crc32_accel_done, pdu);
980 			return;
981 		}
982 
983 		crc32c = nvme_tcp_pdu_calc_data_digest(pdu);
984 		MAKE_DIGEST_WORD(pdu->data_digest, crc32c);
985 	}
986 
987 	_tcp_write_pdu(pdu);
988 }
989 
990 static void
991 nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
992 			 struct nvme_tcp_pdu *pdu,
993 			 nvme_tcp_qpair_xfer_complete_cb cb_fn,
994 			 void *cb_arg)
995 {
996 	int hlen;
997 	uint32_t crc32c;
998 
999 	assert(tqpair->pdu_in_progress != pdu);
1000 
1001 	hlen = pdu->hdr.common.hlen;
1002 	pdu->cb_fn = cb_fn;
1003 	pdu->cb_arg = cb_arg;
1004 
1005 	pdu->iov[0].iov_base = &pdu->hdr.raw;
1006 	pdu->iov[0].iov_len = hlen;
1007 
1008 	/* Header Digest */
1009 	if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) {
1010 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
1011 		MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
1012 	}
1013 
1014 	/* Data Digest */
1015 	pdu_data_crc32_compute(pdu);
1016 }
1017 
1018 static void
1019 nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1020 			      nvme_tcp_qpair_xfer_complete_cb cb_fn,
1021 			      void *cb_arg)
1022 {
1023 	struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu;
1024 
1025 	pdu->sock_req.cb_fn = _mgmt_pdu_write_done;
1026 	pdu->sock_req.cb_arg = tqpair;
1027 
1028 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1029 }
1030 
1031 static void
1032 nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1033 			     struct spdk_nvmf_tcp_req *tcp_req,
1034 			     nvme_tcp_qpair_xfer_complete_cb cb_fn,
1035 			     void *cb_arg)
1036 {
1037 	struct nvme_tcp_pdu *pdu = tcp_req->pdu;
1038 
1039 	pdu->sock_req.cb_fn = _req_pdu_write_done;
1040 	pdu->sock_req.cb_arg = tcp_req;
1041 
1042 	assert(!tcp_req->pdu_in_use);
1043 	tcp_req->pdu_in_use = true;
1044 
1045 	nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg);
1046 }
1047 
1048 static int
1049 nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair)
1050 {
1051 	uint32_t i;
1052 	struct spdk_nvmf_transport_opts *opts;
1053 	uint32_t in_capsule_data_size;
1054 
1055 	opts = &tqpair->qpair.transport->opts;
1056 
1057 	in_capsule_data_size = opts->in_capsule_data_size;
1058 	if (opts->dif_insert_or_strip) {
1059 		in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size);
1060 	}
1061 
1062 	tqpair->resource_count = opts->max_queue_depth;
1063 
1064 	tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs));
1065 	if (!tqpair->reqs) {
1066 		SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair);
1067 		return -1;
1068 	}
1069 
1070 	if (in_capsule_data_size) {
1071 		tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000,
1072 					    NULL, SPDK_ENV_LCORE_ID_ANY,
1073 					    SPDK_MALLOC_DMA);
1074 		if (!tqpair->bufs) {
1075 			SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair);
1076 			return -1;
1077 		}
1078 	}
1079 
1080 	/* Add additional 2 members, which will be used for mgmt_pdu and pdu_in_progress owned by the tqpair */
1081 	tqpair->pdus = spdk_dma_zmalloc((tqpair->resource_count + 2) * sizeof(*tqpair->pdus), 0x1000, NULL);
1082 	if (!tqpair->pdus) {
1083 		SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair);
1084 		return -1;
1085 	}
1086 
1087 	for (i = 0; i < tqpair->resource_count; i++) {
1088 		struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i];
1089 
1090 		tcp_req->ttag = i + 1;
1091 		tcp_req->req.qpair = &tqpair->qpair;
1092 
1093 		tcp_req->pdu = &tqpair->pdus[i];
1094 		tcp_req->pdu->qpair = tqpair;
1095 
1096 		/* Set up memory to receive commands */
1097 		if (tqpair->bufs) {
1098 			tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size));
1099 		}
1100 
1101 		/* Set the cmdn and rsp */
1102 		tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp;
1103 		tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd;
1104 
1105 		tcp_req->req.stripped_data = NULL;
1106 
1107 		/* Initialize request state to FREE */
1108 		tcp_req->state = TCP_REQUEST_STATE_FREE;
1109 		TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link);
1110 		tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++;
1111 	}
1112 
1113 	tqpair->mgmt_pdu = &tqpair->pdus[i];
1114 	tqpair->mgmt_pdu->qpair = tqpair;
1115 	tqpair->pdu_in_progress = &tqpair->pdus[i + 1];
1116 
1117 	tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 *
1118 				 SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1119 
1120 	return 0;
1121 }
1122 
1123 static int
1124 nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair)
1125 {
1126 	struct spdk_nvmf_tcp_qpair *tqpair;
1127 
1128 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1129 
1130 	SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair);
1131 
1132 	spdk_trace_record(TRACE_TCP_QP_CREATE, 0, 0, (uintptr_t)tqpair);
1133 
1134 	/* Initialise request state queues of the qpair */
1135 	TAILQ_INIT(&tqpair->tcp_req_free_queue);
1136 	TAILQ_INIT(&tqpair->tcp_req_working_queue);
1137 
1138 	tqpair->host_hdgst_enable = true;
1139 	tqpair->host_ddgst_enable = true;
1140 
1141 	return 0;
1142 }
1143 
1144 static int
1145 nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair)
1146 {
1147 	int rc;
1148 
1149 	spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, 0, 0, (uintptr_t)tqpair);
1150 
1151 	/* set low water mark */
1152 	rc = spdk_sock_set_recvlowat(tqpair->sock, sizeof(struct spdk_nvme_tcp_common_pdu_hdr));
1153 	if (rc != 0) {
1154 		SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n");
1155 		return rc;
1156 	}
1157 
1158 	return 0;
1159 }
1160 
1161 static void
1162 nvmf_tcp_handle_connect(struct spdk_nvmf_transport *transport,
1163 			struct spdk_nvmf_tcp_port *port,
1164 			struct spdk_sock *sock)
1165 {
1166 	struct spdk_nvmf_tcp_qpair *tqpair;
1167 	int rc;
1168 
1169 	SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n",
1170 		      port->trid->traddr, port->trid->trsvcid);
1171 
1172 	tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair));
1173 	if (tqpair == NULL) {
1174 		SPDK_ERRLOG("Could not allocate new connection.\n");
1175 		spdk_sock_close(&sock);
1176 		return;
1177 	}
1178 
1179 	tqpair->sock = sock;
1180 	tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0;
1181 	tqpair->port = port;
1182 	tqpair->qpair.transport = transport;
1183 
1184 	rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr,
1185 			       sizeof(tqpair->target_addr), &tqpair->target_port,
1186 			       tqpair->initiator_addr, sizeof(tqpair->initiator_addr),
1187 			       &tqpair->initiator_port);
1188 	if (rc < 0) {
1189 		SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair);
1190 		nvmf_tcp_qpair_destroy(tqpair);
1191 		return;
1192 	}
1193 
1194 	spdk_nvmf_tgt_new_qpair(transport->tgt, &tqpair->qpair);
1195 }
1196 
1197 static uint32_t
1198 nvmf_tcp_port_accept(struct spdk_nvmf_transport *transport, struct spdk_nvmf_tcp_port *port)
1199 {
1200 	struct spdk_sock *sock;
1201 	uint32_t count = 0;
1202 	int i;
1203 
1204 	for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) {
1205 		sock = spdk_sock_accept(port->listen_sock);
1206 		if (sock == NULL) {
1207 			break;
1208 		}
1209 		count++;
1210 		nvmf_tcp_handle_connect(transport, port, sock);
1211 	}
1212 
1213 	return count;
1214 }
1215 
1216 static int
1217 nvmf_tcp_accept(void *ctx)
1218 {
1219 	struct spdk_nvmf_transport *transport = ctx;
1220 	struct spdk_nvmf_tcp_transport *ttransport;
1221 	struct spdk_nvmf_tcp_port *port;
1222 	uint32_t count = 0;
1223 
1224 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1225 
1226 	TAILQ_FOREACH(port, &ttransport->ports, link) {
1227 		count += nvmf_tcp_port_accept(transport, port);
1228 	}
1229 
1230 	return count > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1231 }
1232 
1233 static void
1234 nvmf_tcp_discover(struct spdk_nvmf_transport *transport,
1235 		  struct spdk_nvme_transport_id *trid,
1236 		  struct spdk_nvmf_discovery_log_page_entry *entry)
1237 {
1238 	entry->trtype = SPDK_NVMF_TRTYPE_TCP;
1239 	entry->adrfam = trid->adrfam;
1240 	entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
1241 
1242 	spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
1243 	spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
1244 
1245 	entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE;
1246 }
1247 
1248 static struct spdk_nvmf_tcp_control_msg_list *
1249 nvmf_tcp_control_msg_list_create(uint16_t num_messages)
1250 {
1251 	struct spdk_nvmf_tcp_control_msg_list *list;
1252 	struct spdk_nvmf_tcp_control_msg *msg;
1253 	uint16_t i;
1254 
1255 	list = calloc(1, sizeof(*list));
1256 	if (!list) {
1257 		SPDK_ERRLOG("Failed to allocate memory for list structure\n");
1258 		return NULL;
1259 	}
1260 
1261 	list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE,
1262 				     NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
1263 	if (!list->msg_buf) {
1264 		SPDK_ERRLOG("Failed to allocate memory for control message buffers\n");
1265 		free(list);
1266 		return NULL;
1267 	}
1268 
1269 	STAILQ_INIT(&list->free_msgs);
1270 
1271 	for (i = 0; i < num_messages; i++) {
1272 		msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i *
1273 				SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1274 		STAILQ_INSERT_TAIL(&list->free_msgs, msg, link);
1275 	}
1276 
1277 	return list;
1278 }
1279 
1280 static void
1281 nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list)
1282 {
1283 	if (!list) {
1284 		return;
1285 	}
1286 
1287 	spdk_free(list->msg_buf);
1288 	free(list);
1289 }
1290 
1291 static struct spdk_nvmf_transport_poll_group *
1292 nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport,
1293 			   struct spdk_nvmf_poll_group *group)
1294 {
1295 	struct spdk_nvmf_tcp_transport	*ttransport;
1296 	struct spdk_nvmf_tcp_poll_group *tgroup;
1297 
1298 	tgroup = calloc(1, sizeof(*tgroup));
1299 	if (!tgroup) {
1300 		return NULL;
1301 	}
1302 
1303 	tgroup->sock_group = spdk_sock_group_create(&tgroup->group);
1304 	if (!tgroup->sock_group) {
1305 		goto cleanup;
1306 	}
1307 
1308 	TAILQ_INIT(&tgroup->qpairs);
1309 	TAILQ_INIT(&tgroup->await_req);
1310 
1311 	ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport);
1312 
1313 	if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) {
1314 		SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). "
1315 			      "Creating control messages list\n", transport->opts.in_capsule_data_size,
1316 			      SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
1317 		tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num);
1318 		if (!tgroup->control_msg_list) {
1319 			goto cleanup;
1320 		}
1321 	}
1322 
1323 	tgroup->accel_channel = spdk_accel_engine_get_io_channel();
1324 	if (spdk_unlikely(!tgroup->accel_channel)) {
1325 		SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup);
1326 		goto cleanup;
1327 	}
1328 
1329 	pthread_mutex_lock(&ttransport->lock);
1330 	TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link);
1331 	if (ttransport->next_pg == NULL) {
1332 		ttransport->next_pg = tgroup;
1333 	}
1334 	pthread_mutex_unlock(&ttransport->lock);
1335 
1336 	return &tgroup->group;
1337 
1338 cleanup:
1339 	nvmf_tcp_poll_group_destroy(&tgroup->group);
1340 	return NULL;
1341 }
1342 
1343 static struct spdk_nvmf_transport_poll_group *
1344 nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
1345 {
1346 	struct spdk_nvmf_tcp_transport *ttransport;
1347 	struct spdk_nvmf_tcp_poll_group **pg;
1348 	struct spdk_nvmf_tcp_qpair *tqpair;
1349 	struct spdk_sock_group *group = NULL, *hint = NULL;
1350 	int rc;
1351 
1352 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
1353 
1354 	pthread_mutex_lock(&ttransport->lock);
1355 
1356 	if (TAILQ_EMPTY(&ttransport->poll_groups)) {
1357 		pthread_mutex_unlock(&ttransport->lock);
1358 		return NULL;
1359 	}
1360 
1361 	pg = &ttransport->next_pg;
1362 	assert(*pg != NULL);
1363 	hint = (*pg)->sock_group;
1364 
1365 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
1366 	rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint);
1367 	if (rc != 0) {
1368 		pthread_mutex_unlock(&ttransport->lock);
1369 		return NULL;
1370 	} else if (group != NULL) {
1371 		/* Optimal poll group was found */
1372 		pthread_mutex_unlock(&ttransport->lock);
1373 		return spdk_sock_group_get_ctx(group);
1374 	}
1375 
1376 	/* The hint was used for optimal poll group, advance next_pg. */
1377 	*pg = TAILQ_NEXT(*pg, link);
1378 	if (*pg == NULL) {
1379 		*pg = TAILQ_FIRST(&ttransport->poll_groups);
1380 	}
1381 
1382 	pthread_mutex_unlock(&ttransport->lock);
1383 	return spdk_sock_group_get_ctx(hint);
1384 }
1385 
1386 static void
1387 nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
1388 {
1389 	struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup;
1390 	struct spdk_nvmf_tcp_transport *ttransport;
1391 
1392 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
1393 	spdk_sock_group_close(&tgroup->sock_group);
1394 	if (tgroup->control_msg_list) {
1395 		nvmf_tcp_control_msg_list_free(tgroup->control_msg_list);
1396 	}
1397 
1398 	if (tgroup->accel_channel) {
1399 		spdk_put_io_channel(tgroup->accel_channel);
1400 	}
1401 
1402 	ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport);
1403 
1404 	pthread_mutex_lock(&ttransport->lock);
1405 	next_tgroup = TAILQ_NEXT(tgroup, link);
1406 	TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link);
1407 	if (next_tgroup == NULL) {
1408 		next_tgroup = TAILQ_FIRST(&ttransport->poll_groups);
1409 	}
1410 	if (ttransport->next_pg == tgroup) {
1411 		ttransport->next_pg = next_tgroup;
1412 	}
1413 	pthread_mutex_unlock(&ttransport->lock);
1414 
1415 	free(tgroup);
1416 }
1417 
1418 static void
1419 nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair,
1420 			      enum nvme_tcp_pdu_recv_state state)
1421 {
1422 	if (tqpair->recv_state == state) {
1423 		SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
1424 			    tqpair, state);
1425 		return;
1426 	}
1427 
1428 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
1429 		/* When leaving the await req state, move the qpair to the main list */
1430 		TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link);
1431 		TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link);
1432 	}
1433 
1434 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state);
1435 	tqpair->recv_state = state;
1436 
1437 	spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.qid, 0, (uintptr_t)tqpair,
1438 			  tqpair->recv_state);
1439 
1440 	switch (state) {
1441 	case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
1442 	case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
1443 	case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
1444 		break;
1445 	case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
1446 		TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link);
1447 		TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link);
1448 		break;
1449 	case NVME_TCP_PDU_RECV_STATE_ERROR:
1450 	case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
1451 		memset(tqpair->pdu_in_progress, 0, sizeof(*(tqpair->pdu_in_progress)));
1452 		break;
1453 	default:
1454 		SPDK_ERRLOG("The state(%d) is invalid\n", state);
1455 		abort();
1456 		break;
1457 	}
1458 }
1459 
1460 static int
1461 nvmf_tcp_qpair_handle_timeout(void *ctx)
1462 {
1463 	struct spdk_nvmf_tcp_qpair *tqpair = ctx;
1464 
1465 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR);
1466 
1467 	SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair,
1468 		    SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT);
1469 
1470 	nvmf_tcp_qpair_disconnect(tqpair);
1471 	return SPDK_POLLER_BUSY;
1472 }
1473 
1474 static void
1475 nvmf_tcp_send_c2h_term_req_complete(void *cb_arg)
1476 {
1477 	struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg;
1478 
1479 	if (!tqpair->timeout_poller) {
1480 		tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair,
1481 					 SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000);
1482 	}
1483 }
1484 
1485 static void
1486 nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
1487 			   enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
1488 {
1489 	struct nvme_tcp_pdu *rsp_pdu;
1490 	struct spdk_nvme_tcp_term_req_hdr *c2h_term_req;
1491 	uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req);
1492 	uint32_t copy_len;
1493 
1494 	rsp_pdu = tqpair->mgmt_pdu;
1495 
1496 	c2h_term_req = &rsp_pdu->hdr.term_req;
1497 	c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ;
1498 	c2h_term_req->common.hlen = c2h_term_req_hdr_len;
1499 
1500 	if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1501 	    (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1502 		DSET32(&c2h_term_req->fei, error_offset);
1503 	}
1504 
1505 	copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE);
1506 
1507 	/* Copy the error info into the buffer */
1508 	memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len);
1509 	nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len);
1510 
1511 	/* Contain the header of the wrong received pdu */
1512 	c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len;
1513 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
1514 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair);
1515 }
1516 
1517 static void
1518 nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1519 				struct spdk_nvmf_tcp_qpair *tqpair,
1520 				struct nvme_tcp_pdu *pdu)
1521 {
1522 	struct spdk_nvmf_tcp_req *tcp_req;
1523 
1524 	assert(pdu->psh_valid_bytes == pdu->psh_len);
1525 	assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD);
1526 
1527 	tcp_req = nvmf_tcp_req_get(tqpair);
1528 	if (!tcp_req) {
1529 		/* Directly return and make the allocation retry again.  This can happen if we're
1530 		 * using asynchronous writes to send the response to the host or when releasing
1531 		 * zero-copy buffers after a response has been sent.  In both cases, the host might
1532 		 * receive the response before we've finished processing the request and is free to
1533 		 * send another one.
1534 		 */
1535 		if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 ||
1536 		    tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) {
1537 			return;
1538 		}
1539 
1540 		/* The host sent more commands than the maximum queue depth. */
1541 		SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair);
1542 		nvmf_tcp_qpair_disconnect(tqpair);
1543 		return;
1544 	}
1545 
1546 	pdu->req = tcp_req;
1547 	assert(tcp_req->state == TCP_REQUEST_STATE_NEW);
1548 	nvmf_tcp_req_process(ttransport, tcp_req);
1549 }
1550 
1551 static void
1552 nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1553 				    struct spdk_nvmf_tcp_qpair *tqpair,
1554 				    struct nvme_tcp_pdu *pdu)
1555 {
1556 	struct spdk_nvmf_tcp_req *tcp_req;
1557 	struct spdk_nvme_tcp_cmd *capsule_cmd;
1558 	uint32_t error_offset = 0;
1559 	enum spdk_nvme_tcp_term_req_fes fes;
1560 	struct spdk_nvme_cpl *rsp;
1561 
1562 	capsule_cmd = &pdu->hdr.capsule_cmd;
1563 	tcp_req = pdu->req;
1564 	assert(tcp_req != NULL);
1565 
1566 	/* Zero-copy requests don't support ICD */
1567 	assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req));
1568 
1569 	if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) {
1570 		SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n",
1571 			    SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo);
1572 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1573 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
1574 		goto err;
1575 	}
1576 
1577 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
1578 
1579 	rsp = &tcp_req->req.rsp->nvme_cpl;
1580 	if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1581 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1582 	} else {
1583 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1584 	}
1585 
1586 	nvmf_tcp_req_process(ttransport, tcp_req);
1587 
1588 	return;
1589 err:
1590 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1591 }
1592 
1593 static int
1594 nvmf_tcp_find_req_in_state(struct spdk_nvmf_tcp_qpair *tqpair,
1595 			   enum spdk_nvmf_tcp_req_state state,
1596 			   uint16_t cid, uint16_t tag,
1597 			   struct spdk_nvmf_tcp_req **req)
1598 {
1599 	struct spdk_nvmf_tcp_req *tcp_req = NULL;
1600 
1601 	TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) {
1602 		if (tcp_req->state != state) {
1603 			continue;
1604 		}
1605 
1606 		if (tcp_req->req.cmd->nvme_cmd.cid != cid) {
1607 			continue;
1608 		}
1609 
1610 		if (tcp_req->ttag == tag) {
1611 			*req = tcp_req;
1612 			return 0;
1613 		}
1614 
1615 		*req = NULL;
1616 		return -1;
1617 	}
1618 
1619 	/* Didn't find it, but not an error */
1620 	*req = NULL;
1621 	return 0;
1622 }
1623 
1624 static void
1625 nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport,
1626 			     struct spdk_nvmf_tcp_qpair *tqpair,
1627 			     struct nvme_tcp_pdu *pdu)
1628 {
1629 	struct spdk_nvmf_tcp_req *tcp_req;
1630 	uint32_t error_offset = 0;
1631 	enum spdk_nvme_tcp_term_req_fes fes = 0;
1632 	struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
1633 	int rc;
1634 
1635 	h2c_data = &pdu->hdr.h2c_data;
1636 
1637 	SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n",
1638 		      tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag);
1639 
1640 	rc = nvmf_tcp_find_req_in_state(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
1641 					h2c_data->cccid, h2c_data->ttag, &tcp_req);
1642 	if (rc == 0 && tcp_req == NULL) {
1643 		rc = nvmf_tcp_find_req_in_state(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK, h2c_data->cccid,
1644 						h2c_data->ttag, &tcp_req);
1645 	}
1646 
1647 	if (!tcp_req) {
1648 		SPDK_DEBUGLOG(nvmf_tcp, "tcp_req is not found for tqpair=%p\n", tqpair);
1649 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER;
1650 		if (rc == 0) {
1651 			error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid);
1652 		} else {
1653 			error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag);
1654 		}
1655 		goto err;
1656 	}
1657 
1658 	if (tcp_req->h2c_offset != h2c_data->datao) {
1659 		SPDK_DEBUGLOG(nvmf_tcp,
1660 			      "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n",
1661 			      tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao);
1662 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1663 		goto err;
1664 	}
1665 
1666 	if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) {
1667 		SPDK_DEBUGLOG(nvmf_tcp,
1668 			      "tcp_req(%p), tqpair=%p,  (datao=%u + datal=%u) exceeds requested length=%u\n",
1669 			      tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length);
1670 		fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
1671 		goto err;
1672 	}
1673 
1674 	pdu->req = tcp_req;
1675 
1676 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
1677 		pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
1678 	}
1679 
1680 	nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
1681 				  h2c_data->datao, h2c_data->datal);
1682 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1683 	return;
1684 
1685 err:
1686 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1687 }
1688 
1689 static void
1690 nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req,
1691 			       struct spdk_nvmf_tcp_qpair *tqpair)
1692 {
1693 	struct nvme_tcp_pdu *rsp_pdu;
1694 	struct spdk_nvme_tcp_rsp *capsule_resp;
1695 
1696 	SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair);
1697 
1698 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1699 	assert(rsp_pdu != NULL);
1700 
1701 	capsule_resp = &rsp_pdu->hdr.capsule_resp;
1702 	capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP;
1703 	capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp);
1704 	capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl;
1705 	if (tqpair->host_hdgst_enable) {
1706 		capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1707 		capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1708 	}
1709 
1710 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req);
1711 }
1712 
1713 static void
1714 nvmf_tcp_pdu_c2h_data_complete(void *cb_arg)
1715 {
1716 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1717 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair,
1718 					     struct spdk_nvmf_tcp_qpair, qpair);
1719 
1720 	assert(tqpair != NULL);
1721 
1722 	if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) {
1723 		SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset,
1724 			      tcp_req->req.length);
1725 		_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
1726 		return;
1727 	}
1728 
1729 	if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
1730 		nvmf_tcp_request_free(tcp_req);
1731 	} else {
1732 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
1733 	}
1734 }
1735 
1736 static void
1737 nvmf_tcp_r2t_complete(void *cb_arg)
1738 {
1739 	struct spdk_nvmf_tcp_req *tcp_req = cb_arg;
1740 	struct spdk_nvmf_tcp_transport *ttransport;
1741 
1742 	ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport,
1743 				      struct spdk_nvmf_tcp_transport, transport);
1744 
1745 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
1746 
1747 	if (tcp_req->h2c_offset == tcp_req->req.length) {
1748 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1749 		nvmf_tcp_req_process(ttransport, tcp_req);
1750 	}
1751 }
1752 
1753 static void
1754 nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair,
1755 		      struct spdk_nvmf_tcp_req *tcp_req)
1756 {
1757 	struct nvme_tcp_pdu *rsp_pdu;
1758 	struct spdk_nvme_tcp_r2t_hdr *r2t;
1759 
1760 	rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req);
1761 	assert(rsp_pdu != NULL);
1762 
1763 	r2t = &rsp_pdu->hdr.r2t;
1764 	r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T;
1765 	r2t->common.plen = r2t->common.hlen = sizeof(*r2t);
1766 
1767 	if (tqpair->host_hdgst_enable) {
1768 		r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
1769 		r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN;
1770 	}
1771 
1772 	r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid;
1773 	r2t->ttag = tcp_req->ttag;
1774 	r2t->r2to = tcp_req->h2c_offset;
1775 	r2t->r2tl = tcp_req->req.length;
1776 
1777 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK);
1778 
1779 	SPDK_DEBUGLOG(nvmf_tcp,
1780 		      "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n",
1781 		      tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl);
1782 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req);
1783 }
1784 
1785 static void
1786 nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport,
1787 				 struct spdk_nvmf_tcp_qpair *tqpair,
1788 				 struct nvme_tcp_pdu *pdu)
1789 {
1790 	struct spdk_nvmf_tcp_req *tcp_req;
1791 	struct spdk_nvme_cpl *rsp;
1792 
1793 	tcp_req = pdu->req;
1794 	assert(tcp_req != NULL);
1795 
1796 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1797 
1798 	tcp_req->h2c_offset += pdu->data_len;
1799 
1800 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
1801 
1802 	/* Wait for all of the data to arrive AND for the initial R2T PDU send to be
1803 	 * acknowledged before moving on. */
1804 	if (tcp_req->h2c_offset == tcp_req->req.length &&
1805 	    tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) {
1806 		/* After receiving all the h2c data, we need to check whether there is
1807 		 * transient transport error */
1808 		rsp = &tcp_req->req.rsp->nvme_cpl;
1809 		if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) {
1810 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
1811 		} else {
1812 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
1813 		}
1814 		nvmf_tcp_req_process(ttransport, tcp_req);
1815 	}
1816 }
1817 
1818 static void
1819 nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req)
1820 {
1821 	SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req,
1822 		    spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]);
1823 	if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
1824 	    (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
1825 		SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n",
1826 			      DGET32(h2c_term_req->fei));
1827 	}
1828 }
1829 
1830 static void
1831 nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1832 				 struct nvme_tcp_pdu *pdu)
1833 {
1834 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1835 	uint32_t error_offset = 0;
1836 	enum spdk_nvme_tcp_term_req_fes fes;
1837 
1838 	if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
1839 		SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu);
1840 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1841 		error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
1842 		goto end;
1843 	}
1844 
1845 	/* set the data buffer */
1846 	nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen,
1847 			      h2c_term_req->common.plen - h2c_term_req->common.hlen);
1848 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1849 	return;
1850 end:
1851 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1852 }
1853 
1854 static void
1855 nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1856 				     struct nvme_tcp_pdu *pdu)
1857 {
1858 	struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req;
1859 
1860 	nvmf_tcp_h2c_term_req_dump(h2c_term_req);
1861 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
1862 }
1863 
1864 static void
1865 _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1866 			     struct spdk_nvmf_tcp_transport *ttransport)
1867 {
1868 	struct nvme_tcp_pdu *pdu = tqpair->pdu_in_progress;
1869 
1870 	switch (pdu->hdr.common.pdu_type) {
1871 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
1872 		nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu);
1873 		break;
1874 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
1875 		nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu);
1876 		break;
1877 
1878 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
1879 		nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu);
1880 		break;
1881 
1882 	default:
1883 		/* The code should not go to here */
1884 		SPDK_ERRLOG("The code should not go to here\n");
1885 		break;
1886 	}
1887 }
1888 
1889 static void
1890 nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1891 			    struct spdk_nvmf_tcp_transport *ttransport)
1892 {
1893 	int rc = 0;
1894 	struct nvme_tcp_pdu *pdu;
1895 	uint32_t crc32c;
1896 	struct spdk_nvmf_tcp_req *tcp_req;
1897 	struct spdk_nvme_cpl *rsp;
1898 
1899 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
1900 	pdu = tqpair->pdu_in_progress;
1901 
1902 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
1903 	/* check data digest if need */
1904 	if (pdu->ddgst_enable) {
1905 		crc32c = nvme_tcp_pdu_calc_data_digest(pdu);
1906 		rc = MATCH_DIGEST_WORD(pdu->data_digest, crc32c);
1907 		if (rc == 0) {
1908 			SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
1909 			tcp_req = pdu->req;
1910 			assert(tcp_req != NULL);
1911 			rsp = &tcp_req->req.rsp->nvme_cpl;
1912 			rsp->status.sc = SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR;
1913 		}
1914 	}
1915 
1916 	_nvmf_tcp_pdu_payload_handle(tqpair, ttransport);
1917 }
1918 
1919 static void
1920 nvmf_tcp_send_icresp_complete(void *cb_arg)
1921 {
1922 	struct spdk_nvmf_tcp_qpair *tqpair = cb_arg;
1923 
1924 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_RUNNING);
1925 }
1926 
1927 static void
1928 nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport,
1929 		      struct spdk_nvmf_tcp_qpair *tqpair,
1930 		      struct nvme_tcp_pdu *pdu)
1931 {
1932 	struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req;
1933 	struct nvme_tcp_pdu *rsp_pdu;
1934 	struct spdk_nvme_tcp_ic_resp *ic_resp;
1935 	uint32_t error_offset = 0;
1936 	enum spdk_nvme_tcp_term_req_fes fes;
1937 
1938 	/* Only PFV 0 is defined currently */
1939 	if (ic_req->pfv != 0) {
1940 		SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv);
1941 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
1942 		error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv);
1943 		goto end;
1944 	}
1945 
1946 	/* MAXR2T is 0's based */
1947 	SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u));
1948 
1949 	tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false;
1950 	if (!tqpair->host_hdgst_enable) {
1951 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1952 	}
1953 
1954 	tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false;
1955 	if (!tqpair->host_ddgst_enable) {
1956 		tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR;
1957 	}
1958 
1959 	tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE);
1960 	/* Now that we know whether digests are enabled, properly size the receive buffer */
1961 	if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) {
1962 		SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n",
1963 			     tqpair,
1964 			     tqpair->recv_buf_size);
1965 		/* Not fatal. */
1966 	}
1967 
1968 	tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX);
1969 	SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda);
1970 
1971 	rsp_pdu = tqpair->mgmt_pdu;
1972 
1973 	ic_resp = &rsp_pdu->hdr.ic_resp;
1974 	ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP;
1975 	ic_resp->common.hlen = ic_resp->common.plen =  sizeof(*ic_resp);
1976 	ic_resp->pfv = 0;
1977 	ic_resp->cpda = tqpair->cpda;
1978 	ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size;
1979 	ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0;
1980 	ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0;
1981 
1982 	SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
1983 	SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
1984 
1985 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INITIALIZING);
1986 	nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair);
1987 	nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
1988 	return;
1989 end:
1990 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
1991 }
1992 
1993 static void
1994 nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair,
1995 			struct spdk_nvmf_tcp_transport *ttransport)
1996 {
1997 	struct nvme_tcp_pdu *pdu;
1998 	int rc;
1999 	uint32_t crc32c, error_offset = 0;
2000 	enum spdk_nvme_tcp_term_req_fes fes;
2001 
2002 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2003 	pdu = tqpair->pdu_in_progress;
2004 
2005 	SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair,
2006 		      pdu->hdr.common.pdu_type);
2007 	/* check header digest if needed */
2008 	if (pdu->has_hdgst) {
2009 		SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair);
2010 		crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
2011 		rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
2012 		if (rc == 0) {
2013 			SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
2014 			fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
2015 			nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2016 			return;
2017 
2018 		}
2019 	}
2020 
2021 	switch (pdu->hdr.common.pdu_type) {
2022 	case SPDK_NVME_TCP_PDU_TYPE_IC_REQ:
2023 		nvmf_tcp_icreq_handle(ttransport, tqpair, pdu);
2024 		break;
2025 	case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2026 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ);
2027 		break;
2028 	case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2029 		nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu);
2030 		break;
2031 
2032 	case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2033 		nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu);
2034 		break;
2035 
2036 	default:
2037 		SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type);
2038 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2039 		error_offset = 1;
2040 		nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2041 		break;
2042 	}
2043 }
2044 
2045 static void
2046 nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair)
2047 {
2048 	struct nvme_tcp_pdu *pdu;
2049 	uint32_t error_offset = 0;
2050 	enum spdk_nvme_tcp_term_req_fes fes;
2051 	uint8_t expected_hlen, pdo;
2052 	bool plen_error = false, pdo_error = false;
2053 
2054 	assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2055 	pdu = tqpair->pdu_in_progress;
2056 
2057 	if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) {
2058 		if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) {
2059 			SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu);
2060 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2061 			goto err;
2062 		}
2063 		expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req);
2064 		if (pdu->hdr.common.plen != expected_hlen) {
2065 			plen_error = true;
2066 		}
2067 	} else {
2068 		if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) {
2069 			SPDK_ERRLOG("The TCP/IP connection is not negotiated\n");
2070 			fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
2071 			goto err;
2072 		}
2073 
2074 		switch (pdu->hdr.common.pdu_type) {
2075 		case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD:
2076 			expected_hlen = sizeof(struct spdk_nvme_tcp_cmd);
2077 			pdo = pdu->hdr.common.pdo;
2078 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2079 				pdo_error = true;
2080 				break;
2081 			}
2082 
2083 			if (pdu->hdr.common.plen < expected_hlen) {
2084 				plen_error = true;
2085 			}
2086 			break;
2087 		case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA:
2088 			expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr);
2089 			pdo = pdu->hdr.common.pdo;
2090 			if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) {
2091 				pdo_error = true;
2092 				break;
2093 			}
2094 			if (pdu->hdr.common.plen < expected_hlen) {
2095 				plen_error = true;
2096 			}
2097 			break;
2098 
2099 		case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
2100 			expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
2101 			if ((pdu->hdr.common.plen <= expected_hlen) ||
2102 			    (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
2103 				plen_error = true;
2104 			}
2105 			break;
2106 
2107 		default:
2108 			SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type);
2109 			fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2110 			error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
2111 			goto err;
2112 		}
2113 	}
2114 
2115 	if (pdu->hdr.common.hlen != expected_hlen) {
2116 		SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n",
2117 			    pdu->hdr.common.pdu_type,
2118 			    expected_hlen, pdu->hdr.common.hlen, tqpair);
2119 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2120 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
2121 		goto err;
2122 	} else if (pdo_error) {
2123 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2124 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo);
2125 	} else if (plen_error) {
2126 		fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
2127 		error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
2128 		goto err;
2129 	} else {
2130 		nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
2131 		nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable);
2132 		return;
2133 	}
2134 err:
2135 	nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset);
2136 }
2137 
2138 static int
2139 nvmf_tcp_pdu_payload_insert_dif(struct nvme_tcp_pdu *pdu, uint32_t read_offset,
2140 				int read_len)
2141 {
2142 	int rc;
2143 
2144 	rc = spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt,
2145 				      read_offset, read_len, pdu->dif_ctx);
2146 	if (rc != 0) {
2147 		SPDK_ERRLOG("DIF generate failed\n");
2148 	}
2149 
2150 	return rc;
2151 }
2152 
2153 static int
2154 nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair)
2155 {
2156 	int rc = 0;
2157 	struct nvme_tcp_pdu *pdu;
2158 	enum nvme_tcp_pdu_recv_state prev_state;
2159 	uint32_t data_len;
2160 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
2161 			struct spdk_nvmf_tcp_transport, transport);
2162 
2163 	/* The loop here is to allow for several back-to-back state changes. */
2164 	do {
2165 		prev_state = tqpair->recv_state;
2166 		SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state);
2167 
2168 		pdu = tqpair->pdu_in_progress;
2169 		switch (tqpair->recv_state) {
2170 		/* Wait for the common header  */
2171 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
2172 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
2173 			if (spdk_unlikely(tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING)) {
2174 				return rc;
2175 			}
2176 
2177 			rc = nvme_tcp_read_data(tqpair->sock,
2178 						sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
2179 						(void *)&pdu->hdr.common + pdu->ch_valid_bytes);
2180 			if (rc < 0) {
2181 				SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair);
2182 				return NVME_TCP_PDU_FATAL;
2183 			} else if (rc > 0) {
2184 				pdu->ch_valid_bytes += rc;
2185 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2186 				if (spdk_likely(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY)) {
2187 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
2188 				}
2189 			}
2190 
2191 			if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
2192 				return NVME_TCP_PDU_IN_PROGRESS;
2193 			}
2194 
2195 			/* The command header of this PDU has now been read from the socket. */
2196 			nvmf_tcp_pdu_ch_handle(tqpair);
2197 			break;
2198 		/* Wait for the pdu specific header  */
2199 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
2200 			rc = nvme_tcp_read_data(tqpair->sock,
2201 						pdu->psh_len - pdu->psh_valid_bytes,
2202 						(void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
2203 			if (rc < 0) {
2204 				return NVME_TCP_PDU_FATAL;
2205 			} else if (rc > 0) {
2206 				spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.qid, rc, 0, tqpair);
2207 				pdu->psh_valid_bytes += rc;
2208 			}
2209 
2210 			if (pdu->psh_valid_bytes < pdu->psh_len) {
2211 				return NVME_TCP_PDU_IN_PROGRESS;
2212 			}
2213 
2214 			/* All header(ch, psh, head digist) of this PDU has now been read from the socket. */
2215 			nvmf_tcp_pdu_psh_handle(tqpair, ttransport);
2216 			break;
2217 		/* Wait for the req slot */
2218 		case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ:
2219 			nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu);
2220 			break;
2221 		case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
2222 			/* check whether the data is valid, if not we just return */
2223 			if (!pdu->data_len) {
2224 				return NVME_TCP_PDU_IN_PROGRESS;
2225 			}
2226 
2227 			data_len = pdu->data_len;
2228 			/* data digest */
2229 			if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) &&
2230 					  tqpair->host_ddgst_enable)) {
2231 				data_len += SPDK_NVME_TCP_DIGEST_LEN;
2232 				pdu->ddgst_enable = true;
2233 			}
2234 
2235 			rc = nvme_tcp_read_payload_data(tqpair->sock, pdu);
2236 			if (rc < 0) {
2237 				return NVME_TCP_PDU_FATAL;
2238 			}
2239 			pdu->rw_offset += rc;
2240 
2241 			if (spdk_unlikely(pdu->dif_ctx != NULL)) {
2242 				rc = nvmf_tcp_pdu_payload_insert_dif(pdu, pdu->rw_offset - rc, rc);
2243 				if (rc != 0) {
2244 					return NVME_TCP_PDU_FATAL;
2245 				}
2246 			}
2247 
2248 			if (pdu->rw_offset < data_len) {
2249 				return NVME_TCP_PDU_IN_PROGRESS;
2250 			}
2251 
2252 			/* All of this PDU has now been read from the socket. */
2253 			nvmf_tcp_pdu_payload_handle(tqpair, ttransport);
2254 			break;
2255 		case NVME_TCP_PDU_RECV_STATE_ERROR:
2256 			if (!spdk_sock_is_connected(tqpair->sock)) {
2257 				return NVME_TCP_PDU_FATAL;
2258 			}
2259 			break;
2260 		default:
2261 			assert(0);
2262 			SPDK_ERRLOG("code should not come to here");
2263 			break;
2264 		}
2265 	} while (tqpair->recv_state != prev_state);
2266 
2267 	return rc;
2268 }
2269 
2270 static inline void *
2271 nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list)
2272 {
2273 	struct spdk_nvmf_tcp_control_msg *msg;
2274 
2275 	assert(list);
2276 
2277 	msg = STAILQ_FIRST(&list->free_msgs);
2278 	if (!msg) {
2279 		SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n");
2280 		return NULL;
2281 	}
2282 	STAILQ_REMOVE_HEAD(&list->free_msgs, link);
2283 	return msg;
2284 }
2285 
2286 static inline void
2287 nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg)
2288 {
2289 	struct spdk_nvmf_tcp_control_msg *msg = _msg;
2290 
2291 	assert(list);
2292 	STAILQ_INSERT_HEAD(&list->free_msgs, msg, link);
2293 }
2294 
2295 static int
2296 nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req,
2297 		       struct spdk_nvmf_transport *transport,
2298 		       struct spdk_nvmf_transport_poll_group *group)
2299 {
2300 	struct spdk_nvmf_request		*req = &tcp_req->req;
2301 	struct spdk_nvme_cmd			*cmd;
2302 	struct spdk_nvme_cpl			*rsp;
2303 	struct spdk_nvme_sgl_descriptor		*sgl;
2304 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2305 	uint32_t				length;
2306 
2307 	cmd = &req->cmd->nvme_cmd;
2308 	rsp = &req->rsp->nvme_cpl;
2309 	sgl = &cmd->dptr.sgl1;
2310 
2311 	length = sgl->unkeyed.length;
2312 
2313 	if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK &&
2314 	    sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) {
2315 		if (length > transport->opts.max_io_size) {
2316 			SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
2317 				    length, transport->opts.max_io_size);
2318 			rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
2319 			return -1;
2320 		}
2321 
2322 		/* fill request length and populate iovs */
2323 		req->length = length;
2324 
2325 		SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length);
2326 
2327 		if (spdk_unlikely(req->dif_enabled)) {
2328 			req->dif.orig_length = length;
2329 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2330 			req->dif.elba_length = length;
2331 		}
2332 
2333 		if (nvmf_ctrlr_use_zcopy(req)) {
2334 			SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req);
2335 			req->data_from_pool = false;
2336 			return 0;
2337 		}
2338 
2339 		if (spdk_nvmf_request_get_buffers(req, group, transport, length)) {
2340 			/* No available buffers. Queue this request up. */
2341 			SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n",
2342 				      tcp_req);
2343 			return 0;
2344 		}
2345 
2346 		/* backward compatible */
2347 		req->data = req->iov[0].iov_base;
2348 
2349 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n",
2350 			      tcp_req, req->iovcnt, req->data);
2351 
2352 		return 0;
2353 	} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
2354 		   sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
2355 		uint64_t offset = sgl->address;
2356 		uint32_t max_len = transport->opts.in_capsule_data_size;
2357 		assert(tcp_req->has_in_capsule_data);
2358 
2359 		SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
2360 			      offset, length);
2361 
2362 		if (offset > max_len) {
2363 			SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
2364 				    offset, max_len);
2365 			rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
2366 			return -1;
2367 		}
2368 		max_len -= (uint32_t)offset;
2369 
2370 		if (spdk_unlikely(length > max_len)) {
2371 			/* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */
2372 			if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE &&
2373 			    (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) {
2374 
2375 				/* Get a buffer from dedicated list */
2376 				SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n");
2377 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2378 				assert(tgroup->control_msg_list);
2379 				req->data = nvmf_tcp_control_msg_get(tgroup->control_msg_list);
2380 				if (!req->data) {
2381 					/* No available buffers. Queue this request up. */
2382 					SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req);
2383 					return 0;
2384 				}
2385 			} else {
2386 				SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
2387 					    length, max_len);
2388 				rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
2389 				return -1;
2390 			}
2391 		} else {
2392 			req->data = tcp_req->buf;
2393 		}
2394 
2395 		req->length = length;
2396 		req->data_from_pool = false;
2397 
2398 		if (spdk_unlikely(req->dif_enabled)) {
2399 			length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx);
2400 			req->dif.elba_length = length;
2401 		}
2402 
2403 		req->iov[0].iov_base = req->data;
2404 		req->iov[0].iov_len = length;
2405 		req->iovcnt = 1;
2406 
2407 		return 0;
2408 	}
2409 
2410 	SPDK_ERRLOG("Invalid NVMf I/O Command SGL:  Type 0x%x, Subtype 0x%x\n",
2411 		    sgl->generic.type, sgl->generic.subtype);
2412 	rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
2413 	return -1;
2414 }
2415 
2416 static inline enum spdk_nvme_media_error_status_code
2417 nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) {
2418 	enum spdk_nvme_media_error_status_code result;
2419 
2420 	switch (err_type)
2421 	{
2422 	case SPDK_DIF_REFTAG_ERROR:
2423 		result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
2424 		break;
2425 	case SPDK_DIF_APPTAG_ERROR:
2426 		result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
2427 		break;
2428 	case SPDK_DIF_GUARD_ERROR:
2429 		result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
2430 		break;
2431 	default:
2432 		SPDK_UNREACHABLE();
2433 		break;
2434 	}
2435 
2436 	return result;
2437 }
2438 
2439 static void
2440 _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2441 			struct spdk_nvmf_tcp_req *tcp_req)
2442 {
2443 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(
2444 				tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport);
2445 	struct nvme_tcp_pdu *rsp_pdu;
2446 	struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
2447 	uint32_t plen, pdo, alignment;
2448 	int rc;
2449 
2450 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2451 
2452 	rsp_pdu = tcp_req->pdu;
2453 	assert(rsp_pdu != NULL);
2454 
2455 	c2h_data = &rsp_pdu->hdr.c2h_data;
2456 	c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA;
2457 	plen = c2h_data->common.hlen = sizeof(*c2h_data);
2458 
2459 	if (tqpair->host_hdgst_enable) {
2460 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2461 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
2462 	}
2463 
2464 	/* set the psh */
2465 	c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid;
2466 	c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset;
2467 	c2h_data->datao = tcp_req->pdu->rw_offset;
2468 
2469 	/* set the padding */
2470 	rsp_pdu->padding_len = 0;
2471 	pdo = plen;
2472 	if (tqpair->cpda) {
2473 		alignment = (tqpair->cpda + 1) << 2;
2474 		if (plen % alignment != 0) {
2475 			pdo = (plen + alignment) / alignment * alignment;
2476 			rsp_pdu->padding_len = pdo - plen;
2477 			plen = pdo;
2478 		}
2479 	}
2480 
2481 	c2h_data->common.pdo = pdo;
2482 	plen += c2h_data->datal;
2483 	if (tqpair->host_ddgst_enable) {
2484 		c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
2485 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2486 	}
2487 
2488 	c2h_data->common.plen = plen;
2489 
2490 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2491 		rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx;
2492 	}
2493 
2494 	nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2495 				  c2h_data->datao, c2h_data->datal);
2496 
2497 
2498 	c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
2499 	/* Need to send the capsule response if response is not all 0 */
2500 	if (ttransport->tcp_opts.c2h_success &&
2501 	    tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) {
2502 		c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
2503 	}
2504 
2505 	if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2506 		struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl;
2507 		struct spdk_dif_error err_blk = {};
2508 		uint32_t mapped_length = 0;
2509 		uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov);
2510 		uint32_t ddgst_len = 0;
2511 
2512 		if (tqpair->host_ddgst_enable) {
2513 			/* Data digest consumes additional iov entry */
2514 			available_iovs--;
2515 			/* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */
2516 			ddgst_len = SPDK_NVME_TCP_DIGEST_LEN;
2517 			c2h_data->common.plen -= ddgst_len;
2518 		}
2519 		/* Temp call to estimate if data can be described by limited number of iovs.
2520 		 * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */
2521 		nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable,
2522 				    false, &mapped_length);
2523 
2524 		if (mapped_length != c2h_data->common.plen) {
2525 			c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal);
2526 			SPDK_DEBUGLOG(nvmf_tcp,
2527 				      "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n",
2528 				      c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset);
2529 			c2h_data->common.plen = mapped_length;
2530 
2531 			/* Rebuild pdu->data_iov since data length is changed */
2532 			nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao,
2533 						  c2h_data->datal);
2534 
2535 			c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU |
2536 						    SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS);
2537 		}
2538 
2539 		c2h_data->common.plen += ddgst_len;
2540 
2541 		assert(rsp_pdu->rw_offset <= tcp_req->req.length);
2542 
2543 		rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt,
2544 					    0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk);
2545 		if (rc != 0) {
2546 			SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
2547 				    err_blk.err_type, err_blk.err_offset);
2548 			rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
2549 			rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type);
2550 			nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2551 			return;
2552 		}
2553 	}
2554 
2555 	rsp_pdu->rw_offset += c2h_data->datal;
2556 	nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req);
2557 }
2558 
2559 static void
2560 nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair,
2561 		       struct spdk_nvmf_tcp_req *tcp_req)
2562 {
2563 	nvmf_tcp_req_pdu_init(tcp_req);
2564 	_nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2565 }
2566 
2567 static int
2568 request_transfer_out(struct spdk_nvmf_request *req)
2569 {
2570 	struct spdk_nvmf_tcp_req	*tcp_req;
2571 	struct spdk_nvmf_qpair		*qpair;
2572 	struct spdk_nvmf_tcp_qpair	*tqpair;
2573 	struct spdk_nvme_cpl		*rsp;
2574 
2575 	SPDK_DEBUGLOG(nvmf_tcp, "enter\n");
2576 
2577 	qpair = req->qpair;
2578 	rsp = &req->rsp->nvme_cpl;
2579 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
2580 
2581 	/* Advance our sq_head pointer */
2582 	if (qpair->sq_head == qpair->sq_head_max) {
2583 		qpair->sq_head = 0;
2584 	} else {
2585 		qpair->sq_head++;
2586 	}
2587 	rsp->sqhd = qpair->sq_head;
2588 
2589 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2590 	nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
2591 	if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
2592 		nvmf_tcp_send_c2h_data(tqpair, tcp_req);
2593 	} else {
2594 		nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair);
2595 	}
2596 
2597 	return 0;
2598 }
2599 
2600 static void
2601 nvmf_tcp_set_in_capsule_data(struct spdk_nvmf_tcp_qpair *tqpair,
2602 			     struct spdk_nvmf_tcp_req *tcp_req)
2603 {
2604 	struct nvme_tcp_pdu *pdu;
2605 	uint32_t plen = 0;
2606 
2607 	pdu = tqpair->pdu_in_progress;
2608 	plen = pdu->hdr.common.hlen;
2609 
2610 	if (tqpair->host_hdgst_enable) {
2611 		plen += SPDK_NVME_TCP_DIGEST_LEN;
2612 	}
2613 
2614 	if (pdu->hdr.common.plen != plen) {
2615 		tcp_req->has_in_capsule_data = true;
2616 	}
2617 }
2618 
2619 static void
2620 nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport,
2621 			      struct spdk_nvmf_tcp_qpair *tqpair,
2622 			      struct spdk_nvmf_tcp_req *tcp_req)
2623 {
2624 	enum spdk_nvme_cmd_fuse last, next;
2625 
2626 	last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE;
2627 	next = tcp_req->cmd.fuse;
2628 
2629 	assert(last != SPDK_NVME_CMD_FUSE_SECOND);
2630 
2631 	if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) {
2632 		return;
2633 	}
2634 
2635 	if (last == SPDK_NVME_CMD_FUSE_FIRST) {
2636 		if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2637 			/* This is a valid pair of fused commands.  Point them at each other
2638 			 * so they can be submitted consecutively once ready to be executed.
2639 			 */
2640 			tqpair->fused_first->fused_pair = tcp_req;
2641 			tcp_req->fused_pair = tqpair->fused_first;
2642 			tqpair->fused_first = NULL;
2643 			return;
2644 		} else {
2645 			/* Mark the last req as failed since it wasn't followed by a SECOND. */
2646 			tqpair->fused_first->fused_failed = true;
2647 
2648 			/*
2649 			 * If the last req is in READY_TO_EXECUTE state, then call
2650 			 * nvmf_tcp_req_process(), otherwise nothing else will kick it.
2651 			 */
2652 			if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2653 				nvmf_tcp_req_process(ttransport, tqpair->fused_first);
2654 			}
2655 
2656 			tqpair->fused_first = NULL;
2657 		}
2658 	}
2659 
2660 	if (next == SPDK_NVME_CMD_FUSE_FIRST) {
2661 		/* Set tqpair->fused_first here so that we know to check that the next request
2662 		 * is a SECOND (and to fail this one if it isn't).
2663 		 */
2664 		tqpair->fused_first = tcp_req;
2665 	} else if (next == SPDK_NVME_CMD_FUSE_SECOND) {
2666 		/* Mark this req failed since it is a SECOND and the last one was not a FIRST. */
2667 		tcp_req->fused_failed = true;
2668 	}
2669 }
2670 
2671 static bool
2672 nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport,
2673 		     struct spdk_nvmf_tcp_req *tcp_req)
2674 {
2675 	struct spdk_nvmf_tcp_qpair		*tqpair;
2676 	int					rc;
2677 	enum spdk_nvmf_tcp_req_state		prev_state;
2678 	bool					progress = false;
2679 	struct spdk_nvmf_transport		*transport = &ttransport->transport;
2680 	struct spdk_nvmf_transport_poll_group	*group;
2681 	struct spdk_nvmf_tcp_poll_group		*tgroup;
2682 
2683 	tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair);
2684 	group = &tqpair->group->group;
2685 	assert(tcp_req->state != TCP_REQUEST_STATE_FREE);
2686 
2687 	/* If the qpair is not active, we need to abort the outstanding requests. */
2688 	if (tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
2689 		if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) {
2690 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2691 		}
2692 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
2693 	}
2694 
2695 	/* The loop here is to allow for several back-to-back state changes. */
2696 	do {
2697 		prev_state = tcp_req->state;
2698 
2699 		SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state,
2700 			      tqpair);
2701 
2702 		switch (tcp_req->state) {
2703 		case TCP_REQUEST_STATE_FREE:
2704 			/* Some external code must kick a request into TCP_REQUEST_STATE_NEW
2705 			 * to escape this state. */
2706 			break;
2707 		case TCP_REQUEST_STATE_NEW:
2708 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.qid, 0, (uintptr_t)tcp_req, tqpair);
2709 
2710 			/* copy the cmd from the receive pdu */
2711 			tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe;
2712 
2713 			if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) {
2714 				tcp_req->req.dif_enabled = true;
2715 				tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx;
2716 			}
2717 
2718 			nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req);
2719 
2720 			/* The next state transition depends on the data transfer needs of this request. */
2721 			tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req);
2722 
2723 			if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) {
2724 				tcp_req->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2725 				tcp_req->req.rsp->nvme_cpl.status.sc  = SPDK_NVME_SC_INVALID_OPCODE;
2726 				tcp_req->req.rsp->nvme_cpl.cid = tcp_req->req.cmd->nvme_cmd.cid;
2727 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2728 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2729 				SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req);
2730 				break;
2731 			}
2732 
2733 			/* If no data to transfer, ready to execute. */
2734 			if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) {
2735 				/* Reset the tqpair receiving pdu state */
2736 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2737 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2738 				break;
2739 			}
2740 
2741 			nvmf_tcp_set_in_capsule_data(tqpair, tcp_req);
2742 
2743 			if (!tcp_req->has_in_capsule_data) {
2744 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2745 			}
2746 
2747 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER);
2748 			STAILQ_INSERT_TAIL(&group->pending_buf_queue, &tcp_req->req, buf_link);
2749 			break;
2750 		case TCP_REQUEST_STATE_NEED_BUFFER:
2751 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2752 					  tqpair);
2753 
2754 			assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE);
2755 
2756 			if (!tcp_req->has_in_capsule_data && (&tcp_req->req != STAILQ_FIRST(&group->pending_buf_queue))) {
2757 				SPDK_DEBUGLOG(nvmf_tcp,
2758 					      "Not the first element to wait for the buf for tcp_req(%p) on tqpair=%p\n",
2759 					      tcp_req, tqpair);
2760 				/* This request needs to wait in line to obtain a buffer */
2761 				break;
2762 			}
2763 
2764 			/* Try to get a data buffer */
2765 			rc = nvmf_tcp_req_parse_sgl(tcp_req, transport, group);
2766 			if (rc < 0) {
2767 				STAILQ_REMOVE_HEAD(&group->pending_buf_queue, buf_link);
2768 				/* Reset the tqpair receiving pdu state */
2769 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
2770 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2771 				tcp_req->req.rsp->nvme_cpl.cid = tcp_req->req.cmd->nvme_cmd.cid;
2772 				nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
2773 				break;
2774 			}
2775 
2776 			/* Get a zcopy buffer if the request can be serviced through zcopy */
2777 			if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2778 				if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2779 					assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2780 					tcp_req->req.length = tcp_req->req.dif.elba_length;
2781 				}
2782 
2783 				STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2784 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START);
2785 				spdk_nvmf_request_zcopy_start(&tcp_req->req);
2786 				break;
2787 			}
2788 
2789 			if (!tcp_req->req.data) {
2790 				SPDK_DEBUGLOG(nvmf_tcp, "No buffer allocated for tcp_req(%p) on tqpair(%p\n)",
2791 					      tcp_req, tqpair);
2792 				/* No buffers available. */
2793 				break;
2794 			}
2795 
2796 			STAILQ_REMOVE(&group->pending_buf_queue, &tcp_req->req, spdk_nvmf_request, buf_link);
2797 
2798 			/* If data is transferring from host to controller, we need to do a transfer from the host. */
2799 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2800 				if (tcp_req->req.data_from_pool) {
2801 					SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2802 					nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2803 				} else {
2804 					struct nvme_tcp_pdu *pdu;
2805 
2806 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
2807 
2808 					pdu = tqpair->pdu_in_progress;
2809 					SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req,
2810 						      tqpair);
2811 					/* No need to send r2t, contained in the capsuled data */
2812 					nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt,
2813 								  0, tcp_req->req.length);
2814 					nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
2815 				}
2816 				break;
2817 			}
2818 
2819 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE);
2820 			break;
2821 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
2822 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.qid, 0,
2823 					  (uintptr_t)tcp_req, tqpair);
2824 			/* Some external code must kick a request into  TCP_REQUEST_STATE_ZCOPY_START_COMPLETED
2825 			 * to escape this state. */
2826 			break;
2827 		case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
2828 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.qid, 0,
2829 					  (uintptr_t)tcp_req, tqpair);
2830 			if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) {
2831 				SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n",
2832 					      tcp_req, tqpair);
2833 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2834 				break;
2835 			}
2836 			if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
2837 				SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
2838 				nvmf_tcp_send_r2t_pdu(tqpair, tcp_req);
2839 			} else {
2840 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
2841 			}
2842 			break;
2843 		case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
2844 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2845 					  tqpair);
2846 			/* The R2T completion or the h2c data incoming will kick it out of this state. */
2847 			break;
2848 		case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
2849 
2850 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.qid, 0,
2851 					  (uintptr_t)tcp_req, tqpair);
2852 			/* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE
2853 			 * to escape this state. */
2854 			break;
2855 		case TCP_REQUEST_STATE_READY_TO_EXECUTE:
2856 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.qid, 0,
2857 					  (uintptr_t)tcp_req, tqpair);
2858 
2859 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2860 				assert(tcp_req->req.dif.elba_length >= tcp_req->req.length);
2861 				tcp_req->req.length = tcp_req->req.dif.elba_length;
2862 			}
2863 
2864 			if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) {
2865 				if (tcp_req->fused_failed) {
2866 					/* This request failed FUSED semantics.  Fail it immediately, without
2867 					 * even sending it to the target layer.
2868 					 */
2869 					tcp_req->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2870 					tcp_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED;
2871 					nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2872 					break;
2873 				}
2874 
2875 				if (tcp_req->fused_pair == NULL ||
2876 				    tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) {
2877 					/* This request is ready to execute, but either we don't know yet if it's
2878 					 * valid - i.e. this is a FIRST but we haven't received the next request yet),
2879 					 * or the other request of this fused pair isn't ready to execute. So
2880 					 * break here and this request will get processed later either when the
2881 					 * other request is ready or we find that this request isn't valid.
2882 					 */
2883 					break;
2884 				}
2885 			}
2886 
2887 			if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) {
2888 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING);
2889 				/* If we get to this point, and this request is a fused command, we know that
2890 				 * it is part of a valid sequence (FIRST followed by a SECOND) and that both
2891 				 * requests are READY_TO_EXECUTE.  So call spdk_nvmf_request_exec() both on this
2892 				 * request, and the other request of the fused pair, in the correct order.
2893 				 * Also clear the ->fused_pair pointers on both requests, since after this point
2894 				 * we no longer need to maintain the relationship between these two requests.
2895 				 */
2896 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) {
2897 					assert(tcp_req->fused_pair != NULL);
2898 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
2899 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
2900 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
2901 					tcp_req->fused_pair->fused_pair = NULL;
2902 					tcp_req->fused_pair = NULL;
2903 				}
2904 				spdk_nvmf_request_exec(&tcp_req->req);
2905 				if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) {
2906 					assert(tcp_req->fused_pair != NULL);
2907 					assert(tcp_req->fused_pair->fused_pair == tcp_req);
2908 					nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING);
2909 					spdk_nvmf_request_exec(&tcp_req->fused_pair->req);
2910 					tcp_req->fused_pair->fused_pair = NULL;
2911 					tcp_req->fused_pair = NULL;
2912 				}
2913 			} else {
2914 				/* For zero-copy, only requests with data coming from host to the
2915 				 * controller can end up here. */
2916 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
2917 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT);
2918 				spdk_nvmf_request_zcopy_end(&tcp_req->req, true);
2919 			}
2920 
2921 			break;
2922 		case TCP_REQUEST_STATE_EXECUTING:
2923 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2924 					  tqpair);
2925 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
2926 			 * to escape this state. */
2927 			break;
2928 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
2929 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.qid, 0,
2930 					  (uintptr_t)tcp_req, tqpair);
2931 			/* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED
2932 			 * to escape this state. */
2933 			break;
2934 		case TCP_REQUEST_STATE_EXECUTED:
2935 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2936 					  tqpair);
2937 
2938 			if (spdk_unlikely(tcp_req->req.dif_enabled)) {
2939 				tcp_req->req.length = tcp_req->req.dif.orig_length;
2940 			}
2941 
2942 			nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE);
2943 			break;
2944 		case TCP_REQUEST_STATE_READY_TO_COMPLETE:
2945 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.qid, 0,
2946 					  (uintptr_t)tcp_req, tqpair);
2947 			rc = request_transfer_out(&tcp_req->req);
2948 			assert(rc == 0); /* No good way to handle this currently */
2949 			break;
2950 		case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
2951 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.qid, 0,
2952 					  (uintptr_t)tcp_req, tqpair);
2953 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
2954 			 * to escape this state. */
2955 			break;
2956 		case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
2957 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.qid, 0,
2958 					  (uintptr_t)tcp_req, tqpair);
2959 			/* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED
2960 			 * to escape this state. */
2961 			break;
2962 		case TCP_REQUEST_STATE_COMPLETED:
2963 			spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.qid, 0, (uintptr_t)tcp_req,
2964 					  tqpair);
2965 			/* If there's an outstanding PDU sent to the host, the request is completed
2966 			 * due to the qpair being disconnected.  We must delay the completion until
2967 			 * that write is done to avoid freeing the request twice. */
2968 			if (spdk_unlikely(tcp_req->pdu_in_use)) {
2969 				SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding "
2970 					      "write on req=%p\n", tcp_req);
2971 				/* This can only happen for zcopy requests */
2972 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
2973 				assert(tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
2974 				break;
2975 			}
2976 
2977 			if (tcp_req->req.data_from_pool) {
2978 				spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport);
2979 			} else if (spdk_unlikely(tcp_req->has_in_capsule_data &&
2980 						 (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC ||
2981 						  tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) {
2982 				tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
2983 				assert(tgroup->control_msg_list);
2984 				SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n");
2985 				nvmf_tcp_control_msg_put(tgroup->control_msg_list, tcp_req->req.data);
2986 			} else if (tcp_req->req.zcopy_bdev_io != NULL) {
2987 				/* If the request has an unreleased zcopy bdev_io, it's either a
2988 				 * read, a failed write, or the qpair is being disconnected */
2989 				assert(spdk_nvmf_request_using_zcopy(&tcp_req->req));
2990 				assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
2991 				       spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) ||
2992 				       tqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE);
2993 				nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE);
2994 				spdk_nvmf_request_zcopy_end(&tcp_req->req, false);
2995 				break;
2996 			}
2997 			tcp_req->req.length = 0;
2998 			tcp_req->req.iovcnt = 0;
2999 			tcp_req->req.data = NULL;
3000 			tcp_req->fused_failed = false;
3001 			if (tcp_req->fused_pair) {
3002 				/* This req was part of a valid fused pair, but failed before it got to
3003 				 * READ_TO_EXECUTE state.  This means we need to fail the other request
3004 				 * in the pair, because it is no longer part of a valid pair.  If the pair
3005 				 * already reached READY_TO_EXECUTE state, we need to kick it.
3006 				 */
3007 				tcp_req->fused_pair->fused_failed = true;
3008 				if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) {
3009 					nvmf_tcp_req_process(ttransport, tcp_req->fused_pair);
3010 				}
3011 				tcp_req->fused_pair = NULL;
3012 			}
3013 
3014 			nvmf_tcp_req_put(tqpair, tcp_req);
3015 			break;
3016 		case TCP_REQUEST_NUM_STATES:
3017 		default:
3018 			assert(0);
3019 			break;
3020 		}
3021 
3022 		if (tcp_req->state != prev_state) {
3023 			progress = true;
3024 		}
3025 	} while (tcp_req->state != prev_state);
3026 
3027 	return progress;
3028 }
3029 
3030 static void
3031 nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock)
3032 {
3033 	struct spdk_nvmf_tcp_qpair *tqpair = arg;
3034 	int rc;
3035 
3036 	assert(tqpair != NULL);
3037 	rc = nvmf_tcp_sock_process(tqpair);
3038 
3039 	/* If there was a new socket error, disconnect */
3040 	if (rc < 0) {
3041 		nvmf_tcp_qpair_disconnect(tqpair);
3042 	}
3043 }
3044 
3045 static int
3046 nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
3047 			struct spdk_nvmf_qpair *qpair)
3048 {
3049 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3050 	struct spdk_nvmf_tcp_qpair	*tqpair;
3051 	int				rc;
3052 
3053 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3054 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3055 
3056 	rc =  nvmf_tcp_qpair_sock_init(tqpair);
3057 	if (rc != 0) {
3058 		SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair);
3059 		return -1;
3060 	}
3061 
3062 	rc = nvmf_tcp_qpair_init(&tqpair->qpair);
3063 	if (rc < 0) {
3064 		SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair);
3065 		return -1;
3066 	}
3067 
3068 	rc = nvmf_tcp_qpair_init_mem_resource(tqpair);
3069 	if (rc < 0) {
3070 		SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair);
3071 		return -1;
3072 	}
3073 
3074 	rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock,
3075 				      nvmf_tcp_sock_cb, tqpair);
3076 	if (rc != 0) {
3077 		SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n",
3078 			    spdk_strerror(errno), errno);
3079 		return -1;
3080 	}
3081 
3082 	tqpair->group = tgroup;
3083 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INVALID);
3084 	TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link);
3085 
3086 	return 0;
3087 }
3088 
3089 static int
3090 nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
3091 			   struct spdk_nvmf_qpair *qpair)
3092 {
3093 	struct spdk_nvmf_tcp_poll_group	*tgroup;
3094 	struct spdk_nvmf_tcp_qpair		*tqpair;
3095 	int				rc;
3096 
3097 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3098 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3099 
3100 	assert(tqpair->group == tgroup);
3101 
3102 	SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup);
3103 	if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) {
3104 		TAILQ_REMOVE(&tgroup->await_req, tqpair, link);
3105 	} else {
3106 		TAILQ_REMOVE(&tgroup->qpairs, tqpair, link);
3107 	}
3108 
3109 	rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock);
3110 	if (rc != 0) {
3111 		SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n",
3112 			    spdk_strerror(errno), errno);
3113 	}
3114 
3115 	return rc;
3116 }
3117 
3118 static int
3119 nvmf_tcp_req_complete(struct spdk_nvmf_request *req)
3120 {
3121 	struct spdk_nvmf_tcp_transport *ttransport;
3122 	struct spdk_nvmf_tcp_req *tcp_req;
3123 
3124 	ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3125 	tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3126 
3127 	switch (tcp_req->state) {
3128 	case TCP_REQUEST_STATE_EXECUTING:
3129 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3130 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED);
3131 		break;
3132 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3133 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED);
3134 		break;
3135 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE:
3136 		nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED);
3137 		break;
3138 	default:
3139 		assert(0 && "Unexpected request state");
3140 		break;
3141 	}
3142 
3143 	nvmf_tcp_req_process(ttransport, tcp_req);
3144 
3145 	return 0;
3146 }
3147 
3148 static void
3149 nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair,
3150 		     spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
3151 {
3152 	struct spdk_nvmf_tcp_qpair *tqpair;
3153 
3154 	SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair);
3155 
3156 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3157 	nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITED);
3158 	nvmf_tcp_qpair_destroy(tqpair);
3159 
3160 	if (cb_fn) {
3161 		cb_fn(cb_arg);
3162 	}
3163 }
3164 
3165 static int
3166 nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
3167 {
3168 	struct spdk_nvmf_tcp_poll_group *tgroup;
3169 	int rc;
3170 	struct spdk_nvmf_request *req, *req_tmp;
3171 	struct spdk_nvmf_tcp_req *tcp_req;
3172 	struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp;
3173 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(group->transport,
3174 			struct spdk_nvmf_tcp_transport, transport);
3175 
3176 	tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group);
3177 
3178 	if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) {
3179 		return 0;
3180 	}
3181 
3182 	STAILQ_FOREACH_SAFE(req, &group->pending_buf_queue, buf_link, req_tmp) {
3183 		tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req);
3184 		if (nvmf_tcp_req_process(ttransport, tcp_req) == false) {
3185 			break;
3186 		}
3187 	}
3188 
3189 	rc = spdk_sock_group_poll(tgroup->sock_group);
3190 	if (rc < 0) {
3191 		SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group);
3192 	}
3193 
3194 	TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) {
3195 		nvmf_tcp_sock_process(tqpair);
3196 	}
3197 
3198 	return rc;
3199 }
3200 
3201 static int
3202 nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair,
3203 			struct spdk_nvme_transport_id *trid, bool peer)
3204 {
3205 	struct spdk_nvmf_tcp_qpair     *tqpair;
3206 	uint16_t			port;
3207 
3208 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3209 	spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP);
3210 
3211 	if (peer) {
3212 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr);
3213 		port = tqpair->initiator_port;
3214 	} else {
3215 		snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr);
3216 		port = tqpair->target_port;
3217 	}
3218 
3219 	if (spdk_sock_is_ipv4(tqpair->sock)) {
3220 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
3221 	} else if (spdk_sock_is_ipv6(tqpair->sock)) {
3222 		trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
3223 	} else {
3224 		return -1;
3225 	}
3226 
3227 	snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port);
3228 	return 0;
3229 }
3230 
3231 static int
3232 nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
3233 			      struct spdk_nvme_transport_id *trid)
3234 {
3235 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3236 }
3237 
3238 static int
3239 nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
3240 			     struct spdk_nvme_transport_id *trid)
3241 {
3242 	return nvmf_tcp_qpair_get_trid(qpair, trid, 1);
3243 }
3244 
3245 static int
3246 nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
3247 			       struct spdk_nvme_transport_id *trid)
3248 {
3249 	return nvmf_tcp_qpair_get_trid(qpair, trid, 0);
3250 }
3251 
3252 static void
3253 nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req,
3254 			      struct spdk_nvmf_tcp_req *tcp_req_to_abort)
3255 {
3256 	tcp_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
3257 	tcp_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
3258 	tcp_req_to_abort->req.rsp->nvme_cpl.cid = tcp_req_to_abort->req.cmd->nvme_cmd.cid;
3259 
3260 	nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE);
3261 
3262 	req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */
3263 }
3264 
3265 static int
3266 _nvmf_tcp_qpair_abort_request(void *ctx)
3267 {
3268 	struct spdk_nvmf_request *req = ctx;
3269 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort,
3270 			struct spdk_nvmf_tcp_req, req);
3271 	struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair,
3272 					     struct spdk_nvmf_tcp_qpair, qpair);
3273 	struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport,
3274 			struct spdk_nvmf_tcp_transport, transport);
3275 	int rc;
3276 
3277 	spdk_poller_unregister(&req->poller);
3278 
3279 	switch (tcp_req_to_abort->state) {
3280 	case TCP_REQUEST_STATE_EXECUTING:
3281 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_START:
3282 	case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT:
3283 		rc = nvmf_ctrlr_abort_request(req);
3284 		if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) {
3285 			return SPDK_POLLER_BUSY;
3286 		}
3287 		break;
3288 
3289 	case TCP_REQUEST_STATE_NEED_BUFFER:
3290 		STAILQ_REMOVE(&tqpair->group->group.pending_buf_queue,
3291 			      &tcp_req_to_abort->req, spdk_nvmf_request, buf_link);
3292 
3293 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3294 		nvmf_tcp_req_process(ttransport, tcp_req_to_abort);
3295 		break;
3296 
3297 	case TCP_REQUEST_STATE_AWAITING_R2T_ACK:
3298 	case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED:
3299 		nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort);
3300 		break;
3301 
3302 	case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
3303 		if (spdk_get_ticks() < req->timeout_tsc) {
3304 			req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0);
3305 			return SPDK_POLLER_BUSY;
3306 		}
3307 		break;
3308 
3309 	default:
3310 		break;
3311 	}
3312 
3313 	spdk_nvmf_request_complete(req);
3314 	return SPDK_POLLER_BUSY;
3315 }
3316 
3317 static void
3318 nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
3319 			     struct spdk_nvmf_request *req)
3320 {
3321 	struct spdk_nvmf_tcp_qpair *tqpair;
3322 	struct spdk_nvmf_tcp_transport *ttransport;
3323 	struct spdk_nvmf_transport *transport;
3324 	uint16_t cid;
3325 	uint32_t i;
3326 	struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL;
3327 
3328 	tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair);
3329 	ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport);
3330 	transport = &ttransport->transport;
3331 
3332 	cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
3333 
3334 	for (i = 0; i < tqpair->resource_count; i++) {
3335 		if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE &&
3336 		    tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) {
3337 			tcp_req_to_abort = &tqpair->reqs[i];
3338 			break;
3339 		}
3340 	}
3341 
3342 	spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, qpair->qid, 0, (uintptr_t)req, tqpair);
3343 
3344 	if (tcp_req_to_abort == NULL) {
3345 		spdk_nvmf_request_complete(req);
3346 		return;
3347 	}
3348 
3349 	req->req_to_abort = &tcp_req_to_abort->req;
3350 	req->timeout_tsc = spdk_get_ticks() +
3351 			   transport->opts.abort_timeout_sec * spdk_get_ticks_hz();
3352 	req->poller = NULL;
3353 
3354 	_nvmf_tcp_qpair_abort_request(req);
3355 }
3356 
3357 #define SPDK_NVMF_TCP_DEFAULT_MAX_QUEUE_DEPTH 128
3358 #define SPDK_NVMF_TCP_DEFAULT_AQ_DEPTH 128
3359 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
3360 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
3361 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072
3362 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072
3363 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511
3364 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE 32
3365 #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false
3366 #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1
3367 
3368 static void
3369 nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts)
3370 {
3371 	opts->max_queue_depth =		SPDK_NVMF_TCP_DEFAULT_MAX_QUEUE_DEPTH;
3372 	opts->max_qpairs_per_ctrlr =	SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR;
3373 	opts->in_capsule_data_size =	SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE;
3374 	opts->max_io_size =		SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE;
3375 	opts->io_unit_size =		SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE;
3376 	opts->max_aq_depth =		SPDK_NVMF_TCP_DEFAULT_AQ_DEPTH;
3377 	opts->num_shared_buffers =	SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS;
3378 	opts->buf_cache_size =		SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE;
3379 	opts->dif_insert_or_strip =	SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP;
3380 	opts->abort_timeout_sec =	SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC;
3381 	opts->transport_specific =      NULL;
3382 }
3383 
3384 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = {
3385 	.name = "TCP",
3386 	.type = SPDK_NVME_TRANSPORT_TCP,
3387 	.opts_init = nvmf_tcp_opts_init,
3388 	.create = nvmf_tcp_create,
3389 	.dump_opts = nvmf_tcp_dump_opts,
3390 	.destroy = nvmf_tcp_destroy,
3391 
3392 	.listen = nvmf_tcp_listen,
3393 	.stop_listen = nvmf_tcp_stop_listen,
3394 
3395 	.listener_discover = nvmf_tcp_discover,
3396 
3397 	.poll_group_create = nvmf_tcp_poll_group_create,
3398 	.get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group,
3399 	.poll_group_destroy = nvmf_tcp_poll_group_destroy,
3400 	.poll_group_add = nvmf_tcp_poll_group_add,
3401 	.poll_group_remove = nvmf_tcp_poll_group_remove,
3402 	.poll_group_poll = nvmf_tcp_poll_group_poll,
3403 
3404 	.req_free = nvmf_tcp_req_free,
3405 	.req_complete = nvmf_tcp_req_complete,
3406 
3407 	.qpair_fini = nvmf_tcp_close_qpair,
3408 	.qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid,
3409 	.qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid,
3410 	.qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid,
3411 	.qpair_abort_request = nvmf_tcp_qpair_abort_request,
3412 };
3413 
3414 SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp);
3415 SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)
3416